Z-scan: A simple technique for determination of third-order optical nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Singh, Vijender, E-mail: chahal-gju@rediffmail.com [Department of Applied Science, N.C. College of Engineering, Israna, Panipat-132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.co.in [Department of Physics, Chaudhary Devi Lal University, Sirsa-125055, Haryana (India)
2015-08-28
Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to be 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Indian Academy of Sciences (India)
S Venugopal Rao; P T Anusha; L Giribabu; Surya P Tewari
2010-11-01
We present our experimental results on the picosecond nonlinear optical (NLO) studies of symmetrical and unsymmetrical phthalocyanines, examined using the Z-scan technique. Both the open-aperture and closed-aperture Z-scan curves for three samples were recorded and the nonlinear coefficients were extracted from the theoretical fits. The nonlinear absorption/refraction contribution from the solvent was also identified. The observed open aperture behaviour for these molecules is understood in terms of the absorption coefficients of these molecules near 800 nm and the peak intensities used. It is established that these phthalocyanines exhibit large optical nonlinearities and, hence, are suitable for optical limiting applications.
Sudheesh, P.; Rao, D. Mallikharjuna; Chandrasekharan, K.
2014-01-01
The third-order nonlinear optical properties of newly synthesized phenylhydrazone derivatives and the influence of noble metal nanoparticles (Ag & Au) on their nonlinear optical responses were investigated by employing Degenerate Four wave Mixing (DFWM) technique with a 7 nanosecond, 10Hz Nd: YAG laser pulses at 532nm. Metal nanoparticles were prepared by laser ablation and the particle formation was confirmed using UV-Visible spectroscopy, Transmission Electron Microscopy (TEM). The nonlinear optical susceptibility were measured and found to be of the order 10-13esu. The results are encouraging and conclude that the materials are promising candidate for future optical device applications.
Guesmi, Latifa; Menif, Mourad
2016-04-01
The field of fiber optics nonlinearity is more discussed last years due to such remarkable enhancement in the nonlinear processes efficiency. In this paper, and for optical performance monitoring (OPM), a new achievement of nonlinear effects has been investigated. The use of cross-phase modulation (XPM) and four-wave mixing (FWM) effects between input optical signal and inserted continuous-wave probe has proposed for impairments monitoring. Indeed, transmitting a multi-channels phase modulated signal at high data rate (1 Tbps WDM Nyquist NRZ- DP-QPSK) improves the sensitivity and the dynamic range monitoring. It was observed by simulation results that various optical parameters including optical power, wavelength, chromatic dispersion (CD), polarization mode dispersion (PMD), optical signal-to-noise ratio (OSNR), Q-factor and so on, can be monitored. Also, the effect of increasing the channel spacing between WDM signals is studied and proved its use for FWM power monitoring.
Nonlinear optical properties of natural laccaic acid dye studied using Z-scan technique
Zongo, S.; Sanusi, K.; Britton, J.; Mthunzi, P.; Nyokong, T.; Maaza, M.; Sahraoui, B.
2015-08-01
We have investigated the nonlinear optical properties, including the optical limiting behaviour for five different concentrations of laccaic acid dye in solution and a thin film obtained through doping in poly (methyl methacrylate) (PMMA) polymer. The experiments were performed by using single beam Z-scan technique at 532 nm with 10 ns, 10 Hz Nd:YAG laser pulses excitation. From the open-aperture Z-scan data, we derived that the laccaic dye samples exhibit strong two photon absorption (2PA). The nonlinear refractive index was determined through the closed aperture Z-scan data. The estimated absorption coefficient β2, nonlinear refractive index n2 and second order hyperpolarizability γ were found to be of the order of 10-10 m/W, 10-9 esu and 10-32 esu, respectively. The Z-scan study reveals that the natural laccaic acid dye emerges as a promising material for third order nonlinear optical devices application.
Bhowmick, Arup; Sahoo, Sushree S.; Mohapatra, Ashok K.
2016-08-01
We discuss the optical-heterodyne-detection technique to study the absorption and dispersion of a probe beam propagating through a medium with a narrow resonance. The technique has been demonstrated for Rydberg electromagnetically induced transparency in rubidium thermal vapor and the optical nonlinearity of a probe beam with variable intensity has been studied. A quantitative comparison of the experimental result with a suitable theoretical model is presented. The limitations and the working regime of the technique are discussed.
Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells
Itoh, Kazuyoshi
2015-12-01
Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.
Nonlinear optics and photonics
He, Guang S
2015-01-01
This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...
Measurements of nonlinear optical properties of PVDF/ZnO using Z-scan technique
Energy Technology Data Exchange (ETDEWEB)
Shanshool, Haider Mohammed, E-mail: haidshan62@gmail.com [Ministry of Science and Technology, Baghdad (Iraq); Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia); Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, University Putra Malaysia, Serdang (Malaysia); Abdullah, Ibtisam Yahya [Department of Physics, College of Science, University of Mosul, Mosul (Iraq)
2015-10-15
The nonlinear optical properties of ZnO nanoparticles dispersed in poly (vinylidene fluoride) (PVDF) polymer are investigated. PVDF/ZnO nanocomposites were prepared by mixing different concentrations of ZnO nanoparticles, as the filler, with PVDF, as the polymer matrix, using casting method. Acetone was used as a solvent for the polymer. FTIR spectra of the samples were analyzed thus confirming the formation of α and β phases. The absorbance spectra of the samples were obtained, thereby showing high absorption in the UV region. The linear absorption coefficient was calculated. The single-beam Z-scan technique was used to measure the nonlinear refractive index and the nonlinear absorption coefficient of the PVDF/ZnO nanocomposite samples. We observed that the nonlinear refractive index is in the order of 10{sup -13} cm{sup 2}/W with the negative sign, whereas the nonlinear absorption coefficient is in the order of 10{sup -8} cm/W. (author)
Correction of Phase Distortion by Nonlinear Optical Techniques
1981-05-01
ward wave oscillators and distributed feedback lasers, occur even in the presence of pump attenuation. It is obvious that pump depletion effects...a*. Efl v* Z* ^iCVb^^f-V VEfl> (4-3-2) Ik -VE +^ V,2 E - n— p p 2k T p 2nc W {M[(I +1 )En - (E -E*) t...offset techniques. (1) Since the pumps may be arranged to be non-counterpropagating with angle offset techniques, feedback of the pump into the
Chopped nonlinear magneto-optic rotation: a technique for precision measurements
Ravishankar, Harish; Natarajan, Vasant
2011-01-01
We have developed a technique for precise measurement of small magnetic fields using nonlinear magneto-optic rotation (NMOR). The technique relies on the resonant laser beam being chopped. During the on time, the atoms are optically pumped into an aligned ground state ($\\Delta m=2$ coherence). During the off time, they freely precess around the magnetic field at the Larmor frequency. If the on-off modulation frequency matches (twice) the Larmor precession frequency, the rotation is resonantly enhanced in every cycle, thereby making the process like a repeated Ramsey measurement of the Larmor frequency. We study chopped-NMOR in a paraffin-coated Cs vapor cell. The out-of-phase demodulated rotation shows a Lorentzian peak of linewidth 85 $\\mu$G, corresponding to a sensitivity of 0.15 nG/$\\sqrt{{\\rm Hz}}$. We discuss the potential of this technique for the measurement of an atomic electric-dipole moment.
Measurement of Temperature Change in Nonlinear Optical Materials by Using the Z-Scan Technique
Institute of Scientific and Technical Information of China (English)
DONG Shu-Guang; YANG Jun-Yi; SHUI Min; YI Chuan-Xiang; LI Zhong-Guo; SONG Ying-Lin
2011-01-01
@@ Spatial and temporal changes of temperature in a novel polymer are investigated by using the Z-scan technique under ns laser pulse excitation.According to the open aperture Z-scan experimental results, the nonlinear absorption coefficient of the polymer is determined.By solving the diffusion equation of heat conduction induced by optical absorption, the spatial and temporal changes in temperature are obtained.This change in temperature drives the photo-acoustic and electromagnetic wave propagating in the polymer and induces the change in refractive index, which serves as a negative lens, and the closed aperture Z-scan shows a peak and valley profile.Based on the numerical calculation, we achieve a good fit to the closed-aperture Z-scan curve with an optimized nonlinear refractive index.This consistency attests the existence of temperature change in the solution, and the Z-scan technique is suitable to investigate this change in temperature.
Nonlinear optical properties of natural laccaic acid dye studied using Z-scan technique
CSIR Research Space (South Africa)
Zongo, S
2015-08-01
Full Text Available We have investigated the nonlinear optical properties, including the optical limiting behaviour for five different concentrations of laccaic acid dye in solution and a thin film obtained through doping in poly (methyl methacrylate) (PMMA) polymer...
Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong
2015-01-01
This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.
High-resolution fiber optic temperature sensors using nonlinear spectral curve fitting technique
Su, Z. H.; Gan, J.; Yu, Q. K.; Zhang, Q. H.; Liu, Z. H.; Bao, J. M.
2013-04-01
A generic new data processing method is developed to accurately calculate the absolute optical path difference of a low-finesse Fabry-Perot cavity from its broadband interference fringes. The method combines Fast Fourier Transformation with nonlinear curve fitting of the entire spectrum. Modular functions of LabVIEW are employed for fast implementation of the data processing algorithm. The advantages of this technique are demonstrated through high performance fiber optic temperature sensors consisting of an infrared superluminescent diode and an infrared spectrometer. A high resolution of 0.01 °C is achieved over a large dynamic range from room temperature to 800 °C, limited only by the silica fiber used for the sensor.
Z-scan technique for investigation of the noninstantaneous optical Kerr nonlinearity.
Gu, Bing; Wang, Hui-Tian; Ji, Wei
2009-09-15
By treating laser-induced optical Kerr nonlinearity as a noninstantaneous decaying process, we present the pulse-duration-dependent Z-scan analytical expressions for an arbitrary aperture and an arbitrary nonlinear magnitude. This theory has the capacity to characterize the third-order nonlinear refraction induced by a laser pulse with its temporal duration being much longer than or comparable to the recovery time of the nonlinear effect. Through Z-scan measurements at different pulse durations, the nonlinear refractive coefficient and the recovery time could be determined unambiguously and simultaneously. Furthermore, the theory can be utilized to confirm whether the measured optical Kerr nonlinearity is instantaneous or noninstantaneous with respect to the given pulse duration.
Directory of Open Access Journals (Sweden)
Abd El-Naser A. Mohammed
2010-09-01
Full Text Available In the present paper, the problem amplification techniques of ultra dense wavelength division multiplexing (UDWDM in nonlinear optical networks are investigated through five transmission techniques. The impact of tailoring of chirped pulses of different temporal waveforms is investigated in a normal dispersion fiber. The set of multiplexed signals are tailored in a different a subset to assure approximately the same output level of power to hold the signal-to-noise ratio at the same level. Moreover, three different transmission techniques, namely, soliton propagation, maximum time division multiplexing (MTDM and ìShannonî capacity, are employed where successive section of alternating dispersion are used as a technique to manage the dispersion. Distributed ìRamanî amplifiers as well as Erbium doped fiber amplifier are engaged to maximize the repeater spacing. We have succeeded to multiplex 2400 (UDWDM channels in the optical range 1.45 1.65 µm with channel spacing ranging from 0.3 up to 0.6 nm where each channel has its own characteristic parameters of loss, dispersion, and amplification. The channels are divided into sub-groups ( each of 4, 5, 6, 7,Ö.,24 where the technique of space division multiplexing (SDM is applied. The multispan effects of ìKerrî nonlinearity and amplifier noise on ìShannonî channel capacity of dispersion-free nonlinear fiber is considered as a ceiling value for the sake of comparison. The case of soliton with modified Raman amplification via parametric gain also is investigated. Each link has special chemical structure, optical signals power, and optical Raman pumping. The cable contains {4, 5, 6, 7,Ö. , 24} links in SDM. It has been shown that the modified Raman gain yields higher effects on the variable under consideration if compared with the conventional Raman gain. The number of links is in positive correlations with the set of effects {Repeater spacing, Soliton product, MTDM product}. In general
Nonlinear optical techniques for imaging and manipulating the mouse central nervous system
Farrar, Matthew John
The spinal cord of vertebrates serves as the conduit for somatosensory information and motor control, as well as being the locus of neural circuits that govern fast reflexes and patterned behaviors, such as walking in mammals or swimming in fish. Consequently, pathologies of the spinal cord -such as spinal cord injury (SCI)- lead to loss of motor control and sensory perception, with accompanying decline in life expectancy and quality of life. Despite the devastating effects of these diseases, few therapies exist to substantially ameliorate patient outcome. In part, studies of spinal cord pathology have been limited by the inability to perform in vivo imaging at the level of cellular processes. The focus of this thesis is to present the underlying theory for and demonstration of novel multi-photon microscopy (MPM) and optical manipulation techniques as they apply to studies the mouse central nervous system (CNS), with an emphasis on the spinal cord. The scientific findings which have resulted from the implementation of these techniques are also presented. In particular, we have demonstrated that third harmonic generation is a dye-free method of imaging CNS myelin, a fundamental constituent of the spinal cord that is difficult to label using exogenous dyes and/or transgenic constructs. Since gaining optical access to the spinal cord is a prerequisite for spinal cord imaging, we review our development of a novel spinal cord imaging chamber and surgical procedure which allowed us to image for multiple weeks following implantation without the need for repeated surgeries. We also have used MPM to characterize spinal venous blood flow before and after point occlusions. We review a novel nonlinear microscopy technique that may serve to show optical interfaces in three dimensions inside scattering tissue. Finally, we discuss a model and show results of optoporation, a means of transfecting cells with genetic constructs. Brief reviews of MPM and SCI are also presented.
Organic nonlinear optical materials
Umegaki, S.
1987-01-01
Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.
Bhowmick, Arup; Mohapatra, Ashok K
2016-01-01
We demonstrate the phenomenon of blockade in two-photon excitations to the Rydberg state in thermal vapor. A technique based on optical heterodyne is used to measure the dispersion of a probe beam far off resonant to the D2 line of rubidium in the presence of a strong laser beam that couples to the Rydberg state via two-photon resonance. Density dependent suppression of the dispersion peak is observed while coupling to the Rydberg state with principal quantum number, n = 60. The experimental observation is explained using the phenomenon of Rydberg blockade. The blockade radius is measured to be about 2.2 {\\mu}m which is consistent with the scaling due to the Doppler width of 2-photon resonance in thermal vapor. Our result promises the realization of single photon source and strong single photon non-linearity based on Rydberg blockade in thermal vapor.
Arivazhagan, T.; Siva Bala Solanki, S.; Rajesh, Narayana Perumal
2017-02-01
The butyl 4-hydroxybenzoate single crystal has been grown by vertical Bridgman technique using single wall ampoule. The cell parameters of the grown crystal are verified by single crystal X-ray diffraction analysis. The functional groups of the grown crystal were identified by Fourier transform infrared analysis. The melting, decomposition and crystallization point of the compound are determined by thermo gravimetric analysis and differential scanning calorimetric analysis. The mechanical properties of the grown crystal has been analyzed by Vickers microhardness method. The optical behavior of the grown crystal has been observed by UV-vis-NIR transmission spectroscopic analysis which shows that the lower cut-off wavelength lying at 293 nm and found that the energy band gap value is 4.05 eV. The blue light emission of the crystal was identified by photoluminescence studies. The positive third order nonlinear optical parameters like nonlinear refractive index (n2), nonlinear absorption co-efficient (β) and third order nonlinear susceptibility (χ3) of the grown crystal was calculated by Z-scan studies. The positive sign of nonlinear refractive index (n2) indicates that the crystal exhibits self focusing optical nonlinearity. The crystal exhibits good optical power limiting behavior.
Field guide to nonlinear optics
Powers, Peter E
2013-01-01
Optomechanics is a field of mechanics that addresses the specific design challenges associated with optical systems. This [i]Field Guide [/i]describes how to mount optical components, as well as how to analyze a given design. It is intended for practicing optical and mechanical engineers whose work requires knowledge in both optics and mechanics. This Field Guide is designed for those looking for a condensed and concise source of key concepts, equations, and techniques for nonlinear optics. Topics covered include technologically important effects, recent developments in nonlinear optics
Li, Zhong-Yu; Xu, Song; Chen, Zi-Hui; Zhang, Fu-Shi; Kasatani, Kazuo
2011-08-01
Third-order optical nonlinearities of two squarylium dyes with benzothiazole donor groups (BSQ1 and BSQ2) in chloroform solution are measured by a picosecond Z-scan technique at 532 nm. It is found that the two compounds show the saturation absorption and nonlinear self-focus refraction effect. The molecular second hyperpolarizabilities are calculated to be 7.46 × 10-31 esu and 5.01 × 10-30 esu for BSQ1 and BSQ2, respectively. The large optical nonlinearities of squarylium dyes can be attributed to their rigid and intramolecular charge transfer structure. The difference in γ values is attributed to the chloro group of benzene rings of BSQ2 and the one-photon resonance effect. It is found that the third-order nonlinear susceptibilities of two squarylium dyes are mainly determined by the real parts of χ(3), and the large optical nonlinearities of studied squarylium dyes can be attributed to the nonlinear refraction.
Institute of Scientific and Technical Information of China (English)
LI Zhong-Yu; XU Song; CHEN Zi-Hui; ZHANG Fu-Shi; KASATANI Kazuo
2011-01-01
@@ Third-order optical nonlinearities of two squarylium dyes with benzothiazole donor groups (BSQ1 and BSQ2)in chloroform solution are measured by a picosecond Z-scan technique at 532 nm.It is found that the two compounds show the saturation absorption and nonlinear self-focus refraction effect.The molecular second hyperpolarizabilities are calculated to be 7.46×10-31 esu and 5.01×10-30 esu for BSQ1 and BSQ2, respectively.The large optical nonlinearities of squarylium dyes can be attributed to their rigid and intramolecular charge transfer structure.The difference in γvalues is attributed to the chloro group of benzene rings of BSQ2 and the one-photon resonance effect.It is found that the third-order nonlinear susceptibilities of two squarylium dyes are mainly determined by the real parts of X(3), and the large optical nonlinearities of studied squarylium dyes can be attributed to the nonlinear refraction.
Agrawal, Govind P
2001-01-01
The Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
2012-12-01
or proof, rather as a review and reference for subsequent sections. Brau’s Modern Problems in Electrodynamics and Mill’s Nonlinear Optics are both... Modern Problems in Electrodynamics , follows from the Lorentz-Drude Model for the polarization of the atom[2]. In this model, the electron is harmonically...2] C. A. Brau, Modern Problems in Classical Electrodynamics , New York: Oxford University Press, 2004. [3] K. Than, “Scientists Create Cloak of
Motiei, H.; Jafari, A.; Naderali, R.
2017-02-01
In this paper, two chemically synthesized organic azo dyes, 2-(2,5-Dichloro-phenyazo)-5,5-dimethyl-cyclohexane-1,3-dione (azo dye (i)) and 5,5-Dimethyl-2-tolylazo-cyclohexane-1,3-dione (azo dye (ii)), have been studied from optical Kerr nonlinearity point of view. These materials were characterized by Ultraviolet-visible spectroscopy. Experiments were performed using a continous wave diode-pumped laser at 532 nm wavelength in three intensities of the laser beam. Nonlinear absorption (β), refractive index (n2) and third-order susceptibility (χ (3)) of dyes, were calculated. Nonlinear absorption coefficient of dyes have been calculated from two methods; 1) using theoretical fits and experimental data in the Z-scan technique, 2) using the strength of nonlinearity curves. The values of β obtained from both of the methods were approximately the same. The results demonstrated that azo dye (ii) displays better nonlinearity and has a lower two-photon absorption threshold than azo dye (i). Calculated parameter related to strength of nonlinearity for azo dye (ii) was higher than azo dye (i), It may be due to presence of methyl in azo dye (ii) instead of chlorine in azo dye (i). Furthermore, The measured values of third order susceptibility of azo dyes were from the order of 10-9 esu . These azo dyes can be suitable candidate for optical switching devices.
Distributed nonlinear optical response
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov
2005-01-01
The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...
Optical nonlinearity of organic dyes as studied by Z-scan and transient grating techniques
Indian Academy of Sciences (India)
Umakanta Tripathy; R Justin Rajesh; Prem B Bisht; A Subrahamanyam
2002-12-01
The excited state absorption cross-section of 5,5′-dichloro-11-diphenylamino- 3,3′-diethyl-10,12-ethylinethiatricarbocyanine perchlorate (IR140) have been measured by using a single beam transmission technique. Z-scan experiments have been used to find out a few nonlinear parameters. The excited state relaxation times have also been measured by using laser induced transient grating (LITG) technique.
Eaton, D F
1991-07-19
The current state of materials development in nonlinear optics is summarized, and the promise of these materials is critically evaluated. Properties and important materials constants of current commercial materials and of new, promising, inorganic and organic molecular and polymeric materials with potential in second- and third-order nonlinear optical applications are presented.
Institute of Scientific and Technical Information of China (English)
Li Jiang(江丽); Shi'an Zhang(张诗按); Yufei Wang(王宇飞); Zhenrong Sun(孙真荣); Zugeng Wang(王祖赓); Jian Lin(林健); Wenhai Huang(黄文旵); Zhizhan Xu(徐至展); Ruxin Li(李儒新)
2004-01-01
We investigated nonlinear optical properties of ZnO-Nb2O5-TeO2 glass excited by a femtosecond laser with time-resolved four-wave mixing (FWM) technique. The unusual FWM signals were observed in samples with ZnO dopant. The mechanism for the optical nonlinearities was discussed.
General solution to nonlinear optical quantum graphs using Dalgarno-Lewis summation techniques
Lytel, Rick; Kuzyk, Mark G
2016-01-01
We develop an algorithm to apply the Dalgarno-Lewis (DL) perturbation theory to quantum graphs with multiple, connected edges. We use it to calculate the nonlinear optical hyperpolarizability tensors for graphs and show that it replicates the sum over states computations, but executes ten to fifty times faster. DL requires only knowledge of the ground state of the graph, eliminating the requirement to determine all possible degeneracies of a complex network. The algorithm is general and may be applied to any quantum graph.
Stolz, A; Markey, L; Francs, G Colas des; Bouhelier, A
2013-01-01
We introduce strongly-coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion and demonstrate that a two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.
Leburn, Christopher; Reid, Derryck
2013-01-01
The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...
Nonlinear effects in optical fibers
Ferreira, Mario F
2011-01-01
Cutting-edge coverage of nonlinear phenomena occurring inside optical fibers Nonlinear fiber optics is a specialized part of fiber optics dealing with optical nonlinearities and their applications. As fiber-optic communication systems have become more advanced and complex, the nonlinear effects in optical fibers have increased in importance, as they adversely affect system performance. Paradoxically, the same nonlinear phenomena also offer the promise of addressing the bandwidth bottleneck for signal processing for future ultra-high speed optical networks. Nonlinear Effects in Optical Fiber
The quantum theory of nonlinear optics
Drummond, Peter D
2014-01-01
Playing a prominent role in communications, quantum science and laser physics, quantum nonlinear optics is an increasingly important field. This book presents a self-contained treatment of field quantization and covers topics such as the canonical formalism for fields, phase-space representations and the encompassing problem of quantization of electrodynamics in linear and nonlinear media. Starting with a summary of classical nonlinear optics, it then explains in detail the calculation techniques for quantum nonlinear optical systems and their applications, quantum and classical noise sources in optical fibers and applications of nonlinear optics to quantum information science. Supplemented by end-of-chapter exercises and detailed examples of calculation techniques in different systems, this book is a valuable resource for graduate students and researchers in nonlinear optics, condensed matter physics, quantum information and atomic physics. A solid foundation in quantum mechanics and classical electrodynamic...
Schmidt, Bruno E; Ernotte, Guilmot; Clerici, Matteo; Morandotti, Roberto; Ibrahim, Heide; Legare, Francois
2016-01-01
In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second har...
Fundamentals of nonlinear optics
Powers, Peter E
2011-01-01
Peter Powers's rigorous but simple description of a difficult field keeps the reader's attention throughout. … All chapters contain a list of references and large numbers of practice examples to be worked through. … By carefully working through the proposed problems, students will develop a sound understanding of the fundamental principles and applications. … the book serves perfectly for an introductory-level course for second- and third-order nonlinear optical phenomena. The author's writing style is refreshing and original. I expect that Fundamentals of Nonlinear Optics will fast become pop
Nonlinear fibre optics overview
DEFF Research Database (Denmark)
Travers, J. C.; Frosz, Michael Henoch; Dudley, J. M.
2010-01-01
, provides a background to the associated nonlinear optical processes, treats the generation mechanisms from continuous wave to femtosecond pulse pump regimes and highlights the diverse applications. A full discussion of numerical methods and comprehensive computer code are also provided, enabling readers...
Handbook of nonlinear optical crystals
Dmitriev, Valentin G; Nikogosyan, David N
1991-01-01
This Handbook of Nonlinear Optical Crystals provides a complete description of the properties and applications of nonlinear crystals In addition, it presents the most important equations for calculating the main parameters of nonlinear frequency converters This comprehensive reference work will be of great value to all scientists and engineers working in nonlinear optics, quantum electronics and laser physics
Whittam, A J
2001-01-01
susceptibility from 26 pm/V (same film without octadecanoic acid) to 40 pm/V. This increase in the second-order susceptibility occurred even though the amount of NLO-active dye was effectively diluted by the addition of the inactive octadecanoic acid. The wavelength of the absorption maximum ranged from 346-440 nm and there was direct correlation between the susceptibilities and the transparency of the films at the harmonic wavelength. Hemicyanine dyes were synthesised, with the general formulae: - (a) C sub 1 sub 8 H sub 3 sub 7 -A sup + -[CH=CH-C sub 6 H sub 4] sub x -N(CH sub 3) sub 2 I (b) C sub 1 sub 8 H sub 3 sub 7 -A sup + -[CH=CH] sub y -C sub 6 H sub 4 -N(CH sub 3) sub 2 I where A sup + is a pyridinium or isoquinolinium acceptor, and x = 1 or 2, and y = 1 or 2. The optically nonlinear dyes were investigated via the Langmuir-Blodgett (LB) technique. The dyes all produced isotherm data, with molecular areas of 22-60 A sup 2 per molecule, which are consistent with the cross-sectional areas of the chromo...
Agrawal, Govind
2012-01-01
Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o
Prakash, M; Geetha, D; Lydia Caroline, M
2013-04-15
Single crystals of L-phenylalanine-benzoic acid (LPBA) were successfully grown from aqueous solution by solvent evaporation technique. Purity of the crystals was increased by the method of recrystallization. The XRD analysis confirms that the crystal belongs to the monoclinic system with noncentrosymmetric space group P21. The chemical structure of compound was established by FT-NMR technique. The presence of functional groups was estimated qualitatively by Fourier transform infrared analysis (FT-IR). Ultraviolet-visible spectral analyses showed that the crystal has low UV cut-off at 254 nm combined with very good transparency of 90% in a wide range. The optical band gap was estimated to be 6.91 eV. Thermal behavior has been studied with TGA/DTA analyses. The existence of second harmonic generation (SHG) efficiency was found to be 0.56 times the value of KDP. The dielectric behavior of the sample was also studied for the first time.
Mani, S.; Jang, J. I.; Ketterson, J. B.
2010-09-01
Employing a modified Z-scan technique at 2 K, we monitor not only the fundamental (ω) but also the frequency-doubled (2ω) and tripled (3ω) Z-scan responses in Cu2O when the input laser frequency ω is tuned to the two-photon quadrupole polariton resonance. The Z-scan response at ω allows us to accurately estimate the absolute number of polaritons generated via two-photon absorption. A striking dip is observed near the 2ω Z-scan focus which basically arises from Auger-type recombination of polaritons. Under high excitation levels, the 3ω Z-scan shows strong third harmonic generation. Based on the nonlinear optical parameters determined, we estimate the experimental polariton density achievable and propose a direction for polariton-based Bose-Einstein condensation in Cu2O .
Essentials of nonlinear optics
Murti, Y V G S
2014-01-01
Current literature on Nonlinear Optics varies widely in terms of content, style, and coverage of specific topics, relative emphasis of areas and the depth of treatment. While most of these books are excellent resources for the researchers, there is a strong need for books appropriate for presenting the subject at the undergraduate or postgraduate levels in Universities. The need for such a book to serve as a textbook at the level of the bachelors and masters courses was felt by the authors while teaching courses on nonlinear optics to students of both science and engineering during the past two decades. This book has emerged from an attempt to address the requirement of presenting the subject at college level. A one-semester course covering the essentials can effectively be designed based on this.
Remote Atmospheric Nonlinear Optical Magnetometry
2014-04-28
Boyd , Nonlinear Optics (Elsevier, Burlington, MA, 2008). [13] M. Scully and S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6703--14-9548 Remote Atmospheric Nonlinear Optical Magnetometry PhilliP SPrangle...b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Remote Atmospheric Nonlinear Optical Magnetometry Phillip Sprangle, Luke
Nonlinear optical properties of cobalt and iron doped CdSe nanoparticles using Z-scan technique
Energy Technology Data Exchange (ETDEWEB)
Gaur, Poonam, E-mail: poonam.gaur612@gmail.com [Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat 131001, Haryana (India); Malik, B.P. [Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat 131001, Haryana (India); Gaur, Arun [Department of Physics, Hindu College, Sonipat 131001, Haryana (India)
2015-01-15
The present work aims at the synthesis of pure, Cobalt (Co) and Iron (Fe) doped CdSe nanoparticles by the wet chemical method. The optical properties of synthesized nanoparticles have been characterized by X-ray diffraction (XRD), UV–vis spectroscopy to find the optical direct band gap and estimation of particle size by using Debye–Scherrer formula and HRTEM. The nonlinear optical properties such as nonlinear absorption co-efficient, nonlinear refraction co-efficient and third order nonlinear susceptibility χ{sup (3)} are investigated. The calculations have been performed with the help of Z-scan experimental set-up using Nd: YAG laser emitting 532 nm, 5 ns laser pulses with intensity maintained at 2.296 TW/cm{sup 2}. The nanoparticles clearly exhibit a negative value of nonlinear refraction, which is attributed to the two photon absorption and free carrier absorption. Further the optical limiting behavior is determined (figure of merit (FOM)). The presence of RSA in these nanoparticles makes them a potential material for the development of optical limiter.
Terahertz Nonlinear Optics in Semiconductors
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.
2013-01-01
We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...
Zidan, M. D.; Al-Ktaifani, M. M.; Allahham, A.
2017-05-01
Z-scan measurements were performed with a CW diode laser at 635 nm to investigate the nonlinear optical properties of Tris(2‧,2-bipyridyl)iron(II) tetrafluoroborate in ethanol at two concentrations. Theoretical fit was carried out to evaluate the nonlinear absorption coefficient (β) and the negative nonlinear refractive index (n2) for the studied complex. Furthermore, the ground-state absorption cross sections (σg), the excited-state absorption cross sections (σex) and thermo-optic coefficient were also estimated. The investigations show large NLO response, which is predominantly associated with substantial conjugation between the aromatic ring π-electron system and d-electron set metal center. The obtained results give a strong indication that Tris(2‧,2-bipyridyl)iron(II) tetrafluoroborate have a potential application in optical domain.
Leslie, Thomas M.
1993-01-01
A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film
Nonlinear Optical Terahertz Technology Project
National Aeronautics and Space Administration — Our approach is based on high-Q optical WGM resonators made with a nonlinear crystal. Such resonators have been demonstrated to dramatically enhance nonlinear...
All-optical switching in optically induced nonlinear waveguide couplers
Energy Technology Data Exchange (ETDEWEB)
Diebel, Falko, E-mail: falko.diebel@uni-muenster.de; Boguslawski, Martin; Rose, Patrick; Denz, Cornelia [Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149 Münster (Germany); Leykam, Daniel; Desyatnikov, Anton S. [Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)
2014-06-30
We experimentally demonstrate all-optical vortex switching in nonlinear coupled waveguide arrays optically induced in photorefractive media. Our technique is based on multiplexing of nondiffracting Bessel beams to induce various types of waveguide configurations. Using double- and quadruple-well potentials, we demonstrate precise control over the coupling strength between waveguides, the linear and nonlinear dynamics and symmetry-breaking bifurcations of guided light, and a power-controlled optical vortex switch.
Focus issue introduction: nonlinear optics.
Boulanger, Benoît; Cundiff, Steven T; Gauthier, Daniel J; Karlsson, Magnus; Lu, Yan-Qing; Norwood, Robert A; Skryabin, Dmitry; Taira, Takunori
2011-11-07
It is now fifty years since the original observation of second harmonic generation ushered in the field of nonlinear optics, close on the heels of the invention of the laser. This feature issue celebrates this anniversary with papers that span the range from new nonlinear optical materials, through the increasingly novel methods that have been developed for phase matching, to emerging areas such as nonlinear metamaterials and plasmonic enhancement of optical properties. It is clear that the next fifty years of nonlinear optics will witness a proliferation of new applications with increasing technological impact.
Applications of nonlinear fiber optics
Agrawal, Govind
2008-01-01
* The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo
Focus issue introduction: nonlinear optics 2013.
Dadap, Jerry I; Karlsson, Magnus; Panoiu, Nicolae C
2013-12-16
Nonlinear Optics has continued to develop over the last few years at an extremely fast pace, with significant advances being reported in nonlinear optical metamaterials, optical signal processing, quantum optics, nonlinear optics at subwavelength scale, and biophotonics. These exciting new developments have generated significant potential for a broad spectrum of technological applications in which nonlinear-optical processes play a central role.
Nonlinear Integrated Optical Waveguides in Chalcogenide Glasses
Institute of Scientific and Technical Information of China (English)
Yinlan; Ruan; Barry; Luther-Davies; Weitang; Li; Andrei; Rode; Marek; Samoc
2003-01-01
This paper reports on the study and measurement of the third order optical nonlinearity in bulk sulfide-based chalcogenide glasses; The fabrication process of the ultrafast laser deposited As-S-(Se)-based chalcogenide films and optical waveguides using two techniques: wet chemistry etching and plasma etching.
Nonlinear Optics: Principles and Applications
DEFF Research Database (Denmark)
Rottwitt, Karsten; Tidemand-Lichtenberg, Peter
As nonlinear optics further develops as a field of research in electromagnetic wave propagation, its state-of-the-art technologies will continue to strongly impact real-world applications in a variety of fields useful to the practicing scientist and engineer. From basic principles to examples...... of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...... and matter, this text focuses on the physical understanding of nonlinear optics, and explores optical material response functions in the time and frequency domain....
Rodríguez-Rosales, A. A.; Ortega-Martínez, R.; Morales-Saavedra, O. G.
2011-01-01
The study of the nonlinear refractive index response γ of several organic dyes and their impact on the nonlinear optical (NLO) properties of nematic liquid crystals (LC) was performed via Z-scan measurements. For his purpose, a low power CW He-Ne laser system (λ approx 633 nm) was implemented. Studies were carried out at the low absorption spectroscopic region of the implemented samples (dyes, liquid crystals and mixtures at different ratios of these materials). Samples were prepared at 1% weight of the used solvent (THF) and were sandwiched in glass cells with a gap thickness of ~100 μm. The implemented dyes have shown the largest optical nonlinearities and represent the main contributors to the cubic NLO-properties of the LC:Dye mixtures. In our particular studies, 5CB liquid crystal doped with DR1 azo-dye, resulted in the simultaneous positive and negative exhibition of nonlinear refractive indexes γ, depending on the polarization state of the excitation laser beam. Experimental conditions and results are described in detail.
Chen, Jianxin; Zhuo, Shuangmu; Luo, Tianshu; Liu, Dingzhong; Zhao, Jingjun
2008-08-01
Collagen and elastin are the most important proteins of the connective tissues in higher vertebrates. In this paper, we present a combined nonlinear optical imaging technique of second-harmonic generation and two-photon excited fluorescence to simultaneously observe the collagen and elastic fiber of dermis in a freshly excised human skin and rabbit aorta using a two-channel synchronized detection method. The obtained two-channel overlay image in the backward direction can clearly distinguish the morphological structure and distribution of collagen and elastic fibers. Tissue spectrum further confirms the obtained structural information. These results suggest that the combined nonlinear optical imaging technique coupled with two-channel synchronized detection method can be an effective tool for detecting collage and elastic fibers without any invasive tissue procedure of slicing, embedding, fixation and staining when two structural proteins are simultaneously present in the biological tissue.
Nonlinear optics principles and applications
Li, Chunfei
2017-01-01
This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...
Nonlinear optics with stationary pulses of light
Andre, A.; Bajcsy, M.; Zibrov, A. S.; Lukin, M. D.
2004-01-01
We show that the recently demonstrated technique for generating stationary pulses of light [Nature {\\bf 426}, 638 (2003)] can be extended to localize optical pulses in all three spatial dimensions in a resonant atomic medium. This method can be used to dramatically enhance the nonlinear interaction between weak optical pulses. In particular, we show that an efficient Kerr-like interaction between two pulses can be implemented as a sequence of several purely linear optical processes. The resul...
Nonlinear optics: the next decade.
Kivshar, Yuri S
2008-12-22
This paper concludes the Focus Serial assembled of invited papers in key areas of nonlinear optics (Editors: J.M. Dudley and R.W. Boyd), and it discusses new directions for future research in this field.
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
Lin Xiao-Gang; Liu Wen-Jun; Lei Ming
2016-03-01
Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota’s bilinear method. The bilinear forms and analytic soliton solutions are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.
Nonlinear optics and organic materials
Energy Technology Data Exchange (ETDEWEB)
Shen, Y.R.
1994-07-01
We shall consider an interesting topic relating nonlinear optics and organic materials: how nonlinear optics can be used to study organic materials. One of the main differences between linear and nonlinear responses of a medium to incoming radiation is in their symmetries. It leads to the possibility that some properties of the medium could be more sensitively probed by nonlinear, rather than linear, optical means, or vise versa. A well-known example is that some vibrational modes of a medium could be Raman-active but infrared-inactive, and would be more readily observed by Raman scattering, which is a two-photon transition process. In this paper, we shall discuss, with the help of three examples, how we can use second harmonic generation (SHG) and sum frequency generation (SFG) to obtain unique information about a material. We shall focus on thin films, surfaces, and interfaces.
Third-Order Nonlinear Optical Susceptibility of Indium Phosphide Nanocrystals
Institute of Scientific and Technical Information of China (English)
WANG Hong-Li; WANG Dong; CHEN Guang-De; LIU Hui
2007-01-01
InP nanocrystals synthesized by refluxing and annealing of organic solvent are determined from XRD measurements to have an average granularity of 25 nm. The nonlinear optical properties of the InP nanocrystals studied by using laser Z-scan technique with 50ps pulses at 532nm are found to reveal strong nonlinear optical properties and two-photon absorption phenomenon. Also, the nonlinear absorption coefficient, the nonlinear refractive index and the third-order nonlinear optical susceptibility are determined by experiments, in which the nonlinear refractive index is three orders of magnitude larger than that of bulk InP.
Nonlinear Optics and Turbulence
1992-10-01
currently at Queen Mary College, London Patrick Dunne, (Ph.D., 1987, M.I.T., Hydrodynamic Stability, Nonlinear Waves), 1987-1988. Alecsander Dyachenko...U I I I U I I 3 9 3 V. BIOGRAPHIES A. FACULTY BRUCE BAYLY, 31, Ph.D. 1986, Princeton University. Postdoctoral visiting member 1986-88 at Courant...Caputo, A. C. Newell, and M. Shelley , "Nonlinear Wave Propagation Through a Random Medium and Soliton Tunneling", Integrable Systems and
New nonlinear optical materials based on ferrofluids
Energy Technology Data Exchange (ETDEWEB)
Huang, J P [Department of Physics, Fudan University, Shanghai 200433 (China); Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Yu, K W [Department of Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)
2006-01-01
We exploit theoretically a new class of magneto-controlled nonlinear optical material based on ferrofluids in which ferromagnetic nanoparticles are coated with a nonmagnetic metallic nonlinear shell. Such an optical material can have anisotropic nonlinear optical properties and a giant enhancement of nonlinearity, as well as an attractive figure of merit.
Arunkumar, K.; Kalainathan, S.
2017-03-01
An organic nonlinear optical (NLO) material 1,3-bis(4-methoxyphenyl)prop-2-en-1-one (BMP) single crystal has been successfully grown by vertical Bridgman stockbarger technique (VBT) using single wall ampoule. The grown crystal was subjected to single-crystal X-ray diffraction analysis (SXRD) to confirm the cell parameters and powder X-ray diffraction analysis (PXRD) to confirm the crystallinity. FTIR analyses were carried to identify the functional groups. The UV-Vis spectrum of BMP showed the lower optical cut off at 435 nm and is transparent in the visible region. The mechanical property of the titled crystal is analyzed by using microhardness measurements. Laser damage threshold energy was determined using Nd: YAG laser (1064 nm). The photoconductivity study of BMP reveals the positive photoconducting nature. The NLO property of the grown crystal confirmed by Kurtz and Perry powder technique and the SHG efficiency of the grown crystal was obtained to be 1.04 times greater than Urea. Z-scan studies calculated the third order nonlinear optical parameters like refractive index (n2), the absorption coefficient (β) and third order susceptibility (χ3).
Terahertz semiconductor nonlinear optics
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias
2013-01-01
nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...
Rajamannan, B; Mugundan, S; Viruthagiri, G; Praveen, P; Shanmugam, N
2014-01-24
In general, the nanoparticles of TiO2 may exist in the phases of anatase, rutile and brookite. In the present work, we used titanium terta iso propoxide and 2-propanol as a common starting material to prepare the precursors of bare and copper doped nanosized TiO2. Then the synthesized products were calcinated at 500°C and after calcination the pure TiO2 nanoparticles in anatase phase were harvested. The crystallite sizes of bare and copper doped TiO2 nanoparticles were calculated from X-ray diffraction analysis. The existence of functional groups of the samples was identified by Fourier transform infrared spectroscopy. The optical properties of bare and doped samples were carried out using UV-DRS and photoluminescence measurements. The surface morphology and the element constitution of the copper doped TiO2 nanoparticles were studied by scanning electron microscope fitted with energy dispersive X-ray spectrometer arrangement. The nonlinear optical properties of the products were confirmed by Kurtz second harmonic generation (SHG) test and the output power generated by the nanoparticle was compared with that of potassium di hydrogen phosphate (KDP). Copyright © 2013 Elsevier B.V. All rights reserved.
Nonlinear optical properties of semiconductor nanocrystals
Ricard, Gianpiero Banfi Vittorio Degiorgio Daniel
1998-05-01
This review is devoted to the description of recent experimental results concerning the nonlinear optical properties of semiconductor-doped glasses SDGs with particular emphasis on the regime in which the energy of the incident photon is smaller than the energy gap. A considerable theoretical and experimental effort has been devoted in the last 10years to the fundamental aspects of quantumconfined structures, which have properties somewhat intermediate between the bulk crystals and atoms or molecules. From this point of view, SDGs represent an easily available test system, and optical techniques have been a major diagnostic tool. Luminescence and absorption spectroscopy were extensively used to characterize the electronic states. The experiments aimed at the measurement of the real and imaginary parts of the third-order optical susceptibility of SDGs below the bandgap are described in some detail, and the results obtained with different techniques are compared. Besides the intrinsic fast nonlinearity due to bound electrons, SDGs may present a larger but much slower nonlinearity due to the free carriers generated by two-photon absorption. This implies that experiments have to be properly designed for separation of the two effects. In this article we stress the importance of a detailed structural characterization of the samples. Knowledge of the volume fraction occupied by the nanocrystals is necessary in order to derive from the experimental data the intrinsic nonlinearity and to compare it with the bulk nonlinearity. We discuss recent experiments in which the dependence of the intrinsic nonlinearity on the crystal size is derived by performing, on the samples, measurements of the real part and imaginary part of the nonlinear optical susceptibility and measurements of crystal size and volume fraction. Structural characterization is of interest also for a better understanding of the physical processes underlying the growth of crystallites in SDGs. The average size of
Resource Letter NO-1: Nonlinear Optics
Garmire, Elsa
2011-03-01
This Resource Letter provides a guide to the literature on nonlinear optics. Books, journals, and websites are introduced that cover the general subject. Journal articles and websites are cited covering the following topics: second-order nonlinearities in transparent media including second-harmonic generation and optical parametric oscillation, third-order and higher nonlinearities, nonlinear refractive index, absorptive nonlinearities such as saturable absorption and multiphoton absorption, and scattering nonlinearities such as stimulated Raman scattering and stimulated Brillouin scattering. Steady-state and transient phenomena, fiber optics, solitons, nonlinear wave mixing, optical phase conjugation, nonlinear spectroscopy, and multiphoton microscopy are all outlined.
Improved fiber nonlinearity mitigation in dispersion managed optical OFDM links
Tamilarasan, Ilavarasan; Saminathan, Brindha; Murugappan, Meenakshi
2017-02-01
Fiber nonlinearity is seen as a capacity limiting factor in OFDM based dispersion managed links since the Four Wave Mixing effects become enhanced due to the high PAPR. In this paper, the authors have compared the linear and nonlinear PAPR reduction techniques for fiber nonlinearity mitigation in OFDM based dispersion managed links. In the existing optical systems, linear transform techniques such as SLM and PTS have been implemented to reduce nonlinear effects. In the proposed study, superior performance of the L2-by-3 nonlinear transform technique is demonstrated for PAPR reduction to mitigate fiber nonlinearities. The performance evaluation is carried out by interfacing multiple simulators. The results of both linear and nonlinear transform techniques have been compared and the results show that nonlinear transform technique outperforms the linear transform in terms of nonlinearity mitigation and improved BER performance.
Nonlinear Optics of Hexaphenyl Nanofibers
DEFF Research Database (Denmark)
Balzer, Frank; Al-Shamery, Katharina; Neuendorf, Rolf
2003-01-01
measurements reveal that the nonlinear optical transition dipole moment is oriented with an angle of 75° with respect to the needles long axes. The absolute value of the macroscopic second-order susceptibility, averaged over a size distribution of p-6P nanoaggregates, is estimated to be of the order of 6...
Optical metrology techniques for dimensional stability measurements
Ellis, Jonathan David
2010-01-01
This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.
Optical metrology techniques for dimensional stability measurements
Ellis, Jonathan David
2010-01-01
This thesis work is optical metrology techniques to determine material stability. In addition to displacement interferometry, topics such as periodic nonlinearity, Fabry-Perot interferometry, refractometry, and laser stabilization are covered.
Energy Technology Data Exchange (ETDEWEB)
Radu, I.E.
2006-03-15
This thesis presents the femtosecond laser-induced electron, lattice and spin dynamics on two representative rare-earth systems: The ferromagnetic gadolinium Gd(0001) and the paramagnetic yttrium Y(0001) metals. The employed investigation tools are the time-resolved linear reflectivity and second-harmonic generation, which provide complementary information about the bulk and surface/interface dynamics, respectively. The femtosecond laser excitation of the exchange-split surface state of Gd(0001) triggers simultaneously the coherent vibrational dynamics of the lattice and spin subsystems in the surface region at a frequency of 3 THz. The coherent optical phonon corresponds to the vibration of the topmost atomic layer against the underlying bulk along the normal direction to the surface. The coupling mechanism between phonons and magnons is attributed to the modulation of the exchange interaction J between neighbour atoms due to the coherent lattice vibration. This leads to an oscillatory motion of the magnetic moments having the same frequency as the lattice vibration. Thus these results reveal a new type of phonon-magnon coupling mediated by the modulation of the exchange interaction and not by the conventional spin-orbit interaction. Moreover, we show that coherent spin dynamics in the THz frequency domain is achievable, which is at least one order of magnitude faster than previously reported. The laser-induced (de)magnetization dynamics of the ferromagnetic Gd(0001) thin films have been studied. Upon photo-excitation, the nonlinear magneto-optics measurements performed in this work show a sudden drop in the spin polarization of the surface state by more than 50% in a <100 fs time interval. Under comparable experimental conditions, the time-resolved photoemission studies reveal a constant exchange splitting of the surface state. The ultrafast decrease of spin polarization can be explained by the quasi-elastic spin-flip scattering of the hot electrons among spin
Nonlinear fiber optics formerly quantum electronics
Agrawal, Govind
1995-01-01
The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is
Unsymmetrical squaraines for nonlinear optical materials
Marder, Seth R. (Inventor); Chen, Chin-Ti (Inventor); Cheng, Lap-Tak (Inventor)
1996-01-01
Compositions for use in non-linear optical devices. The compositions have first molecular electronic hyperpolarizability (.beta.) either positive or negative in sign and therefore display second order non-linear optical properties when incorporated into non-linear optical devices.
