WorldWideScience

Sample records for nonlinear optical property

  1. Computational studies of third-order nonlinear optical properties of ...

    Indian Academy of Sciences (India)

    Anuj Kumar

    2017-06-20

    Jun 20, 2017 ... Department of Physics, Jaypee University of Engineering and Technology, Raghogarh,. Guna 473 226, India. ∗ ... properties and other molecular properties of the organic nonlinear optical crystal 2-aminopyridinium p- toluenesulphonate ... nal processing, optical limiting, optical logic gates, laser radiation ...

  2. Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates

    International Nuclear Information System (INIS)

    Liu Xiao-Lan; Peng Xiao-Niu; Yang Zhong-Jian; Li Min; Zhou Li

    2011-01-01

    Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process. The morphology, crystal structure and linear optical extinction of the gold nanoplates have been characterized. These gold nanoplates are single-crystalline with triangular, truncated triangular and hexagonal shapes, exhibiting strong surface plasmon resonance (SPR) extinction in the visible and near-infrared (NIR) region. The linear optical properties of gold nanoplates are also investigated by theoretical calculations. We further investigate the nonlinear optical properties of the gold nanoplates in solution by Z-scan technique. The nonlinear absorption (NLA) coefficient and nonlinear refraction (NLR) index are measured to be 1.18×10 2 cm/GW and −1.04×10 −3 cm 2 /GW, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids

    International Nuclear Information System (INIS)

    Karavanskii, V A; Krasovskii, V I; Ivanchenko, P V; Simakin, Aleksandr V

    2004-01-01

    The optical and nonlinear optical properties of colloidal solutions of silver obtained by laser ablation in water and ethanol are studied. It is shown that freshly prepared colloids experience a full or partial sedimentation by changing their nonlinear optical properties. Aqueous colloids undergo a partial sedimentation and their nonlinear optical absorption changes to nonlinear optical transmission. The obtained results are interpreted using the Drude model for metal particles taking the particle size into account and can be explained by the sedimentation of larger silver particles accompanied by the formation of a stable colloid containing silver nanoparticles with a tentatively silver oxide shell. The characteristic size of particles forming such a stable colloid is determined and its optical nonlinearity is estimated. (nonlinear optical phenomena)

  4. Nonlinear optical properties of silicon waveguides

    International Nuclear Information System (INIS)

    Tsang, H K; Liu, Y

    2008-01-01

    Recent work on two-photon absorption (TPA), stimulated Raman scattering (SRS) and optical Kerr effect in silicon-on-insulator (SOI) waveguides is reviewed and some potential applications of these optical nonlinearities, including silicon-based autocorrelation detectors, optical amplifiers, high speed optical switches, optical wavelength converters and self-phase modulation (SPM), are highlighted. The importance of free carriers generated by TPA in nonlinear devices is discussed, and a generalized definition of the nonlinear effective length to cater for nonlinear losses is proposed. How carrier lifetime engineering, and in particular the use of helium ion implantation, can enhance the nonlinear effective length for nonlinear devices is also discussed

  5. Linear and nonlinear optical properties of borate crystals as ...

    Indian Academy of Sciences (India)

    Unknown

    crystal series, with an accuracy acceptable for materials development/design, and answer the questions often ... Optical property; nonlinear optical crystals; first principles calculation. 1. ..... system, and is not in concept suitable to excitation pro-.

  6. Nonlinear Quantum Optical Springs and Their Nonclassical Properties

    International Nuclear Information System (INIS)

    Faghihi, M.J.; Tavassoly, M.K.

    2011-01-01

    The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant (and so its frequency) depends on the quantum states of another system. Recently, it is realized that by the assumption of frequency modulation of ω to ω√1+μa † a the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence of frequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized Hamiltonian of nonlinear quantum optical spring and it's solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Enhancement of nonlinear optical properties of compounds of silica

    Indian Academy of Sciences (India)

    The aim of this paper is to introduce a method for enhancing the nonlinear optical properties in silica glass by using metallic nanoparticles. First, the T-matrix method is developed to calculate the effective dielectric constant for the compound of silica glass and metallic nanoparticles, both of which possess nonlinear dielectric ...

  8. Nonlinear optical properties measurement of polypyrrole -carbon nanotubes prepared by an electrochemical polymerization method

    Directory of Open Access Journals (Sweden)

    Shahriari

    2017-02-01

    Full Text Available In this work, the optical properties dependence of Multi-Walled Carbon Nanotubes (MWNT on concentration was discussed. MWNT samples were prepared in polypyrrole by an electrochemical polymerization of monomers, in the presence of different concentrations of MWNTs, using Sodium Dodecyl-Benzen-Sulfonate (SDBS as surfactant at room temperature. The nonlinear refractive and nonlinear absorbtion indices were measured using a low power CW laser beam operated at 532 nm using z-scan method. The results show that nonlinear refractive and nonlinear absorbtion indices tend to be increased with increasing the concentration of carbon nanotubes. Optical properties of  carbone nanotubes indicate that they are good candidates for nonlinear optical devices

  9. Linear and nonlinear optical properties of Sb-doped GeSe2 thin films

    Science.gov (United States)

    Zhang, Zhen-Ying; Chen, Fen; Lu, Shun-Bin; Wang, Yong-Hui; Shen, Xiang; Dai, Shi-Xun; Nie, Qiu-Hua

    2015-06-01

    Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb-Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB722703), the National Natural Science Foundation of China (Grant No. 61377061), the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B217), and the K. C. Wong Magna Fund in Ningbo University, China.

  10. Nonlinear optics of liquid crystalline materials

    International Nuclear Information System (INIS)

    Khoo, Iam Choon

    2009-01-01

    Liquid crystals occupy an important niche in nonlinear optics as a result of their unique physical and optical properties. Besides their broadband birefringence and transparency, abilities to self-assemble into various crystalline phases and to conform to various flexible forms and shapes, liquid crystals are compatible with almost all other optoelectronic materials and technology platforms. In both isotropic and ordered phases, liquid crystals possess extraordinarily large optical nonlinearities that stretch over multiple time scales. To date, almost all conceivable nonlinear optical phenomena have been observed in a very broad spectrum spanning the entire visible to infrared and beyond. In this review, we present a self-contained complete discussion of the optical nonlinearities of liquid crystals, and a thorough review of a wide range of nonlinear optical processes and phenomena enabled by these unique properties. Starting with a brief historical account of the development of nonlinear optical studies of the mesophases of liquid crystals, we then review various liquid crystalline materials and structures, and their nonlinear optical properties. Emphasis is placed on the nematic phase, which best exemplifies the dual nature of liquid crystals, although frequent references to other phases are also made. We also delve into recent work on novel structures such as photonic crystals, metamaterials and nanostructures and their special characteristics and emergent properties. The mechanisms and complex nonlocal dynamics of optical nonlinearities associated with laser induced director axis reorientation, thermal, density, and order parameter fluctuations, space charge field formation and photorefractivity are critically reviewed as a foundation for the discussions of various nonlinear optical processes detailed in this paper

  11. Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye

    Energy Technology Data Exchange (ETDEWEB)

    Zongo, S., E-mail: sidiki@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, POBox 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); Kerasidou, A.P. [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers Cedex (France); Sone, B.T.; Diallo, A. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, POBox 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research, P O Box 395, Pretoria 0001 (South Africa); Iliopoulos, K. [LUNAM Université, Université d’Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers Cedex (France); Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504 Patras (Greece); Nkosi, M. [Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 OldFaure road, Somerset West 7129, POBox 722, Somerset West, Western Cape Province (South Africa); and others

    2015-06-15

    Highlights: • We studied the linear and nonlinear optical properties of hybrid Bixa Orellana dye doped PMMA thin film. • We investigated the linear optical properties by means of UV/Vis, FTIR and Fluorescence. • We used Tauc - Lorentz model to evaluate linear optical parameters (n &k) with relative maximum of 1.456 at 508.5, 523.79 and 511.9 nm for n is observed while the maximum of k varies from 0.070 to 0.080. • We evaluated nonlinear third order susceptibility which was found to be 1.00 × 10{sup −21} m{sup 2} V{sup −2} or 0.72 × 10{sup −13} esu. - Abstract: Natural dyes with highly delocalized π-electron systems are considered as promising organic materials for nonlinear optical applications. Among these dyes, Bixa Orellana dye with extended π-electron delocalization is one of the most attractive dyes. Bixa Orellana dye-doped Poly(methyl methacrylate) (PMMA) thin films were prepared through spin coating process for linear and nonlinear optical properties investigation. Atomic force microscopy (AFM) was used to evaluate the roughness of the thin films. The optical constants n and k were evaluated by ellipsometric spectroscopy. The refractive index had a maximum of about 1.456 at 508.5, 523.79 and 511.9 nm, while the maximum of k varies from 0.070 to 0.080 with the thickness. The third order nonlinear optical properties of the hybrid Bixa Orellana dye-PMMA polymer were investigated under 30 ps laser irradiation at 1064 nm with a repetition rate of 10 Hz. In particular the third-order nonlinear susceptibility has been determined by means of the Maker Fringes technique. The nonlinear third order susceptibility was found to be 1.00 × 10{sup −21} m{sup 2} V{sup −2} or 0.72 × 10{sup −13} esu. Our studies provide concrete evidence that the hybrid-PMMA composites of Bixa dye are prospective candidates for nonlinear material applications.

  12. Spectral dependence of third-order nonlinear optical properties in InN

    International Nuclear Information System (INIS)

    Ahn, H.; Lee, M.-T.; Chang, Y.-M.

    2014-01-01

    We report on the nonlinear optical properties of InN measured in a wide near-infrared spectral range with the femtosecond Z-scan technique. The above-bandgap nonlinear absorption in InN is found to originate from the saturation of absorption by the band-state-filling and its cross-section increases drastically near the bandgap energy. With below-bandgap excitation, the nonlinear absorption undergoes a transition from saturation absorption (SA) to reverse-SA (RSA), attributed to the competition between SA of band-tail states and two-photon-related RSA. The measured large nonlinear refractive index of the order of 10 −10 cm 2 /W indicates InN as a potential material for all-optical switching and related applications

  13. Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers

    International Nuclear Information System (INIS)

    Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.

    2005-01-01

    The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized πelectrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized π electrons along an extended group of atoms in such molecules

  14. Nonlinear optical crystals a complete survey

    CERN Document Server

    Nikogosyan, David N

    2005-01-01

    Nonlinear optical crystals are widely used in modern optical science and technology for frequency conversion of laser light, i.e. to generate laser radiation at any specific wavelength in visible, UV or IR spectral regions. This unrivalled reference book contains the most complete and up-to-date information on properties of nonlinear optical crystals. It includes: * Database of 63 common and novel nonlinear optical crystals * Periodically-poled and self-frequency-doubling materials * Full description of linear and nonlinear optical properties * Significant amount of crystallophysical, thermophysical, spectroscopic, electro-optic and magneto-optic information * 7 mini-reviews on novel applications, such as deep-UV light generation, terahertz-wave generation, ultrashort laser pulse compression, photonic band-gap crystals, x3 nonlinearity, etc. * More than 1500 different references with full titles It is a vital source of information for scientists and engineers dealing with modern applications of nonlinear opti...

  15. Thickness-dependent nonlinear optical properties of CsPbBr3 perovskite nanosheets.

    Science.gov (United States)

    Zhang, Jun; Jiang, Tian; Zheng, Xin; Shen, Chao; Cheng, Xiang'ai

    2017-09-01

    Halide perovskite has attracted significant attention because of excellent optical properties. Here, we study the optical properties of CsPbBr 3 perovskite nanosheets and observe that the nonlinear optical properties can be tuned by the thickness. The photoluminescence (PL) properties and nonlinear absorption effects induced by saturation absorption (SA) and two-photon absorption (TPA) in CsPbBr 3 nanosheets with different thicknesses (from 104.6 to 195.4 nm) have been studied. The PL intensity increases nearly three times with changing from the thinnest one to the thinnest under the same excitation condition. Moreover, the same phenomenon takes place no matter when SA or TPA effects happen. The PL lifetime (τ) varies inversely with the thickness. When SA happens, τ decreases from 11.54 to 9.43 ns while when TPA happens new decay channels emerge with the increase of the thickness. Besides, both saturation intensity (I sat ) and the modulation depth are proportional to the thickness (I sat rises from 3.12 to 4.79  GW/cm 2 , the modulation depth increases from 18.6% to 32.3%), while the TPA coefficient (β) is inversely proportional with the thickness (decreases from 10.94 to 4.73  cm/GW). In addition, quantum yields and thicknesses are in the direct ratio. This Letter advocates great promise for nonlinear optical property related photonics devices.

  16. Nonlinear Optics and Applications

    Science.gov (United States)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  17. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J M [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); [Durham Univ. (United Kingdom); Howard, J A.K. [Durham Univ. (United Kingdom); McIntyre, G J [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  18. Enhancement of nonlinear optical properties of compounds of silica ...

    Indian Academy of Sciences (India)

    Enhancement of nonlinear optical properties of compounds of silica glass and metallic nanoparticle. A GHARAATI1,∗ and A KAMALDAR1,2. 1Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran. 2Department of Education 1, Shiraz, Iran. ∗. Corresponding author. E-mail: agharaati@pnu.ac.

  19. Non-linear optical techniques and optical properties of condensed molecular systems

    Science.gov (United States)

    Citroni, Margherita

    2013-06-01

    Structure, dynamics, and optical properties of molecular systems can be largely modified by the applied pressure, with remarkable consequences on their chemical stability. Several examples of selective reactions yielding technologically attractive products can be cited, which are particularly efficient when photochemical effects are exploited in conjunction with the structural conditions attained at high density. Non-linear optical techniques are a basic tool to unveil key aspects of the chemical reactivity and dynamic properties of molecules. Their application to high-pressure samples is experimentally challenging, mainly because of the small sample dimensions and of the non-linear effects generated in the anvil materials. In this talk I will present results on the electronic spectra of several aromatic crystals obtained through two-photon induced fluorescence and two-photon excitation profiles measured as a function of pressure (typically up to about 25 GPa), and discuss the relationship between the pressure-induced modifications of the electronic structure and the chemical reactivity at high pressure. I will also present the first successful pump-probe infrared measurement performed as a function of pressure on a condensed molecular system. The system under examination is liquid water, in a sapphire anvil cell, up to 1 GPa along isotherms at 298 and 363 K. These measurements give a new enlightening insight into the dynamical properties of low- and high-density water allowing a definition of the two structures.

  20. Structure, Electronic and Nonlinear Optical Properties of Furyloxazoles and Thienyloxazoles

    International Nuclear Information System (INIS)

    Dagli, Ozlem; Gok, Rabia; Bahat, Mehmet; Ozbay, Akif

    2016-01-01

    Geometry optimization, electronic and nonlinear optical properties of isomers of furyloxazole and thienyloxazole molecules are carried out at the B3LYP/6-311++G(2d,p) level. The conformational analysis of 12 compounds have been studied as a function of torsional angle between rings. Electronic and NLO properties such as dipole moment, energy gap, polarizability and first hyperpolarizability were also calculated. (paper)

  1. Nonclassical properties of a contradirectional nonlinear optical coupler

    Energy Technology Data Exchange (ETDEWEB)

    Thapliyal, Kishore [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); Pathak, Anirban, E-mail: anirban.pathak@gmail.com [Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307 (India); RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Sen, Biswajit [Department of Physics, Vidyasagar Teachers' Training College, Midnapore 721101 (India); Perřina, Jan [RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Department of Optics, Palacky University, 17. listopadu 12, 771 46 Olomouc (Czech Republic)

    2014-10-24

    We investigate the nonclassical properties of output fields propagated through a contradirectional asymmetric nonlinear optical coupler consisting of a linear waveguide and a nonlinear (quadratic) waveguide operated by second harmonic generation. In contrast to the earlier results, all the initial fields are considered weak and a completely quantum-mechanical model is used here to describe the system. Perturbative solutions of Heisenberg's equations of motion for various field modes are obtained using Sen–Mandal technique. Obtained solutions are subsequently used to show the existence of single-mode and intermodal squeezing, single-mode and intermodal antibunching, two-mode and multi-mode entanglement in the output of contradirectional asymmetric nonlinear optical coupler. Further, existence of higher order nonclassicality is also established by showing the existence of higher order antibunching, higher order squeezing and higher order entanglement. Variation of observed nonclassical characters with different coupling constants and phase mismatch is discussed. - Highlights: • Nonclassicalities in fields propagating through a directional coupler is studied. • Completely quantum-mechanical description of the coupler is provided. • Analytic solutions of Heisenberg equations of motion for various modes are obtained. • Existence of lower order and higher order entanglement is shown. • Variation of nonclassicalities with phase-mismatch and coupling constants is studied.

  2. Ultrafast nonlinear optics

    CERN Document Server

    Leburn, Christopher; Reid, Derryck

    2013-01-01

    The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...

  3. Third-order nonlinear optical properties of the poly(methyl methacrylate)-phenothiazinium dye hybrid thin films

    International Nuclear Information System (INIS)

    Sun, Ru; Lu, Yue-Ting; Yan, Bao-Long; Lu, Jian-Mei; Wu, Xing-Zhi; Song, Ying-Lin; Ge, Jian-Feng

    2014-01-01

    The third-order nonlinear optical properties of poly(methyl methacrylate) films doped with charge flowable 3,7-di(piperidinyl)phenothiazin-5-ium chloride, which tested by Z-scan method with nanosecond laser beam at 532 nm, are reported. Large third-order nonlinear optical susceptibilities (up to 10 −7 esu) and high second hyperpolarizabilities (up to 10 −27 esu) are found. The third-order nonlinear absorptions change from reverse saturated absorptions to saturated absorptions with different percentage of the phenothiazinium dye in the poly(methyl methacrylate) films, which can be explained by the accumulation phenomenon of the phenothiazinium. The results suggest that the phenothiazinium salt is a promising material for third order non-linear applications. - Highlights: • Phenothiazinium containing optical films • Strong third-order nonlinear optical (NLO) absorption • Large third-order NLO susceptibilities

  4. Cavity nonlinear optics with layered materials

    Directory of Open Access Journals (Sweden)

    Fryett Taylor

    2017-12-01

    Full Text Available Unprecedented material compatibility and ease of integration, in addition to the unique and diverse optoelectronic properties of layered materials, have generated significant interest in their utilization in nanophotonic devices. While initial nanophotonic experiments with layered materials primarily focused on light sources, modulators, and detectors, recent efforts have included nonlinear optical devices. In this paper, we review the current state of cavity-enhanced nonlinear optics with layered materials. Along with conventional nonlinear optics related to harmonic generation, we report on emerging directions of nonlinear optics, where layered materials can potentially play a significant role.

  5. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    Science.gov (United States)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  6. Second order nonlinear optical properties of zinc oxide films deposited by low temperature dual ion beam sputtering

    International Nuclear Information System (INIS)

    Larciprete, M.C.; Passeri, D.; Michelotti, F.; Paoloni, S.; Sibilia, C.; Bertolotti, M.; Belardini, A.; Sarto, F.; Somma, F.; Lo Mastro, S.

    2005-01-01

    We investigated second order optical nonlinearity of zinc oxide thin films, grown on glass substrates by the dual ion beam sputtering technique under different deposition conditions. Linear optical characterization of the films was carried out by spectrophotometric optical transmittance and reflectance measurements, giving the complex refractive index dispersion. Resistivity of the films was determined using the four-point probe sheet resistance method. Second harmonic generation measurements were performed by means of the Maker fringes technique where the fundamental beam was originated by nanosecond laser at λ=1064 nm. We found a relatively high nonlinear optical response, and evidence of a dependence of the nonlinear coefficient on the deposition parameters for each sample. Moreover, the crystalline properties of the films were investigated by x-ray diffraction measurements and correlation with second order nonlinearity were analyzed. Finally, we investigated the influence of the oxygen flow rate during the deposition process on both the second order nonlinearity and the structural properties of the samples

  7. Nonlinear optics

    International Nuclear Information System (INIS)

    Boyd, R.W.

    1992-01-01

    Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics

  8. Nonlinear Optical Properties of Aluminum Doped Zinc Oxide

    Science.gov (United States)

    Otieno, Calford O.

    Nonlinear optical (NLO) materials are crucial to future progress in industrial and technological applications that involve intense light-matter interaction. While ZnO-related materials are known to possess good NLO properties, existing results on ZnO and AZO (Al-doped ZnO) are mostly available at a single wavelength or limited ranges. Therefore, NLO dispersions (wavelength dependences) are not entirely studied, especially at longer wavelengths far below the bandgap. It is important to explore wavelength dependences since doping can induce a drastic change in the NLO responses at varied spectral ranges via doping-induced subgap-state contributions. We present results of our studies on nonlinear harmonic generation from our samples, which include 1) second harmonic generation and 2) third harmonic generation precisely characterized by Maker fringes as a function of both Al doping and wavelength. We exhaustively discuss the possible cause for the modified optical nonlinearities observed in our AZO thin films and give detailed comparisons of our observations with the previous studies. We also present the results of open- and close-aperture Z-scans to characterize the two-photon absorption coefficient (TPA) and the nonlinear refractive index (NLR), respectively, of the AZO films. There was no clearcut evidence of monotonic dependence of TPA and NLR on doping. This presumably indicates that the overall effect is nontrivial and should be understood in terms of combined effects of bandgap shift and crystallinity upon varying the doping level. Most intriguingly, we found that NLR values from the closed-aperture Z-scan are very large by orders of magnitude when compared with the bulk counterparts. Similar observation was made for TPA values from the open-aperture Z-scan. To countercheck very large NLO absorption, we conducted simple intensity scan by varying the incident photon number on each sample but fixing the beam area to eliminate any possible errors related to optical

  9. Analysis on nonlinear optical properties of Cd (Zn) Se quantum dots synthesized using three different stabilizing agents

    Science.gov (United States)

    J, Joy Sebastian Prakash; G, Vinitha; Ramachandran, Murugesan; Rajamanickam, Karunanithi

    2017-10-01

    Three different stabilizing agents, namely, L-cysteine, Thioglycolic acid and cysteamine hydrochloride were used to synthesize Cd(Zn)Se quantum dots (QDs). It was characterized using UV-vis spectroscopy, x-ray diffraction (XRD) and transmission electron microscopy (TEM). The non-linear optical properties (non-linear absorption and non-linear refraction) of synthesized Cd(Zn)Se quantum dots were studied with z-scan technique using diode pumped continuous wavelaser system at a wavelength of 532 nm. Our (organic) synthesized quantum dots showed optical properties similar to the inorganic materials reported elsewhere.

  10. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  11. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  12. Mechano-optic logic gate controlled by third-order nonlinear optical properties in a rotating ZnO:Au thin film

    International Nuclear Information System (INIS)

    Carrillo-Delgado, C; Torres-Torres, C; García-Merino, J A; García-Gil, C I; Khomenko, A V; Trejo-Valdez, M; Martínez-Gutiérrez, H; Torres-Martínez, R

    2016-01-01

    Measurements of the third-order nonlinear optical properties exhibited by a ZnO thin solid film deposited on a SnO 2 substrate are presented. The samples were prepared by a spray pyrolysis processing route. Scanning electron microscopy analysis and UV–Vis spectroscopy studies were carried out. The picosecond response at 1064 nm was explored by the z-scan technique. A large optical Kerr effect with two-photon absorption was obtained. The inhibition of the nonlinear optical absorption together with a noticeable enhancement in the optical Kerr effect in the sample was achieved by the incorporation of Au nanoparticles into the ZnO film. Additionally, a two-wave mixing configuration at 532 nm was performed and an optical Kerr effect was identified as the main cause of the nanosecond third-order optical nonlinearity. The relaxation time of the photothermal response of the sample was estimated to be about 1 s when the sample was excited by nanosecond single-shots. The rotation of the sample during the nanosecond two-wave mixing experiments was analyzed. It was stated that a non-monotonic relation between rotating frequency and pulse repetition rate governs the thermal contribution to the nonlinear refractive index exhibited by a rotating film. Potential applications for switching photothermal interactions in rotating samples can be contemplated. A rotary logic system dependent on Kerr transmittance in a two-wave mixing experiment was proposed. (paper)

  13. Structural, Linear, and Nonlinear Optical and Mechanical Properties of New Organic L-Serine Crystal

    Directory of Open Access Journals (Sweden)

    K. Rajesh

    2014-01-01

    Full Text Available Nonlinear optical single crystal of organic amino acid L-Serine (LS was grown by slow evaporation technique. Solubility study of the compound was measured and metastable zone width was found. Single crystal X-ray diffraction study was carried out for the grown crystal. The linear and nonlinear optical properties of the crystal were confirmed by UV-Vis analysis and powder SHG tester. FT-IR spectrum was recorded and functional groups were analyzed. Vickers’ microhardness studies showed the mechanical strength of the grown crystal. Laser damage threshold value of the crystal was calculated. Photoconductivity studies reveal the conductivity of the crystal.

  14. Nonlinear Optics with 2D Layered Materials.

    Science.gov (United States)

    Autere, Anton; Jussila, Henri; Dai, Yunyun; Wang, Yadong; Lipsanen, Harri; Sun, Zhipei

    2018-03-25

    2D layered materials (2DLMs) are a subject of intense research for a wide variety of applications (e.g., electronics, photonics, and optoelectronics) due to their unique physical properties. Most recently, increasing research efforts on 2DLMs are projected toward the nonlinear optical properties of 2DLMs, which are not only fascinating from the fundamental science point of view but also intriguing for various potential applications. Here, the current state of the art in the field of nonlinear optics based on 2DLMs and their hybrid structures (e.g., mixed-dimensional heterostructures, plasmonic structures, and silicon/fiber integrated structures) is reviewed. Several potential perspectives and possible future research directions of these promising nanomaterials for nonlinear optics are also presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nonlinear optical and optical limiting properties of fullerene, multi-walled carbon nanotubes, graphene and their derivatives with oxygen-containing functional groups

    International Nuclear Information System (INIS)

    Zhang, Xiao-Liang; Li, Xiao-Chun; Liu, Zhi-Bo; Yan, Xiao-Qing; Tian, Jian-Guo; Chen, Yong-Sheng

    2015-01-01

    Nonlinear optical properties (NLO) and optical limiting effect of fullerene (C 60 ), multi-walled carbon nanotubes (MWNTs), reduced graphene oxide (RGO) and their oxygenated derivatives were investigated by open-aperture Z-scan technique with nanosecond pulses at 532 nm. C 60 functionalized by oxygen-containing functional groups exhibits weaker NLO properties than that of pristine C 60 . Graphene oxide (GO) with many oxygen-containing functional groups also shows weaker NLO properties than that of RGO. That can be attributed to the disruption of conjugative structures of C 60 and graphene by oxygen-containing functional groups. However, MWNTs and their oxygenated derivatives exhibit comparable NLO properties due to the small weight ratio of these oxygen-containing groups. To investigate the correlation between structures and NLO response for these carbon nanomaterials with different dimensions, nonlinear scattered signal spectra versus input fluence were also measured. (paper)

  16. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties

    OpenAIRE

    Kujala, Sami; Mannila, Anna; Karvonen, Lasse; Kieu, Khanh; Sun, Zhipei

    2016-01-01

    Silk fibers are expected to become a pathway to biocompatible and bioresorbable waveguides, which could be used to deliver localized optical power for various applications, e.g., optical therapy or imaging inside living tissue. Here, for the first time, the linear and nonlinear optical properties of natural silk fibers have been studied. The waveguiding properties of silk fibroin of largely unprocessed Bombyx mori silkworm silk are assessed using two complementary methods, and found to be on ...

  17. Characterization of electrosynthesized conjugated polymer-carbon nanotube composite: optical nonlinearity and electrical property.

    Science.gov (United States)

    Bahrami, Afarin; Talib, Zainal Abidin; Shahriari, Esmaeil; Yunus, Wan Mahmood Mat; Kasim, Anuar; Behzad, Kasra

    2012-01-01

    The effects of multi-walled carbon nanotube (MWNT) concentration on the structural, optical and electrical properties of conjugated polymer-carbon nanotube composite are discussed. Multi-walled carbon nanotube-polypyrrole nanocomposites were synthesized by electrochemical polymerization of monomers in the presence of different amounts of MWNTs using sodium dodecylbenzensulfonate (SDBS) as surfactant at room temperature and normal pressure. Field emission scanning electron microscopy (FESEM) indicates that the polymer is wrapped around the nanotubes. Measurement of the nonlinear refractive indices (n(2)) and the nonlinear absorption (β) of the samples with different MWNT concentrations measurements were performed by a single Z-scan method using continuous wave (CW) laser beam excitation wavelength of λ = 532 nm. The results show that both nonlinear optical parameters increased with increasing the concentration of MWNTs. The third order nonlinear susceptibilities were also calculated and found to follow the same trend as n(2) and β. In addition, the conductivity of the composite film was found to increase rapidly with the increase in the MWNT concentration.

  18. Third-order nonlinear optical properties of ADP crystal

    Science.gov (United States)

    Wang, Mengxia; Wang, Zhengping; Chai, Xiangxu; Sun, Yuxiang; Sui, Tingting; Sun, Xun; Xu, Xinguang

    2018-05-01

    By using the Z-scan method, we investigated the third-order nonlinear optical (NLO) properties of ADP crystal at different wavelengths (355, 532, and 1064 nm) and different orientations ([001], [100], [110], I and II). The experimental data were fitted by NLO theory, to give out the two photon absorption (TPA) coefficient β 2 and the nonlinear refractive index n 2. When the light source changed from a 40 ps, 1064 nm fundamental laser to a 30 ps, 355 nm third-harmonic-generation (THG) laser, the β 2 value increased about 5 times (0.2 × 10‑2 → 1 × 10‑2 cm GW‑1), and the n 2 value increased about 1.5 times (1.5 × 10‑16 → 2.2 × 10‑16 cm2 W‑1). Among all of the orientations, the [110] sample exhibits the smallest β 2, and the second smallest n 2. It indicates that this orientation and its surroundings will be the preferred directions for high-power laser applications of ADP crystal.

  19. Nonlinear optical properties of an electromagnetically induced transparency medium interacting with two quantized fields

    CERN Document Server

    Kuang-Leman; Wu Yong Shi

    2003-01-01

    We study linear and nonlinear optical properties of an electromagnetically induced transparency (EIT) medium interacting with two quantized laser fields in the adiabatic EIT case. We show that the EIT medium exhibits normal dispersion. Kerr and higher-order nonlinear refractive index coefficients are also calculated in a completely analytical form. It is indicated that the EIT medium exhibits giant resonantly enhanced nonlinearities. We discuss the response of the EIT medium to nonclassical light fields and find that the polarization vanishes when the probe laser is initially in a nonclassical state of no single-photon coherence.

  20. Effect of structure on nonlinear optical properties in CaCu{sub 3}Ti{sub 4}O{sub 12} films

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Tingyin [School of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Zhou, Yueliang, E-mail: ylzhou@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-12-21

    We report the third-order nonlinear optical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} films with different preferred growth orientations on MgO and fused silica substrates. The films have (310)- and (220)-orientation on MgO and fused silica, respectively, due to the lattice-mismatch. Raman spectra further indicate different atom-bonding states in the films. The nonlinear optical measurements show the films possess the same self-defocusing behavior but with different values of nonlinear refraction, and changed signs of nonlinear absorption. The difference of optical nonlinearity in CaCu{sub 3}Ti{sub 4}O{sub 12} films is ascribed to different lattice parameters and intermediate levels induced by structure.

  1. NONLINEAR OPTICAL MOLECULAR CRYSTAL BASED ON 2,6-DIAMINOPYRIDINE: SYNTHESIS AND CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    I. M. Pavlovetc

    2014-05-01

    Full Text Available The paper deals with investigation of a new nonlinear optical material based on nonlinear optical chromophore (4-Nitrophenol and aminopyridine (2,6-Diaminopyridine. Calculation results are presented for molecular packing in the crystalline compound, based on the given components. According to these results the finite material must have a noncentrosymmetric lattice, which determines the presence of the second order nonlinear optical response. Investigations carried out in this work confirm these calculations. Results of experiments are given describing the co-crystallization of these components and the following re-crystallization of the obtained material. In order to get a monocrystal form, the optimal conditions for the synthesis of molecular crystals based on these components are determined. Sufficiently large homogeneous crystals are obtained, that gave the possibility to record their spectra in the visible and near infrared parts of the spectrum, to determine their nonlinear optical properties and the level of homogeneity. Their optical (optical transmission and optical laser damage threshold and nonlinear optical properties are presented. For observation and measurement of the nonlinear optical properties an installation was built which implements the comparative method for measurements of nonlinear optical properties. A potassium titanyl oxide phosphate crystal was used as a sample for comparison. Results are given for the conversion efficiency of the primary laser radiation in the second optical harmonic relative to the signal obtained on the potassium titanyl oxide phosphate crystal. Obtained results show that the molecular co-crystal based on 2,6-Diaminopyridine is a promising nonlinear optical material for generating the second optical harmonic on the Nd: YAG laser (532 nm.

  2. Synthesis and nonlinear optical property of polycrystalline MnTeMoO_6

    International Nuclear Information System (INIS)

    Jin, Chengguo

    2017-01-01

    Polycrystalline MnTeMoO_6 powder has been synthesized by a new approach that MnO_2 is used as the manganese source. The transformation mechanism of manganese ions in the new approach has been discussed. The nonlinear optical property of polycrystalline MnTeMoO_6 has been investigated, and compared with single-crystalline samples. The transformation Mn"4"+ → Mn"2"+ may be formed directly without stable intermediates, and TeO_2 may serve as catalyst. The SHG response of polycrystalline MnTeMoO_6 powder is worse than that of single-crystalline powder in the same particle size distribution as its pseudo-size. The results indicate that it should pay special attention with the pseudo-size of polycrystalline powder when the potential nonlinear optical materials are screened by powder second harmonic generation measurements. (orig.)

  3. Nonlinear optical systems

    CERN Document Server

    Lugiato, Luigi; Brambilla, Massimo

    2015-01-01

    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  4. Intensity-dependent nonlinear optical properties in a modulation-doped single quantum well

    International Nuclear Information System (INIS)

    Ungan, F.

    2011-01-01

    In the present work, the changes in the intersubband optical absorption coefficients and the refractive index in a modulation-doped quantum well have been investigated theoretically. Within the envelope function approach and the effective mass approximation, the electronic structure of the quantum well is calculated from the self-consistent numerical solution of the coupled Schroedinger-Poisson equations. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The numerical results GaAs/Al x Ga 1-x As are presented for typical modulation-doped quantum well system. The linear, third-order nonlinear and total absorption and refractive index changes depending on the doping concentration are investigated as a function of the incident optical intensity and structure parameters, such as quantum well width and stoichiometric ratio. The results show that the doping concentration, the structure parameters and the incident optical intensity have a great effect on the optical characteristics of these structures. - Highlights: → The doping concentration has a great effect on the optical characteristics of these structures. → The structure parameters have a great effect on the optical properties of these structures. → The total absorption coefficients reduced as the incident optical intensity increases. → The RICs reduced as the incident optical intensity increases.

  5. Linear and nonlinear intraband optical properties of ZnO quantum dots embedded in SiO2 matrix

    Directory of Open Access Journals (Sweden)

    Deepti Maikhuri

    2012-03-01

    Full Text Available In this work we investigate some optical properties of semiconductor ZnO spherical quantum dot embedded in an amorphous SiO2 dielectric matrix. Using the framework of effective mass approximation, we have studied intraband S-P, and P-D transitions in a singly charged spherical ZnO quantum dot. The optical properties are investigated in terms of the linear and nonlinear photoabsorption coefficient, the change in refractive index, and the third order nonlinear susceptibility and oscillator strengths. Using the parabolic confinement potential of electron in the dot these parameters are studied with the variation of the dot size, and the energy and intensity of incident radiation. The photoionization cross sections are also obtained for the different dot radii from the initial ground state of the dot. It is found that dot size, confinement potential, and incident radiation intensity affects intraband optical properties of the dot significantly.

  6. Investigation on the structural and nonlinear optical properties of Pt doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Rahulan, K. Mani; Padmanathan, N.; Vinitha, G.; Kanakam, Charles Christopher

    2013-01-01

    Graphical abstract: The open aperture Z-scan traces of Pt doped TiO 2 nanoparticles at different Pt concentrations were carried out at an irradiation wavelength of 532 nm. It was numerically found that, two photon absorption (TPA) type process gives the best fit to the obtained open aperture Z-scan data. The nonlinear transmission was found to be of third order as it fits to a two-photon absorption. The optical limiting performances of nanoparticles were greatly enhanced with increased volume ratio of Pt. Increasing particle size reduced the limiting threshold and enhanced the optical limiting performance. - Highlights: • Pt doped TiO 2 nanoparticles with different concentrations of Pt have been synthesized by sol–gel method. • The average fluorescence lifetime decreases as the volume fraction of Pt dopant increases. • The effects of Pt content on the optical limiting property were investigated by open aperture Z-scan measurements done at 532 nm using 5 ns laser pulses. • The values of the third-order nonlinearities of nanoparticles are interesting from the application point of view which could be used as a potential candidate for the application of nonlinear optical device. - Abstract: Pt doped TiO 2 nanoparticles with different concentrations of Pt were prepared by sol–gel method. X-ray diffraction (XRD) study reveals that the samples have a homogeneous anatase phase tetragonal system and the lattice parameter analysis indicates that Pt ions substitute into the lattice of TiO 2 . The addition of dopant increases the growth of TiO 2 grains, agglomerates them and shifts the absorption band of TiO 2 from ultraviolet to visible region. The incorporation of Pt in TiO 2 is also confirmed by fluorescence quenching and the fluorescence lifetime decreases as the volume fraction of Pt dopant increases. Open aperture Z-scan measurements done at 532 nm using 7 ns laser pulses show nonlinear absorption which arises from an effective two photon absorption process

  7. Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity

    International Nuclear Information System (INIS)

    Granovsky, Alexander B.; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru

    2003-01-01

    We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D i =ε i (0) E i +χ i (3) |E i | 2 E i . We assume that linear ε i (0) and cubic nonlinear χ i (3) dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function χ eff (3) can be significantly greater (up to 10 3 times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity

  8. Investigation of nonlinear optical properties of various organic materials by the Z-scan method

    Science.gov (United States)

    Ganeev, R. A.; Boltaev, G. S.; Tugushev, R. I.; Usmanov, T.

    2012-06-01

    We have studied the nonlinear optical properties of various organic materials (vegetable oil, juice, wine, cognac, Coca-Cola and Fanta drinks, Nescafé coffee, tea, gasoline, clock oil, glycerol, and polyphenyl ether) that are used in everyday life. Their nonlinearities have been studied by the Z-scan method in the near-IR and visible spectral ranges. We have shown that the majority of samples possess a nonlinear absorption; however, some of the studied materials show a strong saturated absorption and nonlinear refraction. Red wine and glycerol proved to be the most interesting materials. For these samples, we have observed a change in the sign of the nonlinear absorption with increasing laser intensity, which was attributed to the competition between two-photon absorption and saturated absorption.

  9. Nonlinear-Optical and Fluorescent Properties of Ag Aqueous Colloid Prepared by Silver Nitrate Reduction

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhang

    2010-01-01

    Full Text Available The nonlinear-optical properties of metal Ag colloidal solutions, which were prepared by the reduction of silver nitrate, were investigated using Z-scan method. Under picosecond 532 nm excitation, the Ag colloidal solution exhibited negative nonlinear refractive index (n2=−5.17×10−4 cm2/W and reverse saturable absorption coefficient (β=4.32 cm/GW. The data fitting result of optical limiting (OL response of metal Ag colloidal solution indicated that the nonlinear absorption was attributed to two-photon absorption effect at 532 nm. Moreover, the fluorescence emission spectra of Ag colloidal solution were recorded under excitations at both 280 nm and 350 nm. Two fluorescence peaks, 336 nm and 543 nm for 280 nm excitation, while 544 nm and 694 nm for 350 nm excitation, were observed.

  10. Magnetic field induced changes in linear and nonlinear optical properties of Ti incorporated Cr2O3 nanostructured thin film

    Science.gov (United States)

    Baraskar, Priyanka; Chouhan, Romita; Agrawal, Arpana; Choudhary, R. J.; Sen, Pranay K.; Sen, Pratima

    2018-03-01

    We report the magnetic field effect on the linear and nonlinear optical properties of pulse laser ablated Ti-incorporated Cr2O3 nanostructured thin film. Optical properties have been experimentally analyzed under Voigt geometry by performing ultraviolet-visible spectroscopy and closed aperture Z-scan technique using a continuous wave He-Ne laser source. Nonlinear optical response reveals a single peak-valley feature in the far field diffraction pattern in absence of magnetic field (B = 0) confirming self-defocussing effect. This feature switches to a valley-peak configuration for B = 5000G, suggesting self-focusing effect. For B ≤ 750G, oscillations were observed revealing the occurrence of higher order nonlinearity. Origin of nonlinearity is attributed to the near resonant d-d transitions observed from the broad peak occurring around 2 eV. These transitions are of magnetic origin and get modified under the application of external magnetic field. Our results suggest that magnetic field can be used as an effective tool to monitor the sign of optical nonlinearity and hence the thermal expansion in Ti-incorporated Cr2O3 nanostructured thin film.

  11. New organic materials for optics: optical storage and nonlinear optics

    International Nuclear Information System (INIS)

    Gan, F.

    1996-01-01

    New organic materials have received considerable attention recently, due to their easy preparation and different variety. The most application fields in optics are optical storage and nonlinear optics. In optical storage the organic dyes have been used for example, in record able and erasable compact disks (CD-R, CD-E) nonlinear optical effects, such as nonlinear optical absorption, second and third order optical absorption, second and third order optical nonlinearities, can be applied for making optical limiters, optical modulators, as well as laser second and third harmonic generations. Due to high value of optical absorption and optical nonlinearity organic materials are always used as thin films in optical integration. In this paper the new experimental results have been presented, and future development has been also discussed. (author)

  12. Linear and non-linear optics of condensed matter

    International Nuclear Information System (INIS)

    McLean, T.P.

    1977-01-01

    Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)

  13. Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander B. E-mail: granov@magn.ru; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru

    2003-03-01

    We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D{sub i}={epsilon}{sub i}{sup (0)}E{sub i} +{chi}{sub i}{sup (3)}|E{sub i}|{sup 2}E{sub i}. We assume that linear {epsilon}{sub i}{sup (0)} and cubic nonlinear {chi}{sub i}{sup (3)} dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function {chi}{sub eff}{sup (3)} can be significantly greater (up to 10{sup 3} times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity.

  14. Third-order nonlinear optical properties of 1,3-bis(3,4-dimethoxyphenyl) prop-2-en-1-one under femtosecond laser pulses

    Science.gov (United States)

    Maidur, Shivaraj R.; Patil, Parutagouda Shankaragouda; Rao, S. Venugopal

    2018-04-01

    In this paper, we present the third-order nonlinear optical (NLO) studies of 1,3-bis(3,4-dimethoxyphenyl)prop-2-en-1-one (abbreviated as VDMC). The chalcone was synthesized by Claisen-Schmidt condensation method. The third-order nonlinear optical properties were evaluated using standard, well-known Z-scan technique under femtosecond laser regime (150 fs, 900 nm) with two different laser repetition rates 500 Hz and 80 MHz. Open aperture studies showed that the molecule possess two photon absorption with the coefficients in the order 10-9 cmW-1. The closed aperture studies have resulted the negative nonlinear refraction with the coefficients in the order 10-14 cm2W-1. The two-photon absorption cross sections were estimated. Optical limiting properties have been studied and the limiting threshold values were found to be in the range 0.86-2.3 mJ/cm2, which suggests that VDMC has better applications in the field of nonlinear optics.

  15. Structural, vibrational and theoretical studies of anilinium trichloroacetate: New hydrogen bonded molecular crystal with nonlinear optical properties

    Science.gov (United States)

    Tanak, H.; Pawlus, K.; Marchewka, M. K.; Pietraszko, A.

    2014-01-01

    In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of the potential nonlinear optical (NLO) material anilinium trichloroacetate. The FT-IR and FT-Raman spectra of the compound have been recorded together between 4000-80 cm-1 and 3600-80 cm-1 regions, respectively. The compound crystallizes in the noncentrosymmetric space group of monoclinic system. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with 6-311++G(d,p) as higher basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. DSC measurements on powder samples do not indicate clearly on the occurrence of phase transitions in the temperature 113-293 K. The Kurtz and Perry powder reflection technique appeared to be very effective in studies of second-order nonlinear optical properties of the molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, frontier orbitals and thermodynamic properties were also performed at 6-311++G(d,p) level of theory. For title crystal the SHG efficiency was estimated by Kurtz-Perry method to be deff = 0.70 deff (KDP).

  16. Quantum Nonlinear Optics

    CERN Document Server

    Hanamura, Eiichi; Yamanaka, Akio

    2007-01-01

    This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. Based on the quantum theory of radiation, Quantum Nonlinear Optics incorporates the exciting developments in novel nonlinear responses of materials (plus laser oscillation and superradiance) developed over the past decade. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, mutual manipulation of light and matter, laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. Also considered are Q-switching, mode locking and pulse compression. Experimental and theoretical aspects are intertwined throughout.

  17. Third-order nonlinear optical properties of GeSe2-Ga2Se3-PbI2 glasses

    International Nuclear Information System (INIS)

    Tang Gao; Liu Cunming; Luo Lan; Chen Wei

    2010-01-01

    The third-order nonlinear optical (NLO) properties of new selenium-based GeSe 2 -Ga 2 Se 3 -PbI 2 glasses have been measured using the optical Kerr effect (OKE) technique, with picosecond and femtosecond laser pulses. The 0.70GeSe 2 -0.15Ga 2 Se 3 -0.15PbI 2 glass has the largest third-order optical nonlinear susceptibility in GeSe 2 -Ga 2 Se 3 -PbI 2 glass system with χ (3) of 5.28x10 12 esu. In addition, the response time of glasses is sub-picosecond, which is predominantly associated with electron cloud. Local structure of the glasses has been identified by using Raman studies, while the origins of the observed nonlinear optical response are discussed. The [Ge(Ga)Se 4 ] tetrahedral and lone-pair electrons from highly polarizable Pb atom in glasses play an important role in enhanced NLO response. These results as well as their good chemical stability indicate that GeSe 2 -Ga 2 Se 3 -PbI 2 glasses are promising materials for photonic applications of third-order nonlinear optical signal processing.

  18. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  19. Black phosphorus: broadband nonlinear optical absorption and application

    Science.gov (United States)

    Li, Ying; He, Yanliang; Cai, Yao; Chen, Shuqing; Liu, Jun; Chen, Yu; Yuanjiang, Xiang

    2018-02-01

    Black phosphorus (BP), 2D layered material with layered dependent direct bandgap (0.3 eV (bulk), 2.0 eV (single layer)) that has gained renewed attention, has been demonstrated as an extremely appropriate optical material for broadband optical applications from infrared to mid-infrared wavebands. Herein, by coupling multi-layer BP films with microfiber, we fabricated a nonlinear optical device with long light-matter interaction distance and enhanced damage threshold. Through taking full advantage of its fine nonlinear optical absorption property, we obtained stable mode-locking (51 ps) and Q-switched mode-locking states in Yb-doped or Er-doped (403.7 fs) all-fiber lasers and the single-longitudinal-mode operation (53 kHz) in an Er-doped fiber laser with enhanced power tolerance, using the same nonlinear optical device. Our results showed that BP could be a favorable nonlinear optical material for developing BP-enabled wave-guiding photonic devices, and revealed new insight into BP for high optical power unexplored optical devices.

  20. Nonlinear optical properties of Nd3+-Li+ co-doped ZnS-PVP thin films

    Science.gov (United States)

    Talwatkar, S. S.; Sunatkari, A. L.; Tamgadge, Y. S.; Muley, G. G.

    2018-04-01

    The nonlinear optical properties of Nd3+-Li+ co-doped ZnS-PVP nanocomposite were studied using a continuous wave (CW) He-Ne laser (λ = 632.8 nm)by z-scan technique. The nonlinear refractive index (n2), absorption coefficient (β) and third order nonlinear susceptibility (χ(3)) of PVP thin films embedded with Nd3+-Li+ co-doped ZnS NPs was found in the order of 10-7 cm2/W, 10-6 cm/W and 10-7 esu respectively. The nonlinearity found increasing with Nd3+-Li+ co-dopant concentration. Based on the results, it is proposed that this material is a new class of luminescent material suitable in optoelectronics devices application, especially in light-emitting devices, electroluminescent devices, display devices, etc.

  1. Measurements of nonlinear optical properties of PVDF/ZnO using Z-scan technique

    Energy Technology Data Exchange (ETDEWEB)

    Shanshool, Haider Mohammed, E-mail: haidshan62@gmail.com [Ministry of Science and Technology, Baghdad (Iraq); Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia); Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, University Putra Malaysia, Serdang (Malaysia); Abdullah, Ibtisam Yahya [Department of Physics, College of Science, University of Mosul, Mosul (Iraq)

    2015-10-15

    The nonlinear optical properties of ZnO nanoparticles dispersed in poly (vinylidene fluoride) (PVDF) polymer are investigated. PVDF/ZnO nanocomposites were prepared by mixing different concentrations of ZnO nanoparticles, as the filler, with PVDF, as the polymer matrix, using casting method. Acetone was used as a solvent for the polymer. FTIR spectra of the samples were analyzed thus confirming the formation of α and β phases. The absorbance spectra of the samples were obtained, thereby showing high absorption in the UV region. The linear absorption coefficient was calculated. The single-beam Z-scan technique was used to measure the nonlinear refractive index and the nonlinear absorption coefficient of the PVDF/ZnO nanocomposite samples. We observed that the nonlinear refractive index is in the order of 10{sup -13} cm{sup 2}/W with the negative sign, whereas the nonlinear absorption coefficient is in the order of 10{sup -8} cm/W. (author)

  2. The chemistry and physics of nonlinear optical materials

    International Nuclear Information System (INIS)

    Velsko, S.P.; Eimerl, D.

    1989-01-01

    Recent efforts to engineer new nonlinear optical materials with specific desired characteristics has engendered a need for a theoretical description of optical properties which is readily accessible to chemists, yet correctly treats the essential physics of dielectric response. This paper describes a simple empirical molecular orbital model which gives useful insights into the relationship between chemical composition, crystalline structure, and optical susceptibilities. The authors compare the probabilities of finding new harmonic generators in various chemical classes. Rigorous bounds on the magnitudes of linear and nonlinear optical coefficients and their anisotropies are also discussed

  3. 50 years of nonlinear optics

    International Nuclear Information System (INIS)

    Shen Yuanrang

    2011-01-01

    This article presents a brief introduction to the birth and early investigations of nonlinear optics, such as second harmonic generation,sum and difference frequency generation, stimulated Raman scattering,and self-action of light etc. Several important research achievements and applications of nonlinear optics are presented as well, including nonlinear optical spectroscopy, phase conjugation and adaptive optics, coherent nonlinear optics, and high-order harmonic generation. In the end, current and future research topics in nonlinear optics are summarized. (authors)

  4. Structural, electronic, linear, and nonlinear optical properties of ZnCdTe{sub 2} chalcopyrite

    Energy Technology Data Exchange (ETDEWEB)

    Ouahrani, Tarik [Laboratoire de Physique Theorique, Universite de Tlemcen, B.P. 230, Tlemcen 13000 (Algeria); Reshak, Ali H. [Institute of Physical Biology, South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Microelectronic Engineering, University of Malaysia Perlis (UniMAP), Block A, Kompleks Pusat Pengajian, 02600 Arau Jejawi, Perlis (Malaysia); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique, Universite de Mascara, Mascara 29000 (Algeria); Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Baltache, H.; Amrani, B. [Laboratoire de Physique Quantique et de Modelisation Mathematique, Universite de Mascara, Mascara 29000 (Algeria); Bouhemadou, A. [Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Faculty of Sciences, Department of Physics, University of Setif, Setif 19000 (Algeria)

    2011-03-15

    We report results of first-principles density functional calculations using the full-potential linearized augmented plane wave method. The generalized gradient approximation (GGA) and the Engel-Vosko-GGA (EV-GGA) formalism were used for the exchange-correlation energy to calculate the structural, electronic, linear, and nonlinear optical properties of the chalcopyrite ZnCdTe{sub 2} compound. The valence band maximum and the conduction band minimum are located at the {gamma}-point, resulting in a direct band gap of about 0.71 eV for GGA and 1.29 eV for EV-GGA. The results of bulk properties, such as lattice parameters (a, c, and u), bulk modulus B, and its pressure derivative B' are evaluated. The optical properties of this compound, namely the real and the imaginary parts of the dielectric function, reflectivity, and refractive index, show a considerable anisotropy as a consequence ZnCdTe{sub 2} posseses a strong birefringence. In addition, the extinction coefficient, the electron energy loss function, and the nonlinear susceptibility are calculated and their spectra are analyzed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Ripple distribution for nonlinear fiber-optic channels.

    Science.gov (United States)

    Sorokina, Mariia; Sygletos, Stylianos; Turitsyn, Sergei

    2017-02-06

    We demonstrate data rates above the threshold imposed by nonlinearity on conventional optical signals by applying novel probability distribution, which we call ripple distribution, adapted to the properties of the fiber channel. Our results offer a new direction for signal coding, modulation and practical nonlinear distortions compensation algorithms.

  6. Linear and nonlinear optical properties of multilayered spherical quantum dots: Effects of geometrical size, hydrogenic impurity, hydrostatic pressure and temperature

    International Nuclear Information System (INIS)

    Karimi, M.J.; Rezaei, G.; Nazari, M.

    2014-01-01

    Based on the effective mass and parabolic one band approximations, simultaneous effects of the geometrical size, hydrogenic impurity, hydrostatic pressure, and temperature on the intersubband optical absorption coefficients and refractive index changes in multilayered spherical quantum dots are studied. Energy eigenvalues and eigenvectors are calculated using the fourth-order Runge–Kutta method and optical properties are obtained using the compact density matrix approach. The results indicate that the hydrogenic impurity, hydrostatic pressure, temperature and geometrical parameters such as the well and barrier widths have a great influence on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes. -- Highlights: • Hydrogenic impurity effects on the optical properties of a MSQD are investigated. • Hydrostatic pressure and temperature effects are also studied. • Hydrogenic impurity has a great influence on the linear and nonlinear ACs and RICs. • Hydrostatic pressure and temperature change the linear and nonlinear ACs and RICs

  7. Fundamentals of nonlinear optical materials

    Indian Academy of Sciences (India)

    Nonlinear optics; nonlinear polarization; optical fiber communication; optical switch- ing. PACS Nos 42.65Tg; ... The importance of nonlinear optics is to understand the nonlinear behavior in the induced polarization and to ..... but much work in material development and characterization remains to be done. 16. Conclusion.

  8. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016...... approaches. (C) 2016 Optical Society of America...

  9. Third order nonlinear optical properties and optical limiting behavior of alkali metal complexes of p-nitrophenol

    Science.gov (United States)

    Thangaraj, M.; Vinitha, G.; Sabari Girisun, T. C.; Anandan, P.; Ravi, G.

    2015-10-01

    Optical nonlinearity of metal complexes of p-nitrophenolate (M=Li, Na and K) in ethanol is studied by using a continuous wave (cw) diode pumped Nd:YAG laser (532 nm, 50 mW). The predominant mechanism of observed nonlinearity is thermal in origin. The nonlinear refractive index and the nonlinear absorption coefficient of the samples were found to be in the order of 10-8 cm2/W and 10-3 cm/W respectively. Magnitude of third-order optical parameters varies according to the choice of alkali metal chosen for metal complex formation of p-nitrophenolate. The third-order nonlinear susceptibility was found to be in the order of 10-6 esu. The observed saturable absorption and the self-defocusing effect were used to demonstrate the optical limiting action at 532 nm by using the same cw laser beam.

  10. Synthesis and nonlinear optical property of polycrystalline MnTeMoO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chengguo [Yibin University, Key Laboratory of Computational Physics of Sichuan Province, Yibin (China); Yibin University, School of Physics and Electronic Engineering, Yibin (China)

    2017-04-15

    Polycrystalline MnTeMoO{sub 6} powder has been synthesized by a new approach that MnO{sub 2} is used as the manganese source. The transformation mechanism of manganese ions in the new approach has been discussed. The nonlinear optical property of polycrystalline MnTeMoO{sub 6} has been investigated, and compared with single-crystalline samples. The transformation Mn{sup 4+} → Mn{sup 2+} may be formed directly without stable intermediates, and TeO{sub 2} may serve as catalyst. The SHG response of polycrystalline MnTeMoO{sub 6} powder is worse than that of single-crystalline powder in the same particle size distribution as its pseudo-size. The results indicate that it should pay special attention with the pseudo-size of polycrystalline powder when the potential nonlinear optical materials are screened by powder second harmonic generation measurements. (orig.)

  11. Lossless synthesis of graphene nanosheets decorated with tiny cadmium sulfide quantum dots with excellent nonlinear optical properties

    International Nuclear Information System (INIS)

    Feng Miao; Zhan Hongbing; Sun Ruiqing; Chen Yu

    2010-01-01

    The implantation and growth of metal nanoparticles on graphene nanosheets (GNS) leads directly to severe damage to the regular structure of the graphene sheets, which disrupts the extended π conjugation, resulting in an impaired device performance. In this paper, we describe a facile approach for achieving the lossless formation of graphene composite decorated with tiny cadmium sulfide quantum dots (QDs) with excellent nonlinear optical properties by using benzyl mercaptan (BM) as the interlinker. The mercapto substituent of BM binds to the CdS QDs during their nucleation and growth process, and then the phenyl comes into contact with the GNS via the π-π stacking interaction. Using this strategy, CdS QDs with an average diameter of 3 nm are uniformly dispersed over the surface of graphene, and the resulting QD-graphene composite exhibits excellent optical limiting properties, mainly contributed by nonlinear scattering and nonlinear absorption, upon both 532 and 1064 nm excitations, in the nanosecond laser pulse regime.

