WorldWideScience

Sample records for nonlinear numerical model

  1. A simple numerical model of a geometrically nonlinear Timoshenko beam

    NARCIS (Netherlands)

    Keijdener, C.; Metrikine, A.

    2015-01-01

    In the original problem for which this model was developed, onedimensional flexible objects interact through a non-linear contact model. Due to the non-linear nature of the contact model, a numerical time-domain approach was adopted. One of the goals was to see if the coupling between axial and

  2. Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model

    Science.gov (United States)

    Ong, L.; Melosh, H. J.

    2012-12-01

    Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient

  3. Sinusoidal velaroidal shell – numerical modelling of the nonlinear ...

    African Journals Online (AJOL)

    The nonlinearity, applied to a sinusoidal velaroidal shell with the inner radius r0, the outer variables radii from 10m to 20m and the number of waves n=8, will give rise to the investigation of its nonlinear buckling resistance. The building material is a high-performant concrete. The investigation emphasizes more on the ...

  4. Application of numerical optimization techniques to control system design for nonlinear dynamic models of aircraft

    Science.gov (United States)

    Lan, C. Edward; Ge, Fuying

    1989-01-01

    Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.

  5. Numerical tools for musical instruments acoustics: analysing nonlinear physical models using continuation of periodic solutions

    OpenAIRE

    Karkar , Sami; Vergez , Christophe; Cochelin , Bruno

    2012-01-01

    International audience; We propose a new approach based on numerical continuation and bifurcation analysis for the study of physical models of instruments that produce self- sustained oscillation. Numerical continuation consists in following how a given solution of a set of equations is modified when one (or several) parameter of these equations are allowed to vary. Several physical models (clarinet, saxophone, and violin) are formulated as nonlinear dynamical systems, whose periodic solution...

  6. A Positivity-Preserving Numerical Scheme for Nonlinear Option Pricing Models

    Directory of Open Access Journals (Sweden)

    Shengwu Zhou

    2012-01-01

    Full Text Available A positivity-preserving numerical method for nonlinear Black-Scholes models is developed in this paper. The numerical method is based on a nonstandard approximation of the second partial derivative. The scheme is not only unconditionally stable and positive, but also allows us to solve the discrete equation explicitly. Monotone properties are studied in order to avoid unwanted oscillations of the numerical solution. The numerical results for European put option and European butterfly spread are compared to the standard finite difference scheme. It turns out that the proposed scheme is efficient and reliable.

  7. Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models

    NARCIS (Netherlands)

    Koopman, S.J.; Lucas, A.; Scharth, M.

    2015-01-01

    We propose a general likelihood evaluation method for nonlinear non-Gaussian state-space models using the simulation-based method of efficient importance sampling. We minimize the simulation effort by replacing some key steps of the likelihood estimation procedure by numerical integration. We refer

  8. A conservative numerical scheme for modeling nonlinear acoustic propagation in thermoviscous homogeneous media

    Science.gov (United States)

    Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H.

    2018-06-01

    A nonlinear system of partial differential equations capable of describing the nonlinear propagation and attenuation of finite amplitude perturbations in thermoviscous media is presented. This system constitutes a full nonlinear wave model that has been formulated in the conservation form. Initially, this model is investigated analytically in the inviscid limit where it has been found that the resulting flux function fulfills the Lax-Wendroff theorem, and the scheme can match the solutions of the Westervelt and Burgers equations numerically. Here, high-order numerical descriptions of strongly nonlinear wave propagations become of great interest. For that matter we consider finite difference formulations of the weighted essentially non-oscillatory (WENO) schemes associated with explicit strong stability preserving Runge-Kutta (SSP-RK) time integration methods. Although this strategy is known to be computationally demanding, it is found to be effective when implemented to be solved in graphical processing units (GPUs). As we consider wave propagations in unbounded domains, perfectly matching layers (PML) have been also considered in this work. The proposed system model is validated and illustrated by using one- and two-dimensional benchmark test cases proposed in the literature for nonlinear acoustic propagation in homogeneous thermoviscous media.

  9. The development and validation of a numerical integration method for non-linear viscoelastic modeling

    Science.gov (United States)

    Ramo, Nicole L.; Puttlitz, Christian M.

    2018-01-01

    Compelling evidence that many biological soft tissues display both strain- and time-dependent behavior has led to the development of fully non-linear viscoelastic modeling techniques to represent the tissue’s mechanical response under dynamic conditions. Since the current stress state of a viscoelastic material is dependent on all previous loading events, numerical analyses are complicated by the requirement of computing and storing the stress at each step throughout the load history. This requirement quickly becomes computationally expensive, and in some cases intractable, for finite element models. Therefore, we have developed a strain-dependent numerical integration approach for capturing non-linear viscoelasticity that enables calculation of the current stress from a strain-dependent history state variable stored from the preceding time step only, which improves both fitting efficiency and computational tractability. This methodology was validated based on its ability to recover non-linear viscoelastic coefficients from simulated stress-relaxation (six strain levels) and dynamic cyclic (three frequencies) experimental stress-strain data. The model successfully fit each data set with average errors in recovered coefficients of 0.3% for stress-relaxation fits and 0.1% for cyclic. The results support the use of the presented methodology to develop linear or non-linear viscoelastic models from stress-relaxation or cyclic experimental data of biological soft tissues. PMID:29293558

  10. A Novel Numerical Approach for a Nonlinear Fractional Dynamical Model of Interpersonal and Romantic Relationships

    Directory of Open Access Journals (Sweden)

    Jagdev Singh

    2017-07-01

    Full Text Available In this paper, we propose a new numerical algorithm, namely q-homotopy analysis Sumudu transform method (q-HASTM, to obtain the approximate solution for the nonlinear fractional dynamical model of interpersonal and romantic relationships. The suggested algorithm examines the dynamics of love affairs between couples. The q-HASTM is a creative combination of Sumudu transform technique, q-homotopy analysis method and homotopy polynomials that makes the calculation very easy. To compare the results obtained by using q-HASTM, we solve the same nonlinear problem by Adomian’s decomposition method (ADM. The convergence of the q-HASTM series solution for the model is adapted and controlled by auxiliary parameter ℏ and asymptotic parameter n. The numerical results are demonstrated graphically and in tabular form. The result obtained by employing the proposed scheme reveals that the approach is very accurate, effective, flexible, simple to apply and computationally very nice.

  11. A Numerical Implementation of a Nonlinear Mild Slope Model for Shoaling Directional Waves

    Directory of Open Access Journals (Sweden)

    Justin R. Davis

    2014-02-01

    Full Text Available We describe the numerical implementation of a phase-resolving, nonlinear spectral model for shoaling directional waves over a mild sloping beach with straight parallel isobaths. The model accounts for non-linear, quadratic (triad wave interactions as well as shoaling and refraction. The model integrates the coupled, nonlinear hyperbolic evolution equations that describe the transformation of the complex Fourier amplitudes of the deep-water directional wave field. Because typical directional wave spectra (observed or produced by deep-water forecasting models such as WAVEWATCH III™ do not contain phase information, individual realizations are generated by associating a random phase to each Fourier mode. The approach provides a natural extension to the deep-water spectral wave models, and has the advantage of fully describing the shoaling wave stochastic process, i.e., the evolution of both the variance and higher order statistics (phase correlations, the latter related to the evolution of the wave shape. The numerical implementation (a Fortran 95/2003 code includes unidirectional (shore-perpendicular propagation as a special case. Interoperability, both with post-processing programs (e.g., MATLAB/Tecplot 360 and future model coupling (e.g., offshore wave conditions from WAVEWATCH III™, is promoted by using NetCDF-4/HD5 formatted output files. The capabilities of the model are demonstrated using a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation. The simulated wave transformation under combined shoaling, refraction and nonlinear interactions shows the expected generation of directional harmonics of the spectral peak and of infragravity (frequency <0.05 Hz waves. Current development efforts focus on analytic testing, development of additional physics modules essential for applications and validation with laboratory and field observations.