Nonlinear Mixing in Optical Multicarrier Systems
Hameed, Mahmood Abdul
Although optical fiber has a vast spectral bandwidth, efficient use of this bandwidth is still important in order to meet the ever increased capacity demand of optical networks. In addition to wavelength division multiplexing, it is possible to partition multiple low-rate subcarriers into each high speed wavelength channel. Multicarrier systems not only ensure efficient use of optical and electrical components, but also tolerate transmission impairments. The purpose of this research is to understand the impact of mixing among subcarriers in Radio-Over-Fiber (RoF) and high speed optical transmission systems, and experimentally demonstrate techniques to minimize this impact. We also analyze impact of clipping and quantization on multicarrier signals and compare bandwidth efficiency of two popular multiplexing techniques, namely, orthogonal frequency division multiplexing (OFDM) and Nyquist modulation. For an OFDM-RoF system, we present a novel technique that minimizes the RF domain signal-signal beat interference (SSBI), relaxes the phase noise limit on the RF carrier, realizes the full potential of optical heterodyne-based RF carrier generation, and increases the performance-to-cost ratio of RoF systems. We demonstrate a RoF network that shares the same RF carrier for both downlink and uplink, avoiding the need of an additional RF oscillator in the customer unit. For multi-carrier optical transmission, we first experimentally compare performance degradations of coherent optical OFDM and single-carrier Nyquist pulse modulated systems in a nonlinear environment. We then experimentally evaluate SSBI compensation techniques in the presence of semiconductor optical amplifier (SOA) induced nonlinearities for a multicarrier optical system with direct detection. We show that SSBI contamination can be significantly reduced from the data signal when the carrier-to-signal power ratio is sufficiently low.
Impact of nonlinearities on fiber optic communications
2011-01-01
This book covers the recent progress in fiber-optic communication systems with a main focus on the impact of fiber nonlinearities on system performance. There has been significant progress in coherent communication systems in the past few years due to the advances in digital signal processing techniques. This has led to renewed interest in fiber linear and nonlinear impairments as well as techniques to mitigate them in the electrical domain. In this book, the reader will find all the important topics of fiber optic communication systems in one place, with in-depth coverage by the experts of each sub-topic. Pioneers from each of the sub-topics have been invited to contribute. Each chapter will have a section on fundamentals as well as reviews of literature and of recent developments. Readers will benefit from this approach since many of the conference proceedings and journal articles mainly focus on the authors’ research, without spending space on preliminaries.
Optical computation based on nonlinear total reflectional optical switch at the interface
Indian Academy of Sciences (India)
Jianqi Zhang; Huan Xu
2009-03-01
A new scheme of binary half adder and full adder is proposed. It realizes a kind of all-optical computation which is based on the polarization coding technique and the nonlinear total reflectional optical switches.
Energy Technology Data Exchange (ETDEWEB)
Max-Planck-Institut fur Quantenoptik; Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V. S.; Gagnon, J.; Uiberacker, M.; Aquila, A. L.; gullikson, E. M.; attwood, D. T.; Kienberger, R.; Krausz, F.; Kleineberg, U.
2008-11-05
Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy {approx} 80 electron volts), containing {approx} 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of {approx} 10{sup -6}. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ({approx} 24 attoseconds).
Quantum Computation with Nonlinear Optics
Liu, Yang; Zhang, Wen-Hong; Zhang, Cun-Lin; Long, Gui-Lu
2008-01-01
We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the course of the computation; (3) It is resource efficient and conceptually simple.
Quantum Computation with Nonlinear Optics
Institute of Scientific and Technical Information of China (English)
LU Ke; LIU Yang; LIN Zhen-Quan; ZHANG Wen-Hong; SUN Yun-Fei; ZHANG Cun-Lin; LONG Gui-Lu
2008-01-01
We propose a scheme of quantum computation with nonlinear quantum optics. Polarization states of photons are used for qubits. Photons with different frequencies represent different qubits. Single qubit rotation operation is implemented through optical elements like the Faraday polarization rotator. Photons are separated into different optical paths, or merged into a single optical path using dichromatic mirrors. The controlled-NOT gate between two qubits is implemented by the proper combination of parametric up and down conversions. This scheme has the following features: (1) No auxiliary qubits are required in the controlled-NOT gate operation; (2) No measurement is required in the courseof the computation; (3) It is resource efficient and conceptually simple.
Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation
1994-02-28
Organosilicon Polymeric Nonlinear Optical Materials for Optical C: F49620-93-C-0039 Switching and Modulation 6. AUTHOR(S) Mr. Sandip K. Sengupta, Dr...D FINAL REPORT for Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation Prepared for: USAF, AFMC (AFOSR) Air Force...34Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation," contract number F49620-93-C-0039. The work has been performed by Dr
Large nonlocal nonlinear optical response of castor oil
Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.
2009-09-01
The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.
Energy Technology Data Exchange (ETDEWEB)
YATES,GEORGE J.; MCDONALD,THOMAS E. JR.; BLISS,DAVID E.; CAMERON,STEWART M.; GREIVES,KENNETH H.; ZUTAVERN,FRED J.
2000-12-20
Laboratory experiments utilizing different near-infrared (NIR) sensitive imaging techniques for LADAR range gated imaging at eye-safe wavelengths are presented. An OPO/OPA configuration incorporating a nonlinear crystal for wavelength conversion of 1.56 micron probe or broadcast laser light to 807 nm light by utilizing a second pump laser at 532 nm for gating and gain, was evaluated for sensitivity, resolution, and general image quality. These data are presented with similar test results obtained from an image intensifier based upon a transferred electron (TE) photocathode with high quantum efficiency (QE) in the 1-2 micron range, with a P-20 phosphor output screen. Data presented include range-gated imaging performance in a cloud chamber with varying optical attenuation of laser reflectance images.
Nonlinear optical interactions in silicon waveguides
Kuyken, B.; Leo, F.; Clemmen, S.; Dave, U.; Van Laer, R.; Ideguchi, T.; Zhao, H.; Liu, X.; Safioui, J.; Coen, S.; Gorza, S. P.; Selvaraja, S. K.; Massar, S.; Osgood, R. M.; Verheyen, P.; Van Campenhout, J.; Baets, R.; Green, W. M. J.; Roelkens, G.
2017-03-01
The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.
Nonlinear optical properties of Au/PVP composite thin films
Institute of Scientific and Technical Information of China (English)
Shen Hong; Cheng Bo-Lin; Lu Guo-Wei; Wang Wei-Tian; Guan Dong-Yi; Chen Zheng-Hao; Yang Guo-Zhen
2005-01-01
Colloidal Au and poly(vinylpyrrolidone) (PVP) composite thin films are fabricated by spin-coating method. Linear optical absorption measurements of the Au/PVP composite films indicate an absorption peak around 530 nm due to the surface plasmon resonance of gold nanoparticles. Nonlinear optical properties are studied using standard Z-scan technique, and experimental results show large optical nonlinearities of the Au/PVP composite films. A large value of films.
Nonlinear plasmonic imaging techniques and their biological applications
Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei
2017-01-01
Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.
Nonlinear plasmonic imaging techniques and their biological applications
Directory of Open Access Journals (Sweden)
Deka Gitanjal
2016-07-01
Full Text Available Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics, as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.
Graphene - a rather ordinary nonlinear optical material
khurgin, Jacob B
2014-01-01
An analytical expression for the nonlinear refractive index of graphene has been derived and used to obtain the performance metrics of third order nonlinear devices using graphene as a nonlinear medium. None of the metrics is found to be superior to the existing nonlinear optical materials.
Nonlinear optical crystals a complete survey
Nikogosyan, David N
2005-01-01
Nonlinear optical crystals are widely used in modern optical science and technology for frequency conversion of laser light, i.e. to generate laser radiation at any specific wavelength in visible, UV or IR spectral regions. This unrivalled reference book contains the most complete and up-to-date information on properties of nonlinear optical crystals. It includes: * Database of 63 common and novel nonlinear optical crystals * Periodically-poled and self-frequency-doubling materials * Full description of linear and nonlinear optical properties * Significant amount of crystallophysical, thermophysical, spectroscopic, electro-optic and magneto-optic information * 7 mini-reviews on novel applications, such as deep-UV light generation, terahertz-wave generation, ultrashort laser pulse compression, photonic band-gap crystals, x3 nonlinearity, etc. * More than 1500 different references with full titles It is a vital source of information for scientists and engineers dealing with modern applications of nonlinear opti...
Quantum nonlinear optics without photons
Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco
2017-08-01
Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.
Directory of Open Access Journals (Sweden)
A. Zakery
2005-03-01
Full Text Available Chalcogenide glasses such as arseic sulfide(As2 S3 have attracted attention for applications such as all-optical switching in high speed communication. This is due to their high non-linear refractive-index. Z-scan and the Degenerate four wave mixing (DFWM techniques can be used to measure the non-linear refractive index n 2 and the two photon absorption coefficient β . A simaltanous closed-aperture and open-aperture Z-scan experimental set up was used to obtain the experimental results. The results were then fitted into a theoretical formula. Values of n2=3×10-17m2/W and β= 0.29 cm/GW have been obtained. DFWM measurements were made on arsenic sulfide films. A Box-cars forward geometry was used in these measurements. Experimental results based on non-phase matched signals were again fitted into a theoretical formula and a value of n2 =3.9×10-17 m2 /W was obtained .
Nonlinear super-resolution nano-optics and applications
Wei, Jingsong
2015-01-01
This book covers many advances in the subjects of nano-optics and nano photonics. The author describes the principle and technical schematics of common methods for breaking through the optical diffraction limit and focuses on realizing optical super-resolution with nonlinear effects of thin film materials. The applications of nonlinear optical super-resolution effects in nano-data storage, nanolithography, and nano-imaging are also presented. This book is useful to graduate students majoring in optics and nano science and also serves as a reference book for academic researchers, engineers, technical professionals in the fields of super-resolution optics and laser techniques, nano-optics and nano photonics, nano-data storage, nano imaging, micro/nanofabrication and nanolithography and nonlinear optics.
Nonlinear Photonics and Novel Optical Phenomena
Morandotti, Roberto
2012-01-01
Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.
Emerging optical nanoscopy techniques
Directory of Open Access Journals (Sweden)
Montgomery PC
2015-09-01
Full Text Available Paul C Montgomery, Audrey Leong-Hoi Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie (ICube, Unistra-CNRS, Strasbourg, France Abstract: To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. Keywords: microscopy, imaging, superresolution, nanodetection, biophysics, medical imaging
Emerging optical nanoscopy techniques
Montgomery, Paul C; Leong-Hoi, Audrey
2015-01-01
To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. PMID:26491270
Fibre-optic nonlinear optical microscopy and endoscopy.
Fu, L; Gu, M
2007-06-01
Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.
Smirnov, A. M.; Golinskaya, A. D.; Ezhova, K.; Kozlova, M.; Stebakova, J. V.; Valchuk, Y. V.
2017-05-01
One-dimensional dynamic photonic crystal was formed by a periodic spatial modulation of dielectric permittivity induced by the two ultrashort laser pulses interference in semiconductor quantum dots CdSe/ZnS (QDs) colloidal solution intersecting at angle θ. The fundamental differences of dynamic photonic crystals from static ones which determine the properties of these transient structures are the following. I. Dynamic photonic crystals lifetimes are determined by the nature of nonlinear changes of dielectric permittivity. II. The refractive index changing is determined by the intensity of the induced standing wave maxima and nonlinear susceptibility of the sample. We use the pump and probe method to create the dynamic one-dimensional photonic crystal and to analyze its features. Two focused laser beams are the pump beams, that form in the colloidal solution of quantum dots dynamic one-dimensional photonic crystal. The picosecond continuum, generated by the first harmonic of laser (1064 nm) passing through a heavy water is used as the probe beam. The self-diffraction of pumping beams on self induced dynamic one-dimensional photonic crystal provides information about spatial combining of laser beams.
Electrifying photonic metamaterials for tunable nonlinear optics.
Kang, Lei; Cui, Yonghao; Lan, Shoufeng; Rodrigues, Sean P; Brongersma, Mark L; Cai, Wenshan
2014-08-11
Metamaterials have not only enabled unprecedented flexibility in producing unconventional optical properties that are not found in nature, they have also provided exciting potential to create customized nonlinear media with high-order properties correlated to linear behaviour. Two particularly compelling directions are active metamaterials, whose optical properties can be purposely tailored by external stimuli in a reversible manner, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light waves. Here, by exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically controlled nonlinear optical processes from a metamaterial. Both second harmonic generation and optical rectification, enhanced by the resonance behaviour in the metamaterial absorber, are modulated externally with applied voltage signals. Our results reveal an opportunity to exploit optical metamaterials as self-contained, dynamic electro-optic systems with intrinsically embedded electrical functions and optical nonlinearities.
Modeling and compensation of transmitter nonlinearity in coherent optical OFDM.
Amiralizadeh, Siamak; Nguyen, An T; Rusch, Leslie A
2015-10-05
We present a comprehensive study of nonlinear distortions from an optical OFDM transmitter. Nonlinearities are introduced by the combination of effects from the digital-to-analog converter (DAC), electrical power amplifier (PA) and optical modulator in the presence of high peak-to-average power ratio (PAPR). We introduce parameters to quantify the transmitter nonlinearity. High input backoff avoids OFDM signal compression from the PA, but incurs high penalties in power efficiency. At low input backoff, common PAPR reduction techniques are not effective in suppressing the PA nonlinear distortion. A bit error distribution investigation shows a technique combining nonlinear predistortion with PAPR mitigation could achieve good power efficiency by allowing low input backoff. We use training symbols to extract the transmitter nonlinear function. We show that piecewise linear interpolation (PLI) leads to an accurate transmitter nonlinearity characterization. We derive a semi-analytical solution for bit error rate (BER) that validates the PLI approximation accurately captures transmitter nonlinearity. The inverse of the PLI estimate of the nonlinear function is used as a predistorter to suppress transmitter nonlinearity. We investigate performance of the proposed scheme by Monte Carlo simulations. Our simulations show that when DAC resolution is more than 4 bits, BER below forward error correction limit of 3.8 × 10(-3) can be achieved by using predistortion with very low input power backoff for electrical PA and optical modulator.
Tunable nanowire nonlinear optical probe
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Yuri; Pauzauskie, Peter J.; Radenovic, Aleksandra; Onorato, Robert M.; Saykally, Richard J.; Liphardt, Jan; Yang, Peidong
2008-02-18
One crucial challenge for subwavelength optics has been thedevelopment of a tunable source of coherent laser radiation for use inthe physical, information, and biological sciences that is stable at roomtemperature and physiological conditions. Current advanced near-fieldimaging techniques using fiber-optic scattering probes1,2 have alreadyachieved spatial resolution down to the 20-nm range. Recently reportedfar-field approaches for optical microscopy, including stimulatedemission depletion (STED)3, structured illumination4, and photoactivatedlocalization microscopy (PALM)5, have also enabled impressive,theoretically-unlimited spatial resolution of fluorescent biomolecularcomplexes. Previous work with laser tweezers6-8 has suggested the promiseof using optical traps to create novel spatial probes and sensors.Inorganic nanowires have diameters substantially below the wavelength ofvisible light and have unique electronic and optical properties9,10 thatmake them prime candidates for subwavelength laser and imagingtechnology. Here we report the development of an electrode-free,continuously-tunable coherent visible light source compatible withphysiological environments, from individual potassium niobate (KNbO3)nanowires. These wires exhibit efficient second harmonic generation(SHG), and act as frequency converters, allowing the local synthesis of awide range of colors via sum and difference frequency generation (SFG,DFG). We use this tunable nanometric light source to implement a novelform of subwavelength microscopy, in which an infrared (IR) laser is usedto optically trap and scan a nanowire over a sample, suggesting a widerange of potential applications in physics, chemistry, materials science,and biology.
Progress in nonlinear nano-optics
Lienau, Christoph; Grunwald, Rüdiger
2015-01-01
This book presents the state of the art in nonlinear nanostructures for ultrafast laser applications. Most recent results in two emerging fields are presented: (i) generation of laser-induced nanostructures in materials like metals, metal oxides and semiconductors, and (ii) ultrafast excitation and energy transfer in nanoscale physical, chemical and hybrid systems. Particular emphasis is laid on the up-to-date controversially discussed mechanisms of sub-wavelength ripple formation including models of self-organized material transport and multiphoton excitation channels, nonlinear optics of plasmonic structures (nanotips, nanowires, 3D-metamaterials), and energy localization and transport on ultrafast time scale and spatial nanoscale. High-resolution spectroscopy, simulation and characterization techniques are reported. New applications of ultrashort-pulsed lasers for materials processing and the use of nanostructured materials for characterizing laser fields and laser-matter-interactions are discussed.
Sadhu, Arunangshu; Sarkar, Somenath
2016-05-01
We report a simple and straightforward approximate analysis to investigate the effect of Kerr type nonlinear optical processes in sub-wavelength diameter step index optical fibers based on Marcuse method in single mode region. Optimum core diameters of such fibers, predicted by us, together with relevant core nonlinearity coefficient and effective area are seen to be compatible with the analytical values indicating the validity of this novel application of the elegant approximate method. However, the corresponding values, obtained by earlier variational method, show larger discrepancy with analytical findings in comparison with ours. Also, maximum enhancement of nonlinear processes within single mode region, confirming almost the analytical method, assures less diffraction. Formulations, coupled with simplicity and novelty of the present analysis, should find wide use by system users and experimentalists in this emerging area.
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Design of Organic Nonlinear Optical Materials
1990-06-01
This project deals with a new approach to designing organic nonlinear optical materials for second harmonic generation based on the use of hydrogen...patterns for even simple organic molecules. For organic nonlinear optical materials this dilemma means that even the most promising organic molecule may
Abdeldayem, Hossin A.; Sheng, Wen; Venkateswarlu, P.; Witherow, William K.; Frazier, Don O.; Chandra Sekhar, P.; George, M. C.; Kispert, Lowell; Wasielewski, Michael R.
1993-01-01
Quantitative measurements of the nonlinear refractive index coefficient n(2) and the third-order nonlinear susceptibility chi(3) for a solution of 7-prime,7-prime-dicyano-7-prime-apo-beta-carotene (DCAC) in hexane have been measured at different concentrations. The measurements have been performed by both the self-trapping and self-phase modulation techniques using a CW Ar(+) laser. The results show that DCAC has a relatively large nonlinearity, attributed to a thermal mechanism, with n(2) of the order of 10 exp 9 times that of CS2.
Modal Identification Using OMA Techniques: Nonlinearity Effect
Directory of Open Access Journals (Sweden)
E. Zhang
2015-01-01
Full Text Available This paper is focused on an assessment of the state of the art of operational modal analysis (OMA methodologies in estimating modal parameters from output responses of nonlinear structures. By means of the Volterra series, the nonlinear structure excited by random excitation is modeled as best linear approximation plus a term representing nonlinear distortions. As the nonlinear distortions are of stochastic nature and thus indistinguishable from the measurement noise, a protocol based on the use of the random phase multisine is proposed to reveal the accuracy and robustness of the linear OMA technique in the presence of the system nonlinearity. Several frequency- and time-domain based OMA techniques are examined for the modal identification of simulated and real nonlinear mechanical systems. Theoretical analyses are also provided to understand how the system nonlinearity degrades the performance of the OMA algorithms.
Nonlinear optical properties of ultrathin metal layers
DEFF Research Database (Denmark)
Lysenko, Oleg
2016-01-01
. The optical characterization of the plasmonic waveguides is performed using femtosecond and picosecond optical pulses. Two nonlinear optical effects in the strip plasmonic waveguides are experimentally observed and reported. The first effect is the nonlinear power transmission of the plasmonic mode......-order nonlinear susceptibility of the plasmonic mode in the gold strip waveguides significantly depends on the metal layer thickness and laser pulse duration. This dependence is explained in detail in terms of the free-electron temporal dynamics in gold. The third-order nonlinear susceptibility of the gold layer...... duration dependence of the third-order nonlinear susceptibility of gold is calculated in the broad range from tens of femtoseconds to tens of picoseconds using the two-temperature model of the free-electron temporal dynamics of gold, and shows the saturation of the thirdorder nonlinear susceptibility...
1992-02-13
niobate and absolute measurements of nonlinear optical coefficients of six different commonly used nonlinear optical materials. The refractometry data for...applied radiation and is now an established technology for Nd:YAG lasers. Optical parametric oscillation and amplification provide a method of generating...continuously tunable output -3- The relative advantages of nonlinear optical frequency conversion compared to other methods for the generation of near
Optical techniques in optogenetics
Mohanty, Samarendra K.; Lakshminarayananan, Vasudevan
2015-07-01
Optogenetics is an innovative technique for optical control of cells. This field has exploded over the past decade or so and has given rise to great advances in neuroscience. A variety of applications both from the basic and applied research have emerged, turning the early ideas into a powerful paradigm for cell biology, neuroscience, and medical research. This review aims at highlighting the basic concepts that are essential for a comprehensive understanding of optogenetics and some important biological/biomedical applications. Further, emphasis is placed on advancement in optogenetics-associated light-based methods for controlling gene expression, spatially controlled optogenetic stimulation and detection of cellular activities.
Metamaterials with tailored nonlinear optical response.
Husu, Hannu; Siikanen, Roope; Mäkitalo, Jouni; Lehtolahti, Joonas; Laukkanen, Janne; Kuittinen, Markku; Kauranen, Martti
2012-02-08
We demonstrate that the second-order nonlinear optical response of noncentrosymmetric metal nanoparticles (metamolecules) can be efficiently controlled by their mutual ordering in an array. Two samples with minor change in ordering have nonlinear responses differing by a factor of up to 50. The results arise from polarization-dependent plasmonic resonances modified by long-range coupling associated with metamolecular ordering. The approach opens new ways for tailoring the nonlinear responses of metamaterials and their tensorial properties.
Nonlinear soliton matching between optical fibers
DEFF Research Database (Denmark)
Agger, Christian; Sørensen, Simon Toft; Thomsen, Carsten L.
2011-01-01
In this Letter, we propose a generic nonlinear coupling coefficient, η2 NL ¼ ηjγ=β2jfiber2=jγ=β2jfiber1, which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use η...
Development of Organic Nonlinear Optical Materials
1992-10-22
10 SOVRCE Of FUNO#NG NUM#E*S DM J .j PROGRAM PR0jECT TA5. ~ *0. I1I TITLE &Vila* So.Ivety ClaUMC400NJ Development of Organic NonLinear Optical Materials (U...0102-LF-014-6603 UNCLASSIFIED (U) AFOSR Contract: F4962040-C 0097 FINAL REPORT Development of Organic Nonlinear Optical Materials by J. Sounnk IL
Integrated optic devices based on nonlinear optical polymers
van Tomme, Emmanuel; van Daele, Peter P.; Baets, Roel G.; Lagasse, Paul E.
1991-03-01
An examination is made of the state of the art of nonlinear optical polymeric materials in view of their potential advantages. It is shown that these organic materials have many attractive features compared to LiNbO3 and III-V semiconductors with regard to their use in integrated optic circuits, especially since the level of integration is ever increasing. Considering more specifically electro-optic devices, a description is given of some of the theoretical background and basic properties. These polymers have already demonstrated a very high and extremely fast electro-optic effect compared to LiNbO3. It is also shown how low-loss waveguides can be fabricated by using easy techniques such as direct UV bleaching. The performance of phase modulators, Mach-Zehnder interferometers, and 2 x 2 space switches built with such polymers is already very promising. The results described in this study indicate a rapid rate of progress made by this technology, and one can expect that polymers in general and NLO polymers in particular will play an increasingly important role in integrated optics.
High nonlinear optical anisotropy of urea nanofibers
Isakov, D.; de Matos Gomes, E.; Belsley, M.; Almeida, B.; Martins, A.; Neves, N.; Reis, R.
2010-07-01
Nanofibers consisting of the optically nonlinear organic molecule urea embedded in both poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) polymers were produced by the electrospinning technique. The second-harmonic generation produced by aligned fiber mats of these materials displays a strong dependence on the polarization of the incident light. In PVA-urea nanofibers the effectiveness in generating of the second-harmonic light is as high as that of a pure urea powder with an average grain size of 110 μm. The results suggest that single crystalline urea nanofibers were achieved with a long-range crystalline order extending into the range of 2-4 μm with PVA as the host polymer.
Senthil, K.; Kalainathan, S.; Kondo, Y.; Hamada, F.; Yamada, M.
2017-05-01
Organic 2-[2-(4-Ethoxy-phenyl)-vinyl]-1-ethyl-stilbazolium iodide (EESI), a derivative of the stilbazolium family single crystal was synthesized by condensation method. Nearly perfect as-gown single crystals of EESI structure was confirmed by single-crystal X-ray diffraction studies. The crystal has a triclinic system with the space group P-1, the molecule consists of one pyridinium cation, one iodide anion, and 0·5H2O molecules. The nature of charge transfer, molecular properties, electrostatic potential map, and HOMO-LUMO energy gap of EESI have been theoretically investigated by Sparton'10 V1.0.1 program. The optical transparency of EESI was studied by Uv-Visible spectral analysis. The growth features were observed during the etching studies using a Carl Zeiss optical microscope (50X magnification). The mechanical behavior of the crystal was estimated by Vickers microhardness test, which shows reverse indentation size effect (RISE) with good mechanical stability. Both the dielectric constant and dielectric loss increases with the increasing temperature and attain almost constant at higher frequencies, which justify the crystal quality and essential parameter for electro-optic device applications. The complex impedance analysis explains the electrical property of EESI. TGA and DTA measurements determined the thermal stability of the grown crystal. Laser-induced damage threshold energy measurements exhibit that the excellent resistance with good threshold energy up to 2.08 GW/cm2 that was found to be more than that of some known organic and inorganic NLO crystals. Photoconductivity of EESI crystal confirms that the positive photoconductivity nature. Also, the third-order nonlinear optical (NLO) properties of EESI were investigated by using the single beam Z-scan technique under the Visible light (632.8 nm) region. The results show that EESI has effective third-order nonlinear optical property with the nonlinear refractive index n2 =1.787×10-11m2/W, third
Advances in nonlinear optical materials and devices
Byer, Robert L.
1991-01-01
The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.
Space vehicle pose estimation via optical correlation and nonlinear estimation
Rakoczy, John M.; Herren, Kenneth A.
2008-03-01
A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.
Completely integrable models of nonlinear optics
Indian Academy of Sciences (India)
Andrey I Maimistov
2001-11-01
The models of the nonlinear optics in which solitons appeared are considered. These models are of paramount importance in studies of nonlinear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency and parametric interaction of three waves. At present there are a number of theories based on completely integrable systems of equations, which are, both, generations of the original known models and new ones. The modiﬁed Korteweg-de Vries equation, the nonlinear Schrödinger equation, the derivative nonlinear Schrödinger equation, Sine–Gordon equation, the reduced Maxwell–Bloch equation, Hirota equation, the principal chiral ﬁeld equations, and the equations of massive Thirring model are some soliton equations, which are usually to be found in nonlinear optics theory.
Scale-invariant nonlinear optics in gases
Heyl, C M; Miranda, M; Louisy, M; Kovacs, K; Tosa, V; Balogh, E; Varjú, K; L'Huillier, A; Couairon, A; Arnold, C L
2015-01-01
Nonlinear optical methods are becoming ubiquitous in many areas of modern photonics. They are, however, often limited to a certain range of input parameters, such as pulse energy and average power, since restrictions arise from, for example, parasitic nonlinear effects, damage problems and geometrical considerations. Here, we show that many nonlinear optics phenomena in gaseous media are scale-invariant if spatial coordinates, gas density and laser pulse energy are scaled appropriately. We develop a general scaling model for (3+1)-dimensional wave equations, demonstrating the invariant scaling of nonlinear pulse propagation in gases. Our model is numerically applied to high-order harmonic generation and filamentation as well as experimentally verified using the example of pulse post-compression via filamentation. Our results provide a simple recipe for up-or downscaling of nonlinear processes in gases with numerous applications in many areas of science.
Investigation of Optical Fibers for Nonlinear Optics.
1984-04-17
Northwestern University, 1970. Experience Dr. Harrington has 13 years of research experi- ence in the area of optical properties of solids . Since joining...dynamics, and optical properties of solids . 34 34I ANTONIO C. PASTOR, Member of the Technical Staff, Optical Physics Department, Hughes Research
Forbidden second order optical nonlinearity of graphene
Cheng, J L; Sipe, J E
2016-01-01
We present a practical scheme to separate the contributions of the electric quadrupole-like and the magnetic dipole-like effects to the forbidden second order optical nonlinear response of graphene, and give analytic expressions for the second order optical conductivities, calculated from the independent particle approximation, with relaxation described in a phenomenological way. We predict strong second order nonlinear effects, including second harmonic generation, photon drag, and difference frequency generation. We discuss in detail the controllablity of these responses by tuning the chemical potential, where the interband optical transitions play a dominant role.
Nonlinear microstructured polymer optical fibres
DEFF Research Database (Denmark)
Frosz, Michael Henoch
. The combination of a small core size and zero-dispersion wavelength at the operating wavelength of widely available femtosecond Ti:sapphire lasers led to an extensive research in supercontinuum generation and other nonlinear effects in PCFs. It is crucial for the efficiency of many nonlinear mechanisms...... that the pump laser wavelength is close to the zero-dispersion wavelength and that the core size is small. Recently, work in fabricating PCFs from materials other than silica has intensified. One of the advantages of using alternative materials can be a higher inherent material nonlinearity, which...... to accurately obtain a small core size while maintaining small structural variations during fibre drawing. This talk will give a presentation of how the mPOFs are fabricated and the route to obtaining nonlinear effects in them....
Mesoscale Engineering of Nanocomposite Nonlinear Optical Materials
Energy Technology Data Exchange (ETDEWEB)
Afonso, C.N.; Feldman, L.C.; Gonella, F.; Haglund, R.F.; Luepke, G.; Magruder, R.H.; Mazzoldi, P.; Osborne, D.H.; Solis, J.; Zuhr, R.A.
1999-11-01
Complex nonlinear optical materials comprising elemental, compound or alloy quantum dots embedded in appropriate dielectric or semiconducting hosts may be suitable for deployment in photonic devices. Ion implantation, ion exchange followed by ion implantation, and pulsed laser deposition have ail been used to synthesize these materials. However, the correlation between the parameters of energetic-beam synthesis and the nonlinear optical properties is still very rudimentary when one starts to ask what is happening at nanoscale dimensions. Systems integration of complex nonlinear optical materials requires that the mesoscale materials science be well understood within the context of device structures. We discuss the effects of beam energy and energy density on quantum-dot size and spatial distribution, thermal conductivity, quantum-dot composition, crystallinity and defects - and, in turn, on the third-order optical susceptibility of the composite material. Examples from recent work in our laboratories are used to illustrate these effects.
Nonlinear dynamics in atom optics
Energy Technology Data Exchange (ETDEWEB)
Chen Wenyu; Dyrting, S.; Milburn, G.J. [Queensland Univ., St. Lucia, QLD (Australia). Dept. of Physics
1996-12-31
In this paper theoretical work on classical and quantum nonlinear dynamics of cold atoms is reported. The basic concepts in nonlinear dynamics are reviewed and then applied to the motion of atoms in time-dependent standing waves and to the atomic bouncer. The quantum dynamics for the cases of regular and chaotic classical dynamics is described. The effect of spontaneous emission and external noise is also discussed. 104 refs., 1 tab., 21 figs.
Nonlinear optical properties of metal nanoparticle composites for optical applications
Energy Technology Data Exchange (ETDEWEB)
Takeda, Y. E-mail: takeda.yoshihiko@nims.go.jp; Kishimoto, N
2003-05-01
Optical absorption and nonlinear optical response were investigated for nanoparticle composites in amorphous SiO{sub 2} fabricated by negative Ta ion implantation at 60 keV. X-ray photoelectron spectroscopy was used to identify Ta and the oxide formation in the matrix. Optical absorption clearly indicated a surface plasmon peak at 2.2 eV and the peak resulted from formation of nanoparticles embedded in the matrix. The measured absorption was compared with calculated ones, evaluated by Maxwell-Garnett theory. Nonlinear absorption was measured with a pump-probe method using a femtosecond laser system. The pumping laser transiently bleached the surface plasmon band and lead to the nonlinearity. The transient response recovered in several picoseconds and behaved in terms of electron dynamics in metallic nanoparticles. The Ta nanoparticle composite is one of the promising candidates for nonlinear optical materials with good thermal stability.
Nonlinear Optical BBO Crystals: Growth, Properties and Applications
Institute of Scientific and Technical Information of China (English)
唐鼎元
2000-01-01
Low temperature phase barium metaborate β-BaB2O4 (BBO) is an important nonlinear optical material. Up to now, the BBO single crystals with large size and good optical quality were grown from Na2O or NaF fluxed solvents by the top-seeded solution growth (TSSG) technique with or without pulling. In order to improve the growth rate and quality of BBO crystals, several new techniques such as continuous feeding, forced stirring and cooling growing crystals etc. have been suggested. Applications of BBO as an excellent nonlinear optical crystal include mainly frequency conversion of various laser radiation, high average power frequency conversion, frequency doubling of ultrashort pulses and broadly tunable optical parametric oscillators (OPO).This paper is a brief review on the growth, properties and applications of BBO crystals.
Optically nonlinear Langmuir Blodgett films
Amiri, M A
2003-01-01
A series of novel amphiphilic molecules plus a new class of chevron-shaped materials, without aliphatic tails, were designed, synthesised and non-centrosymmetrically aligned by the Langmuir-Blodgett technique. Their LB films exhibited optical second-harmonic generation (SHG). The chevron-shaped molecules have a central cationic acceptor and two pi-bridged donor groups with an angle of ca. 120 deg between the charge-transfer axes of the D-pi-(A sup +)-pi-D unit. A monolayer LB film of a representative example, 1-butyl-2,6-bis[2- (4-dibutylaminophenyl)vinyl]pyridinium iodide, has an effective susceptibility, chi sup ( sup 2 sup ) sub e sub f sub f , of 120 pm V sup - sup 1 at 1064 nm, a thickness of 1.16 nm and an area in contact with the substrate of 0.91 nm sup 2 molecule sup - sup 1. The second-harmonic intensity (1.6 x 10 sup - sup 4 versus quartz) is similar to those of the extensively studied conventional amphiphilic hemicyanines but as a result of non-centrosymmetric alignment, without the need for long ...
Optical rogue waves and soliton turbulence in nonlinear fibre optics
DEFF Research Database (Denmark)
Genty, G.; Dudley, J. M.; de Sterke, C. M.
2009-01-01
We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....
The optical nonlinearity of gold nanoparticles prepared by bioreduction method
Balbuena Ortega, A.; Arroyo Carrasco, M. L.; Gayou, V. L.; Orduña Díaz, A.; Delgado Macuil, R.; Rojas López, Marlon
2013-11-01
Nonlinear optical and electronic properties of nanosized metal particles have drawn considerable attention because of their strong and size-dependent plasmon resonance absorption. In a metal nanoparticle system such as gold dispersed in a transparent matrix, an absorption peak due to surface plasmon resonance is usually observed in the visible spectral region. Metal nanoparticles are of special interest as nonlinear materials for optical switching and computing because of their relatively large third-order nonlinearity (χ3) and ultrafast response time. The purpose of this study was to analyze the nonlinear optical properties of biosynthesized gold nanoparticles. The samples were prepared by biosynthesis method using yeast extract as reducing agent and the nonlinear optical properties of the nanoparticles were investigated using a single beam Z-scan technique with a beam power of 20 mW and operated at wavelength of 514 nm. The reaction between metal ions and yeast extracts were monitored by UV-visible spectra of Au nanoparticles in aqueous solution with different pH (3-6). The surface plasmon peak position was shifted from 528 nm to 573 nm, according to of pH variation 4 to 6. The average particle size was calculated by the absorption peak position using the Fernig method, from 42 to 103 nm. The z-scan curves showed a negative nonlocal nonlinear refractive index with a magnitude dependent on the nanoparticle size.
Weakly Nonlinear Geometric Optics for Hyperbolic Systems of Conservation Laws
Chen, Gui-Qiang; Zhang, Yongqian
2012-01-01
We establish an $L^1$-estimate to validate the weakly nonlinear geometric optics for entropy solutions of nonlinear hyperbolic systems of conservation laws with arbitrary initial data of small bounded variation. This implies that the simpler geometric optics expansion function can be employed to study the properties of general entropy solutions to hyperbolic systems of conservation laws. Our analysis involves new techniques which rely on the structure of the approximate equations, besides the properties of the wave-front tracking algorithm and the standard semigroup estimates.
Third-Order Optical Nonlinearity in Novel Porphyrin Dimers
Institute of Scientific and Technical Information of China (English)
PEI Song-Hao; ZHAO Da-Peng; ZHANG Wei; ZHENG Wen-Qi; WANG Xing-Qiao; PENG Wei-Xian; SHI Guang; SONG Ying-Lin
2008-01-01
@@ We investigate the third-order optical nonlinearities in four novel porphyrin dimers (directs A to I)) and a monomeric porphyrin H2 CPTPP measured by using the single-beam z-scan technique with a pulsed Q-switched Nd:YAG nanosecond laser at 532nm.All the samples show strong excited state absorption (ESA) and high value of X(3) in the ns domain at this wavelength.We perform a comparison between dimer A and its monomer H2 CPTPP in their third-order optical nonlinearity, and discuss the relationships between the values of X(3) and the different bridging groups for all the dimers.
High-speed signal processing using highly nonlinear optical fibres
DEFF Research Database (Denmark)
Peucheret, Christophe; Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen
2009-01-01
relying on the phase of the optical field. Topics covered include all-optical switching of 640 Gbit/s and 1.28 Tbit/s serial data, wavelength conversion at 640 Gbit/s, optical amplitude regeneration of differential phase shift keying (DPSK) signals, as well as midspan spectral inversion for differential 8......We review recent progress in all-optical signal processing techniques making use of conventional silica-based highly nonlinear fibres. In particular, we focus on recent demonstrations of ultra-fast processing at 640 Gbit/s and above, as well as on signal processing of novel modulation formats...
Nonlinear optical properties and optical power limiting effect of Giemsa dye
Al-Saidi, Imad Al-Deen Hussein A.; Abdulkareem, Saif Al-Deen
2016-08-01
The nonlinear optical properties of Giemsa dye in chloroform solution for different concentrations and dye mixed with poly(methylmethacrylate) (PMMA) as a dye-doped polymer film were investigated using continuous wave (CW) low power solid-state laser (SSL) operating at wavelength of 532 nm as an excitation source. Using the single beam z-scan technique, the nonlinear refractive index (n2), the nonlinear absorption coefficient (β), and the third-order nonlinear optical susceptibility (χ(3)) of Giemsa dye were measured. The measurements reveal that both n2 and β are dependent on the dye concentration. The obtained results indicate that the Giemsa dye exhibits positive nonlinear saturable absorption (SA) and negative refraction nonlinearity, manifestation of self-defocusing effect. Optical power limiting characteristics of the Giemsa dye at different concentrations in solution and polymer film were studied. The observed large third-order optical nonlinearity of Giemsa dye confirms that Giemsa dye is a promising nonlinear material for the optical power limiting and photonic devices applications.
Optical Imaging and Microscopy Techniques and Advanced Systems
Török, Peter
2007-01-01
This text on contemporary optical systems is intended for optical researchers and engineers, graduate students and optical microscopists in the biological and biomedical sciences. This second edition contains two completely new chapters. In addition most of the chapters from the first edition have been revised and updated. The book consists of three parts: The first discusses high-aperture optical systems, which form the backbone of optical microscopes. An example is a chapter new in the second edition on the emerging field of high numerical aperture diffractive lenses which seems to have particular promise in improving the correction of lenses. In this part particular attention is paid to optical data storage. The second part is on the use of non-linear optical techniques, including nonlinear optical excitation (total internal reflection fluorescence, second and third harmonic generation and two photon microscopy) and non-linear spectroscopy (CARS). The final part of the book presents miscellaneous technique...
Nonlinear optical model for strip plasmonic waveguides
DEFF Research Database (Denmark)
Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei
2016-01-01
This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016......)]. The first effect is the nonlinear power saturation of the plasmonic mode, and the second effect is the spectral broadening of the plasmonic mode. Both nonlinear plasmonic effects can be used for practical applications and their appropriate model will be important for further developments in communication...
Implementation of Nonlinear Control Laws for an Optical Delay Line
Hench, John J.; Lurie, Boris; Grogan, Robert; Johnson, Richard
2000-01-01
This paper discusses the implementation of a globally stable nonlinear controller algorithm for the Real-Time Interferometer Control System Testbed (RICST) brassboard optical delay line (ODL) developed for the Interferometry Technology Program at the Jet Propulsion Laboratory. The control methodology essentially employs loop shaping to implement linear control laws. while utilizing nonlinear elements as means of ameliorating the effects of actuator saturation in its coarse, main, and vernier stages. The linear controllers were implemented as high-order digital filters and were designed using Bode integral techniques to determine the loop shape. The nonlinear techniques encompass the areas of exact linearization, anti-windup control, nonlinear rate limiting and modal control. Details of the design procedure are given as well as data from the actual mechanism.
Valligatla, Sreeramulu; Haldar, Krishna Kanta; Patra, Amitava; Desai, Narayana Rao
2016-10-01
The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications.
Nonlinear optical properties of sodium copper chlorophyllin in aqueous solution.
Li, Jiangting; Peng, Yufeng; Han, Xueyun; Guo, Shaoshuai; Liang, Kunning; Zhang, Minggao
2017-06-16
Sodium copper chlorophyllin (SCC), as one of the derivatives of chlorophyll - with its inherent green features; good stability for heat, light, acids and alkalies; unique antimicrobial capability; and particular deodori zation performance - is widely applied in some fields such as the food industry, medicine and health care, daily cosmetic industry etc. SCC, as one of the metal porphyrins, has attracted much attention because of its unique electronic band structure and photon conversion performance. To promote the application of SCC in materials science; energy research and photonics, such as fast optical communications; and its use in nonlinear optical materials, solar photovoltaic cells, all-optical switches, optical limiters and saturable absorbers, great efforts should be dedicated to studying its nonlinear optical (NLO) properties. In this study, the absorption spectra and NLO properties of SCC in aqueous solution at different concentrations were measured. The Z-scan technique was used to determine NLO properties. The results indicated that the absorption spectra of SCC exhibit 2 characteristic absorption peaks located at the wavelengths 405 and 630 nm, and the values of the peaks increase with increasing SCC concentration. The results also showed that SCC exhibits reverse saturation absorption and negative nonlinear refraction (self-defocusing). It can be seen that SCC has good optical nonlinearity which will be convenient for applications in materials science, energy research and photonics.
Rotational Doppler effect in nonlinear optics
Li, Guixin; Zentgraf, Thomas; Zhang, Shuang
2016-08-01
The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.
Towards multimodal nonlinear optical tomography - experimental methodology
Vogler, N.; Medyukhina, A.; Latka, I.; Kemper, S.; Böhm, M.; Dietzek, B.; Popp, J.
2011-08-01
All-optical microspectroscopic and tomographic tools reveal great potential for clinical dermatologic diagnostics, i.e., investigation of human skin and skin diseases. While optical-coherence tomography has been complemented by two-photon fluorescence tomography and second-harmonic generation tomography, a joint study of various nonlinear optical microspectroscopies, i.e., application of the recently developed multimodal imaging approach, to sizable human-tissue samples has not been evaluated up to now. Here, we present such multimodal approach combining different nonlinear optical contrast mechanisms for imaging, namely two-photon excited fluorescence (TPF), second-harmonic generation (SHG), and coherent anti-Stokes Raman scattering (CARS) into a joint microscopic experiment. We show the potential of imaging large skin areas and discuss the information obtained in a case study comparing normal skin and keloid tissue.
Quantum nonlinear optics: nonlinear optics meets the quantum world (Conference Presentation)
Boyd, Robert W.
2016-02-01
This presentation first reviews the historical development of the field of nonlinear optics, starting from its inception in 1961. It then reviews some of its more recent developments, including especially how nonlinear optics has become a crucial tool for the developing field of quantum technologies. Fundamental quantum processes enabled by nonlinear optics, such as the creation of squeezed and entangled light states, are reviewed. We then illustrate these concepts by means of specific applications, such as the development of secure communication systems based on the quantum states of light.
Optical techniques in regenerative medicine
Morgan, Stephen P
2013-01-01
In regenerative medicine, tissue engineers largely rely on destructive and time-consuming techniques that do not allow in situ and spatial monitoring of tissue growth. Furthermore, once the therapy is implanted in the patient, clinicians are often unable to monitor what is happening in the body. To tackle these barriers, optical techniques have been developed to image and characterize many tissue properties, fabricate tissue engineering scaffolds, and characterize the properties of the scaffolds. Optical Techniques in Regenerative Medicine illustrates how to use optical imaging techniques and
Nonlinear optical response of some Graphene oxide and Graphene fluoride derivatives
Liaros, Nikolaos; Orfanos, Ioannis; Papadakis, Ioannis; Couris, Stelios
2016-12-01
The nonlinear optical properties of two graphene derivatives, graphene oxide and graphene fluoride, are investigated by means of the Z-scan technique employing 35 ps and 4 ns, visible (532 nm) laser excitation. Both derivatives were found to exhibit significant third-order nonlinear optical response at both excitation regimes, with the nonlinear absorption being relatively stronger and concealing the presence of nonlinear refraction under ns excitation, while ps excitation reveals the presence of both nonlinear absorption and refraction. Both nonlinear properties are of great interest for several photonics, opto-fluidics, opto-electronics and nanotechnology applications.
Recent Issues on Nonlinear Effects in Optical Fibers
Institute of Scientific and Technical Information of China (English)
Takashi; Inoue; Osamu; Aso; Shu; Namiki
2003-01-01
This talk will discuss the types of optical signal degradation due to fiber nonlinearity and review recently invented fibers for suppressing the effects. It also introduces efficiency of highly nonlinear fibers and their applications to nonlinear signal processing.
Nonlinear microstructured polymer optical fibres
DEFF Research Database (Denmark)
Frosz, Michael Henoch
is potentially the case for microstructured polymer optical fibres (mPOFs). Another advantage is that polymer materials have a higher biocompatibility than silica, meaning that it is easier to bond certain types of biosensor materials to a polymer surface than to silica. As with silica PCFs, it is difficult...
Covariant Description of Transformation Optics in Linear and Nonlinear Media
Paul, Oliver
2011-01-01
The technique of transformation optics (TO) is an elegant method for the design of electromagnetic media with tailored optical properties. In this paper, we focus on the formal structure of TO theory. By using a complete covariant formalism, we present a general transformation law that holds for arbitrary materials including bianisotropic, magneto-optical, nonlinear and moving media. Due to the principle of general covariance, the formalism is applicable to arbitrary space-time coordinate transformations and automatically accounts for magneto-electric coupling terms. The formalism is demonstrated for the calculation of the second harmonic generation in a twisted TO concentrator.
Machine learning techniques in optical communication
DEFF Research Database (Denmark)
Zibar, Darko; Piels, Molly; Jones, Rasmus Thomas
2015-01-01
Techniques from the machine learning community are reviewed and employed for laser characterization, signal detection in the presence of nonlinear phase noise, and nonlinearity mitigation. Bayesian filtering and expectation maximization are employed within nonlinear state-space framework...
Localized Turing patterns in nonlinear optical cavities
Kozyreff, G.