  12. Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta [Panjab University, Department of Physics, Center of Advanced Study in Physics, Chandigarh (India)

    2015-09-15

    Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10{sup -5} cm{sup 2}/W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)

  13. Third-order nonlinear optical response of Ag-CdSe/PVA hybrid nanocomposite

    International Nuclear Information System (INIS)

    Tripathi, S.K.; Kaur, Ramneek; Kaur, Jaspreet; Sharma, Mamta

    2015-01-01

    Hybrid nanocomposites of II-VI semiconductor nanoparticles are gaining great interest in nonlinear optoelectronic devices. Present work includes the characterization of CdSe polymer nanocomposite prepared by chemical in situ technique. From X-ray diffraction, the hexagonal wurtzite structure of nanoparticles has been confirmed with spherical morphology from transmission electron microscopy. Ag-CdSe hybrid polymer nanocomposite has been prepared chemically at different Ag concentrations. The presence of Ag in hybrid nanocomposite has been confirmed with energy-dispersive X-ray spectroscopy. The effect of varying Ag concentration on the linear and nonlinear optical properties of the nanocomposites has been studied. In linear optical parameters, the linear absorption coefficient, refractive index, extinction coefficient and optical conductivity have been calculated. The third-order nonlinear optical properties have been observed with open- and closed-aperture Z-scan technique. The large nonlinear refractive index ∝10 -5 cm 2 /W with self-focusing behaviour is due to the combined effect of quantum confinement and thermo-optical effects. The enhanced nonlinearity with increasing Ag content is due to the surface plasmon resonance, which enhances the local electric field near the nanoparticle surface. Thus, Ag-CdSe hybrid polymer nanocomposite has favourable nonlinear optical properties for various optoelectronic applications. (orig.)

  14. Field-enhanced nonlinear optical properties of organic nanofibers

    DEFF Research Database (Denmark)

    Kostiučenko, Oksana; Fiutowski, Jacek; Brewer, Jonathan R.

    2014-01-01

    Second harmonic generation in nonlinearly optically active organic nanofibers, generated via self-assembled surface growth from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules, has been investigated. After the growth on mica templates, nanofibers have been transferred onto...

  15. Nonlinear optical properties of a three-electron quantum dot with account of the Rashba spin-orbit interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hassanabadi, Hassan, E-mail: h.hasanabadi@shahroodut.ac.ir [Physics Department, Shahrood University of Technology, P.O. Box 3619995161-316, Shahrood (Iran, Islamic Republic of); Rahimov, Hamed [Physics Department, Shahrood University of Technology, P.O. Box 3619995161-316, Shahrood (Iran, Islamic Republic of); Lu Liangliang [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Chao [Institute of Public Administration, Guangzhou University, Guangzhou 510006 (China)

    2012-05-15

    In this study, a detailed investigation of the nonlinear optical properties such as optical absorption and refractive index change associated with intersubband transitions in a three-electron quantum dot in two dimensions in the presence of the Rashba spin-orbit interaction has been carried out. We present the exact wave functions and energy levels of the system. Numerical results on typical GaAs/AlGaAs materials show that the decrease of the quantum dot radius blueshifts and amplifies the absorption coefficients as well as the refractive index changes, as expected. Additionally, an increase of the optical intensity and relaxation time considerably changes the absorption coefficients and the refractive index changes. - Highlights: Black-Right-Pointing-Pointer We consider a three-electron quantum dot in 2D in the presence of the Rashba spin-orbit interaction. Black-Right-Pointing-Pointer We present the exact wave functions and energy levels of the system. Black-Right-Pointing-Pointer We apply this model for GaAs/AlGaAs materials. Black-Right-Pointing-Pointer The detailed nonlinear optical properties have been investigated.

  16. Nonlinear optical properties of ZnO/poly (vinyl alcohol) nanocomposite films

    International Nuclear Information System (INIS)

    Jeeju, P. P.; Jayalekshmi, S.; Chandrasekharan, K.

    2014-01-01

    Extensive studies have already been reported on the optical characteristics of ZnO/polymer nanocomposite films, using a variety of polymers including transparent polymers such as polystyrene, polymethyl methacrylate etc and many interesting results have been established regarding the non linear optical characteristics of these systems. Poly (vinyl alcohol)(PVA) is a water soluble polymer. Though the structural and optical studies of ZnO/PVA nanocomposite films have already been investigated, there are no detailed reports on the nonlinear optical characteristics of ZnO/PVA nanocomposite films, irrespective of the fact that these nanocomposite films can be synthesized using quite easy and cost effective methods. The present work is an attempt to study in detail the nonlinear optical behaviour of ZnO/PVA nanocomposite films using Z-scan technique. Highly transparent ZnO/PVA nanocomposite films were prepared from the ZnO incorporated PVA solution in water using spin coating technique. The ZnO nanoparticles were synthesized by the simple chemical route at room temperature. High-resolution transmission electron microscopy studies show that the ZnO nanoparticles are of size around 10 nm. The ZnO/PVA nanocomposite films were structurally characterized by X-ray diffraction technique, from which the presence of both PVA and ZnO in the nanocomposite was established. The optical absorptive nonlinearity in the nanocomposite films was investigated using open aperture Z-scan technique. The results indicate optical limiting type nonlinearity in the films due to two photon absorption in ZnO with efficiency more than 50%. These films also show a self defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. The present studies indicate that, highly transparent and homogeneous films of ZnO/PVA nanocomposite can be obtained on glass substrates using simple methods, in a highly cost effective way, since PVA is water soluble. These nanocomposite films offer

  17. Effects of magnetic field on the terahertz nonlinear optical properties in donor-doped GaAs/AlGaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Hasan [Faculty of Science, Department of Physics, Karabuek University, Karabuek 78050 (Turkey); Aslan, Bulent [Faculty of Science, Department of Physics, Anadolu University, Yunus Emre Campus, Eskisehir 26470 (Turkey)

    2012-11-15

    Effects of the magnetic field on nonlinear optical properties at THz range in GaAs/AlGaAs quantum wells doped with donor atoms are investigated. Expressions for the third-order nonlinear optical susceptibilities are obtained through the solution of the density matrix equations of motion within the rotating wave approximation. Donor binding energies are calculated variationally by means of an iterative shooting algorithm. Magnetic field has strong effect on the nonlinear susceptibility: it removes the degeneracy in energies of 2p{sub {+-}} impurity states and increases the absolute value of the nonlinearity. It is also shown that a large and tunable optical nonlinear figure of merit is possible with the magnetic field applied in the growth direction. The nonlinear optical quantities are also calculated for donor distributions with different full width at half maximum values in the absence of magnetic field and the observed features at low energy part are attributed to the increasing homogeneity in the donor distribution. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    ... are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.

  19. Time-resolved analysis of nonlinear optical limiting for laser synthesized carbon nanoparticles

    Science.gov (United States)

    Chen, G. X.; Hong, M. H.

    2010-11-01

    Nonlinear optical limiting materials have attracted much research interest in recent years. Carbon nanoparticles suspended in liquids show a strong nonlinear optical limiting function. It is important to investigate the nonlinear optical limiting process of carbon nanoparticles for further improving their nonlinear optical limiting performance. In this study, carbon nanoparticles were prepared by laser ablation of a carbon target in tetrahydrofuran (THF). Optical limiting properties of the samples were studied with 532-nm laser light, which is in the most sensitive wavelength band for human eyes. The shape of the laser pulse plays an important role for initializing the nonlinear optical limiting effect. Time-resolved analysis of laser pulses discovered 3 fluence stages of optical limiting. Theoretical simulation indicates that the optical limiting is initialized by a near-field optical enhancement effect.

  20. Calculations on nonlinear optical properties for large systems the elongation method

    CERN Document Server

    Gu, Feng Long; Springborg, Michael; Kirtman, Bernard

    2014-01-01

    For design purposes one needs to relate the structure of proposed materials to their NLO (nonlinear optical) and other properties, which is a situation where theoretical approaches can be very helpful in providing suggestions for candidate systems that subsequently can be synthesized and studied experimentally. This brief describes the quantum-mechanical treatment of the response to one or more external oscillating electric fields for molecular and macroscopic, crystalline systems. To calculate NLO properties of large systems, a linear scaling generalized elongation method for the efficient and accurate calculation is introduced. The reader should be aware that this treatment is particularly feasible for complicated three-dimensional and/or delocalized systems that are intractable when applied to conventional or other linear scaling methods.

  1. Nonlinear optical response of some Graphene oxide and Graphene fluoride derivatives

    OpenAIRE

    Liaros Nikolaos; Orfanos Ioannis; Papadakis Ioannis; Couris Stelios

    2016-01-01

    The nonlinear optical properties of two graphene derivatives, graphene oxide and graphene fluoride, are investigated by means of the Z-scan technique employing 35 ps and 4 ns, visible (532 nm) laser excitation. Both derivatives were found to exhibit significant third-order nonlinear optical response at both excitation regimes, with the nonlinear absorption being relatively stronger and concealing the presence of nonlinear refraction under ns excitation, while ps excita...

  2. Effects of applied electromagnetic fields on the linear and nonlinear optical properties in an inverse parabolic quantum well

    International Nuclear Information System (INIS)

    Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sökmen, I.

    2012-01-01

    In this present work, we have investigated theoretically the effects of applied electric and magnetic fields on the linear and nonlinear optical properties in a GaAs/Al x Ga 1−x As inverse parabolic quantum well for different Al concentrations at the well center. The Al concentration at the barriers was always x max =0.3. The energy levels and wave functions are calculated within the effective mass approximation and the envelope function approach. The analytical expressions of optical properties are obtained by using the compact density-matrix approach. The linear, third-order nonlinear and total absorption and refractive index changes depending on the Al concentration at the well center are investigated as a function of the incident photon energy for the different values of the applied electric and magnetic fields. The results show that the applied electric and magnetic fields have a great effect on these optical quantities. - Highlights: ► The x c concentration has a great effect on the optical characteristics of these structures. ► The EM fields have a great effect on the optical properties of these structures. ► The total absorption coefficients increased as the electric and magnetic field increases. ► The RICs reduced as the electric and magnetic field increases.

  3. Role of Mn2+ concentration in the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles

    Science.gov (United States)

    Anugop, B.; Prasanth, S.; Rithesh Raj, D.; Vineeshkumar, T. V.; Pranitha, S.; Mahadevan Pillai, V. P.; Sudarsanakumar, C.

    2016-12-01

    Ni1-xMnxSe nanoparticles (x = 0.1, 0.3, 0.5, 0.7, 0.9) were successfully synthesized by chemical co-precipitation method and their structural and optical properties were studied using X-ray diffraction, transmission electron microscopy, UV-Visible absorption and photo luminescence spectroscopy. XRD pattern reveals the hexagonal structure of the particles and the peak positions were shifted to higher 2θ values with increase in Mn2+ concentration. The average particle size determined from XRD varies from 6 to 11 nm. The UV-Visible absorption spectrum shows absorption edge around the blue region and is red-shifted with increasing Mn2+ concentration consequently the optical bandgap energy is decreasing. The PL emission spectrum shows a broad emission around 380 nm, and the intensity of the emission decreases with increase in Mn2+ concentration. The nonlinear optical properties of the samples were analysed using Z-scan technique and the samples show optical limiting behaviour and the 2 PA coefficient increases with increasing Mn2+ concentration. Overall, manganese concentration influences the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles.

  4. Non-linear optical materials

    CERN Document Server

    Saravanan, R

    2018-01-01

    Non-linear optical materials have widespread and promising applications, but the efforts to understand the local structure, electron density distribution and bonding is still lacking. The present work explores the structural details, the electron density distribution and the local bond length distribution of some non-linear optical materials. It also gives estimation of the optical band gap, the particle size, crystallite size, and the elemental composition from UV-Visible analysis, SEM, XRD and EDS of some non-linear optical materials respectively.

  5. Nonlinear optical properties of polyaniline and poly (o-toluidine) composite thin films with multi walled carbon nano tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraja, K.K. [National University of Science and Technology “MISiS”, Leninskii pr. 4, Moscow 119049 (Russian Federation); Pramodini, S. [Department of Physics, School of Engineering and Technology, Jain University, Jakkasandra Post, Bengaluru 5621112, Karnataka (India); Poornesh, P., E-mail: poorneshp@gmail.com [Nonlinear Optics Research Laboratory, Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104, Karnataka (India); Telenkov, M.P. [National University of Science and Technology “MISiS”, Leninskii pr. 4, Moscow 119049 (Russian Federation); Kityk, I.V. [Electrical Engineering Department, Czestochowa University Technology, Czestochowa (Poland)

    2017-05-01

    We report the improved third-order nonlinear optical properties of polyaniline and poly (o-toluidine) with different doping concentrations of multi walled carbon nano tube (MWCNTs) composite thin films investigated using z-scan technique and continuous wave He–Ne laser at 633 nm wavelength was used as source of excitation. Thin films were prepared by spin coating technique on glass substrate. The structural properties of the composite films were analysed by X-ray diffraction studies and the characteristic peaks corresponding to MWCNTs and polymers have been observed. The surface morphology of the deposited films was analysed using scanning electron microscopy and it confirms that the polymer in the composites has been coated on the MWCNTs homogeneously. The z-scan results reveal that the films exhibit reverse saturable absorption and self-defocusing nonlinearity. The third-order nonlinear optical susceptibility χ{sup (3)} is found to be of the order of 10{sup −3} esu. Also, optical power limiting and clamping experiment was performed. The clamping values increases with increase in concentration and the lowest clamping observed for composite films are 1 mW and 0.7 mW.

  6. Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures

    International Nuclear Information System (INIS)

    Saravanan, M.; Sabari Girisun, T.C.

    2017-01-01

    Highlights: • Nanospindle and nanosphere ZnFe_2O_4 were decorated upon GO by hydrothermal method. • All the samples show superparamagnetism with almost zero coercivity and remanence. • The observed nonlinearity arises due to effective two photon absorption process. • Tuning of NLO behavior with variation in amount of ZnFe_2O_4 upon GO were achieved. • ZnFe_2O_4-(15 wt%)GO show higher NLO coefficients and superior limiting actions. - Abstract: Nonlinear absorption and optical limiting properties of ZnFe_2O_4-rGO magnetic nanostructures was investigated by the Z-scan technique using Q-switched Nd:YAG laser (5 ns, 532 nm, 10 Hz) as an excitation source. Excited state absorption was the dominant process responsible for the observed nonlinearity in ZnFe_2O_4 decorated rGO which arises due to photo-generated charge carriers in the conduction band of zinc ferrite and increases in defects at the surface of rGO due to the incorporation of ZnFe_2O_4. The magnitude of the nonlinear absorption co-efficient was found to be in the order of 10"−"1"0 m/W. A noteworthy enhancement in the third-order NLO properties in ZnFe_2O_4-(15 wt%) rGO with those of individual counter parts and well known graphene composites was reported. Role of induced defects states (sp"3) arising from the functionalization of rGO in the enhancement of NLO response was explained through Raman studies. Earlier incorporation and distribution of ZnFe_2O_4 upon GO through one-step hydrothermal method was analyzed by XRD and FTIR. Formation of (nanospheres/nanospindles) ZnFe_2O_4 along with reduction of graphene oxide was confirmed through TEM analysis. VSM studies showed zinc ferrite decorated rGO posseses superparamagnetic behavior. The tuning of nonlinear optical and magnetic behavior with variation in the content of spinel ferrites upon reduced graphene oxide provides an easy way to attain tunable properties which are exceedingly required in both optoelectronics and photothermal therapy

  7. Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, M.; Sabari Girisun, T.C., E-mail: sabarigirisun@bdu.ac.in

    2017-01-15

    Highlights: • Nanospindle and nanosphere ZnFe{sub 2}O{sub 4} were decorated upon GO by hydrothermal method. • All the samples show superparamagnetism with almost zero coercivity and remanence. • The observed nonlinearity arises due to effective two photon absorption process. • Tuning of NLO behavior with variation in amount of ZnFe{sub 2}O{sub 4} upon GO were achieved. • ZnFe{sub 2}O{sub 4}-(15 wt%)GO show higher NLO coefficients and superior limiting actions. - Abstract: Nonlinear absorption and optical limiting properties of ZnFe{sub 2}O{sub 4}-rGO magnetic nanostructures was investigated by the Z-scan technique using Q-switched Nd:YAG laser (5 ns, 532 nm, 10 Hz) as an excitation source. Excited state absorption was the dominant process responsible for the observed nonlinearity in ZnFe{sub 2}O{sub 4} decorated rGO which arises due to photo-generated charge carriers in the conduction band of zinc ferrite and increases in defects at the surface of rGO due to the incorporation of ZnFe{sub 2}O{sub 4}. The magnitude of the nonlinear absorption co-efficient was found to be in the order of 10{sup −10} m/W. A noteworthy enhancement in the third-order NLO properties in ZnFe{sub 2}O{sub 4}-(15 wt%) rGO with those of individual counter parts and well known graphene composites was reported. Role of induced defects states (sp{sup 3}) arising from the functionalization of rGO in the enhancement of NLO response was explained through Raman studies. Earlier incorporation and distribution of ZnFe{sub 2}O{sub 4} upon GO through one-step hydrothermal method was analyzed by XRD and FTIR. Formation of (nanospheres/nanospindles) ZnFe{sub 2}O{sub 4} along with reduction of graphene oxide was confirmed through TEM analysis. VSM studies showed zinc ferrite decorated rGO posseses superparamagnetic behavior. The tuning of nonlinear optical and magnetic behavior with variation in the content of spinel ferrites upon reduced graphene oxide provides an easy way to attain tunable

  8. Chiral supramolecular gold-cysteine nanoparticles: Chiroptical and nonlinear optical properties

    Directory of Open Access Journals (Sweden)

    Isabelle Russier-Antoine

    2016-10-01

    Full Text Available Cysteine is a sulfur-containing amino acid that easily coordinates to soft metal ions and grafts to noble metal surfaces. We report a simple synthetic approach for the production of chiral gold-cysteine polymeric nanoparticles soluble in water. Conjugation of cysteine with gold in a polymeric way, leading to ~50 nm diameter nanoparticles, resulted in the generation of new characteristic circular dichroism (CD signals in the region of 250–400 nm, whereas no CD signal changes were found with cysteine alone. We also investigate their nonlinear optical properties after two-photon absorption. Two-photon emission spectra and first hyper-polarizabilities, as obtained by the hyper-Rayleigh scattering technique, of these particles are presented.

  9. Study of nonlinear optical absorption properties of V{sub 2}O{sub 5} nanoparticles in the femtosecond excitation regime

    Energy Technology Data Exchange (ETDEWEB)

    Molli, Muralikrishna; Bhat Kademane, Abhijit; Pradhan, Prabin; Sai Muthukumar, V. [Sri Sathya Sai Institute of Higher Learning, Department of Physics, Puttaparthi, Andhra Pradesh (India)

    2016-08-15

    In this work, we report for the first time, the nonlinear optical absorption properties of vanadium pentoxide (V{sub 2}O{sub 5}) nanoparticles in the femtosecond excitation regime. V{sub 2}O{sub 5} nanoparticles were synthesized through solution combustion technique. The as-synthesized samples were further characterized using XRD, FESEM, EDAX, TEM and UV-visible spectroscopy. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies showed the size of the nanoparticles to be ∝200 nm. Open-aperture z-scan technique was employed to study the nonlinear optical absorption behavior of the synthesized samples using a 100-fs laser pulses at 800 nm from a regeneratively amplified Ti: sapphire laser. The mechanism of nonlinear absorption was found to be a three-photon absorption process which was explained using the density of states of V{sub 2}O{sub 5} obtained using density functional theory. These nanoparticles exhibit strong intensity-dependent nonlinear optical absorption and hence could be considered for optical-power-limiting applications. (orig.)

  10. A computational study on the electronic and nonlinear optical properties of graphyne subunit

    Energy Technology Data Exchange (ETDEWEB)

    Bahat, Mehmet, E-mail: bahat@gazi.edu.tr; Güney, Merve Nurhan, E-mail: merveng87@gmail.com; Özbay, Akif, E-mail: aozbay@gazi.edu.tr [Department of Physics, Gazi University, Ankara, 06500 (Turkey)

    2016-03-25

    After discovery of graphene, it has been considered as basic material for the future nanoelectronic devices. Graphyne is a two- dimensional carbon allotropes as graphene which expected that its electronic properties is potentialy superior to graphene. The compound C{sub 24}H{sub 12} (tribenzocyclyne; TBC) is a substructure of graphyne. The electronic, and nonlinear optical properties of the C{sub 24}H{sub 12} and its some fluoro derivatives were calculated. The calculated properties are electric dipole moment, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies, polarizability and first hyperpolarizability. All calculations were performed at the B3LYP/6-31+G(d,p) level.

  11. Analysis of nonlinear optical properties in donor–acceptor materials

    Energy Technology Data Exchange (ETDEWEB)

    Day, Paul N. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); General Dynamics Information Technology, Inc., Dayton, Ohio 45431 (United States); Pachter, Ruth [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); Nguyen, Kiet A. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); UES, Inc., Dayton, Ohio 45432 (United States)

    2014-05-14

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.

  12. Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer-graphene oxide composite

    Energy Technology Data Exchange (ETDEWEB)

    Nalla, Venkatram; Ji Wei [Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Polavarapu, Lakshminarayana; Manga, Kiran Kumar; Goh, Bee Min; Loh, Kian Ping; Xu Qinghua, E-mail: chmxqh@nus.edu.sg, E-mail: phyjiwei@nus.edu.sg [Department of Chemistry, National University of Singapore, Singapore 117543 (Singapore)

    2010-10-15

    A water soluble conjugated thiophene polymer, sodium salt of poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (TPP), and graphene oxide (GO) composite film (GO-TPP) device was prepared. Transient photoconductivity measurements were carried out on the GO-TPP composite film using 150 ns laser pulses of 527 nm wavelength. Highly efficient photocurrent generation was observed from the GO-TPP film. The relationships of the film photoconductivity, photocurrent decay time and electron decay times with the incident light intensity were investigated. The photoconductive gain of the film was determined to be greater than 40% and to be independent of the light intensity. Furthermore, the femtosecond nonlinear optical properties of the GO-TPP film were measured using 800 nm femtosecond laser pulses and the composite film exhibited high nonlinear absorption and nonlinear refraction coefficients.

  13. Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer-graphene oxide composite

    International Nuclear Information System (INIS)

    Nalla, Venkatram; Ji Wei; Polavarapu, Lakshminarayana; Manga, Kiran Kumar; Goh, Bee Min; Loh, Kian Ping; Xu Qinghua

    2010-01-01

    A water soluble conjugated thiophene polymer, sodium salt of poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (TPP), and graphene oxide (GO) composite film (GO-TPP) device was prepared. Transient photoconductivity measurements were carried out on the GO-TPP composite film using 150 ns laser pulses of 527 nm wavelength. Highly efficient photocurrent generation was observed from the GO-TPP film. The relationships of the film photoconductivity, photocurrent decay time and electron decay times with the incident light intensity were investigated. The photoconductive gain of the film was determined to be greater than 40% and to be independent of the light intensity. Furthermore, the femtosecond nonlinear optical properties of the GO-TPP film were measured using 800 nm femtosecond laser pulses and the composite film exhibited high nonlinear absorption and nonlinear refraction coefficients.

  14. Nonlinear fiber optics formerly quantum electronics

    CERN Document Server

    Agrawal, Govind

    1995-01-01

    The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is

  15. Z-scan: A simple technique for determination of third-order optical nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijender, E-mail: chahal-gju@rediffmail.com [Department of Applied Science, N.C. College of Engineering, Israna, Panipat-132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.co.in [Department of Physics, Chaudhary Devi Lal University, Sirsa-125055, Haryana (India)

    2015-08-28

    Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to be 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.

  16. Studies on third-order optical nonlinearity and power limiting of conducting polymers using the z-scan technique for nonlinear optical applications

    International Nuclear Information System (INIS)

    Pramodini, S; Poornesh, P; Sudhakar, Y N; SelvaKumar, M

    2014-01-01

    We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He–Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of β eff , n 2 and χ (3) were found to be of the order of 10 −2  cm W −1 , 10 -5  esu and 10 −7  esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications. (paper)

  17. Studies on third-order optical nonlinearity and power limiting of conducting polymers using the z-scan technique for nonlinear optical applications

    Science.gov (United States)

    Pramodini, S.; Sudhakar, Y. N.; SelvaKumar, M.; Poornesh, P.

    2014-04-01

    We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He-Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm W-1, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications.

  18. Nonlinear optical properties of systems based on ruthenium(II) tetra-15-crown-5-phthalocyaninate

    International Nuclear Information System (INIS)

    Grishina, A.D.; Gorbunova, Yu.G.; Enakieva, Yu.Yu.; Krivenko, T.V.; Savel'ev, V.V.; Vannikov, A.V.; Tsivadze, A.Yu.

    2008-01-01

    The third-order nonlinear optical properties of the ruthenium (II) complex with tetra-15-crown-5-phthalocyanine and axially coordinated triethylenediamine molecules (R 4 Pc)Ru(TED) 2 were analyzed by means of the z-scanning technique. A solution of (R 4 Pc)Ru(TED) 2 in tetrachloroethane was exposed to nanosecond laser pulses at a wavelength of 1064 nm. It was found that the third-order molecular polarizability of the Ru(II) complex is 4.5 x 10 -32 cm 4 /C (esu). The polarizability per molecule increases by a factor of 3.6 when the single molecule occurs in a supramolecular assembly of (R 4 Pc)Ru(TED) 2 complexes. The photoelectric and photorefractive properties at 1064 nm of polymer composites, determined by the supramolecular assemblies that exhibits optical absorption and photoelectric sensitivity in the near IR region, are reported [ru

  19. Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications

    KAUST Repository

    Gieseking, Rebecca L.

    2014-10-16

    Polymethine dyes in dilute solutions show many of the electronic and optical properties required for all-optical switching applications. However, in the form of thin films, their aggregation and interactions with counterions do generally strongly limit their utility. Here, we present a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations to describe the bulk molecular packing of streptocyanines (taken as representative of simple polymethines) with counterions of different hardness (Cl and BPh4 ) and understand the impact on the optical properties. The accuracy of the force field we use is verified by reproducing experimental crystal parameters as well as the configurations of polymethine/counterion complexes obtained from electronic-structure calculations. The aggregation characteristics can be understood in terms of both polymethinecounterion and polymethinepolymethine interactions. The counterions are found to localize near one end of the streptocyanine backbones, and the streptocyanines form a broad range of aggregates with significant electronic couplings between neighboring molecules. As a consequence, the linear and nonlinear optical properties are substantially modified in the bulk. By providing an understanding of the relationship between the molecular interactions and the bulk optical properties, our results point to a clear strategy for designing polymethine and counterion molecular structures and optimizing the materials properties for all-optical switching applications.

  20. Impact of Bulk Aggregation on the Electronic Structure of Streptocyanines: Implications for the Solid-State Nonlinear Optical Properties and All-Optical Switching Applications

    KAUST Repository

    Gieseking, Rebecca L.; Mukhopadhyay, Sukrit; Shiring, Stephen B.; Risko, Chad; Bredas, Jean-Luc

    2014-01-01

    Polymethine dyes in dilute solutions show many of the electronic and optical properties required for all-optical switching applications. However, in the form of thin films, their aggregation and interactions with counterions do generally strongly limit their utility. Here, we present a theoretical approach combining molecular-dynamics simulations and quantum-chemical calculations to describe the bulk molecular packing of streptocyanines (taken as representative of simple polymethines) with counterions of different hardness (Cl and BPh4 ) and understand the impact on the optical properties. The accuracy of the force field we use is verified by reproducing experimental crystal parameters as well as the configurations of polymethine/counterion complexes obtained from electronic-structure calculations. The aggregation characteristics can be understood in terms of both polymethinecounterion and polymethinepolymethine interactions. The counterions are found to localize near one end of the streptocyanine backbones, and the streptocyanines form a broad range of aggregates with significant electronic couplings between neighboring molecules. As a consequence, the linear and nonlinear optical properties are substantially modified in the bulk. By providing an understanding of the relationship between the molecular interactions and the bulk optical properties, our results point to a clear strategy for designing polymethine and counterion molecular structures and optimizing the materials properties for all-optical switching applications.

  1. Nonlinear optical effects from Au nanoparticles prepared by laser plasmas in water

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, E., E-mail: enfazio@unime.it [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universitá di Messina, V.le F. Stagno d’Alcontres 31, I-98166, Messina (Italy); Neri, F. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universitá di Messina, V.le F. Stagno d’Alcontres 31, I-98166, Messina (Italy)

    2013-05-01

    The optical limiting properties of Au nanoparticles prepared by laser generated plasmas in water were investigated. The ablation processes were carried out irradiating an Au target with the second harmonic (532 nm) output of a Nd:YAG laser, changing the water level above the target, the lens position and the laser pulse energy. Different surface morphologies, from isolated nearly spherical nanoparticles to elongated structures, were observed by TEM imaging. A significant nonlinear optical response was probed by the Z-scan technique. The efficiency and the nature of the nonlinear response are found to be strongly dependent on the morphological properties of the nanostructures. The third order optical susceptibility χ{sup (3)} assumes the values of 1.83 × 10{sup −6} esu and 6.34 × 10{sup −6} esu for the smaller nanoparticles size obtained at the lower ablation energies (10–20 mJ), 8.25 × 10{sup −6} esu and 2.13 × 10{sup −5} esu for the particles agglomerations obtained at the higher ablation energies (50–100 mJ). The high value of χ{sup (3)} and the possibility to tailor the nonlinear optical response by changing the morphological properties of the Au nanostructures make them interesting materials for potential applications in the nonlinear optics field.

  2. Theory of plasmonic effects in nonlinear optics: the case of graphene

    Science.gov (United States)

    Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco; Mikhail I. Katsnelson Collaboration; Habib Rostami; Marco Polini Collaboration

    The nonlinear optical properties of two-dimensional electronic systems are beginning to attract considerable interest both in the theoretical and experimental sectors. Recent experiments on the nonlinear optical properties of graphene reveal considerably strong third harmonic generation and four-wave mixing of this single-atomic-layer electronic system. We develop a large-N theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved. This work was supported by Fondazione Istituto Italiano di Tecnologia, the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore, and the ERC Advanced Grant 338957 FEMTO/NANO (M.I.K.).

  3. Terahertz Nonlinear Optics in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2013-01-01

    We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...... breathing of a single-cycle THz pulse in a semiconductor....

  4. Importance of the alignment of polar π conjugated molecules inside carbon nanotubes in determining second-order non-linear optical properties.

    Science.gov (United States)

    Yumura, Takashi; Yamamoto, Wataru

    2017-09-20

    We employed density functional theory (DFT) calculations with dispersion corrections to investigate energetically preferred alignments of certain p,p'-dimethylaminonitrostilbene (DANS) molecules inside an armchair (m,m) carbon nanotube (n × DANS@(m,m)), where the number of inner molecules (n) is no greater than 3. Here, three types of alignments of DANS are considered: a linear alignment in a parallel fashion and stacking alignments in parallel and antiparallel fashions. According to DFT calculations, a threshold tube diameter for containing DANS molecules in linear or stacking alignments was found to be approximately 1.0 nm. Nanotubes with diameters smaller than 1.0 nm result in the selective formation of linearly aligned DANS molecules due to strong confinement effects within the nanotubes. By contrast, larger diameter nanotubes allow DANS molecules to align in a stacking and linear fashion. The type of alignment adopted by the DANS molecules inside a nanotube is responsible for their second-order non-linear optical properties represented by their static hyperpolarizability (β 0 values). In fact, we computed β 0 values of DANS assemblies taken from optimized n × DANS@(m,m) structures, and their values were compared with those of a single DANS molecule. DFT calculations showed that β 0 values of DANS molecules depend on their alignment, which decrease in the following order: linear alignment > parallel stacking alignment > antiparallel stacking alignment. In particular, a linear alignment has a β 0 value more significant than that of the same number of isolated molecules. Therefore, the linear alignment of DANS molecules, which is only allowed inside smaller diameter nanotubes, can strongly enhance their second-order non-linear optical properties. Since the nanotube confinement determines the alignment of DANS molecules, a restricted nanospace can be utilized to control their second-order non-linear optical properties. These DFT findings can assist in the

  5. Nonlinear Photonics and Novel Optical Phenomena

    CERN Document Server

    Morandotti, Roberto

    2012-01-01

    Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.

  6. Nonlinear optics principles and applications

    CERN Document Server

    Li, Chunfei

    2017-01-01

    This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...

  7. MECHANISM OF OPTICAL NONLINEARITY IN “LYOTROPIC LIQUID CRYSTAL — VIOLOGEN” SYSTEM

    Directory of Open Access Journals (Sweden)

    Hanna Bordyuh

    2014-06-01

    Full Text Available In the present work we analyze the characteristics of holographic grating recording and consider a mechanism of optical nonlinearity in the lyotropic liquid crystal (LLC — viologen samples. Taking into account structural and electrooptical properties of the admixture molecules it is possible to suggest that the recording is realized due to the change of polarizability of π-electron system of coloured viologen derivatives under the action of laser radiation. The main nonlinear optical parameters such as nonlinear refraction coefficient n2, cubic nonlinear susceptibility χ(3, and hyperpolarizability γ were calculated.

  8. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, V.; McBranch, D.; Schwarz, C.

    1998-08-10

    Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.

  9. Diagnostic study of the roughness surface effect of zirconium on the third-order nonlinear-optical properties of thin films based on zinc oxide nanomaterials

    International Nuclear Information System (INIS)

    Bahedi, K.; Addou, M.; El Jouad, M.; Sofiani, Z.; Alaoui Lamrani, M.; El Habbani, T.; Fellahi, N.; Bayoud, S.; Dghoughi, L.; Sahraoui, B.; Essaidi, Z.

    2009-01-01

    Zinc oxide (ZnO) and zirconium doped zinc oxide (ZnO:Zr) thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 500 deg. C using zinc and zirconium chlorides as precursors. Effects of zirconium doping agent and surface roughness on the nonlinear optical properties were investigated in detail using atomic force microscopy (AFM) and third harmonic generation (THG) technique. The best value of nonlinear optical susceptibility χ (3) was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility χ (3) = 20.12 x 10 -12 (esu) of the studied films was found for the 3% doped sample.

  10. Syntheses, structures and third-order non-linear optical properties of homometal clusters containing molybdenum

    International Nuclear Information System (INIS)

    Li Yong; Lu Jing; Cui Xiaobing; Xu Jiqing; Li Kechang; Sun Huaying; Li Guanghua; Pan Lingyun; Yang Qingxin

    2005-01-01

    Both the homometal cluster [P(ph 4 )] 2 [Mo 2 O 2 (μ-S) 2 (S 2 ) 2 ] (1) and [Mo 2 O 2 (μ-S) 2 (Et 2 dtc) 2 ] (2) (Et 2 dtc=diethyl-dithiocarbamate) were successfully synthesized by low-temperature solid-state reactions. X-ray single-crystal diffraction studies suggest that compound (1) is a dinuclear anion cluster, and compound (2) is a dinuclear neutral cluster. The two compounds were characterized by elemental analyses, IR spectra and UV-Vis spectra. The third-order non-linear optical (NLO) properties of the clusters were also investigated and all exhibited nice non-linear absorption and self-defocusing performance with moduli of the hyperpolarizabilities 5.145x10 -30 esu for (1) and 5.428x10 -30 esu for (2)

  11. Investigation on nonlinear optical properties of MoS2 nanoflakes grown on silicon and quartz substrates

    Science.gov (United States)

    Bayesteh, Samaneh; Zahra Mortazavi, Seyedeh; Reyhani, Ali

    2018-05-01

    In this study, MoS2 nanoflakes were directly grown on different substrates—Si/SiO2 and quartz—by one-step thermal chemical vapor deposition using MoO3 and sulfide powders as precursors. Scanning electron microscopy and x-ray diffraction patterns demonstrated the formation of MoS2 structures on both substrates. Moreover, UV-visible and photoluminescence analysis confirmed the formation of MoS2 few-layer structures. According to Raman spectroscopy, by assessment of the line width and frequency shift differences between the and A 1g, it was inferred that the MoS2 grown on the silicon substrate was monolayer and that grown on the quartz substrate was multilayer. In addition, open-aperture and close-aperture Z-scan techniques were employed to study the nonlinear optical properties including nonlinear absorption and nonlinear refraction of the grown MoS2. All experiments were performed using a diode laser with a wavelength of 532 nm as the light source. It is noticeable that both samples demonstrate obvious self-defocusing behavior. The monolayer MoS2 grown on the silicon substrate displayed considerable two-photon absorption while, the multilayer MoS2 synthesized on the quartz exhibited saturable absorption. In general, few-layered MoS2 would be useful for the development of nanophotonic devices like optical limiters, optical switchers, etc.

  12. Nonlinear optical interactions in silicon waveguides

    Directory of Open Access Journals (Sweden)

    Kuyken B.

    2017-03-01

    Full Text Available The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.

  13. Field guide to nonlinear optics

    CERN Document Server

    Powers, Peter E

    2013-01-01

    Optomechanics is a field of mechanics that addresses the specific design challenges associated with optical systems. This [i]Field Guide [/i]describes how to mount optical components, as well as how to analyze a given design. It is intended for practicing optical and mechanical engineers whose work requires knowledge in both optics and mechanics. This Field Guide is designed for those looking for a condensed and concise source of key concepts, equations, and techniques for nonlinear optics. Topics covered include technologically important effects, recent developments in nonlinear optics

  14. Spin and diamagnetism in linear and nonlinear optics

    International Nuclear Information System (INIS)

    Andersen, Torsten; Keller, Ole; Huebner, Wolfgang; Johansson, Boerje

    2004-01-01

    We present a local-field theory for spin and diamagnetism in linear and nonlinear optics. We examine all the processes contained in the Pauli Hamiltonian and its corresponding microscopic current density, including the terms depending on the electron spin. The resulting general real-space conductivities are presented and discussed. To quantify the implications of including the spin, we study the linear and nonlinear optical properties of free-electron metals, represented by the screened homogeneous electron gas. The real-space formalism is transformed into Fourier space, and the symmetries of the linear and nonlinear optical conductivities in a homogeneous electron gas are discussed. Numerical results are presented for the homogeneous electron gas, in which we treat ω and q as independent variables, thereby opening the theory to near-field optics and the study of evanescent waves. We show that in regions of the ω-q spectrum, the presence of diamagnetism and spin dynamics significantly alters the response in comparison to considering only the paramagnetic response. Additionally, we discuss the effects of screening, and we finish our treatment by a discussion of how to connect the present theory to existing methods in ab initio solid-state physics

  15. Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays.

    Science.gov (United States)

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2009-08-17

    The linear and nonlinear optical properties of a composite containing interacting spherical silver nanoparticles embedded in a dielectric host are studied as a function of interparticle separation using three dimensional frequency domain simulations. It is shown that for a fixed amount of metal, the effective third-order nonlinear susceptibility of the composite chi((3))(omega) can be significantly enhanced with respect to the linear optical properties, due to a combination of resonant surface plasmon excitation and local field redistribution. It is shown that this geometry-dependent susceptibility enhancement can lead to an improved figure of merit for nonlinear absorption. Enhancement factors for the nonlinear susceptibility of the composite are calculated, and the complex nature of the enhancement factors is discussed.

  16. Nonlinear light-matter interactions in engineered optical media

    Science.gov (United States)

    Litchinitser, Natalia

    In this talk, we consider fundamental optical phenomena at the interface of nonlinear and singular optics in artificial media, including theoretical and experimental studies of linear and nonlinear light-matter interactions of vector and singular optical beams in metamaterials. We show that unique optical properties of metamaterials open unlimited prospects to ``engineer'' light itself. Thanks to their ability to manipulate both electric and magnetic field components, metamaterials open new degrees of freedom for tailoring complex polarization states and orbital angular momentum (OAM) of light. We will discuss several approaches to structured light manipulation on the nanoscale using metal-dielectric, all-dielectric and hyperbolic metamaterials. These new functionalities, including polarization and OAM conversion, beam magnification and de-magnification, and sub-wavelength imaging using novel non-resonant hyperlens are likely to enable a new generation of on-chip or all-fiber structured light applications. The emergence of metamaterials also has a strong potential to enable a plethora of novel nonlinear light-matter interactions and even new nonlinear materials. In particular, nonlinear focusing and defocusing effects are of paramount importance for manipulation of the minimum focusing spot size of structured light beams necessary for nanoscale trapping, manipulation, and fundamental spectroscopic studies. Colloidal suspensions offer as a promising platform for engineering polarizibilities and realization of large and tunable nonlinearities. We will present our recent studies of the phenomenon of spatial modulational instability leading to laser beam filamentation in an engineered soft-matter nonlinear medium. Finally, we introduce so-called virtual hyperbolic metamaterials formed by an array of plasma channels in air as a result of self-focusing of an intense laser pulse, and show that such structure can be used to manipulate microwave beams in a free space. This

  17. Diagnostic study of the roughness surface effect of zirconium on the third-order nonlinear-optical properties of thin films based on zinc oxide nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Bahedi, K., E-mail: bahedikhadija@yahoo.com [Laboratoire Optoelectronique et Physico-chimie des Materiaux Universite Ibn Tofail, Faculte des Sciences BP 133 Kenitra 14000, Maroc (Morocco); Addou, M.; El Jouad, M.; Sofiani, Z.; Alaoui Lamrani, M.; El Habbani, T.; Fellahi, N.; Bayoud, S.; Dghoughi, L. [Laboratoire Optoelectronique et Physico-chimie des Materiaux Universite Ibn Tofail, Faculte des Sciences BP 133 Kenitra 14000, Maroc (Morocco); Sahraoui, B.; Essaidi, Z. [Laboratoire POMA, UMR CNRS 6136, Universite d' Angers 2, Bd Lavoisier, 49045 France (France)

    2009-02-01

    Zinc oxide (ZnO) and zirconium doped zinc oxide (ZnO:Zr) thin films were deposited by reactive chemical pulverization spray pyrolysis technique on heated glass substrates at 500 deg. C using zinc and zirconium chlorides as precursors. Effects of zirconium doping agent and surface roughness on the nonlinear optical properties were investigated in detail using atomic force microscopy (AFM) and third harmonic generation (THG) technique. The best value of nonlinear optical susceptibility {chi}{sup (3)} was obtained from the doped films with less roughness. A strong third order nonlinear optical susceptibility {chi}{sup (3)} = 20.12 x 10{sup -12} (esu) of the studied films was found for the 3% doped sample.

  18. Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications

    Science.gov (United States)

    Driscoll, Jeffrey B.

    Silicon photonics has grown rapidly since the first Si electro-optic switch was demonstrated in 1987, and the field has never grown more quickly than it has over the past decade, fueled by milestone achievements in semiconductor processing technologies for low loss waveguides, high-speed Si modulators, Si lasers, Si detectors, and an enormous toolbox of passive and active integrated devices. Silicon photonics is now on the verge of major commercialization breakthroughs, and optical communication links remain the force driving integrated and Si photonics towards the first commercial telecom and datacom transceivers; however other potential and future applications are becoming uncovered and refined as researchers reveal the benefits of manipulating photons on the nanoscale. This thesis documents an exploration into the unique guided-wave and nonlinear properties of deeply-scaled high-index-contrast sub-wavelength Si waveguides. It is found that the tight confinement inherent to single-mode channel waveguides on the silicon-on-insulator platform lead to a rich physics, which can be leveraged for new devices extending well beyond simple passive interconnects and electro-optic devices. The following chapters will concentrate, in detail, on a number of unique physical features of Si waveguides and extend these attributes towards new and interesting devices. Linear optical properties and nonlinear optical properties are investigated, both of which are strongly affected by tight optical confinement of the guided waveguide modes. As will be shown, tight optical confinement directly results in strongly vectoral modal components, where the electric and magnetic fields of the guided modes extend into all spatial dimensions, even along the axis of propagation. In fact, the longitudinal electric and magnetic field components can be just as strong as the transverse fields, directly affecting the modal group velocity and energy transport properties since the longitudinal fields

  19. Nanoplasmonic solution for nonlinear optics

    DEFF Research Database (Denmark)

    Bache, Morten; Lavrinenko, Andrei; Lysenko, Oleg

    2014-01-01

    for the silicon dioxide cladding. The blue, cyan and magenta curves correspond to the transmission spectra for the gold waveguides with the width of 10 μm and length of 2, 3, and 4 mm.The polarization of laser beam was tuned to match the transverse magnetic mode of surface plasmonpolaritons in the gold waveguides...... and is being under investigation in recent years [3].The purpose of our research is to study nonlinear optical properties of gold waveguides embedded intodielectric medium (silicon dioxide) using picosecond laser spectroscopy. The work includes modeling ofoptical properties of gold waveguides, fabrication...... of prototype samples, and optical characterization ofsamples using a picosecond laser source.The prototype samples of gold waveguides embedded into silicon dioxide were fabricated at DTUDanchip. A silicon wafer with pre-made 6.5 μm layer of silicon dioxide was used as a substrate and goldwaveguides (films...

  20. Nonlinear Optics: Principles and Applications

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Tidemand-Lichtenberg, Peter

    of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...... and matter, this text focuses on the physical understanding of nonlinear optics, and explores optical material response functions in the time and frequency domain....

  1. Nonlinear optical effects of opening a gap in graphene

    Science.gov (United States)

    Carvalho, David N.; Biancalana, Fabio; Marini, Andrea

    2018-05-01

    Graphene possesses remarkable electronic, optical, and mechanical properties that have taken the research of two-dimensional relativistic condensed matter systems to prolific levels. However, the understanding of how its nonlinear optical properties are affected by relativisticlike effects has been broadly uncharted. It has been recently shown that highly nontrivial currents can be generated in free-standing samples, notably leading to the generation of even harmonics. Since graphene monolayers are centrosymmetric media, for which such harmonic generation at normal incidence is deemed inaccessible, this light-driven phenomenon is both startling and promising. More realistically, graphene samples are often deposited on a dielectric substrate, leading to additional intricate interactions. Here, we present a treatment to study this instance by gapping the spectrum and we show this leads to the appearance of a Berry phase in the carrier dynamics. We analyze the role of such a phase in the generated nonlinear current and conclude that it suppresses odd-harmonic generation. The pump energy can be tuned to the energy gap to yield interference among odd harmonics mediated by interband transitions, allowing even harmonics to be generated. Our results and general methodology pave the way for understanding the role of gap opening in the nonlinear optics of two-dimensional lattices.

  2. Extreme Nonlinear Optics An Introduction

    CERN Document Server

    Wegener, Martin

    2005-01-01

    Following the birth of the laser in 1960, the field of "nonlinear optics" rapidly emerged. Today, laser intensities and pulse durations are readily available, for which the concepts and approximations of traditional nonlinear optics no longer apply. In this regime of "extreme nonlinear optics," a large variety of novel and unusual effects arise, for example frequency doubling in inversion symmetric materials or high-harmonic generation in gases, which can lead to attosecond electromagnetic pulses or pulse trains. Other examples of "extreme nonlinear optics" cover diverse areas such as solid-state physics, atomic physics, relativistic free electrons in a vacuum and even the vacuum itself. This book starts with an introduction to the field based primarily on extensions of two famous textbook examples, namely the Lorentz oscillator model and the Drude model. Here the level of sophistication should be accessible to any undergraduate physics student. Many graphical illustrations and examples are given. The followi...

  3. Nonlinear optics response of semiconductor quantum wells under high magnetic fields

    International Nuclear Information System (INIS)

    Chemla, D.S.

    1993-07-01

    Recent investigations on the nonlinear optical response of semiconductor quantum wells in a strong perpendicular magnetic field, H, are reviewed. After some introductory material the evolution of the linear optical properties of GaAs QW's as a function of H is discussed; an examination is made of how the magneto-excitons (MX) extrapolate continuously between quasi-2D QW excitons (X) when H = 0, and pairs of Landau levels (LL) when H → ∞. Next, femtosecond time resolved investigations of their nonlinear optical response are presented; the evolution of MX-MX interactions with increasing H is stressed. Finally, how, as the dimensionality is reduced by application of H, the number of scattering channels is limited and relaxation of electron-hole pairs is affected. How nonlinear optical spectroscopy can be exploited to access the relaxation of angular momentum within magneto-excitons is also discussed

  4. Chirality in nonlinear optics and optical switching

    NARCIS (Netherlands)

    Meijer, E.W.; Feringa, B.L.

    1993-01-01

    Chirality in molecular opto-electronics is limited sofar to the use of optically active liquid crystals and a number of optical phenomena are related to the helical macroscopic structure obtained by using one enantiomer, only. In this paper, the use of chirality in nonlinear optics and optical

  5. PREFACE: Ultrafast and nonlinear optics in carbon nanomaterials

    Science.gov (United States)

    Kono, Junichiro

    2013-02-01

    Carbon-based nanomaterials—single-wall carbon nanotubes (SWCNTs) and graphene, in particular—have emerged in the last decade as novel low-dimensional systems with extraordinary properties. Because they are direct-bandgap systems, SWCNTs are one of the leading candidates to unify electronic and optical functions in nanoscale circuitry; their diameter-dependent bandgaps can be utilized for multi-wavelength devices. Graphene's ultrahigh carrier mobilities are promising for high-frequency electronic devices, while, at the same time, it is predicted to have ideal properties for terahertz generation and detection due to its unique zero-gap, zero-mass band structure. There have been a large number of basic optical studies on these materials, but most of them were performed in the weak-excitation, quasi-equilibrium regime. In order to probe and assess their performance characteristics as optoelectronic materials under device-operating conditions, it is crucial to strongly drive them and examine their optical properties in highly non-equilibrium situations and with ultrashot time resolution. In this section, the reader will find the latest results in this rapidly growing field of research. We have assembled contributions from some of the leading experts in ultrafast and nonlinear optical spectroscopy of carbon-based nanomaterials. Specific topics featured include: thermalization, cooling, and recombination dynamics of photo-generated carriers; stimulated emission, gain, and amplification; ultrafast photoluminescence; coherent phonon dynamics; exciton-phonon and exciton-plasmon interactions; exciton-exciton annihilation and Auger processes; spontaneous and stimulated emission of terahertz radiation; four-wave mixing and harmonic generation; ultrafast photocurrents; the AC Stark and Franz-Keldysh effects; and non-perturbative light-mater coupling. We would like to express our sincere thanks to those who contributed their latest results to this special section, and the

  6. Preparation, characterization, and nonlinear optical properties of hybridized graphene @ gold nanorods nanocomposites

    Science.gov (United States)

    Guo, Jia; Ning, Tingyin; Han, Yanshun; Sheng, Yingqiang; Li, Chonghui; Zhao, Xiaofei; Lu, Zhengyi; Man, Baoyuan; Jiao, Yang; Jiang, Shouzhen

    2018-03-01

    The methods of chemical vapor deposition (CVD) and seed-mediated growth were used to obtain graphene and gold nanorods (GNRs), respectively. We fabricate graphene @ gold nanorods (G@GNRs) nanocomposites by successively using dropping and transferring methods Through SEM, Raman spectra and TEM analysis, the number of graphene layers is 6-7. The diameter of gold nanorods (GNRs) is about 10 nm and the average aspect ratio is 6.5. In addition, we systematically investigate their nonlinear optical responses by using open-aperture Z-scan technique. In contrast with graphene and GNRs, the G@GNRs nanocomposites exhibit excellent nonlinear optical response with a modulation depth of about 51% and a saturable intensity of about 6.23 GW/cm2. The results suggest that the G@GNRs nanocomposites could potentially be used as an optical modulator in pulsed laser generation.

  7. Computational Study of Chalcopyrite Semiconductors and Their Non-Linear Optical Properties

    National Research Council Canada - National Science Library

    Lambrecht, Walter R

    2007-01-01

    ... (Including cation antisites, cation and anion vacancies) and CdGeAs2; a study of the feasibility of nonciritical phase matching and associated nonlinear optical parameters in CdSiP2 and CdSIAs2...

  8. Nanostructured pyronin Y thin films as a new organic semiconductor: Linear/nonlinear optics, band gap and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Zahran, H.Y. [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Alamri, F.H. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia)

    2017-05-15

    Pyronin Y dye (PY) is a kind of xanthene derivatives. Thin films of pyronin Y were deposited onto highly cleaned glass substrates using low-cost/spin coating technique. The structure properties of pyronin Y thin films with different thicknesses were investigated by using X-ray diffraction (XRD) and atomic force microscope (AFM). PY thin films for all the studied thicknesses have an amorphous structure supporting the short range order of the grain size. AFM supports the nanostructure with spherical/clusters morphologies of the investigated thin films. The optical constants of pyronin Y thin films for various thicknesses were studied by using UV–vis–NIR spectrophotometer in the wavelength range 350–2500 nm. The transmittance T(λ), reflectance R(λ) spectral and absorbance (abs(λ)) were obtained for all film thicknesses at room temperature and the normal light incident. These films showed a high transmittance in the wide scale wavelengths. For different thicknesses of the studied thin films, the optical band gaps were determined and their values around 2 eV. Real and imaginary dielectric constants, dissipation factor and the nonlinear optical parameters were calculated in the wavelengths to the range 300–2500 nm. The pyronin Y is a new organic semiconductor with a good optical absorption in UV–vis regions and it is suitable for nonlinear optical applications. - Highlights: • Pyronin Y (PY) nanostructured thin films were deposited by using spin coating technique. • XRD/AFM were used to study the structure of PY films. • The optical band gap was calculated on the basis of Tauc's model. • Linear/nonlinear optical parameters are calculated and interpreted via the applied optical theories. • PY thin films is a new organic semiconductor for its application in optoelectronic devices.

  9. Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

    Directory of Open Access Journals (Sweden)

    Virginijus Barzda

    2013-09-01

    Full Text Available Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red, which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  10. Nonlinear optical effects in pure and N-doped semiconductors

    International Nuclear Information System (INIS)

    Donlagic, N.S.

    2000-01-01

    Over the last decades, the nonlinear optical properties of condensed matter systems have been an attractive and fruitful field of research. While the linear response functions of solids provide information about the elementary excitations of the systems, nonlinear optical experiments give insight into the dynamics of the fundamental many-body processes which are initiated by the external excitations. Stimulated by the experimental results, new theoretical concepts and methods have been developed in order to relate the observed phenomena to the microscopic properties of the investigated materials. The present work deals with the study of the nonlinear dynamics of the optical interband polarization in pure and n-doped semiconductors.In the first part of the thesis, the relaxation behavior of optically excited electron-hole pairs in a one-dimensional semiconductor, which are coupled to longitudinal optical phonons with an initial lattice temperature T>0, is studied with the help of quantum kinetic equations. Apart from Hartree-Fock-like Coulomb contributions, these equations contain additional Coulomb terms, the so-called vertex corrections, by which the influence of the electron-electron interaction on the electron-phonon scattering processes is taken into account. The numerical studies indicate that the vertex corrections are essential for a correct description of the excitonic dynamics.In the second part of the thesis, the attention is shifted to the characteristics of the optical response of a one-dimensional n-doped two-band semiconductor whose conduction band has been linearized with respect to the two Fermi points. Due to the linearization it is possible to calculate the linear and nonlinear response functions of the interacting electron system exactly. These response functions are then used in order to determine the linear absorption spectrum and the time-integrated signal of a degenerated four-wave-mixing experiment. It is shown that the well-known features

  11. Nonlinear graphene plasmonics

    Science.gov (United States)

    Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2017-10-01

    The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.

  12. Nonlinear optics principles and applications

    CERN Document Server

    Rottwitt, Karsten

    2014-01-01

    IntroductionReview of linear opticsInduced polarizationHarmonic oscillator modelLocal field correctionsEstimated nonlinear responseSummaryTime-domain material responseThe polarization time-response functionThe Born-Oppenheimer approximationRaman scattering response function of silicaSummaryMaterial response in the frequency domain, susceptibility tensorsThe susceptibility tensorThe induced polarization in the frequency domainSum of monochromatic fieldsThe prefactor to the induced polarizationThird-order polarization in the Born-Oppenheimer approximation in the frequency domainKramers-Kronig relationsSummarySymmetries in nonlinear opticsSpatial symmetriesSecond-order materialsThird-order nonlinear materialsCyclic coordinate-systemContracted notation for second-order susceptibility tensorsSummaryThe nonlinear wave equationMono and quasi-monochromatic beamsPlane waves - the transverse problemWaveguidesVectorial approachNonlinear birefringenceSummarySecond-order nonlinear effectsGeneral theoryCoupled wave theoryP...

  13. Nonlinear optical beam manipulation, beam combining, and atmospheric propagation

    International Nuclear Information System (INIS)

    Fischer, R.A.

    1988-01-01

    These proceedings collect papers on optics: Topics include: diffraction properties of laser speckle, coherent beam combination by plasma modes, nonlinear responses, deformable mirrors, imaging radiometers, electron beam propagation in inhomogeneous media, and stability of laser beams in a structured environment

  14. Optical nonlinear absorption characteristics of Sb2Se3 nanoparticles

    Science.gov (United States)

    Muralikrishna, Molli; Kiran, Aditha Sai; Ravikanth, B.; Sowmendran, P.; Muthukumar, V. Sai; Venkataramaniah, Kamisetti

    2014-04-01

    In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb2Se3) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10 - 40 nm. Elemental analysis was performed using EDAX. By employing open aperture z-scan technique, we have evaluated the effective two-photon absorption coefficient of Sb2Se3 nanoparticles to be 5e-10 m/W at 532 nm. These nanoparticles exhibit strong intensity dependent nonlinear optical absorption and hence could be considered to have optical power limiting applications in the visible range.

  15. Nonlinear atom optics and bright-gap-soliton generation in finite optical lattices

    International Nuclear Information System (INIS)

    Carusotto, Iacopo; Embriaco, Davide; La Rocca, Giuseppe C.