  12. A different approach to estimate nonlinear regression model using numerical methods

    Science.gov (United States)

    Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.

    2017-11-01

    This research paper concerns with the computational methods namely the Gauss-Newton method, Gradient algorithm methods (Newton-Raphson method, Steepest Descent or Steepest Ascent algorithm method, the Method of Scoring, the Method of Quadratic Hill-Climbing) based on numerical analysis to estimate parameters of nonlinear regression model in a very different way. Principles of matrix calculus have been used to discuss the Gradient-Algorithm methods. Yonathan Bard [1] discussed a comparison of gradient methods for the solution of nonlinear parameter estimation problems. However this article discusses an analytical approach to the gradient algorithm methods in a different way. This paper describes a new iterative technique namely Gauss-Newton method which differs from the iterative technique proposed by Gorden K. Smyth [2]. Hans Georg Bock et.al [10] proposed numerical methods for parameter estimation in DAE’s (Differential algebraic equation). Isabel Reis Dos Santos et al [11], Introduced weighted least squares procedure for estimating the unknown parameters of a nonlinear regression metamodel. For large-scale non smooth convex minimization the Hager and Zhang (HZ) conjugate gradient Method and the modified HZ (MHZ) method were presented by Gonglin Yuan et al [12].

  13. Numerical studies on the electromagnetic properties of the nonlinear Lorentz Computational model for the dielectric media

    International Nuclear Information System (INIS)

    Abe, H.; Okuda, H.

    1994-06-01

    We study linear and nonlinear properties of a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. It is shown that the model may be useful for studying linear and nonlinear wave propagation in the dielectric media

  14. Non-linear belt transient analysis. A hybrid model for numerical belt conveyor simulation

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, A. [Scientific Solutions, Inc., Aurora, CO (United States)

    2008-07-01

    Frictional and rolling losses along a running conveyor are discussed due to their important influence on wave propagation during starting and stopping. Hybrid friction models allow belt rubber losses and material flexing to be included in the initial tension calculations prior to any dynamic analysis. Once running tensions are defined, a numerical integration method using non-linear stiffness gradients is used to generate transient forces during starting and stopping. A modified Euler integration technique is used to simulate the entire starting and stopping cycle in less than 0.1 seconds. The procedure enables a faster scrutiny of unforeseen conveyor design issues such as low belt tension zones and high forces at drives. (orig.)

  15. A numerical study of linear and nonlinear kinematic models in fish swimming with the DSD/SST method

    Science.gov (United States)

    Tian, Fang-Bao

    2015-03-01

    Flow over two fish (modeled by two flexible plates) in tandem arrangement is investigated by solving the incompressible Navier-Stokes equations numerically with the DSD/SST method to understand the differences between the geometrically linear and nonlinear models. In the simulation, the motions of the plates are reconstructed from a vertically flowing soap film tunnel experiment with linear and nonlinear kinematic models. Based on the simulations, the drag, lift, power consumption, vorticity and pressure fields are discussed in detail. It is found that the linear and nonlinear models are able to reasonably predict the forces and power consumption of a single plate in flow. Moreover, if multiple plates are considered, these two models yield totally different results, which implies that the nonlinear model should be used. The results presented in this work provide a guideline for future studies in fish swimming.

  16. Numerical studies on soliton propagation in the dielectric media by the nonlinear Lorentz computational model

    International Nuclear Information System (INIS)

    Abe, H.; Okuda, H.

    1994-06-01

    Soliton propagation in the dielectric media has been simulated by using the nonlinear Lorentz computational model, which was recently developed to study the propagation of electromagnetic waves in a linear and a nonlinear dielectric. The model is constructed by combining a microscopic model used in the semi-classical approximation for dielectric media and the particle model developed for the plasma simulations. The carrier wave frequency is retained in the simulation so that not only the envelope of the soliton but also its phase can be followed in time. It is shown that the model may be useful for studying pulse propagation in the dielectric media

  17. Mathematical and numerical study of nonlinear hyperbolic equations: model coupling and nonclassical shocks

    International Nuclear Information System (INIS)

    Boutin, B.

    2009-11-01

    This thesis concerns the mathematical and numerical study of nonlinear hyperbolic partial differential equations. A first part deals with an emergent problematic: the coupling of hyperbolic equations. The pursued applications are linked with the mathematical coupling of computing platforms, dedicated to an adaptative simulation of multi-scale phenomena. We propose and analyze a new coupling formalism based on extended PDE systems avoiding the geometric treatment of the interfaces. In addition, it allows to formulate the problem in a multidimensional setting, with possible covering of the coupled models. This formalism allows in particular to equip the coupling procedure with viscous regularization mechanisms, useful in the selection of natural discontinuous solutions. We analyze existence and uniqueness in the framework of a parabolic regularization a la Dafermos. Existence of a solution holds true under very general conditions but failure of uniqueness may naturally arise as soon as resonance occurs at the interfaces. Next, we highlight that our extended PDE framework gives rise to another regularization strategy based on thick interfaces. In this setting, we prove existence and uniqueness of the solutions of the Cauchy problem for initial data in L ∞ . The main tool consists in the derivation of a flexible and robust finite volume method for general triangulation which is analyzed in the setting of entropy measure-valued solutions by DiPerna. The second part is devoted to the definition of a finite volume scheme for the computing of nonclassical solutions of a scalar conservation law based on a kinetic relation. This scheme offers the feature to be stricto sensu conservative, in opposition to a Glimm approach that is only statistically conservative. The validity of our approach is illustrated through numerical examples. (author)

  18. Analytical and Numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations

    Science.gov (United States)

    Gómez-Aguilar, J. F.

    2018-03-01

    In this paper, we analyze an alcoholism model which involves the impact of Twitter via Liouville-Caputo and Atangana-Baleanu-Caputo fractional derivatives with constant- and variable-order. Two fractional mathematical models are considered, with and without delay. Special solutions using an iterative scheme via Laplace and Sumudu transform were obtained. We studied the uniqueness and existence of the solutions employing the fixed point postulate. The generalized model with variable-order was solved numerically via the Adams method and the Adams-Bashforth-Moulton scheme. Stability and convergence of the numerical solutions were presented in details. Numerical examples of the approximate solutions are provided to show that the numerical methods are computationally efficient. Therefore, by including both the fractional derivatives and finite time delays in the alcoholism model studied, we believe that we have established a more complete and more realistic indicator of alcoholism model and affect the spread of the drinking.

  19. NUMERICAL MODELING AND DYNAMIC SIMULATIONS OF NONLINEAR AEROTHERMOELASTIC OF A DOUBLE-WEDGE LIFTING SURFACE

    Directory of Open Access Journals (Sweden)

    ARIF A. EBRAHEEM AL-QASSAR

    2008-12-01

    Full Text Available The design of the re-entry space vehicles and high-speed aircrafts requires special attention to the nonlinear thermoelastic and aerodynamic instabilities of their structural components. The thermal effects are important since temperature environment influences significantly the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes. To contribute to the understanding of dynamic behavior of these “hot” structures, a double-wedge lifting surface with combined freeplay and cubic stiffening structural nonlinearities in both plunging and pitching degrees-of-freedom operating in supersonic/hypersonic flight speed regimes has been analyzed. A third order Piston Theory Aerodynamics is used to evaluate the applied nonlinear unsteady aerodynamic loads. The loss of torsional stiffness that may be incurred by lifting surfaces subjected to axial stresses induced by aerodynamic heating is also considered. The aerodynamic heating effect is estimated based on the adiabatic wall temperature due to high speed airstreams. Modelling issues as well as simulation results have been presented and pertinent conclusions outlined. It is highlighted that a serious loss of torsional stiffness may induce the dynamic instability of the lifting surfaces. The influence of various parameters such as flight condition, thickness ratio, freeplays and pitching stiffness nonlinearity are also discussed.