2012-05-01
The subcritical Turing instability is studied in two classes of models for laser-driven nonlinear optical cavities. In the first class of models, the nonlinearity is purely absorptive, with arbitrary intensity-dependent losses. In the second class, the refractive index is real and is an arbitrary function of the intracavity intensity. Through a weakly nonlinear analysis, a Ginzburg-Landau equation with quintic nonlinearity is derived. Thus, the Maxwell curve, which marks the existence of localized patterns in parameter space, is determined. In the particular case of the Lugiato-Lefever model, the analysis is continued to seventh order, yielding a refined formula for the Maxwell curve and the theoretical curve is compared with recent numerical simulation by Gomila et al. [D. Gomila, A. Scroggie, W. Firth, Bifurcation structure of dissipative solitons, Physica D 227 (2007) 70-77.
Investigation of local and nonlocal nonlinear optical refraction effect in IZO thin films
Htwe, Zin Maung; Zhang, Yun-Dong; Yao, Cheng-Bao; Li, Hui; Yuan, Ping
2016-10-01
We report the local and nonlocal nonlinear optical refraction properties of indium doped zinc oxide (IZO) thin films using closed aperture Z-scan technique. The Z-scan results show the films have positive nonlinear optical refraction properties. The nonlocal parameter m of samples is increased with indium. In both of local and nonlocal studies, the nonlinear optical refractions of thin films were increased with In contents and laser energy. This relation reveals the role of In composition in IZO affects on the nonlinear optical responses of the films. These results make the IZO thin films as the promising application in optoelectronics devices.
Multilayer Au/TiO2 Composite Films with Ultrafast Third-Order Nonlinear Optical Properties
Institute of Scientific and Technical Information of China (English)
LONG Hua; YANG Guang; CHEN Ai-Ping; LI Yu-Hua; LU Pei-Xiang
2008-01-01
We report on the ultrafast third-order optical nonlinearity in multilayer Au/TiO2 composite films fabricated on quartz substrates by pulsed laser deposition technique. The linear optical properties of the films are determined and optical absorption peaks due to surface plasmon resonance of Au particles are observed at about 59Onm.The third-order optical nonlinearities of the films are investigated by z-scan method using a femtosecond laser(50 fs) at the wavelength of 800 nm. The sample showed fast nonlinear optical responses with nonlinear absorption coefficient and nonlinear refractive index being -3.66×10-10 m/W and -2.95×10-17 m2/W, respectively. The results also show that the nonlinear optical effects increase with the increasing Au concentration in the composite films.
Infiltrated microstructured fibers as tunable and nonlinear optical devices
DEFF Research Database (Denmark)
Rosberg, Christian Romer; Bennet, Francis; Neshev, Dragomir N.;
We study the light guiding properties of microstructured optical fibers infiltrated with nonlinear liquids and demonstrate their applicability for spatial beam control in novel type tunable and nonlinear optical devices....
Laser and nonlinear optical materials: SPIE volume 681
Energy Technology Data Exchange (ETDEWEB)
De Shazer, L.G.
1987-01-01
This book contains papers arranged under the following session headings: Nonlinear optical crystals; Laser host crystals; Electro-optic and magneto-optic materials; and Characterization of optical materials.
Demonstration of a Chip-based Nonlinear Optical Isolator
Hua, Shiyue; Jiang, Xiaoshun; Hua, Qian; Jiang, Liang; Xiao, Min
2016-01-01
Despite fundamentally challenging in integrated (nano)photonics, achieving chip-based light nonreciprocity becomes increasingly urgent in signal processing and optical communications. Because of material incompatibilities in conventional approaches based on Faraday effects, alternative solutions have resorted to nonlinear processes to obtain one-way transmission. However, revealed dynamic reciprocity in a recent theoretical analysis has pinned down the functionalities of these nonlinear isolators. To overcome this dynamic reciprocity, we here report the first demonstration of a nonlinear optical isolator on a silicon chip enforced by phase-matched parametric amplification. Using a high-Q microtoroid resonator, we realize highly nonreciprocal transport at the 1,550 nm wavelength when waves are simultaneously launched in both forward and backward directions. Our design, compatible with current CMOS technique, yields convincing isolation performance with sufficiently low insertion loss for a wide range of input ...
Nonlinear compression of optical solitons
Indian Academy of Sciences (India)
M N Vinoj; V C Kuriakose
2001-11-01
In this paper, we consider nonlinear Schrödinger (NLS) equations, both in the anomalous and normal dispersive regimes, which govern the propagation of a single ﬁeld in a ﬁber medium with phase modulation and ﬁbre gain (or loss). The integrability conditions are arrived from linear eigen value problem. The variable transformations which connect the integrable form of modiﬁed NLS equations are presented. We succeed in Hirota bilinearzing the equations and on solving, exact bright and dark soliton solutions are obtained. From the results, we show that the soliton is alive, i.e. pulse area can be conserved by the inclusion of gain (or loss) and phase modulation effects.
Yashkir, O. V.; Yashkir, Yu N.
1987-11-01
An investigation is made of nonlinear optical interaction of light propagating in a planar waveguide with surface polaritons. Reduced wave equations for the amplitudes of the waveguide modes and surface polaritons are used to study the characteristics of generation of surface polaritons of difference frequency, parametric frequency up-conversion of the polaritons, and stimulated Raman scattering by the polaritons. An analysis is made of the characteristic properties of the investigated nonlinear optical processes.
Directory of Open Access Journals (Sweden)
Anju K. Augustine
2014-01-01
Full Text Available We present third-order optical nonlinear absorption in CdSe quantum dots (QDs with particle sizes in the range of 4.16–5.25 nm which has been evaluated by the Z-scan technique. At an excitation irradiance of 0.54 GW/cm2 the CdSe QDs exhibit reverse saturation indicating a clear nonlinear behavior. Nonlinearity increases with particle size in CdSe QDs within the range of our investigations which in turn depends on the optical band gap. The optical limiting threshold of the QDs varies from 0.35 GW/cm2 to 0.57 GW/cm2 which makes CdSe QDs a promising candidate for reverse-saturable absorption based devices at high laser intensities such as optical limiters.
Nonlinear optical properties and optical limiting measurements of graphene oxide - Ag@TiO2 compounds
Ebrahimi, M.; Zakery, A.; Karimipour, M.; Molaei, M.
2016-07-01
In this work Graphene Oxide (GO), Ag@TiO2 core-shells and GO-Ag@TiO2 compounds were prepared and experimentally verified. Using a low power laser diode with 532 nm wavelength, the magnitude and the sign of the nonlinear refractive index and nonlinear absorption were determined by the Z-scan technique. It was observed that the nonlinear absorption of GO-Ag@TiO2 mixture was higher than pure GO. The optical limiting effect of these samples was also investigated using the 2nd harmonics of a pulsed Nd-YAG laser at 532 nm. Our results showed that the sole Ag@TiO2 didn't show any appreciable optical limiting effect, however after just mixing with graphene oxide the threshold of optical limiting was increased and the compound showed an enhancement of optical limiting behavior compared to GO itself. The presented results are discussed and compared with other literature reports.
Enhancement of second-order nonlinear-optical signals by optical stimulation
Goodman, Aaron J
2015-01-01
Second-order nonlinear optical interactions such as sum- and difference-frequency generation are widely used for bioimaging and as selective probes of interfacial environments. However, inefficient nonlinear optical conversion often leads to poor signal-to-noise ratio and long signal acquisition times. Here, we demonstrate the dramatic enhancement of weak second-order nonlinear optical signals via stimulated sum- and difference-frequency generation. We present a conceptual framework to quantitatively describe the interaction and show that the process is highly sensitive to the relative optical phase of the stimulating field. To emphasize the utility of the technique, we demonstrate stimulated enhancement of second harmonic generation (SHG) from bovine collagen-I fibrils. Using a stimulating pulse fluence of only 3 nJ/cm2, we obtain an SHG enhancement >10^4 relative to the spontaneous signal. The stimulation enhancement is greatest in situations where spontaneous signals are the weakest - such as low laser pow...
Nonlinear and Dispersive Optical Pulse Propagation
Dijaili, Sol Peter
In this dissertation, there are basically four novel contributions to the field of picosecond pulse propagation and measurement. The first contribution is the temporal ABCD matrix which is an analog of the traditional ABCD ray matrices used in Gaussian beam propagation. The temporal ABCD matrix allows for the easy calculation of the effects of linear chirp or group velocity dispersion in the time domain. As with Gaussian beams in space, there also exists a complete Hermite-Gaussian basis in time whose propagation can be tracked with the temporal ABCD matrices. The second contribution is the timing synchronization between a colliding pulse mode-locked dye laser and a gain-switched Fabry-Perot type AlGaAs laser diode that has achieved less than 40 femtoseconds of relative timing jitter by using a pulsed optical phase lock loop (POPLL). The relative timing jitter was measured using the error voltage of the feedback loop. This method of measurement is accurate since the frequencies of all the timing fluctuations fall within the loop bandwidth. The novel element is a broad band optical cross-correlator that can resolve femtosecond time delay errors between two pulse trains. The third contribution is a novel dispersive technique of determining the nonlinear frequency sweep of a picosecond pulse with relatively good accuracy. All the measurements are made in the time domain and hence there is no time-bandwidth limitation to the accuracy. The fourth contribution is the first demonstration of cross -phase modulation in a semiconductor laser amplifier where a variable chirp was observed. A simple expression for the chirp imparted on a weak signal pulse by the action of a strong pump pulse is derived. A maximum frequency excursion of 16 GHz due to the cross-phase modulation was measured. A value of 5 was found for alpha _{xpm} which is a factor for characterizing the cross-phase modulation in a similar manner to the conventional linewidth enhancement factor, alpha.
Anisotropic and nonlinear optical waveguides
Someda, CG
1992-01-01
Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an
Third-order optical nonlinearities of PVP/Pd nanohybrids
Papagiannouli, I.; Potamianos, D.; Krasia-Christoforou, T.; Couris, S.
2017-10-01
Pd nanoparticles stabilized by polyvinylpyrrolidone were synthesized following mild reduction of palladium ion complexes. Their morphology and optical properties were characterized using Transmission Electron Microscopy, Dynamic Light Scattering and UV-Vis absorption spectroscopy to confirm the existence of monodispersed, low-dimensional single nanoparticles. Furthermore, their third-order nonlinear optical properties were investigated by means of the Z-scan technique, using 35 ps and 4 ns laser pulses, both in the visible (532 nm) and in the infrared (1064 nm). These results denote that the surface plasmon resonance is not significantly contributing to the nonlinear optical response of Pd nanoparticles. In contrast, a two photon absorption process was found to contribute to the observed response. The present results are discussed and compared with previous literature findings.
All Optical Signal-Processing Techniques Utilizing Four Wave Mixing
Directory of Open Access Journals (Sweden)
Refat Kibria
2015-02-01
Full Text Available Four Wave Mixing (FWM based optical signal-processing techniques are reviewed. The use of FWM in arithmetical operation like subtraction, wavelength conversion and pattern recognition are three key parts discussed in this paper after a brief introduction on FWM and its comparison with other nonlinear mixings. Two different approaches to achieve correlation are discussed, as well as a novel technique to realize all optical subtraction of two optical signals.
Extreme nonlinear optics and laser damage
Maldutis, Evaldas
2010-11-01
The study of laser induced damage threshold caused by series of identical laser pulses (LID-T-N) on gamma radiation resistant glasses and their analogs is performed applying know-how ultra stable laser radiation. The presented results and analysis of earlier received results show that nonlinear optical phenomena in extreme conditions of interaction are different from the traditional nonlinear optical processes, because they depend not only on intensity of electromagnetic field of laser radiation, but also on the pulse number in series of identical laser pulses. This range of laser intensities is not wide; it is different for each material and determines the range of Extreme Nonlinear Optics. The dependence of LID-T-N on pulse number N for different kinds of high quality transparent glasses was observed. The study of dynamics of these processes (i.e. the study of dependence on N) at different intensities in series of incident laser pulses provides new information about properties of the materials useful for studying laser damage fundamentals and their application. The expectation that gamma radiation resistant glasses could give useful information for technology of resistant optics for high power lasers has not proved. The received results well correspond with the earlier proposed model of laser damage.
Rigorous theory of molecular orientational nonlinear optics
Directory of Open Access Journals (Sweden)
Chong Hoon Kwak
2015-01-01
Full Text Available Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1 the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2 the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect, optical Kerr effect (OKE, dc electric field induced second harmonic generation (EFISH, degenerate four wave mixing (DFWM and third harmonic generation (THG. We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR, Pockels effect and difference frequency generation (DFG are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR, dc electric field induced difference frequency generation (EFIDFG and pump-probe transmission are presented.
Laser Induced Nonlinear Optical Properties of Zinc Oxide Thin Film Prepared by Sol-Gel Method
Directory of Open Access Journals (Sweden)
Vinay Kumari
2011-01-01
Full Text Available Optical nonlinearities of spin coated ZnO thin film have been investigated by using single beam Z-Scan technique in the visible region. X- ray diffraction shows that all films are oriented along the c-axis direction of the hexagonal crystal structure. The average optical transmittance of all films is higher than 80 %. The nonlinear optical parameters viz. nonlinear absorption coefficient (β, nonlinear index of refraction (η2, nonlinear susceptibility (χ3, have been estimated using nanosecond laser pulses of second harmonic of Nd:YAG Laser. The value of nonlinear absorption coefficient β is estimated to be greater than the already reported value. The films clearly exhibit a-ve value of nonlinear refraction at 532 nm which is attributed to the two photon absorption and free carrier absorption. The presence of RSA in ZnO thin films inferes that ZnO is a potential material for the development of optical limiter.
Nonlinear dynamic macromodeling techniques for audio systems
Ogrodzki, Jan; Bieńkowski, Piotr
2015-09-01
This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.
Quantum Information Processing using Nonlinear Optical Effects
DEFF Research Database (Denmark)
Andersen, Lasse Mejling
of the converted idler depends on the other pump. This allows for temporal-mode-multiplexing. When the effects of nonlinear phase modulation (NPM) are included, the phases of the natural input and output modes are changed, reducing the separability. These effects are to some degree mediated by pre......This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear...... to obtain a 100 % conversion efficiency is to use multiple stages of frequency conversion, but this setup suffers from the combined effects of NPM. This problem is circumvented by using asymmetrically pumped BS, where one pump is continuous wave. For this setup, NPM is found to only lead to linear phase...
Time-reversed wave mixing in nonlinear optics.
Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng
2013-11-19
Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing.
Making of a nonlinear optical cavity
Martínez-Lorente, R; Esteban-Martín, A; García-Monreal, J; Roldán, E; Silva, F
2016-01-01
In the article we explain in detail how to build a photorefractive oscillator (PRO), which is a laser-pumped nonlinear optical cavity containing a photorefractive crystal. The specific PRO whose construction we describe systematically, is based on a Fabry-Perot optical cavity working in a non-degenerate four wave-mixing configuration. This particular PRO has the property that the generated beam exhibits laser-like phase invariance and, as an application, we show how a suitably modulated injected beam converts the output field from phase-invariant into phase-bistable. While the emphasis is made on the making of the experimental device and on the way measurements are implemented, some introduction to the photorefractive effect as well as to the necessary concepts of nonlinear dynamics are also given, so that the article is reasonably self-contained.
Nonlinear optics of astaxanthin thin films
Esser, A.; Fisch, Herbert; Haas, Karl-Heinz; Haedicke, E.; Paust, J.; Schrof, Wolfgang; Ticktin, Anton
1993-02-01
Carotinoids exhibit large nonlinear optical properties due to their extended (pi) -electron system. Compared to other polyenes which show a broad distribution of conjugation lengths, carotinoids exhibit a well defined molecular structure, i.e. a well defined conjugation length. Therefore the carotinoid molecules can serve as model compounds to study the relationship between structure and nonlinear optical properties. In this paper the synthesis of four astaxanthins with C-numbers ranging from 30 to 60, their preparation into thin films, wavelength dispersive Third Harmonic Generation (THG) measurements and some molecular modelling calculations will be presented. Resonant (chi) (3) values reach 1.2(DOT)10-10 esu for C60 astaxanthin. In the nonresonant regime a figure of merit (chi) (3)/(alpha) of several 10-13 esu-cm is demonstrated.
Nonlinear optical studies of organic monolayers
Energy Technology Data Exchange (ETDEWEB)
Shen, Y.R.
1988-02-01
Second-order nonlinear optical effects are forbidden in a medium with inversion symmetry, but are necessarily allowed at a surface where the inversion summary is broken. They are often sufficiently strong so that a submonolayer perturbation of the surface can be readily detected. They can therefore be used as effective tools to study monolayers adsorbed at various interfaces. We discuss here a number of recent experiments in which optical second harmonic generation (SHG) and sum-frequency generation (SFG) are employed to probe and characterize organic monolayers. 15 refs., 5 figs.
Characterizing the Statistics of a Bunch of Optical Pulses Using a Nonlinear Optical Loop Mirror
Directory of Open Access Journals (Sweden)
Olivier Pottiez
2015-01-01
Full Text Available We propose in this work a technique for determining the amplitude distribution of a wave packet containing a large number of short optical pulses with different amplitudes. The technique takes advantage of the fast response of the optical Kerr effect in a fiber nonlinear optical loop mirror (NOLM. Under some assumptions, the statistics of the pulses can be determined from the energy transfer characteristic of the packet through the NOLM, which can be measured with a low-frequency detection setup. The statistical distribution is retrieved numerically by approximating the solution of a system of nonlinear algebraic equations using the least squares method. The technique is demonstrated numerically in the case of a packet of solitons.
Topological nature of nonlinear optical effects in solids
Morimoto, Takahiro; Nagaosa, Naoto
2015-01-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by the strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by the nonlinear suscepti...
Enhanced optical nonlinearities in air-cladding silicon pedestal waveguides
Zhang, Yaojing; Yao, Yifei; Tsang, Hon Ki
2016-01-01
The third-order optical nonlinearity in optical waveguides has found applications in optical switching, optical wavelength conversion, optical frequency comb generation, and ultrafast optical signal processing. The development of an integrated waveguide platform with a high nonlinearity is therefore important for nonlinear integrated photonics. Here, we report the observation of an enhancement in the nonlinearity of an air-cladding silicon pedestal waveguide. We observe enhanced nonlinear spectral broadening compared to a conventional silicon-on-insulator waveguide. At the center wavelength of 1555 nm, the nonlinear-index coefficient of air-cladding silicon pedestal waveguide is measured to be about 5% larger than that of a conventional silicon-on-insulator waveguide. We observe enhanced spectral broadening from self-phase modulation of an optical pulse in the pedestal waveguide. The interaction of light with the confined acoustic phonons in the pedestal structure gives rise to a larger nonlinear-index coeffi...
Nonlinear inversion schemes for fluorescence optical tomography.
Freiberger, Manuel; Egger, Herbert; Scharfetter, Hermann
2010-11-01
Fluorescence optical tomography is a non-invasive imaging modality that employs the absorption and re-emission of light by fluorescent dyes. The aim is to reconstruct the fluorophore distribution in a body from measurements of light intensities at the boundary. Due to the diffusive nature of light propagation in tissue, fluorescence tomography is a nonlinear and severely ill-posed problem, and some sort of regularization is required for a stable solution. In this paper we investigate reconstruction methods based on Tikhonov regularization with nonlinear penalty terms, namely total-variation regularization and a levelset-type method using a nonlinear parameterization of the unknown function. Moreover, we use the full threedimensional nonlinear forward model, which arises from the governing system of partial differential equations. We discuss the numerical realization of the regularization schemes by Newtontype iterations, present some details of the discretization by finite element methods, and outline the efficient implementation of sensitivity systems via adjoint methods. As we will demonstrate in numerical tests, the proposed nonlinear methods provide better reconstructions than standard methods based on linearized forward models and linear penalty terms. We will additionally illustrate, that the careful discretization of the methods derived on the continuous level allows to obtain reliable, mesh independent reconstruction algorithms.
Optical pulses, lasers, measuring techniques
Früngel, Frank B A
1965-01-01
High Speed Pulse Technology: Volume II: Optical Pulses - Lasers - Measuring Techniques focuses on the theoretical and engineering problems that result from the capacitor discharge technique.This book is organized into three main topics: light flash production from a capacitive energy storage; signal transmission and ranging systems by capacitor discharges and lasers; and impulse measuring technique. This text specifically discusses the air spark under atmospheric conditions, industrial equipment for laser flashing, and claims for light transmitting system. The application of light impulse sign
Institute of Scientific and Technical Information of China (English)
CAO; Wenhua; LIU; Songhao
2004-01-01
A novel scheme to compress optical pulses is proposed and demonstrated numerically, which is based on a nonlinear optical loop mirror constructed from dispersion decreasing fiber (DDF). We show that, in contrast to the conventional soliton-effect pulse compression in which compressed pulses are always accompanied by pedestals and frequency chirps owning to nonlinear effects, the proposed scheme can completely suppress pulse pedestals and frequency chirps. Unlike the adiabatic compression technique in which DDF length must increase exponentially with input pulsewidth, the proposed scheme does not require adiabatic condition and therefore can be used to compress long pulses by using reasonable fiber lengths. For input pulses with peak powers higher than a threshold value, the compressed pulses can propagate like fundamental solitons. Furthermore, the scheme is fairly insensitive to small variations in the loop length and is more robust to higher-order nonlinear effects and initial frequency chirps than the adiabatic compression technique.
Dispersive optical nonlinearities in an EIT-Rydberg medium
Stanojevic, Jovica; Bimbard, Erwan; Ourjoumtsev, Alexei; Grangier, Philippe
2013-01-01
We investigate dispersive optical nonlinearities that arise from Rydberg excitation blockade in cold Rydberg gases. We consider a two-photon transition scheme and study the non-linear response to a weak optical probe in presence of a strong control beam. For very low probe fields, the dominant nonlinearities are of the third order and they can be exactly evaluated in a steady state regime. In a more general case, the change in average atomic populations and coherences due to Rydberg interactions can be characterized by properly defined scaling parameters, which are generally complex numbers but in certain situations take the usual meaning of the number of atoms in a blockade sphere. They can be used in a simple "universal scaling" formula to determine the dispersive optical nonlinearity of the medium. We also develop a novel technique to account for the Rydberg interaction effects, by simplifying the treatment of nonlocal interaction terms, the so-called collisional integrals. We find algebraic relations that...
DSP Approach to the Design of Nonlinear Optical Devices
Directory of Open Access Journals (Sweden)
Steve Blair
2005-06-01
Full Text Available Discrete-time signal processing (DSP tools have been used to analyze numerous optical filter configurations in order to optimize their linear response. In this paper, we propose a DSP approach to design nonlinear optical devices by treating the desired nonlinear response in the weak perturbation limit as a discrete-time filter. Optimized discrete-time filters can be designed and then mapped onto a specific optical architecture to obtain the desired nonlinear response. This approach is systematic and intuitive for the design of nonlinear optical devices. We demonstrate this approach by designing autoregressive (AR and autoregressive moving average (ARMA lattice filters to obtain a nonlinear phase shift response.
Sousani, Abbas; Motiei, Hamideh; Najafimoghadam, Peyman; Hasanzade, Reza
2017-05-01
In this study new nanocompoites based on polyglycidylmethacrylate grafted 4-[(4-methoxyphenyl) diazenyl] phenol (Azo-PGMA) and Carboxylicacid functionalized multi-walled carbon nanotubes (MWCNT-COOH) were prepared. The nanocomposites structure was characterized by FT-IR, TGA and SEM. The Z-scan technique was applied for measuring the nonlinear parameters of nanocomposites. The samples after solving in AWM solution (equal ratio of acetone, deionized water and methanol) were investigated by using closed aperture Z-scan technique and a diode-pumped laser at the line 532 nm. All the nonlinear refractive index of the samples at three concentrations of carbon nanotubes in three different intensities of the laser beam were investigated and the nonlinear optical response of them are compared under the same condition. Because of high order of nonlinear refractive coefficient and good nonlinearity, these compounds are suitable candidate for optical switching, optical limiting and electro-optical devices.
Environmental monitoring using optical techniques
Svanberg, Sune
2003-11-01
An overview of optical techniques for environmental monitoring is presented. Range-resolved measurements of atmospheric pollutants can be performed using the differential absorption lidar technique. Fluorescence lidar allows assessment of vegetation status and also the conditions of the facades of historical buildings. Diode lasers provide particularly realistic schemes for atmospheric gas analysis, where certain wavelength ranges, which are not easily directly assessed, can be reached by sum- and difference frequency generation. Finally, the gas correlation principle can be used for real-time imaging of hydrocarbons. Several types of such optical environmental monitoring are illustrated with examples from research at the Lund Institute of Technology, Sweden.
Fabrication of nonlinear plastic optical fiber (POF) and application
Kim, Eung Soo; Kinoshita, Takeshi; Yu, Yun Sik; Jeong, Myung Yung
2007-04-01
We have developed a fabrication technique for plastic optical fiber (POF) using nonlinear organic materials. The fabrication technique is the direct core solution injection into the hole of cladding preform formed by polymerization of cladding solution. The cladding solution was made of MMA, BBP, and BPO. The preform of fiber was drawn into fiber following polymerization of core solution in cladding preform. We used DR1 to control the refractive index of fiber and investigated the sensor characteristics. The sensitivity of fabricated fiber is about 0.11 W/°C in the temperature range from 20 °C to 100 °C.
Nonlinear temporal pulse cleaning techniques and application
Institute of Scientific and Technical Information of China (English)
Yi; Xu; Jianzhou; Wang; Yansui; Huang; Yanyan; Li; Xiaomin; Lu; Yuxin; Leng
2013-01-01
Two different pulse cleaning techniques for ultra-high contrast laser systems are comparably analysed in this work.The first pulse cleaning technique is based on noncollinear femtosecond optical-parametric amplification(NOPA)and second-harmonic generation(SHG)processes.The other is based on cross-polarized wave(XPW)generation.With a double chirped pulse amplifier(double-CPA)scheme,although temporal contrast enhancement in a high-intensity femtosecond Ti:sapphire chirped pulse amplification(CPA)laser system can be achieved based on both of the techniques,the two different pulse cleaning techniques still have their own advantages and are suitable for different contrast enhancement requirements of different laser systems.
Villanueva, Guillermo E; Jakubinek, Michael B; Simard, Benoit; Oton, Claudio J; Matres, Joaquín; Shao, Li-Yang; Pérez-Millán, Pere; Albert, Jacques
2011-06-01
Single-wall carbon nanotube deposition on the cladding of optical fibers has been carried out to fabricate an all-fiber nonlinear device. Two different nanotube deposition techniques were studied. The first consisted of repeatedly immersing the optical fiber into a nanotube supension, increasing the thickness of the coating in each step. The second deposition involved wrapping a thin film of nanotubes around the optical fiber. For both cases, interaction of transmitted light through the fiber core with the external coating was assisted by the cladding mode resonances of a tilted fiber Bragg grating. Ultrafast nonlinear effects of the nanotube-coated fiber were measured by means of a pump-probe pulses experiment. © 2011 Optical Society of America
Nonlinear optical studies of relaxation in semiconductor microstructures
Remillard, Jeffrey Thomas
1990-11-01
Exposing a semiconductor to optical radiation near the fundamental band gap results in the creation of populations or elementary excitations including electrons, holes, and excitons, and also results in the creation of a superposition state between the ground and excited state of the solid. The relaxation of optically generated excitons and carriers in semiconductor microstructures was studied using four wave mixing (FWM) spectroscopy. The systems studied include CdSSe microcrystallite doped glasses and GaA/AlGaAs multiple quantum well structures (MQWS). First, the nonlinear optical response of simple two level systems is examined in order to provide insight into the types of line shapes expected from semiconductors. It is shown that the line shape is strongly dependent on how the system is coupled to the reservoir and the consequences of coupling to a reservoir are examined in a FWM measurement made in atomic sodium. The first semiconductor system studied is CdSSe microcrystallite doped glass. This system is shown to have a very slow component to the nonlinear response which has an optical intensity dependence and temperature dependence which suggests that the FWM response in these materials is trap mediated. Room temperature FWM measurements in GaAs MQWS enables the measurement of the carrier recombination time and the ambipolar diffusion coefficient. Using the technique of correlated optical fields, a slow component to the nonlinear response was measured showing an interference profile which suggests a possible shift of the exciton resonance due to the optically generated carriers. At low temperatures, measurements of the exciton line shape and relaxation time were made and evidence for exciton spectral diffusion was found. The low temperature line shapes can be qualitatively reproduced using Modified Optical Bloch equations which include the effects of spectral diffusion.
Manjunatha, K. B.; Rajarao, Ravindra; Umesh, G.; Ramachandra Bhat, B.; Poornesh, P.
2017-08-01
A salen-based ruthenium (Ru) (II) complex was synthesized for possible use in nonlinear optical device applications. The Ru complex was doped in a polymer matrix to fabricate films using a low-cost spin-coating technique. The third-order nonlinear optical parameters of the complex were investigated by Z-scan and degenerate four-wave mixing techniques. The study reveals two-order enhancement of third-order optical susceptibility χ (3) and exhibits superior limiting capability due to a reverse saturable absorption process. All-optical switching action for the films indicates that the sample can function as an optical inverter or a NOT gate. Hence, the Ru (II) Schiff-base complex materializes as a possible candidate for use in nonlinear optical devices.
Bacteriorhodopsin: Tunable Optical Nonlinear Magnetic Response
Bovino, F A; Sibilia, C; Giardina, M; Váró, G; Gergely, C
2011-01-01
We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under "off resonance" femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.
Third-order optical nonlinearities of Cu and Tb nanoparticles in SrTiO{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Cetin, A.; Kibar, R. [Department of Physics, Faculty of Arts and Sciences Celal Bayar University, 45040 Manisa Turkey (Turkey); Hatipoglu, M. [Dokuz Eyluel University, IMYO, Izmir Multidisciplinary Vocational School, Gemmology and Jewelry Program, 35140 Buca-Izmir Turkey (Turkey); Karabulut, Y. [Department of Physics, Faculty of Arts and Sciences Celal Bayar University, 45040 Manisa Turkey (Turkey); Can, N., E-mail: cannurdogan@yahoo.co [Department of Physics, Faculty of Arts and Sciences Celal Bayar University, 45040 Manisa Turkey (Turkey)
2010-05-01
Some results of optical and nonlinear-optical properties of Cu and Tb nanoparticles implanted in SrTiO{sub 3} (STO) crystal are presented. The non-resonant third-order optical nonlinearities have been investigated by degenerate four wave mixing (DFWM), pump-probe and Z-scan techniques using femtosecond laser pulses.
Enhancement of Second-Order Nonlinear-Optical Signals by Optical Stimulation
Goodman, A. J.; Tisdale, W. A.
2015-05-01
Second-order nonlinear optical interactions such as sum- and difference-frequency generation are widely used for bioimaging and as selective probes of interfacial environments. However, inefficient nonlinear optical conversion often leads to poor signal-to-noise ratio and long signal acquisition times. Here, we demonstrate the dramatic enhancement of weak second-order nonlinear optical signals via stimulated sum- and difference-frequency generation. We present a conceptual framework to quantitatively describe the interaction and show that the process is highly sensitive to the relative optical phase of the stimulating field. To emphasize the utility of the technique, we demonstrate stimulated enhancement of second harmonic generation (SHG) from bovine collagen-I fibrils. Using a stimulating pulse fluence of only 3 nJ /cm2 , we obtain an SHG enhancement >104 relative to the spontaneous signal. The stimulation enhancement is greatest in situations where spontaneous signals are the weakest—such as low laser power, small sample volume, and weak nonlinear susceptibility—emphasizing the potential for this technique to improve signal-to-noise ratios in biological imaging and interfacial spectroscopy.
Essaïdi, Zacaria; Krupka, Oksana; Iliopoulos, Konstantinos; Champigny, Emilie; Sahraoui, Bouchta; Sallé, Marc; Gindre, Denis
2013-01-01
The second-order nonlinear optical properties of photocross-linkable coumarin-based copolymers were investigated using the optical second harmonic generation (SHG) with the Maker fringes technique. High quality and transparent spin-deposited thin films of various methacrylic copolymers containing 4-methylcoumarin pendant chromophores were prepared and the coumarin units were ordered and oriented by the corona poling technique. Nonlinear optical investigations were performed using a picosecond Q-switched Nd:YAG laser working at the fundamental wavelength (λ = 1064 nm) and the second order nonlinear optical susceptibilities of the functionalized polymers were determined. The samples were irradiated using two wavelengths (λ = 254 nm and λ > 300 nm) promoting the reversible photo-induced dimerisation of coumarin moieties within the film. The latter is shown to have a significant impact on the nonlinear optical response of the corresponding material. A large SHG response of photocross-linkable coumarin-based copolymers is obtained.
Machine learning techniques in optical communication
DEFF Research Database (Denmark)
Zibar, Darko; Piels, Molly; Jones, Rasmus Thomas
2016-01-01
Machine learning techniques relevant for nonlinearity mitigation, carrier recovery, and nanoscale device characterization are reviewed and employed. Markov Chain Monte Carlo in combination with Bayesian filtering is employed within the nonlinear state-space framework and demonstrated for parameter...
Kirubagaran, R.; Madhavan, J.
2015-02-01
Single crystals of L-alanine DL-malic acid (LADLMA) have been grown from aqueous solution by slow-cooling technique. Powder X-ray diffraction studies reveal the structure of the crystal to be orthorhombic. The nonlinear optical conversion efficiency test was carried out for the grown crystals using the Kurtz powder technique. The third order nonlinear refractive index and the nonlinear absorption coefficient where evaluated by Z-scan measurements. As the material have a negative refractive index it could be used in the protection of optical sensors such as night vision devices.
Nonlinear Quantum Optics in Artificially Structured Media
Helt, Lukas Gordon
This thesis presents an analysis of photon pairs generated via either spontaneous parametric downconversion or spontaneous four-wave mixing in channel waveguides as well as in microring resonators side-coupled to channel waveguides. The state of photons exiting a particular device is calculated within a general Hamiltonian formalism that simplifies the link between quantum nonlinear optics experiments and classical nonlinear optics experiments. This state contains information regarding photon pair production efficiency as well as modal and spectral correlations between the two photons, characterized by a two-dimensional spectral distribution function called the biphoton wave function. In the limit of a low probability of pair production, photon pair production efficiencies are cast into forms resembling corresponding well-known classical nonlinear optical frequency conversion efficiencies, making it easy to see what plays the role of a classical "seed" field in an un-seeded (quantum) process. This also allows photon pair production efficiencies to be calculated based on the results of classical nonlinear optical experiments. It is further calculated that, unless generated photons are collected over a very narrow frequency range, their generation efficiency does not scale the same way with device length in a channel waveguide, or resonance quality factor in a microring resonator, as might be expected from the corresponding classical frequency conversion efficiency. Although calculations do not include self- or cross-phase modulation, nor two-photon absorption or free-carrier absorption, it is calculated that their neglect is justified in the low pair production probability limit. Linear (scattering) loss is also neglected, though partially addressed in the final chapter of this thesis. Biphoton wave functions are calculated explicitly, such that their shape and orientation, including approximate analytic expressions for their widths, can easily be determined. This
Nonlinear optical properties of induced transmission filters.
Owens, Daniel T; Fuentes-Hernandez, Canek; Hales, Joel M; Perry, Joseph W; Kippelen, Bernard
2010-08-30
The nonlinear optical (NLO) properties of induced transmission filters (ITFs) based on Ag are experimentally determined using white light continuum pump-probe measurements. The experimental results are supported using simulations based on the matrix transfer method. The magnitude of the NLO response is shown to be 30 times that of an isolated Ag film of comparable thickness. The impacts of design variations on the linear and NLO response are simulated. It is shown that the design can be modified to enhance the NLO response of an ITF by a factor of 2 or more over a perfectly matched ITF structure.
Nonlinear Optics in AlGaAs on Insulator
DEFF Research Database (Denmark)
Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta;
2016-01-01
AlGaAs on insulator is a powerful nonlinear platform sporting a high effective nonlinearity and the possibility to fabricate complex designs. We will present low loss waveguides enabling efficient optical signal processing and Kerr comb generation.......AlGaAs on insulator is a powerful nonlinear platform sporting a high effective nonlinearity and the possibility to fabricate complex designs. We will present low loss waveguides enabling efficient optical signal processing and Kerr comb generation....
Ablation and optical third-order nonlinearities in Ag nanoparticles
Directory of Open Access Journals (Sweden)
Carlos Torres-Torres
2010-11-01
Full Text Available Carlos Torres-Torres1, Néstor Peréa-López2, Jorge Alejandro Reyes-Esqueda3, Luis Rodríguez-Fernández3, Alejandro Crespo-Sosa3, Juan Carlos Cheang-Wong3, Alicia Oliver31Section of Graduate Studies and Research, School of Mechanical and Electrical Engineering, National Polytechnic Institute, Zacatenco, Distrito Federal, Mexico; 2Laboratory for Nanoscience and Nanotechnology Research and Advanced Materials Department, IPICYT, Camino a la Presa San Jose, San Luis Potosi, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000, MéxicoAbstract: The optical damage associated with high intensity laser excitation of silver nanoparticles (NPs was studied. In order to investigate the mechanisms of optical nonlinearity of a nanocomposite and their relation with its ablation threshold, a high-purity silica sample implanted with Ag ions was exposed to different nanosecond and picosecond laser irradiations. The magnitude and sign of picosecond refractive and absorptive nonlinearities were measured near and far from the surface plasmon resonance (SPR of the Ag NPs with a self-diffraction technique. Saturable optical absorption and electronic polarization related to self-focusing were identified. Linear absorption is the main process involved in nanosecond laser ablation, but nonlinearities are important for ultrashort picosecond pulses when the absorptive process become significantly dependent on the irradiance. We estimated that near the resonance, picosecond intraband transitions allow an expanded distribution of energy among the NPs, in comparison to the energy distribution resulting in a case of far from resonance, when the most important absorption takes place in silica. We measured important differences in the ablation threshold and we estimated that the high selectiveness of the SPR of Ag NPs as well as their corresponding optical nonlinearities can be strongly significant for laser
Nonlinear optical properties of methyl red under CW irradiation
Zheng, Yu; Ye, Qing; Wang, Chen; Wang, Jin; Deng, Zhichao; Mei, Jianchun; Zhou, Wenyuan; Zhang, Chunping; Tian, Jianguo
2015-12-01
Organic materials have wide potential application in nonlinear optical devices. The nonlinear optical (NLO) properties of methyl red (MR) doped polymethyl methacrylate (MR-PMMA) are investigated under CW laser irradiation at 473 nm, 532 nm and 632.8 nm, respectively. By combining Kramers-Kronig (K-K) relation and CW Z-scan technique, the effective refractive index n2 and the change of refractive index Δn are obtained under different scanning speed at 473 nm and 532 nm. Δn is positive at 473 nm, while Δn is negative at 532 nm. The experimental result is consistent with that of K-K relation. With the scanning speed decreasing, the NLO properties of MR-PMMA are enhanced. With different laser powers at 632.8 nm, MR-PMMA has only nonlinear absorption rather than nonlinear refraction. Meanwhile, the sample is investigated under pulse laser irradiation at 532 nm. Through the comparison of results of CW Z-scan and pulse Z-scan, the influence of the cumulative thermal effect on NLO properties of material is investigated. The results indicate that, under CW irradiation near the absorption peak wavelength, the cumulative thermal effect has great influence to the NLO properties of MR-PMMA.
Study of nonlinear refraction of organic dye by Z-scan technique using He-Ne laser
Medhekar, S.; Kumar, R.; Mukherjee, S.; Choubey, R. K.
2013-02-01
Laser induced third-order nonlinear optical responses of Brilliant Green solution has been investigated by utilizing single beam Z-scan technique with a continuous-wave He-Ne laser radiation at 632.8 nm. It was observed that the material exhibits self-defocusing type optical nonlinearity. The measurements of nonlinear refraction were carried out at different dye concentrations and found that the increase in solution concentration leads to the linear increase of the nonlinear refractive index. The experimental results confirm great potential of the Brilliant Green for the application in nonlinear optical devices.
Study of nonlinear refraction of organic dye by Z-scan technique using He-Ne laser
Energy Technology Data Exchange (ETDEWEB)
Medhekar, S.; Kumar, R.; Mukherjee, S.; Choubey, R. K. [Dept. of Applied Physics, Birla Institute of Technology, Mesra, Ranchi - 835215, Jharkhand (India)
2013-02-05
Laser induced third-order nonlinear optical responses of Brilliant Green solution has been investigated by utilizing single beam Z-scan technique with a continuous-wave He-Ne laser radiation at 632.8 nm. It was observed that the material exhibits self-defocusing type optical nonlinearity. The measurements of nonlinear refraction were carried out at different dye concentrations and found that the increase in solution concentration leads to the linear increase of the nonlinear refractive index. The experimental results confirm great potential of the Brilliant Green for the application in nonlinear optical devices.
Review of Robust Data Exchange Using Optical Nonlinearities
Directory of Open Access Journals (Sweden)
Jian Wang
2012-01-01
Full Text Available Data exchange, namely bidirectional information swapping, provides enhanced flexibility compared to the unidirectional information transfer. To fulfill the rapid development of high-speed large-capacity optical communications with emerging multiplexing/demultiplexing techniques and advanced modulation formats, a laudable goal would be to achieve data exchange in different degrees of freedom (wavelength, time, polarization, for different modulation formats (OOK, DPSK, DQPSK, pol-muxed, and at different granularities (entire data, groups of bits, tributary channels. Optical nonlinearities are potentially suitable candidates to enable data exchange in the wavelength, time, and polarization domains. In this paper, we will review our recent works towards robust data exchange by exploiting miscellaneous optical nonlinearities, including the use of cSFG/DFG in a PPLN waveguide for time- (groups of bits and channel-selective data exchange and tributary channel exchange between two WDM+OTDM signals, nondegenerate FWM in an HNLF for phase-transparent data exchange (DPSK, DQPSK, bidirectional degenerate FWM in an HNLF for multi-channel data exchange, and Kerr-induced nonlinear polarization rotation in an HNLF for tributary channel exchange of a pol-muxed DPSK OTDM signal. The demonstrated data exchanges in different degrees of freedom, for different modulation formats, and at different granularities, open the door for alternative approaches to achieve superior network performance.
Third-order nonlinear optical response of push-pull azobenzene polymers
Papagiannouli, I.; Iliopoulos, K.; Gindre, D.; Sahraoui, B.; Krupka, O.; Smokal, V.; Kolendo, A.; Couris, S.
2012-12-01
The nonlinear optical response of a series of azo-containing side-chain polymers is investigated using Z-scan technique, employing 35 ps and 4 ns laser pulses, at 532 nm. The systems were found to exhibit strong nonlinear optical response, dominated by nonlinear refraction. In all cases, the nonlinear absorption and refraction have been determined and are compared with those of disperse red 1 considered as reference. The corresponding third-order susceptibilities χ(3) were determined to be as large as 10-7 and 10-5 esu under ps and ns laser excitation, respectively. Finally, the results are discussed and compared with other reported data.
Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin; Witherow, William K.; Bank, Curtis; Shields, Angela; Hicks, Rosline; Ashley, Paul R.
1996-01-01
In this paper, we will take a closer look at the state of the art of polydiacetylene, and metal-free phthalocyanine films, in view of the microgravity impact on their optical properties, their nonlinear optical properties and their potential advantages for integrated optics. These materials have many attractive features with regard to their use in integrated optical circuits and optical switching. Thin films of these materials processed in microgravity environment show enhanced optical quality and better molecular alignment than those processed in unit gravity. Our studies of these materials indicate that microgravity can play a major role in integrated optics technology. Polydiacetylene films are produced by UV irradiation of monomer solution through an optical window. This novel technique of forming polydiacetylene thin films has been modified for constructing sophisticated micro-structure integrated optical patterns using a pre-programmed UV-Laser beam. Wave guiding through these thin films by the prism coupler technique has been demonstrated. The third order nonlinear parameters of these films have been evaluated. Metal-free phthalocyanine films of good optical quality are processed in our laboratories by vapor deposition technique. Initial studies on these films indicate that they have excellent chemical, laser, and environmental stability. They have large nonlinear optical parameters and show intrinsic optical bistability. This bistability is essential for optical logic gates and optical switching applications. Waveguiding and device making investigations of these materials are underway.
Pandian, Muthu Senthil; Karuppasamy, P.; Ramasamy, P.
2017-05-01
The semi-organic nonlinear optical single crystals of potassium 3,5-dinitrobenzoate (KDNB) were grown by slow evaporation solution technique (SEST). The lattice parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis. The optical transmittance, cut-off wavelength and band gap of the KDNB crystal were obtained by UV-Vis NIR spectrum analysis. Vickers microhardness analysis was carried out to identify mechanical stability and work hardening co-efficient of the grown crystal. The crystalline perfection of the grown crystal was identified by chemical etching study using water as etchant. The third-order nonlinear optical properties such as nonlinear refractive index (n2), nonlinear absorption co-efficient (β) and third order nonlinear susceptibility (χ(3)) of KDNB crystal were evaluated using Z-scan technique at the wavelength of 632.8 nm.
Enhanced Kerr electro-optic nonlinearity through cascaded Pockels effects
Li, Guang-Zhen; Jiang, Hao-Wei; Chen, Xian-Feng
2015-01-01
We demonstrated a large enhancement of Kerr electro-optic nonlinearity through cascaded Pockels effects in a domain inversion ferroelectric crystal. We designed a structure that can implement the cascaded Pockels effects and second-harmonic generation simultaneously. The energy coupling between the fundamental lights of different polarizations led to a large nonlinear phase shift, and thus an effective electro-optic nonlinear refractive index. The effective nonlinearity can be either positive or negative, causing the second-harmonic spectra to move towards the coupling center, which in turn, offered us a way to measure the effective electro-optic nonlinear refractive index. The corresponding enhanced Kerr electro-optic nonlinearity is more than three orders of magnitude higher than the intrinsic value. These results open a door to manipulate the nonlinear phase by applying external electric field instead of light intensity in noncentrosymmetric crystals.
Nonlinear Optical Properties of Carotenoid and Chlorophyll Harmonophores
Tokarz, Danielle Barbara
Information regarding the structure and function of living tissues and cells is instrumental to the advancement of cell biology and biophysics. Nonlinear optical microscopy can provide such information, but only certain biological structures generate nonlinear optical signals. Therefore, structural specificity can be achieved by introducing labels for nonlinear optical microscopy. Few studies exist in the literature about labels that facilitate harmonic generation, coined "harmonophores". This thesis consists of the first major investigation of harmonophores for third harmonic generation (THG) microscopy. Carotenoids and chlorophylls were investigated as potential harmonophores. Their nonlinear optical properties were studied by the THG ratio technique. In addition, a tunable refractometer was built in order to determine their second hyperpolarizability (gamma). At 830 nm excitation wavelength, carotenoids and chlorophylls were found to have large negative gamma values however, at 1028 nm, the sign of gamma reversed for carotenoids and remained negative for chlorophylls. Consequently, at 1028 nm wavelength, THG signal is canceled with mixtures of carotenoids and chlorophylls. Furthermore, when such molecules are covalently bonded as dyads or interact within photosynthetic pigment-protein complexes, it is found that additive effects with the gamma values still play a role, however, the overall gamma value is also influenced by the intra-pigment and inter-pigment interaction. The nonlinear optical properties of aggregates containing chlorophylls and carotenoids were the target of subsequent investigations. Carotenoid aggregates were imaged with polarization-dependent second harmonic generation and THG microscopy. Both techniques revealed crystallographic information pertaining to H and J aggregates and beta-carotene crystalline aggregates found in orange carrot. In order to demonstrate THG enhancement due to labeling, cultured cells were labeled with carotenoid
A novel organic nonlinear optical crystal: Creatininium succinate
Energy Technology Data Exchange (ETDEWEB)
Thirumurugan, R.; Anitha, K., E-mail: singlecerystalxrd@gmail.ciom [School of Physics, Madurai Kamraj University, Madurai 625021 (India)
2015-06-24
A novel organic material complex of creatininium succinate (CS) has been synthesized and single crystals were grown by the reaction of creatinine and succinic acid from aqueous solution by employing the technique of slow evaporation at room temperature. The structure of the grown crystal has been elucidated using single crystal X-ray diffraction analysis and the structure was refined by least-squares method to R = 0.027 for 1840 reflections. FT-IR spectral investigation has been carried out to identify the various functional groups in the title compound. UV–Vis transmission was carried out which shows the crystal has a good optical transmittance in the visible region with lower cutoff wavelength around 220 nm. Nonlinear optical property of the crystal was confirmed by Kurtz-Perry powder technique.