    2002-01-01

    We theoretically investigate the transmission dynamics of coherent matter wave pulses across finite optical lattices in both the linear and the nonlinear regimes. The shape and the intensity of the transmitted pulse are found to strongly depend on the parameters of the incident pulse, in particular its velocity and density: a clear physical picture of the main features observed in the numerical simulations is given in terms of the atomic band dispersion in the periodic potential of the optical lattice. Signatures of nonlinear effects due to the atom-atom interaction are discussed in detail, such as atom-optical limiting and atom-optical bistability. For positive scattering lengths, matter waves propagating close to the top of the valence band are shown to be subject to modulational instability. A scheme for the experimental generation of narrow bright gap solitons from a wide Bose-Einstein condensate is proposed: the modulational instability is seeded starting from the strongly modulated density profile of a standing matter wave and the solitonic nature of the generated pulses is checked from their shape and their collisional properties

  16. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  17. Enhanced linear and nonlinear optical properties of thermally stable ZnO/poly(styrene)–poly(methyl methacrylate) nanocomposite films

    International Nuclear Information System (INIS)

    Jeeju, P.P.; Jayalekshmi, S.; Chandrasekharan, K.; Sudheesh, P.

    2013-01-01

    Highly transparent and thermally stable zinc oxide (ZnO)/poly(styrene)–poly(methyl methacrylate) (PS–PMMA) nanocomposite films have been deposited on glass substrates, from the ZnO incorporated (PS–PMMA) solutions in toluene, using spin coating technique. A chemical route at room temperature is used to synthesize the ZnO nanoparticles. Transmission electron microscope and high-resolution transmission electron microscope images show that the ZnO nanoparticles are of size around 10 nm. The composite films have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, Ultraviolet–visible–Near Infrared (UV–vis–NIR) spectroscopy, Thermo-gravimetric analysis, photoluminescence (PL) spectroscopy and Z-scan technique. From the UV–vis–NIR spectra it is observed that the ZnO/PS–PMMA nanocomposite films with 10 wt.% ZnO content exhibit excellent shielding property in the UV region and, high transparency in the visible region. The PL spectrum of the composite films is different from that of ZnO and PS–PMMA blend and exhibits an excitonic emission peak at ∼ 375 nm. The optical absorptive nonlinearity in the nanocomposite films is investigated using open aperture Z-scan technique. The results indicate optical limiting type nonlinearity in the films due to two photon absorption. A transmittance minimum of around 0.25 has been observed in the ZnO/PS–PMMA nanocomposite films which is much lower compared to that in ZnO/PMMA and ZnO/PS nanocomposite films. The ZnO/PS–PMMA nanocomposite films also show a self-defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. These nanocomposite films extend ample scope of applications as excellent optical limiters and efficient UV protectors. - Highlights: ► Transparent, ZnO/poly(styrene)–poly(methyl methacrylate) composite films are prepared. ► The nanocomposite films with 10 wt.% ZnO content exhibit good UV-shielding property.

  18. Enhanced linear and nonlinear optical properties of thermally stable ZnO/poly(styrene)–poly(methyl methacrylate) nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Jeeju, P.P., E-mail: jeejupp@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Jayalekshmi, S., E-mail: jayalekshmi@cusat.ac.in [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Chandrasekharan, K.; Sudheesh, P. [Department of Physics, National Institute of Technology, Calicut, Kerala (India)

    2013-03-01

    Highly transparent and thermally stable zinc oxide (ZnO)/poly(styrene)–poly(methyl methacrylate) (PS–PMMA) nanocomposite films have been deposited on glass substrates, from the ZnO incorporated (PS–PMMA) solutions in toluene, using spin coating technique. A chemical route at room temperature is used to synthesize the ZnO nanoparticles. Transmission electron microscope and high-resolution transmission electron microscope images show that the ZnO nanoparticles are of size around 10 nm. The composite films have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic force microscopy, Ultraviolet–visible–Near Infrared (UV–vis–NIR) spectroscopy, Thermo-gravimetric analysis, photoluminescence (PL) spectroscopy and Z-scan technique. From the UV–vis–NIR spectra it is observed that the ZnO/PS–PMMA nanocomposite films with 10 wt.% ZnO content exhibit excellent shielding property in the UV region and, high transparency in the visible region. The PL spectrum of the composite films is different from that of ZnO and PS–PMMA blend and exhibits an excitonic emission peak at ∼ 375 nm. The optical absorptive nonlinearity in the nanocomposite films is investigated using open aperture Z-scan technique. The results indicate optical limiting type nonlinearity in the films due to two photon absorption. A transmittance minimum of around 0.25 has been observed in the ZnO/PS–PMMA nanocomposite films which is much lower compared to that in ZnO/PMMA and ZnO/PS nanocomposite films. The ZnO/PS–PMMA nanocomposite films also show a self-defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. These nanocomposite films extend ample scope of applications as excellent optical limiters and efficient UV protectors. - Highlights: ► Transparent, ZnO/poly(styrene)–poly(methyl methacrylate) composite films are prepared. ► The nanocomposite films with 10 wt.% ZnO content exhibit good UV-shielding property.

  19. Nonlinear optics an analytical approach

    CERN Document Server

    Mandel, Paul

    2010-01-01

    Based on the author's extensive teaching experience and lecture notes, this textbook provides a substantially analytical rather than descriptive presentation of nonlinear optics. Divided into five parts, with most chapters corresponding to a two-hour lecture, the book begins with a unique account of the historical development from Kirchhoff's law for the black-body radiation to Planck's quantum hypothesis and Einstein's discovery of spontaneous emission - providing all the explicit proofs. The subsequent sections deal with matter quantization, ultrashort pulse propagation in 2-level media, cavity nonlinear optics, chi(2) and chi(3) media. For graduate and PhD students in nonlinear optics or photonics, while also representing a valuable reference for researchers in these fields.

  20. Cascaded nonlinearities for ultrafast nonlinear optical science and applications

    DEFF Research Database (Denmark)

    Bache, Morten

    the cascading nonlinearity is investigated in detail, especially with focus on femtosecond energetic laser pulses being subjected to this nonlinear response. Analytical, numerical and experimental results are used to understand the cascading interaction and applications are demonstrated. The defocusing soliton...... observations with analogies in fiber optics are observed numerically and experimentally, including soliton self-compression, soliton-induced resonant radiation, supercontinuum generation, optical wavebreaking and shock-front formation. All this happens despite no waveguide being present, thanks...... is of particular interest here, since it is quite unique and provides the solution to a number of standing challenges in the ultrafast nonlinear optics community. It solves the problem of catastrophic focusing and formation of a filaments in bulk glasses, which even under controlled circumstances is limited...

  1. Report of workshop on X-ray and nonlinear optics

    International Nuclear Information System (INIS)

    Nasu, Keiichiro; Namikawa, Kazumichi

    1994-07-01

    As synchrotron radiation has advanced to high luminance, the possibility of realizing coherent light has heightened, and the nonlinear optical phenomena in soft and hard X-ray regions have become the object of the concern of X-ray researchers, and also the researchers in the fields of quantum electronics and optical properties. This workshop was held on September 21 and 22, 1993 at National Laboratory for High energy Physics. Lectures were given on the generation of second harmonic of X-ray by utilizing dynamic diffraction, X-ray parametric scattering induced by strong laser beam, the resonance enhancement of X-ray inelastic scattering induced by strong visible light, Raman scattering in soft X-ray region, the control of nonlinear optical processes by strong external field; the experiments, though they are fundamental, they have not been carried out; undulator radiation X-ray and X-ray free electron laser, the improvement of the coherence of X-ray laser, superradiance of Frenkel excitor system and the measurement of superhigh speed pulses in X-ray region. The comment from the standpoint of the research on nonlinear optics was given. In this document, the gists of these lectures are collected. (K.I.)

  2. Report of workshop on X-ray and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Nasu, Keiichiro; Namikawa, Kazumichi [eds.

    1994-07-01

    As synchrotron radiation has advanced to high luminance, the possibility of realizing coherent light has heightened, and the nonlinear optical phenomena in soft and hard X-ray regions have become the object of the concern of X-ray researchers, and also the researchers in the fields of quantum electronics and optical properties. This workshop was held on September 21 and 22, 1993 at National Laboratory for High energy Physics. Lectures were given on the generation of second harmonic of X-ray by utilizing dynamic diffraction, X-ray parametric scattering induced by strong laser beam, the resonance enhancement of X-ray inelastic scattering induced by strong visible light, Raman scattering in soft X-ray region, the control of nonlinear optical processes by strong external field; the experiments, though they are fundamental, they have not been carried out; undulator radiation X-ray and X-ray free electron laser, the improvement of the coherence of X-ray laser, superradiance of Frenkel excitor system and the measurement of superhigh speed pulses in X-ray region. The comment from the standpoint of the research on nonlinear optics was given. In this document, the gists of these lectures are collected. (K.I.).

  3. Homogenous smooth sol gel films doped with organic compounds for nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliu, I.C. [INOE 2000 — National Institute for Optoelectronics, 409 Atomistilor Str., Magurele, Bucharest, RO 077125 (Romania); Ionita, I., E-mail: i_ionita@yahoo.com [UB — University of Bucharest, 405 Atomistilor Str., Magurele, Bucharest, RO 077125 (Romania); Matei, A. [INFLPR — National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, Bucharest, RO 077125 (Romania); Elisa, M.; Iordanescu, R.; Feraru, I.; Emandi, A. [INOE 2000 — National Institute for Optoelectronics, 409 Atomistilor Str., Magurele, Bucharest, RO 077125 (Romania)

    2016-02-29

    The demand for protection of various types of optical sensors from laser-beam pulses has resulted in the search for optical limiting devices that have the property of being transparent at low intensity of light (normal light), but no transparent towards high intensity (laser) light. Organic material with nonlinear optical (NLO) properties as reverse saturable absorption and two-photon absorption can be used for optical limiting with the advantage of a very fast response and self-activation. A promising approach in the fabrication of thin films by low cost/easy use deposition methods for second-order nonlinear optics is sol–gel technique. The present paper reports on the sol–gel synthesis of some pyrazolone derivative doped SiO{sub 2}–P{sub 2}O{sub 5} smooth and homogenous films (Root mean square roughness (Rq) = 1.1 nm) using as precursors tetraethylorthosilicate (TEOS) and phosphoric acid (H{sub 3}PO{sub 4}). The structure of the deposited azo-derivatives doped thin films was examined by Fourier transform infrared spectroscopy and atomic force microscopy, while their optical properties of the films by UV–VIS spectroscopy. The nonlinear optical efficiencies due to the interaction of the NLO-active chromophores with the inorganic matrix have a significant influence on the second harmonic generation capabilities that was measured using a femtosecond Ti:Sapphire laser. The properties of the films were investigated and correlated with the concentration of the organic dopant and the thermal treatment temperature. - Highlights: • We obtained pyrazolone derivative doped SiO{sub 2}–P{sub 2}O{sub 5} smooth and homogenous films. • The pyrazolone derivative presents SHG characteristics by itself. • Thin sol gel films doped with organic compounds with NLO properties. • Temperature of thermal treatment and aging time can improve NLO properties of films. • We found that 150 °C and 28 h aging time give the maximum performance in SHG response.

  4. Nonlinear super-resolution nano-optics and applications

    CERN Document Server

    Wei, Jingsong

    2015-01-01

    This book covers many advances in the subjects of nano-optics and nano photonics. The author describes the principle and technical schematics of common methods for breaking through the optical diffraction limit and focuses on realizing optical super-resolution with nonlinear effects of thin film materials. The applications of nonlinear optical super-resolution effects in nano-data storage, nanolithography, and nano-imaging are also presented. This book is useful to graduate students majoring in optics and nano science and also serves as a reference book for academic researchers, engineers, technical professionals in the fields of super-resolution optics and laser techniques, nano-optics and nano photonics, nano-data storage, nano imaging, micro/nanofabrication and nanolithography and nonlinear optics.

  5. Non-linear optics of nano-scale pentacene thin film

    Science.gov (United States)

    Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.

    2016-07-01

    We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.

  6. Second-order nonlinear optical properties of composite material of an azo-chromophore with a tricyanodiphenyl acceptor in a poly(styrene-co-methyl methacrylate) matrix

    Science.gov (United States)

    Shelkovnikov, Vladimir; Selivanova, Galina; Lyubas, Gleb; Korotaev, Sergey; Shundrina, Inna; Tretyakov, Evgeny; Zueva, Ekaterina; Plekhanov, Alexander; Mikerin, Sergey; Simanchuk, Andrey

    2017-07-01

    The composite material of new synthesized 4-((4-(N,N-n-dibutylamino) phenyl)diazenyl)-biphenyl-2,3,4-tricarbonitrile (GAS dye) in commercial poly(styrene-co-methyl methacrylate) (PSMMA) was prepared, poled and its nonlinear optical properties compared with DR1 dye were studied. High thermal stability of the composite material was revealed, and the maximal concentration of the chromophore was found to reach ∼20 wt%. The dipole moment, polarizability tensor, and first hyperpolarizability tensor of the investigated dyes were calculated by within the framework of the coupled perturbed density functional theory. A nanosecond second-harmonic generation Maker fringes technique was used which is capable of providing the magnitude of the second-order nonlinearity of optical materials at a wavelength of 1064 nm. For the tested GAS-PSMMA composite material, maximal coefficient d33 was found to be 50 pm/V. The nonlinear optical response, which was achieved here, shows possible usefulness of the GAS dye as a component for molecular design of nonlinear-optical materials with advanced characteristics.

  7. Structural characterizations, Hirshfeld surface analyses, and third-order nonlinear optical properties of two novel chalcone derivatives

    Science.gov (United States)

    Maidur, Shivaraj R.; Jahagirdar, Jitendra R.; Patil, Parutagouda Shankaragouda; Chia, Tze Shyang; Quah, Ching Kheng

    2018-01-01

    We report synthesis, characterizations, structure-property relationships, and third-order nonlinear optical studies for two new chalcone derivatives, (2E)-1-(anthracen-9-yl)-3-(4-bromophenyl)prop-2-en-1-one (Br-ANC) and (2E)-1-(anthracen-9-yl)-3-(4-chlorophenyl)prop-2-en-1-one (Cl-ANC). These derivatives were crystallized in the centrosymmetric monoclinic P21/c crystal structure. The intermolecular interactions of both the crystals were visualized by Hirshfeld surface analyses (HSA). The crystals are thermally stable up to their melting points (180.82 and 191.16 °C for Cl-ANC and Br-ANC, respectively). The geometry optimizations, FT-IR spectra, 1H and 13C NMR spectra, electronic absorption spectra, electronic transitions, and HOMO-LUMO energy gaps were studied by Density Functional Theory (DFT) at B3LYP/6-311+G(d, p) level. The theoretical results provide excellent agreement with experimental findings. The electric dipole moments, static polarizabilities, molecular electrostatic potentials (MEP) and global chemical reactivity descriptors (GCRD) were also theoretically computed. The materials exhibited good nonlinear absorption (NLA), nonlinear refraction (NLR) and optical limiting (OL) behavior under diode-pumped solid-state (DPSS) continuous wave (CW) laser excitation (532 nm and 200 mW). The NLO parameters such as NLA coefficient (β∼10-5 cmW-1), NLR index (n2∼10-10 cm2 W-1) and third-order NLO susceptibilities (χ(3) ∼10-7 esu) were measured. Further, we estimated one-photon and two-photon figures of merit, which satisfy the demands (W > 1 and T < 1) for all-optical switching. Thus, the present chalcone derivatives with anthracene moiety are potential materials for OL and optical switching applications.

  8. Advanced in Nonlinear Optics and Laser Research and Development

    International Nuclear Information System (INIS)

    Jackel, S.; Kotler, Z; Lavi, R.; Sternklar, S.

    1996-01-01

    The Nonlinear Optics Group (NLOG) at Soreq NRC is engaged in the development of fundamental and applied technology in the related fields of nonlinear optics and laser development. Our work in nonlinear optics started with the goal of improving laser performance. These efforts were successful and opened the way for R and D in nonlinear optics for other applications. Today we use nonlinear optics to enable continuous tunability of lasers, control the path of light beams, modulate a light signal rapidly, provide optical data storage, and supply new means of microscopically probing biological and inorganic samples. Technology maturation and interaction with users will show which aspects of nonlinear optics will make the most impact

  9. The effect of excitation intensity variation and silver nanoparticle codoping on nonlinear optical properties of mixed tellurite and zinc oxide glass doped with Nd2O3 studied through ultrafast z-scan spectroscopy

    Science.gov (United States)

    Moreira, L.; Falci, R. F.; Darabian, H.; Anjos, V.; Bell, M. J. V.; Kassab, L. R. P.; Bordon, C. D. S.; Doualan, J. L.; Camy, P.; Moncorgé, R.

    2018-05-01

    The research on Nd3+ doped new solid-state laser hosts with specific thermo-mechanical and optical properties is very active. Nd3+ doped tellurite glasses are suitable for these applications. They have high linear and nonlinear refraction index, wide transmittance range. The TeO2-ZnO (TZO) glass considered in the present work combines all those features and the nonlinear optical properties can be used for the development of Kerr-lens mode-locked sub picosecond lasers. Recently the laser performance of Nd3+ doped TZO glass and was reported and laser slope efficiency of 21% was observed. We investigate how the intensity variation and the silver nanoparticles codoping affects the nonlinear optical properties of Nd3+ doped TZO glasses. Intensity dependent nonlinear refraction indices coefficients at 750, 800 and 850 nm were observed. The nonlinear optical features were obtained through ultrafast single beam z-scan technique with excitations at 750, 800 and 850 nm and are up to two orders of magnitude higher than those reported in the literature.

  10. Ultrafast Relaxation Dynamics of the Optical Nonlinearity in Nanometric Gold Particles

    International Nuclear Information System (INIS)

    Puech, K.; Blau, W.J.

    2001-01-01

    Measurements of the resonantly enhanced, third-order nonlinear optical properties of gold nanostructures exhibiting reduced charge-carrier mobility in three dimensions were performed with a number of ultrafast nonlinear optical techniques. The size of the particles investigated was varied between 5 and 40 nm. The magnitude of the nonlinear susceptibility is of the order of 5.10 -16 m 2 V -2 at resonance and an order of magnitude lower off-resonance. The response time of the nonlinearity is found to be extremely fast and could not be resolved in the experiments undertaken here. The only statement that can be made in this regard is that the phase relaxation time is of the order of or less than 20 fs while the energy relaxation time is of the order of or less than 75 fs

  11. Study of the electrical and nanosecond third order nonlinear optical properties of ZnO films doped with Au and Pt nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Trejo-Valdez, Martin, E-mail: martin.trejo@laposte.net [ESIQIE, Instituto Politécnico Nacional, México, D.F. 07738, México (Mexico); Sobral, Hugo [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apartado Postal 70-186, México, D.F. 04510, México (Mexico); Martínez-Gutiérrez, Hugo [Centro de Nanociencias y Micro y Nanotecnologías del Instituto Politécnico Nacional, México, D.F. 07738, México (Mexico); Torres-Torres, Carlos [Sección de Estudios de Posgrado e Investigación, ESIME ZAC, Instituto Politécnico Nacional, México, D.F. 07738, México (Mexico)

    2016-04-30

    Zinc oxide films doped with platinum and gold nanoparticles were deposited by the spray pyrolysis technique on glass substrates. A titanium dioxide sol–gel solution containing gold and platinum aqueous ions was employed for synthesizing the nanoparticles by ultraviolet-light irradiation. The conductive properties of the samples were characterized by the electrochemical impedance spectroscopy technique. Our results showed that the impedance of zinc oxide films doped with metallic nanoparticles was, by far, lower than typical measurements in zinc oxide films. A strong enhancement in the nanosecond nonlinear optical response was also obtained in the studied metallic doped films. A vectorial two-mixing experiment performed at 532 nm and 4 ns allowed us to evaluate the sample with a third order optical nonlinearity described by approximately | χ{sub 1111}{sup (3)}| = 2.6 × 10{sup −8} esu. - Highlights: • ZnO films doped with Pt and Au nanoparticles were synthetized. • The inclusion of metallic nanoparticles in the film improves optical nonlinearities. • Conductivity of the films was enhanced by the contribution of the nanoparticles.

  12. Third-order nonlinear optical studies of anthraquinone dyes using a CW He–Ne laser

    International Nuclear Information System (INIS)

    Pramodini, S; Poornesh, P

    2014-01-01

    We present investigations on the third-order optical nonlinearity and optical power limiting of anthraquinone dyes. Z-scan measurements were performed using a continuous wave He–Ne laser at 633 nm wavelength as an excitation source. The nonlinear refraction studies exhibited self-defocusing behavior of the dyes. The nonlinear absorption in the dyes was dominated by a reverse saturable absorption process. Self-diffraction ring patterns were observed due to the change in refractive index and thermal lensing. Increase of the electron donating ability of the substituents resulted in enhanced values of the nonlinear optical parameters, establishing the structure–property relationship. The optical limiting study revealed that the dyes possess a lower limiting threshold and clamping level which is very important for eye and sensor protection. Hence, the dyes investigated here emerge as promising candidates for future opto-electronic and photonic device applications such as optical power limiters. (paper)

  13. Third-order nonlinear optical studies of anthraquinone dyes using a CW He-Ne laser

    Science.gov (United States)

    Pramodini, S.; Poornesh, P.

    2014-05-01

    We present investigations on the third-order optical nonlinearity and optical power limiting of anthraquinone dyes. Z-scan measurements were performed using a continuous wave He-Ne laser at 633 nm wavelength as an excitation source. The nonlinear refraction studies exhibited self-defocusing behavior of the dyes. The nonlinear absorption in the dyes was dominated by a reverse saturable absorption process. Self-diffraction ring patterns were observed due to the change in refractive index and thermal lensing. Increase of the electron donating ability of the substituents resulted in enhanced values of the nonlinear optical parameters, establishing the structure-property relationship. The optical limiting study revealed that the dyes possess a lower limiting threshold and clamping level which is very important for eye and sensor protection. Hence, the dyes investigated here emerge as promising candidates for future opto-electronic and photonic device applications such as optical power limiters.

  14. Nonlinear optical properties of TeO$_2$ crystalline phases from first principles

    OpenAIRE

    Berkaine, Nabil; Orhan, Emmanuelle; Masson, Olivier; Thomas, Philippe; Junquera, Javier

    2010-01-01

    We have computed second and third nonlinear optical susceptibilities of two crystalline bulk tellurium oxide polymorphs: $\\alpha$-TeO$_{2}$ (the most stable crystalline bulk phase) and $\\gamma$-TeO$_{2}$ (the crystalline phase that ressembles the more to the glass phase. Third order nonlinear susceptibilities of the crystalline phases are two orders of magnitude larger than $\\alpha$-SiO$_{2}$ cristoballite, thus extending the experimental observations on glasses to the case of crystalline com...

  15. Polythiophene derivative functionalized with disperse red 1 chromophore: Its third-order nonlinear optical properties through Z-scan technique under continuous and femtosecond irradiation

    Science.gov (United States)

    de la Garza-Rubí, R. M. A.; Güizado-Rodríguez, M.; Mayorga-Cruz, D.; Basurto-Pensado, M. A.; Guerrero-Álvarez, J. A.; Ramos-Ortiz, G.; Rodríguez, M.; Maldonado, J. L.

    2015-08-01

    A copolymer of 3-hexylthiophene and thiophene functionalized with disperse red 1, poly(3-HT-co-TDR1), was synthesized. Chemical structure, molecular weight distribution, optical and thermal properties of this copolymer were characterized by NMR, FT-IR, UV-vis, GPC and DSC-TGA. An optical nonlinear analysis by Z-scan method was also performed for both continuous wave (CW) and pulsed laser pumping. In the CW regime the nonlinearities were evaluated in solid films, and a negative nonlinear refractive index in the range 2.7-4.1 × 10-4 cm2/W was obtained. These values are notoriously high and allowed to observe self-defocusing effects at very low laser intensities: below 1 mW. Further, nonlinear self-phase modulation patterns, during laser irradiation, were also observed. In the pulsed excitation the nonlinear response was evaluated in solution resulting in large two-photon absorption cross section of 5725 GM for the whole copolymer chain and with a value of 232 GM per repeated monomeric unit.

  16. Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction

    Energy Technology Data Exchange (ETDEWEB)

    Bhattachraya, S.; Maiti, R.; Das, A. C.; Saha, S.; Mondal, S.; Ray, S. K.; Bhaktha, S. N. B.; Datta, P. K., E-mail: pkdatta.iitkgp@gmail.com [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2016-07-07

    Simultaneous occurrence of saturable absorption nonlinearity and two-photon absorption nonlinearity in the same medium is well sought for the devices like optical limiter and laser mode-locker. Pristine graphene sheet consisting entirely of sp{sup 2}-hybridized carbon atoms has already been identified having large optical nonlinearity. However, graphene oxide (GO), a precursor of graphene having both sp{sup 2} and sp{sup 3}-hybridized carbon atom, is increasingly attracting cross-discipline researchers for its controllable properties by reduction of oxygen containing groups. In this work, GO has been prepared by modified Hummers method, and it has been further reduced by infrared (IR) radiation. Characterization of reduced graphene oxide (RGO) by means of Raman spectroscopy, X-ray photoelectron spectroscopy, and UV-Visible absorption measurements confirms an efficient reduction with infrared radiation. Here, we report precise control of non-linear optical properties of RGO in femtosecond regime with increased degrees of IR reduction measured by open aperture z-scan technique. Depending on the intensity, both saturable absorption and two-photon absorption effects are found to contribute to the non-linearity of all the samples. Saturation dominates at low intensity (∼127 GW/cm{sup 2}) while two-photon absorption becomes prominent at higher intensities (from 217 GW/cm{sup 2} to 302 GW/cm{sup 2}). The values of two-photon absorption co-efficient (∼0.0022–0.0037 cm/GW for GO, and ∼0.0128–0.0143 cm/GW for RGO) and the saturation intensity (∼57 GW/cm{sup 2} for GO, and ∼194 GW/cm{sup 2} for RGO) increase with increasing reduction, indicating GO and RGO as novel tunable photonic devices. We have also explained the reason of tunable nonlinear optical properties by using amorphous carbon model.

  17. Efficient control of ultrafast optical nonlinearity of reduced graphene oxide by infrared reduction

    International Nuclear Information System (INIS)

    Bhattachraya, S.; Maiti, R.; Das, A. C.; Saha, S.; Mondal, S.; Ray, S. K.; Bhaktha, S. N. B.; Datta, P. K.

    2016-01-01

    Simultaneous occurrence of saturable absorption nonlinearity and two-photon absorption nonlinearity in the same medium is well sought for the devices like optical limiter and laser mode-locker. Pristine graphene sheet consisting entirely of sp"2-hybridized carbon atoms has already been identified having large optical nonlinearity. However, graphene oxide (GO), a precursor of graphene having both sp"2 and sp"3-hybridized carbon atom, is increasingly attracting cross-discipline researchers for its controllable properties by reduction of oxygen containing groups. In this work, GO has been prepared by modified Hummers method, and it has been further reduced by infrared (IR) radiation. Characterization of reduced graphene oxide (RGO) by means of Raman spectroscopy, X-ray photoelectron spectroscopy, and UV-Visible absorption measurements confirms an efficient reduction with infrared radiation. Here, we report precise control of non-linear optical properties of RGO in femtosecond regime with increased degrees of IR reduction measured by open aperture z-scan technique. Depending on the intensity, both saturable absorption and two-photon absorption effects are found to contribute to the non-linearity of all the samples. Saturation dominates at low intensity (∼127 GW/cm"2) while two-photon absorption becomes prominent at higher intensities (from 217 GW/cm"2 to 302 GW/cm"2). The values of two-photon absorption co-efficient (∼0.0022–0.0037 cm/GW for GO, and ∼0.0128–0.0143 cm/GW for RGO) and the saturation intensity (∼57 GW/cm"2 for GO, and ∼194 GW/cm"2 for RGO) increase with increasing reduction, indicating GO and RGO as novel tunable photonic devices. We have also explained the reason of tunable nonlinear optical properties by using amorphous carbon model.

  18. Gold nanorods-silicone hybrid material films and their optical limiting property

    Science.gov (United States)

    Li, Chunfang; Qi, Yanhai; Hao, Xiongwen; Peng, Xue; Li, Dongxiang

    2015-10-01

    As a kind of new optical limiting materials, gold nanoparticles have optical limiting property owing to their optical nonlinearities induced by surface plasmon resonance (SPR). Gold nanorods (GNRs) possess transversal SPR absorption and tunable longitudinal SPR absorption in the visible and near-infrared region, so they can be used as potential optical limiting materials against tunable laser pulses. In this letter, GNRs were prepared using seed-mediated growth method and surface-modified by silica coating to obtain good dispersion in polydimethylsiloxane prepolymers. Then the silicone rubber films doped with GNRs were prepared after vulcanization, whose optical limiting property and optical nonlinearity were investigated. The silicone rubber samples doped with more GNRs were found to exhibit better optical limiting performance.

  19. Molecular studies and plastic optical fiber device structures for nonlinear optical applications

    Science.gov (United States)

    Dirk, Carl W.; Nagarur, Aruna R.; Lu, Jin J.; Zhang, Lixia; Kalamegham, Priya; Fonseca, Joe; Gopalan, Saytha; Townsend, Scott; Gonzalez, Gabriel; Craig, Patrick; Rosales, Monica; Green, Leslie; Chan, Karen; Twieg, Robert J.; Ermer, Susan P.; Leung, Doris S.; Lovejoy, Steven M.; Lacroix, Suzanne; Godbout, Nicolas; Monette, Etienne

    1995-10-01

    Summarized are two project areas: First, the development of a quantitative structure property relationship for analyzing thermal decomposition differential scanning calorimetry data of electro-optic dyes is presented. The QSPR relationship suggest that thermal decomposition can be effectively correlated with structure by considering the kinds of atoms, their hybridization, and their nearest neighbor bonded atoms. Second, the simple preparation of clad plastic optical fibers (POF) is discussed with the intention of use for nonlinear optical applications. We discuss preparation techniques for single core and multiple core POF, and present some recent data on index profiles and the optimization of thermal stability in acrylate-based POF structures.

  20. Nonlinear Optics of Hexaphenyl Nanofibers

    DEFF Research Database (Denmark)

    Balzer, Frank; Al-Shamery, Katharina; Neuendorf, Rolf

    2003-01-01

    The nonlinear optical response of films of needle-shaped para-hexaphenyl nanoaggregates on mica surfaces is investigated. Two-photon luminescence as well as optical second harmonic generation (SHG) are observed following excitation with femtosecond pulses at 770 nm. Polarization dependent...... measurements reveal that the nonlinear optical transition dipole moment is oriented with an angle of 75° with respect to the needles long axes. The absolute value of the macroscopic second-order susceptibility, averaged over a size distribution of p-6P nanoaggregates, is estimated to be of the order of 6...

  1. On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites

    International Nuclear Information System (INIS)

    Fernández-Hernández, Roberto Carlos; Gleason-Villagran, Roberto; Rodríguez-Fernández, Luis; Crespo-Sosa, Alejandro; Cheang-Wong, Juan Carlos; López-Suárez, Alejandra; Oliver, Alicia; Reyes-Esqueda, Jorge Alejandro; Torres-Torres, Carlos; Rangel-Rojo, Raúl

    2012-01-01

    Au and Ag isotropic and anisotropic nanocomposites were prepared using the ion implantation technique. Their optical properties were studied at several wavelengths in the optical range 300–800 nm, across their plasmon resonances. The linear regime was characterized by measuring the absorption spectrum and the third-order nonlinear regime by means of the Z-scan technique using a tunable picosecond pulsed laser system (26 ps). Open-aperture Z-scan traces show a superposition of different optical nonlinear absorption (NLA) processes in the whole range studied. We associate these phenomena with the excitation of inter- and intra-band electronic transitions, which contribute with a positive sign to NLA, and to the formation of hot-electrons, which contribute with opposite sign to NLA. Closed-aperture traces for measuring nonlinear refraction (NLR) show different signs for Au and Ag samples, and a change of sign in Au is found when purely inter-band transitions are excited. In this work, for the appropriate wavelength, it is worth remarking on the free-electron response to the exciting light and its strong contribution to the nonlinear optical properties for low (intra-band) and high (hot-electrons) irradiances. (paper)

  2. Synthesis, spectral and third-order nonlinear optical properties of terpyridine Zn(II) complexes based on carbazole derivative with polyether group

    Science.gov (United States)

    Kong, Ming; Liu, Yanqiu; Wang, Hui; Luo, Junshan; Li, Dandan; Zhang, Shengyi; Li, Shengli; Wu, Jieying; Tian, Yupeng

    2015-01-01

    Four novel Zn(II) terpyridine complexes (ZnLCl2, ZnLBr2, ZnLI2, ZnL(SCN)2) based on carbazole derivative group were designed, synthesized and fully characterized. Their photophysical properties including absorption and one-photon excited fluorescence, two-photon absorption (TPA) and optical power limiting (OPL) were further investigated systematically and interpreted on the basis of theoretical calculations (TD-DFT). The influences of different solvents on the absorption and One-Photon Excited Fluorescence (OPEF) spectral behavior, quantum yields and the lifetime of the chromophores have been investigated in detail. The third-order nonlinear optical (NLO) properties were investigated by open/closed aperture Z-scan measurements using femtosecond pulse laser in the range from 680 to 1080 nm. These results revealed that ZnLCl2 and ZnLBr2 exhibited strong two-photon absorption and ZnLCl2 showed superior optical power limiting property.

  3. Quantum and semiclassical physics behind ultrafast optical nonlinearity in the midinfrared: the role of ionization dynamics within the field half cycle.

    Science.gov (United States)

    Serebryannikov, E E; Zheltikov, A M

    2014-07-25

    Ultrafast ionization dynamics within the field half cycle is shown to be the key physical factor that controls the properties of optical nonlinearity as a function of the carrier wavelength and intensity of a driving laser field. The Schrödinger-equation analysis of a generic hydrogen quantum system reveals universal tendencies in the wavelength dependence of optical nonlinearity, shedding light on unusual properties of optical nonlinearities in the midinfrared. For high-intensity low-frequency fields, free-state electrons are shown to dominate over bound electrons in the overall nonlinear response of a quantum system. In this regime, semiclassical models are shown to offer useful insights into the physics behind optical nonlinearity.

  4. Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics.

    Science.gov (United States)

    Liu, Xiaofeng; Guo, Qiangbing; Qiu, Jianrong

    2017-04-01

    Low-dimensional (LD) materials demonstrate intriguing optical properties, which lead to applications in diverse fields, such as photonics, biomedicine and energy. Due to modulation of electronic structure by the reduced structural dimensionality, LD versions of metal, semiconductor and topological insulators (TIs) at the same time bear distinct nonlinear optical (NLO) properties as compared with their bulk counterparts. Their interaction with short pulse laser excitation exhibits a strong nonlinear character manifested by NLO absorption, giving rise to optical limiting or saturated absorption associated with excited state absorption and Pauli blocking in different materials. In particular, the saturable absorption of these emerging LD materials including two-dimensional semiconductors as well as colloidal TI nanoparticles has recently been utilized for Q-switching and mode-locking ultra-short pulse generation across the visible, near infrared and middle infrared wavelength regions. Beside the large operation bandwidth, these ultrafast photonics applications are especially benefit from the high recovery rate as well as the facile processibility of these LD materials. The prominent NLO response of these LD materials have also provided new avenues for the development of novel NLO and photonics devices for all-optical control as well as optical circuits beyond ultrafast lasers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Femtosecond single-beam direct laser poling of stable and efficient second-order nonlinear optical properties in glass

    International Nuclear Information System (INIS)

    Papon, G.; Marquestaut, N.; Royon, A.; Canioni, L.; Petit, Y.; Dussauze, M.; Rodriguez, V.; Cardinal, T.

    2014-01-01

    We depict a new approach for the localized creation in three dimensions (3D) of a highly demanded nonlinear optical function for integrated optics, namely second harmonic generation. We report on the nonlinear optical characteristics induced by single-beam femtosecond direct laser writing in a tailored silver-containing phosphate glass. The original spatial distribution of the nonlinear pattern, composed of four lines after one single laser writing translation, is observed and modeled with success, demonstrating the electric field induced origin of the second harmonic generation. These efficient second-order nonlinear structures (with χ eff (2)  ∼ 0.6 pm V −1 ) with sub-micron scale are impressively stable under thermal constraint up to glass transition temperature, which makes them very promising for new photonic applications, especially when 3D nonlinear architectures are desired

  6. Nonlinear optical measurements of conducting copolymers of aniline under CW laser excitation

    Science.gov (United States)

    Pramodini, S.; Poornesh, P.

    2015-08-01

    Synthesis and measurements of third-order optical nonlinearity and optical limiting of conducting copolymers of aniline are presented. Single beam z-scan technique was employed for the nonlinear optical studies. Continuous wave He-Ne laser operating at 633 nm was used as the source of excitation. Copolymer samples exhibited reverse saturable absorption (RSA) process. The nonlinear refraction studies depict that the copolymers exhibit self-defocusing property. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm/W, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. A good optical limiting and clamping of power of ∼0.9 mW and ∼0.05 mW was observed. Therefore, copolymers of aniline emerge as a potential candidate for photonic device applications.

  7. Nonlinear optics quantum computing with circuit QED.

    Science.gov (United States)

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  8. Nonlinear Optical Characteristics of Crystal VioletDye Doped Polystyrene Films by Using Z-Scan Technique

    Directory of Open Access Journals (Sweden)

    Mahasin F. Hadi

    2017-07-01

    Full Text Available Z-scan technique was employed to study the nonlinear optical properties (nonlinear refractive index and nonlinear absorption coefficient for crystal violet doped polystyrene films as a function of doping ratio in chloroform solvent. Samples exhibits in closed aperture Z-scan positive nonlinear refraction (self-focusing. While in the open aperture Z-scan gives reverse saturation absorption (RSA (positive absorption for all film with different doping ratio making samples candidates for optical limiting devices for protection of sensors and eyes from energetic laser light pulses under the experimental conditions.

  9. Linear and nonlinear optical characteristics of Te nanoparticles-doped germanate glasses

    Science.gov (United States)

    Xu, Zhousu; Guo, Qiangbing; Liu, Chang; Ma, Zhijun; Liu, Xiaofeng; Qiu, Jianrong

    2016-10-01

    Te nanoparticles (NPs)-doped GeO2-MgO-B2O3-Al2O3-TeO2 glasses were prepared by the conventional melt-quenching method. Based on X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscope observation, the coloration of the glass at high TeO2 concentration is ascribed to the precipitation of elemental Te NPs with a size of 5-10 nm in the germanate glass. Optical absorption spectra and nonlinear optical (NLO) properties of the glass samples were analyzed by UV-3600 spectrophotometry and Z-scan technique, respectively. The nonlinear absorption coefficient ( β) and the imaginary part of the third-order NLO susceptibility (Im χ (3)) were estimated to be 1.74 cm/GW and 1.142 × 10-12 esu for laser power of 95 μW, respectively. Due to the excellent NLO properties, the Te NPs-doped germanate glasses may have potential applications for ultrafast optical switch and photonics.

  10. Synthesis, characterization and theoretical investigations of the structure, electronic properties and third-order nonlinearity optics (NLO) of M(DPIP)2

    Science.gov (United States)

    Li, Kang; Tang, Guodong; Kou, ShanShan; Culnane, Lance F.; Zhang, Yu; Song, Yinglin; Li, Rongqing; Wei, Changmei

    2015-03-01

    Three complexes of M(DPIP)2 (M = Cu, Co, Zn as 1, 2, 3) were synthesized and characterized by elemental analysis, IR, UV-Vis, thermogravimetry, and X-ray diffraction. Their nonlinear optical properties were measured by the Z-scan technique and yielded a normalized transmittance of about 70% for complex 1 (45 μJ pulse), and 93% for complex 3 (68 μJ pulse at the focus point). The nonlinear absorption coefficient, β, is 1.4 × 10-11 m/W for 1 and 5.6 × 10-13 m/W for 3, and the third-order nonlinear refraction index, n2, is 1.0 × 10-18 m2/W for 3. Complex 1 shows self-defocusing property, while complex 3 exhibits self-focusing property. The thermogravimetric results show that the frame structure of compounds 1-3 begin to collapse at 400, 250 and 280 °C, respectively, which suggests that they elicit excellent thermal stability. This research aims to provide better understanding of these compounds, and offer preliminary explanations for the significant differences between compounds 1-3, in order to potentially help in the designing of future novel materials with NLO properties.

  11. Polycarbonate-Based Blends for Optical Non-linear Applications

    Science.gov (United States)

    Stanculescu, F.; Stanculescu, A.

    2016-02-01

    This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.

  12. ZnS/PVA nanocomposites for nonlinear optical applications

    Science.gov (United States)

    Ozga, K.; Michel, J.; Nechyporuk, B. D.; Ebothé, J.; Kityk, I. V.; Albassam, A. A.; El-Naggar, A. M.; Fedorchuk, A. O.

    2016-07-01

    We have found a correlation between ZnS nanocomposite nonlinear optical features and technological processing using electrolytic method. In the earlier researches this factor was neglected. However, it may open a new stage for operation by photovoltaic features of the well known semiconductors within a wide range of magnitudes. The titled nanostructured zinc sulfide (ZnS) was synthesized by electrolytic method. The obtained ZnS nano-crystallites possessed nano-particles sizes varying within 1.6 nm…1.8 nm. The titled samples were analyzed by XRD, HR-TEM, STEM, and nonlinear optical methods such as photo-induced two-photon absorption (TPA) and second harmonic generation (SHG). For this reason the nano-powders were embedded into the photopolymer poly(vinyl) alcohol (PVA) matrices. Role of aggregation in the mentioned properties is discussed. Possible origin of the such correlations are discussed.

  13. Nonlinear optical techniques for surface studies

    International Nuclear Information System (INIS)

    Shen, Y.R.

    1981-09-01

    Recent effort in developing nonlinear optical techniques for surface studies is reviewed. Emphasis is on monolayer detection of adsorbed molecules on surfaces. It is shown that surface coherent antiStokes Raman scattering (CARS) with picosecond pulses has the sensitivity of detecting submonolayer of molecules. On the other hand, second harmonic or sum-frequency generation is also sensitive enough to detect molecular monolayers. Surface-enhanced nonlinear optical effects on some rough metal surfaces have been observed. This facilitates the detection of molecular monolayers on such surfaces, and makes the study of molecular adsorption at a liquid-metal interface feasible. Advantages and disadvantages of the nonlinear optical techniques for surface studies are discussed

  14. Guanylurea(1+) hydrogen phosphite: study of linear and nonlinear optical properties

    Czech Academy of Sciences Publication Activity Database

    Fridrichová, M.; Kroupa, Jan; Němec, I.; Císařová, I.; Chvostová, Dagmar

    2010-01-01

    Roč. 83, 10-11 (2010), s. 761-767 ISSN 0141-1594 R&D Projects: GA ČR GA203/09/0878 Institutional research plan: CEZ:AV0Z10100520 Keywords : non-centrosymmetric * guanylurea * refractive indices * nonlinear optics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.006, year: 2010

  15. Study of optical non-linear properties of a constant total effective length multiple quantum wells system

    International Nuclear Information System (INIS)

    Solaimani, M.; Morteza, Izadifard; Arabshahi, H.; Reza, Sarkardehi Mohammad

    2013-01-01

    In this work, we have studied the effect of the number of the wells, in a multiple quantum wells structure with constant total effective length, on the optical properties of multiple quantum wells like the absorption coefficient and the refractive index by means of compact density matrix approach. GaAs/Al x Ga (1−x) As multiple quantum wells systems was selected as an example. Besides, the effect of varying number of wells on the subband energies, wave functions, number of bound states, and the Fermi energy have been also investigated. Our calculation revealed that the number of wells in a multiple quantum well is a criterion with which we can control the amount of nonlinearity. This study showed that for the third order refractive index change there is two regimes of variations and the critical well number was six. In our calculations, we have used the same wells and barrier thicknesses to construct the multiple quantum wells system. - Highlights: ► OptiOptical Non-Linear. ► Total Effective Length. ► Multiple Quantum Wells System - genetic algorithm ► Schrödinger equation solution. ► Nanostructure.

  16. Nonlinear optical and G-Quadruplex DNA stabilization properties of novel mixed ligand copper(II) complexes and coordination polymers: Synthesis, structural characterization and computational studies

    Science.gov (United States)

    Rajasekhar, Bathula; Bodavarapu, Navya; Sridevi, M.; Thamizhselvi, G.; RizhaNazar, K.; Padmanaban, R.; Swu, Toka

    2018-03-01

    The present study reports the synthesis and evaluation of nonlinear optical property and G-Quadruplex DNA Stabilization of five novel copper(II) mixed ligand complexes. They were synthesized from copper(II) salt, 2,5- and 2,3- pyridinedicarboxylic acid, diethylenetriamine and amide based ligand (AL). The crystal structure of these complexes were determined through X-ray diffraction and supported by ESI-MAS, NMR, UV-Vis and FT-IR spectroscopic methods. Their nonlinear optical property was studied using Gaussian09 computer program. For structural optimization and nonlinear optical property, density functional theory (DFT) based B3LYP method was used with LANL2DZ basis set for metal ion and 6-31G∗ for C,H,N,O and Cl atoms. The present work reveals that pre-polarized Complex-2 showed higher β value (29.59 × 10-30e.s.u) as compared to that of neutral complex-1 (β = 0.276 × 10-30e.s.u.) which may be due to greater advantage of polarizability. Complex-2 is expected to be a potential material for optoelectronic and photonic technologies. Docking studies using AutodockVina revealed that complex-2 has higher binding energy for both G-Quadruplex DNA (-8.7 kcal/mol) and duplex DNA (-10.1 kcal/mol). It was also observed that structure plays an important role in binding efficiency.

  17. Non-linear optical properties of SiO2 with synthesized by implantation copper nanoparticles

    International Nuclear Information System (INIS)

    Stepanov, A.L.; Olivares, J.; Requejo-Isidro, J.; Del Coso, R.; De Nalda, R.; Solis, J.; Afonso, C.N.; Hole, D.; Townsend, P.D.; Naudon, A.

    2001-01-01

    In recent years there has been a growing interest in composite dielectrics containing metal nanoparticles for their potential application in wave-guide integrated all-optical non-linear switching devices. In present work, low energy high current ion implantation (50 keV) in silica at a well controlled substrate temperature (20 0 C) at a dose of 8·10 16 ion/cm 2 has been used to produce novel composites containing a large concentration of spherical Cu clusters with an average diameter of 4 nm and a very narrow size distribution. A very large value for the third order optical susceptibility, χ (3) = 10 -7 esu, has been measured in the vicinity of the surface plasmon resonance by degenerate four wave mixing at 585 nm. This value is among the largest values ever reported for Cu nano composites. Additionally, the response time of the non-linearity has been found to be shorter than 2 ps. The superior non-linear optical response of these implants is discussed in terms of the implantation conditions

  18. Linear and nonlinear properties of segmented waveguides

    International Nuclear Information System (INIS)

    Katz, M.

    1998-07-01

    This dissertation deals with Periodically Segmented Waveguides (PSW), which are applied on KTiOP0 4 (KTP) crystals, by chemical ion-exchange process. In these waveguides, the crystal polarity and refractive index are periodically modulated to obtain Quasi Phase Matching (QPM) between the fundamental and second-harmonic waves. PSW is a relatively new optical device which exhibits unique optical properties in comparison with a continuous waveguide. The possibility of utilizing the KTP-PSW as a compact, cw, blue-violet, source by doubling infra-red light, is the main motivation for studying the optical properties of KTP segmented waveguides. Nevertheless, much attention in this work is also given to the study of linear optical properties of KTP-PSW, most of which, to my best knowledge, has not been studied yet. Controlling and understanding the linear optical properties of KTP-PSW, are required, for applying the PSW as an optical device by its own, and for control and characterization of the non-linear optical properties of the waveguide. In this work the dependence of the linear optical properties of KTP-PSW on geometrical parameters (period size, duty cycle and waveguide width) were studied. The experimental measured parameters include the PSW near field and the Bragg reflections, which appear due lo the grating structure of the waveguide. The possibility of controlling the wavelength and intensity, of the segmented waveguide Bragg reflections of regular period and super-period, is shown theoretically and experimentally. An unexpected dependence was found, by the experimental measurement, between the index profile and the ion-exchanged segment area,. The segmented waveguide dispersion curve, n eff (λ) in the infra-red region was found, A main part of the research work is dedicated to the study of nonlinear characteristics of PSW. The different factors, which effect the Second Harmonic Generation (SHG), are measured experimentally and analyzed. The experimental

  19. Cross-Kerr nonlinearities in an optically dressed periodic medium

    Energy Technology Data Exchange (ETDEWEB)

    Slowik, K; Raczynski, A; Zaremba, J [Instytut Fizyki, Uniwersytet Mikolaja Kopernika, ulica Grudziadzka 5, 87-100 Torun (Poland); Zielinska-Kaniasty, S [Instytut Matematyki i Fizyki, Uniwersytet Technologiczno-Przyrodniczy, Aleja Prof. S Kaliskiego 7, 85-789 Bydgoszcz (Poland); Artoni, M [Department of Physics and Chemistry of Materials, CNR-INFM Sensor Lab, Brescia University and European Laboratory for Nonlinear Spectroscopy, Firenze (Italy); La Rocca, G C, E-mail: karolina@fizyka.umk.pl [Scuola Normale Superiore and CNISM, Pisa (Italy)

    2011-02-15

    Cross-Kerr nonlinearities are analyzed for two light beams propagating in an atomic medium in the tripod configuration, dressed by a strong standing-wave laser field that induces periodic optical properties. The reflection and transmission spectra as well as the phases of both the reflected and transmitted components of the two beams are analyzed theoretically with nonlinearities up to third order being taken into account. Ranges of parameters are sought in which the cross-Kerr effect can be used as the basis of the phase gate.

  20. Preparation and nonlinear optical properties of indium nanocrystals in sodium borosilicate glass by the sol–gel route

    International Nuclear Information System (INIS)

    Zhong, Jiasong; Xiang, Weidong; Zhao, Haijun; Chen, Zhaoping; Liang, Xiaojuan; Zhao, Wenguang; Chen, Guoxin

    2012-01-01

    Graphical abstract: The sodium borosilicate glass doped with indium nanocrystals have been successfully prepared by sol–gel methods. And the indium nanocrystals in tetragonal crystal system have formed uniformly in the glass, and the average diameter of indium nanocrystals is about 30 nm. The third-order optical nonlinear refractive index γ, absorption coefficient β, and susceptibility χ (3) of the glass are determined to be −4.77 × 10 −16 m 2 /W, 2.67 × 10 −9 m/W, and 2.81 × 10 −10 esu, respectively. Highlights: ► Indium nanocrystals embedded in glass matrix have been prepared by sol–gel route. ► The crystal structure and composition are investigated by XRD and XPS. ► Size and distribution of indium nanocrystals is determined by TEM. ► The third-order optical nonlinearity is investigated by using Z-scan technique. -- Abstract: The sodium borosilicate glass doped with indium nanocrystals have been successfully prepared by sol–gel route. The thermal stability behavior of the stiff gel is investigated by thermogravimetric (TG) and differential thermal (DTA) analysis. The crystal structure of the glass is characterized by X-ray powder diffraction (XRD). Particle composition is determined by X-ray photoelectron spectroscopy (XPS). Size and distribution of the nanocrystals are characterized by transmission electron microscopy (TEM) as well as high-resolution transmission electron microscopy (HRTEM). Results show that the indium nanocrystals in tetragonal crystal structure have formed in glass, and the average diameter is about 30 nm. Further, the glass is measured by Z-scan technique to investigate the nonlinear optical (NLO) properties. The third-order NLO coefficient χ (3) of the glass is determined to be 2.81 × 10 −10 esu. The glass with large third-order NLO coefficient is promising materials for applications in optical devices.

  1. Mesomorphic glass nanocomposites made of metal alkanoates and nanoparticles as emerging nonlinear-optical materials

    Science.gov (United States)

    Garbovskiy, Y.; Klimusheva, G.; Mirnaya, T.

    2016-09-01

    Mesomorphic metal alkanoates is very promising yet overlooked class of nonlinear-optical materials. Metal alkanoates can exhibit a broad variety of condensed states of matter including solid crystals, plastic crystals, lyotropic and thermotropic ionic liquid crystals, liquids, mesomorphic glasses, and Langmuir-Blodgett films. Glass-forming properties of metal alkanoates combined with their use as nano-reactors and anisotropic host open up simple and efficient way to design various photonic nanomaterials. Despite very interesting physics, the experimental data on optical and nonlinearoptical properties of such materials are scarce. The goal of the present paper is to fill the gap by discussing recent advances in the field of photonic materials made of metal alkanoates, organic dyes, and nanoparticles. Optical and nonlinear-optical properties of the following materials are reviewed: (i) mesomorphic glass doped with organic dyes; (ii) smectic glass composed of cobalt alkanoates; (iii) semiconductor nanoparticles embedded in a glassy host; (iv) metal nanoparticles - glass (the cobalt octanoate) nanocomposites.

  2. Electronic, bonding, linear and non-linear optical properties of novel Li{sub 2}Ga{sub 2}GeS{sub 6} compound

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Wilayat, E-mail: wkhan@ntc.zcu.cz [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, Pilsen 306 14 (Czech Republic); Murtaza, G., E-mail: murtaza@icp.edu.pk [Department of Physics, Islamia College Peshawar, KPK (Pakistan); Ouahrani, T. [Laboratoire de Physique Théorique, B.P. 230, Université de Tlemcen, Tlemcen 13000 (Algeria); École Préparatoire en Sciences et Techniques, BP 165 R.P., 13000 Tlemcen (Algeria); Mahmood, Asif [College of Engineering, Chemical Engineering Department, King Saud University Riyadh (Saudi Arabia); Khenata, R.; El Amine Monir, Mohammed; Baltache, H. [Laboratoire de Physique Quantique, de la Matière et de la Modélisation Mathématique (LPQ3M), Université de Mascara, Mascara 29000 (Algeria)

    2016-07-25

    Recently a new sulphide compound Li{sub 2}Ga{sub 2}GeS{sub 6} was synthesized. It has attracted great attention due to its nonlinear optical properties. Quite surprisingly no theoretical study yet been reported on the physical properties of this important material. We have paid attention to study the electronic and optical properties of Li{sub 2}Ga{sub 2}GeS{sub 6} using first principles techniques of density functional theory. Different exchange-correlation techniques have been applied to study these properties. From local density and generalized gradient approximations the compound is predicted to be direct bandgap. However the band gap is indirect when calculated through the Engle–Vosko and modified Becke–Johnson potentials. Therefore the bandgap of the compound is pseudo direct (direct and indirect band gaps are very close). In optical properties dielectric function, refractive index, reflectivity and absorption coefficient were studied. Furthermore, the second harmonic generation properties of the compound are predicted. - Highlights: • Li{sub 2}Ga{sub 2}GeS{sub 6} studied for the first time using first principles calculations. • Different exchange correlation potentials have been adopted for the calculations. • Bandgap of the compound is pseudo direct. • Optical structures are prominent in the low frequency ultraviolet region. • The lone pair basins seem to have a non-negligible role in the optical properties.

  3. Investigation on the growth, spectral, lifetime, mechanical analysis and third-order nonlinear optical studies of L-methionine admixtured D-mandelic acid single crystal: A promising material for nonlinear optical applications

    Science.gov (United States)

    Jayaprakash, P.; Sangeetha, P.; Kumari, C. Rathika Thaya; Caroline, M. Lydia

    2017-08-01

    A nonlinear optical bulk single crystal of L-methionine admixtured D-mandelic acid (LMDMA) has been grown by slow solvent evaporation technique using water as solvent at ambient temperature. The crystallized LMDMA single crystal subjected to single crystal X-ray diffraction study confirmed monoclinic system with the acentric space group P21. The FTIR analysis gives information about the modes of vibration in the various functional groups present in LMDMA. The UV-visible spectral analysis assessed the optical quality and linear optical properties such as extinction coefficient, reflectance, refractive index and from which optical conductivity and electric susceptibility were also evaluated. The frequency doubling efficiency was observed using Kurtz Perry powder technique. A multiple shot laser was utilized to evaluate the laser damage threshold energy of the crystal. Discrete thermodynamic properties were carried out by TG-DTA studies. The hardness, Meyer's index, yield strength, elastic stiffness constant, Knoop hardness, fracture toughness and brittleness index were analyzed using Vickers microhardness tester. Layer growth pattern and the surface defect were examined by chemical etching studies using optical microscope. Fluorescence emission spectrum was recorded and lifetime was also studied. The electric field response of crystal was investigated from the dielectric studies at various temperatures at different frequencies. The third-order nonlinear optical response in LMDMA has been investigated using Z-scan technique with He-Ne laser at 632.8 nm and nonlinear parameters such as refractive index (n2), absorption coefficient (β) and susceptibility (χ3) investigated extensively for they are in optical phase conjucation, high-speed optical switches and optical dielectric devices.

  4. Growth, spectral, linear and nonlinear optical characteristics of an efficient semiorganic acentric crystal: L-valinium L-valine chloride

    Energy Technology Data Exchange (ETDEWEB)

    Nageshwari, M.; Jayaprakash, P.; Kumari, C. Rathika Thaya [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India); Vinitha, G. [Department of Physics, School of Advanced Sciences, VIT Chennai, 600127 Tamil Nadu (India); Caroline, M. Lydia, E-mail: lydiacaroline2006@yahoo.co.in [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India)

    2017-04-15

    An efficient nonlinear optical semiorganic material L-valinium L-valine chloride (LVVCl) was synthesized and grown-up by means of slow evaporation process. Single crystal XRD evince that LVVCl corresponds to monoclinic system having acentric space group P2{sub 1}. The diverse functional groups existing in LVVCl were discovered with FTIR spectral investigation. The UV-Visible and photoluminescence spectrum discloses the optical and electronic properties respectively for the grown crystal. Several optical properties specifically extinction coefficient, reflectance, linear refractive index, electrical and optical conductivity were also determined. The SEM analysis was also carried out and it portrayed the surface morphology of LVVCl. The calculated value of laser damage threshold was 2.59 GW/cm{sup 2}. The mechanical and dielectric property of LVVCl was investigated employing microhardness and dielectric studies. The second and third order nonlinear optical characteristics of LVVCl was characterized utilizing Kurtz Perry and Z scan technique respectively clearly suggest its suitability in the domain of optics and photonics. - Graphical abstract: Good quality transparent single crystals of L-valinium L-valine chloride single crystal was grown by slow evaporation technique. The grown crystals were analyzed using different instrumentation methods to check its usefulness for the device fabrication. The determination of nonlinear refractive index (n{sub 2}), absorption coefficient (β) and third order nonlinear susceptibility was determined by Z scan technique, highlighted that LVVCl can serve as a promising candidate for opto electronic and nonlinear optical applications.