  20. A Fully Nonlinear, Dynamically Consistent Numerical Model for Solid-Body Ship Motion. I. Ship Motion with Fixed Heading

    Science.gov (United States)

    Lin, Ray-Quing; Kuang, Weijia

    2011-01-01

    In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.

  1. Analytical and numerical modelling of thermoviscous shocks in their interactions in nonlinear fluids including dissipation

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich

    2010-01-01

    A wave equation, that governs finite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. The equation preserves the Hamiltonian structure of the fundamental fluid dynamical equations in the non dissipative limit. An exact...... thermoviscous shock solution is derived. This solution is, in an overall sense, equivalent to the Taylor shock solution of the Burgers equation. However, in contrast to the Burgers equation, the model equation considered here is capable to describe waves propagating in opposite directions. Studies of head...

  2. The effect of nonlinear propagation on heating of tissue: A numerical model of diagnostic ultrasound beams

    Science.gov (United States)

    Cahill, Mark D.; Humphrey, Victor F.; Doody, Claire

    2000-07-01

    Thermal safety indices for diagnostic ultrasound beams are calculated under the assumption that the sound propagates under linear conditions. A non-axisymmetric finite difference model is used to solve the KZK equation, and so to model the beam of a diagnostic scanner in pulsed Doppler mode. Beams from both a uniform focused rectangular source and a linear array are considered. Calculations are performed in water, and in attenuating media with tissue-like characteristics. Attenuating media are found to exhibit significant nonlinear effects for finite-amplitude beams. The resulting loss of intensity by the beam is then used as the source term in a model of tissue heating to estimate the maximum temperature rises. These are compared with the thermal indices, derived from the properties of the water-propagated beams.

  3. Mathematical and numerical study of non-linear models used in plasma physics

    International Nuclear Information System (INIS)

    Ebrard, G.

    2005-12-01

    We study the interaction of several crossing beams with a plasma in the Laser-Megajoule context. We start from Euler-Maxwell. The formal asymptotic is the Zakharov system. For simplified systems of Klein-Gordon-wave type, we justify an approximation by a Zakharov equation for solutions of large amplitude. We construct a new system that simulates the interaction of 2 beams and present a whole hierarchy of models. We introduce a numerical scheme using the known results on Zakharov-wave equations which are valid for short pulses. We give a scheme which eliminate the backscattering wave. We give some numerical results. Finally, we do several numerical simulations of laser-plasma interaction for the initial value problem and the boundary value problem. (author)

  4. Numerical Simulation of Entropy Growth for a Nonlinear Evolutionary Model of Random Markets

    Directory of Open Access Journals (Sweden)

    Mahdi Keshtkar

    2016-01-01

    Full Text Available In this communication, the generalized continuous economic model for random markets is revisited. In this model for random markets, agents trade by pairs and exchange their money in a random and conservative way. They display the exponential wealth distribution as asymptotic equilibrium, independently of the effectiveness of the transactions and of the limitation of the total wealth. In the current work, entropy of mentioned model is defined and then some theorems on entropy growth of this evolutionary problem are given. Furthermore, the entropy increasing by simulation on some numerical examples is verified.

  5. Nonlinear bioheat transfer models and multi-objective numerical optimization of the cryosurgery operations

    Energy Technology Data Exchange (ETDEWEB)

    Kudryashov, Nikolay A.; Shilnikov, Kirill E. [National Research Nuclear University MEPhI, Department of Applied Mathematics, Moscow (Russian Federation)

    2016-06-08

    Numerical computation of the three dimensional problem of the freezing interface propagation during the cryosurgery coupled with the multi-objective optimization methods is used in order to improve the efficiency and safety of the cryosurgery operations performing. Prostate cancer treatment and cutaneous cryosurgery are considered. The heat transfer in soft tissue during the thermal exposure to low temperature is described by the Pennes bioheat model and is coupled with an enthalpy method for blurred phase change computations. The finite volume method combined with the control volume approximation of the heat fluxes is applied for the cryosurgery numerical modeling on the tumor tissue of a quite arbitrary shape. The flux relaxation approach is used for the stability improvement of the explicit finite difference schemes. The method of the additional heating elements mounting is studied as an approach to control the cellular necrosis front propagation. Whereas the undestucted tumor tissue and destucted healthy tissue volumes are considered as objective functions, the locations of additional heating elements in cutaneous cryosurgery and cryotips in prostate cancer cryotreatment are considered as objective variables in multi-objective problem. The quasi-gradient method is proposed for the searching of the Pareto front segments as the multi-objective optimization problem solutions.

  6. Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S.

    2014-01-01

    the calculation of the non-linear hydrostatic restoring moment by a cubic polynomial function fit to laboratory test results. Moreover, moments due to viscous drag are evaluated on the oscillating hemisphere considering the horizontal and vertical drag force components. The influence on the motions of this non.......e. H/λ≤0.02. For steep waves, H/λ≥0.04 however, the relative velocities between the body and the waves increase thus requiring inclusion of the non-linear hydrostatic restoring moment to effectively predict the dynamics of the wave energy converter. For operation of the device with a passively damping...

  7. Nonlinear dynamics and numerical uncertainties in CFD

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  8. Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact

    NARCIS (Netherlands)

    Brands, D.W.A.; Peters, G.W.M.; Bovendeerd, P.H.M.

    2004-01-01

    Finite Element (FE) head models are often used to understand mechanical response of the head and its contents during impact loading in the head. CurrentFE models do not account for non-linear viscoelastic material behavior of brain tissue. We developed a new non-linear viscoelastic material model

  9. Efficient Hybrid-Spectral Model for Fully Nonlinear Numerical Wave Tank

    DEFF Research Database (Denmark)

    Christiansen, Torben; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2013-01-01

    A new hybrid-spectral solution strategy is proposed for the simulation of the fully nonlinear free surface equations based on potential flow theory. A Fourier collocation method is adopted horisontally for the discretization of the free surface equations. This is combined with a modal Chebyshev Tau...... method in the vertical for the discretization of the Laplace equation in the fluid domain, which yields a sparse and spectrally accurate Dirichletto-Neumann operator. The Laplace problem is solved with an efficient Defect Correction method preconditioned with a spectral discretization of the linearised...... wave problem, ensuring fast convergence and optimal scaling with the problem size. Preliminary results for very nonlinear waves show expected convergence rates and a clear advantage of using spectral schemes....

  10. Numerical Modelling of Metal-Elastomer Spring Nonlinear Response for Low-Rate Deformations

    Directory of Open Access Journals (Sweden)

    Sikora Wojciech

    2018-03-01

    Full Text Available Advanced knowledge of mechanical characteristics of metal-elastomer springs is useful in their design process and selection. It can also be used in simulating dynamics of machine where such elements are utilized. Therefore this paper presents a procedure for preparing and executing FEM modelling of a single metal-elastomer spring, also called Neidhart’s spring, for low-rate deformations. Elastomer elements were made of SBR rubber of two hardness values: 50°Sh and 70°Sh. For the description of material behaviour the Bergström-Boyce model has been used.