Liu, Runqiang; Zhao, Ning; Liu, Ping; An, Caixia; Lian, Zhaoxun
2016-05-01
π-Conjugated organic materials exhibit high and tunable nonlinear optical (NLO) properties, and fast response times. 4'-Phenyl-2,2':6',2''-terpyridine (PTP) is an important N-heterocyclic ligand involving π-conjugated systems, however, studies concerning the third-order NLO properties of terpyridine transition metal complexes are limited. The title binuclear terpyridine Co(II) complex, bis(μ-4,4'-oxydibenzoato)-κ(3)O,O':O'';κ(3)O'':O,O'-bis[(4'-phenyl-2,2':6',2''-terpyridine-κ(3)N,N',N'')cobalt(II)], [Co2(C14H8O5)2(C21H15N3)2], (1), has been synthesized under hydrothermal conditions. In the crystal structure, each Co(II) cation is surrounded by three N atoms of a PTP ligand and three O atoms, two from a bidentate and one from a symmetry-related monodentate 4,4'-oxydibenzoate (ODA(2-)) ligand, completing a distorted octahedral coordination geometry. Neighbouring [Co(PTP)](2+) units are bridged by ODA(2-) ligands to form a ring-like structure. The third-order nonlinear optical (NLO) properties of (1) and PTP were determined in thin films using the Z-scan technique. The title compound shows a strong third-order NLO saturable absorption (SA), while PTP exhibits a third-order NLO reverse saturable absorption (RSA). The absorptive coefficient β of (1) is -37.3 × 10(-7) m W(-1), which is larger than that (8.96 × 10(-7) m W(-1)) of PTP. The third-order NLO susceptibility χ((3)) values are calculated as 6.01 × 10(-8) e.s.u. for (1) and 1.44 × 10(-8) e.s.u. for PTP.
Ciattoni, Alessandro
2014-01-01
Strong nonlinear optical mechanisms operating in a miniaturized environment have a key role in photonics since they allow complex and versatile light manipulation within subwavelength devices. On the other hand, due to its two-dimensional planar geometry, graphene can easily be embedded within miniaturized structures and has fascinating linear and nonlinear optical properties arising from its relativistic electron dynamics. However, very few light steering graphene-based setups with a strong nonlinear behavior have been proposed since, due to its intrinsic planar localization, graphene nonlinearity has to be exploited through novel schemes not available in standard bulk nonlinear optics. Here we show that an active cavity hosting a graphene sheet, when tuned near its lasing threshold, is able to isolate the spatially localized graphene nonlinearity thus producing a very strong nonlinear device response with multi-valued features. The proposed strategy for exploiting graphene nonlinearity through its baring co...
Nonlinear Optical Properties of Novel C60 Derivatives under Picosecond Laser Excitation
Institute of Scientific and Technical Information of China (English)
MAO Yan-Li; CHENG Yong-Guang; LIU Jun-Hui; LIN Bing-chen; HUO Yan-Ping; ZENG He-Ping
2007-01-01
We investigate the third-order nonlinear optical properties of six novel fullerene derivatives under picosecond laser excitation by Z-scan technique.The experimental results reveal that all the derivatives have very large nonlinear absorption coefficient under 532 nm pulses excitation and great third-order nonlinear refraction index under 1064 nm pulses excitation.The molecular second hyperpolarizabilities are obtained from the experimental results.
Zhang, Bo
The past decade has witnessed astounding boom in telecommunication network traffic. With the emergence of multimedia over Internet, the high-capacity optical transport systems have started to shift focus from the core network towards the end users. This trend leads to diverse optical networks with transparency and reconfigurability requirement. As single channel data rate continues to increase and channel spacing continues to shrink for high capacity, high spectral efficiency, the workload on conventional electronic signal processing elements in the router nodes continues to build up. Performing signal processing functions in the optical domain can potentially alleviate the speed bottleneck if the unique optical properties are efficiently leveraged to assist electronic processing methodologies. Ultra-high bandwidth capability along with the promise for multi-channel and format-transparent operation make optical signal processing an attractive technology which is expected to have great impact on future optical networks. For optical signal processing applications in fiber-optic network and systems, a laudable goal would be to explore the unique nonlinear optical processes in novel photonic devices. This dissertation investigates novel optical signal processing techniques through simulations and experimental demonstrations, analyzes limitations of these nonlinear processing elements and proposes techniques to enhance the system performance or designs for functional photonic modules. Two key signal-processing building blocks for future optical networks, namely slow-light-based tunable optical delay lines and SOA-based high-speed wavelength converters, are presented in the first part of the dissertation. Phase preserving and spectrally efficient slow light are experimentally demonstrated using advanced modulation formats. Functional and novel photonic modules, such as multi-channel synchronizer and variable-bit-rate optical time division multiplexer are designed and
Nonlinear Optical Properties of Au-Nanoparticles Conjugated with Lipoic Acid in Water
Trejo-Durán, M.; Cornejo-Monroy, D.; Alvarado-Méndez, E.; Olivares-Vargas, A.; Castano, V. M.
2014-08-01
Gold nanoparticles were chemically conjugated with lipoic acid to control their optical properties. Z-scan and other optical techniques were used to characterize the non-linear behavior of the resulting nanostructured materials. The results show that the nonlinearity is of thermal origin, which can be controlled by the use of lipoic acid as well as other organic molecules conjugated onto metal nanoparticles. In particular, the presence of lipoic acid increases n_2 and dn/dT.
A new approach of binary addition and subtraction by non-linear material based switching technique
Indian Academy of Sciences (India)
Archan Kumar Das; Partha Partima Das; Sourangshu Mukhopadhyay
2005-02-01
Here, we refer a new proposal of binary addition as well as subtraction in all-optical domain by exploitation of proper non-linear material-based switching technique. In this communication, the authors extend this technique for both adder and subtractor accommodating the spatial input encoding system.
Optical bistability in nonlinear composites with coated ellipsoidal nanoparticles
Pinchuk, A
2003-01-01
Nonlinear composite structures show great promise for use in optical switching, signal processing, etc. We derive an effective nonlinear dielectric permittivity of composite structures where coated ellipsoidal nonlinear particles are imbedded in a linear host medium. The derived expression for the effective dielectric permittivity tensor follows the Clasius-Mossotti approximation. We observe conditions for the existence of the optical bistability effect in a coated ellipsoidal particle with a nonlinear core and a metallic shell. Our numerical results show stronger bistability effects in more dense suspensions of nonlinear heterogeneous ellipsoids.
Indian Academy of Sciences (India)
Hussain A Badran; Alaa Y Al-Ahmad; Qusay M Ali Hassan; Chassib A Emshary
2016-01-01
The optical properties of Violet 1-doped polyvinyl alcohol (PVA) have been investigated using Wemble and Didomenico (WD) method. The optical constants such as refractive index , the dispersion energy , the oscillation energy 0, the lattice dielectric constant ∞, light frequency dielectric constant 0 and the ratio of carrier concentration to the effective mass /* have been determined using reflection spectra in the wavelength range 300–900 nm. The singlebeam Z-scan technique was used to determine the nonlinear optical properties of Violet 1:polyvinylalcohol (PVA) thin film. The experiments were performed using continuous wave (cw) laser with a wavelength of 635 nm. The calculated nonlinear refractive index of the film, $n_{2} = -2.79 \\times 10^{-7}$ cm2/Wand nonlinear absorption coefficient, $\\beta = 6.31\\times10^{−3}$ cm/W. Optical limiting characteristics of the dye-doped polymer film was studied. The result reveals that Violet 1 can be a promising material for optical limiting applications.
Composite structures for the enhancement of nonlinear optical materials.
Neeves, A E; Birnboim, M H
1988-12-01
Calculations of the nonlinear optical behavior are developed for model composites consisting of nanospheres with a metallic core and a nonlinear shell suspended in a nonlinear medium. The concept for the enhancement of optical phase conjugation from all these nonlinear regions is that the optical field can be concentrated both inside and in the neighborhood of the metallic core, aided by surface-mediated plasmon resonance. Calculations for gold cores and aluminum cores indicate that phase-conjugate reflectivity enhancements of 10(8) may be possible.
Characterizaticr of Solid State Laser and Nonlinear Optical Materials.
1995-02-02
materials useful in the different methods for obtaining frequency agility: narrow line emitters with multiple lasing channels and nonlinear optical materials . In...codoped with two or more rare earth ions were studied and computers models developed to explain their spectral dynamics. The nonlinear optical materials investigated
A Photonic Basis for Deriving Nonlinear Optical Response
Andrews, David L.; Bradshaw, David S.
2009-01-01
Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as…
Nonlinear refractive index of optical crystals
Adair, Robert; Chase, L. L.; Payne, Stephen A.
1989-02-01
The nonlinear refractive indices (n2) of a large number of optical crystals have been measured at a wavelength near one micrometer with use of nearly degenerate three-wave mixing. The measurements are compared with the predictions of an empirical formula derived by Boling, Glass, and Owyoung. This formula, which relates n2 to the linear refractive index and its dispersion, is shown to be accurate to within about 30% for materials with nonlinear indices ranging over 3 orders of magnitude. Measurements for a number of binary oxide and fluoride crystals have been analyzed under the assumption that the hyperpolarizability of the anion is much larger than that of the cation. It is found that the hyperpolarizability of oxygen varies by a factor of 10, and that of fluorine varies by a factor of 7, depending on the size of the coordinating cation. This behavior is similar to that of the linear polarizability, although the hyperpolarizability is much more sensitive than the linear polarizability to the identity of the cation. The measured halide ion hyperpolarizabilities for several alkali-halide crystals are in reasonable agreement with recent self-consistent calculations. A semiempirical model was proposed by Wilson and Curtis to account for the dependence of the linear anionic polarizability on the radius of the cation. This model also accounts quite well for the variation of the hyperpolarizability of both fluorine and oxygen, except for cation partners that have filled or unfilled d-electron shells. The nonlinear indices of a number of complex oxides (i.e., those with more than one cation) have been calculated from the partial hyperpolarizabilities deduced from the data for the binary oxides. The calculated and measured values of n2 agree to within an average error of 13%.
Optical bistability in a nonlinear-shell-coated metallic nanoparticle
Chen, Hongli; Zhang, Youming; Zhang, Baile; Gao, Lei
2016-01-01
We provide a self-consistent mean field approximation in the framework of Mie scattering theory to study the optical bistability of a metallic nanoparticle coated with a nonlinear shell. We demonstrate that the nanoparticle coated with a weakly nonlinear shell exhibits optical bistability in a broad range of incident optical intensity. This optical bistability critically relies on the geometry of the shell-coated nanoparticle, especially the fractional volume of the metallic core. The incident wavelength can also affect the optical bistability. Through an optimization-like process, we find a design with broader bistable region and lower threshold field by adjusting the size of the nonlinear shell, the fractional volume of the metallic core, and the incident wavelength. These results may find potential applications in optical bistable devices such as all-optical switches, optical transistors and optical memories. PMID:26907967
Hanumantharao, Redrothu; Kalainathan, S.
2012-02-01
A new and efficient semi organic nonlinear optical crystal (NLO) from the amino acid family L-alanine lithium chloride (LAL) has been grown by slow evaporation technique from aqueous solution. The functional groups were identified from NMR spectral studies. Mass spectral analysis shows the molecular ion mass. Dielectric studies has been done for the grown crystal and relative SHG efficiency is measured by Kurtz and Perry method and found to about 0.43 times that of standard potassium dihydrogen phosphate (KDP) crystals. The compound crystallized in non-centrosymmetric space group Pna21. The results have been discussed in detail.
Hanumantharao, Redrothu; Kalainathan, S
2012-02-01
A new and efficient semi organic nonlinear optical crystal (NLO) from the amino acid family L-alanine lithium chloride (LAL) has been grown by slow evaporation technique from aqueous solution. The functional groups were identified from NMR spectral studies. Mass spectral analysis shows the molecular ion mass. Dielectric studies has been done for the grown crystal and relative SHG efficiency is measured by Kurtz and Perry method and found to about 0.43 times that of standard potassium dihydrogen phosphate (KDP) crystals. The compound crystallized in non-centrosymmetric space group Pna21. The results have been discussed in detail.
Laser And Nonlinear Optical Materials For Laser Remote Sensing
Barnes, Norman P.
2005-01-01
NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.
Printed organic smart devices characterized by nonlinear optical
DEFF Research Database (Denmark)
Pastorelli, Francesco; Accanto, Nicolo; Jørgensen, Mikkel
2017-01-01
In this study, we demonstrate that nonlinear optical microscopy is a promising technique to characterize organic printed electronics. Using ultrashort laser pulses we stimulate two-photon absorption in a roll coated polymer semiconductor and map the resulting two-photon induced photoluminescence....... With this technique, we can recognize different nanomaterials and we propose that the TPPL is a good indicator to map and monitor the charge carrier density and the molecular packing of the printed polymer material. Importantly, simple calculations based on the signal levels, suggest that this technique can...... be extended to the real time mapping of the polymer semiconductor film, even during the printing process, in which the high printing speed poses the need for equally high acquisition rates....
Bidirectional all-optical switches based on highly nonlinear optical fibers
Liu, Wenjun; Yang, Chunyu; Liu, Mengli; Yu, Weitian; Zhang, Yujia; Lei, Ming; Wei, Zhiyi
2017-05-01
All-optical switches have become one of the research focuses of nonlinear optics due to their fast switching speed. They have been applied in such fields as ultrafast optics, all-optical communication and all-optical networks. In this paper, based on symbolic computation, bidirectional all-optical switches are presented using analytic two-soliton solutions. Various types of soliton interactions are analyzed through choosing the different parameters of high-order dispersion and nonlinearity. Results indicate that bidirectional all-optical switches can be effectively achieved using highly nonlinear optical fibers.
Nonlinear magneto-optical effects in cold atoms of 87Rb
Institute of Scientific and Technical Information of China (English)
He Ling-Xiang; Wang Yu-Zhu
2004-01-01
With laser-cooled cold 87Rb atoms as a magneto-optical medium, a weak right circularly polarized probe field and frequency modulation technique are used to detect the magnetic distribution of the quadrupole field. A two-peak dispersion-like signal other than that of the usual nonlinear magneto-optical effect mentioned in other papers is obtained.
Optical limiter based on two-dimensional nonlinear photonic crystals
Belabbas, Amirouche; Lazoul, Mohamed
2016-04-01
The aim behind this work is to investigate the capabilities of nonlinear photonic crystals to achieve ultra-fast optical limiters based on third order nonlinear effects. The purpose is to combine the actions of nonlinear effects with the properties of photonic crystals in order to activate the photonic band according to the magnitude of the nonlinear effects, themselves a function of incident laser power. We are interested in designing an optical limiter based nonlinear photonic crystal operating around 1064 nm and its second harmonic at 532 nm. Indeed, a very powerful solid-state laser that can blind or destroy optical sensors and is widely available and easy to handle. In this work, we perform design and optimization by numerical simulations to determine the better structure for the nonlinear photonic crystal to achieve compact and efficient integrated optical limiter. The approach consists to analyze the band structures in Kerr-nonlinear two-dimensional photonic crystals as a function of the optical intensity. We confirm that these bands are dynamically red-shifted with regard to the bands observed in linear photonic crystals or in the case of weak nonlinear effects. The implemented approach will help to understand such phenomena as intensitydriven optical limiting with Kerr-nonlinear photonic crystals.
Automated control of optical polarization for nonlinear microscopy
Brideau, Craig; Stys, Peter K.
2012-03-01
Laser-scanning non-linear optical techniques such as multi-photon fluorescence excitation microscopy (MPM), Second/ Third Harmonic Generation (SHG/THG), and Coherent Anti-Stokes Raman Scattering (CARS) are being utilized in research laboratories worldwide. The efficiencies of these non-linear effects are dependent on the polarization state of the excitation light relative to the orientation of the sample being imaged. In highly ordered anisotropic biological samples this effect can become pronounced and the excitation polarization can have a dramatic impact on imaging experiments. Therefore, controlling the polarization state of the exciting light is important; however this is challenging when the excitation light passes through a complex optical system. In a typical laser-scanning microscope, components such as the dichroic filters, lenses, and even mirrors can alter the polarization state of a laser beam before it reaches the sample. We present an opto-mechanical solution to compensate for the polarization effects of an optical path, and to precisely program the polarization state of the exciting laser light. The device and accompanying procedures allow the delivery of precise laser polarization states at constant average power levels to a sample during an imaging experiment.
Ultrafast Third-Order Nonlinear Optical Spectroscopy of Chlorinated Hydrocarbons
Energy Technology Data Exchange (ETDEWEB)
Napoleon Thantu; Robert S. Schley
2003-09-01
Time-resolved Raman induced Kerr effect spectroscopy in the optical heterodyne detection configuration has been employed to investigate intermolecular, intramolecular, and reorientational dynamics in neat trichloroethylene (TCE). The reorientation time constant is directly measured from the time-resolved data, while Fourier transformation of the time-resolved data yields the intermolecular and intramolecular vibrational spectrum. Use of ultrashort, femtosecond pulses enables excitation of depolarized Raman-active transitions between 1 and 500 cm-1. The intramolecular vibrations have been identified using a previous assignment. The limitations imposed by the laser and detector noise, and other nonlinear optical processes that are manifest at high pulse intensities, on the use of this time-domain technique for performing chemical species detection are discussed using carbon tetrachloride as an example.
Studies on third-order nonlinear optical properties of chalcone derivatives in polymer host
Shettigar, Seetharam; Umesh, G.; Chandrasekharan, K.; Sarojini, B. K.; Narayana, B.
2008-04-01
In this paper we present the experimental study of the third-order nonlinear optical properties of two chalcone derivatives, viz., 1-(4-methoxyphenyl)-3-(4-butyloxyphenyl)-prop-2-en-1-one and 1-(4-methoxyphenyl)-3-(4-propyloxyphenyl)-prop-2-en-1-one in PMMA host, with the prospective of reaching a compromise between good processability and high nonlinear optical properties. The nonlinear optical properties have been investigated by Z-scan technique using 7 ns laser pulses at 532 nm. The nonlinear refractive index, nonlinear absorption coefficient, magnitude of third-order susceptibility and the coupling factor have been determined. The values obtained are of the order of 10 -14 cm 2/W, 1 cm/GW, 10 -13 esu and 0.2, respectively. The molecular second hyperpolarizability for the chalcone derivatives in polymer is of the order of 10 -31 esu. Different guest/host concentrations have also been studied. The results suggest that the nonlinear properties of the chalcones have been improved when they are used as dopants in polymer matrix. The nonlinear parameters obtained are comparable with the reported values of II-VI compound semiconductors. Hence, these chalcons are a promising class of nonlinear optical dopant materials for optical device applications.
Optimization of optical nonlinearities in quantum cascade lasers
Bai, Jing
Nonlinearities in quantum cascade lasers (QCL's) have wide applications in wavelength tunability and ultra-short pulse generation. In this thesis, optical nonlinearities in InGaAs/AlInAs-based mid-infrared (MIR) QCL's with quadruple resonant levels are investigated. Design optimization for the second-harmonic generation (SHG) of the device is presented. Performance characteristics associated with the third-order nonlinearities are also analyzed. The design optimization for SHG efficiency is obtained utilizing techniques from supersymmetric quantum mechanics (SUSYQM) with both material-dependent effective mass and band nonparabolicity. Current flow and power output of the structure are analyzed by self-consistently solving rate equations for the carriers and photons. Nonunity pumping efficiency from one period of the QCL to the next is taken into account by including all relevant electron-electron (e-e) and longitudinal (LO) phonon scattering mechanisms between the injector/collector and active regions. Two-photon absorption processes are analyzed for the resonant cascading triple levels designed for enhancing SHG. Both sequential and simultaneous two-photon absorption processes are included in the rate-equation model. The current output characteristics for both the original and optimized structures are analyzed and compared. Stronger resonant tunneling in the optimized structure is manifested by enhanced negative differential resistance. Current-dependent linear optical output power is derived based on the steady-state photon populations in the active region. The second-harmonic (SH) power is derived from the Maxwell equations with the phase mismatch included. Due to stronger coupling between lasing levels, the optimized structure has both higher linear and nonlinear output powers. Phase mismatch effects are significant for both structures leading to a substantial reduction of the linear-to-nonlinear conversion efficiency. The optimized structure can be fabricated
Nonlinear Interferometric Vibrational Imaging (NIVI) with Novel Optical Sources
Boppart, Stephen A.; King, Matthew D.; Liu, Yuan; Tu, Haohua; Gruebele, Martin
Optical imaging is essential in medicine and in fundamental studies of biological systems. Although many existing imaging modalities can supply valuable information, not all are capable of label-free imaging with high-contrast and molecular specificity. The application of molecular or nanoparticle contrast agents may adversely influence the biological system under investigation. These substances also present ongoing concerns over toxicity or particle clearance, which must be properly addressed before their approval for in vivo human imaging. Hence there is an increasing appreciation for label-free imaging techniques. It is of primary importance to develop imaging techniques that can indiscriminately identify and quantify biochemical compositions to high degrees of sensitivity and specificity through only the intrinsic optical response of endogenous molecular species. The development and use of nonlinear interferometric vibrational imaging, which is based on the interferometric detection of optical signals from coherent anti-Stokes Raman scattering (CARS), along with novel optical sources, offers the potential for label-free molecular imaging.
Capacity estimates for optical transmission based on the nonlinear Fourier transform
Derevyanko, Stanislav A.; Prilepsky, Jaroslaw E.; Turitsyn, Sergei K.
2016-09-01
What is the maximum rate at which information can be transmitted error-free in fibre-optic communication systems? For linear channels, this was established in classic works of Nyquist and Shannon. However, despite the immense practical importance of fibre-optic communications providing for >99% of global data traffic, the channel capacity of optical links remains unknown due to the complexity introduced by fibre nonlinearity. Recently, there has been a flurry of studies examining an expected cap that nonlinearity puts on the information-carrying capacity of fibre-optic systems. Mastering the nonlinear channels requires paradigm shift from current modulation, coding and transmission techniques originally developed for linear communication systems. Here we demonstrate that using the integrability of the master model and the nonlinear Fourier transform, the lower bound on the capacity per symbol can be estimated as 10.7 bits per symbol with 500 GHz bandwidth over 2,000 km.
Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite
Energy Technology Data Exchange (ETDEWEB)
Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)
2015-09-15
Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10{sup -5} cm{sup 2}/W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)
Nonlinear optical properties of Au-Ag core-shell nanorods for all-optical switching
Zhang, Luman; Dai, Hongwei; Wang, Xia; Yao, Linhua; Ma, Zongwei; Han, Jun-Bo
2017-09-01
Au-Ag core-shell nanorods with surface plasmon resonance wavelengths of 760-840 nm were prepared. Wavelength-dependent nonlinear absorption coefficients (β) and nonlinear refractive indices (γ) of the nanorods were measured by using Z-scan techniques. The corresponding one-photon and two-photon figures of merit (W and T) were calculated from β and γ. The results show that the requirements of W > 1 and T < 1 for the application of all-optical switching could be achieved for all the samples over a broad wavelength range. These observations make the Au-Ag core-shell nanorods a good candidate for all-optical switching devices.
Denz, Cornelia; Simoni, Francesco
2009-03-01
Nonlinearities are becoming more and more important for a variety of applications in nanosciences, bio-medical sciences, information processing and photonics. For applications at the crossings of these fields, especially microscopic and nanoscopic imaging and manipulation, nonlinearities play a key role. They may range from simple nonlinear parameter changes up to applications in manipulating, controlling and structuring material by light, or the manipulation of light by light itself. It is this area between basic nonlinear optics and photonic applications that includes `hot' topics such as ultra-resolution optical microscopy, micro- and nanomanipulation and -structuring, or nanophotonics. This special issue contains contributions in this field, many of them from the International Conference on Nonlinear Microscopy and Optical Control held in conjunction with a network meeting of the ESF COST action MP0604 `Optical Micromanipulation by Nonlinear Nanophotonics', 19-22 February 2008, Münster, Germany. Throughout this special issue, basic investigations of material structuring by nonlinear light--matter interaction, light-induced control of nanoparticles, and novel nonlinear material investigation techniques, are presented, covering the basic field of optical manipulation and control. These papers are followed by impressive developments of optical tweezers. Nowadays, optical phase contrast tweezers, twin and especially multiple beam traps, develop particle control in a new dimension: particles can be arranged, sorted and identified with high throughput. One of the most prominent forthcoming applications of optical tweezers is in the field of microfluidics. The action of light on fluids will open new horizons in microfluidic manipulation and control. The field of optical manipulation and control is a very broad field that has developed in an impressive way, in a short time, in Europe with the installation of the MP0604 network. Top researchers from 19 countries are
Nonlinear Optical Materials for the Smart Filtering of Optical Radiation.
Dini, Danilo; Calvete, Mário J F; Hanack, Michael
2016-11-23
The control of luminous radiation has extremely important implications for modern and future technologies as well as in medicine. In this Review, we detail chemical structures and their relevant photophysical features for various groups of materials, including organic dyes such as metalloporphyrins and metallophthalocyanines (and derivatives), other common organic materials, mixed metal complexes and clusters, fullerenes, dendrimeric nanocomposites, polymeric materials (organic and/or inorganic), inorganic semiconductors, and other nanoscopic materials, utilized or potentially useful for the realization of devices able to filter in a smart way an external radiation. The concept of smart is referred to the characteristic of those materials that are capable to filter the radiation in a dynamic way without the need of an ancillary system for the activation of the required transmission change. In particular, this Review gives emphasis to the nonlinear optical properties of photoactive materials for the function of optical power limiting. All known mechanisms of optical limiting have been analyzed and discussed for the different types of materials.
Optical and Nonlinear Optical Response of Light Sensor Thin Films
Directory of Open Access Journals (Sweden)
S. Z. Weisz
2005-04-01
Full Text Available For potential ultrafast optical sensor application, both VO2 thin films andnanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates weresuccessfully prepared using pulsed laser deposition (PLD and RF co-sputteringtechniques. In photoluminescence (PL measurement c-Si/SiO2 film containsnanoparticles of crystal Si exhibits strong red emission with the band maximum rangingfrom 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremelyintense and ultrafast nonlinear optical (NLO response. The recorded holography fromall these thin films in a degenerate-four-wave-mixing configuration shows extremelylarge third-order response. For VO2 thin films, an optically induced semiconductor-tometalphase transition (PT immediately occurred upon laser excitation. it accompanied.It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created bylaser excitation in conduction band of the c-Si nanoparticles. It was verified byintroducing Eu3+ which is often used as a probe sensing the environment variations. Itturns out that the entire excited state dynamical process associated with the creation,movement and trapping of the charge carriers has a characteristic 500 ps duration.
Direct optical imaging of graphene in vitro by nonlinear femtosecond laser spectral reshaping.
Li, Baolei; Cheng, Yingwen; Liu, Jie; Yi, Congwen; Brown, April S; Yuan, Hsiangkuo; Vo-Dinh, Tuan; Fischer, Martin C; Warren, Warren S
2012-11-14
Nonlinear optical microscopy, based on femtosecond laser spectral reshaping, characterized and imaged graphene samples made from different methods, both on slides and in a biological environment. This technique clearly discriminates between graphene flakes with different numbers of layers and reveals the distinct nonlinear optical properties of reduced graphene oxide as compared to mechanically exfoliated or chemical vapor deposition grown graphene. The nonlinearity makes it applicable to scattering samples (such as tissue) as opposed to previous methods, such as transmission. This was demonstrated by high-resolution imaging of breast cancer cells incubated with graphene flakes.
Directory of Open Access Journals (Sweden)
J. Rodríguez-Rodriguez
2011-04-01
Full Text Available Measuring systems based on a pair of optical fiber transmitter-receivers are used in medium-voltage testinglaboratories wherein the environment of high electromagnetic interference (EMI is a limitation for using conventionalcabling. Nonlinear compensation techniques have been used to limit the voltage range at the input of optical fiberlinks. However, nonlinear compensation introduces gain and linearity errors caused by thermal drift. This paperpresents a method of thermal compensation for the nonlinear circuit used to improve transient signal handlingcapabilities in measuring system while maintaining low errors in gain and linearity caused by thermal drift.
Nonlinear continua fundaments for the computational techniques
Dvorkin, Eduardo N
2005-01-01
Offers a presentation of Continuum Mechanics, oriented towards numerical applications in the nonlinear analysis of solids, structures and fluid mechanics. This book develops general curvilinear coordinator kinematics of the continuum deformation using general curvilinear coordinates.
Topology optimization of nonlinear optical devices
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2011-01-01
This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation and an incremen......This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation...
Nonlinear acoustic techniques for landmine detection.
Korman, Murray S; Sabatier, James M
2004-12-01
Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes. Since the interface between the top plate and the soil responds nonlinearly to pressure fluctuations, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for a method of buried landmine detection not previously exploited. Tuning curve experiments (revealing "softening" and a back-bone curve linear in particle velocity amplitude versus frequency) help characterize the nonlinear resonant behavior of the soil-landmine oscillator. The results appear to exhibit the characteristics of nonlinear mesoscopic elastic behavior, which is explored. When two primary waves f1 and f2 drive the soil over the mine near resonance, a rich spectrum of nonlinearly generated tones is measured with a geophone on the surface over the buried landmine in agreement with Donskoy [SPIE Proc. 3392, 221-217 (1998); 3710, 239-246 (1999)]. In profiling, particular nonlinear tonals can improve the contrast ratio compared to using either primary tone in the spectrum.
Nonlinear Optical Response of Conjugated Polymer to Electric Field
Institute of Scientific and Technical Information of China (English)
ZHOU Yu-fang; ZHUANG De-xin; CUI Bin
2005-01-01
The organic π-conjugated polymers are of major interest materials for the use in electro-optical and nonlinear optical devices. In this work, for a selected polyacetylene chain, the optical absorption spectra in UV/Vis regime as well as the linear polarizabilitiy and nonlinear hyperpolarizability are calculated by using quantum chemical ab initio and semiempirical methods. The relationship of its optical property to electric field is obtained. Some physical mechanism of electric field effect on molecular optical property is discussed by means of electron distribution and intramolecular charge transfer.
Pyrene-Based Small Molecular Nonlinear Optical Materials Modified by ``Click-Reaction''
Liang, Pengxia; Li, Zhengqiang; Mi, Yongsheng; Yang, Zhou; Wang, Dong; Cao, Hui; He, Wanli; Yang, Huai
2015-08-01
Two pyrene derivatives were successfully synthesized via an efficient copper(I)-catalyzed azide alkyne 1,3-dipolar cycloaddition. The photophysical and electrochemical properties were characterized using ultraviolet-visible absorption spectra, fluorescence spectra, cyclic voltammograms and density functional theory modulations. These results showed that the symmetry structure of these derivatives formed an electron-delocalized organic system, which have larger effects in achieving a third-order nonlinear optical (NLO) response. The third-order nonlinear properties including the nonlinear absorption and the nonlinear susceptibilities investigated by Z-scan technique indicate that the title compounds can serve as a promising candidate for third-order NLO applications.
Nonlinear optical microscopy improvement by focal-point axial modulation
Dashtabi, Mahdi Mozdoor; Massudi, Reza
2016-05-01
Among the most important challenges of microscopy-even more important than the resolution enhancement, especially in biological and neuroscience applications-is noninvasive and label-free imaging deeper into live scattering samples. However, the fundamental limitation on imaging depth is the signal-to-background ratio in scattering biological tissues. Here, using a vibrating microscope objective in conjunction with a lock-in amplifier, we demonstrate the background cancellation in imaging the samples surrounded by turbid and scattering media, which leads to more clear images deeper into the samples. Furthermore, this technique offers the localization and resolution enhancement as well as resolves ambiguities in signal interpretation, using a single-color laser. This technique is applicable to most nonlinear as well as some linear point-scanning optical microscopies.
Nonlinear fiber applications for ultrafast all-optical signal processing
Kravtsov, Konstantin
In the present dissertation different aspects of all-optical signal processing, enabled by the use of nonlinear fibers, are studied. In particular, we focus on applications of a novel heavily GeO2-doped (HD) nonlinear fiber, that appears to be superior to many other types of nonlinear fibers because of its high nonlinearity and suitability for the use in nonlinear optical loop mirrors (NOLMs). Different functions, such as all-optical switching, thresholding, and wavelength conversion, are demonstrated with the HD fibers in the NOLM configuration. These basic functions are later used for realization of ultrafast time-domain demultiplexers, clock recovery, detectors of short pulses in stealth communications, and primitive elements for analog computations. Another important technology that benefits from the use of nonlinear fiber-based signal processing is optical code-division multiple access (CDMA). It is shown in both theory and experiment that all-optical thresholding is a unique way of improving existing detection methods for optical CDMA. Also, it is the way of implementation of true asynchronous optical spread-spectrum networks, which allows full realization of optical CDMA potential. Some aspects of quantum signal processing and manipulation of quantum states are also studied in this work. It is shown that propagation and collisions of Thirring solitons lead to a substantial squeezing of quantum states, which may find applications for generation of squeezed light.
Linear and nonlinear optical properties of chalcogenide microstructured optical fibers
Trolès, Johann; Brilland, Laurent; Caillaud, Celine; Renversez, Gilles; Mechin, David; Adam, Jean-Luc
2015-03-01
Chalcogenide glasses are known for their large transparency in the mid-infrared and their high linear refractive index (>2). They present also a high non-linear coefficient (n2), 100 to 1000 times larger than for silica, depending on the composition. we have developed a casting method to prepare the microstructured chalcogenide preform. This method allows optical losses as low as 0.4 dB/m at 1.55 µm and less than 0.05 dB/m in the mid IR. Various chalcogenide MOFs operating in the IR range has been fabricated in order to associate the high non-linear properties of these glasses and the original MOF properties. For example, small core fibers have been drawn to enhance the non linearities for telecom applications such as signal regeneration and generation of supercontinuum sources. On another hand, in the 3-12 µm window, single mode fibers and exposed core fibers have been realized for Gaussian beams propagation and sensors applications respectively.
Nonlinear optical properties of manganese porphyrin-incorporated PVC film
Directory of Open Access Journals (Sweden)
Jeong-Hyon Ha
2010-12-01
Full Text Available We measured thermally originated solid phase nonlinear optical properties of manganese porphyrin-incorporated PVC polymer film using CW low-power Z-scan and optical power limiting methods. The nonlinear refractive index (n2 of this porphyrin film is estimated to have a negative value of 7.2 ⅹ10-5 cm2/W at 632.8 nm and to be larger than that of ZnTPP in the Nafion film. The photodegradation effect common in the solution phase appears to be minor in this solid phase system. The large nonlinear effect is thought to limit the optical power due to the aperture effect.
Nonlinear optical microscopy for imaging thin films and surfaces
Energy Technology Data Exchange (ETDEWEB)
Smilowitz, L.B.; McBranch, D.W.; Robinson, J.M.
1995-03-01
We have used the inherent surface sensitivity of second harmonic generation to develop an instrument for nonlinear optical microscopy of surfaces and interfaces. We have demonstrated the use of several nonlinear optical responses for imaging thin films. The second harmonic response of a thin film of C{sub 60} has been used to image patterned films. Two photon absorption light induced fluorescence has been used to image patterned thin films of Rhodamine 6G. Applications of nonlinear optical microscopy include the imaging of charge injection and photoinduced charge transfer between layers in semiconductor heterojunction devices as well as across membranes in biological systems.
Advances in chemical physics modern nonlinear optics, pt.1
Rice, Stuart A
2009-01-01
Partial table of contents: Hyper-Rayleigh and Hyper-Raman Rotational and Vibrational Spectroscopy (T. Bancewicz & Z. Ożgo). Polarization Properties of Hyper-Rayleigh and Hyper-Raman Scatterings (M. Kozierowski). Fast Molecular Reorientation in Liquid Crystals Probed by Nonlinear Optics (J. Lalanne, et al.). Nonlinear Propagation of Laser Light of Different Polarizations (G. Rivoire). Nonlinear Magneto-Optics of Magnetically Ordered Crystals (R. Zawodny). Dynamical Questions in Quantum Optics (A. Shumovsky). Quantum Resonance Fluorescence from Mutually Correlated Atoms (Z. Fi
Investigation study on the nonlinear optical properties of natural dyes: Chlorophyll a and b
Kouissa, B.; Bouchouit, K.; Abed, S.; Essaidi, Z.; Derkowska, B.; Sahraoui, B.
2013-04-01
We report the results on third and second order nonlinear optical susceptibilities of two natural pigments extracted from spinach. The last were identified by UV-vis spectral analysis. Thin films were prepared by spin coating technique and deposited on glass substrate. The measurements of third order nonlinear optical susceptibilities were performed in solutions using degenerate four wave mixing technique (DFWM) at the measurement wavelength of 532 nm. The third and second order nonlinear optical susceptibilities of the studied pigments were also evaluated on thin films using the third and second harmonics generation (THG and SHG) Maker fringes technique respectively at 1064 nm. All these results were in good agreement with the literature data.
Single-Photon Nonlinear Optics in Integrated Hollow-Core Waveguides
2010-10-13
for achieving the effective EIT as well as other nonlinear optics phenomena that rely on large optical depth. Here, we introduced a technique to...there is an interesting threshold phenomena with the increase of 194 195 signal power and after this threshold, the efficiency of idler generation...34, Optics Letters, 21, 1936-38, (1996). 27. V. Bali , D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of Paired Photons with
Nonlinear optical spectroscopy of isotropic and anisotropic metallic nanocomposites
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Hernandez, R C; Gleason-Villagran, R; Cheang-Wong, J C; Crespo-Sosa, A; Rodriguez-Fernandez, L; Lopez-Suarez, A; Oliver, A; Reyes-Esqueda, J A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, D. F. 04510 (Mexico); Torres-Torres, C [Seccion de Estudios de Posgrado e Investigacion, ESIME-Zacatenco, Instituto Politecnico Nacional, Mexico, D. F. 07338 (Mexico); Rangel-Rojo, R, E-mail: reyes@fisica.unam.mx [CICESE/Depto. de Optica, A.P. 360, Ensenada, B. C. 22860 (Mexico)
2011-01-01
In this work, we studied the nonlinear absorption and refraction of isotropic and anisotropic metallic nanocomposites, which consist of Au and Ag nanoparticles (NPs) embedded in matrices of SiO{sub 2}. We performed this study at different wavelengths using the Z-scan technique in the picosecond regime. The wavelengths were selected accordingly to the absorption spectra of the nanocomposites, choosing wavelengths into the inter- and intra-band transitions regions, including the surface plasmon (SP) resonance, as well as in the transparent region. For the anisotropic nanocomposites, the polarization and the incident angle were varied in order to evaluate the different components of the third order susceptibility tensor, {chi}{sup (3)}. We observed dramatic changes of sign for both, nonlinear refraction and absorption, when passing from Au to Ag and/or varying the wave length. The results accentuate the importance of the hot-electrons contribution to the nonlinear optical response at this temporal regime, when compared to inter-band and intra-band transitions contributions.
García, Santiago; Vázquez, Juan L.; Rentería, Marvin; Aguilar-Garduño, Isis G.; Delgado, Francisco; Trejo-Durán, Mónica; García-Revilla, Marco A.; Alvarado-Méndez, Edgar; Vázquez, Miguel A.
2016-12-01
A series of novel 3-(2,2a,3-triazacyclopenta[jk]fluoren-1-yl)-2H-chromen-2-one derivatives 5a-c have been synthesized by [8 + 2] cycloaddition reaction between the corresponding 3-(imidazo[1,2-a]pyrimidines)-2-yl)-2H-chromen-2-one 4a-c with 2-(trimethylsilyl)phenyl triflates as benzyne precursor in 65-80% yields. The strategic incorporation of triazacyclopentafluorene group at the 3-position of the coumarin molecules resulted in dyes with excellent nonlinear optical properties. The nonlinear optical properties of third order (compounds 5a-c) were studied using Z-scan technique. The high nonlinear response is of 10-7 cm2/W order. The nonlinearity of the compounds is an indication of a promising material for applications at low power, such as optical switching, waveguides, nonlinear contrast phase, among others. Theoretical results of HOMO-LUMO gaps and oscillator strengths are used to rationalize the high efficiency of the novel compound in the nonlinear optical behavior. In particular, 5b displays the best nonlinear optical properties and at the same time the smaller HOMO-LUMO gap and the highest oscillator strength.
Organic non-linear optics and opto-electronics
Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, M.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillán, R.; Farfán, N.
2010-12-01
π-conjugated organic molecules and polymers are of great importance in physics, chemistry, material science and engineering. It is expected that, in the near future, organic materials will find widespread use in many technological applications. In the case of organic opto-electronic systems, the list of devices includes light emitting diodes (OLEDs), photovoltaic cells (OPVs), field-effect transistors (OFET), photorefractive materials for light manipulation, among others. These materials are also used for photonic applications: all-optical switching, modulators, optical correlators, plastic waveguides, all polymeric integrated circuits, solid-state lasers, and for biophotonic applications as in the case of the development of organic labels for multiphoton microscopy and photodynamic therapy. The advances in the developing of organic compounds with better mechanical, electrical, and optical (linear and non-linear) characteristics are of a great importance for this field. Here, we present the research on this area carried out at the Centro de Investigaciones en Óp-tica (CIO), in collaboration with Chemistry Departments of different institutions. This work focuses on the optical characterization of materials through several techniques such as TOF, FWM, TBC, THG Maker Fringes, HRS, Z-scan, and TPEF. Additionally, some applications, such as dynamic holography by using photorefractive polymers, and OPVs cells will be discussed.
Nonlinear and quantum optics with whispering gallery resonators
Strekalov, Dmitry V.; Marquardt, Christoph; Matsko, Andrey B.; Schwefel, Harald G. L.; Leuchs, Gerd
2016-12-01
Optical whispering gallery modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other waves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.
Nonlinear and Quantum Optics with Whispering Gallery Resonators
Strekalov, Dmitry V; Matsko, Andrey B; Schwefel, Harald G L; Leuchs, Gerd
2016-01-01
Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon was later realized to have a rather general nature, equally applicable to sound and all other waves, but in particular also to electromagnetic waves ranging from radio frequencies to ultraviolet light. Very high quality factors of optical WGM resonators persisting in a wide wavelength range, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.
Nonlinear photon-assisted tunneling transport in optical gap antennas.
Stolz, Arnaud; Berthelot, Johann; Mennemanteuil, Marie-Maxime; Colas des Francs, Gérard; Markey, Laurent; Meunier, Vincent; Bouhelier, Alexandre
2014-05-14
We introduce strongly coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical gap antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion involving d-band electrons and demonstrate that a simple two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.
Nonlinear optical response of tetra and mono substituted zinc phthalocyanine complexes
Energy Technology Data Exchange (ETDEWEB)
Fashina, Adedayo; Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za
2015-11-15
The nonlinear absorption properties of 6 mono-substituted and 3 symmetric zinc phthalocyanine complexes have been studied in dimethylsulfoxide (DMSO) using 10 ns pulses at 532 nm. The non linear absorption of the complexes has been studied using the Z-scan technique. The study showed that both the singlet and triplet excited states contribute to the non linear absorption behavior. The nonlinear third-order susceptibility and second-order hyperpolarizability values of the complexes are reported. It was observed that two of the symmetric phthalocyanine complexes (5-α substituted with aminophenoxy and 9-β substituted with carboxyphenoxy) showed better and promising optical nonlinearity when compared to the other complexes studied. - Highlights: • Nonlinear absorption properties of zinc phthalocyanine are reported • Singlet and triplet excited states contribute to the non linear absorption. • Symmetrically tetra substituted phthalocyanines showed better optical nonlinearity.
Nonlinear optical properties of a self-organized dye thin film
Institute of Scientific and Technical Information of China (English)
Haifeng Kang; Yizhong Yuan; Zhenrong Sun; Zugeng Wang
2007-01-01
@@ A self-organized thin film of a cyanine dye is fabricated by the spin-coating technique and is characterized by ultraviolet-visible spectroscopy, infrared (IR) spectroscopy, small-angle X-ray diffraction, ellipsometer,and atomic force microscopy (AFM). The nonlinear optical properties of the thin films are investigated by degenerate four wave mixing (DFWM) technique. The cyanine dye thin film sample exhibits high optical nonlinearities (χ(3) = 2.55 × 10-12 esu), and the mechanism is analyzed by the exciton coupling theory.
Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction
Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie
2015-01-01
A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952
Extremely nonlocal optical nonlinearities in atoms trapped near a waveguide
Shahmoon, Ephraim; Stimming, Hans Peter; Mazets, Igor; Kurizki, Gershon
2014-01-01
Nonlinear optical phenomena are typically local. Here we predict the possibility of highly nonlocal optical nonlinearities for light propagating in atomic media trapped near a nano-waveguide, where long-range interactions between the atoms can be tailored. When the atoms are in an electromagnetically-induced transparency configuration, the atomic interactions are translated to long-range interactions between photons and thus to highly nonlocal optical nonlinearities. We derive and analyze the governing nonlinear propagation equation, finding a roton-like excitation spectrum for light and the emergence of long-range order in its output intensity. These predictions open the door to studies of unexplored wave dynamics and many-body physics with highly-nonlocal interactions of optical fields in one dimension.
Dielectric Optical-Controlled Magnifying Lens by Nonlinear Negative Refraction
Cao, Jianjun; Zheng, Yuanlin; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie
2014-01-01
A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive index. Recent advancements in nanotechnology enable novel lenses, such as, superlens, hyperlens, Luneburg lens, with sub-wavelength resolution capabilities by specially designing materials' refractive indices with meta-materials and transformation optics. However, these artificially nano/micro engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here we experimentally demonstrate for the first time a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applicat...
Intra-Channel Nonlinear Effect on Optical PPM Pulse Transmission
Institute of Scientific and Technical Information of China (English)
Sun; Linghao; Jarmo; Takala
2003-01-01
PPM encoded Gaussian pulse sequence shows more immunity than non-PPM schemes on optical fiber intra-channel nonlinearity and demonstrated by a numerical study of IXPM and IFWM effects deploying on 100Gb/s single channelsystem.
Optical Nonlinearities in Chalcogenide Glasses and their Applications
Zakery, A
2007-01-01
Photonics, which uses photons for information and image processing, has been labeled the technology of the 21st century, for which non-linear optical processes provide the key functions of frequency conversion and optical switching. Chalcogenide glass fiber is one of the most promising candidates for use as a non-linear optical medium because of its high optical nonlinearity and long interaction length. Since the chalcogenide glass fibers transmit into the IR, there are numerous potential applications in the civil, medical and military areas. One of the most exciting developments in the future is going to be in the area of rare-earth ion doping of chalcogenide fibers for IR fluorescence emission. The IR light sources, lasers and amplifiers developed using this phenomena will be very useful in civil, medical and military applications. Remote IR spectroscopy and imaging using flexible fibers will be realized for applications. Other future research areas which will inevitably be explored includes non-linear opti...
Yu, Weiguo; Jia, Jianhong; Gao, Jianrong; Han, Liang; Li, Yujin
2015-03-01
Six symmetrical ferrocenyl Schiff base materials were synthesized and characterized by UV, 1H NMR, mass spectrometry (MS) and elemental analysis. Their off-resonant third-order nonlinear optical properties were measured using femtosecond laser and degenerate four-wave mixing (DFWM) technique. The third-order nonlinear optical susceptibilities χ(3) were 1.961-6.363 × 10-13 esu. The nonlinear refractive indexes n2 were 3.609-11.716 × 10-12 esu. The second-order hyperpolarizabilities γ of these molecules were 1.967-6.388 × 10-31 esu. The response time were 45.759-73.079 fs. The results indicate that these materials have potential nonlinear optical applications.