  5. Third order nonlinear optical properties of a paratellurite single crystal

    Science.gov (United States)

    Duclère, J.-R.; Hayakawa, T.; Roginskii, E. M.; Smirnov, M. B.; Mirgorodsky, A.; Couderc, V.; Masson, O.; Colas, M.; Noguera, O.; Rodriguez, V.; Thomas, P.

    2018-05-01

    The (a,b) plane angular dependence of the third-order nonlinear optical susceptibility, χ(3) , of a c-cut paratellurite (α-TeO2) single crystal was quantitatively evaluated here by the Z-scan technique, using a Ti:sapphire femtosecond laser operated at 800 nm. In particular, the mean value Re( ⟨χ(3)⟩a,b )(α-TeO2) of the optical tensor has been extracted from such experiments via a direct comparison with the data collected for a fused silica reference glass plate. A R e (⟨χ(3)⟩(a,b )(α-TeO2)):R e (χ(3))(SiO2 glass) ratio roughly equal to 49.1 is found, and our result compares thus very favourably with the unique experimental value (a ratio of ˜50) reported by Kim et al. [J. Am. Ceram. Soc. 76, 2486 (1993)] for a pure TeO2 glass. In addition, it is shown that the angular dependence of the phase modulation within the (a,b) plane can be fully understood in the light of the strong dextro-rotatory power known for TeO2 materials. Taking into account the optical activity, some analytical model serving to estimate the diagonal and non-diagonal components of the third order nonlinear susceptibility tensor has been thus developed. Finally, Re( χxxxx(3) ) and Re( χxxyy(3) ) values of 95.1 ×10-22 m 2/V2 and 42.0 ×10-22 m2/V2 , respectively, are then deduced for a paratellurite single crystal, considering fused silica as a reference.

  6. Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction.

    Science.gov (United States)

    Shi, Hongfei; Wang, Can; Sun, Zhipei; Zhou, Yueliang; Jin, Kuijuan; Redfern, Simon A T; Yang, Guozhen

    2014-08-11

    Reduced graphene oxides with varying degrees of reduction have been produced by hydrazine reduction of graphene oxide. The linear and nonlinear optical properties of both graphene oxide as well as the reduced graphene oxides have been measured by single beam Z-scan measurement in the picosecond region. The results reveal both saturable absorption and two-photon absorption, strongly dependent on the intensity of the pump pulse: saturable absorption occurs at lower pump pulse intensity (~1.5 GW/cm2 saturation intensity) whereas two-photon absorption dominates at higher intensities (≥5.7 GW/cm2). Intriguingly, we find that the two-photon absorption coefficient (from 1.5 cm/GW to 4.5cm/GW) and the saturation intensity (from 1 GW/cm2 to 2 GW/cm2) vary with chemical reduction, which is ascribed to the varying concentrations of sp2 domains and sp2 clusters in the reduced graphene oxides. Our results not only provide an insight into the evolution of the nonlinear optical coefficient in reduced graphene oxide, but also suggest that chemical engineering techniques may usefully be applied to tune the nonlinear optical properties of various nano-materials, including atomically thick graphene sheets.

  7. First-principles study of structural, electronic, linear and nonlinear optical properties of Ga{2}PSb ternary chalcopyrite

    Science.gov (United States)

    Ouahrani, T.; Reshak, A. H.; de La Roza, A. Otero; Mebrouki, M.; Luaña, V.; Khenata, R.; Amrani, B.

    2009-12-01

    We report results from first-principles density functional calculations using the full-potential linear augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) and the Engel-Vosko-generalized gradient approximation (EV-GGA) were used for the exchange-correlation energy of the structural, electronic, linear and nonlinear optical properties of the chalcopyrite Ga2PSb compound. The valence band maximum (VBM) is located at the Γv point, and the conduction band minimum (CBM) is located at the Γc point, resulting in a direct band gap of about 0.365 eV for GGA and 0.83 eV for EV-GGA. In comparison with the experimental one (1.2 eV) we found that EV-GGA calculation gives energy gap in reasonable agreement with the experiment. The spin orbit coupling has marginal influence on the optical properties. The ground state quantities such as lattice parameters (a, c and u), bulk modules B and its pressure derivative B^primeare evaluated.

  8. Structural, optical and nonlinear optical studies of AZO thin film prepared by SILAR method for electro-optic applications

    Science.gov (United States)

    Edison, D. Joseph; Nirmala, W.; Kumar, K. Deva Arun; Valanarasu, S.; Ganesh, V.; Shkir, Mohd.; AlFaify, S.

    2017-10-01

    Aluminium doped (i.e. 3 at%) zinc oxide (AZO) thin films were prepared by simple successive ionic layer adsorption and reaction (SILAR) method with different dipping cycles. The structural and surface morphology of AZO thin films were studied by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optical parameters such as, transmittance, band gap, refractive index, extinction coefficient, dielectric constant and nonlinear optical properties of AZO films were investigated. XRD pattern revealed the formation of hexagonal phase ZnO and the intensity of the film was found to increase with increasing dipping cycle. The crystallite size was found to be in the range of 29-37 nm. Scanning Electron Microscope (SEM) images show the presence of small sized grains, revealing that the smoothest surface was obtained at all the films. The EDAX spectrum of AZO conforms the presence of Zn, O and Al. The optical transmittance in the visible region is high 87% and the band gap value is 3.23 eV. The optical transmittance is decreased with respect to dipping cycles. The room temperature PL studies revealed that the AZO films prepared at (30 cycles) has good film quality with lesser defect density. The third order nonlinear optical parameters were also studied using Z-scan technique to know the applications of deposited films in nonlinear devices. The third order nonlinear susceptibility value is found to be 1.69 × 10-7, 3.34 × 10-8, 1.33 × 10-7and 2.52 × 10-7 for AZO films deposited after 15, 20, 25 and 30 dipping cycles.

  9. Third-order optical nonlinearity of N-doped graphene oxide nanocomposites at different GO ratios

    Science.gov (United States)

    Kimiagar, Salimeh; Abrinaei, Fahimeh

    2018-05-01

    In the present work, the influence of GO ratios on the structural, linear and nonlinear optical properties of nitrogen-doped graphene oxide nanocomposites (N-GO NCs) has been studied. N-GO NCs were synthesized by hydrothermal method. The XRD, FTIR, SEM, and TEM results confirmed the reduction of GO by nitrogen doping. The energy band gaps of N-GO NCs calculated from UV-Vis analyzed by using Tauc plot. To obtain further insight into potential optical changes in the N-GO NCs by increasing GO contents, Z-scan analysis was performed with nanosecond Nd-YAG laser at 532 nm. The nonlinear absorption coefficient, β, and nonlinear refractive index, n2, for N-GO NCs at the laser intensity of 113 MW/cm were measured and an increase was observed in both parameters after addition of nitrogen to GO. The third-order nonlinear optical susceptibilities of N-GO NCs were measured in the order of 10-9 esu. The results showed that N-GO NCs have negative nonlinearity which can be controlled by GO contents to obtain the highest values for nonlinear optical parameters. The nonlinear optical results not only imply that N-GO NCs can serve as an important material in the advancing of optoelectronics but also open new possibilities for the design of new graphene-based materials by variation of N and GO ratios as well as manufacturing conditions.

  10. Growth and physicochemical properties of second-order nonlinear optical 2-amino-5-chloropyridinium trichloroacetate single crystals

    Science.gov (United States)

    Renugadevi, R.; Kesavasamy, R.

    2015-09-01

    The growth of organic nonlinear optical (NLO) crystal 2-amino-5-chloropyridinium trichloroacetate (2A5CPTCA) has been synthesized and single crystals have been grown from methanol solvent by slow evaporation technique. The grown crystals were subjected to various characterization analyses in order to find out the suitability for device fabrication. Single crystal X-ray diffraction analysis reveals that 2A5CPTCA crystallizes in monoclinic system with the space group Cc. The grown crystal was further characterized by Fourier transform infrared spectral analysis to find out the functional groups. The nuclear magnetic resonance spectroscopy is a research technique that exploits the magnetic properties of certain atomic nuclei. The optical transparency window in the visible and near-IR (200--1100 nm) regions was found to be good for NLO applications. Thermogravimetric analysis and differential thermal analysis were used to study its thermal properties. The powder second harmonic generation efficiency measurement with Nd:YAG laser (1064 nm) radiation shows that the highest value when compared with the standard potassium dihydrogen phosphate crystal.

  11. Third-order nonlinear optical properties of thin sputtered gold films

    Science.gov (United States)

    Xenogiannopoulou, E.; Aloukos, P.; Couris, S.; Kaminska, E.; Piotrowska, A.; Dynowska, E.

    2007-07-01

    Au films of thickness ranging between 5 and 52 nm were prepared by sputtering on quartz substrates and their third-order nonlinear optical response was investigated by Optical Kerr effect (OKE) and Z-scan techniques using 532 nm, 35 ps laser pulses. All prepared films were characterized by XRD, AFM and UV-VIS-NIR spectrophotometry while their third-order susceptibility χ(3) was measured and found to be of the order of 10 -9 esu. The real and imaginary parts of the third-order susceptibility were found in very good agreement with experimental results and theoretical predictions reported by Smith et al. [D.D. Smith, Y. Yoon, R.W. Boyd, Y.K. Cambell, L.A. Baker, R.M. Crooks, M. George, J. Appl. Phys. 86 (1999) 6200].

  12. Nonlinear optics at interfaces

    International Nuclear Information System (INIS)

    Chen, C.K.

    1980-12-01

    Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory

  13. Synthesis, characterization and theoretical investigations of the structure, electronic properties and third-order nonlinearity optics (NLO) of M(DPIP)₂.

    Science.gov (United States)

    Li, Kang; Tang, Guodong; Kou, ShanShan; Culnane, Lance F; Zhang, Yu; Song, Yinglin; Li, Rongqing; Wei, Changmei

    2015-03-15

    Three complexes of M(DPIP)2 (M=Cu, Co, Zn as 1, 2, 3) were synthesized and characterized by elemental analysis, IR, UV-Vis, thermogravimetry, and X-ray diffraction. Their nonlinear optical properties were measured by the Z-scan technique and yielded a normalized transmittance of about 70% for complex 1 (45 μJ pulse), and 93% for complex 3 (68 μJ pulse at the focus point). The nonlinear absorption coefficient, β, is 1.4×10(-11) m/W for 1 and 5.6×10(-13) m/W for 3, and the third-order nonlinear refraction index, n2, is 1.0×10(-18) m(2)/W for 3. Complex 1 shows self-defocusing property, while complex 3 exhibits self-focusing property. The thermogravimetric results show that the frame structure of compounds 1-3 begin to collapse at 400, 250 and 280°C, respectively, which suggests that they elicit excellent thermal stability. This research aims to provide better understanding of these compounds, and offer preliminary explanations for the significant differences between compounds 1-3, in order to potentially help in the designing of future novel materials with NLO properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. 4-N, N-bis(4-methoxylphenyl) aniline substituted anthraquinone: X-ray crystal structures, theoretical calculations and third-order nonlinear optical properties

    Science.gov (United States)

    Xu, Liang; Zhang, Dingfeng; Zhou, Yecheng; Zheng, Yusen; Cao, Liu; Jiang, Xiao-Fang; Lu, Fushen

    2017-08-01

    In this paper, mono- and di-4-N,N-bis(4-methoxylphenyl)aniline-substituted anthraquinone have been designed and synthesized through Suzuki reaction. For mono-4-N,N-bis(4-methoxylphenyl)aniline-substituted anthraquinone, polymorphous crystal structures have been obtained in different crystallization conditions. Electrochemical characterization combined with theoretical calculation suggests that the addition of a second triphenylamine unit causes a larger band gap with higher lying LUMO (Lowest Unoccupied Molecular Orbital) and HOMO (Highest Occupied Molecular Orbital). The linear optical property shows that the introduction of a second triphenylamine unit bring about a significant hyperchromic effect with the extinction coefficients increasing from 11199 M-1 cm-1 to 22136 M-1 cm-1. The third-order nonlinear optical properties indicate that the introduction of a second triphenylamine unit lead to a much larger nonlinear absorption coefficient and two-photon absorption cross section, with the relevant value increasing from 2.04 × 10-12 cm W-1 to 3.91 × 10-12 cm W-1, and from 148 GM to 286 GM, respectively.

  15. Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3

    International Nuclear Information System (INIS)

    Sarkisov, S.S.; Curley, M.J.; Williams, E.K.; Ila, D.; Svetchnikov, V.L.; Zandbergen, H.W.; Zykov, G.A.; Banks, C.; Wang, J.-C.; Poker, D.B.; Hensley, D.K.

    2000-01-01

    We analyze microstructure, linear and nonlinear optical properties of planar waveguides produced by implantation of MeV Ag ions into LiNbO 3 . Linear optical properties are described by the parameters of waveguide propagation modes and optical absorption spectra. Nonlinear properties are described by the nonlinear refractive index. Operation of the implanted crystal as an optical waveguide is due to modification of the linear refractive index of the implanted region. The samples as implanted do not show any light-guiding. The implanted region has amorphous and porous microstructure with the refractive index lower than the substrate. Heat treatment of the implanted samples produces planar light-guiding layer near the implanted surface. High-resolution electron microscopy reveals re-crystallization of the host between the surface and the nuclear stopping region in the form of randomly oriented crystalline grains. They make up a light-guiding layer isolated from the bulk crystal by the nuclear stopping layer with low refractive index. Optical absorption of the sample as implanted has a peak at 430 nm. This peak is due to the surface plasmon resonance in nano-clusters of metallic silver. Heat treatment of the samples shifts the absorption peak to 545 nm. This is more likely due to the increase of the refractive index back to the value for the crystalline LiNbO 3 . The nonlinear refractive index of the samples at 532 nm (of the order of 10 -10 cm 2 W -1 ) was measured with the Z-scan technique using a picosecond laser source. Possible applications of the waveguides include ultra-fast photonic switches and modulators

  16. Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass

    Science.gov (United States)

    Almeida, Gustavo F. B.; Almeida, Juliana M. P.; Martins, Renato J.; De Boni, Leonardo; Arnold, Craig B.; Mendonca, Cleber R.

    2018-01-01

    The development of advanced photonics devices requires materials with large optical nonlinearities, fast response times and high optical transparency, while at the same time allowing for the micro/nano-processing needed for integrated photonics. In this context, glasses have been receiving considerable attention given their relevant optical properties which can be specifically tailored by compositional control. Corning Gorilla® Glass (strengthened alkali aluminosilicate glass) is well-known for its use as a protective screen in mobile devices, and has attracted interest as a potential candidate for optical devices. Therefore, it is crucial not only to expand the knowledge on the fabrication of waveguides in Gorilla Glass under different regimes, but also to determine its nonlinear optical response, both using fs-laser pulses. Thus, this paper reports, for the first time, characterization of the third-order optical nonlinearities of Gorilla Glass, as well as linear and nonlinear characterization of waveguide written with femtosecond pulses under the low repetition rate regime (1 kHz).

  17. Studies on the growth aspects, structural, thermal, dielectric and third order nonlinear optical properties of solution grown 4-methylpyridinium p-nitrophenolate single crystal

    Science.gov (United States)

    Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan

    2016-11-01

    An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.

  18. Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot

    Science.gov (United States)

    Feddi, E.; Talbi, A.; Mora-Ramos, M. E.; El Haouari, M.; Dujardin, F.; Duque, C. A.

    2017-11-01

    Using the effective mass approximation and a variational procedure, we have investigated the nonlinear optical absorption coefficient and the relative refractive index changes associated to a single dopant confined in core/shell quantum dots considering the influences of the core/shell dimensions, externally applied magnetic field, and dielectric mismatch. The results show that the optical absorption coefficient and the coefficients of relative refractive index change depend strongly on the core/shell sizes and they are blue shifted when the spatial confinement increases so this effect is magnified by higher structural dimensions. Additionally, it is obtained that both studied optical properties are sensitive to the dielectric environment in such a way that their amplitudes are very affected by the local field corrections.

  19. Optical Properties of the Fresnoite Ba2TiSi2O8 Single Crystal

    Directory of Open Access Journals (Sweden)

    Chuanying Shen

    2017-02-01

    Full Text Available In this work, using large-sized single crystals of high optical quality, the optical properties of Ba2TiSi2O8 were systematically investigated, including transmission spectra, refractive indices and nonlinear absorption properties. The crystal exhibits a high transmittance (>84% over a wide wavelength range from 340 to 2500 nm. The refractive indices in the range from 0.31256 to 1.01398 μm were measured, and Sellmeier’s equations were fitted by the least squares method. The nonlinear absorption properties were studied by using the open-aperture Z-scan technique, with a nonlinear absorption coefficient measured to be on the order of 0.257 cm/GW at the peak power density of 16.4 GW/cm2. Such high transmittance and wide transparency indicate that optical devices using the Ba2TiSi2O8crystal can be applied over a wide wavelength range. Furthermore, the small nonlinear absorption observed in Ba2TiSi2O8 will effectively increase the optical conversion efficiency, decreasing the generation of laser damage of the optical device.

  20. Quantum mechanical analysis of nonlinear optical response of interacting graphene nanoflakes

    Directory of Open Access Journals (Sweden)

    Hanying Deng

    2018-01-01

    Full Text Available We propose a distant-neighbor quantum-mechanical (DNQM approach to study the linear and nonlinear optical properties of graphene nanoflakes (GNFs. In contrast to the widely used tight-binding description of the electronic states that considers only the nearest-neighbor coupling between the atoms, our approach is more accurate and general, as it captures the electron-core interactions between all atoms in the structure. Therefore, as we demonstrate, the DNQM approach enables the investigation of the optical coupling between two closely separated but chemically unbound GNFs. We also find that the optical response of GNFs depends crucially on their shape, size, and symmetry properties. Specifically, increasing the size of nanoflakes is found to shift their accommodated quantum plasmon oscillations to lower frequency. Importantly, we show that by embedding a cavity into GNFs, one can change their symmetry properties, tune their optical properties, or enable otherwise forbidden second-harmonic generation processes.

  1. Tuning the nonlinear optical absorption in Au/BaTiO3 nanocomposites with gold nanoparticle concentration

    Science.gov (United States)

    Bijeesh, M. M.; Shakhi, P. K.; Varier, Geetha K.; Nandakumar, P.

    2018-06-01

    We report on the nonlinear optical absorption coefficient of Au/BaTiO3 nanocomposite films and its dependence on gold nanoparticle concentration. Au/BaTiO3 nanocomposite films with different molar ratio of Au/Ba are prepared by sol-gel technique and characterized by X-ray diffraction, UV Visible absorption spectroscopy and high resolution transmission electron microscopy. An open aperture Z-scan technique is employed to study the third order nonlinear optical properties of Au/BaTiO3 thin films. An Nd:YAG laser operating at 532 nm wavelength having a pulse width of 5 ns is used for the measurements. The two-photon absorption coefficient of the films increases linearly with gold nanoparticle concentration and significant enhancement of nonlinear optical absorption is observed. This ability to fine tune the nonlinear optical coefficients of Au/BaTiO3 films would be handy in optical device applications.

  2. Nonlinear and quantum optics near nanoparticles

    Science.gov (United States)

    Dhayal, Suman

    We study the behavior of electric fields in and around dielectric and metal nanoparticles, and prepare the ground for their applications to a variety of systems viz. photovoltaics, imaging and detection techniques, and molecular spectroscopy. We exploit the property of nanoparticles being able to focus the radiation field into small regions and study some of the interesting nonlinear, and quantum coherence and interference phenomena near them. The traditional approach to study the nonlinear light-matter interactions involves the use of the slowly varying amplitude approximation (SVAA) as it simplifies the theoretical analysis. However, SVVA cannot be used for systems which are of the order of the wavelength of the light. We use the exact solutions of the Maxwell's equations to obtain the fields created due to metal and dielectric nanoparticles, and study nonlinear and quantum optical phenomena near these nanoparticles. We begin with the theoretical description of the electromagnetic fields created due to the nonlinear wavemixing process, namely, second-order nonlinearity in an nonlinear sphere. The phase-matching condition has been revisited in such particles and we found that it is not satisfied in the sphere. We have suggested a way to obtain optimal conditions for any type and size of material medium. We have also studied the modifications of the electromagnetic fields in a collection of nanoparticles due to strong near field nonlinear interactions using the generalized Mie theory for the case of many particles applicable in photovoltaics (PV). We also consider quantum coherence phenomena such as modification of dark states, stimulated Raman adiabatic passage (STIRAP), optical pumping in 4-level atoms near nanoparticles by using rotating wave approximation to describe the Hamiltonian of the atomic system. We also considered the behavior of atomic and the averaged atomic polarization in 7-level atoms near nanoparticles. This could be used as a prototype to study

  3. Twistacene contained molecule for optical nonlinearity: Excited-state based negative refraction and optical limiting

    Science.gov (United States)

    Wu, Xingzhi; Xiao, Jinchong; Sun, Ru; Jia, Jidong; Yang, Junyi; Ao, Guanghong; Shi, Guang; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin

    2018-06-01

    Spindle-type molecules containing twisted acenes (PyBTA-1 &PyBTA-2) are designed, synthesized characterized. Picosecond Z-scan experiments under 532 nm show reverse saturable absorption and negative nonlinear refraction, indicating large third-order optical nonlinearity in PyBTA-1. The mechanism of the optical nonlinearity is investigated and the results show that the nonlinear absorption and refraction in PyBTA-1 originates from a charge transfer (CT) state. Furthermore, relatively long lifetime and absorptive cross section of the CT state are measured. Based on the excited state absorption in PyBTA-1, strong optical limiting with ∼0.3 J/cm2 thresholds are obtained when excited by picoseconds and nanoseconds pulses. The findings on nonlinear optics suggest PyBTA-1 a promising material of all optical modulation and laser protection, which enrich the potential applications of these spindle-type molecules. Comparing to the previously reported spindle-type molecules with analogous structures, the introduction of ICT in PyBTA-1 &PyBTA-2 dramatically decreases the two-photon absorption while enhances the nonlinear refraction. The results could be used to selectively tailor the optical nonlinearity in such kind of compounds.

  4. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2012-01-01

    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  5. Optically nonlinear energy transfer in light-harvesting dendrimers

    OpenAIRE

    Andrews, David; Bradshaw, DS

    2004-01-01

    Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems,organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Sta...

  6. Linear and nonlinear optical spectroscopy: Spectral, temporal and spatial resolution

    DEFF Research Database (Denmark)

    Hvam, Jørn Marcher

    1997-01-01

    Selected linear and nonlinear optical spectroscopies are being described with special emphasis on the possibility of obtaining simultaneous spectral, temporal and spatial resolution. The potential of various experimental techniques is being demonstrated by specific examples mostly taken from inve...... investigations of the electronic, and opto-electronic, properties of semiconductor nanostructures....

  7. Effect of TiO2 on thermal, structural and third-order nonlinear optical properties of Ca-La-B-O glass system

    International Nuclear Information System (INIS)

    Biswas, Kaushik; Sontakke, Atul D.; Annapurna, K.

    2010-01-01

    A series of calcium lanthanum metaborate glasses in the composition (wt%) of 23.88CaO-28.33La 2 O 3 -47.79B 2 O 3 modified with TiO 2 up to 20 wt% are prepared by a melt quenching technique to study the influence of TiO 2 on their thermal, structural, linear and nonlinear optical properties. The differential thermal analysis (DTA) studies have demonstrated significant effects due to the presence of TiO 2 on the glass forming ability and crystallization situations. The glass with 15 wt% TiO 2 has achieved a eutectic composition and also exhibited a better glass forming ability among the glasses studied. The FT-IR spectra of these glasses show mainly vibration modes corresponding to stretching of BO 3 trigonal, BO 4 tetrahedral units and of B-O-B bending bonds. At higher concentrations of TiO 2 , development of vibration band around 400 cm -1 has indicated the formation of TiO 6 structural units in the glass network. The red shift of optical absorption edge (UV cutoff) shows a monotonous decrease in direct and indirect optical band gap energies (E opt ) with an increase of TiO 2 content in the glasses based on their absorption spectra. The optical transparency of these glasses is found to be varied from 64 to 87% within the wavelength range 450-1100 nm depending on the TiO 2 content. Besides these studies, linear refractive indices, the nonlinear optical properties of these glasses have also been evaluated.

  8. Z-scan measurement for nonlinear absorption property of rGO/ZnO:Al thin film

    Science.gov (United States)

    Sreeja, V. G.; Anila, E. I.

    2018-04-01

    We report the fabrication of reduced graphene oxide integrated aluminium doped zinc oxide (rGO/ZnO:Al) composite thin film on a glass substrate by spin coating technique. The effect of rGO on structural and linear optical properties of rGO/ZnO:Al composite thin film was explored with the help of X-Ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis absorption spectroscopy. Structural studies reveals that the composite film has hexagonal wurtzite structure with a strong bonding between rGO and ZnO:Al material. The band gap energy of ZnO:Al thin film was red shifted by the addition of rGO. The Nonlinear absorption property was investigated by open aperture Z-scan technique by using Q switched Nd-YAG laser at 532nm. The Z-scan results showed that the composite film demonstrates reverse saturable absorption property with a nonlinear absorption coefficient, β, of 12.75×10-7m/w. The results showed that investigated rGO/ZnO:Al thin film is a promising material suitable for the applications in absorbing type optical devices such as optical limiters, optical switches and protection of the optical sensors in the field of nonlinear optics.

  9. Nonlinear compression of optical solitons

    Indian Academy of Sciences (India)

    linear pulse propagation is the nonlinear Schrödinger (NLS) equation [1]. There are ... Optical pulse compression finds important applications in optical fibres. The pulse com ..... to thank CSIR, New Delhi for financial support in the form of SRF.

  10. Broadband femtosecond nonlinear optical properties of CsPbBr3 perovskite nanocrystals.

    Science.gov (United States)

    Krishnakanth, Katturi Naga; Seth, Sudipta; Samanta, Anunay; Rao, Soma Venugopal

    2018-02-01

    We report the broadband nonlinear optical (NLO) properties of CsPbBr 3 perovskite films achieved from colloidal nanocrystals prepared following a room temperature and open atmosphere anti-solvent precipitation method. The NLO studies were performed on the films of nanocubes (NCs) and nanorods (NRs) using the Z-scan technique with 1 kHz femtosecond pulses at 600, 700, and 800 nm. Large two-photon absorption cross sections (∼10 5   GM) were retrieved by fitting the open-aperture Z-scan data. Strong third-order NLO susceptibility (∼10 -10   esu) was observed in these films. At higher peak intensities a switching of sign (in both NCs and NRs) in the real and imaginary parts of the NLO susceptibility was observed from the studies on these CsPbBr 3 nanocrystals. The obtained NLO coefficients clearly suggest that these materials are promising for ultrafast photonic applications.

  11. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    International Nuclear Information System (INIS)

    Torres-Torres, C.; García-Cruz, M.L.; Castañeda, L.; Rangel Rojo, R.; Tamayo-Rivera, L.; Maldonado, A.; Avendaño-Alejo, M.

    2012-01-01

    Chromium doped zinc oxide thin solid films were deposited on soda–lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol–gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: ► Enhancement in photoluminescence for chromium doped zinc oxide films is presented. ► A strong and ultrafast optical Kerr effect seems to result from quantum confinement. ► Photoconductive properties for optical and optoelectronic functions were observed.

  12. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C., E-mail: crstorres@yahoo.com.mx [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF 07738 (Mexico); Garcia-Cruz, M.L. [Centro de Investigacion en Dispositivos Semiconductores, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Castaneda, L., E-mail: luisca@sirio.ifuap.buap.mx [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Rangel Rojo, R. [CICESE/Depto. de Optica, A. P. 360, Ensenada, BC 22860 (Mexico); Tamayo-Rivera, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, DF 01000 (Mexico); Maldonado, A. [Depto. de Ing. Electrica, CINVESTAV IPN-SEES, A. P. 14740, Mexico DF 07000 (Mexico); Avendano-Alejo, M., E-mail: imax_aa@yahoo.com.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, A. P. 70-186, 04510, DF (Mexico); and others

    2012-04-15

    Chromium doped zinc oxide thin solid films were deposited on soda-lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol-gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: Black-Right-Pointing-Pointer Enhancement in photoluminescence for chromium doped zinc oxide films is presented. Black-Right-Pointing-Pointer A strong and ultrafast optical Kerr effect seems to result from quantum confinement. Black-Right-Pointing-Pointer Photoconductive properties for optical and optoelectronic functions were observed.

  13. Synthesis, characterization and non-linear optical response of organophilic carbon dots

    KAUST Repository

    Bourlinos, Athanasios B.

    2013-09-01

    For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.

  14. Synthesis, characterization and non-linear optical response of organophilic carbon dots

    KAUST Repository

    Bourlinos, Athanasios B.; Karakassides, Michael A.; Kouloumpis, Antonios; Gournis, Dimitrios; Bakandritsos, Aristides; Papagiannouli, Irene; Aloukos, Panagiotis; Couris, Stelios; Hola, Katerina; Zboril, Radek; Krysmann, Marta; Giannelis, Emmanuel P.

    2013-01-01

    For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.

  15. The structural, electro-optical, charge transport and nonlinear optical properties of oxazole (4Z-4-Benzylidene-2-(4-methylphenyl-1,3-oxazol-5(4H-one derivative

    Directory of Open Access Journals (Sweden)

    Ahmad Irfan

    2018-01-01

    Full Text Available The oxazole compounds are being used for multifunctional purposes ranging from organic light emitting diodes, organic thin film transistors, and photovoltaic to the nonlinear optical materials. In this study, several structural, electro-optical, charge transport and nonlinear optical properties of (4Z-4-Benzylidene-2-(4-methylphenyl-1,3-oxazol-5(4H-one (BMPO have been investigated. Density functional theory (DFT and time dependent DFT are very accurate and reasonable approaches to optimize the ground and excited state geometries, respectively. Thus, in the present study DFT and TDDFT methods with the B3LYP/6-31G∗∗ levels of theory have been applied to shed some light on the structure-property relationship, frontier molecular orbitals (FMOs, optical properties. A clear intra-molecular charge transfer (ICT from the highest occupied molecular orbitals (HOMOs to the lowest unoccupied molecular orbitals (LUMOs has been observed. The ionization potentials (IP, electron affinities (EA, total and partial densities of states have been discussed intensively. The electron reorganization energy of oxazole compound (BMPO is smaller than the hole reorganization energy revealing that it might be good electron transport contender in OLED. The electron reorganization energy of BMPO is calculated to be 0.223 eV that is smaller than the perfluoropentacene (value is 0.250 eV, which is famous n-type semiconductor material. The first pathway of BMPO has almost comparable hole and electron transfer integral values whereas the calculated electron reorganization energy (0.223 eV is considerably lower than the hole reorganization energy (0.381 eV which leads to superior electron intrinsic mobility of the studied oxazole derivative as compared to the hole one. It is expected that BMPO might be excellent electron transport material.

  16. Light-induced second-order nonlinear optical properties of molecular materials

    International Nuclear Information System (INIS)

    Fiorini, Celine

    1995-01-01

    We present a theoretical and experimental study of all-optical orientation. The work focusses more particularly on the realization of poled polymers for quadratic nonlinear optics. It is shown that the coherent superposition of two beams at fundamental and second harmonic frequencies results in the breaking of the former centro-symmetry of the material. The source is a Neodymium-YAG laser delivering 25 ps pulses at 1064 nm. The incident second-harmonic beam is obtained by frequency doubling in a KDP crystal. Using a phase conjugation configuration based on six-wave mixing interactions, we have Investigated in detail the mechanism of photo-induced second-harmonic generation in initially centrosymmetric materials. It is shown that the light-induced non-centro-symmetry is due to an orientational hole burning of the molecules. The process involves interference effects between one and two photon absorptions. Experiments are performed in various solutions of an azo-dye molecule (Disperse Red One). The possibility of inducing quasi-permanent second-order susceptibility in a PMMA polymer matrix doped with the azo-dye molecule of Disperse Red One is also demonstrated. The method of all-optical poling consists in a seeding type process with alternate writing and probing phases. Permanent orientation of the molecules can be described in terms of photo-isomerization processes. It leads to a poling of the molecules with a spatial modulation which is phase-matched for frequency doubling. Relevant parameters leading to an efficient polarisation of the sample are identified. A theoretical modelling of the different phenomena observed is proposed. Last part of the study is devoted to an enlarged study of the potentialities offered by this dual-frequency holography technique: orientation of octupolar molecules, polarisation of highly transparent materials. We also show that the new techniques developed during this work can also reveal to be complementary methods for nonlinear

  17. Fractals: Giant impurity nonlinearities in optics of fractal clusters

    International Nuclear Information System (INIS)

    Butenko, A.V.; Shalaev, V.M.; Stockman, M.I.

    1988-01-01

    A theory of nonlinear optical properties of fractals is developed. Giant enhancement of optical susceptibilities is predicted for impurities bound to a fractal. This enhancement occurs if the exciting radiation frequency lies within the absorption band of the fractal. The giant optical nonlinearities are due to existence of high local electric fields in the sites of impurity locations. Such fields are due to the inhomogeneously broadened character of a fractal spectrum, i.e. partial conservation of individuality of fractal-forming particles (monomers). The field enhancement is proportional to the Q-factor of the resonance of a monomer. The effects of coherent anti-Stokes Raman scattering (CARS) and phase conjugation (PC) of light waves are enhanced to a much greater degree than generation of higher harmonics. In a general case the susceptibility of a higher-order is enhanced in the maximum way if the process includes ''subtraction'' of photons (at least one of the strong field frequencies enters the susceptibility with the minus sign). Alternatively, enhancement for the highest-order harmonic generation (when all the photons are ''accumulated'') is minimal. The predicted phenomena bear information on spectral properties of both impurity molecules and a fractal. In particular, in the CARS spectra a narrow (with the natural width) resonant structure, which is proper to an isolated monomer of a fractal, is predicted to be observed. (orig.)

  18. Growth of KNN thin films for non-linear optical applications

    International Nuclear Information System (INIS)

    Sharma, Shweta; Gupta, Reema; Gupta, Vinay; Tomar, Monika

    2018-01-01

    Two-wave mixing is a remarkable area of research in the field of non-linear optics, finding various applications in the development of opto-electronic devices, photorefractive waveguides, real time holography, etc. Non-linear optical properties of ferroelectric potassium sodium niobate (KNN) thin films have been interrogated using two-wave mixing phenomenon. Regarding this, a-axis oriented K 0.35 Na (1-0.35) NbO 3 thin films were successfully grown on epitaxial matched (100) SrTiO 3 substrate using pulsed laser deposition (PLD) technique. The uniformly distributed Au micro-discs of 200 μm diameter were integrated with KNN/STO thin film to study the plasmonic enhancement in the optical response. Beam amplification has been observed as a result of the two-wave mixing. This is due to the alignment of ferroelectric domains in KNN films and the excitement of plasmons at the metal-dielectric (Au-KNN) interface. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Growth of KNN thin films for non-linear optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shweta; Gupta, Reema; Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi (India); Tomar, Monika [Department of Physics, Miranda House University of Delhi (India)

    2018-02-15

    Two-wave mixing is a remarkable area of research in the field of non-linear optics, finding various applications in the development of opto-electronic devices, photorefractive waveguides, real time holography, etc. Non-linear optical properties of ferroelectric potassium sodium niobate (KNN) thin films have been interrogated using two-wave mixing phenomenon. Regarding this, a-axis oriented K{sub 0.35}Na{sub (1-0.35)}NbO{sub 3} thin films were successfully grown on epitaxial matched (100) SrTiO{sub 3} substrate using pulsed laser deposition (PLD) technique. The uniformly distributed Au micro-discs of 200 μm diameter were integrated with KNN/STO thin film to study the plasmonic enhancement in the optical response. Beam amplification has been observed as a result of the two-wave mixing. This is due to the alignment of ferroelectric domains in KNN films and the excitement of plasmons at the metal-dielectric (Au-KNN) interface. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Nonlinear Optical Terahertz Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — We develop a new approach to generation of THz radiation. Our method relies on mixing two optical frequency beams in a nonlinear crystalline Whispering Gallery Mode...

  1. Photostable nonlinear optical polycarbonates

    NARCIS (Netherlands)

    Faccini, M.; Balakrishnan, M.; Diemeer, Mart; Torosantucci, Riccardo; Driessen, A.; Reinhoudt, David; Verboom, Willem

    2008-01-01

    Highly thermal and photostable nonlinear optical polymers were obtained by covalently incorporating the tricyanovinylidenediphenylaminobenzene (TCVDPA) chromophore to a polycarbonate backbone. NLO polycarbonates with different chromophore attachment modes and flexibilities were synthesized. In spite

  2. Nonlinear Optics: Materials, Fundamentals, and Applications. Postdeadline papers

    Science.gov (United States)

    1992-08-01

    The Nonlinear Optics: Materials, Fundamentals, and Applications conference was held on 17-21 Aug. 1992. The following topics were addressed: subpicosecond time resolved four-wave mixing spectroscopy in heteroepitaxial ZnSe thin layers; anisotropic two-photon transition in GaAs/AlGaAs multiple quantum well waveguides; two picosecond, narrow-band, tunable, optical parametric systems using BBO and LBO; second generation in an optically active liquid: experimental observation of a fourth-order optical nonlinearity due to molecular chirality; optical image recognition system implemented with a 3-D memory disk; phase-matched second-harmonic generation in waveguides of polymeric Langmuir-Blodgett films; fluence dependent dynamics observed in the resonant third-order optical response of C60 and C70 films; temporal modulation of spatial optical solitons: a variational approach; measurements of light-scattering noise during two-wave mixing in a Kerr medium; excess noise introduced by beam propagation through an atomic vapor; an approach to all-optical switching based on second-order nonlinearities; multilayer, nonlinear ARROW waveguides for surface emitted sum-frequency mixing; energy scaling of SBS phase conjugate mirrors to 4J; vector versus scalar theory for the double phase conjugate mirror; cross-talk and error probability in counter-beam lambda-multiplexed digital holograms; and modal growth of SHG in doped silica thin film waveguides.

  3. Optical rogue waves and soliton turbulence in nonlinear fibre optics

    DEFF Research Database (Denmark)

    Genty, G.; Dudley, J. M.; de Sterke, C. M.

    2009-01-01

    We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....

  4. Essentials of nonlinear optics

    CERN Document Server

    Murti, Y V G S

    2014-01-01

    Current literature on Nonlinear Optics varies widely in terms of content, style, and coverage of specific topics, relative emphasis of areas and the depth of treatment. While most of these books are excellent resources for the researchers, there is a strong need for books appropriate for presenting the subject at the undergraduate or postgraduate levels in Universities. The need for such a book to serve as a textbook at the level of the bachelors and masters courses was felt by the authors while teaching courses on nonlinear optics to students of both science and engineering during the past two decades. This book has emerged from an attempt to address the requirement of presenting the subject at college level. A one-semester course covering the essentials can effectively be designed based on this.

  5. Nonlinear Optical Magnetism Revealed by Second-Harmonic Generation in Nanoantennas.

    Science.gov (United States)

    Kruk, Sergey S; Camacho-Morales, Rocio; Xu, Lei; Rahmani, Mohsen; Smirnova, Daria A; Wang, Lei; Tan, Hark Hoe; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S

    2017-06-14

    Nonlinear effects at the nanoscale are usually associated with the enhancement of electric fields in plasmonic structures. Recently emerged new platform for nanophotonics based on high-index dielectric nanoparticles utilizes optically induced magnetic response via multipolar Mie resonances and provides novel opportunities for nanoscale nonlinear optics. Here, we observe strong second-harmonic generation from AlGaAs nanoantennas driven by both electric and magnetic resonances. We distinguish experimentally the contribution of electric and magnetic nonlinear response by analyzing the structure of polarization states of vector beams in the second-harmonic radiation. We control continuously the transition between electric and magnetic nonlinearities by tuning polarization of the optical pump. Our results provide a direct observation of nonlinear optical magnetism through selective excitation of multipolar nonlinear modes in nanoantennas.

  6. Terahertz semiconductor nonlinear optics

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias

    2013-01-01

    In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz...... nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...... to a decrease of plasma frequency in semiconductor and produces a substantial modification of THz-range material dielectric function, described by the Drude model. As a result, the nonlinearity of both absorption coefficient and refractive index of the semiconductor is observed. In particular we demonstrate...

  7. Differential behavior of amino-imino constitutional isomers in nonlinear optical processes.

    Science.gov (United States)

    Latorre, Sonia; Moreira, Ibério de P R; Villacampa, Belén; Julià, Lluís; Velasco, Dolores; Bofill, Josep Maria; López-Calahorra, Francisco

    2010-03-15

    A detailed study of the "blocked" amino-imino tautomers derived from N-acridine-substituted 2-aminobenzothiazole--and their effect on the nonlinear optical response--is presented. The synthesis, characterization, and nonlinear optical properties of these frozen tautomers, namely, N-methyl-N-(2-nitroacridin-6-yl)-2-aminobenzothia-zole and 3-methyl-N-(7-nitroacridin-3-yl)-2-iminobenzothiazole, are reported. A theoretical model based on valence-bond theory is also proposed and used to analyze the effects of the nuclear configuration corresponding to each frozen tautomer structure. In the present case, the aromatic form and the allylic-anion-like system of the -N-C-N- group inherent to each isomer are crucial for understanding and analyzing the different responses of each "blocked" tautomer.

  8. Synthesis of the semi-organic nonlinear optical crystal l-glutamic acid zinc chloride and investigation of its growth and physiochemical properties

    Directory of Open Access Journals (Sweden)

    S. Chennakrishnan

    2017-11-01

    Full Text Available The aim of this study is to synthesize and investigate the growth and physiochemical properties of the nonlinear optical semi-organic crystal l-glutamic acid zinc chloride (LGAZC. An optically transparent and defect-free crystal was grown with the slow evaporation solution growth technique under optimized conditions. The induction periods were measured at various supersaturations, and the interfacial energies were evaluated. Single crystal X-ray diffraction reveals that the crystal has an orthorhombic structure with space group P212121, and the calculated lattice parameters are a = 5.20 Å, b = 6.99 Å, c = 17.58 Å, α = β = γ = 90° and volume = 623.411 Å3. Spectroscopic properties were investigated by recording the Fourier transform infrared and optical transmission spectra. The thermal decomposition of the grown crystal was investigated by Thermo Gravimetric and Differential Thermal Analysis (TG/DTA. The LGAZC crystal exhibits second harmonic generation (SHG efficiency 1.5 times that of inorganic KDP crystal. The presence of the metal ion (Zn+ in a grown crystal was identified by EDAX spectrum analysis. The photoconductivity study demonstrates that LGAZC crystal has a positive photo conducting nature. The dielectric response of the LGAZC crystal was investigated and reported. Keywords: Semi-organic nonlinear optical crystal, X-ray Diffraction, UV-vis-NIR, Thermal study

  9. Quantum optical properties in plasmonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, C. H. Raymond [Department of Physics, University of Malaya, 50603, Kuala Lumpur (Malaysia)

    2015-04-24

    Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.

  10. Preparation and optical properties of gold-dispersed BaTiO3 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kineri, T; Mori, M [TDK Corp., Tokyo (Japan). R and D Center; Kadono, K; Sakaguchi, T; Miya, M; Wakabayashi, H [Osaka National Research Inst., Osaka (Japan); Tsuchiya, T [Science Univ. of Tokyo, Tokyo (Japan). Faculty of Industrial Science and Technology

    1993-12-01

    Recently, metal or semiconductor-doped glasses were widely studied because of their large resonant third-order nonlinearity. These glasses are utilized in an optical information field as all optical logic devices in the future. The gold-doped glass films or thin layers have a large third-order nonlinear susceptibility [chi] and are prepared by r.f. sputtering method, etc. The optical properties, particularly the refractive index or dielectric constant of the matrix, are very important for the optical nonlinearity of these materials. In this study, gold-dispersed BaTiO3 thin films and gold-dispersed SiO2 thin films are prepared using r.f. magnetron sputtering method, and the optical properties of the films are compared. The [chi] of the films are measured and the effect of the matrix of the films on [chi] is investigated. The headings in the paper are: Introduction, Experimental procedure, Results, Discussion, and Conclusion. 13 refs., 9 figs.

  11. Nonlinear Optical Fiber Arrays for Limiting Application

    National Research Council Canada - National Science Library

    Khoo, Iam-Choon

    2006-01-01

    .... Measurements show that they possess desirable nonlinear optical such as low-freezing pint, non-volatile, transparent for low light level and possess large effective nonlinear absorption coefficients...

  12. Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators.

    Science.gov (United States)

    Sun, Xuan; Liang, Hanxiao; Luo, Rui; Jiang, Wei C; Zhang, Xi-Cheng; Lin, Qiang

    2017-06-12

    Recent advance of lithium niobate microphotonic devices enables the exploration of intriguing nonlinear optical effects. We show complex nonlinear oscillation dynamics in high-Q lithium niobate microresonators that results from unique competition between the thermo-optic nonlinearity and the photorefractive effect, distinctive to other device systems and mechanisms ever reported. The observed phenomena are well described by our theory. This exploration helps understand the nonlinear optical behavior of high-Q lithium niobate microphotonic devices which would be crucial for future application of on-chip nonlinear lithium niobate photonics.

  13. Optical properties of multicomponent antimony-silver nanoclusters formed in silica by sequential ion implantation

    International Nuclear Information System (INIS)

    Zuhr, R.A.

    1995-11-01

    The linear and nonlinear optical properties of nanometer dimension metal colloids embedded in a dielectric depend explicitly on the electronic structure of the metal nanoclusters. The ability to control the electronic structure of the nanoclusters may make it possible to tailor the optical properties for enhanced performance. By sequential implantation of different metal ion species multi-component nanoclusters can be formed with significantly different optical properties than single element metal nanoclusters. The authors report the formation of multi-component Sb/Ag nanoclusters in silica by sequential implantation of Sb and Ag. Samples were implanted with relative ratios of Sb to Ag of 1:1 and 3:1. A second set of samples was made by single element implantations of Ag and Sb at the same energies and doses used to make the sequentially implanted samples. All samples were characterized using RBS and both linear and nonlinear optical measurements. The presence of both ions significantly modifies the optical properties of the composites compared to the single element nanocluster glass composites. In the sequentially implanted samples the optical density is lower, and the strong surface plasmon resonance absorption observed in the Ag implanted samples is not present. At the same time the nonlinear response of the these samples is larger than for the samples implanted with Sb alone, suggesting that the addition of Ag can increase the nonlinear response of the Sb particles formed. The results are consistent with the formation of multi-component Sb/Ag colloids

  14. Analysis of Nonlinear Periodic and Aperiodic Media: Application to Optical Logic Gates

    Science.gov (United States)

    Yu, Yisheng

    This dissertation is about the analysis of nonlinear periodic and aperiodic media and their application to the design of intensity controlled all optical logic gates: AND, OR, and NOT. A coupled nonlinear differential equation that characterizes the electromagnetic wave propagation in a nonlinear periodic (and aperiodic) medium has been derived from the first principle. The equations are general enough that it reflects the effect of transverse modal fields and can be used to analyze both co-propagating and counter propagating waves. A numerical technique based on the finite differences method and absorbing boundary condition has been developed to solve the coupled differential equations here. The numerical method is simple and accurate. Unlike the method based on characteristics that has been reported in the literature, this method does not involve integration and step sizes of time and space coordinates are decoupled. The decoupling provides independent choice for time and space step sizes. The concept of "gap soliton" has also been re-examined. The dissertation consists of four manuscripts. Manuscript I reports on the design of all optical logic gates: AND, OR, and NOT based on the bistability property of nonlinear periodic and aperiodic waveguiding structures. The functioning of the logic gates has been shown by analysis. The numerical technique that has been developed to solve the nonlinear differential equations are addressed in manuscript II. The effect of transverse modal fields on the bistable property of nonlinear periodic medium is reported in manuscript III. The concept of "gap soliton" that are generated in a nonlinear periodic medium has been re-examined. The details on the finding of the re-examination are discussed in manuscript IV.

  15. Optical properties of mesoporous photonic crystals, filled with dielectrics, ferroelectrics and piezoelectrics

    Directory of Open Access Journals (Sweden)

    V. S. Gorelik

    2017-12-01

    Full Text Available At present, it is very important to create new types of mirrors, nonlinear light frequency transformers and optical filters with controlled optical properties. In this connection, it is of great interest to study photonic crystals. Their dielectric permittivity varies periodically in space with a period permitting Bragg diffraction of light. In this paper, we have investigated the optical properties of mesoporous three-dimensional (3D opal-type and one-dimensional (1D anodic alumina photonic crystals, filled with different dielectrics, ferroelectrics and piezoelectrics. We have compared the optical properties of initial mesoporous photonic crystals and filled with different substances. The possibility of mesoporous photonic crystals using selective narrow-band light filters in Raman scattering experiments and nonlinear mirrors has been analyzed. The electromagnetic field enhancing in the case of exciting light frequency close to the stop band edges has been established. The optical harmonics and subharmonics generation in mesoporous crystals, filled with ferroelectrics and piezoelectrics was proposed.

  16. Experimental Correlation between Nonlinear Optical and Magnetotransport Properties Observed in Au-Co Thin Films

    Directory of Open Access Journals (Sweden)

    Kaida Yang

    2016-01-01

    Full Text Available Magnetic materials where at least one dimension is in the nanometer scale typically exhibit different magnetic, magnetotransport, and magnetooptical properties compared to bulk materials. Composite magnetic thin films where the matrix composition, magnetic cluster size, and overall composite film thickness can be experimentally tailored via adequate processing or growth parameters offer a viable nanoscale platform to investigate possible correlations between nonlinear magnetooptical and magnetotransport properties, since both types of properties are sensitive to the local magnetization landscape. It has been shown that the local magnetization contrast affects the nonlinear magnetooptical properties as well as the magnetotransport properties in magnetic-metal/nonmagnetic metal multilayers; thus, nanocomposite films showcase another path to investigate possible correlations between these distinct properties which may prove useful for sensing applications.

  17. Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets.

    Science.gov (United States)

    Cesca, T; Calvelli, P; Battaglin, G; Mazzoldi, P; Mattei, G

    2012-02-13

    We report on the nonlinear optical properties of Au-Ag nanoplanets produced by ion implantation and irradiation in silica, experimentally investigated by means of the single beam z-scan technique. The measurements provided experimental evidence of the intense local-field enhancement effect theoretically demonstrated for these plasmonic nanosystems. In particular, this has a dramatic impact on their nonlinear absorption behavior and results in a tunable changeover from reverse saturable absorption to saturable absorption by slightly varying the pump intensity and in the possibility to activate and observe nonlinear phenomena of the electron dynamics otherwise unaccessible in the intensity range that can be employed to study these materials. Finally, for the nanoplanet configuration we found a dramatic decrease of the intensity-dependent absorption coefficient, which could be very promising for obtaining optical gain materials.

  18. A Photonic Basis for Deriving Nonlinear Optical Response

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2009-01-01

    Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as…

  19. Nonlinear localized modes in dipolar Bose-Einstein condensates in optical lattices

    International Nuclear Information System (INIS)

    Rojas-Rojas, S.; Vicencio, R. A.; Molina, M. I.; Abdullaev, F. Kh.

    2011-01-01

    Modulational instability and discrete matter wave solitons in dipolar BECs, loaded into a deep optical lattice, are investigated analytically and numerically. The process of modulational instability of nonlinear plane matter waves in a dipolar nonlinear lattice is studied and the regions of instability are established. The existence and stability of bulk discrete solitons are analyzed analytically and confirmed by numerical simulations. In marked contrast with the usual discrete nonlinear Schroedinger behavior (no dipolar interactions), we found a region where the two fundamental modes are simultaneously unstable, allowing enhanced mobility across the lattice for large norm values. To study the existence and properties of surface discrete solitons, an analysis of the dimer configuration is performed. The properties of symmetric and antisymmetric modes including stability diagrams and bifurcations are investigated in closed form. For the case of a bulk medium, properties of fundamental on-site and intersite localized modes are analyzed. On-site and intersite surface localized modes are studied, and we find that they do not exist when nonlocal interactions predominate with respect to local ones.

  20. Nonlinear optical properties of poly(methyl methacrylate) thin films doped with Bixa Orellana dye

    CSIR Research Space (South Africa)

    Zongo, S

    2015-06-01

    Full Text Available Natural dyes with highly delocalized p-electron systems are considered as promising organic materials for nonlinear optical applications. Among these dyes, Bixa Orellana dye with extended p-electron delocalization is one of the most attractive dyes...

  1. Synthesis of polymeric micro- and nanostructural materials for application in non-linear optics

    International Nuclear Information System (INIS)

    Kravets, Lyubov; Palistrant, Natalia; Bivol, Valerii; Robu, Stepan; Barba, Nikolai; Orelovitch, Oleg

    2007-01-01

    The present paper describes a new approach developed for the preparation of micro- and nanostructural materials on the basis of polymeric compositions used as a matrix in non-linear optics. This approach consists in filling the pores of poly(ethylene terephthalate) track membranes (PET TM) from polymeric compositions using an impregnation method. It is shown that depending on the concentration of polymeric compositions in the solution it is possible to form a variety of micro- and nanostructural materials (tubules and wires as well as composite membranes) with a wide spectrum of characteristics. The developed method of producing micro- and nanostructural materials provides a possible way for creating polymeric objects with non-linear optic properties which can be used to design electronic micro- and nanodevices and to obtain chemical and optical sensors

  2. Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots

    International Nuclear Information System (INIS)

    Vahdani, M.R.K.; Rezaei, G.

    2009-01-01

    Optical transitions in a Lens-Shaped Quantum Dot (LSD) are investigated in the presence of a hydrogenic impurity. The electronic wave functions are obtained analytically and the energy eigenvalues are calculated numerically. The density matrix formulation with the intersubband relaxation are used to evaluate the (linear and third order nonlinear) absorption coefficient (AC) and the change in the refractive indices (RI) analytically. The effect of the size of the LSD and optical intensity on the AC and RI are investigated. It is found that AC and RI are strongly affected by the optical intensity and the size of the LSD.

  3. Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Vahdani, M.R.K. [Department of Physics, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Rezaei, G., E-mail: grezaei@mail.yu.ac.i [Department of Physics, College of Sciences, Yasouj University, Yasouj 75914 (Iran, Islamic Republic of)

    2009-08-17

    Optical transitions in a Lens-Shaped Quantum Dot (LSD) are investigated in the presence of a hydrogenic impurity. The electronic wave functions are obtained analytically and the energy eigenvalues are calculated numerically. The density matrix formulation with the intersubband relaxation are used to evaluate the (linear and third order nonlinear) absorption coefficient (AC) and the change in the refractive indices (RI) analytically. The effect of the size of the LSD and optical intensity on the AC and RI are investigated. It is found that AC and RI are strongly affected by the optical intensity and the size of the LSD.

  4. High-order optical nonlinearities in nanocomposite films dispersed with semiconductor quantum dots at high concentrations

    International Nuclear Information System (INIS)

    Tomita, Yasuo; Matsushima, Shun-suke; Yamagami, Ryu-ichi; Jinzenji, Taka-aki; Sakuma, Shohei; Liu, Xiangming; Izuishi, Takuya; Shen, Qing

    2017-01-01

    We describe the nonlinear optical properties of inorganic-organic nanocomposite films in which semiconductor CdSe quantum dots as high as 6.8 vol.% are dispersed. Open/closed Z-scan measurements, degenerate multi-wave mixing and femtosecond pump-probe/transient grating measurements are conducted. It is shown that the observed fifth-order optical nonlinearity has the cascaded third-order contribution that becomes prominent at high concentrations of CdSe QDs. It is also shown that there are picosecond-scale intensity-dependent and nanosecond-scale intensity-independent decay components in absorptive and refractive nonlinearities. The former is caused by the Auger process, while the latter comes from the electron-hole recombination process. (paper)

  5. OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Grant, C D; Zhang, J Z

    2007-09-28

    This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

  6. Nonlinear optical properties of ultrathin metal layers

    DEFF Research Database (Denmark)

    Lysenko, Oleg

    2016-01-01

    This thesis presents experimental and theoretical studies of nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The strip plasmonic waveguides are fabricated in house, and contain a gold layer, adhesion layers, and silicon dioxide cladding. The opt......This thesis presents experimental and theoretical studies of nonlinear propagation of ultrashort long-range surface plasmon polaritons in gold strip waveguides. The strip plasmonic waveguides are fabricated in house, and contain a gold layer, adhesion layers, and silicon dioxide cladding......-order nonlinear susceptibility of the plasmonic mode in the gold strip waveguides significantly depends on the metal layer thickness and laser pulse duration. This dependence is explained in detail in terms of the free-electron temporal dynamics in gold. The third-order nonlinear susceptibility of the gold layer...

  7. Ageing of the nonlinear optical susceptibility in soft matter

    International Nuclear Information System (INIS)

    Ghofraniha, N; Conti, C; Leonardo, R Di; Ruzicka, B; Ruocco, G

    2007-01-01

    We investigate the nonlinear optics response of a colloidal dispersion undergoing dynamics slowing down with age, by using Z-scan and dynamic light scattering measurements. We study the high optical nonlinearity of an organic dye (rhodamine B) dispersed in a water-clay (laponite) suspension. We consider different clay concentrations (2.0-2.6 wt%) experiencing dynamics arrest. We find that (i) the concentration dependent exponential growth of both mean relaxation time and nonlinear absorption coefficient can be individually scaled to a master curve and (ii) the scaling times are the same for the two physical quantities. These findings indicate that the optical nonlinear susceptibility exhibits the same ageing universal scaling behaviour, typical of disordered out of equilibrium systems

  8. Structural, linear and nonlinear optical properties of co-doped ZnO thin films

    Science.gov (United States)

    Shaaban, E. R.; El-Hagary, M.; Moustafa, El Sayed; Hassan, H. Shokry; Ismail, Yasser A. M.; Emam-Ismail, M.; Ali, A. S.