  11. Symbolic and Numerical Modeling of Nonlinear Dynamics of Particles in Accelerators

    Science.gov (United States)

    Andrianov, Sergey; Sboeva, Ekaterina

    2018-02-01

    This paper is devoted to one of the methods of symbolic computation, which based on perturbation theory and constructed in the framework of matrix formalism. This method can be used for solving optimization problems and preliminary modeling in accelerator physics. There are presented the main theoretical positions and demonstration the result of this method on example of one of classical problems.

  12. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian

    2014-10-08

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

  13. Feedback options in nonlinear numerical finance

    DEFF Research Database (Denmark)

    Hugger, Jens; Mashayekhi, Sima

    2012-01-01

    on an infinite slab is presented and boundary values on a bounded domain are derived. This bounded, nonlinear, 2 dimensional initial-boundary value problem is solved numerically using a number of standard finite difference schemes and the methods incorporated in the symbolic software Maple™....

  14. Modeling, numerical simulation, and nonlinear dynamic behavior analysis of PV microgrid-connected inverter with capacitance catastrophe

    Science.gov (United States)

    Li, Sichen; Liao, Zhixian; Luo, Xiaoshu; Wei, Duqu; Jiang, Pinqun; Jiang, Qinghong

    2018-02-01

    The value of the output capacitance (C) should be carefully considered when designing a photovoltaic (PV) inverter since it can cause distortion in the working state of the circuit, and the circuit produces nonlinear dynamic behavior. According to Kirchhoff’s laws and the characteristics of an ideal operational amplifier for a strict piecewise linear state equation, a circuit simulation model is constructed to study the system parameters (time, C) for the current passing through an inductor with an inductance of L and the voltage across the capacitor with a capacitance of C. The developed simulation model uses Runge-Kutta methods to solve the state equations. This study focuses on predicting the fault of the circuit from the two aspects of the harmonic distortion and simulation results. Moreover, the presented model is also used to research the working state of the system in the case of a load capacitance catastrophe. The nonlinear dynamic behaviors in the inverter are simulated and verified.

  15. Numerical Methods for the Optimization of Nonlinear Residual-Based Sungrid-Scale Models Using the Variational Germano Identity

    NARCIS (Netherlands)

    Maher, G.D.; Hulshoff, S.J.

    2014-01-01

    The Variational Germano Identity [1, 2] is used to optimize the coefficients of residual-based subgrid-scale models that arise from the application of a Variational Multiscale Method [3, 4]. It is demonstrated that numerical iterative methods can be used to solve the Germano relations to obtain

  16. Numerical Methods for Nonlinear PDEs in Finance

    DEFF Research Database (Denmark)

    Mashayekhi, Sima

    Nonlinear Black-Scholes equations arise from considering parameters such as feedback and illiquid markets eects or large investor preferences, volatile portfolio and nontrivial transaction costs into option pricing models to have more accurate option price. Here some nite dierence schemes have be...

  17. Analytical and numerical investigation of nonlinear internal gravity waves

    Directory of Open Access Journals (Sweden)

    S. P. Kshevetskii

    2001-01-01

    Full Text Available The propagation of long, weakly nonlinear internal waves in a stratified gas is studied. Hydrodynamic equations for an ideal fluid with the perfect gas law describe the atmospheric gas behaviour. If we neglect the term Ͽ dw/dt (product of the density and vertical acceleration, we come to a so-called quasistatic model, while we name the full hydro-dynamic model as a nonquasistatic one. Both quasistatic and nonquasistatic models are used for wave simulation and the models are compared among themselves. It is shown that a smooth classical solution of a nonlinear quasistatic problem does not exist for all t because a gradient catastrophe of non-linear internal waves occurs. To overcome this difficulty, we search for the solution of the quasistatic problem in terms of a generalised function theory as a limit of special regularised equations containing some additional dissipation term when the dissipation factor vanishes. It is shown that such solutions of the quasistatic problem qualitatively differ from solutions of a nonquasistatic nature. It is explained by the fact that in a nonquasistatic model the vertical acceleration term plays the role of a regularizator with respect to a quasistatic model, while the solution qualitatively depends on the regularizator used. The numerical models are compared with some analytical results. Within the framework of the analytical model, any internal wave is described as a system of wave modes; each wave mode interacts with others due to equation non-linearity. In the principal order of a perturbation theory, each wave mode is described by some equation of a KdV type. The analytical model reveals that, in a nonquasistatic model, an internal wave should disintegrate into solitons. The time of wave disintegration into solitons, the scales and amount of solitons generated are important characteristics of the non-linear process; they are found with the help of analytical and numerical investigations. Satisfactory

  18. Generalized Nonlinear Yule Models

    OpenAIRE

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-01-01

    With the aim of considering models with persistent memory we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macrovolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth...

  19. Experimental assessment and numerical modeling of the nonlinear behavior of the masonry shear walls under in-plane cyclic loading considering the brickwork-setting effect

    Directory of Open Access Journals (Sweden)

    Amir Hossein Karimi

    2017-08-01

    Full Text Available In this article, the main purpose is nonlinear analysis of the cyclic behavior of the masonry shear walls including brickwork setting using finite element method. Three different brickwork-settings including running bond style, herringbone style and Zarbi style (herreh style were investigated. To this end, the walls (in dimension of 195×1500×1720 mm were tested in the laboratory and then were simulated using macro modeling method by Abaqus software, and their hysteretic curves was drawn. The concrete damaged plasticity criteria in the Abaqus software is a model used in this research.In this method, the main failure mechanisms of fracture are cracking in tension and crushing in compression. The macro modeling method was used for numerical assessment of the masonry walls. After numerical modeling and drawing hysteretic curves and contrasting them with laboratory results, it was proven that the concrete damaged plasticity model, which is behavioral model for simulating concrete material, can be used for modeling masonry materials under seismic loading. However, this model cannot be used to simulate pinching effect in hysteretic curve drawn from seismic loading. The envelope curve resulted from the numerical analysis of all three brickwork layouts had a good agreement with the results of the laboratory tests, but in Hysteretic curve of Herringbone style and Zarbi style the pinching effect did not match experimental results

  20. Reduced-order computational model in nonlinear structural dynamics for structures having numerous local elastic modes in the low-frequency range. Application to fuel assemblies

    International Nuclear Information System (INIS)

    Batou, A.; Soize, C.; Brie, N.

    2013-01-01

    Highlights: • A ROM of a nonlinear dynamical structure is built with a global displacements basis. • The reduced order model of fuel assemblies is accurate and of very small size. • The shocks between grids of a row of seven fuel assemblies are computed. -- Abstract: We are interested in the construction of a reduced-order computational model for nonlinear complex dynamical structures which are characterized by the presence of numerous local elastic modes in the low-frequency band. This high modal density makes the use of the classical modal analysis method not suitable. Therefore the reduced-order computational model is constructed using a basis of a space of global displacements, which is constructed a priori and which allows the nonlinear dynamical response of the structure observed on the stiff part to be predicted with a good accuracy. The methodology is applied to a complex industrial structure which is made up of a row of seven fuel assemblies with possibility of collisions between grids and which is submitted to a seismic loading

  1. Reduced-order computational model in nonlinear structural dynamics for structures having numerous local elastic modes in the low-frequency range. Application to fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Batou, A., E-mail: anas.batou@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France); Soize, C., E-mail: christian.soize@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France); Brie, N., E-mail: nicolas.brie@edf.fr [EDF R and D, Département AMA, 1 avenue du général De Gaulle, 92140 Clamart (France)

    2013-09-15

    Highlights: • A ROM of a nonlinear dynamical structure is built with a global displacements basis. • The reduced order model of fuel assemblies is accurate and of very small size. • The shocks between grids of a row of seven fuel assemblies are computed. -- Abstract: We are interested in the construction of a reduced-order computational model for nonlinear complex dynamical structures which are characterized by the presence of numerous local elastic modes in the low-frequency band. This high modal density makes the use of the classical modal analysis method not suitable. Therefore the reduced-order computational model is constructed using a basis of a space of global displacements, which is constructed a priori and which allows the nonlinear dynamical response of the structure observed on the stiff part to be predicted with a good accuracy. The methodology is applied to a complex industrial structure which is made up of a row of seven fuel assemblies with possibility of collisions between grids and which is submitted to a seismic loading.