Substituent Dependence of Third-Order Optical Nonlinearity in Chalcone Derivatives
Kiran, Anthony John; Satheesh Rai, Nooji; Chandrasekharan, Keloth; Kalluraya, Balakrishna; Rotermund, Fabian
2008-08-01
The third-order nonlinear optical properties of derivatives of dibenzylideneacetone were investigated using the single beam z-scan technique at 532 nm. A strong dependence of third-order optical nonlinearity on electron donor and acceptor type of substituents was observed. An enhancement in χ(3)-value of one order of magnitude was achieved upon the substitution of strong electron donors compared to that of the molecule substituted with an electron acceptor. The magnitude of nonlinear refractive index of these chalcones is as high as of 10-11 esu. Their nonlinear optical coefficients are larger than those of widely used thiophene oligomers and trans-1-[p-(p-dimethylaminobenzyl-azo)-benzyl]-2-(N-methyl-4-pyridinium)-ethene iodide (DABA-PEI) organic compounds.
Topological nature of nonlinear optical effects in solids.
Morimoto, Takahiro; Nagaosa, Naoto
2016-05-01
There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials.
Merging Nonlinear Optics and Negative-Index Metamaterials
Popov, Alexander K
2011-01-01
The extraordinary properties of nonlinear optical propagation processes in double-domain positive/negative index metamaterials are reviewed. These processes include second harmonic generation, three- and four-wave frequency mixing, and optical parametric amplification. Striking contrasts with the properties of the counterparts in ordinary materials are shown. We also discuss the possibilities for compensating strong losses inherent to plasmonic metamaterials, which present a major obstacle in numerous exciting applications, and the possibilities for creation of unique ultracompact photonic devices such as data processing chips and nonlinear-optical sensors. Finally, we propose similar extraordinary three-wave mixing processes in crystals based on optical phonons with negative dispersion.
Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling
Energy Technology Data Exchange (ETDEWEB)
Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab
2016-06-01
Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility of nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.
Cognitive optical networks: architectures and techniques
Grebeshkov, Alexander Y.
2017-04-01
This article analyzes architectures and techniques of the optical networks with taking into account the cognitive methodology based on continuous cycle "Observe-Orient-Plan-Decide-Act-Learn" and the ability of the cognitive systems adjust itself through an adaptive process by responding to new changes in the environment. Cognitive optical network architecture includes cognitive control layer with knowledge base for control of software-configurable devices as reconfigurable optical add-drop multiplexers, flexible optical transceivers, software-defined receivers. Some techniques for cognitive optical networks as flexible-grid technology, broker-oriented technique, machine learning are examined. Software defined optical network and integration of wireless and optical networks with radio over fiber technique and fiber-wireless technique in the context of cognitive technologies are discussed.
Molecular and crystal design of nonlinear optical organic materials
Energy Technology Data Exchange (ETDEWEB)
Suponitsky, Kirill Yu; Antipin, Mikhail Yu [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation); Timofeeva, Tatiana V [Department of Chemistry, New Mexico Highlands University (United States)
2006-06-30
The results of theoretical and experimental studies on the second-order molecular and crystal nonlinear optical susceptibilities of organic and several classes of organoelement compounds are summarised. Modern methods used in these studies are briefly characterised, their advantages and drawbacks are outlined as regards their application to the systematic search for efficient nonlinear optical materials. Recent achievements and the main challenges in the field are thoroughly discussed and an optimum algorithm of the design of such materials is proposed.
Energy Technology Data Exchange (ETDEWEB)
Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)
2014-09-25
Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.
New CMOS Compatible Platforms for Integrated Nonlinear Optical Signal Processing
Moss, D J
2014-01-01
Nonlinear photonic chips have succeeded in generating and processing signals all-optically with performance far superior to that possible electronically - particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunications wavelengths poses a fundamental limitation. This paper reviews some of the recent achievements in CMOS-compatible platforms for nonlinear optics, focusing on amorphous silicon and Hydex glass, highlighting their potential future impact as well as the challenges to achieving practical solutions for many key applications. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement.
Platforms for integrated nonlinear optics compatible with silicon integrated circuits
Moss, David J
2014-01-01
Nonlinear photonic chips are capable of generating and processing signals all-optically with performance far superior to that possible electronically - particularly with respect to speed. Although silicon has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunications wavelengths poses a fundamental limitation. We review recent progress in CMOS-compatible platforms for nonlinear optics, focusing on Hydex glass and silicon nitride and briefly discuss the promising new platform of amorphous silicon. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation, ultrafast optical pulse generation and measurement. We highlight their potential future impact as well as the challenges to achieving practical solutions for many key applications.
Evaluation of third order nonlinear optical parameters of CdS/PVA nanocomposite
Energy Technology Data Exchange (ETDEWEB)
Sharma, Mamta [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160014 (India); Department of Applied Sciences (Physics), UIET, Panjab University, Chandigarh-160014 (India); Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160014 (India)
2015-06-24
CdS nanoparticles dispersed in PVA are prepared by Chemical method at room temperature. The nonlinear optical parameters such as nonlinear absorption (β), nonlinear refractive index (n{sub 2}) and nonlinear susceptibility (χ{sup 3}) are calculated for this sample by using Z-scan technique. CdS/PVA samples show the two photon absorption mechanism. The third order nonlinear susceptibility is calculated from n{sub 2} and β and is found to be of the order of 10{sup −7} – 10{sup −8} m{sup 2}/V{sup 2}. The larger value of third order nonlinear susceptibility is due to dielectric and quantum confinement effect.
Effect of reduction time on third order optical nonlinearity of reduced graphene oxide
Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.
2017-04-01
We report the influence of reduction time on structural, linear and nonlinear optical properties of reduced graphene oxide (rGO) thin films synthesized by spin coating method. We observed that the structural, linear and nonlinear optical properties can be tuned with reduction time in GO is due to the increased structural ordering because of the restoration of sp2 carbon atoms with the time of reduction. The nonlinear absorption studies by open aperture Z-scan technique exhibited a saturable absorption. The nonlinear refraction studies showed the self de focusing nature of rGO by closed aperture Z scan technique. The nonlinear absorption coefficient and saturation intensity varies with the time for reduction of GO which is attributed to the depletion of valence band and the conduction band filling effect. Our results emphasize duration for reduction of GO dependent optical nonlinearity of rGO thin films to a great extent and explore its applications Q switched mode locking laser systems for generating ultra short laser pulses and in optical sensors. The rGO coated films were characterized by X-Ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Vis absorption spectroscopy (UV-Vis), Photoluminescence (PL) and Scanning electron microscope (SEM) measurements.
Optical Nonlinear Properties of CdSeS/ZnS Core/Shell Quantum Dots
Institute of Scientific and Technical Information of China (English)
WU Feng; TIAN Wei; MA Li-Na; CHEN Wen-Ju; ZHANG Gui-Lan; ZHAO Guo-Feng; CAO Shi-Dong; XIE Wei
2008-01-01
@@ The optical nonlinear properties of CdSeS/ZnS quantum dots (QDs) are investigated by Z-scan technique using fundamental harmonic generation (1064nm) of mode-locked Nd:YAG laser for the first time. The experimental results show that two photon absorptions (TPA) occur at input intensity up to 12.5 GW/cm2. CdSeS/ZnS QDs have an average TPA cross section of 13710GM and large nonlinear refractive index on order of 10-7 esu. The large optical nonlinearities perhaps allow the CdSeS/ZnS QDs to be one kind of candidate material for bioimaging and fluorescence label, optical limiting and all-optical switching.
Lifetime of the Nonlinear Geometric Optics Approximation
DEFF Research Database (Denmark)
Binzer, Knud Andreas
The subject of the thesis is to study acertain approximation method for highly oscillatory solutions to nonlinear partial differential equations.......The subject of the thesis is to study acertain approximation method for highly oscillatory solutions to nonlinear partial differential equations....
Ultrafast third-order nonlinear optical response of pyrene derivatives
Shi, Yufang; Li, Zhongguo; Fang, Yu; Sun, Jinyu; Zhao, Minggen; Song, Yinglin
2017-05-01
Two mono-substituted pyrene derivatives with delocalized electron system 1-(pyren-1-yl)-3-(4-Methyl thiophene-2-yl) acrylic ketone (13#) and 1-(pyren-1-yl)-3-(4-bromo thiophene-2-yl) acrylic ketone (15#) were successfully synthesized. The resultant compounds were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (IR), high resolution mass spectrum (HR-MS), and UV-vis spectra. The third-order nonlinear optical properties of the compounds were investigated using Z-scan technique with femtosecond laser pulses at 500 nm and 700 nm, respectively. Both of the compounds showed a decrease in transmittance about the focus, which are typical of two-photon absorption. It was found that the two-photon absorption behavior of the pyrene derivatives were modified by substituents on thiophene ring. These results indicate that both compounds can be promising candidates for future optoelectronic and bio-imaging applications.
Nonlinear optical imaging characteristics in rat tail tendon
Liu, N. R.; Zhang, X. Z.; Qiu, Y. S.; Chen, R.
2013-04-01
The aim of this study was to examine the characteristics of skeletal muscle fibers in tail tendons, explore the content of intrinsic components at different depths and ascertain the optimum excitation wavelength, which will help to establish a relationship between diagnosis and therapy and the tendon injury. A multiphoton microscopic imaging system was used to achieve the images and spectra via an imaging mode and a Lambda mode, respectively. This work demonstrates that the skeletal muscle fibers of the tail tendon are in good order. Second harmonic generation (SHG) and two-photon excited fluorescence (TPEF) signals originating from certain intrinsic components are varied with depth, and the SHG/TPEF intensity ratios are varied at different excitation wavelengths. Below 800 nm is the optimum for cell TPEF, while above 800 nm is the optimum for SHG. With the development of imaging techniques, a nonlinear optical imaging system will be helpful to represent the functional behaviors of tissue related to tendon injury.
Prediction of nonlinear optical properties of large organic molecules
Cardelino, Beatriz H.
1992-01-01
The preparation of materials with large nonlinear responses usually requires involved synthetic processes. Thus, it is very advantageous for materials scientists to have a means of predicting nonlinear optical properties. The prediction of nonlinear optical properties has to be addressed first at the molecular level and then as bulk material. For relatively large molecules, two types of calculations may be used, which are the sum-over-states and the finite-field approach. The finite-field method was selected for this research, because this approach is better suited for larger molecules.
Shocks, singularities and oscillations in nonlinear optics and fluid mechanics
Santo, Daniele; Lannes, David
2017-01-01
The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .
Extra phase noise from thermal fluctuations in nonlinear optical crystals
DEFF Research Database (Denmark)
César, J. E. S.; Coelho, A.S.; Cassemiro, K.N.
2009-01-01
We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the d...... the direct production of multipartite entanglement in a single nonlinear optical system. We cooled the nonlinear crystal and observed a reduction in the extra noise. Our treatment of this noise can be successfully applied to different systems in the literature....
Delocalization of nonlinear optical responses in plasmonic nanoantennas
Viarbitskaya, Sviatlana; Cluzel, Benoit; Francs, Gérard Colas des; Bouhelier, Alexandre
2015-01-01
Remote excitation and emission of two-photon luminescence and second-harmonic generation are observed in micrometer long gold rod optical antennas upon local illumination with a tightly focused near-infrared femtosecond laser beam. We show that the nonlinear radiations can be emitted from the entire antenna and the measured far-field angular patterns bear the information regarding the nature and origins of the respective nonlinear processes. We demonstrate that the nonlinear responses are transported by the propagating surface plasmon at excitation frequency, enabling thereby polariton-mediated tailoring and design of nonlinear responses.
Nonlinear limits to the information capacity of optical fiber communications
Mitra, P P; Mitra, Partha P.; Stark, Jason B.
2000-01-01
The exponential growth in the rate at which information can be communicated through an optical fiber is a key element in the so called information revolution. However, like all exponential growth laws, there are physical limits to be considered. The nonlinear nature of the propagation of light in optical fiber has made these limits difficult to elucidate. Here we obtain basic insights into the limits to the information capacity of an optical fiber arising from these nonlinearities. The key simplification lies in relating the nonlinear channel to a linear channel with multiplicative noise, for which we are able to obtain analytical results. In fundamental distinction to the linear additive noise case, the capacity does not grow indefinitely with increasing signal power, but has a maximal value. The ideas presented here have broader implications for other nonlinear information channels, such as those involved in sensory transduction in neurobiology. These have been often examined using additive noise linear cha...
Ageing of the nonlinear optical susceptibility in soft matter
Energy Technology Data Exchange (ETDEWEB)
Ghofraniha, N [SMC-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Conti, C [Research Centre ' Enrico Fermi' , Via Panisperna 89/A, 00184 Rome (Italy); Leonardo, R Di [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Ruzicka, B [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Ruocco, G [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy)
2007-05-23
We investigate the nonlinear optics response of a colloidal dispersion undergoing dynamics slowing down with age, by using Z-scan and dynamic light scattering measurements. We study the high optical nonlinearity of an organic dye (rhodamine B) dispersed in a water-clay (laponite) suspension. We consider different clay concentrations (2.0-2.6 wt%) experiencing dynamics arrest. We find that (i) the concentration dependent exponential growth of both mean relaxation time and nonlinear absorption coefficient can be individually scaled to a master curve and (ii) the scaling times are the same for the two physical quantities. These findings indicate that the optical nonlinear susceptibility exhibits the same ageing universal scaling behaviour, typical of disordered out of equilibrium systems.
Third Order Nonlinear Optical Effects in Conjugated Polymers
Halvorson, Craig Steven
Third order nonlinear optical effects in conjugated materials were studied using two different spectroscopic methods, third harmonic generation and two photon absorption. The third harmonic generation spectra of cis-polyacetylene, trans-polyacetylene, oriented trans-polyacetylene, three isomers of polyaniline, cis and trans-polyacetylene in polyvinyl butyral, polyheptdadiester, polyheptadiketone, and MEH-PPV/polyethylene blends were measured. The nonlinear optical susceptibility increases with structural order, and is enhanced by the presence of a degenerate ground state. The magnitude of the susceptibility reaches as high as 10^{-7} esu, which is sufficient for the creation of all-optical nonlinear devices. The two photon absorption spectrum of oriented transpolyacetylene was measured using nonlinear photothermal deflection. The spectrum reveals directly the Ag state at 1.1 eV in trans-polyacetylene, and reveals another Ag state at higher energy. The magnitude of the two photon absorption is large enough to rule out using trans-polyacetylene in serial all-optical nonlinear devices; all-optical devices made from conjugated polymers must be parallel, not serial. A new figure of merit for nonlinear devices was proposed.
Off-Resonant Third-Order Optical Nonlinearity of an Ag:TiO2 Composite Film
Institute of Scientific and Technical Information of China (English)
ZHANG Chun-Feng; YOU Guan-Jun; DONG Zhi-Wei; LIU Ye; MA Guo-Hong; QIAN Shi-Xiong
2005-01-01
@@ Using the femtosecond time-resolved optical Kerr effect technique, we investigate the off-resonant nonlinear optical response of an Ag:TiO2 composite film prepared by a vacuum magnetron sputtering method. The third-order nonlinear optical susceptibility of the composite film with silver nanoparticle size of about 30 nm is estimated to be 1.9×10-10 esu at the incident laser wavelength of 800nm. When the photon energy of the incident beam is lower than that for surface plasmon or the interband transition of silver nanoparticles, the observed third-order optical nonlinearity is attributed to the intraband transition of the free electrons. Based on the linear limit of the electric field within micro-spherical model, we assign this large optical nonlinearity to the local field enhancement of the third-order nonlinearity.
Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA.
Kravtsov, Konstantin; Prucnal, Paul R; Bubnov, Mikhail M
2007-10-01
We present an experimental demonstration of an ultrafast all-optical thresholder based on a nonlinear Sagnac interferometer. The proposed design is intended for operation at very small nonlinear phase shifts. Therefore, it requires an in-loop nonlinearity lower than for the classical nonlinear loop mirror scheme. Only 15 meters of conventional (non-holey) silica-based fiber is used as a nonlinear element. The proposed thresholder is polarization insensitive and is good for multi-wavelength operation, meeting all the requirements for autocorrelation detection in various optical CDMA communication systems. The observed cubic transfer function is superior to the quadratic transfer function of second harmonic generation-based thresholders.
Yu, Changyuan
Chromatic dispersion, polarization mode dispersion (PMD) and nonlinear effects are important issues on the physical layer of high-speed reconfigurable WDM optical fiber communication systems. For beyond 10 Gbit/s optical fiber transmission system, it is essential that chromatic dispersion and PMD be well managed by dispersion monitoring and compensation. One the other hand, dispersive and nonlinear effects in optical fiber systems can also be beneficial and has applications on pulse management, all-optical signal processing and network function, which will be essential for high bite-rate optical networks and replacing the expensive optical-electrical-optical (O/E/O) conversion. In this Ph.D. dissertation, we present a detailed research on dispersive and nonlinear effects in high-speed optical communication systems. We have demonstrated: (i) A novel technique for optically compensating the PMD-induced RF power fading that occurs in single-sideband (SSB) subcarrier-multiplexed systems. By aligning the polarization states of the optical carrier and the SSB, RF power fading due to all orders of PMD can be completely compensated. (ii) Chromatic-dispersion-insensitive PMD monitoring by using a narrowband FBG notch filter to recover the RF clock power for 10Gb/s NRZ data, and apply it as a control signal for PMD compensation. (iii) Chirp-free high-speed optical pulse generation with a repetition rate of 160 GHz (which is four times of the frequency of the electrical clock) using a phase modulator and polarization maintaining (PM) fiber. (iv) Polarization-insensitive all-optical wavelength conversion based on four-wave mixing in dispersion-shifted fiber (DSF) with a fiber Bragg grating and a Faraday rotator mirror. (v) Width-tunable optical RZ pulse train generation based on four-wave mixing in highly-nonlinear fiber. By electrically tuning the delay between two pump pulse trains, the pulse-width of a generated pulse train is continuously tuned. (vi) A high-speed all-optical
Conditional linear-optical measurement schemes generate effective photon nonlinearities
Lapaire, G G; Dowling, J P; Sipe, J E; Dowling, Jonathan P.
2003-01-01
We provide a general approach for the analysis of optical state evolution under conditional measurement schemes, and identify the necessary and sufficient conditions for such schemes to simulate unitary evolution on the freely propagating modes. If such unitary evolution holds, an effective photon nonlinearity can be identified. Our analysis extends to conditional measurement schemes more general than those based solely on linear optics.
Chemical studies on the nonlinear optics of coordina- tion compounds
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The exploration of molecule-based nonlinear optical (NLO) materials at the molecular level is one of the novel areas developed recently from the viewpoint of chemistry. This review summarizes some of our recent researches on new NLO materials based on coordination compounds, which may have potential applications in optical devices.
Ultra-Fast Optical Signal Processing in Nonlinear Silicon Waveguides
DEFF Research Database (Denmark)
Oxenløwe, Leif Katsuo; Galili, Michael; Pu, Minhao;
2011-01-01
We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals....
Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber
DEFF Research Database (Denmark)
Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.
2012-01-01
We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber...
Energy Technology Data Exchange (ETDEWEB)
Zawadzka, A., E-mail: azawa@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Płóciennik, P.; Strzelecki, J. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Pranaitis, M.; Dabos-Seignon, S.; Sahraoui, B. [LUNAM Université, Université d' Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 Angers cedex (France)
2013-10-31
The paper presents the Third Harmonic Generation investigation of four metallophtalocyanine (MPc, M = Cu, Co, Mg and Zn) thin films. The investigated films were fabricated by Physical Vapor Deposition in high vacuum onto quartz substrates. MPc thin films were annealed after fabrication in ambient atmosphere for 12 h at the temperature equal to 150 °C or 250 °C. The Third Harmonic Generation spectra were measured to investigate the nonlinear optical properties and their dependence on the structure of the thin film after the annealing process. This approach allowed us to determine the electronic contribution of the third-order nonlinear optical susceptibility χ{sup <3>}{sub elec} of these MPc films and to investigate two theoretical models for explanation of the observed results. We find that the annealing process significantly changes the optical and structural properties of MPc thin films. - Highlights: • Metallophtalocyanine thin films were grown by Physical Vapor Deposition technique. • MPcs thin films were undergone an annealing process in ambient atmosphere. • Third Harmonic spectra were measured to investigate nonlinear optical properties. • The third order nonlinear optical susceptibility χ{sup <3>}{sub elec} was determined. • We report changing both nonlinear optical and structural properties of thin films.
Li, Bing-Xuan; Wei, Yong; Huang, Cheng-Hui; Zhuang, Feng-Jiang; Zhang, Ge; Guo, Guo-Cong
2014-01-01
In the present paper the authors report a research on testing the nonlinear optical performance of optical materials in visible and infrared band. Based on the second order nonlinear optic principle and the photoelectric signal detection technology, the authors have proposed a new testing scheme in which a infrared OPO laser and a method for separating the beams arising from frequency matching and the light produced by other optical effects were used. The OPO laser is adopted as light source to avoid the error of measurement caused by absorption because the double frequency signal of the material is in the transmittance band Our research work includes testing system composition, operational principle and experimental method. The experimental results of KTP, KDP, AGS tested by this method were presented. In the experiment several new infrared non-linear materials were found. This method possesses the merits of good stability and reliability, high sensitivity, simple operation and good reproducibility, which can effectively make qualitative and semi-quantitative test for optical material's nonlinear optical properties from visible to infrared. This work provides an important test -method for the research on second order nonlinear optical materials in visible, infrared and ultraviolet bands.
Nonlinear optics at low powers: Alternative mechanism of on-chip optical frequency comb generation
Rogov, Andrei S.; Narimanov, Evgenii E.
2016-12-01
Nonlinear optical effects provide a natural way of light manipulation and interaction and form the foundation of applied photonics, from high-speed signal processing and telecommunication to ultrahigh-bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers or boosting efficiency of nonlinear parametric processes by enhancing local-field intensity with high-quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multiphoton absorption. We present an alternative to this conventional approach, with strong nonlinear optical effects at low local intensities, based on period-doubling bifurcations near nonlinear cavity antiresonance and apply it to low-power optical frequency comb generation in a silicon chip.
Nonlinear optics at low powers: new mechanism of on-chip optical frequency comb generation
Rogov, Andrei
2016-01-01
Nonlinear optical effects provide a natural way of light manipulation and interaction, and form the foundation of applied photonics -- from high-speed signal processing and telecommunication, to ultra-high bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers, or boosting efficiency of nonlinear parametric processes by enhancing local field intensity with high quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multi-photon absorption. Here, we present an alternative to this conventional approach, with strong nonlinear optical effects at substantially lower local intensities, based on period-doubling bifurcations near nonlinear cavity anti-resonance, and apply it to low-power optical comb generation in a silicon chip.
Kurian, Pushpa Ann; Vijayan, C.; Nag, Amit; Goswami, Debabrata
2013-01-01
Devices based on optical technology for high speed communication networks require materials with large nonlinear optical response in the ultrafast regime. Nonlinear optical materials have also attracted wide attention as potential candidates for the protection of optical sensors and eyes while handling lasers. Optical limiters have a constant transmittance at low input influence and a decrease in transmittance at higher fluences and are based on a variety of mechanisms such as nonlinear refraction, nonlinear scattering, multiphoton absorption and free carrier absorption. As we go from bulk to nanosized materials especially in the strong quantum confinement regime where radius of the nanoparticle is less than the bulk exciton Bohr radius, the optical nonlinearity is enhanced due to quantum confinement effect. This paper is on the ultrafast nonresonant nonlinearity in free standing films of PbS quantum dots stabilized in a synthetic glue matrix by a simple chemical route which provides flexibility of processing in a variety of physical forms. Optical absorption spectrum shows significant blue shift from the bulk absorption onset indicating strong quantum confinement. PbS quantumdots of mean size 3.3nm are characterized by X-ray diffraction and transmission electron microscopy. The mechanism of nonlinear absorption giving rise to optical limiting is probed using open z-scan technique with laser pulses of 150 fs pulse duration at 780 nm and the results are presented in the nonresonant femtosecond regime. Irradiance dependence on nonlinear absorption are discussed. PMID:24143059
Kurian, Pushpa Ann; Vijayan, C; Nag, Amit; Goswami, Debabrata
2007-09-17
Devices based on optical technology for high speed communication networks require materials with large nonlinear optical response in the ultrafast regime. Nonlinear optical materials have also attracted wide attention as potential candidates for the protection of optical sensors and eyes while handling lasers. Optical limiters have a constant transmittance at low input influence and a decrease in transmittance at higher fluences and are based on a variety of mechanisms such as nonlinear refraction, nonlinear scattering, multiphoton absorption and free carrier absorption. As we go from bulk to nanosized materials especially in the strong quantum confinement regime where radius of the nanoparticle is less than the bulk exciton Bohr radius, the optical nonlinearity is enhanced due to quantum confinement effect. This paper is on the ultrafast nonresonant nonlinearity in free standing films of PbS quantum dots stabilized in a synthetic glue matrix by a simple chemical route which provides flexibility of processing in a variety of physical forms. Optical absorption spectrum shows significant blue shift from the bulk absorption onset indicating strong quantum confinement. PbS quantumdots of mean size 3.3nm are characterized by X-ray diffraction and transmission electron microscopy. The mechanism of nonlinear absorption giving rise to optical limiting is probed using open z-scan technique with laser pulses of 150 fs pulse duration at 780 nm and the results are presented in the nonresonant femtosecond regime. Irradiance dependence on nonlinear absorption are discussed.
L2-gain and passivity techniques in nonlinear control
van der Schaft, Arjan
2017-01-01
This standard text gives a unified treatment of passivity and L2-gain theory for nonlinear state space systems, preceded by a compact treatment of classical passivity and small-gain theorems for nonlinear input-output maps. The synthesis between passivity and L2-gain theory is provided by the theory of dissipative systems. Specifically, the small-gain and passivity theorems and their implications for nonlinear stability and stabilization are discussed from this standpoint. The connection between L2-gain and passivity via scattering is detailed. Feedback equivalence to a passive system and resulting stabilization strategies are discussed. The passivity concepts are enriched by a generalised Hamiltonian formalism, emphasising the close relations with physical modeling and control by interconnection, and leading to novel control methodologies going beyond passivity. The potential of L2-gain techniques in nonlinear control, including a theory of all-pass factorizations of nonlinear systems, and of parametrization...
Resolution enhancement techniques in optical lithography
Wong, Alfred K
2001-01-01
Ever-smaller IC devices are pushing the optical lithography envelope, increasing the importance of resolution enhancement techniques. This tutorial encompasses two decades of research. It discusses theoretical and practical aspects of commonly used techniques, including optical imaging and resolution, modified illumination, optical proximity correction, alternating and attenuating phase-shifting masks, selecting RETs, and second-generation RETs. Useful for students and practicing lithographers.
Thankappan, Aparna; Nampoori, V. P. N.; Thomas, Sabu
2016-09-01
In this report, we report the intensity dependant nonlinear absorption properties of bio-inspired hybrid materials (betanin-ZnO) embedded in polymeric matrices through the Z-scan technique using an Nd: YAG laser (532 nm, 7 ns, 10 Hz). We observed a change over in the sign of nonlinearity due to the interplay of exciton bleaching and optical limiting mechanisms. Light confinement effect and ship-in-a bottle effect play crucial roles. Theoretical analysis has been performed using a model based on nonlinear absorption coefficient and saturation intensity. The result of present study gives an additional mechanism for the gain enhancement in dye doped ZnO matrix.
Lavdas, Spyros; You, Jie; Osgood, Richard M.; Panoiu, Nicolae C.
2015-08-01
We present recent results pertaining to pulse reshaping and optical signal processing using optical nonlinearities of silicon-based tapered photonic wires and photonic crystal waveguides. In particular, we show how nonlinearity and dispersion engineering of tapered photonic wires can be employed to generate optical similaritons and achieve more than 10× pulse compression. We also discuss the properties of four-wave mixing pulse amplification and frequency conversion efficiency in long-period Bragg waveguides and photonic crystal waveguides. Finally, the influence of linear and nonlinear optical effects on the transmission bit-error rate in uniform photonic wires and photonic crystal waveguides made of silicon is discussed.
High confinement, high yield Si3N4 waveguides for nonlinear optical applications
Epping, J.P.; Hoekman, M.; Mateman, R.; Leinse, A.; Heideman, R.G.; Rees, van A.; Slot, van der P.J.M.; Lee, C.J.; Boller, K-J.
2015-01-01
In this paper we present a novel fabrication technique for silicon nitride (Si3N4) waveguides with a thickness of up to 900 nm, which are suitable for nonlinear optical applications. The fabrication method is based on etching trenches in thermally oxidized silicon and filling the trenches with Si3N4
Hofstadter butterflies in nonlinear Harper lattices, and their optical realizations
Energy Technology Data Exchange (ETDEWEB)
Manela, Ofer; Segev, Mordechai [Department of Physics and Solid State Institute, Technion, Haifa 32000 (Israel); Christodoulides, Demetrios N [College of Optics/CREOL, University of Central Florida, FL 32816-2700 (United States); Kip, Detlef, E-mail: msegev@tx.technion.ac.i [Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg (Germany)
2010-05-15
The ubiquitous Hofstadter butterfly describes a variety of systems characterized by incommensurable periodicities, ranging from Bloch electrons in magnetic fields and the quantum Hall effect to cold atoms in optical lattices and more. Here, we introduce nonlinearity into the underlying (Harper) model and study the nonlinear spectra and the corresponding extended eigenmodes of nonlinear quasiperiodic systems. We show that the spectra of the nonlinear eigenmodes form deformed versions of the Hofstadter butterfly and demonstrate that the modes can be classified into two families: nonlinear modes that are a 'continuation' of the linear modes of the system and new nonlinear modes that have no counterparts in the linear spectrum. Finally, we propose an optical realization of the linear and nonlinear Harper models in transversely modulated waveguide arrays, where these Hofstadter butterflies can be observed. This work is relevant to a variety of other branches of physics beyond optics, such as disorder-induced localization in ultracold bosonic gases, localization transition processes in disordered lattices, and more.
Rajesh, K; Balaswamy, B; Yamamoto, K; Yamaki, H; Kawamata, J; Radhakrishnan, T P
2011-02-01
Optical and nonlinear optical properties like fluorescence and second harmonic generation (SHG) of molecular materials can be strongly influenced by the mode of assembly of the molecules. The Langmuir-Blodgett (LB) technique is an elegant route to the controlled assembly of molecules in ultrathin films, and complexation of ionic amphiphiles in the Langmuir film by polyions introduced in the aqueous subphase provides a simple and efficient access to further control, stabilization, and optimization. The monolayer LB film of the hemicyanine-based amphiphile, N-n-octadecyl-4-[2-(4-(N,N-ethyloctadecylamino)phenyl)ethenyl]pyridinium possessing a "tail-head-tail" structure, shows fluorescence as well as SHG response. The concomitant enhancement of both of these linear and nonlinear optical attributes is achieved through templating with the polyanion of carboxymethylcellulose. Brewster angle and atomic force microscopy reveal the influence of polyelectrolyte templating on the morphology of the Langmuir and LB films. Polarized absorption and fluorescence spectroscopy provide insight into the impact of complexation with the polyelectrolyte on the orientation and deaggregation of the hemicyanine headgroup leading to fluorescence and SHG enhancement in the LB film.
Exploring lipids with nonlinear optical microscopy in multiple biological systems
Alfonso-Garcia, Alba
Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by
Mohan, Sabitha; Lange, Jens; Graener, Heinrich; Seifert, Gerhard
2012-12-17
The nonlinear optical properties of nanocomposites consisting of non-spherical silver nanoparticles in glass matrix have been studied using the femtosecond Z-scan technique. The spheroidal nanoparticles were uniformly oriented along a common direction. By polarization sensitive studies, longitudinal and transverse plasmon resonances can be addressed separately. A sign reversal in optical nonlinearity from negative to positive is observed while switching the light interaction from near to non-resonant regime, which can be done by simply rotating the light polarization by 90°. Studying samples with different aspect ratio, we obtained the dispersion of third-order nonlinearity in the near-resonant regime, showing an enhancement of the nonlinear processes by more than two orders of magnitude due to the electric field enhancement at the surface plasmon resonance.
Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye
Zongo, S.; Kerasidou, A. P.; Sone, B. T.; Diallo, A.; Mthunzi, P.; Iliopoulos, K.; Nkosi, M.; Maaza, M.; Sahraoui, B.
2015-06-01
Natural dyes with highly delocalized π-electron systems are considered as promising organic materials for nonlinear optical applications. Among these dyes, Bixa Orellana dye with extended π-electron delocalization is one of the most attractive dyes. Bixa Orellana dye-doped Poly(methyl methacrylate) (PMMA) thin films were prepared through spin coating process for linear and nonlinear optical properties investigation. Atomic force microscopy (AFM) was used to evaluate the roughness of the thin films. The optical constants n and k were evaluated by ellipsometric spectroscopy. The refractive index had a maximum of about 1.456 at 508.5, 523.79 and 511.9 nm, while the maximum of k varies from 0.070 to 0.080 with the thickness. The third order nonlinear optical properties of the hybrid Bixa Orellana dye-PMMA polymer were investigated under 30 ps laser irradiation at 1064 nm with a repetition rate of 10 Hz. In particular the third-order nonlinear susceptibility has been determined by means of the Maker Fringes technique. The nonlinear third order susceptibility was found to be 1.00 × 10-21 m2 V-2 or 0.72 × 10-13 esu. Our studies provide concrete evidence that the hybrid-PMMA composites of Bixa dye are prospective candidates for nonlinear material applications.
L-Cystine hydrochloride: A novel semi-organic nonlinear optical material for optical devices
Selvaraju, K.; Valluvan, R.; Kirubavathi, K.; Kumararaman, S.
2007-01-01
A new semi-organic nonlinear optical (NLO) material L-cystine hydrochloride (LCHCl) was grown in large size measuring 19 × 5 × 3 mm 3 by slow solvent evaporation technique for the first time in literature. The cell parameter values were determined by single crystal X-ray diffraction studies. Fourier Transform Infrared spectroscopic analysis was carried out on the grown sample to ascertain the fundamental functional groups. Thermal behavior of the grown LCHCl sample was analyzed by TG & DTA analysis. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester. The optical transmission studies and second harmonic generation (SHG) efficiency studies justified the device quality of the grown crystal and the SHG study reveals that the grown sample has nearly 1.2 times higher efficiency than that of potassium dihydrogen phosphate (KDP), a well known NLO material.
Ortega, Alejandra; Perez-Martinez, Ana Laura; Ogawa, Takeshi; Smith, Francis; Walser, Ardie; Dorsinville, Roger
A highly-conjugated polar dye with three aromatic rings connected with azo groups was prepared and it was incorporated in polycinnamate. It showed a third-order nonlinear susceptibility of 8 × 10-10 esu determined by a Z-scan technique. The unpoled and poled films show the same susceptibility indicating the polymer film could not be poled. The open aperture Z-scan showed negligible two-photon absorption at 1064 nm.
Nonlinear Optical Absorption of Organic Molecules for Applications in Optical Devices
Boni, Leonardo De; Daniel S. Correa; Mendonca, Cleber R.
2010-01-01
This chapter aimed to describe the resonant nonlinear optical properties of four important organic molecules: Chlorophyll A, Indocyanine Green, Ytterbium Bisphthalocyanine and Cytochrome C, which are materials that present interesting optical nonlinearities for applications in optical devices. It was shown that Chlorophyll A solution exhibits a RSA process for Q-switched and mode-locked laser pulses, with an intersystem-crossing time relatively fast and a triplet state cross section value twi...
Imaging of contact acoustic nonlinearity using synthetic aperture technique.
Yun, Dongseok; Kim, Jongbeom; Jhang, Kyung-Young
2013-09-01
The angle beam incidence and reflection technique for the evaluation of contact acoustic nonlinearity (CAN) at solid-solid contact interfaces (e.g., closed cracks) has recently been developed to overcome the disadvantage of accessing both the inner and outer surfaces of structures for attaching pulsing and receiving transducers in the through-transmission of normal incidence technique. This paper proposes a technique for B-mode imaging of CAN based on the above reflection technique, which uses the synthetic aperture focusing technique (SAFT) and short-time Fourier transform (STFT) to visualize the distribution of the CAN-induced second harmonic magnitude as well as the nonlinear parameter. In order to verify the usefulness of the proposed method, a solid-solid contact interface was tested and the change of the contact acoustic nonlinearity according to the increasing contact pressure was visualized in images of the second harmonic magnitude and the relative nonlinear parameter. The experimental results showed good agreement with the previously developed theory identifying the dependence of the scattered second harmonics on the contact pressure. This technique can be used for the detection and improvement of the sizing accuracy of closed cracks that are difficult to detect using the conventional linear ultrasonic technique.
Misra, Nilanjal; Rapolu, Mounika; Venugopal Rao, S.; Varshney, Lalit; Kumar, Virendra
2016-05-01
The optical nonlinearity of metal nanoparticles in dielectrics is of special interest because of their high polarizability and ultrafast response that can be utilized in potential device applications. In this study nanocomposite thin films containing in situ generated Ag nanoparticles dispersed in an aliphatic urethane acrylate (AUA) matrix were synthesized using electron beam curing technique, in presence of an optimized concentration of diluent Trimethylolpropanetriacrylate (TMPTA). The metal nanocomposite films were characterized using UV-visible spectrophotometry, transmission electron microscope (TEM) and field emission scanning electron microscope (FE-SEM) techniques. Ag nanoparticle impregnated films demonstrated an absorption peak at ∼420 nm whose intensity increased with increase in the Ag concentration. The optical limiting property of the coatings was tested using a nanosecond Nd-YAG laser operated at third harmonic wavelength of 355 nm. For a 25 ns pulse and 10 Hz cycle, Ag-polymer coatings showed good optical limiting property and the threshold fluence for optical limiting was found to be ∼3.8×10-2 J/cm2 while the transmission decreased to 82%. The nonlinear optical coefficients were also determined using the standard Z-scan technique with picosecond (∼2 ps, 1 kHz) and femtosecond (∼150 fs, 100 MHz) pulses. Open aperture Z-scan data clearly suggested two-photon absorption as the dominant nonlinear absorption mechanism. Our detailed studies suggest these composites are potential candidates for optical limiting applications.
Sato, Rodrigo; Ohnuma, Masato; Oyoshi, Keiji; Takeda, Yoshihiko
2014-09-01
The effects of size quantization on the nonlinear optical response of Ag nanoparticles are experimentally studied by spectroscopic ellipsometry and femtosecond spectroscopic pump-and-probe techniques. In the vicinity of a localized surface-plasmon resonance (2.0-3.5 eV), we have investigated the optical nonlinearity of Ag particles embedded in silica glass for particle diameters ranging from 3.0 to 16 nm. The intrinsic third-order optical susceptibility χm(3) of Ag particles exhibited significant spectral and size dependences. These results are explained as quantum and dielectric confinements and are compared to the results of theoretical quantum finite-size effects calculation for metallic particles. In light of these results, we discuss the contribution of interband transitions to the size dependence of χm(3). Quantum size effects lead to an increase in nonlinearity in small Ag particles.
Nonlinear Quantum Optics in Optomechanical Nanoscale Waveguides
Zoubi, Hashem
2016-01-01
We explore the possibility of achieving a significant nonlinear phase shift among photons propagating in nanoscale waveguides exploiting interactions among photons that are mediated by vibrational modes and induced through Stimulated Brillouin Scattering (SBS). We introduce a configuration that allows slowing down the photons by several orders of magnitude via SBS involving sound waves and two pump fields. We extract the conditions for maintaining vanishing amplitude gain or loss for slowly propagating photons while keeping the influence of thermal phonons to the minimum. The nonlinear phase among two counter-propagating photons can be used to realize a deterministic phase gate.
Dynamic computer-generated nonlinear-optical holograms
Liu, Haigang; Li, Jun; Fang, Xiangling; Zhao, Xiaohui; Zheng, Yuanlin; Chen, Xianfeng
2017-08-01
We propose and experimentally demonstrate dynamic nonlinear optical holograms by introducing the concept of computer-generated holograms for second-harmonic generation of a structured fundamental wave with a specially designed wave front. The generation of Laguerre-Gaussian second-harmonic beams is investigated in our experiment. Such a method, which only dynamically controls the wave front of the fundamental wave by a spatial light modulator, does not need domain inversion in nonlinear crystals and hence is a more flexible way to achieve the off-axis nonlinear second-harmonic beams. It can also be adopted in other schemes and has potential applications in nonlinear frequency conversion, optical signal processing, and real-time hologram, etc.
Dissipation-induced optical nonlinearity at low light levels
Greenberg, Joel A
2011-01-01
We observe a dissipation-induced nonlinear optical process in a gas of cold atoms that gives rise to large nonlinear coupling strengths with high transparency. The nonlinearity results from the simultaneous cooling and crystallization of the gas, and can give rise to efficient Bragg scattering in the form of a six-wave-mixing process at low-light-levels with an extremely large effective fifth-order nonlinear susceptibility of \\chi^(5)= 7.6 x 10-15 (m/V)^4. For large optical gains, collective scattering due to the strong light-matter coupling leads to slow group velocities (~c/105) and long atomic coherence times (~100 {\\mu}s).
Venugopal Rao, S.
2011-07-01
The results are presented from the experimental picosecond nonlinear optical (NLO) studies of gold nanoparticles synthesised using coriander leaf (Coriandrum sativum) extract. Nanoparticles with an average size of ∼30 nm (distribution of 5-70 nm) were synthesised according to the procedure reported by Narayanan et al. [Mater. Lett. 2008, 62, 4588-4591]. NLO studies were carried out using the Z-scan technique using 2 ps pulses near 800 nm. Open-aperture data suggested saturation absorption as the nonlinear absorption mechanism, whereas closed-aperture data suggested a positive nonlinearity. The magnitude of third-order nonlinearity was estimated to be (3.3 ± 0.6) × 10-13 esu. A solvent contribution to the nonlinearity was also identified and estimated. A comparison is attempted with some recently reported NLO studies of similar gold nanostructures.
Nonlinear optical and magneto-optical effects in non-spherical magnetic granular composite
Institute of Scientific and Technical Information of China (English)
Ping Xu(须萍); Zhenya Li(李振亚)
2004-01-01
The magnetization-induced nonlinear optical and nonlinear magneto-optical properties in a magnetic metal-insulator composite are studied based on a tensor effective medium approximation with shape factor and Taylcr-expansion method. There is a weakly nonlinear relation between electric displacement D and elcctric field E in the composite. The results of our studies on the effective dielectric tensor and the nonlinear susceptibility tensor in a magnetic nanocomposite are surveyed. It is shown that such a metal-insulator composite exhibits the enhancements of optical and magneto-optical nonlinearity. The frequencies at which the enhancements occur, and the amplitude of the enhancement factors depend on the concentration and shape of the magnetic grains.
Multimodal nonlinear optical microscopy used to discriminate epithelial ovarian cancer
Adur, J.; Pelegati, V. B.; de Thomaz, A. A.; Almeida, D. B.; Bottcher-Luiz, F.; Andrade, L. A. L. A.; Cesar, C. L.
2011-07-01
We used human specimens of epithelial ovarian cancer (serous type) to test the feasibility of nonlinear imaging as complementary tools for ovarian cancer diagnosis. Classical hematoxylin-and-eosin stained sections were applied to combining two-photon excitation fluorescence (TPEF), second (SHG), and third (THG) harmonic microscopy within the same imaging platform. We show that strong TPEF + SHG + THG signals can be obtained in fixed samples stained with Hematoxylin & Eosin (H&E) stored for a very long time and that H&E staining enhanced the THG signal. We demonstrate using anisotropy and morphological measurements, that SHG and THG of stained optical sections allow reproducible identification of neoplastic features such as architectural alterations of collagen fibrils at different stages of the neoplastic transformation and cellular atypia. Taken together, these results suggest that, with our viable imaging system, we can qualitatively and quantitatively assess endogenous optical biomarkers of the ovarian tissue with SHG and THG microscopy. This imaging capability may prove to be highly valuable in aiding to determine structural changes at the cellular and tissue levels, which may contribute to the development of new diagnostic techniques.
Linear and nonlinear optical properties of tellurite glasses
Jin, Zhian
Tellurite glasses have been widely studied from bulk materials to structured devices, with the emphasis on the development of nonlinear optical fibers to demonstrate the functionalities of supercontinuum generation, erbium doped fiber amplifier and Raman amplifiers, etc. The new type tellurite-based optical fibers exhibit superior advantages over conventional silica ones, due to their high optical nonlinearity, broad transmission window, high rare earth element solubility and Raman gain intensity. Like silica fibers, tellurite fibers may also incorporate various fiber structures including solid core-cladding one and microstructure one (e.g. photonic crystal). The fiber loss was ever reported as low as ˜1dB/m using rod-in-tube fabrication process. Beyond all those progresses, little success has been made on improving the optical nonlinear property of tellurite glasses chi(3) ˜ 50 times bigger than fused silica). The challenge remains for tellurite glasses that their optical nonlinearity is more than 1 order smaller to compare with chalcogenides, although they are more stable chemically and structurally. In this work, after carefully reviewing the trend of optical nonlinearity for solid glasses, we adopted two strategies to potentially increase the linear and third-order optical nonlinear properties for tellurite glasses. A more polarizable electronic excitation may be achievable by introducing chalcogen elements (e.g. Sulfur or Selenium) into TeO2 vitreous network and synthesizing glasses with a linear helical chainlike structure. The ab initio computational results of microscopic hyper-polarizabilities of hypothetical mixed - 2 - tellurite chalcogenide glass molecular structure (TeO2(TeOX)n) confirmed the enhanced effect as Te-X (X=S or Se) bonds exist and the molecular size (n) grows. Quantitative estimates of the macroscopic linear and nonlinear properties for a mixed glass made from chains of n = 5 units leads to a conclusion that the extra Te-S (or Te
Photoconductive and nonlinear optical properties of composites based on metallophthalocyanines
Vannikov, A. V.; Grishina, A. D.; Gorbunova, Yu. G.; Tsivadze, A. Yu.
2015-08-01
The photoconductive, photorefractive and nonlinear optical properties of composites from polyvinylcarbazole or aromatic polyimide containing supramolecular ensembles of (tetra-15-crown-5) - phthalocyaninato gallium, indium, - phthalocyaninateacetato yttrium, - phthalocyaninato ruthenium with axially coordinated pyrazine molecules were investigated at 633, 1030 and 1064nmusing continuous and pulsed lasers. Supramolecular ensembles (SE) were prepared through dissolution of molecular metallophthalocyanines in tetrachloroethane (TCE) and subsequent treatment via three cycles of heating to 90∘C and slow cooling to room temperature. The zscan method in femtosecond and nanosecond regimeswas used for measuring nonlinear optical properties phthalocyaninato indium and yttrium in TCE solutions and polymer films. It was established that effect of heavy metallic atom is basic factor which determines the quantum yield, photorefractive amplification of laser object beam, dielectric susceptibility of third order and nonlinear optical properties of metallophthalocyanines.
Nonlinear optical studies of single gold nanoparticles
Dijk, Meindert Alexander van
2007-01-01
Gold nanoparticles are spherical clusters of gold atoms, with diameters typically between 1 and 100 nanometers. The applications of these particles are rather diverse, from optical labels for biological experiments to data carrier for optical data storage. The goal of my project was to develop new
Conservation Laws in Higher-Order Nonlinear Optical Effects
Kim, J; Shin, H J; Kim, Jongbae
1999-01-01
Conservation laws of the nonlinear Schrödinger equation are studied in the presence of higher-order nonlinear optical effects including the third-order dispersion and the self-steepening. In a context of group theory, we derive a general expression for infinitely many conserved currents and charges of the coupled higher-order nonlinear Schrödinger equation. The first few currents and charges are also presented explicitly. Due to the higher-order effects, conservation laws of the nonlinear Schrödinger equation are violated in general. The differences between the types of the conserved currents for the Hirota and the Sasa-Satsuma equations imply that the higher-order terms determine the inherent types of conserved quantities for each integrable cases of the higher-order nonlinear Schrödinger equation.