    2016-01-01

    Different compositions of Co-doped zinc oxide [(Zn(1- x)Co x O) ( x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10)] thin films were evaporated onto highly clean glass substrates by thermal evaporation technique using a modified source. The structural properties investigated by X-ray diffraction revealed hexagonal wurtzite ZnO-type structure. The crystallite size of the films was found to decrease with increasing Co content. The optical characterization of the films has been carried out using spectral transmittance and reflectance obtained in the wavelength range from 300 to 2500 nm. The refractive index has been found to increase with increasing Co content. It was further found that optical energy gap decreases from 3.28 to 3.03 eV with increasing Co content from x = 0 to x = 0.10, respectively. The dispersion of refractive index has been analyzed in terms of Wemple-DiDomenico (WDD) single-oscillator model. The oscillator parameters, the single-oscillator energy ( E o), the dispersion energy ( E d), and the static refractive index ( n 0), were determined. The nonlinear refractive index of the Zn(1- x)Co x O thin films was calculated and revealed well correlation with the linear refractive index and WDD parameters which in turn depend on the density and molar volume of the system.

  9. Fe induced optical limiting properties of Zn1-xFexS nanospheres

    Science.gov (United States)

    Vineeshkumar, T. V.; Raj, D. Rithesh; Prasanth, S.; Unnikrishnan, N. V.; Mahadevan Pillai, V. P.; Sudarasanakumar, C.

    2018-02-01

    Zn1-xFexS (x = 0.00, 0.01, 0.03, 0.05) nanospheres were synthesized by polyethylene glycol assisted hydrothermal method. XRD studies revealed that samples of all concentrations exhibited cubic structure with crystallite grain size 7-9 nm. TEM and SEM show the formation of nanospheres by dense aggregation of smaller particles. Increasing Zn/Fe ratio tune the band gap from 3.4 to 3.2 eV and also quenches the green luminescence. FTIR spectra reveal the presence of capping agent, intensity variation and shifting of LO and TO phonon modes confirm the presence of Fe ions. Nonlinear optical properties were measured using open and closed aperture z-scan techniques, employing frequency doubled 532 nm pumping sources which indicated reverse saturable absorption (RSA) process. The nonlinear optical coefficients are obtained by two photon absorption (2PA). Composition dependent nonlinear optical coefficients ;β;, nonlinear refractive index, third order susceptibility and optical limiting threshold were estimated. The sample shows good nonlinear absorption and enhancement of optical limiting behavior with increasing Fe volume fraction. Contribution of RSA on optical nonlinearity of Zn1-xFexS nanospheres are also investigated using three different input energies. Zn1-xFexS with comparatively small limiting threshold value is a promising candidate for optical power limiting applications.

  10. Nonlinear fibre optics overview

    DEFF Research Database (Denmark)

    Travers, J. C.; Frosz, Michael Henoch; Dudley, J. M.

    2010-01-01

    The optical fiber based supercontinuum source has recently become a significant scientific and commercial success, with applications ranging from frequency comb production to advanced medical imaging. This one-of-a-kind book explains the theory of fiber supercontinuum broadening, describes......, provides a background to the associated nonlinear optical processes, treats the generation mechanisms from continuous wave to femtosecond pulse pump regimes and highlights the diverse applications. A full discussion of numerical methods and comprehensive computer code are also provided, enabling readers...

  11. Investigation on nonlinear optical properties of MoS2 nanoflake, grown on silicon and quartz substrates

    Science.gov (United States)

    Bayesteh, S.; Mortazavi, S. Z.; Reyhani, A.

    2018-03-01

    In this study, MoS2 was directly synthesized by one-step thermal chemical vapour deposition (TCVD), on different substrates including Si/SiO2 and quartz, using MoO3 and sulfide powders as precursor. The XRD patterns demonstrate the high crystallinity of MoS2 on Si/SiO2 and quartz substrates. SEM confirmed the formation of MoS2 grown on both substrates. According to line width and frequency difference between the E1 2g and A1g in Raman spectroscopy, it is inferred that the MoS2 grown on Si/SiO2 substrate is monolayer and the MoS2 grown on quartz substrate is multilayer. Moreover, by assessment of MoS2 nanoflake band gap via UV-visible analysis, it verified the formation of few layer structures. In addition, the open-aperture and close-aperture Z-scan techniques were employed to study the nonlinear optical properties including nonlinear absorption and nonlinear refraction of the synthesized MoS2. All experiments were performed using a diode laser with a wavelength of 532 nm as light source. The monolayer MoS2 synthesized on Si/SiO2, display considerable two-photon absorption. However, the multilayer MoS2 synthesized on quartz displayed saturable absorption (SA). It is noticeable that both samples demonstrate obvious self-defocusing behaviour.

  12. Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance

    Science.gov (United States)

    Wang, Aijian; Yu, Wang; Huang, Zhipeng; Zhou, Feng; Song, Jingbao; Song, Yinglin; Long, Lingliang; Cifuentes, Marie P.; Humphrey, Mark G.; Zhang, Long; Shao, Jianda; Zhang, Chi

    2016-03-01

    Reduced graphene oxide (RGO)-porphyrin (TPP) nanohybrids (RGO-TPP 1 and RGO-TPP 2) were prepared by two synthetic routes that involve functionalization of the RGO using diazonium salts. The microscopic structures, morphology, photophysical properties and nonlinear optical performance of the resultant RGO-TPP nanohybrids were investigated. The covalent bonding of the porphyrin-functionalized-RGO nanohybrid materials was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and thermogravimetric analysis. Attachment of the porphyrin units to the surface of the RGO by diazotization significantly improves the solubility and ease of processing of these RGO-based nanohybrid materials. Ultraviolet/visible absorption and steady-state fluorescence studies indicate considerable π-π interactions and effective photo-induced electron and/or energy transfer between the porphyrin moieties and the extended π-system of RGO. The nonlinear optical properties of RGO-TPP 1 and RGO-TPP 2 were investigated by open-aperture Z-scan measurements at 532 nm with both 4 ns and 21 ps laser pulses, the results showing that the chemical nanohybrids exhibit improved nonlinear optical properties compared to those of the benchmark material C60, and the constituent RGO or porphyrins.

  13. Renormgroup symmetries in problems of nonlinear geometrical optics

    International Nuclear Information System (INIS)

    Kovalev, V.F.

    1996-01-01

    Utilization and further development of the previously announced approach [1,2] enables one to construct renormgroup symmetries for a boundary value problem for the system of equations which describes propagation of a powerful radiation in a nonlinear medium in geometrical optics approximation. With the help of renormgroup symmetries new rigorous and approximate analytical solutions of nonlinear geometrical optics equations are obtained. Explicit analytical expressions are presented that characterize spatial evolution of laser beam which has an arbitrary intensity dependence at the boundary of the nonlinear medium. (author)

  14. Crystal growth, structural, optical, thermal, mechanical, laser damage threshold and electrical properties of triphenylphosphine oxide 4-nitrophenol (TP4N) single crystals for nonlinear optical applications

    Science.gov (United States)

    Karuppasamy, P.; Senthil Pandian, Muthu; Ramasamy, P.; Verma, Sunil

    2018-05-01

    , Lorentz-Lorentz equation, optical band gap and coupled dipole method (CDM). The Z-scan technique was carried out using solid state laser (640 nm) to analyze the nonlinear optical properties of the TP4N crystal. It exhibits the self-defocusing and saturable absorbance effect during analysis of closed and open aperture respectively. The nonlinear optical parameters such as refractive index (n2), absorption coefficient (β) and the third order nonlinear optical susceptibility (χ(3)) were analyzed.

  15. Unidirectional transmission in 1D nonlinear photonic crystal based on topological phase reversal by optical nonlinearity

    OpenAIRE

    Chong Li; Xiaoyong Hu; Hong Yang; Qihuang Gong

    2017-01-01

    We propose a scheme of unidirectional transmission in a 1D nonlinear topological photonic crystal based on the topological edge state and three order optical nonlinearity. The 1D photonic crystals consists of a nonlinear photonic crystal L and a linear photonic crystal R. In the backward direction, light is totally reflected for the photons transmission prohibited by the bandgap. While in the forward direction, light interacts with the nonlinear photonic crystal L by optical Kerr effect, brin...

  16. Harnessing mode-selective nonlinear optics for on-chip multi-channel all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Ming Ma

    2016-11-01

    Full Text Available All-optical signal processing based on nonlinear optical effects allows for the realization of important functions in telecommunications including wavelength conversion, optical multiplexing/demultiplexing, Fourier transformation, and regeneration, amongst others, on ultrafast time scales to support high data rate transmission. In integrated photonic subsystems, the majority of all-optical signal processing systems demonstrated to date typically process only a single channel at a time or perform a single processing function, which imposes a serious limitation on the functionality of integrated solutions. Here, we demonstrate how nonlinear optical effects can be harnessed in a mode-selective manner to perform simultaneous multi-channel (two and multi-functional optical signal processing (i.e., regenerative wavelength conversion in an integrated silicon photonic device. This approach, which can be scaled to a higher number of channels, opens up a new degree of freedom for performing a broad range of multi-channel nonlinear optical signal processing functions using a single integrated photonic device.

  17. Ultra-Fast Optical Signal Processing in Nonlinear Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Pu, Minhao

    2011-01-01

    We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals.......We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals....

  18. The nonlinear Schrödinger equation singular solutions and optical collapse

    CERN Document Server

    Fibich, Gadi

    2015-01-01

    This book is an interdisciplinary introduction to optical collapse of laser beams, which is modelled by singular (blow-up) solutions of the nonlinear Schrödinger equation. With great care and detail, it develops the subject including the mathematical and physical background and the history of the subject. It combines rigorous analysis, asymptotic analysis, informal arguments, numerical simulations, physical modelling, and physical experiments. It repeatedly emphasizes the relations between these approaches, and the intuition behind the results. The Nonlinear Schrödinger Equation will be useful to graduate students and researchers in applied mathematics who are interested in singular solutions of partial differential equations, nonlinear optics and nonlinear waves, and to graduate students and researchers in physics and engineering who are interested in nonlinear optics and Bose-Einstein condensates. It can be used for courses on partial differential equations, nonlinear waves, and nonlinear optics. Gadi Fib...

  19. Nonlinear optical characterization of phosphate glasses based on ZnO using the Z-scan technique

    International Nuclear Information System (INIS)

    Mojdehi Masoumeh Shokati; Yunus Wan Mahmood Mat; Talib Zainal Abidin; Tamchek, N.; Fhan Khor Shing

    2013-01-01

    The nonlinear optical properties of a phosphate vitreous system [(ZnO) x − (MgO) 30−x − (P 2 O 5 ) 70 ], where x = 8, 10, 15, 18, and 20 mol% synthesized through the melt-quenching technique have been investigated by using the Z-scan technique. In the experiment, a continuous-wave laser with a wavelength of 405 nm was utilized to determine the sign and value of the nonlinear refractive (NLR) index and the absorption coefficient with closed and opened apertures of the Z-scan setup. The NLR index was found to increase with the ZnO concentration in the glass samples by an order of 10 −10 cm 2 ·W −1 . The real and imaginary parts of the third-order nonlinear susceptibility were calculated by referring to the NLR index (n 2 ) and absorption coefficient (β) of the samples. The value of the third-order nonlinear susceptibility was presented by nonlinear refractive or absorptive behavior of phosphate glasses for proper utilization in nonlinear optical devices. Based on the measurement, the positive sign of the NLR index shows a self-focusing phenomenon. The figures of merit for each sample were calculated to judge the potential of phosphate glasses for application in optical switching

  20. Nonlinear soliton matching between optical fibers

    DEFF Research Database (Denmark)

    Agger, Christian; Sørensen, Simon Toft; Thomsen, Carsten L.

    2011-01-01

    In this Letter, we propose a generic nonlinear coupling coefficient, η2 NL ¼ ηjγ=β2jfiber2=jγ=β2jfiber1, which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use η...

  1. Nonlinear photonic metasurfaces

    Science.gov (United States)

    Li, Guixin; Zhang, Shuang; Zentgraf, Thomas

    2017-03-01

    Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the 'meta-atoms'), enable the manipulation of light-matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing.

  2. Hofstadter butterflies in nonlinear Harper lattices, and their optical realizations

    International Nuclear Information System (INIS)

    Manela, Ofer; Segev, Mordechai; Christodoulides, Demetrios N; Kip, Detlef

    2010-01-01

    The ubiquitous Hofstadter butterfly describes a variety of systems characterized by incommensurable periodicities, ranging from Bloch electrons in magnetic fields and the quantum Hall effect to cold atoms in optical lattices and more. Here, we introduce nonlinearity into the underlying (Harper) model and study the nonlinear spectra and the corresponding extended eigenmodes of nonlinear quasiperiodic systems. We show that the spectra of the nonlinear eigenmodes form deformed versions of the Hofstadter butterfly and demonstrate that the modes can be classified into two families: nonlinear modes that are a 'continuation' of the linear modes of the system and new nonlinear modes that have no counterparts in the linear spectrum. Finally, we propose an optical realization of the linear and nonlinear Harper models in transversely modulated waveguide arrays, where these Hofstadter butterflies can be observed. This work is relevant to a variety of other branches of physics beyond optics, such as disorder-induced localization in ultracold bosonic gases, localization transition processes in disordered lattices, and more.

  3. Hofstadter butterflies in nonlinear Harper lattices, and their optical realizations

    Energy Technology Data Exchange (ETDEWEB)

    Manela, Ofer; Segev, Mordechai [Department of Physics and Solid State Institute, Technion, Haifa 32000 (Israel); Christodoulides, Demetrios N [College of Optics/CREOL, University of Central Florida, FL 32816-2700 (United States); Kip, Detlef, E-mail: msegev@tx.technion.ac.i [Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg (Germany)

    2010-05-15

    The ubiquitous Hofstadter butterfly describes a variety of systems characterized by incommensurable periodicities, ranging from Bloch electrons in magnetic fields and the quantum Hall effect to cold atoms in optical lattices and more. Here, we introduce nonlinearity into the underlying (Harper) model and study the nonlinear spectra and the corresponding extended eigenmodes of nonlinear quasiperiodic systems. We show that the spectra of the nonlinear eigenmodes form deformed versions of the Hofstadter butterfly and demonstrate that the modes can be classified into two families: nonlinear modes that are a 'continuation' of the linear modes of the system and new nonlinear modes that have no counterparts in the linear spectrum. Finally, we propose an optical realization of the linear and nonlinear Harper models in transversely modulated waveguide arrays, where these Hofstadter butterflies can be observed. This work is relevant to a variety of other branches of physics beyond optics, such as disorder-induced localization in ultracold bosonic gases, localization transition processes in disordered lattices, and more.

  4. A novel organic nonlinear optical crystal: Creatininium succinate

    Energy Technology Data Exchange (ETDEWEB)

    Thirumurugan, R.; Anitha, K., E-mail: singlecerystalxrd@gmail.ciom [School of Physics, Madurai Kamraj University, Madurai 625021 (India)

    2015-06-24

    A novel organic material complex of creatininium succinate (CS) has been synthesized and single crystals were grown by the reaction of creatinine and succinic acid from aqueous solution by employing the technique of slow evaporation at room temperature. The structure of the grown crystal has been elucidated using single crystal X-ray diffraction analysis and the structure was refined by least-squares method to R = 0.027 for 1840 reflections. FT-IR spectral investigation has been carried out to identify the various functional groups in the title compound. UV–Vis transmission was carried out which shows the crystal has a good optical transmittance in the visible region with lower cutoff wavelength around 220 nm. Nonlinear optical property of the crystal was confirmed by Kurtz-Perry powder technique.

  5. Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.

    2012-01-01

    We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber a...

  6. Exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres

    International Nuclear Information System (INIS)

    Liu Chunping

    2005-01-01

    First, by using the generally projective Riccati equation method, many kinds of exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres are obtained in a unified way. Then, some relations among these solutions are revealed

  7. Coherent Femtosecond Spectroscopy and Nonlinear Optical Imaging on the Nanoscale

    Science.gov (United States)

    Kravtsov, Vasily

    Optical properties of many materials and macroscopic systems are defined by ultrafast dynamics of electronic, vibrational, and spin excitations localized on the nanoscale. Harnessing these excitations for material engineering, optical computing, and control of chemical reactions has been a long-standing goal in science and technology. However, it is challenging due to the lack of spectroscopic techniques that can resolve processes simultaneously on the nanometer spatial and femtosecond temporal scales. This thesis describes the fundamental principles, implementation, and experimental demonstration of a novel type of ultrafast microscopy based on the concept of adiabatic plasmonic nanofocusing. Simultaneous spatio-temporal resolution on a nanometer-femtosecond scale is achieved by using a near-field nonlinear optical response induced by ultrafast surface plasmon polaritons nanofocused on a metal tip. First, we study the surface plasmon response in metallic structures and evaluate its prospects and limitations for ultrafast near-field microscopy. Through plasmon emission-based spectroscopy, we investigate dephasing times and interplay between radiative and non-radiative decay rates of localized plasmons and their modification due to coupling. We identify a new regime of quantum plasmonic coupling, which limits the achievable spatial resolution to several angstroms but at the same time provides a potential channel for generating ultrafast electron currents at optical frequencies. Next, we study propagation of femtosecond wavepackets of surface plasmon polaritons on a metal tip. In time-domain interferometric measurements we detect group delays that correspond to slowing of the plasmon polaritons down to 20% of the speed of light at the tip apex. This provides direct experimental verification of the plasmonic nanofocusing mechanism and suggests enhanced nonlinear optical interactions at the tip apex. We then measure a plasmon-generated third-order nonlinear optical

  8. Impressive nonlinear optical response exhibited by Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite films

    Science.gov (United States)

    Sabira, K.; Saheeda, P.; Divyasree, M. C.; Jayalekshmi, S.

    2017-12-01

    In the present work, the nonlinear optical properties of free-standing films of Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite are investigated to assess their suitability as efficient optical limiters. The PVDF/RGO nanocomposite films are generated by mixing different concentrations of RGO as the filler, with PVDF, using solution casting method. The XRD and FTIR data of these nanocomposite films confirm the enhancement in the β phase of PVDF when RGO is added to PVDF, which is one of the prime factors, enhancing the nonlinear response of the nanocomposite. The open aperture and closed aperture Z-scan technique under nanosecond excitation (532 nm, 7 ns) is used to investigate the nonlinear optical characteristics of the PVDF/RGO nanocomposite films. These films are found to exhibit two photon absorption assisted optical non linearity in the nanosecond regime. The highlight of the present work is the observation of quite low values of the normalized transmittance and low optical limiting threshold power in free standing films of PVDF/RGO nanocomposite. These flexible, free-standing and stable nanocomposite films offer high application prospects in the design of efficient optical limiting devices of any desired size or shape.

  9. Second-order nonlinear optical metamaterials: ABC-type nanolaminates

    International Nuclear Information System (INIS)

    Alloatti, L.; Kieninger, C.; Lauermann, M.; Köhnle, K.; Froelich, A.; Wegener, M.; Frenzel, T.; Freude, W.; Leuthold, J.; Koos, C.

    2015-01-01

    We demonstrate a concept for second-order nonlinear metamaterials that can be obtained from non-metallic centrosymmetric constituents with inherently low optical absorption. The concept is based on iterative atomic-layer deposition of three different materials, A = Al 2 O 3 , B = TiO 2 , and C = HfO 2 . The centrosymmetry of the resulting ABC stack is broken since the ABC and the inverted CBA sequences are not equivalent—a necessary condition for non-zero second-order nonlinearity. In our experiments, we find that the bulk second-order nonlinear susceptibility depends on the density of interfaces, leading to a nonlinear susceptibility of 0.26 pm/V at a wavelength of 800 nm. ABC-type nanolaminates can be deposited on virtually any substrate and offer a promising route towards engineering of second-order optical nonlinearities at both infrared and visible wavelengths

  10. Synthesis, growth, and structural, optical, mechanical, electrical properties of a new inorganic nonlinear optical crystal: Sodium manganese tetrachloride (SMTC

    Directory of Open Access Journals (Sweden)

    M. Packiya raj

    2017-01-01

    Full Text Available A new inorganic nonlinear optical single crystal of sodium manganese tetrachloride (SMTC has been successfully grown from aqueous solution using the slow evaporation technique at room temperature. The crystals obtained using the aforementioned method were characterized using different techniques. The crystalline nature of the as-grown crystal of SMTC was analyzed using powder X-ray diffraction. Single-crystal X-ray diffraction revealed that the crystal belongs to an orthorhombic system with non-centrosymmetric space group Pbam. The optical transmission study of the SMTC crystal revealed high transmittance in the entire UV–vis region, and the lower cut-off wavelength was determined to be 240 nm. The mechanical strength of the as-grown crystal was estimated using the Vickers microhardness test. The second harmonic generation (SHG efficiency of the crystal was measured using Kurtz's powder technique, which indicated that the crystal has a nonlinear optical (NLO efficiency that is 1.32 times greater than that of KDP. The dielectric constant and dielectric loss of the compound were measured at different temperatures with varying frequencies. The photoconductivity study confirmed that the title compound possesses a negative photoconducting nature. The growth mechanism and surface features of the as-grown crystals were investigated using chemical etching analysis.

  11. Optical nonlinearities in Ag/BaTiO{sub 3} multi-layer nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Yang Guang [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)], E-mail: gyang@hust.edu.cn; Zhou Youhua [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Long Hua; Li Yuhua; Yang Yifa [Wuhan National Laboratory for Optoelectronics and School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2007-07-31

    The multi-layer structure of barium titanate composite thin films containing Ag nanoparticles were grown on MgO (100) substrates using pulsed laser deposition technique under the nitrogen pressure of 7.4 Pa. The X-ray photoelectron spectroscopy analysis indicated that the samples were composed of metal Ag embedded in the BaTiO{sub 3} matrices. The optical absorption properties were measured from 300 nm to 800 nm, and the absorption peaks due to the surface plasmon resonance of Ag particles were observed. With the increasing of Ag concentration in composite films, the peak absorption increased and shifted to longer wavelength (red-shift). Furthermore, the third-order optical nonlinearities of the films were determined by z-scan method and the nonlinear refractive index, n{sub 2}, and nonlinear absorption coefficient, {beta}, were determined to be about - 1.91 x 10{sup -13} m{sup 2}/W and - 5.80 x 10{sup -7} m/W, respectively.

  12. Growth and spectroscopic, thermodynamic and nonlinear optical studies of L-threonine phthalate crystal

    Science.gov (United States)

    Theras, J. Elberin Mary; Kalaivani, D.; Jayaraman, D.; Joseph, V.

    2015-10-01

    L-threonine phthalate (LTP) single crystal has been grown using a solution growth technique at room temperature. Single crystal X-ray diffraction analysis reveals that LTP crystallizes in monoclinic crystal system with space group C2/c. The optical absorption studies show that the crystal is transparent in the entire visible region with a cut-off wavelength 309 nm. The optical band gap is found to be 4.05 eV. The functional groups of the synthesized compound have been identified by FTIR spectral analysis. The functional groups present in the material were also confirmed by FT-RAMAN spectroscopy. Surface morphology and the presence of various elements were studied by SEM-EDAX analysis. The thermal stability of LTP single crystal has been analyzed by TGA/DTA studies. The thermodynamic parameters such as activation energy, entropy, enthalpy and Gibbs free energy were determined for the grown material using TG data and Coats-Redfern relation. Since the grown crystal is centrosymmetric, Z-Scan studies were carried out for analyzing the third order nonlinear optical property. The nonlinear absorption coefficient, nonlinear refractive index and susceptibility have been measured using Z-Scan technique.

  13. Optical properties of new 5-(4-phenylethynyl)-substituted-1,10-phenanthroline derivatives

    International Nuclear Information System (INIS)

    Guerin, Juliette; Aronica, Christophe; Boeuf, Gaelle; Chauvin, Jerome; Moreau, Juliette; Lemercier, Gilles

    2011-01-01

    The synthesis and optical properties of a novel family of 5-substituted-1,10-phenanthroline derivatives are reported herein. One carbon-carbon triple-bond function was introduced using a Sonogashira cross-coupling reaction. The effects on optical properties, of the substitution with electro-withdrawing or -donating substituents in the 5th position of the 1,10-phenanthroline are investigated. Experimental chemical structure-polarisability relationship is analyzed according to the Lippert-Mataga correlation and compared to a theoretical study carried out with DFT calculations. These compounds are promising candidates for a fine-tuning of the internal charge-transfers but also as potential nonlinear chromophores and ligands within multifunctional coordination complexes. - Highlights: → Synthesis and optical properties of new 5-substituted-1,10-phenanthroline derivatives. → Sonogashira reaction was used for the substitution. → Structure-polarisability relationship analyzed according to Lippert-Mataga correlation. → Theoretical study was carried out with DFT calculations. → Fine-tuning of the internal charge-transfers within nonlinear compounds.

  14. Performance emulation and parameter estimation for nonlinear fibre-optic links

    DEFF Research Database (Denmark)

    Piels, Molly; Porto da Silva, Edson; Zibar, Darko

    2016-01-01

    Fibre-optic communication systems, especially when operating in the nonlinear regime, generally do not perform exactly as theory would predict. A number of methods for data-based evaluation of nonlinear fibre-optic link parameters, both for accurate performance emulation and optimization...

  15. Synthesis, characterization, and nonlinear optical properties of graphene oxide functionalized with tetra-amino porphyrin

    Science.gov (United States)

    Yamuna, R.; Ramakrishnan, S.; Dhara, Keerthy; Devi, R.; Kothurkar, Nikhil K.; Kirubha, E.; Palanisamy, P. K.

    2013-01-01

    The synthesis of a porphyrin-graphene oxide hybrid (GO-TAP) was carried out by covalently functionalizing graphene oxide (GO) with 5,10,15,20 mesotetra (4-aminophenyl) porphyrin (TAP) through an amide linkage. The GO-TAP hybrid has been characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-visible spectroscopy. The peak intensity of the Soret band of the material was suppressed compared to neat TAP. This indicates a strong interaction between the electronic energy level of TAP and GO in the GO-TAP hybrid. The functionalization of GO with TAP significantly improved its solubility and dispersion stability in organic solvents. Scanning electron micrographs reveal that the hybrid was found to be similar to the unmodified GO but slightly more wrinkled. Transmission electron micrographs also demonstrate that GO sheet in the hybrid is more wrinkled with some dark spot due to functionalization. Atomic force microscopy results also reveal that the TAP functionalization increases the thickness of GO sheet to 2.0-3.0 nm from 1.2 to 1.8 nm. We observed improved nonlinear optical and optical limiting properties for the hybrid compared to both graphene oxide and porphyrin. GO-TAP shows fluorescence quenching compared with porphyrin, indicating excellent electron and/or energy transfer to GO from TAP. Thermogravimetric analysis confirms that the GO-TAP hybrid has outstanding thermal stability.

  16. Synthesis, characterization, and nonlinear optical properties of graphene oxide functionalized with tetra-amino porphyrin

    International Nuclear Information System (INIS)

    Yamuna, R.; Ramakrishnan, S.; Dhara, Keerthy; Devi, R.; Kothurkar, Nikhil K.; Kirubha, E.; Palanisamy, P. K.

    2013-01-01

    The synthesis of a porphyrin–graphene oxide hybrid (GO–TAP) was carried out by covalently functionalizing graphene oxide (GO) with 5,10,15,20 mesotetra (4-aminophenyl) porphyrin (TAP) through an amide linkage. The GO–TAP hybrid has been characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV–visible spectroscopy. The peak intensity of the Soret band of the material was suppressed compared to neat TAP. This indicates a strong interaction between the electronic energy level of TAP and GO in the GO–TAP hybrid. The functionalization of GO with TAP significantly improved its solubility and dispersion stability in organic solvents. Scanning electron micrographs reveal that the hybrid was found to be similar to the unmodified GO but slightly more wrinkled. Transmission electron micrographs also demonstrate that GO sheet in the hybrid is more wrinkled with some dark spot due to functionalization. Atomic force microscopy results also reveal that the TAP functionalization increases the thickness of GO sheet to 2.0–3.0 nm from 1.2 to 1.8 nm. We observed improved nonlinear optical and optical limiting properties for the hybrid compared to both graphene oxide and porphyrin. GO–TAP shows fluorescence quenching compared with porphyrin, indicating excellent electron and/or energy transfer to GO from TAP. Thermogravimetric analysis confirms that the GO–TAP hybrid has outstanding thermal stability.

  17. Variable-coefficient higher-order nonlinear Schroedinger model in optical fibers: Variable-coefficient bilinear form, Baecklund transformation, brightons and symbolic computation

    International Nuclear Information System (INIS)

    Tian Bo; Gao Yitian; Zhu Hongwu

    2007-01-01

    Symbolically investigated in this Letter is a variable-coefficient higher-order nonlinear Schroedinger (vcHNLS) model for ultrafast signal-routing, fiber laser systems and optical communication systems with distributed dispersion and nonlinearity management. Of physical and optical interests, with bilinear method extend, the vcHNLS model is transformed into a variable-coefficient bilinear form, and then an auto-Baecklund transformation is constructed. Constraints on coefficient functions are analyzed. Potentially observable with future optical-fiber experiments, variable-coefficient brightons are illustrated. Relevant properties and features are discussed as well. Baecklund transformation and other results of this Letter will be of certain value to the studies on inhomogeneous fiber media, core of dispersion-managed brightons, fiber amplifiers, laser systems and optical communication links with distributed dispersion and nonlinearity management

  18. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator\\'s metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  19. A nonlinear plasmonic resonator for three-state all-optical switching

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2014-01-01

    A nonlinear plasmonic resonator design is proposed for three-state all-optical switching at frequencies including near infrared and lower red parts of the spectrum. The tri-stable response required for three-state operation is obtained by enhancing nonlinearities of a Kerr medium through multiple (higher order) plasmons excited on resonator's metallic surfaces. Indeed, simulations demonstrate that exploitation of multiple plasmons equips the proposed resonator with a multi-band tri-stable response, which cannot be obtained using existing nonlinear plasmonic devices that make use of single mode Lorentzian resonances. Multi-band three-state optical switching that can be realized using the proposed resonator has potential applications in optical communications and computing. © 2014 Optical Society of America.

  20. A novel method to produce nonlinear empirical physical formulas for experimental nonlinear electro-optical responses of doped nematic liquid crystals: Feedforward neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Yildiz, Nihat, E-mail: nyildiz@cumhuriyet.edu.t [Cumhuriyet University, Faculty of Science and Literature, Department of Physics, 58140 Sivas (Turkey); San, Sait Eren; Okutan, Mustafa [Department of Physics, Gebze Institute of Technology, P.O. Box 141, Gebze 41400, Kocaeli (Turkey); Kaya, Hueseyin [Cumhuriyet University, Faculty of Science and Literature, Department of Physics, 58140 Sivas (Turkey)

    2010-04-15

    Among other significant obstacles, inherent nonlinearity in experimental physical response data poses severe difficulty in empirical physical formula (EPF) construction. In this paper, we applied a novel method (namely layered feedforward neural network (LFNN) approach) to produce explicit nonlinear EPFs for experimental nonlinear electro-optical responses of doped nematic liquid crystals (NLCs). Our motivation was that, as we showed in a previous theoretical work, an appropriate LFNN, due to its exceptional nonlinear function approximation capabilities, is highly relevant to EPF construction. Therefore, in this paper, we obtained excellently produced LFNN approximation functions as our desired EPFs for above-mentioned highly nonlinear response data of NLCs. In other words, by using suitable LFNNs, we successfully fitted the experimentally measured response and predicted the new (yet-to-be measured) response data. The experimental data (response versus input) were diffraction and dielectric properties versus bias voltage; and they were all taken from our previous experimental work. We conclude that in general, LFNN can be applied to construct various types of EPFs for the corresponding various nonlinear physical perturbation (thermal, electronic, molecular, electric, optical, etc.) data of doped NLCs.

  1. A novel method to produce nonlinear empirical physical formulas for experimental nonlinear electro-optical responses of doped nematic liquid crystals: Feedforward neural network approach

    International Nuclear Information System (INIS)

    Yildiz, Nihat; San, Sait Eren; Okutan, Mustafa; Kaya, Hueseyin

    2010-01-01

    Among other significant obstacles, inherent nonlinearity in experimental physical response data poses severe difficulty in empirical physical formula (EPF) construction. In this paper, we applied a novel method (namely layered feedforward neural network (LFNN) approach) to produce explicit nonlinear EPFs for experimental nonlinear electro-optical responses of doped nematic liquid crystals (NLCs). Our motivation was that, as we showed in a previous theoretical work, an appropriate LFNN, due to its exceptional nonlinear function approximation capabilities, is highly relevant to EPF construction. Therefore, in this paper, we obtained excellently produced LFNN approximation functions as our desired EPFs for above-mentioned highly nonlinear response data of NLCs. In other words, by using suitable LFNNs, we successfully fitted the experimentally measured response and predicted the new (yet-to-be measured) response data. The experimental data (response versus input) were diffraction and dielectric properties versus bias voltage; and they were all taken from our previous experimental work. We conclude that in general, LFNN can be applied to construct various types of EPFs for the corresponding various nonlinear physical perturbation (thermal, electronic, molecular, electric, optical, etc.) data of doped NLCs.

  2. Photoluminescence and nonlinear optical phenomena in plasmonic random media—A review of recent works

    International Nuclear Information System (INIS)

    Araújo, Cid B. de; Kassab, Luciana R.P.; Tolentino Dominguez, C.; Ribeiro, Sidney J.L.; Gomes, Anderson S.L.; Reyna, Albert S.

    2016-01-01

    Photoluminescence properties and nonlinear optical response of metal–dielectric nanocomposites (MDNCs)—germanate glasses, bio-cellulose membranes and colloids containing either silver (Ag) or gold (Au) nanoparticles (NPs)—are reviewed. The phenomena discussed are: i. the photoluminescence enhancement observed from rare-earth doped PbO–GeO 2 glass containing Ag NPs; ii. optical amplification at 1530 nm in RIB waveguides made with PbO–GeO 2 thin films covered with Au NPs; iii. Random Laser emission from a bio-cellulose membrane infiltrated with Rhodamine 6G and containing Ag NPs; iv. the nonlinearity management of high-order processes in colloids containing Ag NPs suspended in acetone. In all discussed cases the influence of the metallic NPs is clearly demonstrated and a procedure to control the nonlinear propagation of light beams in heterogeneous media is presented. - Highlights: • Large photoluminescence enhancement observed from rare-earth doped PbO–GeO 2 glass containing Ag NPs. • Optical amplification at 1530 nm in RIB waveguides made with PbO–GeO 2 thin films covered with Au NPs. • Random Laser emission from a bio-cellulose membrane infiltrated with Rhodamine 6G and containing Ag NPs. • The nonlinearity management of high-order processes in liquid colloids containing Ag NPs.

  3. Photoluminescence and nonlinear optical phenomena in plasmonic random media—A review of recent works

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, Cid B. de, E-mail: cid@df.ufpe.br [Departamento de Física , Universidade Federal de Pernambuco, 50670-901 Recife , PE (Brazil); Kassab, Luciana R.P. [Faculdade de Tecnologia de São Paulo (FATEC-SP , CEETEPS), 01124-060 São Paulo , SP (Brazil); Tolentino Dominguez, C. [Laboratório de Óptica Biomédica e Imagem , Universidade Federal de Pernambuco , Recife 50740-530, PE (Brazil); Ribeiro, Sidney J.L. [Institute of Chemistry , São Paulo State University (UNESP), 14801-970 Araraquara , SP (Brazil); Gomes, Anderson S.L.; Reyna, Albert S. [Departamento de Física , Universidade Federal de Pernambuco, 50670-901 Recife , PE (Brazil)

    2016-01-15

    Photoluminescence properties and nonlinear optical response of metal–dielectric nanocomposites (MDNCs)—germanate glasses, bio-cellulose membranes and colloids containing either silver (Ag) or gold (Au) nanoparticles (NPs)—are reviewed. The phenomena discussed are: i. the photoluminescence enhancement observed from rare-earth doped PbO–GeO{sub 2} glass containing Ag NPs; ii. optical amplification at 1530 nm in RIB waveguides made with PbO–GeO{sub 2} thin films covered with Au NPs; iii. Random Laser emission from a bio-cellulose membrane infiltrated with Rhodamine 6G and containing Ag NPs; iv. the nonlinearity management of high-order processes in colloids containing Ag NPs suspended in acetone. In all discussed cases the influence of the metallic NPs is clearly demonstrated and a procedure to control the nonlinear propagation of light beams in heterogeneous media is presented. - Highlights: • Large photoluminescence enhancement observed from rare-earth doped PbO–GeO{sub 2} glass containing Ag NPs. • Optical amplification at 1530 nm in RIB waveguides made with PbO–GeO{sub 2} thin films covered with Au NPs. • Random Laser emission from a bio-cellulose membrane infiltrated with Rhodamine 6G and containing Ag NPs. • The nonlinearity management of high-order processes in liquid colloids containing Ag NPs.

  4. Evaluation of polymer based third order nonlinear integrated optics devices

    NARCIS (Netherlands)

    Driessen, A.; Hoekstra, Hugo; Blom, F.C.; Horst, F.; Horst, F.; Krijnen, Gijsbertus J.M.; van Schoot, J.B.P.; van Schoot, J.B.P.; Lambeck, Paul; Popma, T.J.A.; Diemeer, Mart

    Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS

  5. EDITORIAL: Nonlinear optical manipulation, patterning and control in nano- and micro-scale systems Nonlinear optical manipulation, patterning and control in nano- and micro-scale systems

    Science.gov (United States)

    Denz, Cornelia; Simoni, Francesco

    2009-03-01

    Nonlinearities are becoming more and more important for a variety of applications in nanosciences, bio-medical sciences, information processing and photonics. For applications at the crossings of these fields, especially microscopic and nanoscopic imaging and manipulation, nonlinearities play a key role. They may range from simple nonlinear parameter changes up to applications in manipulating, controlling and structuring material by light, or the manipulation of light by light itself. It is this area between basic nonlinear optics and photonic applications that includes `hot' topics such as ultra-resolution optical microscopy, micro- and nanomanipulation and -structuring, or nanophotonics. This special issue contains contributions in this field, many of them from the International Conference on Nonlinear Microscopy and Optical Control held in conjunction with a network meeting of the ESF COST action MP0604 `Optical Micromanipulation by Nonlinear Nanophotonics', 19-22 February 2008, Münster, Germany. Throughout this special issue, basic investigations of material structuring by nonlinear light--matter interaction, light-induced control of nanoparticles, and novel nonlinear material investigation techniques, are presented, covering the basic field of optical manipulation and control. These papers are followed by impressive developments of optical tweezers. Nowadays, optical phase contrast tweezers, twin and especially multiple beam traps, develop particle control in a new dimension: particles can be arranged, sorted and identified with high throughput. One of the most prominent forthcoming applications of optical tweezers is in the field of microfluidics. The action of light on fluids will open new horizons in microfluidic manipulation and control. The field of optical manipulation and control is a very broad field that has developed in an impressive way, in a short time, in Europe with the installation of the MP0604 network. Top researchers from 19 countries are

  6. Controlling steady-state and dynamical properties of atomic optical bistability

    CERN Document Server

    Joshi, Amitabh

    2012-01-01

    This book provides a comprehensive introduction to the theoretical and experimental studies of atomic optical bistability and multistability, and their dynamical properties in systems with two- and three-level inhomogeneously-broadened atoms inside an optical cavity. By making use of the modified linear absorption and dispersion, as well as the greatly enhanced nonlinearity in the three-level electromagnetically induced transparency system, the optical bistablity and efficient all-optical switching can be achieved at relatively low laser powers, which can be well controlled and manipulated. Un

  7. Distinguishing the Effects of Bond-Length Alternation versus Bond-Order Alternation on the Nonlinear Optical Properties of π-Conjugated Chromophores

    KAUST Repository

    Gieseking, Rebecca L.; Risko, Chad; Bredas, Jean-Luc

    2015-01-01

    Understanding the relationships between the molecular nonlinear optical (NLO) properties and the bond-length alternation (BLA) or π-bond-order alternation (BOA) along the molecular backbone of linear π-conjugated systems has proven widely useful in the development of NLO organic chromophores and materials. Here, we examine model polymethines to elucidate the reliability of these relationships. While BLA is solely a measure of molecular geometric structure, BOA includes information pertaining to the electronic structure. As a result, BLA is found to be a good predictor of NLO properties only when optimized geometries are considered, whereas BOA is more broadly applicable. Proper understanding of the distinction between BLA and BOA is critical when designing computational studies of NLO properties, especially for molecules in complex environments or in nonequilibrium geometries. © 2015 American Chemical Society.

  8. Distinguishing the Effects of Bond-Length Alternation versus Bond-Order Alternation on the Nonlinear Optical Properties of π-Conjugated Chromophores

    KAUST Repository

    Gieseking, Rebecca L.

    2015-06-18

    Understanding the relationships between the molecular nonlinear optical (NLO) properties and the bond-length alternation (BLA) or π-bond-order alternation (BOA) along the molecular backbone of linear π-conjugated systems has proven widely useful in the development of NLO organic chromophores and materials. Here, we examine model polymethines to elucidate the reliability of these relationships. While BLA is solely a measure of molecular geometric structure, BOA includes information pertaining to the electronic structure. As a result, BLA is found to be a good predictor of NLO properties only when optimized geometries are considered, whereas BOA is more broadly applicable. Proper understanding of the distinction between BLA and BOA is critical when designing computational studies of NLO properties, especially for molecules in complex environments or in nonequilibrium geometries. © 2015 American Chemical Society.

  9. Preparation and third-order nonlinear optical property of poly(urethane-imide containing dispersed red chromophore

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available A novel poly(urethane-imide (PUI containing dispersed red chromophore was synthesized. The PUI was characterized by FT-IR, UV-Vis, DSC and TGA. The results of DSC and TGA indicated that the PUI exhibited high thermal stability up to its glass-transition temperature (Tg of 196°C and 5% heat weight loss temperature of 229°C. According to UV-Vis spectrum and working curve, the maximum molar absorption coefficient and absorption wavelength were measured. They were used to calculate the third-order nonlinear optical coefficient χ(3. At the same time, the chromophore density of PUI, nonlinear refractive index coefficient and molecular hyperpolarizability of PUI were obtained. The fluorescence spectra of PUI and model compound DR-19 were determined at excitation wavelength 300 nm. The electron donor and acceptor in polymer formed the exciplex through the transfer of the electric charges. The results show that the poly(urethane-imide is a promising candidate for application in optical devices.

  10. Nonlinear optical properties of Sn+ ion-implanted silica glass

    International Nuclear Information System (INIS)

    Takeda, Y.; Hioki, T.; Motohiro, T.; Noda, S.; Kurauchi, T.

    1994-01-01

    The absolute value of the third-order nonlinear optical susceptibility, vertical stroke χ (3) vertical stroke , of Sn + ion-implanted silica glass was found to be similar 10 -6 esu. This value is as large as those reported for semiconductor-doped glasses. Silica glass substrates were implanted with Sn + ions at an acceleration energy of 400 keV to a dose of 2x10 17 ions/cm 2 at room temperature. Metallic Sn microcrystallites of 4-20 nm in diameter were found to be embedded in the silica glass matrix. The average volume fraction of the Sn microcrystallites was evaluated to be 28%. vertical stroke χ (3) vertical stroke and the imaginary part of the dielectric function, Im ε, had peaks at the same wavelength of 500 nm owing to surface plasmon resonance. The peak width of vertical stroke χ (3) vertical stroke was nearly half of that of Im ε, which can be explained by an effective medium theory. ((orig.))

  11. Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film

    International Nuclear Information System (INIS)

    Singh, Vijender; Aghamkar, Praveen

    2014-01-01

    We obtain a large third-order optical nonlinearity (χ (3)  ≈ 10 −10 esu) of silver nanoparticles dispersed in polyvinyl alcohol/tetraethyl orthosilicate matrix using single beam z-scan technique at 532 nm by Q-switched Nd:YAG laser. We have shown that mechanisms responsible for third-order optical nonlinearity of Ag nanocomposite film are reverse saturable absorption (RSA) and self-defocusing in the purlieu of surface plasmon resonance (SPR). Optical band-gap and width of SPR band of Ag nanocomposite film decrease with increasing silver concentration, which leads to enhancement of local electric field and hence third-order optical nonlinearity. Optical limiting, due to RSA has also been demonstrated at 532 nm

  12. Investigation on nonlinear optical and dielectric properties of L-arginine doped ZTC crystal to explore photonic device applications

    Directory of Open Access Journals (Sweden)

    Anis Mohd

    2016-09-01

    Full Text Available The present study is focused to explore the photonic device applications of L-arginine doped ZTC (LA-ZTC crystals using nonlinear optical (NLO and dielectric studies. The LA-ZTC crystals have been grown by slow evaporation solution technique. The chemical composition and surface of LA-ZTC crystal have been analyzed by means of energy dispersive spectroscopy (EDS and surface scanning electron microscopy (SEM techniques. The Vicker’s microhardness study has been carried out to determine the hardness, work hardening index, yield strength and elastic stiffness of LA-ZTC crystal. The enhanced SHG efficiency of LA-ZTC crystal has been ascertained using the Kurtz-Perry powder SHG test. The closed-and-open aperture Z-scan technique has been employed to confirm the third order nonlinear optical nature of LA-ZTC crystal. The Z-scan transmittance data has been utilized to calculate the superior cubic susceptibility, nonlinear refractive index, nonlinear absorption coefficient and figure of merit of LA-ZTC crystal. The behavior of dielectric constant and dielectric loss of LA-ZTC crystal at different temperatures has been investigated using the dielectric analysis.

  13. Nonlinear optical studies of surfaces

    International Nuclear Information System (INIS)

    Shen, Y.R.

    1994-07-01

    The possibly of using nonlinear optical processes for surface studies has attracted increasing attention in recent years. Optical second harmonic generation (SHG) and sum frequency generation (SFG), in particular, have been well accepted as viable surface probes. They have many advantages over the conventional techniques. By nature, they are highly surface-specific and has a submonolayer sensitivity. As coherent optical processes, they are capable of in-situ probing of surfaces in hostile environment as well as applicable to all interfaces accessible by light. With ultrafast pump laser pulses, they can be employed to study surface dynamic processes with a subpicosecond time resolution. These advantages have opened the door to many exciting research opportunities in surface science and technology. This paper gives a brief overview of this fast-growing new area of research. Optical SHG from a surface was first studied theoretically and experimentally in the sixties. Even the submonolayer surface sensitivity of the process was noticed fairly early. The success was, however, limited because of difficulties in controlling the experimental conditions. It was not until the early 1980's that the potential of the process for surface analysis was duly recognized. The first surface study by SHG was actually motivated by the then active search for an understanding of the intriguing surface enhanced Raman scattering (SERS). It had been suspected that the enhancement in SERS mainly came from the local-field enhancement due to local plasmon resonances and pointing rod effect on rough metal surfaces. In our view, Raman scattering is a two-photon process and is therefore a nonlinear optical effect

  14. Nuclear matter as a nonlinear optical medium

    International Nuclear Information System (INIS)

    Hefter, E.F.; Papini, G.

    1986-01-01

    This paper is concerned with the question whether nuclear matter should be considered as a nonlinear optical medium. Taking, in a pragmatic way, quality and quantity of the results of well-established linear and nonlinear approaches as the main criterion, an affirmative answer is seen to be consistent with long-standing practices adhered to in nuclear physics

  15. The fabrication and enhanced nonlinear optical properties of electrostatic self-assembled film containing water-soluble chiral polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang Qiuyun, E-mail: qyouyang7823@yahoo.cn [College of Science, Harbin Engineering University, Harbin 150001 (China); Chen Yujin; Li Chunyan [College of Science, Harbin Engineering University, Harbin 150001 (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer The ultra-thin film containing the chiral PPV and oligo-thiophene derivatives was fabricated. Black-Right-Pointing-Pointer The third-order NLO properties were studied of the ultra-thin film. Black-Right-Pointing-Pointer The reverse saturable absorption and self-defocusing were observed. Black-Right-Pointing-Pointer The nonlinear optical mechanism was discussed. - Abstract: An ultra-thin film containing a water-soluble chiral PPV derivative and oligo-thiophene derivative was fabricated through the electrostatic self-assembly technique. The PPV and thiophene derivatives are poly{l_brace}(2,5-bis(3-bromotrimethylammoniopropoxy)-phenylene-1,4-divinylene) -alt-1,4-(2,5-bis((3-hydroxy-2-(S)-methyl)propoxy)phenylenevinylene) (BHP-PPV) and 4 Prime ,3 Double-Prime -dipentyl-5,2 Prime :5 Prime ,2 Double-Prime :5 Double-Prime ,2 Double-Prime Prime -quaterthiophene-2,5 Double-Prime Prime -dicarboxylic acid (QTDA), respectively. The circular dichroism (CD) spectrum of BHP-PPV cast film on quartz substrate proved the chirality of BHP-PPV. The UV-vis spectra showed a continuous deposition process of BHP-PPV and QTDA. The film structure was characterized by small angle X-ray diffraction (XRD) measurement and atomic force microscopy (AFM) images. The nonlinear optical (NLO) properties of BHP-PPV/QTDA ultra-thin film with different number of bilayers were investigated by the Z-scan technique with 8 ns laser pulse at 532 nm. The Z-scan experimental data were analyzed with the double-sided film Z-scan theory. The BHP-PPV/QTDA film exhibits enhanced reverse saturable absorption (RSA) and self-defocusing effects, which may be attributed to the conjugated strength, chirality and well-ordered film structure. The chirality may lead to the RSA of BHP-PPV/QTDA film contrary to the SA of the other electrostatic self-assembled films without chiral units. The self-defocusing effect should be due to the thermal effect.

  16. Large optical second-order nonlinearity of poled WO3-TeO2 glass.

    Science.gov (United States)

    Tanaka, K; Narazaki, A; Hirao, K

    2000-02-15

    Second-harmonic generation, one of the second-order nonlinear optical properties of thermally and electrically poled WO>(3)-TeO>(2) glasses, has been examined. We poled glass samples with two thicknesses (0.60 and 0.86 mm) at various temperatures to explore the effects of external electric field strength and poling temperature on second-order nonlinearity. The dependence of second-harmonic intensity on the poling temperature is maximum at a specific poling temperature. A second-order nonlinear susceptibility of 2.1 pm/V was attained for the 0.60-mm-thick glass poled at 250 degrees C. This value is fairly large compared with those for poled silica and tellurite glasses reported thus far. We speculate that the large third-order nonlinear susceptibility of WO>(3)- TeO>(2) glasses gives rise to the large second-order nonlinearity by means of a X((2)) = 3X((3)) E(dc) process.

  17. Ablation and optical third-order nonlinearities in Ag nanoparticles

    Directory of Open Access Journals (Sweden)

    Carlos Torres-Torres

    2010-11-01

    Full Text Available Carlos Torres-Torres1, Néstor Peréa-López2, Jorge Alejandro Reyes-Esqueda3, Luis Rodríguez-Fernández3, Alejandro Crespo-Sosa3, Juan Carlos Cheang-Wong3, Alicia Oliver31Section of Graduate Studies and Research, School of Mechanical and Electrical Engineering, National Polytechnic Institute, Zacatenco, Distrito Federal, Mexico; 2Laboratory for Nanoscience and Nanotechnology Research and Advanced Materials Department, IPICYT, Camino a la Presa San Jose, San Luis Potosi, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000, MéxicoAbstract: The optical damage associated with high intensity laser excitation of silver nanoparticles (NPs was studied. In order to investigate the mechanisms of optical nonlinearity of a nanocomposite and their relation with its ablation threshold, a high-purity silica sample implanted with Ag ions was exposed to different nanosecond and picosecond laser irradiations. The magnitude and sign of picosecond refractive and absorptive nonlinearities were measured near and far from the surface plasmon resonance (SPR of the Ag NPs with a self-diffraction technique. Saturable optical absorption and electronic polarization related to self-focusing were identified. Linear absorption is the main process involved in nanosecond laser ablation, but nonlinearities are important for ultrashort picosecond pulses when the absorptive process become significantly dependent on the irradiance. We estimated that near the resonance, picosecond intraband transitions allow an expanded distribution of energy among the NPs, in comparison to the energy distribution resulting in a case of far from resonance, when the most important absorption takes place in silica. We measured important differences in the ablation threshold and we estimated that the high selectiveness of the SPR of Ag NPs as well as their corresponding optical nonlinearities can be strongly significant for laser

  18. Measurement-induced nonlinearity in linear optics

    International Nuclear Information System (INIS)

    Scheel, Stefan; Knight, Peter L.; Nemoto, Kae; Munro, William J.

    2003-01-01

    We investigate the generation of nonlinear operators with single-photon sources, linear optical elements, and appropriate measurements of auxiliary modes. We provide a framework for the construction of useful single-mode and two-mode quantum gates necessary for all-optical quantum information processing. We focus our attention generally on using minimal physical resources while providing a transparent and algorithmic way of constructing these operators

  19. Synthesis and studies on structural, optical and nonlinear optical properties of novel organic inter-molecular compounds: 4-chloro-3-nitroaniline-3-hydroxy benzaldehyde and urea-4-dimethylaminopyridine

    Science.gov (United States)

    Pandey, Priyanka; Rai, R. N.

    2018-05-01

    Two novel organic inter-molecular compounds (IMCs), (3-(4-chloro-3-nitrophenylimino) methyl) phenol) (CNMP) and urea ̶ 4-dimethylaminopyridine complex (UDMAP), have been synthesized by solid state reaction. These two IMCs were identified by phase diagram study of CNA-HB and U-DMAP systems. The single crystals of newly obtained IMCs were grown by slow solvent evaporation technique at room temperature. Both the IMCs were further studied for their thermal, spectral, single crystal XRD for their atomic packing in molecule, crystallinity, optical and nonlinear optical behaviour. In both the cases, melting point of inter-molecular compounds was found to be higher than that of their parent components, CNMP was found to be thermally stable up to 158 °C while UDMAP was stable up to 144 °C, which indicate their extra stability than their parents. The single crystal XRD studies confirmed that CNMP has crystallized in orthorhombic unit cell with non-centrosymmetric space group P212121 while UDMAP has crystallized in monoclinic unit cell with centrosymmetric space group C2/c. The absorption spectrum of CNMP was found to be in between the absorption of parents, while broadening of peak and red shift was observed in UDMAP as compared to the parents. Second order nonlinear optical property of CNMP and UDMAP was studied using Kurtz Perry powder technique and intense green light emission was observed with CNMP on excitation with 1064 nm of Nd:YAG laser while no emission was observed with UDMAP.

  20. Nonboson treatment of excitonic nonlinearity in optically excited media

    International Nuclear Information System (INIS)

    Nguyen Ba An.

    1990-11-01

    The present article shortly reviews some recent results in the study of excitonic nonlinearity in optically excited media using a nonboson treatment for many-exciton systems. After a brief discussion of the exciton nonbosonity the closed commutation relations are given for exciton operators which hold for any exciton density and type. The nonboson treatment is then applied to the problems of intrinsic optical bistability and nonlinear polariton yielding quite interesting and new effects, e.g. new shapes of hysteresis loops of intrinsic optical bistability or anomalies of polariton dispersion. (author). 71 refs, 4 figs

  1. Design considerations for multi component molecular-polymeric nonlinear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Singer, K.D. (Case Western Reserve Univ., Cleveland, OH (USA). Dept. of Physics); Kuzyk, M.G. (Washington State Univ., Pullman, WA (USA). Dept. of Physics); Fang, T.; Holland, W.R. (AT and T Bell Labs., Princeton, NJ (USA)); Cahill, P.A. (Sandia National Labs., Albuquerque, NM (USA))

    1990-01-01

    We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85{degree} and posses an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to posses a large third order nonlinearity, and may display two-level behavior. 24 refs., 11 figs.

  2. Benchmarking Post-Hartree–Fock Methods To Describe the Nonlinear Optical Properties of Polymethines: An Investigation of the Accuracy of Algebraic Diagrammatic Construction (ADC) Approaches

    KAUST Repository

    Knippenberg, Stefan

    2016-10-07

    Third-order nonlinear optical (NLO) properties of polymethine dyes have been widely studied for applications such as all-optical switching. However, the limited accuracy of the current computational methodologies has prevented a comprehensive understanding of the nature of the lowest excited states and their influence on the molecular optical and NLO properties. Here, attention is paid to the lowest excited-state energies and their energetic ratio, as these characteristics impact the figure-of-merit for all-optical switching. For a series of model polymethines, we compare several algebraic diagrammatic construction (ADC) schemes for the polarization propagator with approximate second-order coupled cluster (CC2) theory, the widely used INDO/MRDCI approach and the symmetry-adapted cluster configuration interaction (SAC-CI) algorithm incorporating singles and doubles linked excitation operators (SAC-CI SD-R). We focus in particular on the ground-to-excited state transition dipole moments and the corresponding state dipole moments, since these quantities are found to be of utmost importance for an effective description of the third-order polarizability γ and two-photon absorption spectra. A sum-overstates expression has been used, which is found to quickly converge. While ADC(3/2) has been found to be the most appropriate method to calculate these properties, CC2 performs poorly.

  3. Dependence of nonlinear optical properties of Ag2S@ZnS core-shells on Zinc precursor and capping agent

    Science.gov (United States)

    Dehghanipour, M.; Khanzadeh, M.; Karimipour, M.; Molaei, M.