  2. Numerical simulation of the roll levelling of third generation fortiform 1050 steel using a nonlinear combined hardening material model

    Science.gov (United States)

    Galdos, L.; Saenz de Argandoña, E.; Mendiguren, J.; Silvestre, E.

    2017-09-01

    The roll levelling is a flattening process used to remove the residual stresses and imperfections of metal strips by means of plastic deformations. During the process, the metal sheet is subjected to cyclic tension-compression deformations leading to a flat product. The process is especially important to avoid final geometrical errors when coils are cold formed or when thick plates are cut by laser. In the last years, and due to the appearance of high strength materials such as Ultra High Strength Steels, machine design engineers are demanding reliable tools for the dimensioning of the levelling facilities. Like in other metal forming fields, finite element analysis seems to be the most widely used solution to understand the occurring phenomena and to calculate the processing loads. In this paper, the roll levelling process of the third generation Fortiform 1050 steel is numerically analysed. The process has been studied using the MSC MARC software and two different material laws. A pure isotropic hardening law has been used and set as the baseline study. In the second part, tension-compression tests have been carried out to analyse the cyclic behaviour of the steel. With the obtained data, a new material model using a combined isotropic-kinematic hardening formulation has been fitted. Finally, the influence of the material model in the numerical results has been analysed by comparing a pure isotropic model and the later combined mixed hardening model.

  3. Modeling nonlinearities in MEMS oscillators.

    Science.gov (United States)

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  4. The factors influencing nonlinear characteristics of the short-circuit current in dye-sensitized solar cells investigated by a numerical model.

    Science.gov (United States)

    Shi, Yushuai; Dong, Xiandui

    2013-06-24

    A numerical model for interpretation of the light-intensity-dependent nonlinear characteristics of the short-circuit current in dye-sensitized solar cells is suggested. The model is based on the continuity equation and includes the influences of the nongeminate recombination between electrons and electron acceptors in the electrolyte and the geminate recombination between electrons and oxidized dye molecules. The influences of the order and rate constant of the nongeminate recombination reaction, the light-absorption coefficient of the dye, the film thickness, the rate constant of geminate recombination, and the regeneration rate constant on the nonlinear characteristics of the short-circuit current are simulated and analyzed. It is proposed that superlinear and sublinear characteristics of the short-circuit current should be attributed to low electron-collection efficiency and low dye-regeneration efficiency, respectively. These results allow a deep understanding of the origin of the nonlinear characteristics of the short-circuit current in solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Numerical simulation of electro-osmotic consolidation coupling non-linear variation of soil parameters

    Science.gov (United States)

    Wu, Hui; Hu, Liming; Wen, Qingbo

    2017-06-01

    Electro-osmotic consolidation is an effective method for soft ground improvement. A main limitation of previous numerical models on this technique is the ignorance of the non-linear variation of soil parameters. In the present study, a multi-field numerical model is developed with the consideration of the non-linear variation of soil parameters during electro-osmotic consolidation process. The numerical simulations on an axisymmetric model indicated that the non-linear variation of soil parameters showed remarkable impact on the development of the excess pore water pressure and degree of consolidation. A field experiment with complex geometry, boundary conditions, electrode configuration and voltage application was further simulated with the developed numerical model. The comparison between field and numerical data indicated that the numerical model coupling of the non-linear variation of soil parameters gave more reasonable results. The developed numerical model is capable to analyze engineering cases with complex operating conditions.

  6. A Nonlinear Dynamic Subscale Model for Partially Resolved Numerical Simulation (PRNS)/Very Large Eddy Simulation (VLES) of Internal Non-Reacting Flows

    Science.gov (United States)

    Shih, Tsan-Hsing; Liu, nan-Suey

    2010-01-01

    A brief introduction of the temporal filter based partially resolved numerical simulation/very large eddy simulation approach (PRNS/VLES) and its distinct features are presented. A nonlinear dynamic subscale model and its advantages over the linear subscale eddy viscosity model are described. In addition, a guideline for conducting a PRNS/VLES simulation is provided. Results are presented for three turbulent internal flows. The first one is the turbulent pipe flow at low and high Reynolds numbers to illustrate the basic features of PRNS/VLES; the second one is the swirling turbulent flow in a LM6000 single injector to further demonstrate the differences in the calculated flow fields resulting from the nonlinear model versus the pure eddy viscosity model; the third one is a more complex turbulent flow generated in a single-element lean direct injection (LDI) combustor, the calculated result has demonstrated that the current PRNS/VLES approach is capable of capturing the dynamically important, unsteady turbulent structures while using a relatively coarse grid.

  7. Numerical Investigation on the Directionality of Nonlinear Indicial Responses

    International Nuclear Information System (INIS)

    Yee, Kwan Jung; Hong, Sang Won; Lee, Dong Ho

    2007-01-01

    An unsteady Euler solver is modified to investigate the directionality of nonlinear indicial response to a step change in the angle of attack. An impulsive change in the angle of attack is incorporated by using the field velocity approach, which is known to decouple the step change in the angle of attack from a pitch rate. Numerical results are thoroughly compared against analytical results for two-dimensional indicial responses. The same method is applied to investigate the directionality of nonlinear indicial responses. It is found that directionality is mainly due to the asymmetry of initial shock locations. Since the directionality of the pitching moment responses is significant in the critical Mach number region, it is also shown that consideration of the directionality is crucial for accurate modeling of the nonlinear indicial functions

  8. PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: NUMERICAL STUDIES OF 3D NONLINEAR ELM DYNAMICS

    International Nuclear Information System (INIS)

    SNYDER, P.B.; WILSON, H.R.; XU, X.Q.

    2004-01-01

    Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the nonlinear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outboard wall. Similarities to non-linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed

  9. Numerical studies of nonlinear ultrasonic guided waves in uniform waveguides with arbitrary cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zhou, Yu [Advanced Remanufacturing and Technology Center (ARTC), 3 Clean Tech Loop, CleanTech Two, Singapore 637143 (Singapore)

    2016-07-15

    Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonant frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.

  10. Nonlinear ordinary differential equations analytical approximation and numerical methods

    CERN Document Server

    Hermann, Martin

    2016-01-01

    The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...

  11. Isotropic damage model and serial/parallel mix theory applied to nonlinear analysis of ferrocement thin walls. Experimental and numerical analysis

    Directory of Open Access Journals (Sweden)

    Jairo A. Paredes

    2016-01-01

    Full Text Available Ferrocement thin walls are the structural elements that comprise the earthquake resistant system of dwellings built with this material. This article presents the results drawn from an experimental campaign carried out over full-scale precast ferrocement thin walls that were assessed under lateral static loading conditions. The tests allowed the identification of structural parameters and the evaluation of the performance of the walls under static loading conditions. Additionally, an isotropic damage model for modelling the mortar was applied, as well as the classic elasto-plastic theory for modelling the meshes and reinforcing bars. The ferrocement is considered as a composite material, thus the serial/parallel mix theory is used for modelling its mechanical behavior. In this work a methodology for the numerical analysis that allows modeling the nonlinear behavior exhibited by ferrocement walls under static loading conditions, as well as their potential use in earthquake resistant design, is proposed.