From Ewald sphere to Ewald shell in nonlinear optics
Huang, Huang; Huang, Cheng-Ping; Zhang, Chao; Hong, Xu-Hao; Zhang, Xue-Jin; Qin, Yi-Qiang; Zhu, Yong-Yuan
2016-07-01
Ewald sphere is a simple vector scheme to depict the X-ray Bragg diffraction in a crystal. A similar method, known as the nonlinear Ewald sphere, was employed to illustrate optical frequency conversion processes. We extend the nonlinear Ewald sphere to the Ewald shell construction. With the Ewald shell, a variety of quasi-phase-matching (QPM) effects, such as the collective envelope effect associated with multiple QPM resonances, the enhanced second- harmonic generation due to multiple reciprocal vectors etc., are suggested theoretically and verified experimentally. By rotating the nonlinear photonic crystal sample, the dynamic evolution of these QPM effects has also been observed, which agreed well with the Ewald shell model.
Pulse operation of semiconductor laser with nonlinear optical feedback
Guignard, Celine; Besnard, Pascal; Mihaescu, Adrian; MacDonald, K. F.; Pochon, Sebastien; Zheludev, Nikolay I.
2004-09-01
A semiconductor laser coupled to a gallium-made non linear mirror may exhibit pulse regime. In order to better understand this coupled cavity, stationary solutions and dynamics are described following the standard Lang and Kobayashi equations for a semiconductor laser submitted to nonlinear optical feedback. It is shown that the nonlinearity distorts the ellipse on which lied the stationary solutions, with a ``higher'' part corresponding to lower reflectivity and a ``lower'' part to higher reflectivity. Bifurcation diagrams and nonlinear analysis are presented while the conditions for pulsed operation are discussed.
Dispersion of the nonlinear refractive index of optical crystals
Adair, Robert; Chase, L. L.; Payne, Stephen A.
1992-09-01
The nonlinear refractive indices of several important optical materials have been measured at the second and third harmonic wavelengths of the Nd laser using nearly degenerate four-wave mixing. Measurements made relative to the nonlinear index of fused silica have the highest accuracy. Absolute measurements were also made using the Raman cross-section of benzene as a nonlinear reference standard. The relative measurements are compared with a despersion model base on parameters fitted to the linear refractive indicies and also to a recently proposed model based on Kramers-Kronig transformation of the calculated, two-band, two-photon loss spectrum.
On diagrammatic technique for nonlinear dynamical systems
Semenyakin, Mykola
2014-01-01
In this paper we investigate phase flows over $\\mathbb{C}^n$ and $\\mathbb{R}^n$ generated by vector fields $V=\\sum P^{i}\\partial_i$ where $P^{i}$ are finite degree polynomials. With the convenient diagrammatic technique we get expressions for evolution operators $ev\\{V|t\\}: x(0)\\mapsto x(t)$ through the series in powers of $x(0)$ and $t$, represented as sum over all trees of particular type. Estimates are made for the radius of convergence in some particular cases. The phase flows behavior in the neighborhood of vector field fixed points are examined. Resonance cases are considered separately.
On diagrammatic technique for nonlinear dynamical systems
Semenyakin, Mykola
2014-01-01
In this paper we investigate phase flows over $\\mathbb{C}^n$ and $\\mathbb{R}^n$ generated by vector fields $V=\\sum P^{i}\\partial_i$ where $P^{i}$ are finite degree polynomials. With the convenient diagrammatic technique we get expressions for evolution operators $ev\\{V|t\\}: x(0)\\mapsto x(t)$ through the series in powers of $x(0)$ and $t$, represented as sum over all trees of particular type. Estimates are made for the radius of convergence in some particular cases. The phase flows behavior in...
Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides
Institute of Scientific and Technical Information of China (English)
Zhang Jie-Fang; Jin Mei-Zhen; He Ji-Da; Lou Ji-Hui; Dai Chao-Qing
2013-01-01
We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schr(o)dinger equation with varying coefficients.And then the dynamics of the first-and the second-order optical rogues are investigated.Finally,the controllability of the optical rogue propagating in inhomogeneous nonlinear waveguides is discussed.By properly choosing the distributed coefficients,we demonstrate analytically that rogue waves can be restrained or even be annihilated,or emerge periodically and sustain forever.We also figure out the center-of-mass motion of the rogue waves.
Modeling of Nonlinear Signal Distortion in Fiber-Optical Networks
Johannisson, Pontus
2013-01-01
A low-complexity model for signal quality prediction in a nonlinear fiber-optical network is developed. The model, which builds on the Gaussian noise model, takes into account the signal degradation caused by a combination of chromatic dispersion, nonlinear signal distortion, and amplifier noise. The center frequencies, bandwidths, and transmit powers can be chosen independently for each channel, which makes the model suitable for analysis and optimization of resource allocation, routing, and scheduling in large-scale optical networks applying flexible-grid wavelength-division multiplexing.
Hybrid quantum systems for enhanced nonlinear optical susceptibilities
Sullivan, Dennis; Kuzyk, Mark G
2016-01-01
Significant effort has been expended in the search for materials with ultra-fast nonlinear-optical susceptibilities, but most fall far below the fundamental limits. This work applies a theoretical materials development program that has identified a promising new hybrid made of a nanorod and a molecule. This system uses the electrostatic dipole moment of the molecule to break the symmetry of the metallic nanostructure that shifts the energy spectrum to make it optimal for a nonlinear-optical response near the fundamental limit. The structural parameters are varied to determine the ideal configuration, providing guidelines for making the best structures.
A Web Tool for Research in Nonlinear Optics
Prikhod'ko, Nikolay V.; Abramovsky, Viktor A.; Abramovskaya, Natalia V.; Demichev, Andrey P.; Kryukov, Alexandr P.; Polyakov, Stanislav P.
2016-02-01
This paper presents a project of developing the web platform called WebNLO for computer modeling of nonlinear optics phenomena. We discuss a general scheme of the platform and a model for interaction between the platform modules. The platform is built as a set of interacting RESTful web services (SaaS approach). Users can interact with the platform through a web browser or command line interface. Such a resource has no analogues in the field of nonlinear optics and will be created for the first time therefore allowing researchers to access high-performance computing resources that will significantly reduce the cost of the research and development process.
Anderson, Kristin K.; LaGasse, Michael J.; Haus, Hermann A.; Fujimoto, James G.
1990-05-01
We describe the application of a new femtosecond measurement technique, time division interferometry, for investigating the transient nonlinear index in waveguides. This technique performs an interferometric measurement using a time division multiplexed reference pulse and achieves high sensitivity with increased immunity to acoustic and thermal parasitics. Using a tunable femtosecond laser source, direct measurements of the wavelength dependent nonresonant nonlinear index have been performed in A1GaAs waveguides. In addition, conventional pump and probe absorption measurements permit the investigation of carrier dynamics, band filling, and two photon absorption effects. Two photon absorption is found to be a potentially serious limiting effect for obtaining all optical switching.
40-Gb/s all-optical wavelength conversion based on a nonlinear optical loop mirror
DEFF Research Database (Denmark)
Yu, Jianjun; Zheng, Xueyan; Peucheret, Christophe
2000-01-01
All-optical wavelength conversion based on a nonlinear optical loop mirror (NOLM) at 40 Gb/s is demonstrated for the first time. The effect of walkoff time between control beam and signal beams is investigated when the NOLM is used as an all-optical wavelength converter or an all...
Recent Advances in Graphene-Assisted Nonlinear Optical Signal Processing
Directory of Open Access Journals (Sweden)
Jian Wang
2016-01-01
Full Text Available Possessing a variety of remarkable optical, electronic, and mechanical properties, graphene has emerged as an attractive material for a myriad of optoelectronic applications. The wonderful optical properties of graphene afford multiple functions of graphene based polarizers, modulators, transistors, and photodetectors. So far, the main focus has been on graphene based photonics and optoelectronics devices. Due to the linear band structure allowing interband optical transitions at all photon energies, graphene has remarkably large third-order optical susceptibility χ(3, which is only weakly dependent on the wavelength in the near-infrared frequency range. The graphene-assisted four-wave mixing (FWM based wavelength conversions have been experimentally demonstrated. So, we believe that the potential applications of graphene also lie in nonlinear optical signal processing, where the combination of its unique large χ(3 nonlinearities and dispersionless over the wavelength can be fully exploited. In this review article, we give a brief overview of our recent progress in graphene-assisted nonlinear optical device and their applications, including degenerate FWM based wavelength conversion of quadrature phase-shift keying (QPSK signal, phase conjugated wavelength conversion by degenerate FWM and transparent wavelength conversion by nondegenerate FWM, two-input and three-input high-base optical computing, and high-speed gate-tunable terahertz coherent perfect absorption (CPA using a split-ring graphene.
Dynamic structural correlation via nonlinear programming techniques
Ting, T.; Ojalvo, I. U.
1988-01-01
A solution to the correlation between structural dynamic test results and finite element analyses of the same components is presented in this paper. Basically, the method can be categorized as a Levenberg-Marquardt type Gauss-Newton method which requires only the differences between FE modal analyses and test results and their first derivatives with respect to preassigned design variables. With proper variable normalization and equation scaling, the method has been made numerically better-conditioned and the inclusion of the Levenberg-Marquardt technique overcomes any remaining difficulty encountered in inverting singular or near-singular matrices. An important feature is that each iteration requires only one function evaluation along with the associated design sensitivity analysis and so the procedure is computationally efficient.
Institute of Scientific and Technical Information of China (English)
Xie Ru-Sheng; Fan Wen-Bin; Lu Ming; Zhao You-Yuan
2007-01-01
This paper reports that the nonlinear refractive index of a novel organic optical storage film doped azodiphenylamine polymer is measured by using the Z-scan technique. The nonlinear refractive index up to 3.7 ×10-6 cm2/W induced by thermo-optical effect is obtained. It indicates that the sample has excellent optical nonlinear properties. The physical mechanism of the great nonlinear optical effect is analysed and the optical conjugate characteristic is also discussed with degenerate four-wave-mixing. The phase conjugate wave diffracted from the formative refractive index grating in the sample is acquired and its equivalent reflectivity reaches about 22%. On this basis,the reflective wave phase-conjugated mirror system was designed, and the image aberration experienced in propagation in the storage experiment is corrected by using the system.
Optics in a nonlinear gravitational wave
Harte, Abraham I
2015-01-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. The commonly-used predictions of linear perturbation theory are shown to be generically overshadowed---even for very weak gravitational waves---by nonlinear effects when considering observations of sufficiently distant sources; higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Optics in a nonlinear gravitational plane wave
Harte, Abraham I.
2015-09-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Materials for Nonlinear Optics Chemical Perspectives
1991-01-01
introduced into LB muldilayers built from 1/1 mixtures with an amphiphilic cyclodextrin . The polyenic chains are again perpendicular to the substrate...molecules in inorganic matrices. The encapsulated molecules can be used to induce new optical properties in the material or to probe the changes at the...glass are discussed here. First, laser dyes including rhodamines and coumarins are encapsulated . The resulting doped gel-glasses exhibit optical gain
Nonlinear Real-Time Optical Signal Processing.
1983-12-01
8217 " University of Southern CaliforniaN JU Los Angeles, California 90089-0272 " --;984. ,’ I ’I Research Sponsored by the ., k Air Force Office of...concentrates on experimental results from the sixteen gate clocked master-slave optical flip-flop. A second paper " Architectures for a Sequential Optical Logic...purpose computer could permit the realization of a number of architectural advantages over semiconductor electronics [27]. These advantages include
Optical Beams in Nonlocal Nonlinear Media
DEFF Research Database (Denmark)
Królikowski, W.; Bang, Ole; Wyller, J.
2003-01-01
We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....
All-optical signal processing technique for secure optical communication
Qian, Feng-chen; Su, Bing; Ye, Ya-lin; Zhang, Qian; Lin, Shao-feng; Duan, Tao; Duan, Jie
2015-10-01
Secure optical communication technologies are important means to solve the physical layer security for optical network. We present a scheme of secure optical communication system by all-optical signal processing technique. The scheme consists of three parts, as all-optical signal processing unit, optical key sequence generator, and synchronous control unit. In the paper, all-optical signal processing method is key technology using all-optical exclusive disjunction (XOR) gate based on optical cross-gain modulation effect, has advantages of wide dynamic range of input optical signal, simple structure and so on. All-optical XOR gate composed of two semiconductor optical amplifiers (SOA) is a symmetrical structure. By controlling injection current, input signal power, delay and filter bandwidth, the extinction ratio of XOR can be greater than 8dB. Finally, some performance parameters are calculated and the results are analyzed. The simulation and experimental results show that the proposed method can be achieved over 10Gbps optical signal encryption and decryption, which is simple, easy to implement, and error-free diffusion.
Van Erps, Jürgen; Luan, Feng; Pelusi, Mark D.; Mägi, Eric; Iredale, Tim; Madden, Steve; Choi, Duk Yong; Bulla, Douglas A.; Luther-Davies, Barry; Thienpont, Hugo; Eggleton, Benjamin J.
2010-06-01
As the bit rates of optical networks increase, the ability of accurate monitoring of optical waveforms has become increasingly important. In recent years, optical sampling has emerged as a technique to perform time-resolved measurements of optical data signals at high data rates with a bandwidth that cannot be reached by conventional photodetectors and oscilloscopes. In an optical sampling system, the optical signal is sampled in the optical domain by a nonlinear optical sampling gate before the resulting samples are converted to an electrical signal. This avoids the need for high bandwidth electronics if the optical sampling gate is operated with a modest repetition frequency. In this paper, we present an optical sampling system using the optical Kerr effect in a highly nonlinear chalcogenide device, enabling combined capability for femtosecond resolution and broadband signal wavelength tunability. A temporal resolution 450-fs is achieved using four-wave mixing (FWM) in dispersion-engineered chalcogenide waveguides: on one hand a 7-cm long planar waveguide (integrated on a photonic chip) and on the other hand a 5-cm long tapered fiber. The use of a short length, dispersion-shifted waveguide with ultrahigh nonlinearity (10000/W/km) enables high-resolution optical sampling without the detrimental effect of chromatic dispersion on the temporal distortion of the signal and sampling pulses, as well as their phase mismatch (which in turn would degrade the FWM efficiency and the sensitivity of the measurement). Using these chalcogenide devices, we successfully monitor a 640-Gb/s optical time-division multiplexing (OTDM) datastream, showcasing its potential for monitoring of signals at bitrates approaching and beyond Tb/s. We compare the advantages and disadvantages of both approaches and discuss fundamental limitations as well as potential improvements.
Application of Novel Nonlinear Optical Materials to Optical Processing
Banerjee, Partha P.
1999-01-01
We describe wave mixing and interactions in nonlinear photorefractive polymers and disodium flourescein. Higher diffracted orders yielding forward phase conjugation can be generated in a two-wave mixing geometry in photorefractive polymers, and this higher order can be used for image edge enhancement and correlation. Four-wave mixing and phase conjugation is studied using nonlinear disodium floureschein, and the nature and properties of gratings written in this material are investigated.
Chip scale low dimensional materials: optoelectronics & nonlinear optics
Gu, Tingyi
The CMOS foundry infrastructure enables integration of high density, high performance optical transceivers. We developed integrated devices that assemble resonators, waveguide, tapered couplers, pn junction and electrodes. Not only the volume standard manufacture in silicon foundry is promising to low-lost optical components operating at IR and mid-IR range, it also provides a robust platform for revealing new physical phenomenon. The thesis starts from comparison between photonic crystal and micro-ring resonators based on chip routers, showing photonic crystal switches have small footprint, consume low operation power, but its higher linear loss may require extra energy for signal amplification. Different designs are employed in their implementation in optical signal routing on chip. The second part of chapter 2 reviews the graphene based optoelectronic devices, such as modulators, lasers, switches and detectors, potential for group IV optoelectronic integrated circuits (OEIC). In chapter 3, the highly efficient thermal optic control could act as on-chip switches and (transmittance) tunable filters. Local temperature tuning compensates the wavelength differences between two resonances, and separate electrode is used for fine tuning of optical pathways between two resonators. In frequency domain, the two cavity system also serves as an optical analogue of Autler-Towns splitting, where the cavity-cavity resonance detuning is controlled by the length of pathway (phase) between them. The high thermal sensitivity of cavity resonance also effectively reflects the heat distribution around the nanoheaters, and thus derives the thermal conductivity in the planar porous suspended silicon membrane. Chapter 4 & 5 analyze graphene-silicon photonic crystal cavities with high Q and small mode volume. With negligible nonlinear response to the milliwatt laser excitation, the monolithic silicon PhC turns into highly nonlinear after transferring the single layer graphene with
The Optical Nonlinearity of Au and Ag Nanoparticle Prepared by the Γ-Radiation Method
Directory of Open Access Journals (Sweden)
Esmaeil Shahriari
2010-01-01
Full Text Available Problem statement: The third order nonlinear optical properties of metal nanoparticles have been of interest in physical chemistry, medical diagnostics and optical devices. Gold colloidal nanoparticles are responsible for the brilliant reds seen in stained glass windows and silver particles are typically yellow. The purpose of the study was to determine the nonlinear refraction and absorption coefficient of the Au and Ag nanoparticles in PVP solution. Approach: The samples were prepared by Γ-radiation method and the nonlinear optical properties of the composites were investigated using a single beam Z-scan technique with a beam power of 40 mW and operated at wavelength of 532 nm. The measurements were carried out for both Open and closed aperture Z-scan arrangements. Results: For both Au/PVP and Ag/PVP samples the results exhibited reverse saturable absorption. The closed aperture Z-scan of the nano-fluid samples revealed self-defocusing effect while the open aperture Z-scan of the samples show a reversible saturable absorption. Conclusion: The Z-scan measurement showed that silver and gold nano-fluid prepared by gamma radiation exhibited large thermal nonlinear refractive index n2 as -8.78×10-7 and -2.478×10-6 cm2/W, respectively. We have also investigated nonlinear absorption of these samples and we found a large value of nonlinear absorption for Ag nanoparticle and a weak absorption for Au nanoparticle. In conclusion, the experimental result shows a good nonlinear refractive index at low laser power in which encouraging for possible applications in nonlinear optical devices.
A Strategy for the Development of Macromolecular Nonlinear Optical Materials
1990-01-01
obsolete. SECURITY CLASSIFICATION OF THIS PAGE STRATEGY FOR THE DEVELOPMENT OF MACROMOLECULAR NONLINEAR OPTICAL MATERIALS Braja K. Mandala , Jan-Chan...materials is significantly different from the conventional inorganic NLO materials. The extent of second order (quadratic) NLO effect such as second...is a criterion of paramount importance for a large second order electro-optic effect in organic materials 8 ,9 . The most common approach to obtain
Nonlinear Optical Properties and Femtosecond Laser Micromachining of Special Glasses
Almeida,Juliana M. P.; Gustavo F. B. Almeida; Boni, Leonardo De; Cleber R. Mendonça
2015-01-01
Materials specially designed for photonics have been at the vanguard of chemistry, physics and materials science, driven by the development of new technologies. One particular class of materials investigated in this context are glasses, that in principle should exhibit high third order optical nonlinearities and fast response time, whose optical properties can be tailored by compositional changes, such as, for instance, the incorporation of metallic nanoparticles to explore plasmon resonances...
Harmonic nanoparticles: noncentrosymmetric metal oxides for nonlinear optics
Rogov, Andrii; Mugnier, Yannick; Bonacina, Luigi
2015-01-01
The combination of nonlinear optics and nanotechnology is an extremely rich scientific domain yet widely unexplored. We present here a review of recent optical investigations on noncentrosymmetric oxide nanoparticles with a large ${{\\chi }^{(2)}}$ response, often referred to as harmonic nanoparticles (HNPs). HNPs feature a series of properties which distinguish them from other photonics nanoprobes (quantum dots, up-conversion nanoparticles, noble metal particles). HNPs emission is inherently ...
Energy Technology Data Exchange (ETDEWEB)
Molli, Muralikrishna, E-mail: muralikrishnamolli@sssihl.edu.in [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India); Parola, Sowmendran; Avinash Chunduri, L.A.; Aditha, Saikiran; Sai Muthukumar, V; Mimani Rattan, Tanu; Kamisetti, Venkataramaniah [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India)
2012-05-15
Nanocrystalline Bismuth telluride and thallium (4 mol %) doped Bismuth telluride were synthesized through hydrothermal method. The as-prepared products were characterized using Powder X-ray Diffraction, High Resolution Transmission Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, UV-Visible spectroscopy and Fourier Transform Infrared Spectroscopy. Powder XRD results revealed the crystalline nature of the obtained phases. HRTEM showed the particle-like morphology of the products. The decrease in the absorption coefficient due to thallium doping was observed in FTIR spectra. The intensity dependent nonlinear optical properties of nanocrystalline bismuth telluride and thallium doped bismuth telluride were studied using the Z-scan technique in open-aperture configuration. Bismuth telluride doped with thallium showed enhanced nonlinear optical response compared to pristine bismuth telluride and hence could be used as a potential candidate for optical power limiting applications. - Graphical Abstract: Nonlinear transmission (Z-scan) curves of nanocrystalline bismuth telluride ({Delta}) and thallium doped bismuth telluride ({open_square}). Thallium doped bismuth telluride showed enhanced nonlinear absorption compared to bismuth telluride. Inset: TEM micrograph of bismuth telluride nanocrystallites. Highlights: Black-Right-Pointing-Pointer Synthesis of Nanocrystalline Bi{sub 2}Te{sub 3} and Thallium doped Bi{sub 2}Te{sub 3} through solvothermal method. Black-Right-Pointing-Pointer Reduced absorption coefficient due to thallium doping found from IR spectroscopy. Black-Right-Pointing-Pointer Open-aperture Z-scan technique for nonlinear optical studies. Black-Right-Pointing-Pointer Two photon absorption based model for theoretical fitting of Z-scan data. Black-Right-Pointing-Pointer Enhanced nonlinear absorption in Thallium doped Bi{sub 2}Te{sub 3} - potential candidate for optical power limiting applications.
Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates
Institute of Scientific and Technical Information of China (English)
LIU Xiao-Lan; PENG Xiao-Niu; YANG Zhong-Jian; LI Min; ZHOU Li
2011-01-01
Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process.The morphology, crystal structure and linear optical extinction of the gold nanoplates have been characterized.These gold nanoplates are single-crystalline with triangular, truncated triangular and hexagonal shapes, exhibiting strong surface plasmon resonance (SPR) extinction in the visible and near-infrared (NIR) region.The linear optical properties of gold nanoplates are also investigated by theoretical calculations.We further investigate the nonlinear opticai properties of the gold nanoplates in solution by Z-scan technique.The nonlinear absorption (NLA )coefficient and nonlinear refraction (NLR) index are measured to be 1.18 × 102 cm/GW and - 1.04 × 10-3 cm2/GW,respectively.%@@ Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process.The morphology,crystal structure and linear optical extinction of the gold nanoplates have been characterized.These gold nanoplates are single-crystalline with triangular,truncated triangular and hexagonal shapes,exhibiting strong surface plasmon resonance(SPR) extinction in the visible and near-infrared(NIR) region.The linear optical properties of gold nanoplates are also investigated by theoretical calculations.We further investigate the nonlinear optical properties of the gold nanoplates in solution by Z-scan technique.The nonlinear absorption(NLA)coefficient and nonlinear refraction(NLR) index are measured to be 1.18 × 102 cm/GW and - 1.04 × 10-3 cm2/GW,respectively.
Synthesis, growth and characterization of π conjugated organic nonlinear optical chalcone derivative
Energy Technology Data Exchange (ETDEWEB)
Prabhu, A.N., E-mail: ashwatha.prabhu@manipal.edu [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104 (India); Upadhyaya, V. [Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104 (India); Jayarama, A., E-mail: jayaram@mite.ac.in [Department of Physics, Mangalore Institute of Technology and Engineering (MITE), Moodabidri 574225 (India); Subrahmanya Bhat, K. [Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576 104 (India)
2013-02-15
A new potentially useful nonlinear optical organic material, 1-(5-chlorothiophen-2-yl)-3-(2,3-dimethoxyphenyl)prop-2-en-1-one, has been synthesized and grown as a high-quality single crystal by the slow evaporation technique. The grown crystals were characterized by FT-IR, NMR, thermal analysis, and UV–visible spectroscopy. The material is thermally stabile up to 111 °C. The mechanical property of the grown crystals was studied using Vickers microhardness tester and the load dependence hardness was observed. The third order nonlinear optical properties of the material such as real and imaginary part of χ{sup (3)}, nonlinear absorption coefficient and nonlinear refractive index were determined using nanosecond laser pulses at 532 nm wavelength by employing Z-scan technique. The nonlinear refractive index is found to be of the order of 10{sup −11} cm{sup 2} W{sup −1}. The magnitude of third order susceptibility is of the order of 10{sup −13} esu. The observed increase in the third order nonlinearity in these molecules clearly indicates the electronic origin. The compounds exhibit good optical limiting at 532 nm. The best optical limiting behavior of this molecule is due to the substituted strong electron donor. - Highlights: ► A novel thiophene substituted NLO crystal has been grown using methanol as solvent. ► The crystals were characterized by using FTIR, TGA/DTA and UV–visible spectroscopy. ► The n{sub 2} and χ{sup (3)} values is of the order of 10{sup −11} cm{sup 2} W{sup −1} and 10{sup −13} esu respectively. ► The crystals show better optical limiting behavior.
Linear and nonlinear optical properties of Tellurium Vanadate (Te2V2O9)
Sadhu, Sai Pavan Prashanth; Shet, Tukaram; Abhijit, B. K.; Pradhan, Akash; Molli, Muralikrishna; Sai Muthukumar, V.; Varma, K. B. R.
2017-07-01
We report here the structure property correlation of Tellurium Vanadate (Te2V2O9) through various optical and vibrational spectroscopic investigations. Pure phase polycrystalline powder of Te2V2O9 was prepared by solid state reaction technique. Phase purity of the sample was confirmed by Powder X-Ray diffraction and the microstructural investigation was analyzed using Scanning Electron Microscopy. Raman microscopy was employed to validate the molecular structure. Diffused Reflectance and Photoluminescence spectroscopy were employed to study the optical properties. Because of non-centrosymmetry, we also observed second harmonic generation in tellurium vanadate. Subsequently, third order nonlinear optical response of Te2V2O9 was probed using open-aperture Z-scan technique estimating the nonlinear absorption coefficient to be 1e-10 mW-1. The mechanism of nonlinear absorption was deduced to be a two-photon absorption process. This was ascertained through existence of excited states predicted from electronic structure of Te2V2O9 using Density Functional Theory. It is also noteworthy to highlight that Te2V2O9 possess higher nonlinear optical coefficient than other vanadate compounds reported in literature.
Afzal, S M; Razvi, M A N; Khan, Salman A; Osman, Osman I; Bakry, Ahmed H; Asiri, Abdullah M
2016-01-01
Novel heterocyclic azomethine dyes were prepared by the reaction of anthracene-9-carbaldehyde with different heterocyclic amines under microwave irradiation. Structures of the azomethine dyes were confirmed by the elemental analysis, mass spectrometry and several spectroscopic techniques. We studied absorbance and fluorescence spectra of the azomethine dyes in various solvents. They are found to be good absorbers and emitters. We also report photophysical properties like, extinction coefficient, oscillator strength, stokes shift and transition dipole moment. This reflects physicochemical behaviors of synthesized dyes. In addition, their intramolecular charge transfer and nonlinear optical properties, supported by natural bond orbital technique, were also studied computationally by density functional theory. The negative nonlinear refractive index and nonlinear absorption coefficient were measured for these dyes using the closed and open aperture Z-scan technique with a continuous wave helium-neon laser. These are found to vary linearly with solution concentration.
Afzal, S. M.; Razvi, M. A. N.; Khan, Salman A.; Osman, Osman I.; Bakry, Ahmed H.; Asiri, Abdullah M.
2016-01-01
Novel heterocyclic azomethine dyes were prepared by the reaction of anthracene-9-carbaldehyde with different heterocyclic amines under microwave irradiation. Structures of the azomethine dyes were confirmed by the elemental analysis, mass spectrometry and several spectroscopic techniques. We studied absorbance and fluorescence spectra of the azomethine dyes in various solvents. They are found to be good absorbers and emitters. We also report photophysical properties like, extinction coefficient, oscillator strength, stokes shift and transition dipole moment. This reflects physicochemical behaviors of synthesized dyes. In addition, their intramolecular charge transfer and nonlinear optical properties, supported by natural bond orbital technique, were also studied computationally by density functional theory. The negative nonlinear refractive index and nonlinear absorption coefficient were measured for these dyes using the closed and open aperture Z-scan technique with a continuous wave helium-neon laser. These are found to vary linearly with solution concentration. PMID:27631371
Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates
Energy Technology Data Exchange (ETDEWEB)
Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)
2010-10-15
Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters
Structure property relationships for the nonlinear optical response of fullerenes
Rustagi, Kailash C.; Ramaniah, Lavanya M.; Nair, Selvakumar V.
1994-11-01
We present a phenomenological theory of nonlinear optical response of fullerenes. An empirical tight-binding model is used in conjunction with a classical electromagnetic picture for the screening. Since in bulk media such a picture of screening corresponds to the self- consistent field approach, the only additional approximation involved in our approach is the neglect of nonlocality. We obtain reliable estimates for the linear and nonlinear susceptibilities of C60, C70, C76 and other pure carbon fullerenes and also substituted fullerenes. The relatively large values of (beta) that we obtain for C76 and substituted fullerenes appear promising for the development of fullerene-based nonlinear optical materials. Our phenomenological picture of screening provides a good understanding of the linear absorption spectra of higher fullerenes and predicts that a comparison of the one-photon and multi-photon spectra will provide an insight into screening effects in these systems.
Optoelectronic and nonlinear optical processes in low dimensional semiconductors
Indian Academy of Sciences (India)
B P Singh
2006-11-01
Spatial confinement of quantum excitations on their characteristic wavelength scale in low dimensional materials offers unique possibilities to engineer the electronic structure and thereby control their physical properties by way of simple manipulation of geometrical parameters. This has led to an overwhelming interest in quasi-zero dimensional semiconductors or quantum dots as tunable materials for multitude of exciting applications in optoelectronic and nonlinear optical devices and quantum information processing. Large nonlinear optical response and high luminescence quantum yield expected in these systems is a consequence of huge enhancement of transition probabilities ensuing from quantum confinement. High quantum efficiency of photoluminescence, however, is not usually realized in the case of bare semiconductor nanoparticles owing to the presence of surface states. In this talk, I will focus on the role of quantum confinement and surface states in ascertaining nonlinear optical and optoelectronic properties of II–VI semiconductor quantum dots and their nanocomposites. I will also discuss the influence of nonlinear optical processes on their optoelectronic characteristics.
Generalized dispersive wave emission in nonlinear fiber optics.
Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G
2013-01-15
We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.
Nonlinear interaction of meta-atoms through optical coupling
Energy Technology Data Exchange (ETDEWEB)
Slobozhanyuk, A. P.; Kapitanova, P. V.; Filonov, D. S.; Belov, P. A. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Powell, D. A. [Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 0200 (Australia); Shadrivov, I. V.; Kivshar, Yu. S. [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Nonlinear Physics Centre and Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Australian National University, Canberra, ACT 0200 (Australia); Lapine, M., E-mail: mlapine@physics.usyd.edu.au [National Research University of Information Technologies, Mechanics and Optics (ITMO), St. Petersburg 197101 (Russian Federation); Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, New South Wales 2006 (Australia); McPhedran, R. C. [Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, New South Wales 2006 (Australia)
2014-01-06
We propose and experimentally demonstrate a multi-frequency nonlinear coupling mechanism between split-ring resonators. We engineer the coupling between two microwave resonators through optical interaction, whilst suppressing the direct electromagnetic coupling. This allows for a power-dependent interaction between the otherwise independent resonators, opening interesting opportunities to address applications in signal processing, filtering, directional coupling, and electromagnetic compatibility.
Investigation of Nonlinear Optical Properties of Semiconductors.
1984-02-23
optical studies of InSb NI. W. Goodwin" and D. G. Seiler Center jo .4pphed Quurntm Electronics, Department of Phytics , North 1exu.% State Unuvpieroty...lnSb, in zero magnetic field, is that of Pidgeon anJ data, aside from two-photon absorption, could be ab- co-workers,’ who give references to other
Institute of Scientific and Technical Information of China (English)
TIAN Shun-Qiang; ZHANG Wen-Zhi; LI Hao-Hu; ZHANG Man-Zhou; HOU Jie; ZHOU xue-Mei; LIU Gui-Min
2009-01-01
Phase Ⅰ commissioning of the SSRF storage ring on 3.0 GeV beam energy was started at the end of December 2007.A lot of encouraging results have been obtained so far.In this paper,calibrations of the linear optics during the commissioning are discussed,and some measured results about the nonlinearity given.Calibration procedure emphasizes correcting quadrupole magnetic coefficients with the Linear Optics from Closed Orbit(LOCO)technique.After fitting the closed orbit response matrix,the linear optics of the four test modes is substantially corrected,and the measured physical parameters agree well with the designed ones.
Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya
2011-10-10
We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.
Decay of high order optical vortices in anisotropic nonlinear optical media
DEFF Research Database (Denmark)
Mamaev, A.V.; Saffman, M.; Zozulya, A.A.
1997-01-01
We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge.......We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge....
Few-photon coherent nonlinear optics with a single molecule
Maser, Andreas; Utikal, Tobias; Götzinger, Stephan; Sandoghdar, Vahid
2015-01-01
The pioneering experiments of linear spectroscopy were performed using flames in the 1800s, but nonlinear optical measurements had to wait until lasers became available in the twentieth century. Because the nonlinear cross section of materials is very small, usually macroscopic bulk samples and pulsed lasers are used. Numerous efforts have explored coherent nonlinear signal generation from individual nanoparticles or small atomic ensembles with millions of atoms. Experiments on a single semiconductor quantum dot have also been reported, albeit with a very small yield. Here, we report on coherent nonlinear spectroscopy of a single molecule under continuous-wave single-pass illumination, where efficient photon-molecule coupling in a tight focus allows switching of a laser beam by less than a handful of pump photons nearly resonant with the sharp molecular transition. Aside from their fundamental importance, our results emphasize the potential of organic molecules for applications such as quantum information pro...
Broadband excitation and collection in fiber-optic nonlinear endomicroscopy
Prakash Ghimire, Navin; Bao, Hongchun; Gu, Min
2013-08-01
Broadband excitation and collection in a fiber-optic nonlinear endomicroscope are realized by using a single hollow-core double-clad photonic crystal fiber and a gradient index lens. Femtosecond pulses with central wavelengths in the range of 750-850 nm can be directly delivered through the core of the fiber for nonlinear excitation without pre-chirping. A gradient index lens with numerical aperture 0.8 designed to operate over the near-infrared wavelength range is used for focusing the laser beam from the fiber for nonlinear excitation and for collecting the fluorescent signal from the sample. This compact system is suitable to perform nonlinear imaging of multiple fluorophors in the wavelength range of 750-850 nm.
Energy Technology Data Exchange (ETDEWEB)
Nageshwari, M.; Jayaprakash, P.; Kumari, C. Rathika Thaya [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India); Vinitha, G. [Department of Physics, School of Advanced Sciences, VIT Chennai, 600127 Tamil Nadu (India); Caroline, M. Lydia, E-mail: lydiacaroline2006@yahoo.co.in [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India)
2017-04-15
An efficient nonlinear optical semiorganic material L-valinium L-valine chloride (LVVCl) was synthesized and grown-up by means of slow evaporation process. Single crystal XRD evince that LVVCl corresponds to monoclinic system having acentric space group P2{sub 1}. The diverse functional groups existing in LVVCl were discovered with FTIR spectral investigation. The UV-Visible and photoluminescence spectrum discloses the optical and electronic properties respectively for the grown crystal. Several optical properties specifically extinction coefficient, reflectance, linear refractive index, electrical and optical conductivity were also determined. The SEM analysis was also carried out and it portrayed the surface morphology of LVVCl. The calculated value of laser damage threshold was 2.59 GW/cm{sup 2}. The mechanical and dielectric property of LVVCl was investigated employing microhardness and dielectric studies. The second and third order nonlinear optical characteristics of LVVCl was characterized utilizing Kurtz Perry and Z scan technique respectively clearly suggest its suitability in the domain of optics and photonics. - Graphical abstract: Good quality transparent single crystals of L-valinium L-valine chloride single crystal was grown by slow evaporation technique. The grown crystals were analyzed using different instrumentation methods to check its usefulness for the device fabrication. The determination of nonlinear refractive index (n{sub 2}), absorption coefficient (β) and third order nonlinear susceptibility was determined by Z scan technique, highlighted that LVVCl can serve as a promising candidate for opto electronic and nonlinear optical applications.
2015-09-17
processing - optical frequency conversion and optical DSB -to-SSB conversion 5a. CONTRACT NUMBER FA2386-14-1-0006 5b. GRANT NUMBER Grant 134113...nonlinear dynamics of semiconductor lasers for certain optical signal processing functionalities, including optical DSB -to-SSB conversion, photonic...conversion and optical DSB -to-SSB conversion Performance Period May 30, 2014 ~ May 29, 2015 Principal Investigator Name: Sheng-Kwang Hwang Position
Pan, Shoukui; Okano, Y.; Tsunekawa, S.; Fukuda, T.
1993-03-01
The Kyropoulus method was used to grow nonlinear optical organic crystals ABP (4-aminobenzophenone). The crystals were characterized by nonlinear optical measurements and had a large effect of frequency doubling.
Quantum nonlinear optics with single photons enabled by strongly interacting atoms
DEFF Research Database (Denmark)
Peyronel, Thibault; Firstenberg, Ofer; Liang, Qi Yu
2012-01-01
The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding...
Power-transfer effects in monomode optical nonlinear waveguiding structures.
Jakubczyk, Z; Jerominek, H; Patela, S; Tremblay, R; Delisle, C
1987-09-01
We describe power-transfer effects, over a certain threshold, among constituents of planar waveguiding structures consisting of an optical linear layer deposited onto a nonlinear substrate (CdS(x)Se(1-x)-doped glass). Proper selection of the thickness of the linear waveguiding film and the refractive index of the linear cladding allows one to obtain optical transistor action and to construct all-optical AND, OR, NOT, and XOR logic gates. The effects appear for the TE(0) guided mode.
APPLICATION OF NONLINEAR WATERMARK TECHNIQUES IN DIGITAL LIBRARIES
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
A digital watermark is an invisible mark embedded in a digital image that may be used for a number of different purposes including copyright protection. Due to the urgent need for protecting the copyright of digital products in digital library, digital watermarking has been proposed as a solution to this problem. This letter describes potential situations that nonlinear theory can be used to enhance robustness and security of the watermark in digital library. Some nonlinear watermark techniques have been enumerated. Experimental results show that the proposed scheme is superior to the general watermark scheme both in security and robustness in digital library.
Energy Technology Data Exchange (ETDEWEB)
Castro, Hemerson P. S.; Alencar, Márcio A. R. C.; Hickmann, Jandir M. [Optics and Materials Group–OPTMA, Universidade Federal de Alagoas, CAIXA POSTAL 2051, 57061-970 Maceió (Brazil); Wender, Heberton [Brazilian Synchrotron National Laboratory (LNLS), CNPEM, Rua Giuseppe Máximo Scolfaro 10.000, 13083-970 Campinas (Brazil); Department of Physics, Universidade Federal do Mato Grosso do Sul, 79070-900, Campo Grande (Brazil); Teixeira, Sergio R. [Institute of Physics, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil); Dupont, Jairton [Laboratory of Molecular Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil)
2013-11-14
The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.
Nonlinear optical properties of laser deposited CuO thin films
Energy Technology Data Exchange (ETDEWEB)
Chen Aiping [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang Guang, E-mail: gyang@mail.hust.edu.c [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Long Hua; Li Fang; Li Yuhua [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu Peixiang, E-mail: lupeixiang@mail.hust.edu.c [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)
2009-06-01
In this work we investigate the third-order optical nonlinearities in CuO films by Z-scan method using a femtosecond laser (800 nm, 50 fs, 200 Hz). Single-phase CuO thin films have been obtained using pulsed laser deposition technique. The structure properties, surface image, optical transmittance and reflectance of the films were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and UV-vis spectroscopy. The Z-scan results show that laser-deposited CuO films exhibit large nonlinear refractive coefficient, n{sub 2} = - 3.96 x 10{sup -17} m{sup 2}/W, and nonlinear absorption coefficient, {beta} = - 1.69 x 10{sup -10} m/W, respectively.
Explicit formulation of second and third order optical nonlinearity in the FDTD framework
Varin, Charles; Bart, Graeme; Fennel, Thomas; Brabec, Thomas
2016-01-01
The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often implies a complete rewriting of the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model derived from an analytical solution of the quantum mechanical two-level equations. With the proposed approach, numerical integration is simple, intuitive, fully explicit, and computationally efficient.
Iterative nonlinear ISI cancellation in optical tilted filter-based Nyquist 4-PAM system
Ju, Cheng; Liu, Na
2016-09-01
The conventional double sideband (DSB) modulation and direct detection scheme suffers from severer power fading, linear and nonlinear inter-symbol interference (ISI) caused by fiber dispersion and square-law direct detection. The system's frequency response deteriorates at high frequencies owing to the limited device bandwidth. Moreover, the linear and nonlinear ISI is enhanced induced by the bandwidth limited effect. In this paper, an optical tilted filter is used to mitigate the effect of power fading, and improve the high frequency response of bandwidth limited device in Nyquist 4-ary pulse amplitude modulation (4-PAM) system. Furtherly, iterative technique is introduced to mitigate the nonlinear ISI caused by the combined effects of electrical Nyquist filter, limited device bandwidth, optical tilted filter, dispersion, and square-law photo-detection. Thus, the system's frequency response is greatly improved and the delivery distance can be extended.
Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae
Maksymov, Ivan S
2015-01-01
Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...
Vijayalakshmi, A.; Vidyavathy, B.; Vinitha, G.
2016-08-01
Isonicotinamide p-nitrophenol (ICPNP), a new organic material, was synthesized using methanol solvent. Single crystals of ICPNP were grown using a slow evaporation solution growth technique. Crystal structure of ICPNP is elucidated by single crystal X-ray diffraction analysis. It belongs to monoclinic crystal system with space group of P21/c. It forms two dimensional networks by O-H…O, N-H…O and C-H…O hydrogen bonds. The molecular structure of ICPNP was further confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance range and the lower cut-off wavelength (421 nm) with the optical band gap (2.90 eV) of the ICPNP crystal were determined by UV-vis-NIR spectral study. Thermal behavior of ICPNP was studied by thermo gravimetric and differential thermal analyses (TG/DTA). The relative dielectric permittivity was calculated for various temperature ranges. Laser damage threshold of ICPNP crystal was found to be 1.9 GW/cm2 using an Nd:YAG laser. A Z-scan technique was employed to measure the nonlinear absorption coefficient, nonlinear refractive index and nonlinear optical susceptibility. Optical limiting behavior of ICPNP was observed at 35 mW input power.
Spoorthi, K.; Pramodini, S.; Kityk, I. V.; Abd-Lefdil, M.; Sekkati, M.; El Fakir, A.; Rao, Ashok; Sanjeev, Ganesh; Poornesh, P.
2017-06-01
In this article, we report the third-order nonlinear optical properties of electron beam irradiated gadolinium-doped zinc oxide (GZO) thin films prepared using the spray pyrolysis deposition technique. GZO thin films were treated with an electron beam from a variable energy microtron accelerator at dose rates ranging from 1-5 kGy. Nonlinear optical measurements were conducted by employing the single beam Z-scan technique. A continuous wave He-Ne laser operating at 633 nm was used as the source of excitation. Closed aperture Z-scan results reveal that the films exhibit self-defocusing nonlinearity. Open aperture Z-scan results exhibit a switching over phenomena of reverse saturable absorption to saturable absorption for thin film irradiated at 3 kGy, indicating the influence of electron beams on optical nonlinearity. The significant change in third-order nonlinear optical susceptibility χ (3) ranging from 2.14 × 10-3 to 3.12 × 10-3 esu is attributed to the effect of electron beam irradiation. The study shows that the nonlinear coefficients of GZO films can be tuned by electron beams for use in nonlinear optical device applications.
Ganesh, V.; Yahia, I. S.; AlFaify, S.; Shkir, Mohd.
2017-01-01
In the current work, nanocrystalline undoped and Sn doped ZnO thin films with different doping concentrations (1, 3, 5, 7 at%) have been deposited on glass substrate by low cost spin coating technique. The strong effect of Sn doping on structural, morphological, optical, nonlinear properties have been observed. X-ray diffraction study revealed that all the thin films are preferentially grown along (002) plane. The crystallite size is found to be increased with increasing the concentration of Sn, similar behavior was observed by atomic force microscopy analysis. Optical study shows that the prepared thin films are highly transparent. The direct optical band gap was calculate and found to be 3.16, 3.20, 3.22, 3.34, 3.18 eV for pure and doped films respectively. The refractive index, linear susceptibility, nonlinear absorption coefficient, nonlinear susceptibility and nonlinear refractive index were calculated. Furthermore, the third order nonlinear optical properties are investigated using Z-scan technique and their values are found to be -3.75×10-8 cm2/W, -3.76×10-3 cm/W and 0.65×10-3 esu for 7% Sn doped ZnO, respectively. There is a good correlation between theoretical and experimental third order nonlinear properties and higher values shows that the deposited films are may be applied in nonlinear optical applications.
Optical nonlinearities of small polarons in lithium niobate
Imlau, Mirco; Badorreck, Holger; Merschjann, Christoph
2015-12-01
An overview of optical nonlinearities of small bound polarons is given, which can occur in the congruently melting composition of LiNbO3. Such polarons decisively influence the linear and nonlinear optical performance of this material that is important for the field of optics and photonics. On the basis of an elementary phenomenological approach, the localization of carriers in a periodic lattice with intrinsic defects is introduced. It is applied to describe the binding energies of four electron and hole small polarons in LiNbO3: small free NbNb4 + polarons, small bound NbLi4 + polarons, small bound NbLi4 +:NbNb4 + bipolarons, and small bound O- hole polarons. For the understanding of their linear interaction with light, an optically induced transfer between nearest-neighboring polaronic sites is assumed. It reveals spectrally well separated optical absorption features in the visible and near-infrared spectral range, their small polaron peak energies and lineshapes. Nonlinear interaction of light is assigned to the optical formation of short-lived small polarons as a result of carrier excitation by means of band-to-band transitions. It is accompanied by the appearance of a transient absorption being spectrally constituted by the individual fingerprints of the small polarons involved. The relaxation dynamics of the transients is thermally activated and characterized phenomenologically by a stretched exponential behavior, according to incoherent 3D small polaron hopping between regular and defect sites of the crystal lattice. It is shown that the analysis of the dynamics is a useful tool for revealing the recombination processes between small polarons of different charge. Nonlinear interaction of small polarons with light furthermore results in changes of the index of refraction. Besides its causal relation to the transients via Kramers-Kronig relation, pronounced index changes may occur due to optically generated electric fields modulating the index of refraction
Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks
Directory of Open Access Journals (Sweden)
Cosimo Lacava
2017-01-01
Full Text Available In this paper, we present a review on silicon-based nonlinear devices for all optical nonlinear processing of complex telecommunication signals. We discuss some recent developments achieved by our research group, through extensive collaborations with academic partners across Europe, on optical signal processing using silicon-germanium and amorphous silicon based waveguides as well as novel materials such as silicon rich silicon nitride and tantalum pentoxide. We review the performance of four wave mixing wavelength conversion applied on complex signals such as Differential Phase Shift Keying (DPSK, Quadrature Phase Shift Keying (QPSK, 16-Quadrature Amplitude Modulation (QAM and 64-QAM that dramatically enhance the telecom signal spectral efficiency, paving the way to next generation terabit all-optical networks.