    2018-03-01

    In this research, four different types of Ag2S@ZnS core-shells were synthesized and their nonlinear optical (NLO) properties were investigated using a Z-scan technique by a 532 nm laser diode. Here, Ag2S and ZnS nanoparticles were also synthesized and their NLO properties were compared with Ag2S@ZnS core-shells. It was observed that the NLO properties of Ag2S@ZnS quantum dots significantly increased by increasing the values of Zn(NO3)2 and thioglycolic acid (TGA). It was also observed that the NLO properties of Ag2S@ZnS core-shells for 0.1 g of Zn(NO3)2 and 7000 μl TGA is higher than sole Ag2S and ZnS nanoparticles. In open aperture Z-scan curve of ZnS sample, a saturable absorption peak was observed and this peak was seen also in type of Ag2S@ZnS nanoparticles which the value of Zn(NO3)2 much more.

  4. Growth and characterization of benzaldehyde 4-nitro phenyl hydrazone (BPH) single crystal: A proficient second order nonlinear optical material

    Science.gov (United States)

    Saravanan, M.; Abraham Rajasekar, S.

    2016-04-01

    The crystals (benzaldehyde 4-nitro phenyl hydrazone (BPH)) appropriate for NLO appliance were grown by the slow cooling method. The solubility and metastable zone width measurement of BPH specimen was studied. The material crystallizes in the monoclinic crystal system with noncentrosymmetric space group of Cc. The optical precision in the whole visible region was found to be excellent for non-linear optical claim. Excellence of the grown crystal is ascertained by the HRXRD and etching studies. Laser Damage Threshold and Photoluminescence studies designate that the grown crystal contains less imperfection. The mechanical behaviour of BPH sample at different temperatures was investigated to determine the hardness stability of the grown specimen. The piezoelectric temperament and the relative Second Harmonic Generation (for diverse particle sizes) of the material were also studied. The dielectric studies were executed at varied temperatures and frequencies to investigate the electrical properties. Photoconductivity measurement enumerates consummate of inducing dipoles due to strong incident radiation and also divulge the nonlinear behaviour of the material. The third order nonlinear optical properties of BPH crystals were deliberate by Z-scan method.

  5. Surface plasmon enhanced third-order optical nonlinearity of Ag nanocomposite film

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vijender [Department of Applied Science, N.C. College of Engineering, Israna, Panipat 132107, Haryana (India); Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.in [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India)

    2014-03-17

    We obtain a large third-order optical nonlinearity (χ{sup (3)} ≈ 10{sup −10}esu) of silver nanoparticles dispersed in polyvinyl alcohol/tetraethyl orthosilicate matrix using single beam z-scan technique at 532 nm by Q-switched Nd:YAG laser. We have shown that mechanisms responsible for third-order optical nonlinearity of Ag nanocomposite film are reverse saturable absorption (RSA) and self-defocusing in the purlieu of surface plasmon resonance (SPR). Optical band-gap and width of SPR band of Ag nanocomposite film decrease with increasing silver concentration, which leads to enhancement of local electric field and hence third-order optical nonlinearity. Optical limiting, due to RSA has also been demonstrated at 532 nm.

  6. TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material

    International Nuclear Information System (INIS)

    Sciancalepore, C; Agostiano, A; Cassano, T; Valentini, A; Curri, M L; Striccoli, M; Mecerreyes, D; Tommasi, R

    2008-01-01

    Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO 2 nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly homogeneous dispersion of the nanorods in the organic matrix. The prepared TiO 2 /PMMA-co-MA nanocomposites show high optical transparency in the visible region, even at high TiO 2 nanorod content, and tunable linear refractive index depending on the nanoparticle concentration. Finally measurements of nonlinear optical properties of TiO 2 polymer nanocomposites demonstrate a negligible two-photon absorption and a negative value of nonlinear refractive index, highlighting the potential of the nanocomposite for efficient optical devices operating in the visible region

  7. TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material

    Science.gov (United States)

    Sciancalepore, C.; Cassano, T.; Curri, M. L.; Mecerreyes, D.; Valentini, A.; Agostiano, A.; Tommasi, R.; Striccoli, M.

    2008-05-01

    Original nanocomposites have been obtained by direct incorporation of pre-synthesized oleic acid capped TiO2 nanorods into properly functionalized poly(methyl methacrylate) copolymers, carrying carboxylic acid groups on the repeating polymer unit. The presence of carboxylic groups on the alkyl chain of the host functionalized copolymer allows an highly homogeneous dispersion of the nanorods in the organic matrix. The prepared TiO2/PMMA-co-MA nanocomposites show high optical transparency in the visible region, even at high TiO2 nanorod content, and tunable linear refractive index depending on the nanoparticle concentration. Finally measurements of nonlinear optical properties of TiO2 polymer nanocomposites demonstrate a negligible two-photon absorption and a negative value of nonlinear refractive index, highlighting the potential of the nanocomposite for efficient optical devices operating in the visible region.

  8. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    Science.gov (United States)

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  9. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    Science.gov (United States)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  10. Explicit formulation of second and third order optical nonlinearity in the FDTD framework

    Science.gov (United States)

    Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas

    2018-01-01

    The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.

  11. Structure property relationship of a new nonlinear optical organic crystal: 1-(3,4-Dimethoxyphenyl-3-(3-fluorophenylprop-2-en-1-one for optical power limiting applications

    Directory of Open Access Journals (Sweden)

    S. Raghavendra

    Full Text Available A new organic potential nonlinear optical (NLO material 1-(3,4-dimethoxyphenyl-3-(3-fluorophenylprop-2-en-1-one (DMP3FP is crystallized in acetone. The single crystal X-ray diffraction data shows that material crystallizes into centro-symmetric orthorhombic space group Pbca with a = 15.6552(6 Å, b = 8.5571(3 Å, c = 20.7697(7 Å. The functional groups in DMP3FP molecule are identified by Fourier Transfer Infrared (FTIR spectra. The thermal stability and melting point are determined using thermo gravimetric analysis/differential thermal analysis (TGA/DTA. Using UV Visible spectral studies direct band gap energy of the crystal is determined to be 3.19 eV. The nonlinear absorption coefficient and optical power limiting of the crystal was studied using Z-scan technique. The crystal exhibits a self-focusing effect at a wavelength of 532 nm showing optical limiting and reverse saturable absorption by having excited state absorption coefficient greater than ground state absorption coefficient. Keywords: Nonlinear, Optical power limiting, Z-scan, Self-focusing

  12. A nanohole in a thin metal film as an efficient nonlinear optical element

    International Nuclear Information System (INIS)

    Konstantinova, T. V.; Melent’ev, P. N.; Afanas’ev, A. E.; Kuzin, A. A.; Starikov, P. A.; Baturin, A. S.; Tausenev, A. V.; Konyashchenko, A. V.; Balykin, V. I.

    2013-01-01

    The nonlinear optical properties of single nanoholes and nanoslits fabricated in gold and aluminum nanofilms are studied by third harmonic generation (THG). It is shown that the extremely high third-order optical susceptibility of aluminum and the presence of strong plasmon resonance of a single nanohole in an aluminum film make possible an efficient nanolocalized radiation source at the third harmonic frequency. The THG efficiency for a single nanohole in a thin metal film can be close to unity for an exciting laser radiation intensity on the order of 10 13 W/cm 2

  13. Rigorous theory of molecular orientational nonlinear optics

    International Nuclear Information System (INIS)

    Kwak, Chong Hoon; Kim, Gun Yeup

    2015-01-01

    Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented

  14. Spatial optical (2+1)-dimensional scalar- and vector-solitons in saturable nonlinear media

    Energy Technology Data Exchange (ETDEWEB)

    Weilnau, C.; Traeger, D.; Schroeder, J.; Denz, C. [Institute of Applied Physics, Westfaelische Wilhelms-Universitaet Muenster, Corrensstr. 2/4, 48149 Muenster (Germany); Ahles, M.; Petter, J. [Institute of Applied Physics, Technische Universitaet Darmstadt, Hochschulstr. 6, 64289 Darmstadt (Germany)

    2002-10-01

    (2+1)-dimensional optical spatial solitons have become a major field of research in nonlinear physics throughout the last decade due to their potential in adaptive optical communication technologies. With the help of photorefractive crystals that supply the required type of nonlinearity for soliton generation, we are able to demonstrate experimentally the formation, the dynamic properties, and especially the interaction of solitary waves, which were so far only known from general soliton theory. Among the complex interaction scenarios of scalar solitons, we reveal a distinct behavior denoted as anomalous interaction, which is unique in soliton-supporting systems. Further on, we realize highly parallel, light-induced waveguide configurations based on photorefractive screening solitons that give rise to technical applications towards waveguide couplers and dividers as well as all-optical information processing devices where light is controlled by light itself. Finally, we demonstrate the generation, stability and propagation dynamics of multi-component or vector solitons, multipole transverse optical structures bearing a complex geometry. In analogy to the particle-light dualism of scalar solitons, various types of vector solitons can - in a broader sense - be interpreted as molecules of light. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  15. Spatial optical (2+1)-dimensional scalar- and vector-solitons in saturable nonlinear media

    International Nuclear Information System (INIS)

    Weilnau, C.; Traeger, D.; Schroeder, J.; Denz, C.; Ahles, M.; Petter, J.

    2002-01-01

    (2+1)-dimensional optical spatial solitons have become a major field of research in nonlinear physics throughout the last decade due to their potential in adaptive optical communication technologies. With the help of photorefractive crystals that supply the required type of nonlinearity for soliton generation, we are able to demonstrate experimentally the formation, the dynamic properties, and especially the interaction of solitary waves, which were so far only known from general soliton theory. Among the complex interaction scenarios of scalar solitons, we reveal a distinct behavior denoted as anomalous interaction, which is unique in soliton-supporting systems. Further on, we realize highly parallel, light-induced waveguide configurations based on photorefractive screening solitons that give rise to technical applications towards waveguide couplers and dividers as well as all-optical information processing devices where light is controlled by light itself. Finally, we demonstrate the generation, stability and propagation dynamics of multi-component or vector solitons, multipole transverse optical structures bearing a complex geometry. In analogy to the particle-light dualism of scalar solitons, various types of vector solitons can - in a broader sense - be interpreted as molecules of light. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  16. Electronic structure, stability and non-linear optical properties of aza-fullerenes C60-2nN2n(n=1–12

    Directory of Open Access Journals (Sweden)

    K. Srinivasu

    2012-12-01

    Full Text Available Through ab initio based density functional theory calculations, we have investigated the electronic structure, stability and non-linear optical properties of a series of nitrogen substituted fullerenes (azafullerenes with the general formula C60-2nN2n (n=1–12. For each system, we have considered different possible isomers and the minimum energy isomer is subjected to further detailed investigations. We have calculated different properties such as HOMO-LUMO gaps, vertical ionization potentials, vertical electron affinities, etc. to verify the stability of the considered fullerenes. From the Hessian calculations, it is observed that all the fullerenes are not only associated with real vibrational frequencies, but the minimum frequencies are also found to be considerably large which further confirms the stability of the considered fullerenes. We find that the presence of unperturbed C6 rings enhances the stability of the fullerene whereas, the -N-C-N- fragments are found to destabilize the structure. At lower doping concentration, the stabilization due to C6 is more predominant and as the doping concentration is increased, the destabilization due to nitrogen-nitrogen repulsion plays a more important role. Our calculated polarizability and hyperpolarizability parameters of C60 are found to be in good agreement with the earlier reported results. On nitrogen doping, considerable variation is observed in the non-linear optical coefficients, which can be helpful in designing new photonic devices.

  17. Synthesis, Characterization, and Nonlinear Optical Properties of P-Substituted Poly Gamma-Benzyl

    Science.gov (United States)

    Choi, Dong-Hoon

    Poly gamma-benzyl-L-glutamate (PBLG), poly gamma-p-fluorobenzyl -L-glutamate (PGLU(pFB)), poly gamma -p-nitrobenzyl-L-glutamate (PGLU(pNB)), and poly gamma-p-trifluoromethylbenzyl-L-glutamate (PGLU(pTFMB)) have been synthesized. These PBLG polymers show variations in the side chain conformations in the solid state and solution state. In the solid state, the side chain orientation was assigned to a longitudinal or transverse direction by virtue of the polarized infrared spectrum of each PBLG analogue. The characteristics of the lyotropic liquid crystalline behavior could be observed. The optical waveguiding property of these polymers facilitated measurement of the refractive index and the thickness of each polymer film. Poling the polymer films and using the simple reflection technique, the electro -optic coefficients of the PBLG analogues could be determined. The effect of the para substitution on benzyl ester as it effected the electro-optic coefficient and the relation between the dielectric properties and the electro-optic effect of each polymer were investigated. These studies were able to demonstrate which conformation of the side chain in para substituted poly gamma-benzyl -L-glutamates is a more favorable conformation for enhancing the electro-optic behavior of these polymers.

  18. Green synthesis and third-order nonlinear optical properties of 6-(9H-carbazol-9-yl) hexyl acetate

    Science.gov (United States)

    Chen, Baili; Geng, Feng; Luo, Xuan; Zhong, Quanjie; Zhang, Qingjun; Fang, Yu; Huang, Chuanqun; Yang, Ruizhuang; Shao, Ting; Chen, Shufan

    2016-10-01

    An extremely simple and green approach for the synthesis of photoelectric material 6-(9H-carbazol-9-yl) hexy-acetate (CHA) has been described in detail. The molecular structure of CHA was identified with Fourier transform infrared (FT-IR) spectra and 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy. The optical absorption of CHA was recorded using ultraviolet-visible (UV-vis) spectrum. Notably, the reaction was accomplished in water medium instead of traditional toxic solvents (e.g., benzene and chloroform). The yield of CHA is up to 99%, which is increased by 13% compared with the traditional method. The approach developed by us makes it possible to achieve commercial production of CHA. Moreover, the thermal stability of CHA was studied with thermogravimetric (TG) and derivative thermogravimetric (DTG) method. The third-order nonlinear optical (NLO) properties of CHAn (obtained by new method) and CHAt (obtained by traditional method) have been studied by a Z-scan technique at 440 nm. The thermal decomposition temperature is above 200 °C. The third-order NLO of CHAn and CHAt are the same. The third-order NLO susceptibility χ (3) and two photon Figures of Merit (FOMs) of CHA are 1.58 × 10-8 (esu) and 4.55, respectively. The results reveal that CHA may be a promising candidate for all-optical switching application.

  19. Theory and design of nonlinear metamaterials

    Science.gov (United States)

    Rose, Alec Daniel

    If electronics are ever to be completely replaced by optics, a significant possibility in the wake of the fiber revolution, it is likely that nonlinear materials will play a central and enabling role. Indeed, nonlinear optics is the study of the mechanisms through which light can change the nature and properties of matter and, as a corollary, how one beam or color of light can manipulate another or even itself within such a material. However, of the many barriers preventing such a lofty goal, the narrow and limited range of properties supported by nonlinear materials, and natural materials in general, stands at the forefront. Many industries have turned instead to artificial and composite materials, with homogenizable metamaterials representing a recent extension of such composites into the electromagnetic domain. In particular, the inclusion of nonlinear elements has caused metamaterials research to spill over into the field of nonlinear optics. Through careful design of their constituent elements, nonlinear metamaterials are capable of supporting an unprecedented range of interactions, promising nonlinear devices of novel design and scale. In this context, I cast the basic properties of nonlinear metamaterials in the conventional formalism of nonlinear optics. Using alternately transfer matrices and coupled mode theory, I develop two complementary methods for characterizing and designing metamaterials with arbitrary nonlinear properties. Subsequently, I apply these methods in numerical studies of several canonical metamaterials, demonstrating enhanced electric and magnetic nonlinearities, as well as predicting the existence of nonlinear magnetoelectric and off-diagonal nonlinear tensors. I then introduce simultaneous design of the linear and nonlinear properties in the context of phase matching, outlining five different metamaterial phase matching methods, with special emphasis on the phase matching of counter propagating waves in mirrorless parametric amplifiers

  20. Biological applications of novel nonlinear optical microscopy

    International Nuclear Information System (INIS)

    Kajiyama, Shin'ichiro; Ozeki, Yasuyuki; Itoh, Kazuyoshi; Fukui, Kiichi

    2010-01-01

    Two types of newly developed nonlinear optical microscopes namely stimulated parametric emission (SPE) microscope and stimulated Raman scattering (SRS) microscope were presented together with their biological applications.

  1. Nonlinear properties of quantum dot semiconductor optical amplifiers at 1.3 μm Invited Paper

    Institute of Scientific and Technical Information of China (English)

    D. Bimberg; C. Meuer; M. L(a)mmlin; S. Liebich; J. Kim; A. Kovsh; I. Krestnikov; G. Eisenstein

    2008-01-01

    @@ The dynamics of nonlinear processes in quantum dot (QD) semiconductor optical amplifiers (SOAs) are investigated. Using small-signal measurements, the suitabilities of cross-gain and cross-phase modulation as well as four wave mixing (FWM) for wavelength conversion are examined. The cross-gain modulation is found to be suitable for wavelength conversion up to a frequency of 40 GHz.

  2. Tangled nonlinear driven chain reactions of all optical singularities

    Science.gov (United States)

    Vasil'ev, V. I.; Soskin, M. S.

    2012-03-01

    Dynamics of polarization optical singularities chain reactions in generic elliptically polarized speckle fields created in photorefractive crystal LiNbO3 was investigated in details Induced speckle field develops in the tens of minutes scale due to photorefractive 'optical damage effect' induced by incident beam of He-Ne laser. It was shown that polarization singularities develop through topological chain reactions of developing speckle fields driven by photorefractive nonlinearities induced by incident laser beam. All optical singularities (C points, optical vortices, optical diabolos,) are defined by instantaneous topological structure of the output wavefront and are tangled by singular optics lows. Therefore, they have develop in tangled way by six topological chain reactions driven by nonlinear processes in used nonlinear medium (photorefractive LiNbO3:Fe in our case): C-points and optical diabolos for right (left) polarized components domains with orthogonally left (right) polarized optical vortices underlying them. All elements of chain reactions consist from loop and chain links when nucleated singularities annihilated directly or with alien singularities in 1:9 ratio. The topological reason of statistics was established by low probability of far enough separation of born singularities pair from existing neighbor singularities during loop trajectories. Topology of developing speckle field was measured and analyzed by dynamic stokes polarimetry with few seconds' resolution. The hierarchy of singularities govern scenario of tangled chain reactions was defined. The useful space-time data about peculiarities of optical damage evolution were obtained from existence and parameters of 'islands of stability' in developing speckle fields.

  3. Correlation of optical properties with the fractal microstructure of black molybdenum coatings

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Enrique; Gonzalez, Federico [Area de Energia, Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, D.F. 09340 (Mexico); Rodriguez, Eduardo [Area de Computacion y Sistemas, Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, D.F. 09340 (Mexico); Alvarez-Ramirez, Jose, E-mail: jjar@xanum.uam.mx [Area de Energia, Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Mexico, D.F. 09340 (Mexico)

    2010-01-01

    Coating is commonly used for improving the optical properties of surfaces for solar collector applications. The coating morphology depends on the deposition conditions, and this determines the final optical characteristics. Coating morphologies are irregular and of fractal nature, so a suitable approach for its characterization should use methods borrowed from fractal analysis. The aim of this work is to study the fractal characteristics of black molybdenum coatings on copper and to relate the fractal parameters to the optical properties. To this end, coating surfaces were prepared via immersion in a solution of ammonium paramolybdate for different deposition periods. The fractal analysis was carried out for SEM and AFM images of the coating surface and the fractal properties were obtained with a recently developed high-dimensional extension of the well-known detrended fluctuation analysis (DFA). The most salient parameter drawn from the application of the DFA is the Hurst index, a parameter related to the roughness of the coating surface, and the multifractality index, which is related to the non-linearity features of the coating morphology. The results showed that optical properties, including absorptance and emittance, are decreasing functions of the Hurst and multifractality indices. This suggests that coating surfaces with high absorptance and emittance values are related to complex coating morphologies conformed within a non-linear structure.

  4. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source.

    Science.gov (United States)

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-20

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  5. Progress Toward Single-Photon-Level Nonlinear Optics in Crystalline Microcavities

    Science.gov (United States)

    Kowligy, Abijith S.

    Over the last two decades, the emergence of quantum information science has uncovered many practical applications in areas such as communications, imaging, and sensing where harnessing quantum features of Nature provides tremendous benefits over existing methods exploiting classical physical phenomena. In this effort, one of the frontiers of research has been to identify and utilize quantum phenomena that are not susceptible to environmental and parasitic noise processes. Quantum photonics has been at the forefront of these studies because it allows room-temperature access to its inherently quantum-mechanical features, and allows leveraging the mature telecommunication industry. Accompanying the weak environmental influence, however, are also weak optical nonlinearities. Efficient nonlinear optical interactions are indispensible for many of the existing protocols for quantum optical computation and communication, e.g. high-fidelity entangling quantum logic gates rely on large nonlinear responses at the one- or few-photon-level. While this has been addressed to a great extent by interfacing photons with single quantum emitters and cold atomic gases, scalability has remained elusive. In this work, we identify the macroscopic second-order nonlinear polarization as a robust platform to address this challenge, and utilize the recent advances in the burgeoning field of optical microcavities to enhance this nonlinear response. In particular, we show theoretically that by using the quantum Zeno effect, low-noise, single-photon-level optical nonlinearities can be realized in lithium niobate whispering-gallery-mode microcavities, and present experimental progress toward this goal. Using the measured strength of the second-order nonlinear response in lithium niobate, we modeled the nonlinear system in the strong coupling regime using the Schrodinger picture framework and theoretically demonstrated that the single-photon-level operation can be observed for cavity lifetimes in

  6. Intense laser effects on nonlinear optical absorption and optical rectification in single quantum wells under applied electric and magnetic field

    International Nuclear Information System (INIS)

    Duque, C.A.; Kasapoglu, E.; Sakiroglu, S.; Sari, H.; Soekmen, I.

    2011-01-01

    In this work the effects of intense laser on the electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga 1-x Al x As quantum wells are studied under, applied electric and magnetic field. The electric field is applied along the growth direction of the quantum well whereas the magnetic field has been considered to be in-plane. The calculations were performed within the density matrix formalism with the use of the effective mass and parabolic band approximations. The intense laser effects are included through the Floquet method, by modifying the confining potential associated to the heterostructure. Results are presented for the nonlinear optical absorption, the nonlinear optical rectification and the resonant peak of these two optical processes. Several configurations of the dimensions of the quantum well, the applied electric and magnetic fields, and the incident intense laser radiation have been considered. The outcome of the calculation suggests that the nonlinear optical absorption and optical rectification are non-monotonic functions of the dimensions of the heterostructure and of the external perturbations considered in this work.

  7. Growth and dielectric, mechanical, thermal and etching studies of an organic nonlinear optical L-arginine trifluoroacetate (LATF) single crystal

    International Nuclear Information System (INIS)

    Arjunan, S.; Mohan Kumar, R.; Mohan, R.; Jayavel, R.

    2008-01-01

    L-arginine trifluoroacetate, an organic nonlinear optical material, has been synthesized from aqueous solution. Bulk single crystal of dimension 57 mm x 5 mm x 3 mm has been grown by temperature lowering technique. Powder X-ray diffraction studies confirmed the monoclinic structure of the grown L-arginine trifluoroacetate crystal. Linear optical property of the grown crystal has been studied by UV-vis spectrum. Dielectric response of the L-arginine trifluoroacetate crystal was analysed for different frequencies and temperatures in detail. Microhardness study on the sample reveals that the crystal possesses relatively higher hardness compared to many organic crystals. Thermal analyses confirmed that the L-arginine trifluoroacetate material is thermally stable upto 212 deg. C. The etching studies have been performed to assess the perfection of the L-arginine trifluoroacetate crystal. Kurtz powder second harmonic generation test confirms the nonlinear optical properties of the as-grown L-arginine trifluoroacetate crystal

  8. Impurity-related nonlinear optical properties in delta-doped quantum rings: Electric field effects

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo, R.L., E-mail: rrestre@gmail.com [Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Morales, A.L. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Martínez-Orozco, J.C. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, CP 98060, Zacatecas (Mexico); Baghramyan, H.M.; Barseghyan, M.G. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-11-15

    Using a variational procedure within the effective mass approximation, we have calculated the donor impurity binding energy for the ground (1s-like) and the excited (2p{sub z}-like) states as well as the impurity-related nonlinear optical absorption and relative changes in the refraction index in a GaAs single quantum ring with axial n-type delta-doping. The delta-like potential along the z-direction is an approximate model analytically described using a Lorentzian function with two parameters. Additionally we consider the application of an electric field along the z-direction. It is found that the changes in the geometry of the quantum ring, the change in the 2D impurity density of the delta-like doping, and different values of the electric field lead to a shifting of the resonant peaks of the optical responses spectrum.

  9. Impurity-related nonlinear optical properties in delta-doped quantum rings: Electric field effects

    International Nuclear Information System (INIS)

    Restrepo, R.L.; Morales, A.L.; Martínez-Orozco, J.C.; Baghramyan, H.M.; Barseghyan, M.G.; Mora-Ramos, M.E.; Duque, C.A.

    2014-01-01

    Using a variational procedure within the effective mass approximation, we have calculated the donor impurity binding energy for the ground (1s-like) and the excited (2p z -like) states as well as the impurity-related nonlinear optical absorption and relative changes in the refraction index in a GaAs single quantum ring with axial n-type delta-doping. The delta-like potential along the z-direction is an approximate model analytically described using a Lorentzian function with two parameters. Additionally we consider the application of an electric field along the z-direction. It is found that the changes in the geometry of the quantum ring, the change in the 2D impurity density of the delta-like doping, and different values of the electric field lead to a shifting of the resonant peaks of the optical responses spectrum

  10. Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points.

    Science.gov (United States)

    Choi, Youngsun; Hahn, Choloong; Yoon, Jae Woong; Song, Seok Ho; Berini, Pierre

    2017-01-20

    Time-asymmetric state-evolution properties while encircling an exceptional point are presently of great interest in search of new principles for controlling atomic and optical systems. Here, we show that encircling-an-exceptional-point interactions that are essentially reciprocal in the linear interaction regime make a plausible nonlinear integrated optical device architecture highly nonreciprocal over an extremely broad spectrum. In the proposed strategy, we describe an experimentally realizable coupled-waveguide structure that supports an encircling-an-exceptional-point parametric evolution under the influence of a gain saturation nonlinearity. Using an intuitive time-dependent Hamiltonian and rigorous numerical computations, we demonstrate strictly nonreciprocal optical transmission with a forward-to-backward transmission ratio exceeding 10 dB and high forward transmission efficiency (∼100%) persisting over an extremely broad bandwidth approaching 100 THz. This predicted performance strongly encourages experimental realization of the proposed concept to establish a practical on-chip optical nonreciprocal element for ultra-short laser pulses and broadband high-density optical signal processing.

  11. Order and chaos in polarized nonlinear optics

    International Nuclear Information System (INIS)

    Holm, D.D.

    1990-01-01

    Methods for investigating temporal complexity in Hamiltonian systems are applied to the dynamics of a polarized optical laser beam propagating as a travelling wave in a medium with cubically nonlinear polarizability (i.e., a Kerr medium). The theory of Hamiltonian systems with symmetry is used to study the geometry of phase space for the optical problem, transforming from C 2 to S 2 x (J,θ), where (J,θ) is a symplectic action-angle pair. The bifurcations of the phase portraits of the Hamiltonian motion on S 2 are classified and shown graphically. These bifurcations create various saddle connections on S 2 as either J (the beam intensity), or the optical parameters of the medium are varied. After this bifurcation analysis, the Melnikov method is used to demonstrate analytically that the saddle connections break and intersect transversely in a Poincare map under spatially periodic perturbations of the optical parameters of the medium. These transverse intersections in the Poincare map imply intermittent polarization switching with extreme sensitivity to initial conditions characterized by a Smale horseshoe construction for the travelling waves of a polarized optical laser pulse. The resulting chaotic behavior in the form of sensitive dependence on initial conditions may have implications for the control and predictability of nonlinear optical polarization switching in birefringent media. 19 refs., 2 figs., 1 tab

  12. Nonlinear ultrafast optical response in organic molecular crystals

    Science.gov (United States)

    Rahman, Talat S.; Turkowski, Volodymyr; Leuenberger, Michael N.

    2012-02-01

    We analyze possible nonlinear excitonic effects in the organic molecule crystals by using a combined time-dependent DFT and many-body approach. In particular, we analyze possible effects of the time-dependent (retarded)interaction between different types of excitations, Frenkel excitons, charge transfer excitons and excimers, on the electric and the optical response of the system. We pay special attention to the case of constant electric field and ultrafast pulses, including that of four-wave mixing experiments. As a specific application we examine the optical excitations of pentacene nanocrystals and compare the results with available experimental data.[1] Our results demostrate that the nonlinear effects can play an important role in the optical response of these systems. [1] A. Kabakchiev, ``Scanning Tunneling Luminescence of Pentacene Nanocrystals'', PhD Thesis (EPFL, Lausanne, 2010).

  13. Transverse effects in nonlinear optics: Toward the photon superfluid

    Science.gov (United States)

    McCormick, Colin Fraser

    Nonlinear optics displays a wealth of transverse effects. These effects are particularly rich in the presence of an optical cavity. Many considerations suggest that in a Kerr nonlinear cavity a new state of light known as a "photon superfluid" can form, with strong analogies to atomic superfluids. The conditions for the formation of the photon superfluid include requirements on the cavity, input light fields and the nonlinear medium as well as various timescales. The most favorable candidate nonlinear medium for observing the photon super-fluid is an atomic vapor. With a strong and fast Kerr effect, atomic vapors also have the advantage of a Kerr coefficient that is tunable in both magnitude and sign. A series of z-scan experiments in far-detuned atomic rubidium vapor is reported, measuring the Kerr coefficient and determining its functional dependence on detuning to be that of a Doppler-broadened two-level model with adiabatic following of the electric field by the atom pseudomoment. Saturation effects are found to be important. Z-scan measurements for detunings within the Doppler profile are shown to agree well with numerical simulations based on the Doppler-broadened model. Agreement between absorptive and refractive non-linear coefficients is evidence of the Kramers-Kronig relations at work, even in this nonlinear system. The formation of the photon superfluid is discussed and the calculation of a new process, nearly collinear four-wave mixing, is presented. This process is essentially an inverse beam filamentation that is likely to be the underlying physical mechanism for transverse cooling and condensation of photons in a nonlinear optical cavity. Nearly collinear four-wave mixing may also be related to phenomena in general nonlinear physics, including modulation instability and Fermi-Pasta-Ulam recurrence.

  14. Modulation Instability of Copropagating Optical Beams in Fractional Coupled Nonlinear Schrödinger Equations

    Science.gov (United States)

    Zhang, Jinggui

    2018-06-01

    In this paper, we investigate the dynamical behaviors of the modulation instability (MI) of copropagating optical beams in fractional coupled nonlinear Schrödinger equations (NLSE) with the aim of revealing some novel properties different from those in the conventional coupled NLSE. By applying the standard linear stability method, we first derive an expression for the gain resulting from the instability induced by cross-phase modulation (CPM) in the presence of the Lévy indexes related to fractional effects. It is found that the modulation instability of copropagating optical beams still occurs even in the fractional NLSE with self-defocusing nonlinearity. Then, the analysis of our results further reveals that such Lévy indexes increase the fastest growth frequency and the bandwidth of conventional instability not only for the self-focusing case but also for the self-defocusing case, but do not influence the corresponding maximum gain. Numerical simulations are performed to confirm theoretical predictions. These findings suggest that the novel fractional physical settings may open up new possibilities for the manipulation of MI and nonlinear waves.

  15. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    Science.gov (United States)

    Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.

  16. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, B., E-mail: bkarthik@nitt.edu; Hariharan, S. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Udayabhaskar, R. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, University of Concepcion, Concepcion 4070386 (Chile)

    2016-07-11

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  17. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    International Nuclear Information System (INIS)

    Karthikeyan, B.; Hariharan, S.; Udayabhaskar, R.

    2016-01-01

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  18. Shocks, singularities and oscillations in nonlinear optics and fluid mechanics

    CERN Document Server

    Santo, Daniele; Lannes, David

    2017-01-01

    The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .

  19. Experimental investigations of optical nonlinearities in semiconductor-doped glass waveguides

    International Nuclear Information System (INIS)

    Dannberg, P.; Possner, T.; Braeuer, A.; Bartuch, U.

    1988-01-01

    Both, thermal and electronic optical nonlinearities are studied in semiconductor-doped glass (SDG) waveguides which are fabricated in commercially available sharp-cut filters by Cs + -K + ion exchange. The relaxation time in photodarkened substrates is measured to be 30 ps. By means of a prism coupling set-up the saturation value of the nonlinear index change is determined. Furthermore, a high stability dual-beam interferometer is presented for the measurement of both, thermal and electronic nonlinear refractive index n 2 in planar waveguides. Conclusions about the application of SDG to opto-optical switching are given. (author)

  20. A nanohole in a thin metal film as an efficient nonlinear optical element

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinova, T. V.; Melent' ev, P. N.; Afanas' ev, A. E. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation); Kuzin, A. A.; Starikov, P. A.; Baturin, A. S. [Moscow Institute of Physics and Technology (Russian Federation); Tausenev, A. V.; Konyashchenko, A. V. [OOO Avesta-proekt (Russian Federation); Balykin, V. I., E-mail: balykin@isan.tyroitsk.ru [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)

    2013-07-15

    The nonlinear optical properties of single nanoholes and nanoslits fabricated in gold and aluminum nanofilms are studied by third harmonic generation (THG). It is shown that the extremely high third-order optical susceptibility of aluminum and the presence of strong plasmon resonance of a single nanohole in an aluminum film make possible an efficient nanolocalized radiation source at the third harmonic frequency. The THG efficiency for a single nanohole in a thin metal film can be close to unity for an exciting laser radiation intensity on the order of 10{sup 13} W/cm{sup 2}.

  1. Growth and characterizaion of urea p-nitrophenol crystal: an organic nonlinear optical material for optoelectronic device application

    Science.gov (United States)

    Suresh, A.; Manikandan, N.; Jauhar, RO. MU.; Murugakoothan, P.; Vinitha, G.

    2018-06-01

    Urea p-nitrophenol, an organic nonlinear optical crystal was synthesized and grown adopting slow evaporation and seed rotation method. Single crystal X-ray diffraction study confirmed the formation of the desired crystal. High resolution X-ray diffraction study showed the defect nature of the crystal. The presence of functional groups in the material was confirmed by FTIR analysis. UV-Vis-NIR study indicates that the grown crystal has a wider transparency region with the lower cutoff wavelength at 423 nm. The grown crystal is thermally stable up to 120 °C as assessed by TG-DTA analysis. The optical homogeneity of the grown crystal was confirmed by birefringence study. The 1064 nm Nd-YAG laser was used to obtain laser induced surface damage threshold which was found to be 0.38, 0.25 and 0.33 GW/cm2 for (0 1 0), (1 1 - 1) and (0 1 1) planes, respectively. The dielectric study was performed to find the charge distribution inside the crystal. The hardness property of the titular material has been found using Vicker's microhardness study. The optical nonlinearity obtained from third order nonlinear optical measurements carried out using Z-scan technique showed that these samples could be exploited for optical limiting studies.

  2. Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells

    International Nuclear Information System (INIS)

    Budker, Dmitry; Hollberg, Leo; Kimball, Derek F.; Kitching, J.; Pustelny, Szymon; Yashchuk, Valeriy V.

    2004-01-01

    Using laser optical pumping, widths and frequency shifts are determined for microwave transitions between ground-state hyperfine components of 85 Rb and 87 Rb atoms contained in vapor cells with alkane anti-relaxation coatings. The results are compared with data on Zeeman relaxation obtained in nonlinear magneto-optical rotation (NMOR) experiments, a comparison important for quantitative understanding of spin-relaxation mechanisms in coated cells. By comparing cells manufactured over a forty-year period we demonstrate the long-term stability of coated cells, an important property for atomic clocks and magnetometers

  3. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation

    Science.gov (United States)

    Neufeld, Ofer; Cohen, Oren

    2018-03-01

    Optical chirality (OC)—one of the fundamental quantities of electromagnetic fields—corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.

  4. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation.

    Science.gov (United States)

    Neufeld, Ofer; Cohen, Oren

    2018-03-30

    Optical chirality (OC)-one of the fundamental quantities of electromagnetic fields-corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.

  5. Nonlinear optical response and its theoretical modelling of Sb2S3 nanorod

    Science.gov (United States)

    Yadav, Rajesh Kumar; Barik, A. R.; Das, Amlan; Adarsh, K. V.

    2018-05-01

    Light-matter interaction in nanoscale regime have unprecedented and accelerating demand in optoelectronics, valley electronics and device applications. Such interaction in 1-dimention (1D) metal chalcogenides has emerged as an important research topic because of its possibility to custom design optical properties, implying enormous application including optical computers, communications, bioimaging, and so on. However, understanding of nonlinear optical response of these nanostructures is still lacking, although it constitutes an interesting problem on the light-matter interaction. Here, we have presented the nonlinear optical response in Sb2S3 nanorod using Z-scan technique. Our experimental findings show a strong saturable absorption (SA). In this context, we have numerically simulated the experimental result using two level rate equation. The solutions of these two-level rate equation for a Gaussian shaped pulse exactly replicated the experimental data. From the best numerical fit, we found excited state decay time (τ ≈ 0.15ns) and saturation intensity (IS ≈ 0.01 GW/cm2). Additionally, we have calculated number of career density (N ≈ 5.31 × 10-17 cm-3), ground state absorption cross section (σ1 ≈ 1.63 × 10-17 cm2). Our experimental finding indicates that they can be employed as saturable absorbers.

  6. Design and optimization of carbon-nanotube-material/dielectric hybrid nonlinear optical waveguides

    International Nuclear Information System (INIS)

    Zhao, Xin; Zheng, Zheng; Lu, Zhiting; Zhu, Jinsong; Zhou, Tao

    2011-01-01

    The nonlinear optical characteristics of highly nonlinear waveguides utilizing carbon nanotube composite materials are investigated theoretically. The extremely high nonlinearity and relatively high loss of the carbon nanotube materials are shown to greatly affect the performance of such waveguides for nonlinear optical applications, in contrast to waveguides using conventional nonlinear materials. Different configurations based on applying the carbon nanotube materials to the popular ridge and buried waveguides are thoroughly studied, and the optimal geometries are derived through simulations. It is shown that, though the nonlinear coefficient is often huge for these waveguides, the loss characteristics can significantly limit the maximum achievable accumulated nonlinearity, e.g. the maximum nonlinear phase shift. Our results suggest that SOI-based high-index-contrast, carbon nanotube cladding waveguides, rather than the currently demonstrated low-contrast waveguides, could hold the promise of achieving significantly higher accumulated nonlinearity

  7. Unidirectional transmission in 1D nonlinear photonic crystal based on topological phase reversal by optical nonlinearity

    Directory of Open Access Journals (Sweden)

    Chong Li

    2017-02-01

    Full Text Available We propose a scheme of unidirectional transmission in a 1D nonlinear topological photonic crystal based on the topological edge state and three order optical nonlinearity. The 1D photonic crystals consists of a nonlinear photonic crystal L and a linear photonic crystal R. In the backward direction, light is totally reflected for the photons transmission prohibited by the bandgap. While in the forward direction, light interacts with the nonlinear photonic crystal L by optical Kerr effect, bringing a topological phase reversal and results the topological edge mode arising at the interface which could transmit photons through the bandgaps both of the photonic crystal L and R. When the signal power intensity larger than a moderate low threshold value of 10.0 MW/cm2, the transmission contrast ratio could remain at 30 steadily.

  8. Creating large second-order optical nonlinearity in optical waveguides written by femtosecond laser pulses in boro-aluminosilicate glass

    Science.gov (United States)

    An, Hong-Lin; Arriola, Alexander; Gross, Simon; Fuerbach, Alexander; Withford, Michael J.; Fleming, Simon

    2014-01-01

    The thermal poling technique was applied to optical waveguides embedded in a commercial boro-aluminosilicate glass, resulting in high levels of induced second-order optical nonlinearity. The waveguides were fabricated using the femtosecond laser direct-write technique, and thermally poled samples were characterized with second harmonic optical microscopy to reveal the distribution profile of the induced nonlinearity. It was found that, in contrast to fused silica, the presence of waveguides in boro-aluminosilicate glass led to an enhancement of the creation of the second-order nonlinearity, which is larger in the laser written waveguiding regions when compared to the un-modified substrate. The magnitude of the nonlinear coefficient d33 achieved in the core of the laser-written waveguides, up to 0.2 pm/V, was comparable to that in thermally poled fused silica, enabling the realization of compact integrated electro-optic devices in boro-aluminosilicate glasses.

  9. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  10. An investigation on linear and non-linear optical constants of nano-spherical CuPc thin films for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, I.S. [Nano-Science & Semiconductor Labs, Metallurgical Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Ganesh, V. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Shkir, M., E-mail: shkirphysics@gmail.com [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); AlFaify, S. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Zahran, H.Y. [Nano-Science & Semiconductor Labs, Metallurgical Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Algarni, H. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abutalib, M.M.; Al-Ghamdi, Attieh A. [Centre of Nanotechnology, Physics Department-Faculty of Science-AL Faisaliah Campus, King Abdulaziz University, Jeddah (Saudi Arabia); El-Naggar, A.M.; AlBassam, A.M. [Research Chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Dept., College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2016-09-01

    In the current work, the authors present the systematic study on linear and nonlinear optical properties of Copper-phathalocyanine thin film deposited by thermal evaporation system for the first time. The thickness of the prepared thin film was measured and found to be ~300 nm. X-ray diffraction and AFM study confirms that the prepared thin film possess good quality. The orientation of the grown thin film is found to be along (100). UV–vis-NIR study shows that the deposited thin film is highly transparent (>80%) in the wavelength range of 700–2500 nm. Further, the recorded optical data was used to determine the various linear and nonlinear optical parameters. The calculated value of refractive index is found to be in the range of 0.4–1.0. The direct and indirect band gap value is found to be 2.9 and 3.25 eV, respectively. The value of linear and nonlinear susceptibilities is found to be in order of 10{sup −12}. The higher value of linear and nonlinear parameters makes it suitable for optoelectronic applications.

  11. An investigation on linear and non-linear optical constants of nano-spherical CuPc thin films for optoelectronic applications

    Science.gov (United States)

    Yahia, I. S.; Ganesh, V.; Shkir, M.; AlFaify, S.; Zahran, H. Y.; Algarni, H.; Abutalib, M. M.; Al-Ghamdi, Attieh A.; El-Naggar, A. M.; AlBassam, A. M.

    2016-09-01

    In the current work, the authors present the systematic study on linear and nonlinear optical properties of Copper-phathalocyanine thin film deposited by thermal evaporation system for the first time. The thickness of the prepared thin film was measured and found to be ~300 nm. X-ray diffraction and AFM study confirms that the prepared thin film possess good quality. The orientation of the grown thin film is found to be along (100). UV-vis-NIR study shows that the deposited thin film is highly transparent (>80%) in the wavelength range of 700-2500 nm. Further, the recorded optical data was used to determine the various linear and nonlinear optical parameters. The calculated value of refractive index is found to be in the range of 0.4-1.0. The direct and indirect band gap value is found to be 2.9 and 3.25 eV, respectively. The value of linear and nonlinear susceptibilities is found to be in order of 10-12. The higher value of linear and nonlinear parameters makes it suitable for optoelectronic applications.

  12. Mechanism of large optical nonlinearity in gold nanoparticle films.

    Science.gov (United States)

    Mirza, I; McCloskey, D; Blau, W J; Lunney, J G

    2018-04-01

    The Z-scan technique, using femtosecond (fs) laser pulses at 1480 nm laser pulses, was used to measure the nonlinear optical properties of gold (Au) nanoparticle (NP) films made by both nanosecond (ns) and fs pulsed laser deposition (PLD) in vacuum. At irradiance levels of 1×10 12   Wm -2 , the ns-PLD films displayed induced absorption with β=4×10 -5   mW -1 , and a negative lensing effect with n 2 =-4.7×10 -11   m 2  W -1 with somewhat smaller values for the fs-PLD films. These values of n 2 imply an unphysically large change in the real part of the refractive index, demonstrating the need to take account of nonlinear changes of the Fresnel coefficients and multiple beam interference in Z-scan measurements on nanoscale films. Following this approach, the Z-scan observations were analyzed to determine the effective complex refractive index of the NP film at high irradiance. It appears that at high irradiance the NP film behaves as a metal, while at low irradiance it behaves as a low-loss dielectric. Thus, it is conjectured that, for high irradiance near the waist of the Z-scan laser beam, laser driven electron tunneling between NPs gives rise to metal-like optical behavior.

  13. Growth and characterization of new nonlinear optical 1-phenyl-3-(4-dimethylamino phenyl) prop-2-en-1-one (PDAC) single crystals

    Science.gov (United States)

    Ravindraswami, K.; Janardhana, K.; Gowda, Jayaprakash; Moolya, B. Narayana

    2018-04-01

    Non linear optical 1-phenyl-3-(4-dimethylamino phenyl) prop-2-en-1-one (PDAC) was synthesized using Claisen - Schmidt condensation method and studied for optical nonlinearity with an emphasis on structure-property relationship. The structural confirmation studies were carried out using 1H-NMR, FT-IR and single crystal XRD techniques. The nonlinear absorption and nonlinear refraction parameters in z-scan with nano second laser pulses were obtained by measuring the profile of propagated beam through the samples. The real and imaginary parts of third-order bulk susceptibility χ(3) were evaluated. Thermo gravimetric analysis is carried out to investigate the thermal stability.

  14. Spectral dependence of nonlinear optical absorption of silica glass with copper nanoparticles

    International Nuclear Information System (INIS)

    Golubev, A N; Nikitin, S I; Smirnov, M A; Stepanov, A L

    2011-01-01

    The nonlinear optical properties of silica glass with copper nanoparticles synthesized by ion implantation were investigated by z-scan method in nanosecond time scale. The reverse saturation absorption (RSA) at the wavelength range of 450–540 nm and saturation absorption (SA) at 550–585 nm were observed. It was supposed that the two-photon electron absorption from bound of d-states determined the RSA effect and the SA is due to saturation of plasmon excitation.

  15. Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities

    Directory of Open Access Journals (Sweden)

    Yang Xiaoyu

    2016-09-01

    Full Text Available In this study, nanoscale integrated all-optical XNOR, XOR, and NAND logic gates were realized based on all-optical tunable on-chip plasmon-induced transparency in plasmonic circuits. A large nonlinear enhancement was achieved with an organic composite cover layer based on the resonant excitation-enhancing nonlinearity effect, slow light effect, and field confinement effect provided by the plasmonic nanocavity mode, which ensured a low excitation power of 200 μW that is three orders of magnitude lower than the values in previous reports. A feature size below 600 nm was achieved, which is a one order of magnitude lower compared to previous reports. The contrast ratio between the output logic states “1” and “0” reached 29 dB, which is among the highest values reported to date. Our results not only provide an on-chip platform for the study of nonlinear and quantum optics but also open up the possibility for the realization of nanophotonic processing chips based on nonlinear plasmonics.

  16. Non-linear optical imaging – Introduction and pharmaceutical applications

    NARCIS (Netherlands)

    Fussell, A.L.; Isomaki, Antti; Strachan, Clare J.

    2013-01-01

    Nonlinear optical imaging is an emerging technology with much potential in pharmaceutical analysis. The technique encompasses a range of optical phenomena, including coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and twophoton excited fluorescence (TPEF). The

  17. Label-free and selective nonlinear fiber-optical biosensing

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Heuck, Mikkel; Agger, Christian

    2008-01-01

    We demonstrate that the inherent nonlinearity of a microstructured optical fiber (MOF) may be used to achieve label-free selective biosensing, thereby eliminating the need for post-processing of the fiber. This first nonlinear biosensor utilizes a change in the modulational instability (MI) gain...... for optimizing the sensitivity. The nonlinear sensor shows a sensitivity of around 10.4nm/nm, defined as the shift in resonance wavelength per nm biolayer, which is a factor of 7.5 higher than the hitherto only demonstrated label-free MOF biosensor....

  18. A nonlinear plasmonic waveguide based all-optical bidirectional switching

    Science.gov (United States)

    Bana, Xiaoqiang; Pang, Xingxing; Li, Xiaohui; Hu, Bin; Guo, Yixuan; Zheng, Hairong

    2018-01-01

    In this paper, an all-optical switching with a nanometer coupled ring resonator is demonstrated based on the nonlinear material. By adjusting the light intensity, we implement the resonance wavelength from 880 nm to 940 nm in the nonlinear material structure monocyclic. In the bidirectional switch structure, the center wavelength (i.e. 880 nm) is fixed. By changing the light intensity from I = 0 to I = 53 . 1 MW /cm2, the function of optical switching can be obtained. The results demonstrate that both the single-ring cavity and the T-shaped double-ring structure can realize the optical switching effect. This work takes advantage of the simple structure. The single-ring cavity plasmonic switches have many advantages, such as nanoscale size, low pumping light intensity, ultrafast response time (femtosecond level), etc. It is expected that the proposed all-optical integrated devices can be potentially applied in optical communication, signal processing, and signal sensing, etc.

  19. Nonlinear Fourier transform for dual-polarization optical communication system

    DEFF Research Database (Denmark)

    Gaiarin, Simone

    communication is considered an emerging paradigm in fiber-optic communications that could potentially overcome these limitations. It relies on a mathematical technique called “inverse scattering transform” or “nonlinear Fourier transform (NFT)” to exploit the “hidden” linearity of the nonlinear Schrödinger...

  20. Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging.

    Science.gov (United States)

    Kumar, Sunil; Kamali, Tschackad; Levitte, Jonathan M; Katz, Ori; Hermann, Boris; Werkmeister, Rene; Považay, Boris; Drexler, Wolfgang; Unterhuber, Angelika; Silberberg, Yaron

    2015-05-18

    Noninvasive label-free imaging of biological systems raises demand not only for high-speed three-dimensional prescreening of morphology over a wide-field of view but also it seeks to extract the microscopic functional and molecular details within. Capitalizing on the unique advantages brought out by different nonlinear optical effects, a multimodal nonlinear optical microscope can be a powerful tool for bioimaging. Bringing together the intensity-dependent contrast mechanisms via second harmonic generation, third harmonic generation and four-wave mixing for structural-sensitive imaging, and single-beam/single-pulse coherent anti-Stokes Raman scattering technique for chemical sensitive imaging in the finger-print region, we have developed a simple and nearly alignment-free multimodal nonlinear optical microscope that is based on a single wide-band Ti:Sapphire femtosecond pulse laser source. Successful imaging tests have been realized on two exemplary biological samples, a canine femur bone and collagen fibrils harvested from a rat tail. Since the ultra-broad band-width femtosecond laser is a suitable source for performing high-resolution optical coherence tomography, a wide-field optical coherence tomography arm can be easily incorporated into the presented multimodal microscope making it a versatile optical imaging tool for noninvasive label-free bioimaging.

  1. Nonlinear optical rectification in a vertically coupled lens-shaped InAs/GaAs quantum dots with wetting layers under hydrostatic pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ben Mahrsia, R.; Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Bouzaiene, L.; Maaref, H.

    2016-06-25

    In this paper we explore the structure parameters, hydrostatic pressure and temperature effects on Nonlinear optical rectification (NOR) in an asymmetric vertically coupled lens-shaped InAs/GaAs quantum dots. During epitaxial growth, lens-shaped quantum dots (QDs) are formed on the wetting layer (WL). Many theoretical works have neglected WL and its effect on nonlinear optical properties of QD-based systems for sake of simplicity. However, in this work the WL has been shown to be so influential in the intersubband energy and nonlinear optical rectification magnitude. Also, a detailed and comprehensive study of the nonlinear optical rectification is theoretical investigated within the framework of the compact density-matrix approach and finite difference method (FDM). It's found that nonlinear optical rectification coefficient is strongly affected not only by the WL, but also by the pressure, temperature and the coupled width between the QDs. Obtained results revealed that a red or a blue shift cane be observed. This behavior in the NOR gives a new degree of freedom in regions of interest for device applications. - Highlights: • Vertically coupled lens-shaped InAs/GaAs quantum dots is investigated. • Photon energy shifts towards the red with increasing pressure. • Photon energy shifts towards the blue with increasing temperature. • Intersubband energy decreases with increasing the wetting layer width. • Nonlinear optical rectification magnitude is controlled and adjusted.

  2. Preparation and characterization of RF magnetron sputtered CuO/CaTi{sub 4}O{sub 9} thin films with enhanced third-order nonlinear optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Congfei; Liang, Xiaojuan, E-mail: lxj6126@126.com; Hu, Guangcai; Hu, Xie; Chen, Xipeng; Li, Pengzhi; Xiang, Weidong, E-mail: xiangweidong001@126.com

    2017-04-15

    The titanate, is a material of interest for various energy applications, including photovoltaics, catalysts, and high-rate energy storage devices. Herein, its related materials, CuO/CaTi{sub 4}O{sub 9} [CCTO] thin films, were successfully fabricated on SrTiO{sub 3} (100) substrates by RF magnetron sputtering assisted with subsequent oxygen annealing. This obtained CCTO thin films were then systemically studied by X-ray powder diffraction (XRD), atomic force microscopy (AFM), scan electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). It was found that CuO and CaTi{sub 4}O{sub 9} (001) particles were closely accumulated together on the surface of the substrate in the annealing process after comparing with that of the as-prepared thin film, which was verified by SEM and AFM results. Furthermore, we investigated the third-order nonlinear optical (NLO) properties of the as-prepared and annealed CCTO thin film by means of the Z-scan technique using 650 nm femtosecond laser pulse. Post-deposition oxygen annealing was found to modify the morphological characteristics of the films, resulting in enhancing their NLO properties. The observation of NLO performance of annealed CCTO thin film indicates that RF magnetron sputtering is a feasible method for the fabrication of optical thin films, which can be expanded to fabricate other NLO materials from the corresponding dispersions. Naturally, we concluded that the CCTO thin film occupy a better NLO property, and thus enlarge its application in nonlinear optics. - Highlights: • The CCTO thin film was prepared using the RF magnetron sputtering and oxygen annealing. • The film was prepared on the SrTiO{sub 3}(100) substrates with a Ca{sub 2}CuO{sub 3} target. • The oxygen annealing was found can effectively enhance the film quality and NLO property. • The film was characterized using XPS, SEM, AFM, TEM, XRD and Z-scan techniques.

  3. Dual-polarization nonlinear Fourier transform-based optical communication system

    DEFF Research Database (Denmark)

    Gaiarin, Simone; Perego, A. M.; da Silva, Edson Porto

    2018-01-01

    communication could potentially overcome these limitations. It relies on a mathematical technique called “nonlinear Fourier transform (NFT)” to exploit the “hidden” linearity of the nonlinear Schrödinger equation as the master model for signal propagation in an optical fiber. We present here the theoretical...

  4. Generalized optomechanics and its applications quantum optical properties of generalized optomechanical system

    CERN Document Server

    Li, Jin Jin

    2013-01-01

    A mechanical oscillator coupled to the optical field in a cavity is a typical cavity optomechanical system. In our textbook, we prepare to introduce the quantum optical properties of optomechanical system, i.e. linear and nonlinear effects. Some quantum optical devices based on optomechanical system are also presented in the monograph, such as the Kerr modulator, quantum optical transistor, optomechanical mass sensor, and so on. But most importantly, we extend the idea of typical optomechanical system to coupled mechanical resonator system and demonstrate that the combined two-level structure

  5. Nonlinear optical microscopy for histology of fresh normal and cancerous pancreatic tissues.

    Directory of Open Access Journals (Sweden)

    Wenyan Hu

    Full Text Available BACKGROUND: Pancreatic cancer is a lethal disease with a 5-year survival rate of only 1-5%. The acceleration of intraoperative histological examination would be beneficial for better management of pancreatic cancer, suggesting an improved survival. Nonlinear optical methods based on two-photon excited fluorescence (TPEF and second harmonic generation (SHG of intrinsic optical biomarkers show the ability to visualize the morphology of fresh tissues associated with histology, which is promising for real-time intraoperative evaluation of pancreatic cancer. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate whether the nonlinear optical imaging methods have the ability to characterize pancreatic histology at cellular resolution, we studied different types of pancreatic tissues by using label-free TPEF and SHG. Compared with other routine methods for the preparation of specimens, fresh tissues without processing were found to be most suitable for nonlinear optical imaging of pancreatic tissues. The detailed morphology of the normal rat pancreas was observed and related with the standard histological images. Comparatively speaking, the preliminary images of a small number of chemical-induced pancreatic cancer tissues showed visible neoplastic differences in the morphology of cells and extracellular matrix. The subcutaneous pancreatic tumor xenografts were further observed using the nonlinear optical microscopy, showing that most cells are leucocytes at 5 days after implantation, the tumor cells begin to proliferate at 10 days after implantation, and the extracellular collagen fibers become disordered as the xenografts grow. CONCLUSIONS/SIGNIFICANCE: In this study, nonlinear optical imaging was used to characterize the morphological details of fresh pancreatic tissues for the first time. We demonstrate that it is possible to provide real-time histological evaluation of pancreatic cancer by the nonlinear optical methods, which present an

  6. All-optical image processing with nonlinear liquid crystals

    Science.gov (United States)

    Hong, Kuan-Lun

    Liquid crystals are fascinating materials because of several advantages such as large optical birefringence, dielectric anisotropic, and easily compatible to most kinds of materials. Compared to the electro-optical properties of liquid crystals widely applied in displays and switching application, transparency through most parts of wavelengths also makes liquid crystals a better candidate for all-optical processing. The fast response time of liquid crystals resulting from multiple nonlinear effects, such as thermal and density effect can even make real-time processing realized. In addition, blue phase liquid crystals with spontaneously self-assembled three dimensional cubic structures attracted academic attention. In my dissertation, I will divide the whole contents into six parts. In Chapter 1, a brief introduction of liquid crystals is presented, including the current progress and the classification of liquid crystals. Anisotropy and laser induced director axis reorientation is presented in Chapter 2. In Chapter 3, I will solve the electrostrictive coupled equation and analyze the laser induced thermal and density effect in both static and dynamic ways. Furthermore, a dynamic simulation of laser induced density fluctuation is proposed by applying finite element method. In Chapter 4, two image processing setups are presented. One is the intensity inversion experiment in which intensity dependent phase modulation is the mechanism. The other is the wavelength conversion experiment in which I can read the invisible image with a visible probe beam. Both experiments are accompanied with simulations to realize the matching between the theories and practical experiment results. In Chapter 5, optical properties of blue phase liquid crystals will be introduced and discussed. The results of grating diffractions and thermal refractive index gradient are presented in this chapter. In addition, fiber arrays imaging and switching with BPLCs will be included in this chapter

  7. Nonlinear optical studies of organic monolayers

    International Nuclear Information System (INIS)

    Shen, Y.R.