  12. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-11-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  13. A new theoretical basis for numerical simulations of nonlinear acoustic fields

    Science.gov (United States)

    Wójcik, Janusz

    2000-07-01

    Nonlinear acoustic equations can be considerably simplified. The presented model retains the accuracy of a more complex description of nonlinearity and a uniform description of near and far fields (in contrast to the KZK equation). A method has been presented for obtaining solutions of Kuznetsov's equation from the solutions of the model under consideration. Results of numerical calculations, including comparative ones, are presented.

  14. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian; Sparber, Christof; Markowich, Peter A.

    2014-01-01

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass

  15. Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study

    NARCIS (Netherlands)

    De Bakker, A. T M; Tissier, M.F.S.; Ruessink, B. G.

    2016-01-01

    The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to

  16. Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study

    NARCIS (Netherlands)

    de Bakker, A. T M; Tissier, M. F S; Ruessink, B. G.

    2016-01-01

    The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to

  17. Identification of nonlinear anelastic models

    International Nuclear Information System (INIS)

    Draganescu, G E; Bereteu, L; Ercuta, A

    2008-01-01

    A useful nonlinear identification technique applied to the anelastic and rheologic models is presented in this paper. First introduced by Feldman, the method is based on the Hilbert transform, and is currently used for identification of the nonlinear vibrations

  18. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.

    2009-06-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  19. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.; Salama, Khaled N.

    2009-01-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  20. Evaluation of nonlinearity and validity of nonlinear modeling for complex time series.

    Science.gov (United States)

    Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo

    2007-10-01

    Even if an original time series exhibits nonlinearity, it is not always effective to approximate the time series by a nonlinear model because such nonlinear models have high complexity from the viewpoint of information criteria. Therefore, we propose two measures to evaluate both the nonlinearity of a time series and validity of nonlinear modeling applied to it by nonlinear predictability and information criteria. Through numerical simulations, we confirm that the proposed measures effectively detect the nonlinearity of an observed time series and evaluate the validity of the nonlinear model. The measures are also robust against observational noises. We also analyze some real time series: the difference of the number of chickenpox and measles patients, the number of sunspots, five Japanese vowels, and the chaotic laser. We can confirm that the nonlinear model is effective for the Japanese vowel /a/, the difference of the number of measles patients, and the chaotic laser.

  1. The numerical dynamic for highly nonlinear partial differential equations

    Science.gov (United States)

    Lafon, A.; Yee, H. C.

    1992-01-01

    Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

  2. Nonlinear finite element modeling of corrugated board

    Science.gov (United States)

    A. C. Gilchrist; J. C. Suhling; T. J. Urbanik

    1999-01-01

    In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...

  3. Numerical Transducer Modeling

    DEFF Research Database (Denmark)

    Henriquez, Vicente Cutanda

    This thesis describes the development of a numerical model of the propagation of sound waves in fluids with viscous and thermal losses, with application to the simulation of acoustic transducers, in particular condenser microphones for measurement. The theoretical basis is presented, numerical...... manipulations are developed to satisfy the more complicated boundary conditions, and a model of a condenser microphone with a coupled membrane is developed. The model is tested against measurements of ¼ inch condenser microphones and analytical calculations. A detailed discussion of the results is given....

  4. Analytical and numerical modeling of sandbanks dynamics

    NARCIS (Netherlands)

    Idier, Deborah; Astruc, Dominique

    2003-01-01

    Linear and nonlinear behavior of large-scale underwater bedform patterns like sandbanks are studied using linear stability analysis and numerical modeling. The model is based on depth-integrated hydrodynamics equations with a quadratic bottom friction law and a bed load sediment transport model

  5. Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.

    Science.gov (United States)

    Kumar, Dinesh; Kumar, P; Rai, K N

    2017-11-01

    This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Numerical bifurcation analysis of a class of nonlinear renewal equations

    NARCIS (Netherlands)

    Breda, Dimitri; Diekmann, Odo; Liessi, Davide; Scarabel, Francesca

    2016-01-01

    We show, by way of an example, that numerical bifurcation tools for ODE yield reliable bifurcation diagrams when applied to the pseudospectral approximation of a one-parameter family of nonlinear renewal equations. The example resembles logistic-and Ricker-type population equations and exhibits

  7. A numerical study of non-linear crack tip parameters

    Directory of Open Access Journals (Sweden)

    F.V. Antunes

    2015-07-01

    Full Text Available Crack closure concept has been widely used to explain different issues of fatigue crack propagation. However, different authors have questioned the relevance of crack closure and have proposed alternative concepts. The main objective here is to check the effectiveness of crack closure concept by linking the contact of crack flanks with non-linear crack tip parameters. Accordingly, 3D-FE numerical models with and without contact were developed for a wide range of loading scenarios and the crack tip parameters usually linked to fatigue crack growth, namely range of cyclic plastic strain, crack tip opening displacement, size of reversed plastic zone and total plastic dissipation per cycle, were investigated. It was demonstrated that: i LEFM concepts are applicable to the problem under study; ii the crack closure phenomenon has a great influence on crack tip parameters decreasing their values; iii the Keff concept is able to explain the variations of crack tip parameters produced by the contact of crack flanks; iv the analysis of remote compliance is the best numerical parameter to quantify the crack opening level; v without contact there is no effect of stress ratio on crack tip parameters. Therefore it is proved that the crack closure concept is valid.

  8. Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms

    KAUST Repository

    Carrillo, José A.

    2016-09-22

    In this paper we present a numerical scheme for nonlinear continuity equations, which is based on the gradient flow formulation of an energy functional with respect to the quadratic transportation distance. It can be applied to a large class of nonlinear continuity equations, whose dynamics are driven by internal energies, given external potentials and/or interaction energies. The solver is based on its variational formulation as a gradient flow with respect to the Wasserstein distance. Positivity of solutions as well as energy decrease of the semi-discrete scheme are guaranteed by its construction. We illustrate this property with various examples in spatial dimension one and two.

  9. LDRD report nonlinear model reduction

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, D.; Heinstein, M.

    1997-09-01

    The very general problem of model reduction of nonlinear systems was made tractable by focusing on the very large subclass consisting of linear subsystems connected by nonlinear interfaces. Such problems constitute a large part of the nonlinear structural problems encountered in addressing the Sandia missions. A synthesis approach to this class of problems was developed consisting of: detailed modeling of the interface mechanics; collapsing the interface simulation results into simple nonlinear interface models; constructing system models by assembling model approximations of the linear subsystems and the nonlinear interface models. These system models, though nonlinear, would have very few degrees of freedom. A paradigm problem, that of machine tool vibration, was selected for application of the reduction approach outlined above. Research results achieved along the way as well as the overall modeling of a specific machine tool have been very encouraging. In order to confirm the interface models resulting from simulation, it was necessary to develop techniques to deduce interface mechanics from experimental data collected from the overall nonlinear structure. A program to develop such techniques was also pursued with good success.

  10. Numerical treatments for solving nonlinear mixed integral equation

    Directory of Open Access Journals (Sweden)

    M.A. Abdou

    2016-12-01

    Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.

  11. Numerical solution of non-linear diffusion problems

    International Nuclear Information System (INIS)

    Carmen, A. del; Ferreri, J.C.