E Heebner, John; Boyd, Robert W; Park, Q-Han
2002-03-01
We describe an optical transmission line that consists of an array of wavelength-scale optical disk resonators coupled to an optical waveguide. Such a structure leads to exotic optical characteristics, including ultraslow group velocities of propagation, enhanced optical nonlinearities, and large dispersion with a controllable magnitude and sign. This device supports soliton propagation, which can be described by a generalized nonlinear Schrodinger equation.
Molecular structure-property correlations from optical nonlinearity and thermal-relaxation dynamics.
Bhattacharyya, Indrajit; Priyadarshi, Shekhar; Goswami, Debabrata
2009-02-01
We apply ultrafast single beam Z-scan technique to measure saturation absorption coefficients and nonlinear-refraction coefficients of primary alcohols at 1560 nm. The nonlinear effects result from vibronic transitions and cubic nonlinear-refraction. To measure the pure total third-order nonlinear susceptibility, we removed thermal effects with a frequency optimized optical-chopper. Our measurements of thermal-relaxation dynamics of alcohols, from 1560 nm thermal lens pump and 780 nm probe experiments revealed faster and slower thermal-relaxation timescales, respectively, from conduction and convection. The faster timescale accurately predicts thermal-diffusivity, which decreases linearly with alcohol chain-lengths since thermal-relaxation is slower in heavier molecules. The relation between thermal-diffusivity and alcohol chain-length confirms structure-property relationship.
Automated seeding-based nuclei segmentation in nonlinear optical microscopy.
Medyukhina, Anna; Meyer, Tobias; Heuke, Sandro; Vogler, Nadine; Dietzek, Benjamin; Popp, Jürgen
2013-10-01
Nonlinear optical (NLO) microscopy based, e.g., on coherent anti-Stokes Raman scattering (CARS) or two-photon-excited fluorescence (TPEF) is a fast label-free imaging technique, with a great potential for biomedical applications. However, NLO microscopy as a diagnostic tool is still in its infancy; there is a lack of robust and durable nuclei segmentation methods capable of accurate image processing in cases of variable image contrast, nuclear density, and type of investigated tissue. Nonetheless, such algorithms specifically adapted to NLO microscopy present one prerequisite for the technology to be routinely used, e.g., in pathology or intraoperatively for surgical guidance. In this paper, we compare the applicability of different seeding and boundary detection methods to NLO microscopic images in order to develop an optimal seeding-based approach capable of accurate segmentation of both TPEF and CARS images. Among different methods, the Laplacian of Gaussian filter showed the best accuracy for the seeding of the image, while a modified seeded watershed segmentation was the most accurate in the task of boundary detection. The resulting combination of these methods followed by the verification of the detected nuclei performs high average sensitivity and specificity when applied to various types of NLO microscopy images.
Non-linear optical microscopy sheds light on cardiovascular disease.
Directory of Open Access Journals (Sweden)
Valentina Caorsi
Full Text Available Many cardiac diseases have been associated with increased fibrosis and changes in the organization of fibrillar collagen. The degree of fibrosis is routinely analyzed with invasive histological and immunohistochemical methods, giving a limited and qualitative understanding of the tissue's morphological adaptation to disease. Our aim is to quantitatively evaluate the increase in fibrosis by three-dimensional imaging of the collagen network in the myocardium using the non-linear optical microscopy techniques Two-Photon Excitation microscopy (TPE and Second Harmonic signal Generation (SHG. No sample staining is needed because numerous endogenous fluorophores are excited by a two-photon mechanism and highly non-centrosymmetric structures such as collagen generate strong second harmonic signals. We propose for the first time a 3D quantitative analysis to carefully evaluate the increased fibrosis in tissue from a rat model of heart failure post myocardial infarction. We show how to measure changes in fibrosis from the backward SHG (B(SHG alone, as only backward-propagating SHG is accessible for true in vivo applications. A 5-fold increase in collagen I fibrosis is detected in the remote surviving myocardium measured 20 weeks after infarction. The spatial distribution is also shown to change markedly, providing insight into the morphology of disease progression.
Non-Linear Optical Microscopy Sheds Light on Cardiovascular Disease
Caorsi, Valentina; Toepfer, Christopher; Sikkel, Markus B.; Lyon, Alexander R.; MacLeod, Ken; Ferenczi, Mike A.
2013-01-01
Many cardiac diseases have been associated with increased fibrosis and changes in the organization of fibrillar collagen. The degree of fibrosis is routinely analyzed with invasive histological and immunohistochemical methods, giving a limited and qualitative understanding of the tissue's morphological adaptation to disease. Our aim is to quantitatively evaluate the increase in fibrosis by three-dimensional imaging of the collagen network in the myocardium using the non-linear optical microscopy techniques Two-Photon Excitation microscopy (TPE) and Second Harmonic signal Generation (SHG). No sample staining is needed because numerous endogenous fluorophores are excited by a two-photon mechanism and highly non-centrosymmetric structures such as collagen generate strong second harmonic signals. We propose for the first time a 3D quantitative analysis to carefully evaluate the increased fibrosis in tissue from a rat model of heart failure post myocardial infarction. We show how to measure changes in fibrosis from the backward SHG (BSHG) alone, as only backward-propagating SHG is accessible for true in vivo applications. A 5-fold increase in collagen I fibrosis is detected in the remote surviving myocardium measured 20 weeks after infarction. The spatial distribution is also shown to change markedly, providing insight into the morphology of disease progression. PMID:23409139
Liquid-state acoustically-nonlinear nanoplasmonic source of optical frequency combs
Maksymov, Ivan S
2016-01-01
Nonlinear acoustic interactions in liquids are effectively stronger than nonlinear optical interactions in solids. Thus, harnessing these interactions will offer new possibilities in the design of ultra-compact nonlinear photonic devices. We theoretically demonstrate a hybrid, liquid-state and nanoplasmonic, source of optical frequency combs compatible with fibre-optic technology. This source relies on a nanoantenna to harness the strength of nonlinear acoustic effects and synthesise optical spectra from ultrasound.
Second-order nonlinear optical metamaterials: ABC-type nanolaminates
Energy Technology Data Exchange (ETDEWEB)
Alloatti, L., E-mail: alloatti@mit.edu; Kieninger, C.; Lauermann, M.; Köhnle, K. [Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Froelich, A.; Wegener, M. [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Frenzel, T. [Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Freude, W. [Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute for Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Leuthold, J.; Koos, C., E-mail: christian.koos@kit.edu [Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe (Germany); Institute for Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany)
2015-09-21
We demonstrate a concept for second-order nonlinear metamaterials that can be obtained from non-metallic centrosymmetric constituents with inherently low optical absorption. The concept is based on iterative atomic-layer deposition of three different materials, A = Al{sub 2}O{sub 3}, B = TiO{sub 2}, and C = HfO{sub 2}. The centrosymmetry of the resulting ABC stack is broken since the ABC and the inverted CBA sequences are not equivalent—a necessary condition for non-zero second-order nonlinearity. In our experiments, we find that the bulk second-order nonlinear susceptibility depends on the density of interfaces, leading to a nonlinear susceptibility of 0.26 pm/V at a wavelength of 800 nm. ABC-type nanolaminates can be deposited on virtually any substrate and offer a promising route towards engineering of second-order optical nonlinearities at both infrared and visible wavelengths.
VARIANCE OF NONLINEAR PHASE NOISE IN FIBER-OPTIC SYSTEM
Directory of Open Access Journals (Sweden)
RANJU KANWAR
2013-04-01
Full Text Available In communication system, the noise process must be known, in order to compute the system performance. The nonlinear effects act as strong perturbation in long- haul system. This perturbation effects the signal, when interact with amplitude noise, and results in random motion of the phase of the signal. Based on the perturbation theory, the variance of nonlinear phase noise contaminated by both self- and cross-phase modulation, is derived analytically for phase-shift- keying system. Through this work, it is investigated that for longer transmission distance, 40-Gb/s systems are more sensitive to nonlinear phase noise as compared to 50-Gb/s systems. Also, when transmitting the data through the fiber optic link, bit errors are produced due to various effects such as noise from optical amplifiers and nonlinearity occurring in fiber. On the basis of the simulation results , we have compared the bit error rate based on 8-PSK with theoretical results, and result shows that in real time approach, the bit error rate is high for the same signal to noise ratio. MATLAB software is used to validate the analytical expressions for the variance of nonlinear phase noise.
Energy Technology Data Exchange (ETDEWEB)
D' silva, E.D., E-mail: deepak.dsilva@gmail.com [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574199 (India); Podagatlapalli, G. Krishna [Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046 (India); Venugopal Rao, S., E-mail: soma_venu@yahoo.com [Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046 (India); Dharmaprakash, S.M. [Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574199 (India)
2012-11-15
Graphical abstract: Photograph and schematic representation of Z-scan experimental setup used to investigate third order nonlinear properties of the chalcone materials. Highlights: ► Br and NO{sub 2} substituted chalcone derivatives were exposed to picosecond laser pulses. ► Third-order nonlinear optical (NLO) properties were investigated. ► Compounds show promising third-order and optical limiting properties. ► These materials found suitable for electrical and optical applications. -- Abstract: In this paper we present results from the experimental study of third-order nonlinear optical (NLO) properties of three molecules of Br and NO{sub 2} substituted chalcone derivatives namely (2E)-1-(4-bromophenyl)-3-[4(methylsulfanyl)phenyl]prop-2-en-1-one (4Br4MSP), (2E)-1-(3-bromophenyl)-3-[4-(methylsulfanyl) phenyl]prop-2-en-1-one (3Br4MSP) and (2E)-3[4(methylsulfanyl) phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (4N4MSP). The NLO properties have been investigated by Z-scan technique using 2 ps laser pulses at 800 nm. The nonlinear refractive indices, nonlinear absorption coefficient, and the magnitude of third-order susceptibility have been determined. The values obtained are of the order of 10{sup −7} cm{sup 2}/GW, 10{sup −3} cm/GW and 10{sup −14} esu respectively. The molecular second hyperpolarizability for the chalcone derivatives is of the order of 10{sup −32} esu. The coupling factor, excited state cross section, ground state cross section etc. were determined. The optical limiting (OL) property was studied. The results suggest that the nonlinear properties investigated for present chalcones are comparable with some of the reported chalcone derivatives and can be desirable for NLO applications.
Contactless nonlinear optics mediated by long-range Rydberg interactions
Busche, Hannes; Huillery, Paul; Ball, Simon W.; Ilieva, Teodora; Jones, Matthew P. A.; Adams, Charles S.
2017-07-01
In conventional nonlinear optics, linear quantum optics, and cavity quantum electrodynamics to create effective photon-photon interactions photons must have, at one time, interacted with matter inside a common medium. In contrast, in Rydberg quantum optics, optical photons are coherently and reversibly mapped onto collective atomic Rydberg excitations, giving rise to dipole-mediated effective photon-photon interactions that are long range. Consequently, a spatial overlap between the light modes is no longer required. We demonstrate such a contactless coupling between photons stored as collective Rydberg excitations in spatially separate optical media. The potential induced by each photon modifies the retrieval mode of its neighbour, leading to correlations between them. We measure these correlations as a function of interaction strength, distance and storage time, demonstrating an effective interaction between photons separated by 15 times their wavelength. Contactless effective photon-photon interactions are relevant for scalable multichannel photonic devices and the study of strongly correlated many-body dynamics using light.
Nonlinear Optical Parameters of Magnetoactive Semiconductor-Plasmas
Singh, M.; Joseph, D.; Duhan, S.
The nonlinear optical parameters (absorption coefficient and refractive index) of semiconductor-plasmas subjected to a transverse magnetic field have been investigated analytically. By employing the coupled-mode scheme, an expression of third-order optical susceptibility and resultant nonlinear absorption and refractive index of the medium are obtained. The analysis has been applied to both cases, viz., centrosymmetric (β = 0) and noncentrosymmetric (β ≠ 0) in the presence of magnetic field. The numerical estimates are made for InSb crystal at liquid nitrogen temperature duly irradiated by a 10-nanosecond pulsed 10.6 μm CO2 laser. The influence of doping concentration and magnetic field on both the nonlinear absorption and refractive index has been explored, and the results are found to be well in agreement with theory and experiment. Analysis further establishes that absorption coefficient and refractive index can be controlled with precision in semiconductors by the proper selection of doping concentration and an external magnetic field, and hence these media may be used for fabrication of fast cubic nonlinear optical devices under off-resonant transition regime.
Deterministic quantum nonlinear optics with single atoms and virtual photons
Kockum, Anton Frisk; Miranowicz, Adam; Macrı, Vincenzo; Savasta, Salvatore; Nori, Franco
2017-06-01
We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where virtual photons are created and annihilated, an effective deterministic coupling between two states of such a system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and -subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification, Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a minimal number of photons (they do not require any strong external drive), and do not require more than two atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available technology.
(DARPA) Nonlinear Optics at Low Light Levels
2010-05-28
Stokes and anti-Stokes photons are transmitted through 10 GHz electro- optic amplitude modulators ( Eospace Inc.) with a half-wave voltage, Vπ of 1.3V. To...sinusoidal phase modulators ( EOSPACE ) which are driven at 30 GHz with modulation depths of about 1.5 radians. To set the modulation depth, we adjust...variable attenuator, (e) Atm Inc. P1409-360 phase trimmer, (f) Nextec-RF NA00435 amplifiers, (g) MegaPhase CA- V1K2 K to V coaxial adapters, (h) EOSPACE
Optical constants and nonlinear calculations of fluorescein/FTO thin film optical system
Zahran, H. Y.; Iqbal, Javed; Yahia, I. S.
2016-11-01
The organic thin films of fluorescein dye were deposited on fluorine-doped tin oxide glass substrate by using low-cost spin coating technique. The surface of the deposited film was characterized by using AFM and X-ray diffraction spectroscopy, which shows that the film is uniform and amorphous. The spectrophotometric study was carried out at the wavelength range of 300-2500 nm. The spectral dependences of the linear refractive index and absorption index were found to decrease as the wavelength was increased. Tauc's plot study revealed that the film shows the direct transition and energy band gap values were found 1.75 eV and 3.55 eV for the thin film and the substrate, respectively. Optical constants were found nearly the same in the higher energy domain (1.0-4.5 eV). Spectroscopic method was employed to study the nonlinear optical susceptibility χ (3). The deposited thin film is a promising optical system for new generation of optoelectronics.
Spatial 3-D nonlinear calibration technique for PSD
Guo, Lifeng; Zhang, Guoxiong; Zheng, Qi; Gong, Qiang; Liu, Wenyao
2006-11-01
A 3-D nonlinear calibration technique for Position sensitive detector (PSD) in long distance laser collimating measurement is proposed. An automatic calibration system was developed to measure the nonlinearity of a 2-D PSD in 3-D space. It is mainly composed of a high accurate 2-D motorized translational stage, a high precision distance measuring device, and a computer-based data acquisition and control system. With the aid of the calibration system, the nonlinear characteristic of 2-D PSD is checked in a long collimating distance up to 78 meters. The calibration experiment was carried out for a series of distance, e.g. every 15 meters. The results showed that the nonlinearity of 2-D PSD is different evidently when the PSD element is at different distance from the laser head. One calculating method is defined to evaluate the nonlinear errors. The spatial 3-D mapping relationship between the actual displacements of the incident light and the coordinates of 2-D PSD outputs is established using a multilayer feedforward neural network.
Nonlinear ultrasonic measurements based on cross-correlation filtering techniques
Yee, Andrew; Stewart, Dylan; Bunget, Gheorghe; Kramer, Patrick; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya
2017-02-01
Cyclic loading of mechanical components promotes the formation of dislocation dipoles in metals, which can serve as precursors to crack nucleation and ultimately lead to failure. In the laboratory setting, an acoustic nonlinearity parameter has been assessed as an effective indicator for characterizing the progression of fatigue damage precursors. However, the need to use monochromatic waves of medium-to-high acoustic energy has presented a constraint, making it problematic for use in field applications. This paper presents a potential approach for field measurement of acoustic nonlinearity by using general purpose ultrasonic pulser-receivers. Nonlinear ultrasonic measurements during fatigue testing were analyzed by the using contact and immersion pulse-through method. A novel cross-correlation filtering technique was developed to extract the fundamental and higher harmonic waves from the signals. As in the case of the classic harmonic generation, the nonlinearity parameters of the second and third harmonics indicate a strong correlation with fatigue cycles. Consideration was given to potential nonlinearities in the measurement system, and tests have confirmed that measured second harmonic signals exhibit a linear dependence on the input signal strength, further affirming the conclusion that this parameter relates to damage precursor formation from cyclic loading.
J, Joy Sebastian Prakash; G, Vinitha; Ramachandran, Murugesan; Rajamanickam, Karunanithi
2017-10-01
Three different stabilizing agents, namely, L-cysteine, Thioglycolic acid and cysteamine hydrochloride were used to synthesize Cd(Zn)Se quantum dots (QDs). It was characterized using UV-vis spectroscopy, x-ray diffraction (XRD) and transmission electron microscopy (TEM). The non-linear optical properties (non-linear absorption and non-linear refraction) of synthesized Cd(Zn)Se quantum dots were studied with z-scan technique using diode pumped continuous wavelaser system at a wavelength of 532 nm. Our (organic) synthesized quantum dots showed optical properties similar to the inorganic materials reported elsewhere.
Yu, Xiang-xiang; Wang, Yu-hua
2014-01-13
Silver nanoparticles synthesized in a synthetic sapphire matrix were fabricated by ion implantation using the metal vapor vacuum arc ion source. The optical absorption spectrum of the Ag: Al2O3 composite material has been measured. The analysis of the supercontinuum spectrum displayed the nonlinear refractive property of this kind of sample. Nonlinear optical refraction index was identified at 800 nm excitation using the Kerr-lens autocorrelation (KLAC) technique. The spectrum showed that the material possessed self-defocusing property (n(2) = -1.1 × 10(-15) cm(2)W). The mechanism of nonlinear refraction has been discussed.
Hirooka, Toshihiko; Seya, Daiki; Harako, Koudai; Suzuki, Daiki; Nakazawa, Masataka
2015-08-10
We propose the ultrahigh-speed demultiplexing of Nyquist OTDM signals using an optical Nyquist pulse as both a signal and a sampling pulse in an all-optical nonlinear switch. The narrow spectral width of the Nyquist pulses means that the spectral overlap between data and control pulses is greatly reduced, and the control pulse itself can be made more tolerant to dispersion and nonlinear distortions inside the nonlinear switch. We apply the Nyquist control pulse to the 640 to 40 Gbaud demultiplexing of DPSK and DQPSK signals using a nonlinear optical loop mirror (NOLM), and demonstrate a large performance improvement compared with conventional Gaussian control pulses. We also show that the optimum spectral profile of the Nyquist control pulse depends on the walk-off property of the NOLM.
Second-order nonlinear optical microscopy of spider silk
Zhao, Yue; Hien, Khuat Thi Thu; Mizutani, Goro; Rutt, Harvey N.
2017-06-01
Asymmetric β-sheet protein structures in spider silk should induce nonlinear optical interaction such as second harmonic generation (SHG) which is experimentally observed for a radial line and dragline spider silk using an imaging femtosecond laser SHG microscope. By comparing different spider silks, we found that the SHG signal correlates with the existence of the protein β-sheets. Measurements of the polarization dependence of SHG from the dragline indicated that the β-sheet has a nonlinear response depending on the direction of the incident electric field. We propose a model of what orientation the β-sheet takes in spider silk.
Self-characterization of linear and nonlinear adaptive optics systems
Hampton, Peter J.; Conan, Rodolphe; Keskin, Onur; Bradley, Colin; Agathoklis, Pan
2008-01-01
We present methods used to determine the linear or nonlinear static response and the linear dynamic response of an adaptive optics (AO) system. This AO system consists of a nonlinear microelectromechanical systems deformable mirror (DM), a linear tip-tilt mirror (TTM), a control computer, and a Shack-Hartmann wavefront sensor. The system is modeled using a single-input-single-output structure to determine the one-dimensional transfer function of the dynamic response of the chain of system hardware. An AO system has been shown to be able to characterize its own response without additional instrumentation. Experimentally determined models are given for a TTM and a DM.
In vivo multimodal nonlinear optical imaging of mucosal tissue
Sun, Ju; Shilagard, Tuya; Bell, Brent; Motamedi, Massoud; Vargas, Gracie
2004-05-01
We present a multimodal nonlinear imaging approach to elucidate microstructures and spectroscopic features of oral mucosa and submucosa in vivo. The hamster buccal pouch was imaged using 3-D high resolution multiphoton and second harmonic generation microscopy. The multimodal imaging approach enables colocalization and differentiation of prominent known spectroscopic and structural features such as keratin, epithelial cells, and submucosal collagen at various depths in tissue. Visualization of cellular morphology and epithelial thickness are in excellent agreement with histological observations. These results suggest that multimodal nonlinear optical microscopy can be an effective tool for studying the physiology and pathology of mucosal tissue.
Performance Monitoring Techniques Supporting Cognitive Optical Networking
DEFF Research Database (Denmark)
Caballero Jambrina, Antonio; Borkowski, Robert; Zibar, Darko
2013-01-01
to solve this issue by realizing a network that can observe, act, learn and optimize its performance, taking into account end-to-end goals. In this letter we present the approach of cognition applied to heterogeneous optical networks developed in the framework of the EU project CHRON: Cognitive...... Heterogeneous Reconfigurable Optical Network. We focus on the approaches developed in the project for optical performance monitoring, which enable the feedback from the physical layer to the cognitive decision system by providing accurate description of the performance of the established lightpaths.......High degree of heterogeneity of future optical networks, such as services with different quality-of-transmission requirements, modulation formats and switching techniques, will pose a challenge for the control and optimization of different parameters. Incorporation of cognitive techniques can help...
Pre-determining the location of electromigrated gaps by nonlinear optical imaging
Energy Technology Data Exchange (ETDEWEB)
Mennemanteuil, M.-M.; Dellinger, J.; Buret, M.; Colas des Francs, G.; Bouhelier, A., E-mail: alexandre.bouhelier@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne CNRS-UMR 6303, Université de Bourgogne, 21078 Dijon (France)
2014-07-14
In this paper we describe a nonlinear imaging method employed to spatially map the occurrence of constrictions occurring on an electrically stressed gold nanowire. The approach consists at measuring the influence of a tightly focused ultrafast pulsed laser on the electronic transport in the nanowire. We found that structural defects distributed along the nanowire are efficient nonlinear optical sources of radiation and that the differential conductance is significantly decreased when the laser is incident on such electrically induced morphological changes. This imaging technique is applied to pre-determine the location of the electrical failure before it occurs.
Indian Academy of Sciences (India)
S Gunasekaran; G Anand; R Arun Balaji; J Dhanalakshmi; S Kumaresan
2010-10-01
Single crystals of urea thiourea mercuric sulphate (UTHS) and urea thiourea mercuric chloride (UTHC), semi-organic nonlinear optical materials, were grown by low-temperature solution growth technique by slow evaporation method using water as the solvent. Good quality single crystals were grown within three weeks. The nonlinear nature of the crystals was confirmed by SHG test. The UV–Vis spectrum showed the transmitting ability of the crystals in the entire visible region. FTIR spectrum was recorded and vibrational assignments were made. The degree of dopant inclusion was ascertained by AAS. The TGA–DTA studies showed the thermal properties of the crystals.
Nonlinear optical properties of porphyrins compounds based on Cobalt and Zinc push-pull type
Chniti, Meherzia
2016-01-01
This study deals with the third-order nonlinear optical properties (NL) of tetraphenylporphyrins and some of its metallic derivatives (Zn, Co) dissolved in chlorobenzene. The solutions were exposed to a laser emitting at 1064 nm, 532 nm and 355 nm in the picosecond regime ( ≈ 10 ps) using D4σ-Z-scan method in a 4f setup and a new technique called Dark-Field Zscan. The latter provides to be very reliable for the direct determination of the nonlinear refractive signal in the presence of a stron...
Nonlinear Quantum Optical Springs and Their Nonclassical Properties
Institute of Scientific and Technical Information of China (English)
M.J. Faghihi; M.K. Tavassoly
2011-01-01
The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant （and so its frequency） depends on the quantum states ofanother system. Recently, it is realized that by the assumption of frequency modulation of ω to ω √1＋ μα＋α the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence or trequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized tlamiltonian of nonlinear quantum optical spring and it＇s solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed.
Wang, Shiwei; Zhao, Lisha; Cui, Zhanchen
2012-01-15
A highly stable second-order nonlinear optical multilayer film was constructed on insulating substrates using the electric-field-induced layer-by-layer assembly technique. The substrates used in this method could be arbitrary. In another, the substrates could be modified with polyanion solution by spin coating as cladding layer. Then, the nonlinear optical multilayer films were assembled on the cladding layer directly by the electric-field-induced layer-by-layer assembly technique. The resulting cross-linked multilayer films fabricated by this method displayed high optical transparency, good thermal stability, and excellent nonlinear optical properties which can be made into waveguide devices directly. Copyright Â© 2011 Elsevier Inc. All rights reserved.
Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye
Energy Technology Data Exchange (ETDEWEB)
Zongo, S., E-mail: sidiki@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, POBox 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); Kerasidou, A.P. [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers Cedex (France); Sone, B.T.; Diallo, A. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, POBox 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research, P O Box 395, Pretoria 0001 (South Africa); Iliopoulos, K. [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers Cedex (France); Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras (Greece); Nkosi, M. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); and others
2015-06-15
Highlights: • We studied the linear and nonlinear optical properties of hybrid Bixa Orellana dye doped PMMA thin film. • We investigated the linear optical properties by means of UV/Vis, FTIR and Fluorescence. • We used Tauc - Lorentz model to evaluate linear optical parameters (n &k) with relative maximum of 1.456 at 508.5, 523.79 and 511.9 nm for n is observed while the maximum of k varies from 0.070 to 0.080. • We evaluated nonlinear third order susceptibility which was found to be 1.00 × 10{sup −21} m{sup 2} V{sup −2} or 0.72 × 10{sup −13} esu. - Abstract: Natural dyes with highly delocalized π-electron systems are considered as promising organic materials for nonlinear optical applications. Among these dyes, Bixa Orellana dye with extended π-electron delocalization is one of the most attractive dyes. Bixa Orellana dye-doped Poly(methyl methacrylate) (PMMA) thin films were prepared through spin coating process for linear and nonlinear optical properties investigation. Atomic force microscopy (AFM) was used to evaluate the roughness of the thin films. The optical constants n and k were evaluated by ellipsometric spectroscopy. The refractive index had a maximum of about 1.456 at 508.5, 523.79 and 511.9 nm, while the maximum of k varies from 0.070 to 0.080 with the thickness. The third order nonlinear optical properties of the hybrid Bixa Orellana dye-PMMA polymer were investigated under 30 ps laser irradiation at 1064 nm with a repetition rate of 10 Hz. In particular the third-order nonlinear susceptibility has been determined by means of the Maker Fringes technique. The nonlinear third order susceptibility was found to be 1.00 × 10{sup −21} m{sup 2} V{sup −2} or 0.72 × 10{sup −13} esu. Our studies provide concrete evidence that the hybrid-PMMA composites of Bixa dye are prospective candidates for nonlinear material applications.
Nonlinear optical response in doped conjugated polymers
Harigaya, K
1995-01-01
Exciton effects on conjugated polymers are investigated in soliton lattice states. We use the Su-Schrieffer-Heeger model with long-range Coulomb interactions. The Hartree-Fock (HF) approximation and the single-excitation configuration- interaction (single-CI) method are used to obtain optical absorption spectra. The third-harmonic generation (THG) at off-resonant frequencies is calculated as functions of the soliton concentration and the chain length of the polymer. The magnitude of the THG at the 10 percent doping increases by the factor about 10^2 from that of the neutral system. This is owing to the accumulation of the oscillator strengths at the lowest exciton with increasing the soliton concentration. The increase by the order two is common for several choices of Coulomb interaction strengths.
Nonlinear optics with coherent free electron lasers
Bencivenga, F.; Capotondi, F.; Mincigrucci, R.; Cucini, R.; Manfredda, M.; Pedersoli, E.; Principi, E.; Simoncig, A.; Masciovecchio, C.
2016-12-01
We interpreted the recent construction of free electron laser (FELs) facilities worldwide as an unprecedented opportunity to bring concepts and methods from the scientific community working with optical lasers into the domain of x-ray science. This motivated our efforts towards the realization of FEL-based wave-mixing applications. In this article we present new extreme ultraviolet transient grating (X-TG) data from vitreous SiO2, collected using two crossed FEL pulses (photon frequency 38 eV) to generate the X-TG and a phase matched optical probing pulse (photon frequency 3.1 eV). This experiment extends our previous investigation, which was carried out on a nominally identical sample using a different FEL photon frequency (45 eV) to excite the X-TG. The present data are featured by a peak intensity of the X-TG signal substantially larger than that previously reported and by slower modulations of the X-TG signal at positive delays. These differences could be ascribed to the different FEL photon energy used in the two experiments or to differences in the sample properties. A systematic X-TG study on the same sample as a function of the FEL wavelength is needed to draw a consistent conclusion. We also discuss how the advances in the performance of the FELs, in terms of generation of fully coherent photon pulses and multi-color FEL emission, may push the development of original experimental strategies to study matter at the femtosecond-nanometer time-length scales, with the unique option of element and chemical state specificity. This would allow the development of advanced experimental tools based on wave-mixing processes, which may have a tremendous impact in the study of a large array of phenomena, ranging from nano-dynamics in complex materials to charge and energy transfer processes.
Intrinsic optical bistability between left-handed material and nonlinear optical materials
Institute of Scientific and Technical Information of China (English)
Shi Hong-Yan; Jiang Yong-Yuan; Sun Xiu-Dong; Guo Ru-Hai; Zhao Yi-Ping
2005-01-01
The electromagnetic properties of the interface between a left-handed material and a conventional nonlinear material were investigated theoretically and numerically. We found a new phenomenon-optical bistability of the interface.It was shown that the incident intensity, incident angle and permeability ratio between the left-handed and the nonlinear materials could dramatically affect the optical bistable behaviour. We also compared the bistable behaviours of different electromagnetic modes. The results indicated that the TE mode was prior to the TM mode to obtain optical bistability for the same parameter.
Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media
Phillips, C R; Gallmann, L; Keller, U
2015-01-01
Advances in the amplification and manipulation of ultrashort laser pulses has led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine all of these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device. Moreover, our approach simultaneously offers solutions to the performance-limiting issues in the conventionally-used techniques, and supports scaling in power and bandwidth of the laser source. The approach is based on two-dimensional patterning of quasi-phase-matching gratings combined with optical parametric interactions involving spatially dispersed laser pulses...
Arivuselvi, R.; Ruban Kumar, A.
2017-02-01
The growth of inorganic zinc di-magnesium chloro sulphate (ZDMCS) nonlinear optical material from low temperature evaporation technique at ambient temperature has been reported. The dimension of harvested crystal is 28×10×2 mm3 and is possess rectangular shape morphology. The single crystal X-ray diffraction studies confirmed that the grown crystal belongs to the system of trigonal. The S-Cl stretching vibrations and Mg2+ ions present in the sample were observed by FTIR spectrometer. The cut-off wavelength of the grown crystal is about 203 nm is found by UV-visible absorption spectrum. The nonlinear optical efficiency was determined by powder Kurtz Perry technique. EDAX spectrum confirms the presence of elements within the material. Dielectric nature of the sample was analyzed for the frequency range 50 Hz to 5 MHz at different temperatures. The mechanical behaviour of the title compound was investigated using Vicker's microhardness tester.
Optical measurement techniques - A push for digitization
Kulkarni, Rishikesh; Rastogi, Pramod
2016-12-01
Over the years, optical measurement techniques have been the problem-solving backbone of many engineering applications such as nondestructive testing of materials, measurement of various material properties, structural analysis and experimental mechanics [1-3]. Probably the most important advantage associated with any optical measurement system over other systems is its non-contact type of measurement capability. Apart from their non-contact nature, the optical measurement systems are capable of providing full-field measurements at scales ranging from milli-meters to nano-meters.
Zhao, Peng; Wang, Zonghua; Chen, Jishi; Zhou, Yu; Zhang, Fushi
2017-04-01
The nonlinear optical properties of the polymeric carboxyl phthalocyanine with lanthanum (LaPPc.COOH), holmium (HoPPc.COOH) and ytterbium (YbPPc.COOH) as centric atom, were investigated by the Z-scan method using a picosecond 532 nm laser. The synthesized phthalocyanines had steric polymeric structure and dissolved well in aqueous solution. The nonlinear optical response of them was attributed to the reverse saturable absorption and self-focus refraction. The nonlinear absorption properties decreased with the centric atoms changing from La, Ho to Yb. The largest second-order hyperpolarizability and optical limiting response threshold of LaPPc.COOH were 3.89 × 10-29 esu and 0.32 J/cm2, respectively. The reverse saturable absorption was explained by a three level mode of singlet excited state under the picosecond irradiation. The result indicates the steric structure presented additive stability of these polymeric phthalocyanines for their application as potential optical limiting materials.
Pakarzadeh, H.; Rezaei, S. M.
2016-01-01
In this article, we investigate for the first time the dispersion and the nonlinear characteristics of the tapered photonic crystal fibers (PCFs) as a function of length z, via solving the eigenvalue equation of the guided mode using the finite-difference frequency-domain method. Since the structural parameters such as the air-hole diameter and the pitch of the microstructured cladding change along the tapered PCFs, dispersion and nonlinear properties change with the length as well. Therefore, it is important to know the exact behavior of such fiber parameters along z which is necessary for nonlinear optics applications. We simulate the z dependency of the zero-dispersion wavelength, dispersion slope, effective mode area, nonlinear parameter, and the confinement loss along the tapered PCFs and propose useful relations for describing dispersion and nonlinear parameters. The results of this article, which are in a very good agreement with the available experimental data, are important for simulating pulse propagation as well as investigating nonlinear effects such as supercontinuum generation and parametric amplification in tapered PCFs.
Size dependent nonlinear optical properties of YCrO{sub 3} nanosystems
Energy Technology Data Exchange (ETDEWEB)
Krishnan, Shiji, E-mail: shijikrish@gmail.com [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam-686 560, Kerala (India); Shafakath, K.; Philip, Reji [Light and Matter Physics Group, Raman Research Institute, Bangalore- 560 080, Karnataka (India); Kalarikkal, Nandakumar, E-mail: nkkalarikkal@mgu.ac.in [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam-686 560, Kerala and Center for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam-686 560, Kerala (India)
2014-01-28
We report size-dependent optical limiting response of YCrO{sub 3} nanosystems upon illumination by nanosecond laser pulses at 532 nm. The limiting properties were investigated using the open aperture z-scan technique. Three-photon absorption coefficient is found to increase with particle size within the range of our investigations. We propose that the obtained nonlinearity is caused by two photon absorption, followed by excited state absorption.
Large Enhancement of Optical Nonlinearities of New Organophosphorus Fullerene Derivative
Institute of Scientific and Technical Information of China (English)
刘智波; 田建国; 臧维平; 周文远; 张春平; 郑建禺; 周迎春; 徐华
2003-01-01
Optical nonlinearities of new organophosphorus fullerene derivative were determined by the Z-scan method with a pulsed Q-switch Nd:YAG laser at 532nm. The experimental results demonstrated that the derivative has much larger excited-states nonlinear absorption and nonlinear refraction than C60. A five-level model was utilized to fit the experimental data, and a good agreement is reached. Some parameters such as excited-state absorption cross and refraction cross were obtained. To our knowledge, the excited-state cross section of new organophosphorus fullerene derivative and its effective ratio to the ground-state cross section are the largest values among the fullerene derivatives reported to date.
Sudheesh, P.; Siji Narendran, N. K.; Chandrasekharan, K.
2013-12-01
Here we report a study on the third-order nonlinear optical properties of a new class of phenylhydrazones and the influence of silver and gold metal nanoparticles on their nonlinear response. Metal nanoparticles were prepared by laser ablation method. Single beam Z-scan technique with a 7 ns, 10 Hz Nd: YAG laser pulses at 532 nm were employed for the measurements. The compounds exhibit well optical limiting properties. Hence, these compounds are a promising class of materials for the optical device applications.
Quantum nonlinear optics with polar J-aggregates in microcavities
Herrera, Felipe; Pachon, Leonardo A; Saikin, Semion K; Aspuru-Guzik, Alán
2014-01-01
We show that an ensemble of organic dye molecules with permanent electric dipole moments embedded in a microcavity can lead to strong optical nonlinearities at the single photon level. The strong long-range electrostatic interaction between chromophores due to their permanent dipoles introduces the desired nonlinearity of the light-matter coupling in the microcavity. We obtain the absorption spectra of a weak probe field under the influence of strong exciton-photon coupling with the cavity field. Using realistic parameters, we demonstrate that a single cavity photon can significantly modify the absorptive and dispersive response of the medium to a probe photon at a different frequency. Finally, we show that the system is in the regime of cavity-induced transparency with a broad transparency window for dye dimers. We illustrate our findings using pseudoisocyanine chloride (PIC) J-aggregates in currently-available optical microcavities.
Preparation of the Inclusion Complex-Type Nonlinear Optical Polymer
Directory of Open Access Journals (Sweden)
Li-Fen Wang
2013-01-01
Full Text Available This study uses the inclusion complex method to import nonlinear optical (NLO chromophores, disperse red1 (DR1, and spiropyran (SP, into the γ-CD cavity of the γ-cyclodextrin polymer (γ-CDP to prepare orderly aligned nonphotocontrollable and photocontrollable nonlinear optical polymers. Calculations support the ultraviolet/visible analyses and suggest the formation of the 1 : 2 DR1/γ-CDP and 1 : 2 SP/γ-CDP inclusion complexes. Upon complexation, the DR1 and SP molecules are free to align themselves along an applied electric field and show high order parameters of approximately 0.48 and 0.20, respectively. Reversible photochromic reactions exhibit that the SP/γ-CDP complex still retains the photochromic properties following corona poling.
Chromatic and Dispersive Effects in Nonlinear Integrable Optics
Webb, Stephen D; Valishev, Alexander; Nagaitsev, Sergei N; Danilov, Viatcheslav V
2015-01-01
Proton accumulator rings and other circular hadron accelerators are susceptible to intensity-driven parametric instabilities because the zero-current charged particle dynamics are characterized by a single tune. Landau damping can suppress these instabilities, which requires energy spread in the beam or introducing nonlinear magnets such as octupoles. However, this approach reduces dynamic aperture. Nonlinear integrable optics can suppress parametric instabilities independent of energy spread in the distribution, while preserving the dynamic aperture. This novel approach promises to reduce particle losses and enable order-of-magnitude increases in beam intensity. In this paper we present results, obtained using the Lie operator formalism, on how chromaticity and dispersion affect particle orbits in integrable optics. We conclude that chromaticity in general breaks the integrability, unless the vertical and horizontal chromaticities are equal. Because of this, the chromaticity correcting magnets can be weaker ...
Nonlinear optical polarization analysis in chemistry and biology
Simpson, Garth J
2017-01-01
This rigorous yet accessible guide presents a molecular-based description of nonlinear optical polarization analysis of chemical and biological assemblies. It includes discussion of the most common nonlinear optical microscopy and interfacial measurements used for quantitative analysis, specifically second harmonic generation (SHG), two-photon excited fluorescence (2PEF), vibrational sum frequency generation (SFG), and coherent anti-Stokes Raman spectroscopy/stimulated Raman spectroscopy (CARS/SRS). A linear algebra mathematical framework is developed, allowing step-wise systematic connections to be made between the observable measurements and the molecular response. Effects considered include local field corrections, the molecular orientation distribution, rotations between the molecular frame, the local frame and the laboratory frame, and simplifications from molecular and macromolecular symmetry. Specific examples are provided throughout the book, working from the common and relatively simple case studies ...
Parametric Analysis of Fiber Non-Linearity in Optical systems
Directory of Open Access Journals (Sweden)
Abhishek Anand
2013-06-01
Full Text Available With the advent of technology Wavelength Division Multiplexing (WDM is always an area of interest in the field of optical communication. When combined with Erbium Doped Fiber Amplifier (EDFA, it provides high data transmission rate and low attenuation. But due to fiber non-linearity such as Self Phase Modulation (SPM and Cross Phase Modulation (XPM the system performance has degraded. This non-linearity depends on different parameters of an optical system such as channel spacing, power of the channel and length of the fiber section. The degradation can be seen in terms of phase deviation and Bit Error Rate (BER performance. Even after dispersion compensation at the fiber end, residual pulse broadening still exists due to cross talk penalty.
ZnS/PVA nanocomposites for nonlinear optical applications
Ozga, K.; Michel, J.; Nechyporuk, B. D.; Ebothé, J.; Kityk, I. V.; Albassam, A. A.; El-Naggar, A. M.; Fedorchuk, A. O.
2016-07-01
We have found a correlation between ZnS nanocomposite nonlinear optical features and technological processing using electrolytic method. In the earlier researches this factor was neglected. However, it may open a new stage for operation by photovoltaic features of the well known semiconductors within a wide range of magnitudes. The titled nanostructured zinc sulfide (ZnS) was synthesized by electrolytic method. The obtained ZnS nano-crystallites possessed nano-particles sizes varying within 1.6 nm…1.8 nm. The titled samples were analyzed by XRD, HR-TEM, STEM, and nonlinear optical methods such as photo-induced two-photon absorption (TPA) and second harmonic generation (SHG). For this reason the nano-powders were embedded into the photopolymer poly(vinyl) alcohol (PVA) matrices. Role of aggregation in the mentioned properties is discussed. Possible origin of the such correlations are discussed.
Nonlinear optical localization in embedded chalcogenide waveguide arrays
Directory of Open Access Journals (Sweden)
Mingshan Li
2014-05-01
Full Text Available We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm2, using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass.
Harmonic nanoparticles: noncentrosymmetric metal oxides for nonlinear optics
Rogov, Andrii; Mugnier, Yannick; Bonacina, Luigi
2015-03-01
The combination of nonlinear optics and nanotechnology is an extremely rich scientific domain yet widely unexplored. We present here a review of recent optical investigations on noncentrosymmetric oxide nanoparticles with a large {{χ }(2)} response, often referred to as harmonic nanoparticles (HNPs). HNPs feature a series of properties which distinguish them from other photonics nanoprobes (quantum dots, up-conversion nanoparticles, noble metal particles). HNPs emission is inherently nonlinear and based on the efficient generation of harmonics as opposed to fluorescence or surface plasmon scattering. In addition, the fully coherent signal emitted by HNPs together with their polarization sensitive response and absence of resonant interaction make them appealing for several applications ranging from multi-photon (infrared) microscopy and holography, to cell tracking and sensing.
Dynamic nonlinear thermal optical effects in coupled ring resonators
Directory of Open Access Journals (Sweden)
Chenguang Huang
2012-09-01
Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.
Nonlinear interface optical switch structure for dual mode switching revisited
Bussjager, Rebecca J.; Osman, Joseph M.; Chaiken, Joseph
1998-07-01
There is a need for devices which will allow integration of photonic/optical computing subsystems into electronic computing architectures. This presentation reviews the nonlinear interface optical switch (NIOS) concept and then describes a new effect, the erasable optical memory (EOM) effect. We evaluate an extension of the NIOS device to allow simultaneous optical/electronic, i.e. dual mode, switching of light utilizing the EOM effect. Specific devices involve the fabrication of thin film tungsten (VI) oxide (WO3) and tungsten (V) oxide (W2O5) on the hypotenuse of glass (BK-7), fused silica (SiO2) and zinc selenide (ZnSe) right angle prisms. Chemical reactions and temporal response tests were performed and are discussed.
Zulina, Natalia A.; Pavlovetc, Ilia M.; Baranov, Mikhail A.; Denisyuk, Igor Yu.
2017-03-01
In this work Ag nanoparticles (NPs) stable colloid solution were prepared by laser ablation of chemically pure silver rod in liquid monomer isodecyl acrylate (IDA). Sizes of obtained nanoparticles were determined by scanning electron microscope and vary from 27 to 120 nm. Nanocomposites films were prepared from obtained stable colloid solution of AgNPs by photocuring. For aliphatic polymer IDA long molecules cross-linking Diurethane dimethacrylate, 1,6-Hexandiol diacrylate and Tetra (ethylene glycol) diacrylate were used. Prepared nanomaterials exhibit strong third-order nonlinear optical responses, which was estimated by using z-scan technique. The third-order nonlinear optical coefficients of the studied nanocomposites were found to be up to Reχ(3)=1.31×10-5 (esu) and Imχ(3)=7.64×10-5 (esu).
Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction
Energy Technology Data Exchange (ETDEWEB)
Bhattachraya, S.; Maiti, R.; Das, A. C.; Saha, S.; Mondal, S.; Ray, S. K.; Bhaktha, S. N. B.; Datta, P. K., E-mail: pkdatta.iitkgp@gmail.com [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)
2016-07-07
Simultaneous occurrence of saturable absorption nonlinearity and two-photon absorption nonlinearity in the same medium is well sought for the devices like optical limiter and laser mode-locker. Pristine graphene sheet consisting entirely of sp{sup 2}-hybridized carbon atoms has already been identified having large optical nonlinearity. However, graphene oxide (GO), a precursor of graphene having both sp{sup 2} and sp{sup 3}-hybridized carbon atom, is increasingly attracting cross-discipline researchers for its controllable properties by reduction of oxygen containing groups. In this work, GO has been prepared by modified Hummers method, and it has been further reduced by infrared (IR) radiation. Characterization of reduced graphene oxide (RGO) by means of Raman spectroscopy, X-ray photoelectron spectroscopy, and UV-Visible absorption measurements confirms an efficient reduction with infrared radiation. Here, we report precise control of non-linear optical properties of RGO in femtosecond regime with increased degrees of IR reduction measured by open aperture z-scan technique. Depending on the intensity, both saturable absorption and two-photon absorption effects are found to contribute to the non-linearity of all the samples. Saturation dominates at low intensity (∼127 GW/cm{sup 2}) while two-photon absorption becomes prominent at higher intensities (from 217 GW/cm{sup 2} to 302 GW/cm{sup 2}). The values of two-photon absorption co-efficient (∼0.0022–0.0037 cm/GW for GO, and ∼0.0128–0.0143 cm/GW for RGO) and the saturation intensity (∼57 GW/cm{sup 2} for GO, and ∼194 GW/cm{sup 2} for RGO) increase with increasing reduction, indicating GO and RGO as novel tunable photonic devices. We have also explained the reason of tunable nonlinear optical properties by using amorphous carbon model.
Sakho, El hadji Mamour; Oluwafemi, Oluwatobi S.; Sreekanth, P.; Philip, Reji; Thomas, Sabu; Kalarikkal, Nandakumar
2016-08-01
Nonlinear optical (NLO) response under near infrared (800 nm) and visible (532 nm) laser excitations, of 100 fs (fs) and 5 ns (ns) pulse durations respectively, of reduced graphene oxide (RGO), non-covalent functionalized reduced graphene oxide (NF-RGO) and NF-RGO decorated with various concentration of silver nanoparticles (NF-RGO/Ag-NPs) have been investigated using the Open-aperture Z-Scan technique. For both femtosecond and nanosecond laser excitations, the studied graphene-based materials exhibit good nonlinear optical power limiting properties (OL), with NF-RGO/Ag-NPs sample prepared with 0.1 M AgNO3 showing the best nonlinear optical properties. For the ns regime, the optical limiting threshold decreased from 8.3 J/cm2 in NF-RGO to 4.3 J/cm2 in NF-RGO/Ag-NPs, while at fs regime, the nonlinear absorption coefficient (β) was found to increase with decrease in concentration of Ag-NPs in the hybrid. Two-photon absorption (2 PA) in combination with saturable absorption (SA) in femtosecond regime, and reverse saturable absorption (RSA) along with saturable absorption (SA) in the nanosecond regime, are responsible for the observed nonlinear optical absorption (NLA) behavior in these materials. These findings show that the as-synthesized NF-RGO/Ag-NPs hybrid is a relatively better material for nonlinear optical limiting applications.
Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency
Randoux, Stéphane; Walczak, Pierre; Onorato, Miguel; Suret, Pierre
2016-10-01
We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically focus on optical fiber systems accurately described by the integrable one-dimensional nonlinear Schrödinger equation. We consider random complex fields having a Gaussian statistics and an infinite extension at initial stage. We use numerical simulations with periodic boundary conditions and optical fiber experiments to investigate spectral and statistical changes experienced by nonlinear waves in focusing and in defocusing propagation regimes. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing regimes. Heavy-tailed deviations from Gaussian statistics are observed in focusing regime while low-tailed deviations from Gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum changes with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regimes, we reveal the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.
Computationally Efficient Nonlinearity Compensation for Coherent Fiber-Optic Systems
Institute of Scientific and Technical Information of China (English)
Likai Zhu; Guifang Li
2012-01-01
Split-step digital backward propagation (DBP) can be combined with coherent detection to compensate for fiber nonlinear impairments. A large number of DBP steps is usually needed for a long-haul fiber system, and this creates a heavy computational load. In a trade-off between complexity and performance, interchannel nonlinearity can be disregarded in order to simplify the DBP algorithm. The number of steps can also be reduced at the expense of performance. In periodic dispersion-managed long-haul transmission systems, optical waveform distortion is dominated by chromatic dispersion. As a result, the nonlinearity of the optical signal repeats in every dispersion period. Because of this periodic behavior, DBP of many fiber spans can be folded into one span. Using this distance-folded DBP method, the required computation for a transoceanic transmission system with full inline dispersion compensation can be reduced by up to two orders of magnitude with negligible penalty. The folded DBP method can be modified to compensate for nonlinearity in fiber links with non-zero residua dispersion per span.
Study of Linear and Non-Linear Optical Parameters of Zinc Selenide Thin Film
Directory of Open Access Journals (Sweden)
H. N. Desai
2015-06-01
Full Text Available Thin film of Zinc Selenide (ZnSe was deposited onto transparent glass substrate by thermal evaporation technique. ZnSe thin film was characterized by UV-Visible spectrophotometer within the wavelength range of 310 nm-1080 nm. The Linear optical parameters (linear optical absorption, extinction coefficient, refractive index and complex dielectric constant of ZnSe thin film were analyzed from absorption spectra. The optical band gap and Urbach energy were obtained by Tauc’s equation. The volume and surface energy loss function of ZnSe thin film were obtained by complex dielectric constant. The Dispersion parameters (dispersion energy, oscillation energy, moment of optical dispersion spectra, static dielectric constant and static refractive index were calculated using theoretical Wemple-DiDomenico model. The oscillation strength, oscillator wavelength, high frequency dielectric constant and high frequency refractive index were calculated by single Sellmeier oscillator model. Also, Lattice dielectric constant, N/m* and plasma resonance frequency were obtained. The electronic polarizibility of ZnSe thin film was estimated by Clausius-Mossotti local field polarizibility. The nonlinear optical parameters (non-linear susceptibility and non-linear refractive index were estimated.
Third-order optical nonlinearities in anatase and rutile TiO{sub 2} thin films
Energy Technology Data Exchange (ETDEWEB)
Long Hua; Chen Aiping [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang Guang, E-mail: gyang@mail.hust.edu.c [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Li Yuhua [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu Peixiang, E-mail: lupeixiang@mail.hust.edu.c [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)
2009-08-03
Titanium dioxide (TiO{sub 2}) films have been fabricated on fused quartz and Si(001) substrates by pulsed laser deposition technique and the single-phase anatase and rutile films were obtained under the optimal conditions. The surface images and optical transmission spectra were investigated by scanning electron microscopy and double beam spectrophotometer, respectively. The values of optical band-gap and linear refractive index of the anatase and rutile films were determined. The optical nonlinearities of the films were measured by Z-scan method using a femtosecond laser (50 fs) at the wavelength of 800 nm. Through the open-aperture and closed-aperture Z-scan measurements, the real and imaginary parts of the third-order nonlinear optical susceptibility were calculated and the results show that the anatase phase TiO{sub 2} films exhibit larger nonlinear refractive effects compared with rutile phase. The figure of merit, T, defined by T = {beta}{lambda}/n{sub 2}, was calculated to be 0.8 for anatase films, meeting the requirement of T < 1 and showing potential applications in all-optical switching devices.
Femtosecond nonlinear fiber optics in the ionization regime.
Hölzer, P; Chang, W; Travers, J C; Nazarkin, A; Nold, J; Joly, N Y; Saleh, M F; Biancalana, F; Russell, P St J
2011-11-11
By using a gas-filled kagome-style photonic crystal fiber, nonlinear fiber optics is studied in the regime of optically induced ionization. The fiber offers low anomalous dispersion over a broad bandwidth and low loss. Sequences of blueshifted pulses are emitted when 65 fs, few-microjoule pulses, corresponding to high-order solitons, are launched into the fiber and undergo self-compression. The experimental results are confirmed by numerical simulations which suggest that free-electron densities of ∼10(17) cm(-3) are achieved at peak intensities of 10(14) W/cm(2) over length scales of several centimeters.
Optical detection of terahertz using nonlinear parametric upconversion.
Khan, M Jalal; Chen, Jerry C; Kaushik, Sumanth
2008-12-01
We extend our work to perform sensitive, room-temperature optical detection of terahertz (THz) by using nonlinear parametric upconversion. THz radiation at 700 GHz is mixed with pump light at 1,550 nm in a bulk GaAs crystal to generate an idler wave at 1,555.6 nm. The idler is separated, coupled into optical fiber, and detected using a gated Geiger-mode avalanche photodiode. The resulting THz detector has a power sensitivity of 4.5 pW/Hz and a timing resolution of 1 ns.
Fiber-coupled nanophotonic devices for nonlinear optics and cavity QED
Barclay, Paul Edward
2007-10-01
The sub-wavelength optical confinement and low optical loss of nanophotonic devices dramatically enhances the interaction between light and matter within these structures. When nanophotonic devices are combined with an efficient optical coupling channel, nonlinear optical behavior can be observed at low power levels in weakly-nonlinear materials. In a similar vein, when resonant atomic systems interact with nanophotonic devices, atom-photon coupling effects can be observed at a single quanta level. Crucially, the chip based nature of nanophotonics provides a scalable platform from which to study these effects. This thesis addresses the use of nanophotonic devices in nonlinear and quantum optics, including device design, optical coupling, fabrication and testing, modeling, and integration with more complex systems. We present a fiber taper coupling technique that allows efficient power transfer from an optical fiber into a photonic crystal waveguide. Greater than 97% power transfer into a silicon photonic crystal waveguide is demonstrated. This optical channel is then connected to a high-Q (> 40,000), ultra-small mode volume (V 44% of the photons input to a fiber. This permits the observation of optical bistability in silicon for sub-mW input powers at telecommunication wavelengths. To port this technology to cavity QED experiments at near-visible wavelengths, we also study silicon nitride microdisk cavities at wavelengths near 852 nm, and observe resonances with Q > 3 million and V device with an atom chip, creating an "atom-cavity chip" which can magnetically trap laser cooled atoms above the microcavity. Calculations of the microcavity single atom sensitivity as a function of Q/V are presented and compared with numerical simulations. Taking into account non-idealities, these cavities should allow detection of single laser cooled cesium atoms.
Nonlinear optical properties of atomic vapor and semiconductors
Energy Technology Data Exchange (ETDEWEB)
Kim, Doseok [Univ. of California, Berkeley, CA (United States). Dept. of Physics
1997-05-01
This thesis contains the study of highly forbidden resonant second harmonic generation (SHG) in atomic potassium vapor using tunable picosecond pulses. Various output characteristics of vapor SHG have been investigated including the input intensity dependence, potassium vapor density dependence, buffer gas pressure dependence, and spatial profile. Recently, the discovery of new nonlinear optical crystals such as barium borate (β-BaB_{2}O_{4}, BBO) and lithium borate (LiB_{3}O_{5}, LBO) has greatly improved the performance of a tunable coherent optical devices based on optical parametric generation and amplification. In the second part of this thesis, a homebuilt picosecond optical parametric generator/amplifier (OPG/OPA) system is described in detail, including its construction details and output characteristics. This laser device has found many useful applications in spectroscopic studies including surface nonlinear optical spectroscopy via sum-frequency generation (SFG). The last part of this thesis reports studies on multiphoton-excited photoluminescence from porous silicon and GaN. Multiphoton excitation and photoluminescence can give numerous complementary information about semiconductors not obtainable with one-photon, above-bandgap excitation.
Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots
Energy Technology Data Exchange (ETDEWEB)
Klimov, V.; McBranch, D.; Schwarz, C.
1998-08-10
Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.
Dispersion and polarization dependence of mobile carrier optical nonlinearities
Rustagi, K. C.
1984-06-01
Based on the author's earlier work, it is shown that the proper inclusion of carrier scattering should strongly modify the frequency and polarization dependence of optical nonlinearities due to mobile carriers in semiconductors. When the momentum relaxation is much faster than the energy relaxation, the intensity dependent refractive index is enhanced, the induced birefringence becomes a sharp function of the difference frequency ωa-ωb, and a collision induced stimulated Raman effect becomes important.
High field optical nonlinearity and the Kramers-Kronig relations.
Wahlstrand, J K; Cheng, Y-H; Milchberg, H M
2012-09-14
The nonlinear optical response to high fields is absolutely measured for the noble gas atoms He, Ne, Ar, Kr, and Xe. We find that the response is quadratic in the laser field magnitude up to the ionization threshold of each gas. Its size and quadratic dependence are well predicted by a Kramers-Kronig analysis employing known ionization probabilities, and the results are consistent with calculations using the time-dependent Schrödinger equation.
Nonlinear Optical Spectroscopy of Excited States in Polyfluorene
Tong, M; Vardeny, Z V
2006-01-01
We used a variety of nonlinear optical (NLO) spectroscopies to study the singlet excited states order, and primary photoexcitations in polyfluorene; an important blue emitting p-conjugated polymer. The polarized NLO spectroscopies include ultrafast pump-probe photomodulation, two-photon absorption, and electroabsorption. For completeness we also measured the linear absorption and photoluminescence spectra. We found that the primary photoexcitations in polyfluorene are singlet excitons.
Properties of nonreciprocal light propagation in a nonlinear optical isolator
Roy, Dibyendu
2016-01-01
Light propagation in a nonlinear optical medium is nonreciprocal for spatially asymmetric linear permittivity. We here examine physical mechanism and properties of such nonreciprocity (NR). For this, we calculate transmission of light through a two-level atom asymmetrically coupled to light inside open waveguides. We determine the critical intensity of incident light for maximum NR and a dependence of the corresponding NR on asymmetry in the coupling. Surprisingly, we find that it is mainly c...
Optical nonlinearities in semiconductor-doped glasses near and below the band edge
Bindra, K. S.; Oak, S. M.; Rustagi, K. C.
1998-03-01
We present a brief review of our recent experimental results on optical nonlinearities in semiconductor-doped glasses. It is shown that even below the absorption edge the nonlinearities are determined by nonlinear absorption. The optical Kerr effect is found to have a susceptibility which is comparable to that for nonlinear refraction. We also find that in degenerate four-wave mixing the observed intensity dependence can be strongly influenced by nonlinear absorption.
Combining calcium imaging with other optical techniques.
Canepari, Marco; Zecevic, Dejan; Vogt, Kaspar E; Ogden, David; De Waard, Michel
2013-12-01
Ca(2+) imaging is a commonly used approach for measuring Ca(2+) signals at high spatial resolution. The method is often combined with electrode recordings to correlate electrical and chemical signals or to investigate Ca(2+) signals following an electrical stimulation. To obtain information on electrical activity at the same spatial resolution, Ca(2+) imaging must be combined with membrane potential imaging. Similarly, stimulation of subcellular compartments requires photostimulation. Thus, combining Ca(2+) imaging with an additional optical technique facilitates the study of a number of physiological questions. The aim of this article is to introduce some basic principles regarding the combination of Ca(2+) imaging with other optical techniques. We discuss the design of the optics, the design of experimental protocols, the optical characteristics of Ca(2+) indicators used in combination with an optical probe, and the affinity of the Ca(2+) indicator in relation to the type of measurement. This information will enable the reader to devise an optimal strategy for combined optical experiments.
Energy Technology Data Exchange (ETDEWEB)
Divya Bharathi, M.; Ahila, G.; Mohana, J. [Department of Physics, Presidency College, Chennai 600005 (India); Chakkaravarthi, G. [Department of Physics, CPCL Polytechnic College, Chennai 600068 (India); Anbalagan, G., E-mail: anbu24663@yahoo.co.in [Department of Nuclear Physics, University of Madras, Chennai 600025 (India)
2017-05-01
A neoteric organic third order nonlinear optical material 8-hydroxyquinolinium 2-chloro-5-nitrobenzoate dihydrate (8HQ2C5N) was grown by slow cooling technique using ethanol: water (1:1) mixed solvent. The calculated low value of average etch pit solidity (4.12 × 10{sup 3} cm{sup −2}) indicated that the title crystal contain less defects. From the single crystal X-ray diffraction data, it was endowed that 8HQ2C5N crystal belongs to the monoclinic system with centrosymmetric space group P2{sub 1}/c and the cell parameters values, a = 9.6546 (4) Ǻ, b = 7.1637(3) Ǻ, c = 24.3606 (12) Ǻ, α = γ = 90°, β = 92.458(2)° and volume = 1683.29(13) Ǻ{sup 3}. The FT-IR and FT-Raman spectrum were used to affirm the functional group of the title compound. The chemical structure of 8HQ2C5N was scrutinized by {sup 13}C and {sup 1}H NMR spectral analysis and thermal stability through the differential scanning calorimetry study. Using optical studies the lower cut-off wavelength and optical band gap of 8HQ2C5N were found to be 364 nm and 3.17 eV respectively. Using the single oscillator model suggested by Wemple – Didomenico, the oscillator energy (E{sub o}), the dispersion energy (E{sub d}) and static dielectric constant (ε{sub o}) were estimated. The third-order susceptibility were determined as Im χ{sup (3)} = 2.51 × 10{sup −5} esu and Re χ{sup (3)} = 4.46 × 10{sup −7} esu. The theoretical third-order nonlinear optical susceptibility χ{sup (3)} was calculated and the results were compared with experimental value. Photoluminescence spectrum of 8HQ2C5N crystal showed the yellow emission. The crystal had the single shot laser damage threshold of 5.562 GW/cm{sup 2}. Microhardness measurement showed that 8HQ2C5N belongs to a soft material category. - Highlights: • A new organic single crystals were grown and the crystal structure was reported. • Crystal possess, good transmittance, thermal and mechanical stability. • Single shot LDT value is found to be
Energy Technology Data Exchange (ETDEWEB)
Picozzi, A., E-mail: Antonio.Picozzi@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, CNRS-UMR 5027, Dijon (France); Garnier, J. [Laboratoire de Probabilités et Modèles Aléatoires and Laboratoire Jacques-Louis Lions, Université Paris VII, 75205 Paris Cedex 13 (France); Hansson, T. [Department of Information Engineering, Università di Brescia, Brescia 25123 (Italy); Suret, P.; Randoux, S. [Laboratoire de Physique des Lasers, Atomes et Molécules, CNRS, Université de Lille (France); Millot, G. [Laboratoire Interdisciplinaire Carnot de Bourgogne, Université de Bourgogne, CNRS-UMR 5027, Dijon (France); Christodoulides, D.N. [College of Optics/CREOL, University of Central Florida, Orlando, FL 32816 (United States)
2014-09-01
The nonlinear propagation of coherent optical fields has been extensively explored in the framework of nonlinear optics, while the linear propagation of incoherent fields has been widely studied in the framework of statistical optics. However, these two fundamental fields of optics have been mostly developed independently of each other, so that a satisfactory understanding of statistical nonlinear optics is still lacking. This article is aimed at reviewing a unified theoretical formulation of statistical nonlinear optics on the basis of the wave turbulence theory, which provides a nonequilibrium thermodynamic description of the system of incoherent nonlinear waves. We consider the nonlinear Schrödinger equation as a representative model accounting either for a nonlocal or a noninstantaneous nonlinearity, as well as higher-order dispersion effects. Depending on the amount of nonlocal (noninstantaneous) nonlinear interaction and the amount of inhomogeneous (nonstationary) statistics of the incoherent wave, different types of kinetic equations are derived and discussed. In the spatial domain, when the incoherent wave exhibits inhomogeneous statistical fluctuations, different forms of the (Hamiltonian) Vlasov equation are obtained depending on the amount of nonlocality. This Vlasov approach describes the processes of incoherent modulational instability and localized incoherent soliton structures. In the temporal domain, the causality property inherent to the response function leads to a kinetic formulation analogous to the weak Langmuir turbulence equation, which describes nonlocalized spectral incoherent solitons. In the presence of a highly noninstantaneous response, this formulation reduces to a family of singular integro-differential kinetic equations (e.g., Benjamin–Ono equation), which describe incoherent dispersive shock waves. Conversely, a non-stationary statistics leads to a (non-Hamiltonian) long-range Vlasov formulation, whose self-consistent potential
Dental diagnostics using optical coherence techniques
Energy Technology Data Exchange (ETDEWEB)
Nathel, H. [Lawrence Livermore National Lab., CA (United States); Colston, B. [Univ. of California, San Francisco, CA (United States); Armitage, G. [Univ. of California, Davis, CA (United States)] [and others
1994-11-15
Optical radiation can be used for diagnostic purposes in oral medicine. However, due to the turbid, amorphous, and inhomogeneous nature of dental tissue conventional techniques used to transilluminate materials are not well suited to dental tissues. Optical coherence techniques either in the time- of frequency-domain offer the capabilities of discriminating scattered from unscattered light, thus allowing for imaging through turbid tissue. Currently, using optical time-domain reflectometry we are able to discriminate specular from diffuse reflections occurring at tissue boundaries. We have determined the specular reflectivity of enamel and dentin to be approximately 6.6 x 10{sup -5} and 1.3 x 10{sup -6}, respectively. Implications to periodontal imaging will be discussed.
Electro-optical techniques for signal conditioning
Helfrich, R. W.
1981-01-01
Electro-optical (EO) processing is discussed as a potential alternative to the all-digital approach to signal processing. Nonuniformity compensation can be done by normalizing all the single element detectors outputs in a staring array for both gain and level. Distortion correction can be accomplished with blackbodies, scene statistics or defocused optics. An algorithm used in digital signal conditioning that can be closely approximated by EO techniques is Local Area Brightness Control (LABC). In a digital processor, LABC is performed on a pixel-by-pixel basis, resulting in an enormous amount of calculation. A partially defocused optical system can be used in an EO analog to the digital system. For both nonuniformity compensation and LABC, the EO technique can result in great simplification.
Optical Management Techniques for Organic Solar Cells
Rajagopal, Adharsh
2016-01-01
In this thesis, two different optical management techniques for organics based solar cells are explored. The first part is focused on the development of a textured rear reflector for OPVs. The use of textured reflector (TR) facilitates an increase in the optical path length along with light trapping within the active layer. TR was fabricated through a relatively simpler technique by depositing metal films over a microlens array (MLA). Zinc oxide nanoparticles were used to minimize the shadowing effect. Using TR, enhancements in short-circuit current density and power conversion efficiencies up to 10-25% were demonstrated for a polymer based organic solar cell. The second part is focused on improving the effectiveness of MLA incorporation in OPVs. The increase in path length achieved using MLA can be improved by increasing the refractive index of MLA and incorporating MLA directly on the transparent electrode instead of glass substrate. This approach could avoid the optical losses occurring at the interface be...
Perspective of remote optical measurement techniques
Gregorio, Eduard; Rocadenbosch Burillo, Francisco
2007-01-01
This article presents an intercomparison between four different ROMTs: differential optical absorption spectroscopy (DOAS), differential absorption LIDAR (DIAL), Fourier transform infrared spectroscopy (FTIR), and tunable diode laser absorption spectroscopy (TDLAS). The main focus is on the TDLAS technique, where the main laser-diode typologies and modulation schemes, namely, wavelength modulation spectroscopy (WMS) and frequency modulation spectroscopy (FMS), are reviewed. At present, new pr...
Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique
Ho, Sze Phing; Shalaby, Mostafa; Peccianti, Marco; Clerici, Matteo; Pasquazi, Alessia; Ozturk, Yavuz; Ali, Jalil; Morandotti, Roberto
2015-01-01
We propose an all-optical Knife Edge characterization technique and we demonstrate its working principle by characterizing the sub-{\\lambda} features of a spatially modulated Terahertz source directly on the nonlinear crystal employed for the Terahertz generation.
DSP-based optical modulation technique for long-haul transmission
Yoshida, T.; Sugihara, T.; Uto, K.
2015-01-01
Fiber nonlinearity and equalization-enhanced phase noise (EEPN) generate rapid perturbations and critically limit the system capacity and range of long-haul optical transmission. It is possible to cancel the rapid perturbations by introducing a particular correlation between multiple signals at the transmitter and analyzing the received signals using digital signal processing. In this paper, we review our proposed techniques to cancel rapid perturbations of polarization multiplexed signals due to fiber nonlinearity and EEPN. Numerical simulation of quaternary phase-shift keying based signals shows 1.2 dB and 0.5 dB improvement respectively from the proposed cancellation techniques for fiber nonlinearity and EEPN.
Nonlinear optical spectroscopy of diamond surfaces
Energy Technology Data Exchange (ETDEWEB)
Chin, R.P.
1995-04-01
Second harmonic generation (SHG) and infrared-visible sum frequency generation (SFG) spectroscopies have been shown to be powerful and versatile for studying surfaces with submonolayer sensitivity. They have been used in this work to study bare diamond surfaces and molecular adsorption on them. In particular, infrared-visible SFG as a surface vibrational spectroscopic technique has been employed to identify and monitor in-situ surface bonds and species on the diamond (111) surface. The CH stretch spectra allow us to investigate hydrogen adsorption, desorption, abstraction, and the nature of the hydrogen termination. The C(111) surface dosed with atomic hydrogen was found to be in a monohydride configuration with the hydrogen atoms situated at top-sites. The ratio of the abstraction rate to the adsorption rate was appreciable during atomic hydrogen dosing. Kinetic parameters for thermal desorption of H on C(111) were determined showing a near first-order kinetics. For the fully H-terminated (111) surface, a large (110 cm{sup {minus}1}) anharmonicity and {approximately}19 psec lifetime were measured for the first-excited CH stretch mode. The bare reconstructed C(111)-(2 {times} l) surface showed the presence of CC stretch modes which were consistent with the Pandey {pi}-bonded chain structure. When exposed to the methyl radical, the SFG spectra of the C(111) surface showed features suggesting the presence of adsorbed methyl species. After heating to sufficiently high temperatures, they were converted into the monohydride species. Preliminary results on the hydrogen-terminated diamond (100) surface are also presented.
Scanning Techniques For Optical Data Storage
Towner, David K.
1987-01-01
It seems almost paradoxical that beams of light can be moved and steered at very high speeds using a variety of scanning methods, yet the optical disk drives now being designed and marketed for data storage applications have comparatively long access times. Knowing that optical data storage has unrealized potential is of interest, but of more immediate concern is the recognition that poor access performance is a serious design issue. Magnetic disk drives offer average seek times in the 15-25ms range, compared to about 80-500ms (or more, for CD ROMS) for current optical drives. This performance disparity exists, in part, because the relatively massive "optical heads" in use today cannot be transported across the radius of a disk as quickly as a stack of much lighter magnetic heads. Any potential distance advantage that the optical drive might have, due to its substantially higher track density, is offset by the magnetic drive's use of a multi-disk stack. As a result, the drive must achieve similar radial accelerations during seeks if it is to have similar average access times. The inability of current optical drives to approach the access speeds of comparable magnetic drives significantly reduces the competitiveness of optical products in major segments of the very large data storage market. This shortcoming is especially disturbing when we know that opto-mechanical scanners typically operate in the 1-10ms range and that non-mechanical scanning techniques can be substantially faster than that.
Modulation instability of broad optical beams in nonlinear media with general nonlinearity
Institute of Scientific and Technical Information of China (English)
Hongcheng Wang; Weilong She
2006-01-01
@@ The modulation instability of quasi-plane-wave optical beams is investigated in the frame of generalized Schr(o)dinger equation with the nonlinear term of a general form. General expressions are derived for the dispersion relation, the critical transverse spatial frequency, as well as the instability growth rate.The analysis generalizes the known results reported previously. A detailed discussion on the modulation instability in biased centrosymmetric photorefractive media is also given.
2002-06-01
IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 1033 Application of Optimization Techniques to a Nonlinear Problem of Communication... IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 We consider J source-destination pairs, each of which is assigned a fixed multihop...blocking probabilities are at the maximum permitted value. IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE
Nonlinear Optical Properties of a MMA-Silica Nanohybrid Material Doped with Rhodamine 6G
Directory of Open Access Journals (Sweden)
J. Lima-Gutiérrez
2013-01-01
Full Text Available A novel nanohybrid material based on MMA-Silica has been synthesized with an organic dye dopant (R6G to tailor the optical properties. This novel material can be used on several devices such as active laser media for an organic solid state laser, OLEDs, or as a characterization media for new organic dye molecules. Thin films were deposited by dip-coating and characterized by absorption and reflection UV-VIS, photoluminescence, SEM, and Z-scan technique to verify their nonlinear behavior. R6G dye dopant has been used to verify that the nanohybrid matrix does not inhibit its optical properties.
Chehrghani, A.; Torkamany, M. J.
2014-01-01
In this paper, the spectral and nonlinear optical properties of a colloidal solution of platinum nanoparticles (Pt NPs) in water are presented. The Pt NPs were prepared by laser ablation of a Pt metallic target in distilled water using a 1064 nm high frequency Nd:YAG laser. The intensity-dependent nonlinear optical absorption and nonlinear refraction behaviors of the sample exposed to the 532 nm nanosecond laser pulses were investigated by applying the Z-scan technique. The saturated nonlinear absorption coefficient 5.4 × 10-7 cm W-1 was obtained in a saturation intensity of 1.8 × 107 W cm-2. The saturable absorption response of the Pt NPs was switched to the reverse saturable absorption in the higher laser intensities. The nonlinear refractive index that has a negative value was increased from -3.5 × 10-13 cm2 W-1 up to -15 × 10-13 cm2 W-1 by increasing the laser intensity.
Third-order optical nonlinearity studies of bilayer Au/Ag metallic films
Mezher, M. H.; Chong, W. Y.; Zakaria, R.
2016-05-01
This paper presents nonlinear optical studies of bilayer metallic films of gold (Au) and silver (Ag) on glass substrate prepared using electron beam evaporation. The preparation of Au and Ag nanoparticles (NPs) on the substrate involved the use of electron beam deposition, then thermal annealing at 600 °C and 270 °C, respectively, to produce a randomly distributed layer of Au and a layer of Ag NPs. Observation of field-effect scanning electron microscope images indicated the size of the NPs. Details of the optical properties related to peak absorption of surface plasmon resonance of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear absorption and nonlinear refraction of the fabricated NP layers. The third-order nonlinear refractive index coefficients for Au and Ag are (-9.34 and -1.61) × 10-11 cm2 W-1 given lower n 2, in comparison with bilayer (Au and Ag) NPs at -1.24 × 10-10 cm2 W-1. The results show bilayer NPs have higher refractive index coefficients thus enhance the nonlinearity effects.
Romani, E C; Vitoreti, Douglas; Gouvêa, Paula M P; Caldas, P G; Prioli, R; Paciornik, S; Fokine, Michael; Braga, Arthur M B; Gomes, Anderson S L; Carvalho, Isabel C S
2012-02-27
Materials presenting high optical nonlinearity, such as materials containing metal nanoparticles (NPs), can be used in various applications in photonics. This motivated the research presented in this paper, where morphological, linear and nonlinear optical characteristics of gold NPs on the surface of bulk soda-lime glass substrates were investigated as a function of nanoparticle height. The NPs were obtained by annealing gold (Au) thin films previously deposited on the substrates. Pixel intensity histogram fitting on Atomic Force Microscopy (AFM) images was performed to obtain the thickness of the deposited film. Image analysis was employed to obtain the statistical distribution of the average height of the NPs. In addition, absorbance spectra of the samples before and after annealing were measured. Finally, the nonlinear refractive index (n2) and the nonlinear absorption index (α2) at 800 nm were obtained before and after annealing by using the thermally managed eclipse Z-scan (TM-EZ) technique with a Ti:Sapphire laser (150 fs pulses). Results show that both n2 and α2 at this wavelength change signs after the annealing and that the samples presented a high nonlinear refractive index.
Directory of Open Access Journals (Sweden)
Javier Adur
Full Text Available BACKGROUND: Nonlinear optical (NLO microscopy techniques have potential to improve the early detection of epithelial ovarian cancer. In this study we showed that multimodal NLO microscopies, including two-photon excitation fluorescence (TPEF, second-harmonic generation (SHG, third-harmonic generation (THG and fluorescence lifetime imaging microscopy (FLIM can detect morphological and metabolic changes associated with ovarian cancer progression. METHODOLOGY/PRINCIPAL FINDINGS: We obtained strong TPEF + SHG + THG signals from fixed samples stained with Hematoxylin & Eosin (H&E and robust FLIM signal from fixed unstained samples. Particularly, we imaged 34 ovarian biopsies from different patients (median age, 49 years including 5 normal ovarian tissue, 18 serous tumors and 11 mucinous tumors with the multimodal NLO platform developed in our laboratory. We have been able to distinguish adenomas, borderline, and adenocarcinomas specimens. Using a complete set of scoring methods we found significant differences in the content, distribution and organization of collagen fibrils in the stroma as well as in the morphology and fluorescence lifetime from epithelial ovarian cells. CONCLUSIONS/SIGNIFICANCE: NLO microscopes provide complementary information about tissue microstructure, showing distinctive patterns for serous and mucinous ovarian tumors. The results provide a basis to interpret future NLO images of ovarian tissue and lay the foundation for future in vivo optical evaluation of premature ovarian lesions.
Linear and nonlinear magneto-optics of ferritin.
Pankowska, M; Dobek, A
2009-07-07
Measurements of Rayleigh light scattering and Cotton-Mouton (CM) effect are carried out at room temperature for 100 mM NaCl solutions of apoferritin/ferritin loaded with 0, 90, 100, 500, 700, and 1500 Fe atoms/molecule. Because of the spherical shape, ferritin macromolecule should not manifest magnetic anisotropy; however, in solution it shows the induced magnetic birefringence (CM effect) and changes in intensity of the scattered light components. The newly obtained data support the previously reported conclusions indicating that the deformation of linear optical polarizability induced in the ferritin by a magnetic field and the orientation of the induced magnetic dipole moment by this field are the main sources of the magneto-optical phenomena observed. Nevertheless, it is also found that the orientation of the permanent magnetic dipole moment contributes to both effects. The magnetic field induced changes in the light scattering and the CM effect theoretically depend on the linear magneto-optical polarizability, chi, on the nonlinear magneto-optical polarizability, eta, and square of the permanent magnetic dipole moment value of the macromolecule, mu(2). On the basis of the theory describing both effects as well as the experimental data, the values of the anisotropy of linear magneto-optical polarizabilities components, the values of the linear optical polarizability and its anisotropy, nonlinear magneto-optical polarizability and its anisotropy, are estimated. Also the magnetic dipole moment of the ferritin macromolecule is found. Interestingly, not all iron atoms in the ferritin are indicated to be in the superparamagnetic state, some of them occur in the diamagnetic form.
Ultrafast and Nonlinear Optical Spectroscopy of Carbon Nanotubes
Kono, Junichiro
2011-03-01
Single-walled carbon nanotubes (SWNTs) provide a variety of unique opportunities for studying the dynamics and interactions of one-dimensional (1-D) electrons and phonons. We have carried out a series of ultrafast and nonlinear optical experiments on SWNTs, revealing novel properties of high- density 1-D excitons as well as coherent lattice vibrations. We have shown that there exists an upper limit on the density of 1-D excitons in SWNTs, which results in photoluminescence saturation. Using a model based on diffusion-limited exciton- exciton annihilation, we provided realistic estimates for the exciton densities in the saturation regime. We also predicted and demonstrated that there is an optimum temperature at which the exciton density can be maximized, due to the existence of a dark exciton state. Using ultrashort pulses, we have also investigated the dynamics of coherent phonons (CPs) in SWNTs, including both the low frequency radial breathing mode and high frequency G-mode phonons. Pulse shaping techniques allowed us to generate and detect CPs in SWNTs in a chirality-selective manner, which provided insight into the chirality dependence of light absorption, phonon generation, and phonon-induced band- structure modulations. Finally, we observed novel large- amplitude CPs through near-band-edge excitations as well as strongly polarization-dependent CP signals in highly-aligned SWNTs. This work was performed in collaboration with Y. Murakami, A. Srivastava, T. A. Searles, L. G. Booshehri, E. H. Hároz, D. T. Morris, J.-H. Kim, K.-J. Yee, Y.-S. Lim, G. D. Sanders, C. J. Stanton, and R. Saito.
Nonlinear optical studies of aqueous interfaces, polymers, and nanowires
Onorato, Robert Michael
-transfer-to-solvent band and a Langmuir adsorption model are used to determine the affinity of bromide for both the air/water and dodecanol/water interfaces in the molar concentration regime. The Gibbs free energy of adsorption for the former is determined to be -1.4 kJ/mol with a lower 90% confidence limit of -4.1 kJ/mol. For the dodecanol/water interface the data are best fit with a Gibbs free energy of +8 kJ/mol with an estimated a lower limit of -4 kJ/mol. Adsorption of ions to the air/water interface in the millimolar regime is a particularly interesting phenomenon. In Chapter 4, the affinity of sodium chloride and sodium bromide to the air/water interface is probed by UV-SHG. Both salts exhibit a strong adsorption, with free energies greater than -20 kJ/mol. Interestingly, sodium chloride exhibits a stronger affinity for the interface than does sodium iodide, which was previously studied by Poul Peterson. This is counter to both experimental and theoretical results for higher concentrations. It has been predicted that ion adsorption is dictated by strong and opposing electrostatic and entropic forces. The change in order of ion interfacial affinity can be explained by relatively small changes in these forces at different concentrations and ionic strengths. In Chapters 5 and 6, other work using nonlinear optical techniques is described. Coherent anti-Stokes Raman scattering microscopy is a promising tool for chemically selective imaging based on molecular vibrations. While CARS is currently used as a biological imaging tool, many variations are still being developed, perhaps the most important being multiplex CARS microscopy. Multiplex CARS has the advantage of comparing images based on different molecular vibrations without changing the excitation wavelengths. In Chapter 5, I demonstrate both high spectral and spatial resolution multiplex CARS imaging of polymer films using a simple scheme for chirped CARS with a spectral bandwidth of 300 cm-1. In Chapter 6, the nonlinear optical
Large and Ultrafast Third-Order Nonlinear Optical Properties of Ge-S Based Chalcogenide Glasses
Institute of Scientific and Technical Information of China (English)
CHU Sai-Sai; WANG Shu-Feng; TAO Hai-Zheng; WANG Zhen-Wei; YANG Hong; LIN Chang-Gui; GONG Qi-Huang; ZHAO Xiu-Jian
2007-01-01
We report ultrafast third-order nonlinear optical (NLO) properties of several chalcogenide glasses GeSx (x = 1.8,2.0, 2.5) measured by femtosecond time-resolved optical Kerr gate technique at 820nm. The third-order nonlinear susceptibility of GeS1.8 glass is determined to be as large as 1.41 × 10-12 esu, which is the maximum value of the third order nonlinear susceptibility X(3) for the three compositions investigated. The symmetric Gauss profiles of optical Kerr signals reveal the nature of ultrafast nonlinear response of these samples, which are originated from the ultrafast polarization of the electron clouds. By detailed microstructural analysis of these glasses based on the chain-crossing model (CCM) and the random-covalent-network model (RCNM), it can be concluded that X(3) value of GeSx glasses can be enhanced greatly by S-S covalent bonds or S3Ge-GeS3 ethane-like units.
Arc-length technique for nonlinear finite element analysis
Institute of Scientific and Technical Information of China (English)
MEMON Bashir-Ahmed; SU Xiao-zu(苏小卒)
2004-01-01
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, Received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.
New optical technique for bulk magnetostriction measurement
Samata, H; Uchida, T; Abe, S
2000-01-01
A new optical technique was applied to the measurement of magnetostriction in bulk samples. This technique utilizes an optical fiber bundle, AC-modulated light and lock-in detection. Deformation of the sample is determined from the ratio of the incident and reflected light intensities. Noise due to the instability of the light source is eliminated by obtaining the ratio of the incident and reflected light intensities, and the noise caused in the detector circuit can be reduced by lock-in detection. The performance of this method was characterized with a series of measurements using a gold film and crystal disks of pure iron and nickel. This technique offers a resolution of 0.5 nm and is sensitive enough to measure magnetostriction as small as 5x10 sup - sup 7 in 1 mm thick samples.
Polycarbonate-Based Blends for Optical Non-linear Applications
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Nonlinear optical characteristics of monolayer MoSe{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)
2016-08-15
In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Nonlinear optical field sensors in extreme electromagnetic and acoustic environments
Garzarella, Anthony; Wu, Dong Ho
2014-03-01
Sensors based on electro-optic (EO) and magneto-optic (MO) crystals measure external electric and magnetic fields through changes in birefringence which the fields induce on the nonlinear crystals. Due to their small size and all-dielectric structure, EO and MO sensors are ideal in environments involving very large electromagnetic powers. Conventional antennas and metallic probes not only present safety hazards, due to their metallic structure and the presence of large currents, but they can also perturb the very fields they intend to measure. In the case of railguns, the large electromagnetic signals are also accompanied by tremendous acoustic noise, which presents a noise background that the sensors must overcome. In this presentation, we describe extensive data obtained from fiber optic EO and MO sensors used in the railgun of the Naval Research Laboratory. Along with the field measurements obtained, we will describe the interactions between the acoustic noise and the nonlinear crystals (most notably, photoelastic effects), the noise equivalent fields they produce, and methods they could be suppressed through the optical and geometrical configurations of the sensor so that the signal to noise ratio can be maximized.
Energy Technology Data Exchange (ETDEWEB)
Sreekanth, G. [Department of Physics, St. Thomas College Pala, Kottayam 686574, Kerala (India); Chandralingam, S. [Department of Physics, Jawaharlal Nehru Technological University, Hyderabad 500085 (India); Philip, Jacob; Jayalakshmy, M.S. [Department of instrumentation, Cochin University of Science and Technology, Cochin, Kerala (India); Philip, Reji; Sridharan, Kishore [Raman research institute, Bangalore, Karnataka 560080 (India); Santhosh Kumar, R. [Department of Physics, St. George' s College Aruvithura, Kottayam 686122, Kerala (India); Joseph, Ginson P., E-mail: ginsonpj@gmail.com [Department of Physics, St. Thomas College Pala, Kottayam 686574, Kerala (India)
2012-12-15
Graphical abstract: Display Omitted Highlights: ► The single crystals of dimension 10 × 5 × 5 mm{sup 3} of allylthiourea mercury chloride are synthesized using slow evaporation technique. ► The bandgap of allylthiourea mercury chloride crystal is found to be about 3.18 eV. ► The optical nonlinearity of the crystal sample are studied using the open aperture Z-scan technique employing a nanosecond laser at 532 nm, and three photon absorption effect has been found. ► An improved photo pyroelectric is used to find the thermal parameters of the crystal. ► The piezoelectric charge coefficient is determined. -- Abstract: Single crystals of dimension 10 × 5 × 5 mm{sup 3} of allylthiourea mercury chloride were synthesized from aqueous solution using slow evaporation technique at ambient temperature. The grown crystals are confirmed by elemental analysis. The band gap of Allylthiourea mercury chloride crystal was found to be about 3.18 eV. The optical nonlinearity of the crystal sample was studied using the open aperture Z-scan technique employing a nanosecond laser at 532 nm, and a three-photon absorption effect has been found. The electrical properties such as dielectric constant, dielectric loss and ac conductivity of the sample were carried out by Agillent E 4980 A LCR meter at different temperatures. An improved photopyroelectric technique was used to find the thermal parameters of the crystal. The piezo electric charge coefficient is also determined.
Directory of Open Access Journals (Sweden)
M. Packiya raj
2017-01-01
Full Text Available A new inorganic nonlinear optical single crystal of sodium manganese tetrachloride (SMTC has been successfully grown from aqueous solution using the slow evaporation technique at room temperature. The crystals obtained using the aforementioned method were characterized using different techniques. The crystalline nature of the as-grown crystal of SMTC was analyzed using powder X-ray diffraction. Single-crystal X-ray diffraction revealed that the crystal belongs to an orthorhombic system with non-centrosymmetric space group Pbam. The optical transmission study of the SMTC crystal revealed high transmittance in the entire UV–vis region, and the lower cut-off wavelength was determined to be 240 nm. The mechanical strength of the as-grown crystal was estimated using the Vickers microhardness test. The second harmonic generation (SHG efficiency of the crystal was measured using Kurtz's powder technique, which indicated that the crystal has a nonlinear optical (NLO efficiency that is 1.32 times greater than that of KDP. The dielectric constant and dielectric loss of the compound were measured at different temperatures with varying frequencies. The photoconductivity study confirmed that the title compound possesses a negative photoconducting nature. The growth mechanism and surface features of the as-grown crystals were investigated using chemical etching analysis.
Thermal conductivities of some novel nonlinear optical materials.
Beasley, J D
1994-02-20
Results of thermal conductivity measurements are reported for several of the more recently developed nonlinear optical crystals. New or substantially revised values of thermal conductivity were obtained in six materials. Notable thermal conductivities measured were those for AgGaS(2) [0.014 W/(cm K) and 0.015 W/(cm K)], AgGaSe(2) [0.010 W/(cm K) and 0.011 W/(cm K)], beta barium borate [0.016 W/(cm K) and 0.012 W/(cm K)], and ZnGeP(2) [0.36 W/(cm K) and 0.35 W/(cm K)], with values quoted for directions respectively parallel and perpendicular to the optic axis for each material. These new data provide necessary input for the design of high-power optical frequency converters.
Linear and nonlinear magneto-optical properties of monolayer phosphorene
Nguyen, Chuong V.; Ngoc Hieu, Nguyen; Duque, C. A.; Quoc Khoa, Doan; Van Hieu, Nguyen; Van Tung, Luong; Vinh Phuc, Huynh
2017-01-01
We theoretically study the magneto-optical properties of monolayer phosphorene under a perpendicular magnetic field. We evaluate linear, third-order nonlinear, and total absorption coefficients and relative refractive index changes as functions of the photon energy and the magnetic field, and show that they are strongly influenced by the magnetic field. The magneto-optical absorption coefficients and relative refractive index changes appear in two different regimes: the microwave to THz and the visible frequency. The amplitude of intra-band transition peaks is larger than that of the inter-band transitions. The resonant peaks are blue-shifted with the magnetic field. Our results demonstrate the potential of monolayer phosphorene as a new two-dimensional material for applications in nano-electronic and optical devices as a promising alternative to graphene.
Linear addition algebra of optical nonlinearities in transparent conductive oxides
Kinsey, N; Clerici, M; Kim, J; Carnemolla, E; Shaltout, A; Kaipurath, R; Faccio, D; Shalaev, V M; Ferrera, M; Boltasseva, A
2016-01-01
The fields of nanophotonics and metamaterials have revolutionized the way we think of optical space ({\\epsilon},{\\mu}), enabling us to engineer the refractive index almost at will to confine light to the smallest of volumes as well as to manipulate optical signals with extremely small footprints and energy requirements. More recently, significant efforts have been devoted to the search for suitable materials for dynamic control, and so far, all-optical methods have primarily relied on either interband or intraband excitations. Here, we show that aluminum doped zinc oxide (AZO) supports a hybrid nonlinearity that exhibits a large and ultrafast response with controllable sign. We demonstrate that these two opposite material responses are independent and can be algebraically added together via two-color excitation, resulting in an increase in device bandwidth and unprecedented tuning capabilities. This peculiar behavior of AZO places it as a key material for next-generation ultrafast tunable nanophotonics and me...
Synthesis of Imidazole Derivatives for Their Second-order Nonlinear Optics
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The design and the synthesis of two conjugated donor-acceptor imidazole derivatives(1, 2) were carried out for second-order nonlinear optics. The thermal properties, the transparency and second-order nonlinear optical properties of the molecules were investigated. The experimental results indicate that a good nonlinearity-transparency-thermal stability trade-off is achieved for them.
1994-09-01
Pasillas, P.; Hoover, J.; Lindsay, G.; Henry, R. J. Appi. Phys. 1990, 68 , 456. 139. Hampsch, H.; Yang, J.; Wong, G.; Torkelson, J. Macromolecules 1990, 23...New York, 1992. 295. Syms, R.; Cozens, J. Optical Guided Waves and Devices, McGraw Hill: New York, 1992. 296. Marcuse , D. Theory of Optical Dielectric
Energy Technology Data Exchange (ETDEWEB)
Zaytsev, Kirill I., E-mail: kirzay@gmail.com; Katyba, Gleb M.; Yakovlev, Egor V.; Yurchenko, Stanislav O., E-mail: st.yurchenko@mail.ru [Bauman Moscow State Technical University, 2nd Baumanskaya str. 5, Moscow 105005 (Russian Federation); Gorelik, Vladimir S. [P. N. Lebedev Physics Institute of the Russian Academy of Sciences, Leninskiy Prospekt 53, Moscow 119991 (Russian Federation)
2014-06-07
A novel approach for the enhancement of nonlinear optical effects inside globular photonic crystals (PCs) is proposed and systematically studied via numerical simulations. The enhanced optical harmonic generation is associated with two- and three-dimensional PC pumping with the wavelength corresponding to different PC band-gaps. The interactions between light and the PC are numerically simulated using the finite-difference time-domain technique for solving the Maxwell's equations. Both empty and infiltrated two-dimensional PC structures are considered. A significant enhancement of harmonic generation is predicted owing to the highly efficient PC pumping based on the structural light focusing effect inside the PC structure. It is shown that a highly efficient harmonic generation could be attained for both the empty and infiltrated two- and three-dimensional PCs. We are demonstrating the ability for two times enhancement of the parametric decay efficiency, one order enhancement of the second harmonic generation, and two order enhancement of the third harmonic generation in PC structures in comparison to the nonlinear generations in appropriate homogenous media. Obviously, the nonlinear processes should be allowed by the molecular symmetry. The criteria of the nonlinear process efficiency are specified and calculated as a function of pumping wavelength position towards the PC globule diameter. Obtained criterion curves exhibit oscillating characteristics, which indicates that the highly efficient generation corresponds to the various PC band-gap pumping. The highest efficiency of nonlinear conversions could be reached for PC pumping with femtosecond optical pulses; thus, the local peak intensity would be maximized. Possible applications of the observed phenomenon are also discussed.
Sharma, Arvind; Nagar, A. K.
2016-05-01
The origin of optical bistability and hysterectic reflectivity on account of nonlinearity at optically induced Gallium silica interface has been investigated. Assuming the wave to be incident from the gallium nano particle layer side at gallium silica interface. The coupling between incident and reflected waves has shown nonlinear effects on Snell's law and Fresnel law. Effect of these nonlinear processes optical bistability and hysterectic reflectivity theoretically has been investigated. Theoretical results obtained are consistent with the available experimental results.
Growth and characterization of an organic nonlinear optical material: L-Histidine malonate
Ramya, K.; Saraswathi, N. T.; Raja, C. Ramachandra
2016-10-01
L-Histidine malonate is one of the potential organic material for nonlinear optical applications. Single crystals of L-Histidine malonate were grown by the liquid diffusion method. The lattice parameter values were evaluated from single crystal X-ray diffraction technique. The Fourier Transform Infra Red and Raman spectral studies were employed to identify the different modes of vibrations of molecular groups in the crystal. Optical characterization and the percentage of optical transmission were recorded using UV-vis-NIR spectroscopy. The molecular structure was established by proton and carbon Nuclear magnetic resonance spectral studies. The thermal behavior of the material has been studied by Thermo gravimetric and Differential thermal plots. The second harmonic generation conversion efficiency was found out from the powder technique of Kurtz and Perry.