    1988-02-01

    Second-order nonlinear optical effects are forbidden in a medium with inversion symmetry, but are necessarily allowed at a surface where the inversion summary is broken. They are often sufficiently strong so that a submonolayer perturbation of the surface can be readily detected. They can therefore be used as effective tools to study monolayers adsorbed at various interfaces. We discuss here a number of recent experiments in which optical second harmonic generation (SHG) and sum-frequency generation (SFG) are employed to probe and characterize organic monolayers. 15 refs., 5 figs

  8. The Quest for the Ultimate Nonlinear Optical Material

    Science.gov (United States)

    Dagenais, M.

    1990-10-01

    The following sections are included: * Introduction * From Infancy to the Real World * Highly Efficient Nonlinear Optical Materials for Switching and Processing * The Era of Pragmatism * Conclusion * References

  9. Utilizing strongly absorbing materials for low-loss surface-wave nonlinear optics

    Science.gov (United States)

    Grosse, Nicolai B.; Franz, Philipp; Heckmann, Jan; Pufahl, Karsten; Woggon, Ulrike

    2018-04-01

    Optical media endowed with large nonlinear susceptibilities are highly prized for their employment in frequency conversion and the generation of nonclassical states of light. Although the presence of an optical resonance can greatly increase the nonlinear response (e.g., in epsilon-near-zero materials), the non-negligible increase in linear absorption often precludes the application of such materials in nonlinear optics. Absorbing materials prepared as thin films, however, can support a low-loss surface wave: the long-range surface exciton polariton (LRSEP). Its propagation lifetime increases with greater intrinsic absorption and reduced film thickness, provided that the film is embedded in a transparent medium (symmetric cladding). We explore LRSEP propagation in a molybdenum film by way of a prism-coupling configuration. Our observations show that excitation of the LRSEP mode leads to a dramatic increase in the yield of second-harmonic generation. This implies that the LRSEP mode is an effective vehicle for utilizing the nonlinear response of absorbing materials.

  10. Optically nonlinear energy transfer in light-harvesting dendrimers

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2004-08-01

    Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems, organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Starting from a thorough treatment of the underlying theory based on the principles of molecular quantum electrodynamics, it is possible to identify and characterize several optically nonlinear mechanisms for directed energy transfer and energy pooling in multichromophore dendrimers. Such mechanisms fall into two classes: first, those where two-photon absorption by individual donors is followed by transfer of the net energy to an acceptor; second, those where the excitation of two electronically distinct but neighboring donor groups is followed by a collective migration of their energy to a suitable acceptor. Each transfer process is subject to minor dissipative losses. In this paper we describe in detail the balance of factors and the constraints that determines the favored mechanism, which include the excitation statistics, structure of the energy levels, laser coherence factors, chromophore selection rules and architecture, possibilities for the formation of delocalized excitons, spectral overlap, and the overall distribution of donors and acceptors. Furthermore, it transpires that quantum interference between different mechanisms can play an important role. Thus, as the relative importance of each mechanism determines the relevant nanophotonic characteristics, the results reported here afford the means for optimizing highly efficient light-harvesting dendrimer devices.

  11. All-optical universal logic gates on nonlinear multimode interference coupler using tunable input intensity

    Science.gov (United States)

    Tajaldini, Mehdi; Jafri, Mohd Zubir Mat

    2015-04-01

    The theory of Nonlinear Modal Propagation Analysis Method (NMPA) have shown significant features of nonlinear multimode interference (MMI) coupler with compact dimension and when launched near the threshold of nonlinearity. Moreover, NMPA have the potential to allow studying the nonlinear MMI based the modal interference to explorer the phenomenon that what happen due to the natural of multimode region. Proposal of all-optical switch based NMPA has approved its capability to achieving the all-optical gates. All-optical gates have attracted increasing attention due to their practical utility in all-optical signal processing networks and systems. Nonlinear multimode interference devices could apply as universal all-optical gates due to significant features that NMPA introduce them. In this Paper, we present a novel Ultra-compact MMI coupler based on NMPA method in low intensity compared to last reports either as a novel design method and potential application for optical NAND, NOR as universal gates on single structure for Boolean logic signal processing devices and optimize their application via studding the contrast ratio between ON and OFF as a function of output width. We have applied NMPA for several applications so that the miniaturization in low nonlinear intensities is their main purpose.

  12. Optical soliton solutions for two coupled nonlinear Schroedinger systems via Darboux transformation

    International Nuclear Information System (INIS)

    Zhang Haiqiang; Li Juan; Xu Tao; Zhang Yaxing; Hu Wei; Tian Bo

    2007-01-01

    In nonlinear optical fibers, the vector solitons can be governed by the systems of coupled nonlinear Schroedinger from polarized optical waves in an isotropic medium. Based on the Ablowitz-Kaup-Newell-Segur technology, the Darboux transformation method is successfully applied to two coupled nonlinear Schroedinger systems. With the help of symbolic computation, the bright vector one- and two-soliton solutions including one-peak and two-peak solitons are further constructed via the iterative algorithm of Darboux transformation. Through the figures for several sample solutions, the stable propagation and elastic collisions for these kinds of bright vector solitons are discussed and the possible applications are pointed out in optical communications and relevant optical experiments.In addition, the conserved quantities of such two systems, i.e., the energy, momentum and Hamiltonian, are also presented

  13. Effects of high light intensities on the optical Kerr nonlinearity of semiconducting polymers

    International Nuclear Information System (INIS)

    Charra, Fabrice

    1990-01-01

    Experimental investigations, in the picosecond time scale, of the Kerr type optical nonlinearity (or pump and probe) are presented. The nonlinear molecules semiconducting polymers of the type poly-diacetylene. The degenerate case (pump and probe at the same frequency) has been studied by four wave mixing at 1064 nm, in the configuration of phase conjugation. It is shown that the response is dominated by high orders of nonlinearity. The results are analysed in terms of two photon resonance. The non-degenerate case is studied by two wave mixing or in the optical Kerr gate experiment. The optical Stark effect and the differential spectra of photoinduced species are analysed. Two photon excitations at 1064 nm and one photon excitations at 532 nm are compared. A consequence of the mechanism of the nonlinearity is the possibility of generating phase conjugate waves at double frequency. The theoretical analysis and the experimental demonstration of this process are presented. The experiment is only sensitive to nonlinearities of the fifth order or more and thus allows to clarify its origins and dynamics. Finally, quantum modelling and calculations of the nonlinear optical responses, developed for the interpretations of the above experiments, are presented. (author) [fr

  14. Studies on nonlocal optical nonlinearity of Sr–CuO–polyvinyl alcohol nanocomposite thin films

    International Nuclear Information System (INIS)

    Tamgadge, Y.S.; Talwatkar, S.S.; Sunatkari, A.L.; Pahurkar, V.G.; Muley, G.G.

    2015-01-01

    Thermally induced nonlocal nonlinear optical properties of strontium (Sr) doped CuO-polyvinyl alcohol (PVA) nanocomposite thin films under continuous wave Helium–Neon laser illumination are investigated by single beam Z-scan method. Undoped and Sr doped CuO nanoparticles (NPs) using L-arginine as surface modifying agent have been synthesized by wet chemical method and their thin films with PVA as host matrix have been obtained by spin coating technique. Structure, morphology and purity of prepared CuO NPs and thin films have been studied by X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy and energy dispersive X-ray absorption spectroscopy. Fourier transform infra-red spectrum attests the role of L-arginine as surface modifier and ultraviolet–visible absorption studies reveal that the excitonic absorption wavelengths are blue shifted for strontium doped CuO NPs. Sr doped CuO NPs with average particle size of 7 nm and calculated optical band gap up to 2.54 eV have been reported. All Sr doped CuO–PVA nanocomposite thin films show enhanced nonlinear refraction and absorption best suited for optical limiting applications. Observed effects have been attributed to thermal lensing effect. - Highlights: • Pure and strontium doped CuO–polyvinyl alcohol nanocomposite thin films are prepared. • Z-scan studies of thin films are performed under continuous wave helium–neon laser. • Enhanced values of third order nonlinear optical coefficients are obtained for all films. • Thermally induced self-defocusing and reverse saturable absorption have been discussed.

  15. Studies on nonlocal optical nonlinearity of Sr–CuO–polyvinyl alcohol nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tamgadge, Y.S. [Department of Physics, Mahatma Fule Arts, Commerce and S C Science Mahavidyalaya, Warud, Dist. Amravati (MS), 444906 (India); Talwatkar, S.S. [Department of Physics, D K Marathe and N G Acharya College, Chembur, Mumbai (MS) 440071 (India); Sunatkari, A.L. [Department of Physics, Siddharth College of Arts, Science and Commerce, Fort, Mumbai (MS) 440001 (India); Pahurkar, V.G. [Department of Physics, Sant Gadge Baba Amravati University, Amravati (MS), 444602 (India); Muley, G.G., E-mail: gajananggm@yahoo.co.in [Department of Physics, Sant Gadge Baba Amravati University, Amravati (MS), 444602 (India)

    2015-11-30

    Thermally induced nonlocal nonlinear optical properties of strontium (Sr) doped CuO-polyvinyl alcohol (PVA) nanocomposite thin films under continuous wave Helium–Neon laser illumination are investigated by single beam Z-scan method. Undoped and Sr doped CuO nanoparticles (NPs) using L-arginine as surface modifying agent have been synthesized by wet chemical method and their thin films with PVA as host matrix have been obtained by spin coating technique. Structure, morphology and purity of prepared CuO NPs and thin films have been studied by X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscopy and energy dispersive X-ray absorption spectroscopy. Fourier transform infra-red spectrum attests the role of L-arginine as surface modifier and ultraviolet–visible absorption studies reveal that the excitonic absorption wavelengths are blue shifted for strontium doped CuO NPs. Sr doped CuO NPs with average particle size of 7 nm and calculated optical band gap up to 2.54 eV have been reported. All Sr doped CuO–PVA nanocomposite thin films show enhanced nonlinear refraction and absorption best suited for optical limiting applications. Observed effects have been attributed to thermal lensing effect. - Highlights: • Pure and strontium doped CuO–polyvinyl alcohol nanocomposite thin films are prepared. • Z-scan studies of thin films are performed under continuous wave helium–neon laser. • Enhanced values of third order nonlinear optical coefficients are obtained for all films. • Thermally induced self-defocusing and reverse saturable absorption have been discussed.

  16. The nonlinear optical properties of a magneto-exciton in a strained Ga0.2In0.8As/GaAs quantum dot

    International Nuclear Information System (INIS)

    Kumar, N. R. Senthil; Peter, A. John; Yoo Chang Kyoo

    2013-01-01

    The magnetic field-dependent heavy hole excitonic states in a strained Ga 0.2 In 0.8 As/GaAs quantum dot are investigated by taking into account the anisotropy, non-parabolicity of the conduction band, and the geometrical confinement. The strained quantum dot is considered as a parabolic dot of InAs embedded in a GaAs barrier material. The dependence of the effective excitonic g-factor as a function of dot radius and the magnetic field strength is numerically measured. The interband optical transition energy as a function of geometrical confinement is computed in the presence of a magnetic field. The magnetic field-dependent oscillator strength of interband transition under the geometrical confinement is studied. The exchange enhancements as a function of dot radius are observed for various magnetic field strengths in a strained Ga 0.2 In 0.8 As/GaAs quantum dot. Heavy hole excitonic absorption spectra, the changes in refractive index, and the third-order susceptibility of third-order harmonic generation are investigated in the Ga 0.2 In 0.8 As/GaAs quantum dot. The result shows that the effect of magnetic field strength is more strongly dependent on the nonlinear optical property in a low-dimensional semiconductor system. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Regularized linearization for quantum nonlinear optical cavities: application to degenerate optical parametric oscillators.

    Science.gov (United States)

    Navarrete-Benlloch, Carlos; Roldán, Eugenio; Chang, Yue; Shi, Tao

    2014-10-06

    Nonlinear optical cavities are crucial both in classical and quantum optics; in particular, nowadays optical parametric oscillators are one of the most versatile and tunable sources of coherent light, as well as the sources of the highest quality quantum-correlated light in the continuous variable regime. Being nonlinear systems, they can be driven through critical points in which a solution ceases to exist in favour of a new one, and it is close to these points where quantum correlations are the strongest. The simplest description of such systems consists in writing the quantum fields as the classical part plus some quantum fluctuations, linearizing then the dynamical equations with respect to the latter; however, such an approach breaks down close to critical points, where it provides unphysical predictions such as infinite photon numbers. On the other hand, techniques going beyond the simple linear description become too complicated especially regarding the evaluation of two-time correlators, which are of major importance to compute observables outside the cavity. In this article we provide a regularized linear description of nonlinear cavities, that is, a linearization procedure yielding physical results, taking the degenerate optical parametric oscillator as the guiding example. The method, which we call self-consistent linearization, is shown to be equivalent to a general Gaussian ansatz for the state of the system, and we compare its predictions with those obtained with available exact (or quasi-exact) methods. Apart from its operational value, we believe that our work is valuable also from a fundamental point of view, especially in connection to the question of how far linearized or Gaussian theories can be pushed to describe nonlinear dissipative systems which have access to non-Gaussian states.

  18. FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.

    Science.gov (United States)

    Dissanayake, Chethiya M; Premaratne, Malin; Rukhlenko, Ivan D; Agrawal, Govind P

    2010-09-27

    A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.

  19. Characterizing the Statistics of a Bunch of Optical Pulses Using a Nonlinear Optical Loop Mirror

    Directory of Open Access Journals (Sweden)

    Olivier Pottiez

    2015-01-01

    Full Text Available We propose in this work a technique for determining the amplitude distribution of a wave packet containing a large number of short optical pulses with different amplitudes. The technique takes advantage of the fast response of the optical Kerr effect in a fiber nonlinear optical loop mirror (NOLM. Under some assumptions, the statistics of the pulses can be determined from the energy transfer characteristic of the packet through the NOLM, which can be measured with a low-frequency detection setup. The statistical distribution is retrieved numerically by approximating the solution of a system of nonlinear algebraic equations using the least squares method. The technique is demonstrated numerically in the case of a packet of solitons.

  20. A variational approach to nonlinear evolution equations in optics

    Indian Academy of Sciences (India)

    optics. D ANDERSON, M LISAK and A BERNTSON£. Department of Electromagnetics, Chalmers University of Technology, SE-41296 Göteborg, Sweden. £Ericsson Telcom ... Many works in nonlinear optics have made efficient ...... focusing dynamics of a laser beam (or a Bose–Einstein condensate) in a parabolic external.

  1. Properties of entangled proton pairs generated in periodically poled nonlinear crystals

    Czech Academy of Sciences Publication Activity Database

    Svozilík, Jiří; Peřina ml., Jan

    2009-01-01

    Roč. 80, č. 2 (2009), 023819/1-023819/9 ISSN 1050-2947 R&D Projects: GA MŠk(CZ) OC09026; GA AV ČR IAA100100713; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : photon pairs * nonlinear crystals * nonlinear optics * quantum optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.866, year: 2009

  2. Effects of Er{sup 3+} and Yb{sup 3+} doping on structural and non-linear optical properties of LiNaSO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Palmero, I.C. [Departamento de Fisica Basica, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Gonzalez-Silgo, C. [Departamento de Fisica Fundamental II, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Torres, M.E. [Departamento de Fisica Basica, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Marrero-Lopez, D. [Departamento de Quimica Inorganica, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Rivera-Lopez, Fernando [Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain)], E-mail: frivera@ull.es; Haro-Gonzalez, P. [Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, E-38200, San Cristobal de la Laguna, Santa Cruz de Tenerife (Spain); Solans, X. [Departament de Cristallografia, Universitat de Barcelona, E-08028, Barcelona (Spain)

    2008-05-15

    We have characterized LiNaSO{sub 4} crystals doped with rare earth (RE) (Er{sup 3+} and Yb{sup 3+}) to give new insights about their structural properties relations. The samples were analyzed by X-ray single crystal diffraction and differential thermal analysis. The non-centrosymmetry was confirmed second-harmonic generation. Inductively coupled plasma (ICP) and emission experiments confirmed the nominal concentrations of the REs. Crystallographic data and two empirical models were employed to understand the structural modifications by substitution of the Na site which reduces, monotonically, the non-linear optical coefficients and the temperature of the phase transition in these crystals.

  3. Signaling on the continuous spectrum of nonlinear optical fiber.

    Science.gov (United States)

    Tavakkolnia, Iman; Safari, Majid

    2017-08-07

    This paper studies different signaling techniques on the continuous spectrum (CS) of nonlinear optical fiber defined by nonlinear Fourier transform. Three different signaling techniques are proposed and analyzed based on the statistics of the noise added to CS after propagation along the nonlinear optical fiber. The proposed methods are compared in terms of error performance, distance reach, and complexity. Furthermore, the effect of chromatic dispersion on the data rate and noise in nonlinear spectral domain is investigated. It is demonstrated that, for a given sequence of CS symbols, an optimal bandwidth (or symbol rate) can be determined so that the temporal duration of the propagated signal at the end of the fiber is minimized. In effect, the required guard interval between the subsequently transmitted data packets in time is minimized and the effective data rate is significantly enhanced. Moreover, by selecting the proper signaling method and design criteria a distance reach of 7100 km is reported by only singling on CS at a rate of 9.6 Gbps.

  4. Superradiance Effects in the Linear and Nonlinear Optical Response of Quantum Dot Molecules

    Science.gov (United States)

    Sitek, A.; Machnikowski, P.

    2008-11-01

    We calculate the linear optical response from a single quantum dot molecule and the nonlinear, four-wave-mixing response from an inhomogeneously broadened ensemble of such molecules. We show that both optical signals are affected by the coupling-dependent superradiance effect and by optical interference between the two polarizations. As a result, the linear and nonlinear responses are not identical.

  5. Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation

    Energy Technology Data Exchange (ETDEWEB)

    Mani Rajan, M.S., E-mail: senthilmanirajanofc@gmail.com [Department of Physics, Anna University, Madurai Region, Ramanathapuram (India); Mahalingam, A. [Department of Physics, Anna University, Chennai - 600 025 (India); Uthayakumar, A. [Department of Physics, Presidency College, Chennai - 600 005 (India)

    2014-07-15

    We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons, study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved.

  6. Using nonlinearity and spatiotemporal property modulation to control effective structural properties: dynamic rods

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Blekhman, Iliya I.

    2007-01-01

    What are the effective properties of a generally nonlinear material or structure, whose local properties are modulated in both space and time? It has been suggested to use spatiotemporal modulation of structural properties to create materials and structures with adjustable effective properties......, and to call these dynamic materials or spatiotemporal composites. Also, according to theoretical predictions, structural nonlinearity enhances the possibilities of achieving specific effective properties. For example, with an elastic rod having cubical elastic nonlinearities, it seems possible to control......, and exemplified. Then simple approximate analytical expressions are derived for the effective wave speed and natural frequencies for one-dimensional wave propagation in a nonlinear elastic rod, where the spatiotemporal modulation is imposed as a high-frequency standing wave, supposed to be given. Finally the more...

  7. Optoelectronic and nonlinear optical processes in low dimensional ...

    Indian Academy of Sciences (India)

    Optoelectronic process; nonlinear optical process; semiconductor. Quest for ever faster and intelligent information processing technologies has sparked ..... Schematic energy level diagram for the proposed 4-level model. States other than the.

  8. Quantum Information Processing using Nonlinear Optical Effects

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling

    This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear......-chirping the pumps. In the high-conversion regime without the effects of NPM, exact Green functions for BS are derived. In this limit, separability is possible for conversion efficiencies up to 60 %. However, the system still allows for selective frequency conversion as well as re-shaping of the output. One way...

  9. Laser beam propagation in nonlinear optical media

    CERN Document Server

    Guha, Shekhar

    2013-01-01

    ""This is very unique and promises to be an extremely useful guide to a host of workers in the field. They have given a generalized presentation likely to cover most if not all situations to be encountered in the laboratory, yet also highlight several specific examples that clearly illustrate the methods. They have provided an admirable contribution to the community. If someone makes their living by designing lasers, optical parametric oscillators or other devices employing nonlinear crystals, or designing experiments incorporating laser beam propagation through linear or nonlinear media, then

  10. Nonlinear Pulse Shaping in Fibres for Pulse Generation and Optical Processing

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2012-01-01

    Full Text Available The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion.

  11. Nonlinear laser dynamics induced by frequency shifted optical feedback: application to vibration measurements.

    Science.gov (United States)

    Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric

    2016-12-01

    In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.

  12. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films

    Science.gov (United States)

    Zhao, Yong-chuang; Nie, Zhong-quan; Zhai, Ai-ping; Tian, Yan-ting; Liu, Chao; Shi, Chang-kun; Jia, Bao-hua

    2018-01-01

    In this work, we focus on the optical super-resolution effect induced by strong nonlinear saturation absorption (NSA) of graphene oxide (GO) membranes. The third-order optical nonlinearities are characterized by the canonical Z-scan technique under femtosecond laser (wavelength: 800 nm, pulse width: 100 fs) excitation. Through controlling the applied femtosecond laser energy, NSA of the GO films can be tuned continuously. The GO film is placed at the focal plane as a unique amplitude filter to improve the resolution of the focused field. A multi-layer system model is proposed to present the generation of a deep sub-wavelength spot associated with the nonlinearity of GO films. Moreover, the parameter conditions to achieve the best resolution (˜λ/6) are determined entirely. The demonstrated results here are useful for high density optical recoding and storage, nanolithography, and super-resolution optical imaging.

  13. Semiclassical Path Integral Calculation of Nonlinear Optical Spectroscopy.

    Science.gov (United States)

    Provazza, Justin; Segatta, Francesco; Garavelli, Marco; Coker, David F

    2018-02-13

    Computation of nonlinear optical response functions allows for an in-depth connection between theory and experiment. Experimentally recorded spectra provide a high density of information, but to objectively disentangle overlapping signals and to reach a detailed and reliable understanding of the system dynamics, measurements must be integrated with theoretical approaches. Here, we present a new, highly accurate and efficient trajectory-based semiclassical path integral method for computing higher order nonlinear optical response functions for non-Markovian open quantum systems. The approach is, in principle, applicable to general Hamiltonians and does not require any restrictions on the form of the intrasystem or system-bath couplings. This method is systematically improvable and is shown to be valid in parameter regimes where perturbation theory-based methods qualitatively breakdown. As a test of the methodology presented here, we study a system-bath model for a coupled dimer for which we compare against numerically exact results and standard approximate perturbation theory-based calculations. Additionally, we study a monomer with discrete vibronic states that serves as the starting point for future investigation of vibronic signatures in nonlinear electronic spectroscopy.

  14. Nonlinear optical studies of curcumin metal derivatives with cw laser

    Energy Technology Data Exchange (ETDEWEB)

    Henari, F. Z., E-mail: fzhenari@rcsi-mub.com; Cassidy, S. [Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain (Bahrain)

    2015-03-30

    We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10{sup −7} cm{sup 2}/W and negative nonlinear absorption of the order of 10{sup −6} cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition model with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated.

  15. Nonlinear optical studies of curcumin metal derivatives with cw laser

    International Nuclear Information System (INIS)

    Henari, F. Z.; Cassidy, S.

    2015-01-01

    We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10 −7 cm 2 /W and negative nonlinear absorption of the order of 10 −6 cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition model with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated

  16. Hydrogen bonded nonlinear optical γ-glycine: Crystal growth and characterization

    Science.gov (United States)

    Narayana Moolya, B.; Jayarama, A.; Sureshkumar, M. R.; Dharmaprakash, S. M.

    2005-07-01

    Single crystals of γ-glycine(GG) were grown by solvent evaporation technique from a mixture of aqueous solutions of glycine and ammonium nitrate at ambient temperature. X-ray diffraction, thermogravimetric/differential thermal analysis, Fourier transform infrared spectral techniques were employed to characterize the crystal. The lattice parameters were calculated and they agree well with the reported values. GG exists as dipolar ions in which the carboxyl group is present as a carboxylate ion and the amino group as an ammonium ion. Due to this dipolar nature, glycine has a high decomposition temperature. The UV cutoff of GG is below 300 nm and has a wide transparency window, which is suitable for second harmonic generation of laser in the blue region. Nonlinear optical characteristics of GG were studied using Q switched Nd:YAG laser ( λ=1064 nm). The second harmonic generation conversion efficiency of GG is 1.5 times that of potassium dihydrogen phosphate . The X-ray diffraction and Fourier transform infrared spectral studies show the presence of strong hydrogen bonds which create and stabilize the crystal structure in GG. The main contributions to the nonlinear optical properties in GG results from the presence of the hydrogen bond and from the vibrational part due to very intense infrared bands of the hydrogen bond vibrations. GG is thermally stable up to 441 K.

  17. Nonlinear optical and microscopic analysis of Cu2+ doped zinc thiourea chloride (ZTC) monocrystal

    Science.gov (United States)

    Ramteke, S. P.; Anis, Mohd; Pandian, M. S.; Kalainathan, S.; Baig, M. I.; Ramasamy, P.; Muley, G. G.

    2018-02-01

    Organometallic crystals offer considerable nonlinear response therefore, present article focuses on bulk growth and investigation of Cu2+ ion doped zinc thiourea chloride (ZTC) crystal to explore its technological impetus for laser assisted nonlinear optical (NLO) device applications. The Cu2+ ion doped ZTC bulk single crystal of dimension 03 × 2.4 × 0.4 cm3 has been grown from pH controlled aqueous solution by employing slow solvent evaporation technique. The structural analysis has been performed by means of single crystal X-ray diffraction technique. The doping of Cu2+ ion in ZTC crystal matrix has been confirmed by means of energy dispersive spectroscopic (EDS) technique. The origin of nonlinear optical properties in Cu2+ ion doped ZTC crystal has been studied by employing the Kurtz-Perry test and Z-scan analysis. The remarkable enhancement in second harmonic generation (SHG) efficiency of Cu2+ ion doped ZTC crystal with reference to ZTC crystal has been determined. The He-Ne laser assisted Z-scan analysis has been performed to determine the third order nonlinear optical (TONLO) nature of grown crystal. The TONLO parameters such as susceptibility, absorption coefficient, refractive index and figure of merit of Cu-ZTC crystal have been evaluated using the Z-scan transmittance data. The laser damage threshold of grown crystal to high intensity of Nd:YAG laser is found to be 706.2 MW/cm2. The hardness number, work hardening index, yield strength and elastic stiffness coefficient of grown crystal has been investigated under microhardness study. The etching study has been carried out to determine the growth likelihood, nature of etch pits and surface quality of grown crystal.

  18. Optical activity via Kerr nonlinearity in a spinning chiral medium

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Anwar Ali, E-mail: anwarali@uom.edu.pk [Department of Physics, University of Malakand at Chakdara Dir(L) (Pakistan); Bacha, Bakht Amin, E-mail: aminoptics@gmail.com [Department of Physics, University of Malakand at Chakdara Dir(L) (Pakistan); Khan, Rahmat Ali, E-mail: rahmat_alipk@yahoo.com [Department of Mathematics, University of Malakand (Pakistan)

    2016-11-11

    Optical activity is investigated in a chiral medium by employing the four level cascade atomic model, in which the optical responses of the atomic medium are studied with Kerr nonlinearity. Light entering into a chiral medium splits into circular birefringent beams. The angle of divergence between the circular birefringent beams and the polarization states of the two light beams is manipulated with Kerr nonlinearity. In the stationary chiral medium the angle of divergence between the circular birefringent beams is calculated to be 1.3 radian. Furthermore, circular birefringence is optically controlled in a spinning chiral medium, where the maximum rotary photon drag angle for left (right) circularly polarized beam is ±1.1 (±1.5) microradian. The change in the angle of divergence between circular birefringent beams by rotary photon drag is calculated to be 0.4 microradian. The numerical results may help to understand image designing, image coding, discovery of photonic crystals and optical sensing technology. - Highlights: • Coherent control of a circular birefringence in a chiral medium is studied. • Angle of divergence between birefringent beams is modified with Kerr nonlinearity. • Rotary photon drag is controlled for birefringent beams and enhanced with Kerr nonlinearity in a spinning medium. • Rotation of the angle of divergence is observed with mechanical rotation of the medium about an axis and modified with Kerr effect. • A change in the angle of divergence is calculated by about a microradian with rotary photon drag.

  19. Theoretical investigation of intensity-dependent optical nonlinearity in graphene-aided D-microfiber

    Science.gov (United States)

    Shah, Manoj Kumar; Lu, Rongguo; Zhang, Yali; Ye, Shengwei; Zhang, Shangjian; Liu, Yong

    2018-01-01

    We theoretically investigate the intensity-dependent optical nonlinearity in graphene-aided D-microfiber, by tuning the chemical potential of graphene and varying radial distance and radii of the D-microfiber. Utilizing an interplay between graphene and the enhanced evanescent field of a guided mode in the waveguide of interest, the net utility of nonlinear coefficient is harnessed up to a very high value of 106 W-1m-1. Importantly, which is ∼ two orders of magnitude larger than in PMMA-graphene-PMMA waveguide. The highly dispersive nature of the waveguide, D ∼ 103 ps/nm-km, and large nonlinear figure-of-merit, FOMNL ∼ 1.29, have raised the possibilities of utilizing slow light structures to operate devices at few watts power level with microscale length. These studies have opened one window towards the next-generation all fiber-optic graphene nonlinear optical devices.

  20. Nonlinear absorption and transmission properties of Ge, Te and InAs using tuneable IR FEL

    Energy Technology Data Exchange (ETDEWEB)

    Amirmadhi, F.; Becker, K.; Brau, C.A. [Vanderbilt Univ., Nashville, TN (United States)

    1995-12-31

    Nonlinear absorption properties of Ge, Te and InAs are being investigated using the transmission of FEL optical pulses through these semiconductors (z-scan method). Wavelength, intensity and macropulse dependence are used to differentiate between two-photon and free-carrier absorption properties of these materials. Macropulse dependence is resolved by using a Pockles Cell to chop the 4-{mu}s macropulse down to 100 ns. Results of these experiments will be presented and discussed.

  1. Progress in nonlinear nano-optics

    CERN Document Server

    Lienau, Christoph; Grunwald, Rüdiger

    2015-01-01

    This book presents the state of the art in nonlinear nanostructures for ultrafast laser applications. Most recent results in two emerging fields are presented: (i) generation of laser-induced nanostructures in materials like metals, metal oxides and semiconductors, and (ii) ultrafast excitation and energy transfer in nanoscale physical, chemical and hybrid systems. Particular emphasis is laid on the up-to-date controversially discussed mechanisms of sub-wavelength ripple formation including models of self-organized material transport and multiphoton excitation channels, nonlinear optics of plasmonic structures (nanotips, nanowires, 3D-metamaterials), and energy localization and transport on ultrafast time scale and spatial nanoscale. High-resolution spectroscopy, simulation and characterization techniques are reported. New applications of ultrashort-pulsed lasers for materials processing and the use of nanostructured materials for characterizing laser fields and laser-matter-interactions are discussed.

  2. Nonlinear Optical Properties of XPh4 (X = B-, C, N+, P+): A New Class of Molecules with a Negative Third-Order Polarizability

    KAUST Repository

    Gieseking, Rebecca L.; Ensley, Trenton R.; Hu, Honghua; Hagan, David J.; Risko, Chad; Van Stryland, Eric W.; Bredas, Jean-Luc

    2015-01-01

    Organic π-conjugated materials have been widely used for a variety of nonlinear optical (NLO) applications. Molecules with negative real components Re(γ) of the third-order polarizability, which leads to nonlinear refraction in macroscopic systems, have important benefits for several NLO applications. However, few organic systems studied to date have negative Re(γ) in the long wavelength limit, and all inorganic materials show positive nonlinear refraction in this limit. Here, we introduce a new class of molecules of the form X(C6H5)4, where X = B-, C, N+, and P+, that have negative Re(γ). The molecular mechanism for the NLO properties in these systems is very different from those in typical linear conjugated systems: these systems have a band of excited states involving single-electron excitations within the π-system, several of which have significant coupling to the ground state. Thus, Re(γ) cannot be understood in terms of a simplified essential-state model and must be analyzed in the context of the full sum-over-states expression. Although Re(γ) is significantly smaller than that of other commonly-studied NLO chromophores, the introduction of a new molecular architecture offering the potential for a negative Re(γ) introduces new avenues of molecular design for NLO applications.

  3. Nonlinear Optical Properties of XPh4 (X = B-, C, N+, P+): A New Class of Molecules with a Negative Third-Order Polarizability

    KAUST Repository

    Gieseking, Rebecca L.

    2015-06-22

    Organic π-conjugated materials have been widely used for a variety of nonlinear optical (NLO) applications. Molecules with negative real components Re(γ) of the third-order polarizability, which leads to nonlinear refraction in macroscopic systems, have important benefits for several NLO applications. However, few organic systems studied to date have negative Re(γ) in the long wavelength limit, and all inorganic materials show positive nonlinear refraction in this limit. Here, we introduce a new class of molecules of the form X(C6H5)4, where X = B-, C, N+, and P+, that have negative Re(γ). The molecular mechanism for the NLO properties in these systems is very different from those in typical linear conjugated systems: these systems have a band of excited states involving single-electron excitations within the π-system, several of which have significant coupling to the ground state. Thus, Re(γ) cannot be understood in terms of a simplified essential-state model and must be analyzed in the context of the full sum-over-states expression. Although Re(γ) is significantly smaller than that of other commonly-studied NLO chromophores, the introduction of a new molecular architecture offering the potential for a negative Re(γ) introduces new avenues of molecular design for NLO applications.

  4. Growth, optical, thermal and dielectric studies of an amino acid organic nonlinear optical material: L-Alanine

    International Nuclear Information System (INIS)

    Caroline, M. Lydia; Sankar, R.; Indirani, R.M.; Vasudevan, S.

    2009-01-01

    Good transparent bulk single crystals of L-alanine (nonlinear optical material) have been grown successfully by slow cooling technique from aqueous solution at pH value of 2.0. Optically transparent crystals with dimensions 2.4 cm x 1.2 cm x 1.6 cm, were grown by optimizing the growth parameters within a growth period of 2 weeks. The crystallinity of L-alanine crystal was confirmed by the powder X-ray diffraction study and diffraction peaks are indexed. The vibrational structure of the molecule is elucidated from FTIR spectra. The thermal behaviour of the grown crystal was investigated by thermogravimetric (TG) and differential thermal analyses (DTA) techniques in a nitrogen atmosphere. The result showed that the material starts decomposing at 297 deg. C. Its optical behaviour has been examined by UV-vis spectral analysis, which shows the absence of absorbance between the wavelengths ranging from 200 to 1200 nm. The NLO property was confirmed by the powder technique of Kurtz and Perry. The dielectric behaviour of the sample was also studied for the first time

  5. Nonlinear optical polarization analysis in chemistry and biology

    CERN Document Server

    Simpson, Garth J

    2017-01-01

    This rigorous yet accessible guide presents a molecular-based description of nonlinear optical polarization analysis of chemical and biological assemblies. It includes discussion of the most common nonlinear optical microscopy and interfacial measurements used for quantitative analysis, specifically second harmonic generation (SHG), two-photon excited fluorescence (2PEF), vibrational sum frequency generation (SFG), and coherent anti-Stokes Raman spectroscopy/stimulated Raman spectroscopy (CARS/SRS). A linear algebra mathematical framework is developed, allowing step-wise systematic connections to be made between the observable measurements and the molecular response. Effects considered include local field corrections, the molecular orientation distribution, rotations between the molecular frame, the local frame and the laboratory frame, and simplifications from molecular and macromolecular symmetry. Specific examples are provided throughout the book, working from the common and relatively simple case studies ...

  6. Nonlinear optical localization in embedded chalcogenide waveguide arrays

    International Nuclear Information System (INIS)

    Li, Mingshan; Huang, Sheng; Wang, Qingqing; Chen, Kevin P.; Petek, Hrvoje

    2014-01-01

    We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm 2 , using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass

  7. Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers

    International Nuclear Information System (INIS)

    Tian Bo; Gao Yitian

    2005-01-01

    A realistic, inhomogeneous fiber in the optical communication systems can be described by the perturbed nonlinear Schrodinger model (also named as the normalized nonlinear Schrodinger model with periodically varying coefficients, dispersion managed nonlinear Schrodinger model or nonlinear Schrodinger model with variable coefficients). Hereby, we extend to this model a direct method, perform symbolic computation and obtain two families of the exact, analytic bright-solitonic solutions, with or without the chirp respectively. The parameters addressed include the shape of the bright soliton, soliton amplitude, inverse width of the soliton, chirp, frequency, center of the soliton and center of the phase of the soliton. Of optical and physical interests, we discuss some previously-published special cases of our solutions. Those solutions could help the future studies on the optical communication systems. ms

  8. Crystal growth and characterization of a semiorganic nonlinear optical single crystal of gamma glycine

    International Nuclear Information System (INIS)

    Prakash, J. Thomas Joseph; Kumararaman, S.

    2008-01-01

    Gamma glycine has been successfully synthesized by taking glycine and potassium chloride and single crystals have been grown by solvent evaporation method for the first time. The grown single crystals have been analyzed with XRD, Fourier transform infrared (FTIR), and thermo gravimetric and differential thermal analyses (TG/DTA) measurements. Its mechanical behavior has been assessed by Vickers microhardness measurements. Its nonlinear optical property has been tested by Kurtz powder technique. Its optical behavior was examined by UV-vis., and found that the crystal is transparent in the region between 240 and 1200 nm. Hence, it may be very much useful for the second harmonic generation (SHG) applications

  9. Squeezing in multi-mode nonlinear optical state truncation

    International Nuclear Information System (INIS)

    Said, R.S.; Wahiddin, M.R.B.; Umarov, B.A.

    2007-01-01

    In this Letter, we show that multi-mode qubit states produced via nonlinear optical state truncation driven by classical external pumpings exhibit squeezing condition. We restrict our discussions to the two- and three-mode cases

  10. Nonlinear optics in the LP(02) higher-order mode of a fiber.

    Science.gov (United States)

    Chen, Y; Chen, Z; Wadsworth, W J; Birks, T A

    2013-07-29

    The distinct disperion properties of higher-order modes in optical fibers permit the nonlinear generation of radiation deeper into the ultraviolet than is possible with the fundamental mode. This is exploited using adiabatic, broadband mode convertors to couple light efficiently from an input fundamental mode and also to return the generated light to an output fundamental mode over a broad spectral range. For example, we generate visible and UV supercontinuum light in the LP(02) mode of a photonic crystal fiber from sub-ns pulses with a wavelength of 532 nm.

  11. Ultrasensitive mass sensing with nonlinear optics in a doubly clamped suspended carbon nanotube resonator

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Jun; Zhu, Ka-Di [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 DongChuan Road, Shanghai 2 00240 (China)

    2013-12-07

    Nanomechanical resonator makes itself as an ideal system for ultrasensitive mass sensing due to its ultralow mass and high vibrational frequency. The mass sensing principle is due to the linear relationship of the frequency-shift and mass-variation. In this work, we will propose a nonlinear optical mass sensor based on a doubly clamped suspended carbon nanotube resonator in all-optical domain. The masses of external particles (such as nitric oxide molecules) landing onto the surface of carbon nanotube can be determined directly and accurately via using the nonlinear optical spectroscopy. This mass sensing proposed here may provide a nonlinear optical measurement technique in quantum measurements and environmental science.

  12. Nonlinear Optical and Time-Resolved Properties of Novel Organic Dendrimers and Dendrimer Metal

    National Research Council Canada - National Science Library

    Goodson, T., III

    2004-01-01

    .... We found in particular that gold-metal dendrimer nanocomposites have very strong optical limiting properties that may be useful for eye and sensor protection devices in the visible and near Infrared spectral regions...

  13. Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks

    Directory of Open Access Journals (Sweden)

    Cosimo Lacava

    2017-01-01

    Full Text Available In this paper, we present a review on silicon-based nonlinear devices for all optical nonlinear processing of complex telecommunication signals. We discuss some recent developments achieved by our research group, through extensive collaborations with academic partners across Europe, on optical signal processing using silicon-germanium and amorphous silicon based waveguides as well as novel materials such as silicon rich silicon nitride and tantalum pentoxide. We review the performance of four wave mixing wavelength conversion applied on complex signals such as Differential Phase Shift Keying (DPSK, Quadrature Phase Shift Keying (QPSK, 16-Quadrature Amplitude Modulation (QAM and 64-QAM that dramatically enhance the telecom signal spectral efficiency, paving the way to next generation terabit all-optical networks.

  14. Design and Development of Nonlinear Optical Microscope System: Simple Implementation with epi-Illumination Platform

    Directory of Open Access Journals (Sweden)

    Ryu Jiheun

    2015-01-01

    Full Text Available During the research using fluorescence-tagged or auto-fluorescence molecules, meaningful information is often buried deep inside the tissue, not its surface. Therefore, especially in the field of biomedical imaging, acquiring optically sectioned images from deep inside the tissue is very important. As well know already, confocal laser scanning microscopy (the most well-known optical sectioning microscopy gives axially-resolved fluorescence information using the physical background blocking component called pinhole. However, the axial range of imaging is practically limited due to such optical phenomena as the light scattered and absorbed in the tissue. However, nonlinear optical microscopy (e.g. Multiphoton microscopy, harmonic generation microscopy, coherent anti-Stokes Raman spectroscopy realized by the development of ultrafast light sources has been used for visualizing various tissues, especially in vivo, because of their low sensitivity to the limitation caused by the scattering and the absorption of light. Although nonlinear optical microscopy gives deep tissue image, it is not easy for many researcher to build customized nonlinear system. Here, we introduce an easy and simple way designing and developing such nonlinear optical microscope with upright or inverted epi-illumination platform using commercial optical components only.

  15. Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.

    Science.gov (United States)

    Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-10-26

    We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.

  16. Optical nonlinearity enhancement with graphene-decorated silicon waveguides

    Science.gov (United States)

    Ishizawa, Atsushi; Kou, Rai; Goto, Takahiro; Tsuchizawa, Tai; Matsuda, Nobuyuki; Hitachi, Kenichi; Nishikawa, Tadashi; Yamada, Koji; Sogawa, Tetsuomi; Gotoh, Hideki

    2017-04-01

    Broadband on-chip optical frequency combs (OFCs) are important for expanding the functionality of photonic integrated circuits. Here, we demonstrate a huge local optical nonlinearity enhancement using graphene. A waveguide is decorated with graphene by precisely manipulating graphene’s area and position. Our approach simultaneously achieves both an extremely efficient supercontinuum and ultra-short pulse generation. With our graphene-decorated silicon waveguide (G-SWG), we have achieved enhanced spectral broadening of femtosecond pump pulses, along with an eightfold increase in the output optical intensity at a wavelength approximately 200 nm shorter than that of the pump pulses. We also found that this huge nonlinearity works as a compressor that effectively compresses pulse width from 80 to 15.7 fs. Our results clearly show the potential for our G-SWG to greatly boost the speed and capacity of future communications with lower power consumption, and our method will further decrease the required pump laser power because it can be applied to decorate various kinds of waveguides with various two-dimensional materials.

  17. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    Science.gov (United States)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  18. Nonlinear silicon photonics

    Science.gov (United States)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  19. Optical rogue waves generation in a nonlinear metamaterial

    Science.gov (United States)

    Onana Essama, Bedel Giscard; Atangana, Jacques; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Kofane, Timoleon Crepin

    2014-11-01

    We investigate the behavior of electromagnetic wave which propagates in a metamaterial for negative index regime. The optical pulse propagation is described by the nonlinear Schrödinger equation with cubic-quintic nonlinearities, second- and third-order dispersion effects. The behavior obtained for negative index regime is compared to that observed for positive index regime. The characterization of electromagnetic wave uses some pulse parameters obtained analytically and called collective coordinates such as amplitude, temporal position, width, chirp, frequency shift and phase. Six frequency ranges have been pointed out where a numerical evolution of collective coordinates and their stability are studied under a typical example to verify our analysis. It appears that a robust soliton due to a perfect compensation process between second-order dispersion and cubic-nonlinearity is presented at each frequency range for both negative and positive index regimes. Thereafter, the stability of the soliton pulse and physical conditions leading to optical rogue waves generation are discussed at each frequency range for both regimes, when third-order dispersion and quintic-nonlinearity come into play. We have demonstrated that collective coordinates give much useful information on external and internal behavior of rogue events. Firstly, we determine at what distance begins the internal excitation leading to rogue waves. Secondly, what kind of internal modification and how it modifies the system in order to build-up rogue events. These results lead to a best comprehension of the mechanism of rogue waves generation. So, it clearly appears that the rogue wave behavior strongly depends on nonlinearity strength of distortion, frequency and regime considered.

  20. Tuning the dielectric properties of thiourea analog crystals for efficient nonlinear optical applications

    International Nuclear Information System (INIS)

    Sabari Girisun, T.C.; Dhanuskodi, S.

    2010-01-01

    Materials with low dielectric constant have attracted a great deal of interest in the field of nonlinear applications and microelectronic industry. Metal complexes of thiourea with group II transition metals (Zn, Cd) as central atom and period III elements (S, Cl) were synthesized by chemical reaction method and single crystals were grown from aqueous solution by slow evaporation method. By parallel plate capacitor technique, the dielectric response, dissipation factor, ac conductivity and impedance of virgin and metal complexes have been studied in the frequency (100 Hz to 5 MHz) and temperature (303-423 K) ranges. Metal complexes of thiourea with cadmium substitute have a low dielectric constant less than 10. Also the presence of chlorine in the metal complex induces noncentro symmetric structure. Hence the role of group II transition metals and period III elements in tuning the dielectric properties for efficient nonlinear applications has been studied.

  1. Kyropoulos method for growth of nonlinear optical organic crystal ABP (4-aminobenzophenone) from the melt

    Science.gov (United States)

    Pan, Shoukui; Okano, Y.; Tsunekawa, S.; Fukuda, T.

    1993-03-01

    The Kyropoulus method was used to grow nonlinear optical organic crystals ABP (4-aminobenzophenone). The crystals were characterized by nonlinear optical measurements and had a large effect of frequency doubling.

  2. Polarization dependent dispersion and its impact on optical parametric process in high nonlinear microstructure fibre

    International Nuclear Information System (INIS)

    Xiao Li; Zhang Wei; Huang Yidong; Peng Jiangde

    2008-01-01

    High nonlinear microstructure fibre (HNMF) is preferred in nonlinear fibre optics, especially in the applications of optical parametric effects, due to its high optical nonlinear coefficient. However, polarization dependent dispersion will impact the nonlinear optical parametric process in HNMFs. In this paper, modulation instability (MI) method is used to measure the polarization dependent dispersion of a piece of commercial HNMF, including the group velocity dispersion, the dispersion slope, the fourth-order dispersion and group birefringence. It also experimentally demonstrates the impact of the polarization dependent dispersion on the continuous wave supercontinuum (SC) generation. On one axis MI sidebands with symmetric frequency detunings are generated, while on the other axis with larger MI frequency detuning, SC is generated by soliton self-frequency shift

  3. Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics.

    Science.gov (United States)

    Kieu, K; Schneebeli, L; Norwood, R A; Peyghambarian, N

    2012-03-26

    We have developed a novel integrated platform for liquid photonics based on liquid core optical fiber (LCOF). The platform is created by fusion splicing liquid core optical fiber to standard single-mode optical fiber making it fully integrated and practical - a major challenge that has greatly hindered progress in liquid-photonic applications. As an example, we report here the realization of ultralow threshold Raman generation using an integrated CS₂ filled LCOF pumped with sub-nanosecond pulses at 532 nm and 1064 nm. The measured energy threshold for the Stokes generation is 1nJ, about three orders of magnitude lower than previously reported values in the literature for hydrogen gas, a popular Raman medium. The integrated LCOF platform opens up new possibilities for ultralow power nonlinear optics such as efficient white light generation for displays, mid-IR generation, slow light generation, parametric amplification, all-optical switching and wavelength conversion using liquids that have orders of magnitude larger optical nonlinearities compared with silica glass.

  4. Optical nonlinearities of colloidal InP@ZnS core-shell quantum dots probed by Z-scan and two-photon excited emission

    International Nuclear Information System (INIS)

    Wawrzynczyk, Dominika; Szeremeta, Janusz; Samoc, Marek; Nyk, Marcin

    2015-01-01

    Spectrally resolved nonlinear optical properties of colloidal InP@ZnS core-shell quantum dots of various sizes were investigated with the Z-scan technique and two-photon fluorescence excitation method using a femtosecond laser system tunable in the range from 750 nm to 1600 nm. In principle, both techniques should provide comparable results and can be interchangeably used for determination of the nonlinear optical absorption parameters, finding maximal values of the cross sections and optimizing them. We have observed slight differences between the two-photon absorption cross sections measured by the two techniques and attributed them to the presence of non-radiative paths of absorption or relaxation. The most significant value of two-photon absorption cross section σ 2 for 4.3 nm size InP@ZnS quantum dot was equal to 2200 GM, while the two-photon excitation action cross section σ 2 Φ was found to be 682 GM at 880 nm. The properties of these cadmium-free colloidal quantum dots can be potentially useful for nonlinear bioimaging

  5. Studies on synthesis, structural, luminescent and thermal properties of a new non-linear optical crystal: 4-amino-4H-1,2,4-triazol-1-ium-3-hydroxy-2,4,6-trinitrophenolate

    Energy Technology Data Exchange (ETDEWEB)

    Dhamodharan, P.; Sathya, K.; Dhandapani, M., E-mail: chemistrydhandapani@gmail.com

    2017-03-01

    A new organic proton transfer complex having NLO activity, 4-amino-4H-1,2,4-triazol-1-ium-3-hydroxy-2,4,6-trinitrophenolate (ATHTP), was crystallized to investigate the factors which stabilize the structure of the crystal. The compound crystallizes in triclinic system with space group P-1. Elemental analysis, thermal analysis, UV–Vis–NIR, FT-IR and NMR spectral analyses were carried out to characterize the crystal. Optical, spectral and thermal properties of the title crystal were analyzed to recommend the material for optical applications. Z-scan was used to measure the effective third-order nonlinear optical susceptibility and nonlinear refractive index. The crystal structure was determined using single crystal XRD method and the structure was optimized using Gaussian 09 program at B3LYP/6-311++G(d,p) level of basis set. This hydrogen bond interactions led to the increase in first-order hyperpolarizability of ATHTP and was 30 times greater than that of urea. Hirshfeld analyses surface analysis was carried out to explore intermolecular interactions in the crystalline state. - Highlights: • Single crystals were grown by slow evaporation solution growth technique. • N-H…O, O-H…O and C-H…O type of interactions lead to stable network. • The thermal stability of the compound was investigated by TG/DTA analyses. • The third-order nonlinear optical susceptibility is found to be 2.1×10{sup −7} esu. • Hirshfeld analyses explore covalent and non covalent interactions.

  6. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, S M [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, J X [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Luo, T S [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, H L [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Zhao, J J [Department of Skin, Affiliated Xiehe Hospital, Fujian Medical University, Fuzhou 350001 (China)

    2007-07-15

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue.

  7. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    International Nuclear Information System (INIS)

    Zhuo, S M; Chen, J X; Luo, T S; Chen, H L; Zhao, J J

    2007-01-01

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue

  8. Redox control of ferrocene-based complexes with systematically extended π-conjugated connectors: switchable and tailorable second order nonlinear optics.

    Science.gov (United States)

    Wang, Wen-Yong; Ma, Na-Na; Sun, Shi-Ling; Qiu, Yong-Qing

    2014-03-14

    The studies of geometrical structures, thermal stabilities, redox properties, nonlinear responses and optoelectronic properties have been carried out on a series of novel ferrocenyl (Fc) chromophores with the view of assessing their switchable and tailorable second order nonlinear optics (NLO). The use of a constant Fc donor and a 4,4'-bipyridinium acceptor and varied conjugated bridges makes it possible to systematically determine the contribution of organic connectors to chromophore nonlinear optical activities. The structures reveal that both the reduction reactions and organic connectors have a significant influence on 4,4'-bipyridinium. The potential energy surface maps along with plots of reduced density gradient mirror the thermal stabilities of the Fc-based chromophores. The first and second reductions take place preferentially at the 4,4'-bipyridinium moieties. Significantly, the reduction processes result in the molecular switches with large NLO contrast varying from zero or very small to a large value. Moreover, time-dependent density functional theory results indicate that the absorption peaks are mainly attributed to Fc to 4,4'-bipyridinium charge transfer and the mixture of intramolecular charge transfer within the two respective 4,4'-bipyridinium moieties coupled with interlayer charge transfer between the two 4,4'-bipyridinium moieties. This provides us with comprehensive information on the effect of organic connectors on the NLO properties.

  9. Infrared reduction, an efficient method to control the non-linear optical property of graphene oxide in femtosecond regime

    Science.gov (United States)

    Bhattacharya, S.; Maiti, R.; Saha, S.; Das, A. C.; Mondal, S.; Ray, S. K.; Bhaktha, S. B. N.; Datta, P. K.

    2016-04-01

    Graphene Oxide (GO) has been prepared by modified Hummers method and it has been reduced using an IR bulb (800-2000 nm). Both as grown GO and reduced graphene oxide (RGO) have been characterized using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Raman spectra shows well documented Dband and G-band for both the samples while blue shift of G-band confirms chemical functionalization of graphene with different oxygen functional group. The XPS result shows that the as-prepared GO contains 52% of sp2 hybridized carbon due to the C=C bonds and 33% of carbon atoms due to the C-O bonds. As for RGO, increment of the atomic % of the sp2 hybridized carbon atom to 83% and rapid decrease in atomic % of C=O bonds confirm an efficient reduction with infrared radiation. UV-Visible absorption spectrum also confirms increment of conjugation with increased reduction. Non-linear optical properties of both GO and RGO are measured using single beam open aperture Z-Scan technique in femtosecond regime. Intensity dependent nonlinear phenomena are observed. Depending upon the intensity, both saturable absorption and two photon absorption contribute to the non-linearity of both the samples. Saturation dominates at low intensity (~ 127 GW/cm2) while two photon absorption become prominent at higher intensities (from 217 GW/cm2 to 302 GW/cm2). We have calculated the two-photon absorption co-efficient and saturation intensity for both the samples. The value of two photon absorption co-efficient (for GO~ 0.0022-0.0037 cm/GW and for RGO~ 0.0128-0.0143 cm/GW) and the saturation intensity (for GO~57 GW/cm2 and for RGO~ 194GW/cm2) is increased with reduction. Increase in two photon absorption coefficient with increasing intensity can also suggest that there may be multi-photon absorption is taking place.

  10. Applied nonlinear optics in the journal 'Quantum Electronics'

    International Nuclear Information System (INIS)

    Grechin, Sergei G; Dmitriev, Valentin G; Chirkin, Anatolii S

    2011-01-01

    A brief historical review of the experimental and theoretical works on nonlinear optical frequency conversion (generation of harmonics, up- and down-conversion, parametric oscillation), which have been published in the journal 'Quantum Electronics' for the last 40 years, is presented.

  11. Printed organic smart devices characterized by nonlinear optical

    DEFF Research Database (Denmark)

    Pastorelli, Francesco; Accanto, Nicolo; Jørgensen, Mikkel

    2017-01-01

    In this study, we demonstrate that nonlinear optical microscopy is a promising technique to characterize organic printed electronics. Using ultrashort laser pulses we stimulate two-photon absorption in a roll coated polymer semiconductor and map the resulting two-photon induced photoluminescence...

  12. Characterization and enhanced nonlinear optical limiting response in carbon nanodots dispersed in solid-state hybrid organically modified silica gel glasses

    Science.gov (United States)

    Huang, Li; Zheng, Chan; Guo, Qiaohang; Huang, Dongdong; Wu, Xiukai; Chen, Ling

    2018-02-01

    Freely dispersed carbon nanodots (CNDs) were introduced into a 3-glycidoxy-propyltrimethoxysilane modified silicate gel glass (i.e. an organically modified silica or ORMOSIL) by a highly efficient and simple sol-gel process, which could be easily extended to prepare functional molecules/nanoparticles solid state optoelectronic devices. Scanning electron microscope imaging, Fourier transform infrared spectroscopy, pore structure measurements, ultraviolet-visible spectroscopy, and fluorescence spectroscopy were used to investigate the surface characteristics, structure, texture, and linear optical properties of the CND/SiO2 ORMOSIL gel glasses. Images and UV/Vis spectra confirmed the successful dispersion of CNDs in the ORMOSIL gel glass. The surface characteristics and pore structure of the host SiO2 matrix were markedly changed through the introduction of the CNDs. The linear optical properties of the guest CNDs were also affected by the sol-gel procedure. The nonlinear optical (NLO) properties of the CNDs were investigated by a nanosecond open-aperture Z-scan technique at 532 nm both in liquid and solid matrices. We found that the NLO response of the CNDs was considerably improved after their incorporation into the ORMOSIL gel glasses. Possible enhancement mechanisms were also explored. The nonlinear extinction coefficient gradually increased while the optical limiting (OL) threshold decreased as the CND doping level was increased. This result suggests that the NLO and OL properties of the composite gel glasses can be optimized by tuning the concentration of CNDs in the gel glass matrix. Our findings show that CND/SiO2 ORMOSIL gel glasses are promising candidates for optical limiters to protect sensitive instruments and human eyes from damage caused by high power lasers.