    1998-01-01

    This paper presents a method for the numerical solution of non-linear diffusion problems using finite-differences in moving grids. Due to the presence of steep fronts in the solution domain and to the presence of advective terms originating in the grid movement, an implicit TVD scheme, first order in time and second order in space has been developed. Some algebraic details of the derivation are given. Results are shown for the pure advection of a scalar as a test case and an example dealing with the slow spreading of viscous fluids over plane surfaces. The agreement between numerical and analytical solutions is excellent. (author). 8 refs., 3 figs

  12. Numerical method for the nonlinear Fokker-Planck equation

    International Nuclear Information System (INIS)

    Zhang, D.S.; Wei, G.W.; Kouri, D.J.; Hoffman, D.K.

    1997-01-01

    A practical method based on distributed approximating functionals (DAFs) is proposed for numerically solving a general class of nonlinear time-dependent Fokker-Planck equations. The method relies on a numerical scheme that couples the usual path-integral concept to the DAF idea. The high accuracy and reliability of the method are illustrated by applying it to an exactly solvable nonlinear Fokker-Planck equation, and the method is compared with the accurate K-point Stirling interpolation formula finite-difference method. The approach is also used successfully to solve a nonlinear self-consistent dynamic mean-field problem for which both the cumulant expansion and scaling theory have been found by Drozdov and Morillo [Phys. Rev. E 54, 931 (1996)] to be inadequate to describe the occurrence of a long-lived transient bimodality. The standard interpretation of the transient bimodality in terms of the flat region in the kinetic potential fails for the present case. An alternative analysis based on the effective potential of the Schroedinger-like Fokker-Planck equation is suggested. Our analysis of the transient bimodality is strongly supported by two examples that are numerically much more challenging than other examples that have been previously reported for this problem. copyright 1997 The American Physical Society

  13. Numerical model CCC

    International Nuclear Information System (INIS)

    Bodvarsson, G.S.; Lippmann, M.J.

    1980-01-01

    The computer program CCC (conduction-convection-consolidation), developed at Lawrence Berkeley Laboratory, solves numerically the heat and mass flow equations for a fully saturated medium, and computes one-dimensional consolidation of the simulated systems. The model employs the Integrated Finite Difference Method (IFDM) in discretizing the saturated medium and formulating the governing equations. The sets of equations are solved either by an iterative solution technique (old version) or an efficient sparse solver (new version). The deformation of the medium is calculated using the one-dimensional consolidation theory of Terzaghi. In this paper, the numerical code is described, validation examples given and areas of application discussed. Several example problems involving flow through fractured media are also presented

  14. Numerical model SMODERP

    Science.gov (United States)

    Kavka, P.; Jeřábek, J.; Strouhal, L.

    2016-12-01

    The contribution presents a numerical model SMODERP that is used for calculation and prediction of surface runoff and soil erosion from agricultural land. The physically based model includes the processes of infiltration (Phillips equation), surface runoff routing (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D version of the model was introduced in last years. The script uses ArcGIS system tools for data preparation. The physical relations are implemented through Python scripts. The main computing part is stand alone in numpy arrays. Flow direction is calculated by Steepest Descent algorithm and in multiple flow algorithm. Sheet flow is described by modified kinematic wave equation. Parameters for five different soil textures were calibrated on the set of hundred measurements performed on the laboratory and filed rainfall simulators. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Development of the rills is based on critical shear stress and critical velocity. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Flow in the ditches and streams are also computed. Numerical stability of the model is controled by Courant criterion. Spatial scale is fixed. Time step is dynamic and depends on the actual discharge. The model is used in the framework of the project "Variability of Short-term Precipitation and Runoff in Small Czech Drainage Basins and its Influence on Water Resources Management". Main goal of the project is to elaborate a methodology and online utility for deriving short-term design precipitation series, which could be utilized by a broad community of scientists, state administration as well as design planners. The methodology will account for

  15. Nonlinear behaviour of cantilevered carbon nanotube resonators based on a new nonlinear electrostatic load model

    Science.gov (United States)

    Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.

    2018-04-01

    The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.

  16. Research on nonlinear stochastic dynamical price model

    International Nuclear Information System (INIS)

    Li Jiaorui; Xu Wei; Xie Wenxian; Ren Zhengzheng

    2008-01-01

    In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies

  17. Computation of Nonlinear Backscattering Using a High-Order Numerical Method

    Science.gov (United States)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2001-01-01

    The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.

  18. Nonlinear Modeling by Assembling Piecewise Linear Models

    Science.gov (United States)

    Yao, Weigang; Liou, Meng-Sing

    2013-01-01

    To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.

  19. Nonlinear Control of Heartbeat Models

    Directory of Open Access Journals (Sweden)

    Witt Thanom

    2011-02-01

    Full Text Available This paper presents a novel application of nonlinear control theory to heartbeat models. Existing heartbeat models are investigated and modified by incorporating the control input as a pacemaker to provide the control channel. A nonlinear feedback linearization technique is applied to force the output of the systems to generate artificial electrocardiogram (ECG signal using discrete data as the reference inputs. The synthetic ECG may serve as a flexible signal source to assess the effectiveness of a diagnostic ECG signal-processing device.

  20. Simplified Model of Nonlinear Landau Damping

    International Nuclear Information System (INIS)

    Yampolsky, N.A.; Fisch, N.J.

    2009-01-01

    The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

  1. Numerical simulation of nonlinear dynamical systems driven by commutative noise

    International Nuclear Information System (INIS)

    Carbonell, F.; Biscay, R.J.; Jimenez, J.C.; Cruz, H. de la

    2007-01-01

    The local linearization (LL) approach has become an effective technique for the numerical integration of ordinary, random and stochastic differential equations. One of the reasons for this success is that the LL method achieves a convenient trade-off between numerical stability and computational cost. Besides, the LL method reproduces well the dynamics of nonlinear equations for which other classical methods fail. However, in the stochastic case, most of the reported works has been focused in Stochastic Differential Equations (SDE) driven by additive noise. This limits the applicability of the LL method since there is a number of interesting dynamics observed in equations with multiplicative noise. On the other hand, recent results show that commutative noise SDEs can be transformed into a random differential equation (RDE) by means of a random diffeomorfism (conjugacy). This paper takes advantages of such conjugacy property and the LL approach for defining a LL scheme for SDEs driven by commutative noise. The performance of the proposed method is illustrated by means of numerical simulations

  2. Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems

    International Nuclear Information System (INIS)

    Haber, E; Horesh, L; Tenorio, L

    2010-01-01

    Design of experiments for discrete ill-posed problems is a relatively new area of research. While there has been some limited work concerning the linear case, little has been done to study design criteria and numerical methods for ill-posed nonlinear problems. We present an algorithmic framework for nonlinear experimental design with an efficient numerical implementation. The data are modeled as indirect, noisy observations of the model collected via a set of plausible experiments. An inversion estimate based on these data is obtained by a weighted Tikhonov regularization whose weights control the contribution of the different experiments to the data misfit term. These weights are selected by minimization of an empirical estimate of the Bayes risk that is penalized to promote sparsity. This formulation entails a bilevel optimization problem that is solved using a simple descent method. We demonstrate the viability of our design with a problem in electromagnetic imaging based on direct current resistivity and magnetotelluric data

  3. Explicit Nonlinear Model Predictive Control Theory and Applications

    CERN Document Server

    Grancharova, Alexandra

    2012-01-01

    Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø  Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...

  4. Non-linear numerical studies of the tearing mode

    International Nuclear Information System (INIS)

    Schnack, D.D. Jr.