  13. Nonlinear optical activity in Bridgman growth layered compounds

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M.I., E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2010-02-15

    Layered semiconductor compound CdI{sub 2} has been grown with the Bridgman technique and studied by nonlinear transmittance spectroscopy. The optical absorption in CdI{sub 2} shows a nonlinear transmission of the incident laser power (P{sub 0}) within a lower power limit. The transmission, however, is found to saturate at high powers, giving a clamped output. The value of the incident power (P{sub 0C}) at which clamping starts is also found to depend on the crystal temperature (T{sub L}). The values of P{sub OC} ranges from 55 to 65 MW cm{sup -2} for T{sub L} = 4.2-180 K. The dynamic range (D{sub R}) as a function of T{sub L} is calculated and the values are found to range from D{sub R} = 2 to 1.6. The optical limiting mechanisms are discussed. The two-photon absorption (TPA) coefficient ({beta}) of the optical nonlinear process in CdI{sub 2} is estimated. The values are found to be within a range from {beta} = 47 to 25 cm GW{sup -1} and be decreasing with increasing T{sub L}. As expected for the TPA process, the experimental data within a certain range follows the linear relation: log (P{sub 0}/P{sub T}) = A{sub G} + {Omega}(P{sub 0} - P{sub T}), where P{sub T} is the transmitted power, A{sub G} is the absorbance of the ground state and {Omega} is a constant depending on the absorption cross-section and the relaxation time. The values of A{sub G} and {Omega} estimated from the fits to the measured data vary with T{sub L}. The findings resulting from this investigation might have potential applications in optical sensors protection.

  14. Exact optical solitons in (n + 1)-dimensions with anti-cubic nonlinearity

    Science.gov (United States)

    Younis, Muhammad; Shahid, Iram; Anbreen, Sumaira; Rizvi, Syed Tahir Raza

    2018-02-01

    The paper studies the propagation of optical solitons in (n + 1)-dimensions under anti-cubic law of nonlinearity. The bright, dark and singular optical solitons are extracted using the extended trial equation method. The constraint conditions, for the existence of these solitons, are also listed. Additionally, a couple of other solutions known as singular periodic and Jacobi elliptic solutions, fall out as a by-product of this scheme. The obtained results are new and reported first time in (n + 1)-dimensions with anti-cubic law of nonlinearity.

  15. Variational Principles, Lie Point Symmetries, and Similarity Solutions of the Vector Maxwell Equations in Non-linear Optics

    DEFF Research Database (Denmark)

    Webb, Garry; Sørensen, Mads Peter; Brio, Moysey

    2004-01-01

    the electromagnetic momentum and energy conservation laws, corresponding to the space and time translation invariance symmetries. The symmetries are used to obtain classical similarity solutions of the equations. The traveling wave similarity solutions for the case of a cubic Kerr nonlinearity, are shown to reduce...... the properties of Maxwell's equations in nonlinear optics, without resorting to the commonly used nonlinear Schr\\"odinger (NLS) equation approximation in which a high frequency carrier wave is modulated on long length and time scales due to nonlinear sideband wave interactions. This is important in femto......-second pulse propagation in which the NLS approximation is expected to break down. The canonical Hamiltonian description of the equations involves the solution of a polynomial equation for the electric field $E$, in terms of the the canonical variables, with possible multiple real roots for $E$. In order...

  16. Synthesis, optical, experimental and theoretical investigation of third order nonlinear optical properties of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate single crystal

    Science.gov (United States)

    Bharathi, M. Divya; Bhuvaneswari, R.; Srividya, J.; Vinitha, G.; Prithiviraajan, R. N.; Anbalagan, G.

    2018-02-01

    Single crystals of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate (8HQNP) were obtained from slow evaporation solution growth method using methanol-water (1:1) as a solvent. Powder X-ray diffraction was utilized to compute the unit cell parameters and dislocation density of 8HQNP crystal. The crystalline perfection of the as-grown crystal was investigated by high-resolution X-ray diffraction at room temperature. The molecular structure was analyzed by identifying the functional groups from FT-IR and FT-Raman spectra. The cut-off wavelength and the corresponding optical band gap obtained from an optical spectrum were 376 nm and 3.29 eV respectively. The dispersion nature of refractive index was investigated by the single-oscillator Wemple and Di-Domenico model. Red emission was observed in the photoluminescence spectrum when excited with 376 nm. The low birefringence and high laser damage threshold (8.538 GW/cm2) values dictate the suitability of the crystal for optical devices. Z-scan studies revealed the third order nonlinear absorption coefficient (β) and refractive index (n2) of the 8HQNP crystal. The theoretical value of third order nonlinear susceptibility obtained from density function theory is good accordance with the experimental value. The frontier molecular orbital energy gap decreases with increasing external electric field in different directions which attributed to the enhancement of the second hyperpolarizability. The grown title crystal is thermally stable up to 102 °C which was identified using thermal analysis. Mechanical strength of 8HQNP was estimated by using Vicker's microhardness studies.

  17. Nonlinear absorption properties of some 1,4,8,11,15,18,22,25-octaalkylphthalocyanines and their metallated derivatives

    OpenAIRE

    BLAU, WERNER

    2003-01-01

    PUBLISHED The third-order nonlinear optical properties of a series of 15 unmetallated and metallated 1,4,8,11,15,18,22,25-octaalkylphthalocyanines have been investigated. The palladium-metallated compound is the strongest nonlinear absorber of the series, but, due to its comparatively high linear absorption coefficient, it exhibits a relatively low ratio of excited- to ground-state absorption cross-sections (?) when compared to the other compounds. The highest values for ? were found for d...

  18. Nonlinear optical behaviour of absorbing CdSxSe1-x interference filters

    International Nuclear Information System (INIS)

    Ferencz, K.; Szipoecs, R.

    1988-01-01

    First experimental results of nonlinear, thin film interference filter wedges with mixed CdS x Se 1-x as spacer material at the 633 nm wavelength of He-Ne laser are reported. Optical bistability is observed with less than 7.5 mW of optical power in single-cavity structures. The change in refractive index is found to be positive which is in accordance with the thermal mechanism of nonlinearity. Producing a double-cavity structure a device is obtained which works as an optical astable multivibrator having periodical change of transmission as the function of time. (author)

  19. Quasistatic thermal and nonlinear processes of photoconversion of high-density optical radiation by multilayer structures

    Directory of Open Access Journals (Sweden)

    Blank Arkadiy

    2017-01-01

    Full Text Available The results of the systematic experimental analysis of the thermal nonlinear electro-optic properties of photoelectric converters with silicon vertical cells in comparison with solar elements and elements on the basis of In/Ga/As are presented. The parameters of the linear and quadratic approximations for the investigated dependences are determined, that allows constructing a scalable analytic model of the converter with a given type of the working elements switching.

  20. Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect.

    Science.gov (United States)

    Xu, Tianhua; Karanov, Boris; Shevchenko, Nikita A; Lavery, Domaniç; Liga, Gabriele; Killey, Robert I; Bayvel, Polina

    2017-10-11

    Nyquist-spaced transmission and digital signal processing have proved effective in maximising the spectral efficiency and reach of optical communication systems. In these systems, Kerr nonlinearity determines the performance limits, and leads to spectral broadening of the signals propagating in the fibre. Although digital nonlinearity compensation was validated to be promising for mitigating Kerr nonlinearities, the impact of spectral broadening on nonlinearity compensation has never been quantified. In this paper, the performance of multi-channel digital back-propagation (MC-DBP) for compensating fibre nonlinearities in Nyquist-spaced optical communication systems is investigated, when the effect of signal spectral broadening is considered. It is found that accounting for the spectral broadening effect is crucial for achieving the best performance of DBP in both single-channel and multi-channel communication systems, independent of modulation formats used. For multi-channel systems, the degradation of DBP performance due to neglecting the spectral broadening effect in the compensation is more significant for outer channels. Our work also quantified the minimum bandwidths of optical receivers and signal processing devices to ensure the optimal compensation of deterministic nonlinear distortions.

  1. Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation.

    Science.gov (United States)

    Larciprete, M C; Bovino, F A; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-07-15

    We present a method, based on noncollinear second-harmonic generation, to evaluate the nonzero elements of the nonlinear optical susceptibility. At a fixed incidence angle, the generated signal is investigated by varying the polarization state of both fundamental beams. The resulting polarization charts allows us to verify if Kleinman's symmetry rules can be applied to a given material or to retrieve the absolute value of the nonlinear optical tensor terms, from a reference measurement. Experimental measurements obtained from gallium nitride layers are reported. The proposed method does not require an angular scan and thus is useful when the generated signal is strongly affected by sample rotation.

  2. High-order nonlinear optical processes in ablated carbon-containing materials: Recent approaches in development of the nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range

    Science.gov (United States)

    Ganeev, R. A.

    2017-08-01

    The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.

  3. Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold rydberg atoms

    DEFF Research Database (Denmark)

    Parigi, V.; Bimbard, E.; Stanojevic, J.

    2012-01-01

    We observe and measure dispersive optical nonlinearities in an ensemble of cold Rydberg atoms placed inside an optical cavity. The experimental results are in agreement with a simple model where the optical nonlinearities are due to the progressive appearance of a Rydberg blockaded volume within...

  4. Optical limiting properties of fullerenes and related materials

    Science.gov (United States)

    Riggs, Jason Eric

    Optical limiting properties of fullerene C60 and different C60 derivatives (methano-, pyrrolidino-, and amino-) towards nanosecond laser pulses at 532 nm were studied. The results show that optical limiting responses of the C60 derivatives are similar to those of the parent C60 despite their different linear absorption and emission properties. For C60 and the derivatives in room-temperature solutions of varying concentrations and optical path length, the optical limiting responses are strongly concentration dependent. The concentration dependence is not due to any optical artifacts since the results obtained under the same experimental conditions for reference systems show no such dependence. Similarly, optical limiting results of fullerenes are strongly dependent on the medium viscosity, with responses in viscous media weaker than that in room-temperature solutions. The solution concentration and medium viscosity dependencies are not limited to fullerenes. In fact, the results from a systematic investigation of several classes of nonlinear absorptive organic dyes show that the optical limiting responses are also concentration and medium viscosity dependent. Interestingly, however, such dependencies are uniquely absent in the optical limiting responses of metallophthalocyanines. In classical photophysics, the strong solution concentration and medium viscosity dependencies are indicative of significant contributions from photoexcited-state bimolecular processes. Thus, the experimental results are discussed in terms of a significantly modified five-level reverse saturable absorption mechanism. Optical limiting properties of single-walled and multiple-walled carbon nanotubes toward nanosecond laser pulses at 532 nm were also investigated. When suspended in water, the single-walled and multiple-walled carbon nanotubes exhibit essentially the same optical limiting responses, and the results are also comparable with those of carbon black aqueous suspension. For

  5. Wave transmission in nonlinear lattices

    International Nuclear Information System (INIS)

    Hennig, D.; Tsironis, G.P.

    1999-01-01

    The interplay of nonlinearity with lattice discreteness leads to phenomena and propagation properties quite distinct from those appearing in continuous nonlinear systems. For a large variety of condensed matter and optics applications the continuous wave approximation is not appropriate. In the present review we discuss wave transmission properties in one dimensional nonlinear lattices. Our paradigmatic equations are discrete nonlinear Schroedinger equations and their study is done through a dynamical systems approach. We focus on stationary wave properties and utilize well known results from the theory of dynamical systems to investigate various aspects of wave transmission and wave localization. We analyze in detail the more general dynamical system corresponding to the equation that interpolates between the non-integrable discrete nonlinear Schroedinger equation and the integrable Albowitz-Ladik equation. We utilize this analysis in a nonlinear Kronig-Penney model and investigate transmission and band modification properties. We discuss the modifications that are effected through an electric field and the nonlinear Wannier-Stark localization effects that are induced. Several applications are described, such as polarons in one dimensional lattices, semiconductor superlattices and one dimensional nonlinear photonic band gap systems. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. Instrumentation for Linear and Nonlinear Optical Device Characterization

    Science.gov (United States)

    2018-01-31

    distribution is Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Pl has acquired six pieces of equipment to extend capabilities for linear and nonlinear...optical spectral analysis • Frequency comb generation in mid-infrared Accomplishments Six major pieces of equipment have been ordered and received

  7. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    Science.gov (United States)

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  8. Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system

    International Nuclear Information System (INIS)

    Zeng, Zaiping; Garoufalis, Christos S.; Baskoutas, Sotirios

    2014-01-01

    Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system have been theoretically studied. In general, we find that the structure parameters of the coupled system significantly affect the optical susceptibilities. The enhancement of the coupling effects between the dot and ring is found to increase considerably the optical susceptibilities and redshift drastically the transition energies. Comparing to the linear susceptibility, the nonlinear optical susceptibility is found to be more sensitive to the variation of the structure parameters. A comprehensive analysis of the electron probability density movement with respect to the modification of the structure parameters is provided, which offers a unique perspective of the ground-state localization. - Highlights: • Optical susceptibilities in a quantum-dot–quantum-ring system are studied. • The structure parameters significantly affect the optical susceptibilities. • The enhancement of the coupling effects increases the optical susceptibilities. • The nonlinear susceptibility is more sensitive to the change in structure parameters. • A comprehensive analysis of the electron probability density movement is provided

  9. Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell during initial stage of shell expansion

    Directory of Open Access Journals (Sweden)

    Astafyeva Liudmila

    2011-01-01

    Full Text Available Abstract Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell, created under laser heating of nanoparticle in water, were theoretically investigated. Vapor shell expansion leads to decreasing up to one to two orders of magnitude in comparison with initial values of scattering and extinction of the radiation with wavelengths 532 and 633 nm by system while shell radius is increased up to value of about two radii of nanoparticle. Subsequent increasing of shell radius more than two radii of nanoparticle leads to rise of scattering and extinction properties of system over initial values. The significant decrease of radiation scattering and extinction by system of nanoparticle-vapor shell can be used for experimental detection of the energy threshold of vapor shell formation and investigation of the first stages of its expansion. PACS: 42.62.BE. 78.67. BF

  10. Synthesis, growth, structure, mechanical and optical properties of a new semi-organic 2-methyl imidazolium dihydrogen phosphate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Nagapandiselvi, P., E-mail: nagapandiselvip@ssn.edu.in [Department of Physics, SSN College of Engineering, Kalavakkam (India); Baby, C. [Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai (India); Gopalakrishnan, R. [Crystal Research Lab, Department of Physics, Anna University, Chennai (India)

    2016-09-15

    Highlights: • 2MIDP crystals were grown by slow evaporation solution growth technique. • Single crystal XRD revealed self-assembled supramolecular framework. • Z scan technique is employed for third order nonlinear optical susceptibility. • Structure-property correlation is established. - Abstract: A new semi-organic compound, 2-methyl imidazolium dihydrogen phosphate (2MIDP), was prepared and good quality single crystals of 2MIDP were grown by slow evaporation solution growth technique. Crystal structure elucidated using Single crystal XRD showed that 2MIDP crystallizes in monoclinic system with P2{sub 1}/c space group. FT-IR, UV-Vis-NIR, Fluorescence and FT-NMR spectra confirm the molecular structure of 2MIDP. The UV-Vis-NIR spectra established the suitability of the compound for NLO applications. TG-DSC showed that 2MIDP is thermally stable up to 200 °C. Mechanical characteristics like hardness number (H{sub v}), stiffness constant (C{sub 11}), yield strength (σ{sub v}), fracture toughness (K{sub c}) and brittleness index (B{sub i}) were assessed using Vicker’s microhardness tester. Third order nonlinear optical properties determined from Z-scan measurement using femto and picosecond lasers showed two photon reverse saturable absorption. The enhancement of nonlinear optical properties in femto second laser, revealed the suitability of 2MIDP for optical limiting applications.

  11. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  12. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jilani, Asim, E-mail: asim.jilane@gmail.com [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Abdel-wahab, M.Sh [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni -Suef University, Beni-Suef (Egypt); Al-ghamdi, Attieh A. [Centre of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Dahlan, Ammar sadik [Department of architecture, faculty of environmental design, King Abdulaziz University, Jeddah (Saudi Arabia); Yahia, I.S. [Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Nano-Science & Semiconductor Labs, Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt)

    2016-01-15

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ{sup (3)} was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  13. Effects of mechanical strain on optical properties of ZnO nanowire

    Science.gov (United States)

    Vazinishayan, Ali; Lambada, Dasaradha Rao; Yang, Shuming; Zhang, Guofeng; Cheng, Biyao; Woldu, Yonas Tesfaye; Shafique, Shareen; Wang, Yiming; Anastase, Ndahimana

    2018-02-01

    The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW) before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM) software package ABAQUS and three-dimensional (3D) finite-difference time-domain (FDTD) methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  14. Effects of mechanical strain on optical properties of ZnO nanowire

    Directory of Open Access Journals (Sweden)

    Ali Vazinishayan

    2018-02-01

    Full Text Available The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM software package ABAQUS and three-dimensional (3D finite-difference time-domain (FDTD methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  15. Manipulation of local optical properties and structures in molybdenum-disulfide monolayers using electric field-assisted near-field techniques.

    Science.gov (United States)

    Nozaki, Junji; Fukumura, Musashi; Aoki, Takaaki; Maniwa, Yutaka; Yomogida, Yohei; Yanagi, Kazuhiro

    2017-04-05

    Remarkable optical properties, such as quantum light emission and large optical nonlinearity, have been observed in peculiar local sites of transition metal dichalcogenide monolayers, and the ability to tune such properties is of great importance for their optoelectronic applications. For that purpose, it is crucial to elucidate and tune their local optical properties simultaneously. Here, we develop an electric field-assisted near-field technique. Using this technique we can clarify and tune the local optical properties simultaneously with a spatial resolution of approximately 100 nm due to the electric field from the cantilever. The photoluminescence at local sites in molybdenum-disulfide (MoS 2 ) monolayers is reversibly modulated, and the inhomogeneity of the charge neutral points and quantum yields is suggested. We successfully etch MoS 2 crystals and fabricate nanoribbons using near-field techniques in combination with an electric field. This study creates a way to tune the local optical properties and to freely design the structural shapes of atomic monolayers using near-field optics.

  16. Development of nonperturbative nonlinear optics models including effects of high order nonlinearities and of free electron plasma: Maxwell–Schrödinger equations coupled with evolution equations for polarization effects, and the SFA-like nonlinear optics model

    International Nuclear Information System (INIS)

    Lorin, E; Bandrauk, A D; Lytova, M; Memarian, A

    2015-01-01

    This paper is dedicated to the exploration of non-conventional nonlinear optics models for intense and short electromagnetic fields propagating in a gas. When an intense field interacts with a gas, usual nonlinear optics models, such as cubic nonlinear Maxwell, wave and Schrödinger equations, derived by perturbation theory may become inaccurate or even irrelevant. As a consequence, and to include in particular the effect of free electrons generated by laser–molecule interaction, several heuristic models, such as UPPE, HOKE models, etc, coupled with Drude-like models [1, 2], were derived. The goal of this paper is to present alternative approaches based on non-heuristic principles. This work is in particular motivated by the on-going debate in the filamentation community, about the effect of high order nonlinearities versus plasma effects due to free electrons, in pulse defocusing occurring in laser filaments [3–9]. The motivation of our work goes beyond filamentation modeling, and is more generally related to the interaction of any external intense and (short) pulse with a gas. In this paper, two different strategies are developed. The first one is based on the derivation of an evolution equation on the polarization, in order to determine the response of the medium (polarization) subject to a short and intense electromagnetic field. Then, we derive a combined semi-heuristic model, based on Lewenstein’s strong field approximation model and the usual perturbative modeling in nonlinear optics. The proposed model allows for inclusion of high order nonlinearities as well as free electron plasma effects. (paper)

  17. CW all optical self switching in nonlinear chalcogenide nano plasmonic directional coupler

    Science.gov (United States)

    Motamed-Jahromi, Leila; Hatami, Mohsen

    2018-04-01

    In this paper we obtain the coupling coefficient of plasmonic directional coupler (PDC) made up of two parallel monolayer waveguides filled with high nonlinear chalcogenide material for TM mode in continues wave (CW) regime. In addition, we assume each waveguides acts as a perturbation to other waveguide. Four nonlinear-coupled equations are derived. Transfer distances are numerically calculated and used for deriving length of all optical switch. The length of designed switch is in the range of 10-1000 μm, and the switching power is in the range of 1-100 W/m. Obtained values are suitable for designing all optical elements in the integrated optical circuits.

  18. Alkali-Responsive Absorption Spectra and Third-Order Optical Nonlinearities of Imino Squaramides

    International Nuclear Information System (INIS)

    Li Zhong-Yu; Xu Song; Zhou Xin-Yu; Zhang Fu-Shi

    2012-01-01

    Third-order optical nonlinearities and dynamic responses of two imino squaramides under neutral and base conditions were studied using the femtosecond degenerate four-wave mixing technique at 800 nm. Ultrafast optical responses have been observed and the magnitude of the second-order hyperpolarizabilities of the squaramides has been measured to be as large as 10 −31 esu. The absorption spectra, color of solution, and third-order optical nonlinearities of two imino squaramides change with the addition of sodium hydroxide. The γ value under the base condition for each dye is approximately 1.25 times larger than that under neutral conditions. (fundamental areas of phenomenology(including applications))

  19. New Chiral Bis-Dipolar 6,6'-Disubstituted-Binaphthol Derivatives for Second-Order Nonlinear Optics

    DEFF Research Database (Denmark)

    Deussen, Heinz-Josef; Boutton, Carlo; Thorup, Niels

    1998-01-01

    (S)everal chiral molecules with C-2 symmetry derived from two geometries of the binaphthol (BN) system substituted with different accepters have been synthesized in order to study the possibility of producing noncentrosymmetric crystals formed from these chiral structures. All the molecules possess...... cancel out exactly despite the noncentrosymmetry. The crystal structure of racemic 9,14-dicyanodinaphtho[2,1-d:1',2'-f][1,3]-dioxepin (2b) was found to be centrosymmetric. The new compounds were investigated for second-harmonic generation (including BN derivatives reported earlier) by the Kurtz......-Perry powder test to evaluate the second-order nonlinear optical (NLO) properties of polycrystalline samples. Although chirality ensures noncentrosymmetric crystals, only modest (approximate to 2-methyl-4-nitroaniline) or no nonlinearities were observed in the powder test, For a representative selection...

  20. THEORETICAL EVALUATION OF NONLINEAR EFFECTS ON OPTICAL WDM NETWORKS WITH VARIOUS FIBER TYPES

    Directory of Open Access Journals (Sweden)

    YASIN M. KARFAA

    2010-09-01

    Full Text Available A theoretical study is carried out to evaluate the performance of an opticalwavelength division multiplexing (WDM network transmission system in the presenceof crosstalk due to optical fiber nonlinearities. The most significant nonlinear effects inthe optical fiber which are Cross-Phase Modulation (XPM, Four-Wave Mixing (FWM,and Stimulated Raman Scattering (SRS are investigated. Four types of optical fiber areincluded in the analysis; these are: single-mode fiber (SMF, dispersion compensationfiber (DCF, non-zero dispersion fiber (NZDF, and non-zero dispersion shifted fiber(NZDSF. The results represent the standard deviation of nonlinearity induced crosstalknoise power due to FWM and SRS, XPM power penalty for SMF, DCF, NZDF, andNZDSF types of fiber, besides the Bit Error Rate (BER for the three nonlinear effectsusing standard fiber type (SMF. It is concluded that three significant fiber nonlinearitiesare making huge limitations against increasing the launched power which is desired,otherwise, lower values of launched power limit network expansion including length,distance, covered areas, and number of users accessing the WDM network, unlesssuitable precautions are taken to neutralize the nonlinear effects. Besides, various fibertypes are not behaving similarly towards network parameters.

  1. Crosslinked polyimide electro-optic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, T.C.; Kosc, T.Z.; Singer, K.D. [Case Western Reserve University, Department of Physics, Cleveland, Ohio 44106-7079 (United States); Beuhler, A.J.; Wargowski, D.A. [Amoco Research Center, Amoco Chemical Co., Naperville, Illinois 60566 (United States); Cahill, P.A.; Seager, C.H.; Meinhardt, M.B. [Sandia National Laboratories, Division 1811, Albuquerque, New Mexico 87185-1407 (United States); Ermer, S. [Lockheed Research and Development Division, Palo Alto, California 94304 (United States)

    1995-11-15

    We report studies of the optical and electro-optic properties of guest--host polymeric nonlinear optical materials based on aromatic, fluorinated, fully imidized, organic soluble, thermally, and photochemically crosslinkable, guest--host polyimides. We have introduced temperature stable nonlinear optical chromophores into these polyimides and studied optical losses, electric field poling, electro-optic properties, and orientational stability. We measured electro-optic coefficients of 5.5 and 12.0 pm/V for ((2,6-Bis(2-(3-(9-(ethyl)carbazolyl))ethenyl)4H-pyran-4-ylidene)propanedinitrile) (4-(Dicyanomethylene)-2-methyl-6-(p -dimethylaminostyryl)-4H-pyran) DCM-doped guest--host systems at 800 nm using a poling field of 1.3 MV/cm. Poling induced nonlinearities in single-layer films were in agreement with the oriented gas model, but were lower in three-layer films due to voltage division across the layers. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  2. Participation of the Third Order Optical Nonlinearities in Nanostructured Silver Doped Zinc Oxide Thin Solid Films

    Directory of Open Access Journals (Sweden)

    C. Torres-Torres

    2012-01-01

    Full Text Available We report the transmittance modulation of optical signals in a nanocomposite integrated by two different silver doped zinc oxide thin solid films. An ultrasonic spray pyrolysis approach was employed for the preparation of the samples. Measurements of the third-order nonlinear optical response at a nonresonant 532 nm wavelength of excitation were performed using a vectorial two-wave mixing. It seems that the separated contribution of the optical nonlinearity associated with each film noticeable differs in the resulting nonlinear effects with respect to the additive response exhibited by the bilayer system. An enhancement of the optical Kerr nonlinearity is predicted for prime number arrays of the studied nanoclusters in a two-wave interaction. We consider that the nanostructured morphology of the thin solid films originates a strong modification of the third-order optical phenomena exhibited by multilayer films based on zinc oxide.

  3. Physical origin of third order non-linear optical response of porphyrin nanorods

    International Nuclear Information System (INIS)

    Mongwaketsi, N.; Khamlich, S.; Pranaitis, M.; Sahraoui, B.; Khammar, F.; Garab, G.; Sparrow, R.; Maaza, M.

    2012-01-01

    The non-linear optical properties of porphyrin nanorods were studied using Z-scan, Second and Third harmonic generation techniques. We investigated in details the heteroaggregate behaviour formation of [H 4 TPPS 4 ] 2- and [SnTPyP] 2+ mixture by means of the UV-VIS spectroscopy and aggregates structure and morphology by transmission electron microscopy. The porphyrin nanorods under investigation were synthesized by self assembly and molecular recognition method. They have been optimized in view of future application in the construction of the light harvesting system. The focus of this study was geared towards understanding the influence of the type of solvent used on these porphyrins nanorods using spectroscopic and microscopic techniques. Highlights: ► We synthesized porphyrin nanorods by self assembly and molecular recognition method. ► TEM images confirmed solid cylindrical shapes. ► UV-VIS spectroscopy showed the decrease in the absorbance peaks of the precursors. ► The enhanced third-order nonlinearities were observed.

  4. Resonantly enhanced nonlinear optics in semiconductor quantum wells: An application to sensitive infrared detection

    International Nuclear Information System (INIS)

    Yelin, S.F.; Hemmer, P.R.

    2002-01-01

    A novel class of coherent nonlinear optical phenomena, involving induced transparency in semiconductor quantum wells, is considered in the context of a particular application to sensitive long-wavelength infrared detection. It is shown that the strongest decoherence mechanisms can be suppressed or mitigated, resulting in substantial enhancement of nonlinear optical effects in semiconductor quantum wells

  5. Nonlinear Fourier transform for dual-polarization optical communication system

    OpenAIRE

    Gaiarin, Simone

    2018-01-01

    New services and applications are causing an exponential increase in the internet traffic. In a few years, the current fiber-optic communication system infrastructure will not be able to meet this demand because fiber nonlinearity dramatically limits the information transmission rate. Eigenvalue communication is considered an emerging paradigm in fiber-optic communications that could potentially overcome these limitations. It relies on a mathematical technique called “inverse scattering trans...

  6. On Madelung systems in nonlinear optics: A reciprocal invariance

    Science.gov (United States)

    Rogers, Colin; Malomed, Boris

    2018-05-01

    The role of the de Broglie-Bohm potential, originally established as central to Bohmian quantum mechanics, is examined for two canonical Madelung systems in nonlinear optics. In a seminal case, a Madelung system derived by Wagner et al. via the paraxial approximation and in which the de Broglie-Bohm potential is present is shown to admit a multi-parameter class of what are here introduced as "q-gaussons." In the limit, as the Tsallis parameter q → 1, the q-gaussons are shown to lead to standard gausson solitons, as admitted by the logarithmic nonlinear Schrödinger equation encapsulating the Madelung system. The q-gaussons are obtained for optical media with dual power-law refractive index. In the second case, a Madelung system originally derived via an eikonal approximation in the context of laser beam propagation and in which the de Broglie Bohm term is neglected is shown to admit invariance under a novel class of two-parameter class of reciprocal transformations. Model optical laws analogous to the celebrated Kármán-Tsien law of classical gas dynamics are introduced.

  7. An integrated nonlinear optical loop mirror in silicon photonics for all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Zifei Wang

    2018-02-01

    Full Text Available The nonlinear optical loop mirror (NOLM has been studied for several decades and has attracted considerable attention for applications in high data rate optical communications and all-optical signal processing. The majority of NOLM research has focused on silica fiber-based implementations. While various fiber designs have been considered to increase the nonlinearity and manage dispersion, several meters to hundreds of meters of fiber are still required. On the other hand, there is increasing interest in developing photonic integrated circuits for realizing signal processing functions. In this paper, we realize the first-ever passive integrated NOLM in silicon photonics and demonstrate its application for all-optical signal processing. In particular, we show wavelength conversion of 10 Gb/s return-to-zero on-off keying (RZ-OOK signals over a wavelength range of 30 nm with error-free operation and a power penalty of less than 2.5 dB, we achieve error-free nonreturn to zero (NRZ-to-RZ modulation format conversion at 10 Gb/s also with a power penalty of less than 2.8 dB, and we obtain error-free all-optical time-division demultiplexing of a 40 Gb/s RZ-OOK data signal into its 10 Gb/s tributary channels with a maximum power penalty of 3.5 dB.

  8. Evaluation of third order nonlinear optical parameters of CdS/PVA nanocomposite

    International Nuclear Information System (INIS)

    Sharma, Mamta; Tripathi, S. K.

    2015-01-01

    CdS nanoparticles dispersed in PVA are prepared by Chemical method at room temperature. The nonlinear optical parameters such as nonlinear absorption (β), nonlinear refractive index (n 2 ) and nonlinear susceptibility (χ 3 ) are calculated for this sample by using Z-scan technique. CdS/PVA samples show the two photon absorption mechanism. The third order nonlinear susceptibility is calculated from n 2 and β and is found to be of the order of 10 −7 – 10 −8 m 2 /V 2 . The larger value of third order nonlinear susceptibility is due to dielectric and quantum confinement effect

  9. Studies of Second Order Optical Nonlinearities of 4-Aminobenzophenone (ABP) Single Crystal Films

    Science.gov (United States)

    Bhowmik, Achintya; Thakur, Mrinal

    1998-03-01

    Specific organic materials exhibit very high second order optical susceptibilities. Growth of single crystal films of these materials and characterization of nonlinear optical properties are necessary for implementation of device applications. We have grown large-area films ( 1 cm^2 area, 4 μm thick) of ABP by a modification of the shear method. Single crystal nature of the films was confirmed by polarized optical microscopy. X-ray diffraction analysis showed a [100] surface orientation. The absorption spectra revealed transparency from 390 nm to 1940 nm. Significant elements of the second order optical susceptibility tensor were measured by detailed SHG experiments using a Nd:YAG laser (1064 nm, 100 ps, 82 MHz). Second-harmonic power was measured using lock-in detection with carefully selected polarization conditions while the film was rotated about the propagation direction. Using LiNbØas the reference, d-coefficients of ABP were found to be d_23=7.2 pm/V and d_22=0.7 pm/V. Type-I and type-II phase-matching directions were identified on the film by analyzing the optical indicatrix surfaces at fundamental and second-harmonic frequencies.

  10. Nonlinear optical studies in semiconductor-doped glasses under ...

    Indian Academy of Sciences (India)

    Abstract. Nonlinear optical studies in semiconductor-doped glasses (SDGs) are per- formed under femtosecond laser pulse excitation. Z-scan experiments with 800 nm wave- length pulses are used to excite SDG samples in the resonance and non-resonance regimes. Schott colour glass filter OG 515 shows stronger ...

  11. Synthesis, linear and nonlinear optical properties of phosphonato-substituted bithiophenes derived from 2,2'-biphenol.

    Science.gov (United States)

    Freeman, Jason L; Zhao, Qun; Zhang, Yuanli; Wang, Jianwei; Lawson, Christopher M; Gray, Gary M

    2013-10-21

    Two new series of phosphonato-substituted bithiophenes, BpP(X)(C4H2S)2H and BpP(X)(C4H2S)2P(X)Bp (Bp = 2,2'-C12H8O2, X = O, S, Se), have been synthesized and characterized using linear absorption and emission spectra, and third-order nonlinear absorption measurements at 430 nm with 27 ps laser pulses. The compounds were synthesized in three steps: (1) reacting lithiated bithiophene with (Et2N)2PCl; (2) reacting the product from the first step with biphenol; and (3) reacting the product from the second step with the appropriate chalcogen. The X-ray crystal structures of two of the compounds, BpP(O)(C4H2S)2P(O)Bp and BpP(Se)(C4H2S)2P(Se)Bp, are reported and show a number of intermolecular π-π interactions. The linear absorption spectra, emission spectra, and emission quantum yields show distinct trends with respect to the chalcogen and the number of phosphorus substituents attached to the 2,2'-bithiophene ring. The compounds show emission maxima at wavelengths ranging from 380-400 nm and, BpP(S)(C4H2S)2H shows a 23-fold increase in fluorescence quantum yield relative to that of 2,2'-bithiophene. Fluorescence lifetimes and radiative and non-radiative decay rate constants for the first singlet excited state have been extracted from the quantum yields using time-dependent DFT calculations. Nonlinear transmission measurements indicate that all of the compounds show nonlinear absorption at 430 nm with 27 ps laser pulses in spite of their low solubilities. Notably, the nonlinear absorption threshold of a 0.16 mol L(-1) CH2Cl2 solution of BpP(Se)(C4H2S)2H is 0.9 J cm(-2). The excellent emission quantum yields and good nonlinear absorptions make these compounds promising candidates for optical power limiting applications and as host materials for violet-blue organic light emitting diodes.

  12. Second-order nonlinear optical microscopy of spider silk

    Science.gov (United States)

    Zhao, Yue; Hien, Khuat Thi Thu; Mizutani, Goro; Rutt, Harvey N.

    2017-06-01

    Asymmetric β-sheet protein structures in spider silk should induce nonlinear optical interaction such as second harmonic generation (SHG) which is experimentally observed for a radial line and dragline spider silk using an imaging femtosecond laser SHG microscope. By comparing different spider silks, we found that the SHG signal correlates with the existence of the protein β-sheets. Measurements of the polarization dependence of SHG from the dragline indicated that the β-sheet has a nonlinear response depending on the direction of the incident electric field. We propose a model of what orientation the β-sheet takes in spider silk.

  13. Nonlinear dynamic behaviors of an optically injected vertical-cavity surface-emitting laser

    International Nuclear Information System (INIS)

    Li Xiaofeng; Pan Wei; Luo Bin; Ma Dong; Wang Yong; Li Nuohan

    2006-01-01

    Nonlinear dynamics of a vertical-cavity surface-emitting laser (VCSEL) with external optical injection are studied numerically. We consider a master-slave configuration where the dynamic characteristics of the slave are affected by the optical injection from the master, and we also establish the corresponding Simulink model. The period-doubling route as well as the period-halving route is observed, where the regular, double-periodic, and chaotic pulsings are found. By adjusting the injection strength properly, the laser can be controlled to work at a given state. The effects of frequency detuning on the nonlinear behaviors are also investigated in terms of the bifurcation diagrams of photon density with the frequency detuning. For weak injection case, the nonlinear dynamics shown by the laser are quite different when the value of frequency detuning varies contrarily (positive and negative direction). If the optical injection is strong enough, the slave can be locked by the master even though the frequency detuning is relatively large

  14. The effect of quintic nonlinearity on the propagation characteristics of dispersion managed optical solitons

    International Nuclear Information System (INIS)

    Konar, S.; Mishra, Manoj; Jana, S.

    2006-01-01

    The role of quintic nonlinearity on the propagation characteristics of optical solitons in dispersion managed optical communication systems has been presented in this paper. It has been shown that quintic nonlinearity has only marginal influence on single pulse propagation. However, numerical simulation has been undertaken to reveal that quintic nonlinearity reduces collision distance between neighbouring pulses of the same channel. It is found that for lower map strength the collapse distance between intra channel pulses is very much sensitive to the dispersion map strength

  15. Nonlinear optical characteristics of monolayer MoSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)

    2016-08-15

    In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Effect of temperature on the structural, linear, and nonlinear optical properties of MgO-doped graphene oxide nanocomposites

    Science.gov (United States)

    Kimiagar, Salimeh; Abrinaei, Fahimeh

    2018-01-01

    Magnesium oxide (MgO)-graphene oxide (GO) nanocomposites were prepared by the hydrothermal method at different temperatures. The effect of growth temperature on the structural, linear, and nonlinear optical (NLO) parameters was investigated. The decoration of MgO on GO sheets was confirmed by X-ray diffraction, scanning electron microscopy, Fourier transform infrared, and UV-visible (UV-vis) spectroscopy analyses. The energy band-gaps of MgO-GO nanocomposites were calculated from UV-vis spectrum using Tauc plot. The NLO parameters of MgO-GO nanocomposites were calculated for the first time by the simple Z-scan technique with nanosecond Nd:YAG laser at 532 nm. The nonlinear absorption coefficient β and nonlinear refractive index n2 for MgO-GO nanocomposites at the laser intensity of 1.1×108 W/cm2 were measured to be in the order of 10-7 cm/W and 10-12 cm2/W, respectively. The third-order NLO susceptibility of MgO-GO nanocomposites was measured in the order of 10-9 esu. The results showed that MgO-GO structures have negative nonlinearity as well as good nonlinear two-photon absorption at 532 nm. Furthermore, the NLO parameters increased by the enhancement of the growth temperature. As the investigation of new materials plays an important role in the advancement of optoelectronics, MgO-GO nanocomposites possess potential applications in NLO devices.

  17. Nonlinear Optics Approaches Towards Subdiffraction Resolution in CARS Imaging

    NARCIS (Netherlands)

    Boller, Klaus J.; Beeker, W.P.; Cleff, C.; Kruse, K.; Lee, Christopher James; Gross, P.; Offerhaus, Herman L.; Fallnich, Carsten; Herek, Jennifer Lynn; Fornasiero, E.F.; Rizzoli, S.O.

    2014-01-01

    In theoretical investigations, we review several nonlinear optical approaches towards subdiffraction-limited resolution in label-free imaging via coherent anti-Stokes Raman scattering (CARS). Using a density matrix model and numerical integration, we investigate various level schemes and

  18. The effects of the intense laser field on the nonlinear optical properties of a cylindrical Ga{sub 1−x}Al{sub x}As/GaAs quantum dot under applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kasapoglu, E., E-mail: ekasap@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Ciencias Básicas y Aplicadas, Universidad Autóonoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Sökmen, I. [Department of Physics, Dokuz Eylül University, 35160 Buca, İzmir (Turkey)

    2015-10-01

    In the present work, the effects of the intense laser field on total optical absorption coefficient (the linear and third-order nonlinear) and total refractive index change (the linear and third-order nonlinear) for transitions between different intersubbands in the Ga{sub 1−x}Al{sub x}As/GaAs cylindrical quantum dot under external electric field are investigated. The calculations were performed within the compact density-matrix formalism with the use of the effective mass approximation. The obtained results show that both total absorption coefficient and refractive index change are sensitive to the electric and intense laser fields. By changing the intensities of the electric and laser fields, we can obtain the blue or red shift, without the need for the growth of many different samples. - Highlights: • The effects of the non-resonant intense laser field and electric field on the nonlinear optical properties of cylindrical quantum dot are investigated. • The both total absorption coefficient and refractive index change are sensitive to dot dimensions and the effects of external fields. • By changing the external fields together with dot dimensions a blue or red shift can be obtained.

  19. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  20. Nonlinear light scattering in a two component medium: optical limiting application

    International Nuclear Information System (INIS)

    Joudrier, Valerie

    1998-01-01

    Scattering is a fundamental manifestation of the interaction between matter and radiation, resulting from inhomogeneities in the refractive index, which decrease transmission. This phenomenon is then especially attractive for sensor protection from laser light by optical limiting. One of the methods to induce scattering at high incident energy is to make use of the Kerr effect where the index of refraction is intensity dependent. Thus, the idea is to use a two component medium with a good index matching between the two components at low intensity, resulting in the medium transparency, and to modify it, at high intensity, due to the non linearity of one component making the medium highly scattering. Some of the experimental and theoretical investigations concerning a new material (here, a cell containing some liquid with small silica particles as inclusion in it) are presented in the visible domain (I=532 nm), for the nanosecond protection regime, beginning, with the chemical synthesis of the sample. The experimental results concerning the optical limiting process are presented, showing that nonlinear scattering is clearly the dominant mechanism in confrontation with other potential nonlinear effects. Several complementary experiments are then performed to complete the nonlinear scattering characterization, involving the measurement of the angular distribution of scattered energy and the integrating sphere measurement. Further information are also gained by studying the time response of the nonlinearities with a dual-beam (pulsed-pump, cw probe) technique. The previous experimental data is also analyzed with some simple theoretical models to evaluate the nonlinearity of the material from optical limiting, the angular scattering and the total scattering energy measurements. The good match between all the analytical results permits to delineate the physical mechanisms responsible for the nonlinear scattering effect and to direct the final conclusion. (author) [fr

  1. Integrated all optical transmodulator circuits with non-linear gain elements and tunable optical fibers

    NARCIS (Netherlands)

    Kuindersma, P.I.; Leijtens, X.J.M.; Zantvoort, van J.H.C.; Waardt, de H.

    2012-01-01

    We characterize integrated InP circuits for high speed ‘all-optical’ signal processing. Single chip circuits act as optical transistors. Transmodulation is performed by non-linear gain sections. Integrated tunable filters give signal equalization in time domain.

  2. Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting

    International Nuclear Information System (INIS)

    Bartlett, Stephen D.; Sanders, Barry C.

    2002-01-01

    Although universal continuous-variable quantum computation cannot be achieved via linear optics (including squeezing), homodyne detection, and feed-forward, inclusion of ideal photon-counting measurements overcomes this obstacle. These measurements are sometimes described by arrays of beam splitters to distribute the photons across several modes. We show that such a scheme cannot be used to implement ideal photon counting and that such measurements necessarily involve nonlinear evolution. However, this requirement of nonlinearity can be moved ''off-line,'' thereby permitting universal continuous-variable quantum computation with linear optics

  3. Second-Order Nonlinear Optical Dendrimers and Dendronized Hyperbranched Polymers.

    Science.gov (United States)

    Tang, Runli; Li, Zhen

    2017-01-01

    Second-order nonlinear optical (NLO) dendrimers with a special topological structure were regarded as the most promising candidates for practical applications in the field of optoelectronic materials. Dendronized hyperbranched polymers (DHPs), a new type of polymers with dendritic structures, proposed and named by us recently, demonstrated interesting properties and some advantages over other polymers. Some of our work concerning these two types of polymers are presented herein, especially focusing on the design idea and structure-property relationship. To enhance their comprehensive NLO performance, dendrimers were designed and synthesized by adjusting their isolation mode, increasing the number of the dendritic generation, modifying their topological structure, introducing isolation chromophores, and utilizing the Ar-Ar F self-assembly effect. To make full use of the advantages of both the structural integrity of dendrimers and the convenient one-pot synthesis of hyperbranched polymers, DHPs were explored by utilizing low-generation dendrons as big monomers to construct hyperbranched polymers. These selected works could provide valuable information to deeply understand the relationship between the structure and properties of functional polymers with dendritic structures, but not only limited to the NLO ones, and might contribute much to the further development of functional polymers with rational design. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fiber Nonlinearity Post-Compensation by Optical Phase Conjugation for 40Gb/s CO-OFDM Systems

    International Nuclear Information System (INIS)

    Qiao Yao-Jun; Liu Xue-Jun; Ji Yue-Feng

    2011-01-01

    Fiber nonlinearity impairments in a 40-Gb/s coherent optical orthogonal frequency division multiplexing (COOFDM) system are post-compensated for by a new method of fiber nonlinearity post-compensation (FNPC). The FNPC located before the CO-OFDM receiver includes an optical phase conjugation (OPC) unit and a subsequent 80-km-high nonlinear fiber (HNLF) as a fiber nonlinearity compensator. The OPC unit is based on a four wave mixing effect in a semiconductor optical amplifier. The fiber nonlinearity impairments in the transmission link are post-compensated for after OPC by transmission through the HNLF with a large nonlinearity coefficient. Simulation results show that the nonlinear threshold (NLT) (for Q > 10 dB) can be increased by about 2.5 dB and the maximum Q factor is increased by about 1.2 dB for the single-channel 40-Gb/s CO-OFDM system with periodic dispersion maps. In the 50-GHz channel spacing wavelength-division-multiplexing system, the NLT increases by 1.1 dB, equating to a 0.7 dB improvement for the maximum Q factor. (fundamental areas of phenomenology(including applications))

  5. Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system

    Science.gov (United States)

    Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail

    2018-05-01

    We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.

  6. Numerical study of propagation properties of surface plasmon polaritons in nonlinear media

    KAUST Repository

    Sagor, Rakibul Hasan

    2016-03-29

    We present a time-domain algorithm for simulating nonlinear propagation of surface plasmon polaritons (SPPs) in chalcogenide glass. Due to the high non-linearity property and strong dispersion and confinement chalcogenide glasses are widely known as ultrafast nonlinear materials. We have used the finite difference time domain (FDTD) method to develop the simulation algorithm for the current analysis. We have modeled the frequency dependent dispersion properties and third order nonlinearity property of chalcogenide glass utilizing the general polarization algorithm merged in the auxiliary differential equation (ADE) method. The propagation dynamics of the whole structure with and without third order nonlinearity property of chalcogenide glass have been simulated and the effect of nonlinearity on the propagation properties of SPP has been investigated. © 2016 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  7. Evaluation of third order nonlinear optical parameters of CdS/PVA nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160014 (India); Department of Applied Sciences (Physics), UIET, Panjab University, Chandigarh-160014 (India); Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160014 (India)

    2015-06-24

    CdS nanoparticles dispersed in PVA are prepared by Chemical method at room temperature. The nonlinear optical parameters such as nonlinear absorption (β), nonlinear refractive index (n{sub 2}) and nonlinear susceptibility (χ{sup 3}) are calculated for this sample by using Z-scan technique. CdS/PVA samples show the two photon absorption mechanism. The third order nonlinear susceptibility is calculated from n{sub 2} and β and is found to be of the order of 10{sup −7} – 10{sup −8} m{sup 2}/V{sup 2}. The larger value of third order nonlinear susceptibility is due to dielectric and quantum confinement effect.

  8. Generalized dispersive wave emission in nonlinear fiber optics.

    Science.gov (United States)

    Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G

    2013-01-15

    We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.

  9. Web Platform for Sharing Modeling Software in the Field of Nonlinear Optics

    Directory of Open Access Journals (Sweden)

    Dubenskaya Julia

    2018-01-01

    Full Text Available We describe the prototype of a Web platform intended for sharing software programs for computer modeling in the rapidly developing field of the nonlinear optics phenomena. The suggested platform is built on the top of the HUBZero open-source middleware. In addition to the basic HUBZero installation we added to our platform the capability to run Docker containers via an external application server and to send calculation programs to those containers for execution. The presented web platform provides a wide range of features and might be of benefit to nonlinear optics researchers.

  10. Web Platform for Sharing Modeling Software in the Field of Nonlinear Optics

    Science.gov (United States)

    Dubenskaya, Julia; Kryukov, Alexander; Demichev, Andrey

    2018-02-01

    We describe the prototype of a Web platform intended for sharing software programs for computer modeling in the rapidly developing field of the nonlinear optics phenomena. The suggested platform is built on the top of the HUBZero open-source middleware. In addition to the basic HUBZero installation we added to our platform the capability to run Docker containers via an external application server and to send calculation programs to those containers for execution. The presented web platform provides a wide range of features and might be of benefit to nonlinear optics researchers.

  11. Nonlinear optics and solid-state lasers advanced concepts, tuning-fundamentals and applications

    CERN Document Server

    Yao, Jianquan

    2012-01-01

    This book covers the complete spectrum of nonlinear optics and all solid state lasers.The book integrates theory, calculations and practical design, technology, experimental schemes and applications. With the expansion and further development of Laser technology, the wavelength spectrum of Lasers had to be enlarged, even to be tunable which requires the use of nonlinear optical and Laser tunable technology. It systematically summarizes and integrates the analysis of international achievements within the last 20 years in this field. It will be helpful for university teachers, graduate students as well as engineers.

  12. Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of Co(II)- picolinate complex

    Energy Technology Data Exchange (ETDEWEB)

    Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Avcı, Davut; Atalay, Yusuf

    2015-11-15

    A cobalt(II) complex of picolinate was synthesized, and its structure was fully characterized by the applying of X-ray diffraction method as well as FT-IR, FT-Raman and UV–vis spectroscopies. In order to both support the experimental results and convert study to more advanced level, density functional theory calculations were performed by using B3LYP level. Single crystal X-ray structural analysis shows that cobalt(II) ion was located to the center of distorted octahedral geometry. The C=O, C=C and C=N stretching vibrations were found as highly active and strong peaks, inducing the molecular charge transfer within Co(II) complex. The small energy gap between frontier molecular orbital energies was another indicator of molecular charge transfer interactions within Co(II) complex. The nonlinear optical properties of Co(II) complex were investigated at DFT/B3LYP level, and the hypepolarizability parameter was found to be decreased due to the presence of inversion symmetry. The natural bond orbital (NBO) analysis was performed to investigate molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength for Co(II) complex. Finally, molecular electrostatic potential (MEP) and spin density distributions for Co(II) complex were evaluated. - Highlights: • Co(II) complex of picolinate was prepared. • Its FT-IR, FT-Raman and UV–vis spectra were measured. • DFT calculations were performed to support experimental results. • Small HOMO-LUMO energy gap is an indicator of molecular charge transfer. • Spin density localized on Co(II) as well as O and N atoms.

  13. Functional possibilities of nonlinear crystals for frequency conversion: uniaxial crystals

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, Yu M [Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation); Arapov, Yu D; Kasyanov, I V [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation); Grechin, S G; Nikolaev, P P [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)

    2016-01-31

    The method and results of the analysis of phase-matching and nonlinear properties for all point groups of symmetry of uniaxial crystals that determine their functional possibilities for solving various problems of nonlinear frequency conversion of laser radiation are presented. (nonlinear optical phenomena)

  14. Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays

    Science.gov (United States)

    Ma, Li-Yuan; Ji, Jia-Liang; Xu, Zong-Wei; Zhu, Zuo-Nong

    2018-03-01

    We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term. Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).

  15. An ultra-efficient nonlinear planar integrated platform for optical signal processing and generation

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    2017-01-01

    This paper will discuss the recently developed integrated platform: AlGaAs-oninsulator and its broad range of nonlinear applications. Recent demonstrations of broadband optical signal processing and efficient frequency comb generations in this platform will be reviewed.......This paper will discuss the recently developed integrated platform: AlGaAs-oninsulator and its broad range of nonlinear applications. Recent demonstrations of broadband optical signal processing and efficient frequency comb generations in this platform will be reviewed....

  16. Engineered Quasi-Phase Matching for Nonlinear Quantum Optics in Waveguides

    Science.gov (United States)

    Van Camp, Mackenzie A.

    Entanglement is the hallmark of quantum mechanics. Quantum entanglement--putting two or more identical particles into a non-factorable state--has been leveraged for applications ranging from quantum computation and encryption to high-precision metrology. Entanglement is a practical engineering resource and a tool for sidestepping certain limitations of classical measurement and communication. Engineered nonlinear optical waveguides are an enabling technology for generating entangled photon pairs and manipulating the state of single photons. This dissertation reports on: i) frequency conversion of single photons from the mid-infrared to 843nm as a tool for incorporating quantum memories in quantum networks, ii) the design, fabrication, and test of a prototype broadband source of polarization and frequency entangled photons; and iii) a roadmap for further investigations of this source, including applications in quantum interferometry and high-precision optical metrology. The devices presented herein are quasi-phase-matched lithium niobate waveguides. Lithium niobate is a second-order nonlinear optical material and can mediate optical energy conversion to different wavelengths. This nonlinear effect is the basis of both quantum frequency conversion and entangled photon generation, and is enhanced by i) confining light in waveguides to increase conversion efficiency, and ii) quasi-phase matching, a technique for engineering the second-order nonlinear response by locally altering the direction of a material's polarization vector. Waveguides are formed by diffusing titanium into a lithium niobate wafer. Quasi-phase matching is achieved by electric field poling, with multiple stages of process development and optimization to fabricate the delicate structures necessary for broadband entangled photon generation. The results presented herein update and optimize past fabrication techniques, demonstrate novel optical devices, and propose future avenues for device development

  17. Growth and characterization of materials for infrared detectors and nonlinear optical switches; Proceedings of the Meeting, Orlando, FL, Apr. 2, 3, 1991

    Science.gov (United States)

    Longshore, Randolph E.; Baars, Jan W.

    Papers included in these proceedings are grouped under the topics of infrared material growth and characterization, infrared detector physics, and nonlinear optics. Attention is given to interface demarcation in Bridgman-Stockbarger crystal growth of II-VI compounds, growth of CdTe-CdMnTe heterostructures by molecular beam epitaxy, and a photoconductivity decay method for determining the minority carrier lifetime of p-type HgCdTe. Consideration is also given to anodic oxides on HgZnTe, the characterization of anodic fluoride films on Hg(1-x)Cd(x)Te, optical response in high-temperature superconducting thin films, and pyroelectric linear array IR detectors with CCD multiplexer. Other papers are on structural and optical properties of melt-processed calcium aluminate fibers, the preparation and characterization of a new thermistor material for thermistor bolometer, and photoemission from quantum-confined structure of nonlinear optical materials. (For individual items see A93-26893 to A93-26895)

  18. Peptide Integrated Optics.

    Science.gov (United States)

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of temperature on the structural, linear, and nonlinear optical properties of MgO-doped graphene oxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Kimiagar Salimeh

    2018-01-01

    Full Text Available Magnesium oxide (MgO-graphene oxide (GO nanocomposites were prepared by the hydrothermal method at different temperatures. The effect of growth temperature on the structural, linear, and nonlinear optical (NLO parameters was investigated. The decoration of MgO on GO sheets was confirmed by X-ray diffraction, scanning electron microscopy, Fourier transform infrared, and UV-visible (UV-vis spectroscopy analyses. The energy band-gaps of MgO-GO nanocomposites were calculated from UV-vis spectrum using Tauc plot. The NLO parameters of MgO-GO nanocomposites were calculated for the first time by the simple Z-scan technique with nanosecond Nd:YAG laser at 532 nm. The nonlinear absorption coefficient β and nonlinear refractive index n2 for MgO-GO nanocomposites at the laser intensity of 1.1×108 W/cm2 were measured to be in the order of 10−7 cm/W and 10−12 cm2/W, respectively. The third-order NLO susceptibility of MgO-GO nanocomposites was measured in the order of 10−9 esu. The results showed that MgO-GO structures have negative nonlinearity as well as good nonlinear two-photon absorption at 532 nm. Furthermore, the NLO parameters increased by the enhancement of the growth temperature. As the investigation of new materials plays an important role in the advancement of optoelectronics, MgO-GO nanocomposites possess potential applications in NLO devices.

  20. Linear and Non-Linear Optical Imaging of Cancer Cells with Silicon Nanoparticles

    Science.gov (United States)

    Tolstik, Elen; Osminkina, Liubov A.; Akimov, Denis; Gongalsky, Maksim B.; Kudryavtsev, Andrew A.; Timoshenko, Victor Yu.; Heintzmann, Rainer; Sivakov, Vladimir; Popp, Jürgen

    2016-01-01

    New approaches for visualisation of silicon nanoparticles (SiNPs) in cancer cells are realised by means of the linear and nonlinear optics in vitro. Aqueous colloidal solutions of SiNPs with sizes of about 10–40 nm obtained by ultrasound grinding of silicon nanowires were introduced into breast cancer cells (MCF-7 cell line). Further, the time-varying nanoparticles enclosed in cell structures were visualised by high-resolution structured illumination microscopy (HR-SIM) and micro-Raman spectroscopy. Additionally, the nonlinear optical methods of two-photon excited fluorescence (TPEF) and coherent anti-Stokes Raman scattering (CARS) with infrared laser excitation were applied to study the localisation of SiNPs in cells. Advantages of the nonlinear methods, such as rapid imaging, which prevents cells from overheating and larger penetration depth compared to the single-photon excited HR-SIM, are discussed. The obtained results reveal new perspectives of the multimodal visualisation and precise detection of the uptake of biodegradable non-toxic SiNPs by cancer cells and they are discussed in view of future applications for the optical diagnostics of cancer tumours. PMID:27626408