    1978-01-01

    A non-linear, time dependent, hydromagnetic model is developed and applied to the tearing mode, one of a class of instabilities which can occur in a magnetically confined plasma when the constraint of infinite conductivity is relaxed. The model is based on the eight partial differential equations of resistive magnetohydrodynamics (MHD). The equations are expressed as a set of conservation laws which conserves magnetic flux, momentum, mass, and total energy. These equations are then written in general, orthogonal, curvilinear coordinates in two space dimensions, so that the model can readily be applied to a variety of geometries. No assumption about the ordering of terms is made. The resulting equations are then solved by the method of finite differences on an Eulerian mesh. The model is applied to several geometries

  5. Numeral eddy current sensor modelling based on genetic neural network

    International Nuclear Information System (INIS)

    Yu Along

    2008-01-01

    This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method

  6. Aeroelastic oscillations of a cantilever with structural nonlinearities: theory and numerical simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Brandon [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Rocha da Costa, Leandro Jose [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Poirel, Dominique [Royal Military College of Canada, Kingston (Canada). Dept. of Mechanical and Aerospace Engineering; Pettit, Chris [US Naval Academy, Annapolis, MD (United States). Dept. of Mechanical and Aerospace Engineering; Khalil, Mohammad [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sarkar, Abhijit [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering

    2017-09-01

    Our study details the derivation of the nonlinear equations of motion for the axial, biaxial bending and torsional vibrations of an aeroelastic cantilever undergoing rigid body (pitch) rotation at the base. The primary attenstion is focussed on the geometric nonlinearities of the system, whereby the aeroelastic load is modeled by the theory of linear quasisteady aerodynamics. This modelling effort is intended to mimic the wind-tunnel experimental setup at the Royal Military College of Canada. While the derivation closely follows the work of Hodges and Dowell [1] for rotor blades, this aeroelastic system contains new inertial terms which stem from the fundamentally different kinematics than those exhibited by helicopter or wind turbine blades. Using the Hamilton’s principle, a set of coupled nonlinear partial differential equations (PDEs) and an ordinary differential equation (ODE) are derived which describes the coupled axial-bending-bending-torsion-pitch motion of the aeroelastic cantilever with the pitch rotation. The finite dimensional approximation of the coupled system of PDEs are obtained using the Galerkin projection, leading to a coupled system of ODEs. Subsequently, these nonlinear ODEs are solved numerically using the built-in MATLAB implicit ODE solver and the associated numerical results are compared with those obtained using Houbolt’s method. It is demonstrated that the system undergoes coalescence flutter, leading to a limit cycle oscillation (LCO) due to coupling between the rigid body pitching mode and teh flexible mode arising from the flapwise bending motion.

  7. Numerical solutions of a general coupled nonlinear system of parabolic and hyperbolic equations of thermoelasticity

    Science.gov (United States)

    Sweilam, N. H.; Abou Hasan, M. M.

    2017-05-01

    In this paper, the weighted-average non-standard finite-difference (WANSFD) method is used to study numerically the general time-fractional nonlinear, one-dimensional problem of thermoelasticity. This model contains the standard system arising in thermoelasticity as a special case. The stability of the proposed method is analyzed by a procedure akin to the standard John von Neumann technique. Moreover, the accuracy of the proposed scheme is proved. Numerical results are presented graphically, which reveal that the WANSFD method is easy to implement, effective and convenient for solving the proposed system. The proposed method could also be easily extended to solve other systems of fractional partial differential equations.

  8. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    Science.gov (United States)

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  9. Numerical analysis of non-linear vibrations of a fractionally damped cylindrical shell under the conditions of combinational internal resonance

    Directory of Open Access Journals (Sweden)

    Rossikhin Yury A.

    2018-01-01

    Full Text Available Non-linear damped vibrations of a cylindrical shell embedded into a fractional derivative medium are investigated for the case of the combinational internal resonance, resulting in modal interaction, using two different numerical methods with further comparison of the results obtained. The damping properties of the surrounding medium are described by the fractional derivative Kelvin-Voigt model utilizing the Riemann-Liouville fractional derivatives. Within the first method, the generalized displacements of a coupled set of nonlinear ordinary differential equations of the second order are estimated using numerical solution of nonlinear multi-term fractional differential equations by the procedure based on the reduction of the problem to a system of fractional differential equations. According to the second method, the amplitudes and phases of nonlinear vibrations are estimated from the governing nonlinear differential equations describing amplitude-and-phase modulations for the case of the combinational internal resonance. A good agreement in results is declared.

  10. Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics

    Science.gov (United States)

    Kakhktsyan, V. M.; Khachatryan, A. Kh.

    2013-07-01

    A mixed problem for a nonlinear integrodifferential equation arising in econometrics is considered. An analytical-numerical method is proposed for solving the problem. Some numerical results are presented.

  11. Adaptive numerical modeling of dynamic crack propagation

    International Nuclear Information System (INIS)

    Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.

    2006-01-01

    We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)

  12. Modelling Loudspeaker Non-Linearities

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2007-01-01

    This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...

  13. Numerical Modelling of Electrical Discharges

    International Nuclear Information System (INIS)

    Durán-Olivencia, F J; Pontiga, F; Castellanos, A

    2014-01-01

    The problem of the propagation of an electrical discharge between a spherical electrode and a plane has been solved by means of finite element methods (FEM) using a fluid approximation and assuming weak ionization and local equilibrium with the electric field. The numerical simulation of this type of problems presents the usual difficulties of convection-diffusion-reaction problems, in addition to those associated with the nonlinearities of the charged species velocities, the formation of steep gradients of the electric field and particle densities, and the coexistence of very different temporal scales. The effect of using different temporal discretizations for the numerical integration of the corresponding system of partial differential equations will be here investigated. In particular, the so-called θ-methods will be used, which allows to implement implicit, semi-explicit and fully explicit schemes in a simple way

  14. Numerical models of planetary dynamos

    International Nuclear Information System (INIS)

    Glatzmaier, G.A.; Roberts, P.H.

    1992-01-01

    We describe a nonlinear, axisymmetric, spherical-shell model of planetary dynamos. This intermediate-type dynamo model requires a prescribed helicity field (the alpha effect) and a prescribed buoyancy force or thermal wind (the omega effect) and solves for the axisymmetric time-dependent magnetic and velocity fields. Three very different time dependent solutions are obtained from different prescribed sets of alpha and omega fields

  15. Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele

    2016-01-01

    We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...

  16. From spiking neuron models to linear-nonlinear models.

    Science.gov (United States)

    Ostojic, Srdjan; Brunel, Nicolas

    2011-01-20

    Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.

  17. Phenomenological modeling of nonlinear holograms based on metallic geometric metasurfaces.

    Science.gov (United States)

    Ye, Weimin; Li, Xin; Liu, Juan; Zhang, Shuang

    2016-10-31

    Benefiting from efficient local phase and amplitude control at the subwavelength scale, metasurfaces offer a new platform for computer generated holography with high spatial resolution. Three-dimensional and high efficient holograms have been realized by metasurfaces constituted by subwavelength meta-atoms with spatially varying geometries or orientations. Metasurfaces have been recently extended to the nonlinear optical regime to generate holographic images in harmonic generation waves. Thus far, there has been no vector field simulation of nonlinear metasurface holograms because of the tremendous computational challenge in numerically calculating the collective nonlinear responses of the large number of different subwavelength meta-atoms in a hologram. Here, we propose a general phenomenological method to model nonlinear metasurface holograms based on the assumption that every meta-atom could be described by a localized nonlinear polarizability tensor. Applied to geometric nonlinear metasurfaces, we numerically model the holographic images formed by the second-harmonic waves of different spins. We show that, in contrast to the metasurface holograms operating in the linear optical regime, the wavelength of incident fundamental light should be slightly detuned from the fundamental resonant wavelength to optimize the efficiency and quality of nonlinear holographic images. The proposed modeling provides a general method to simulate nonlinear optical devices based on metallic metasurfaces.

  18. Numerical modelling of mine workings.

    CSIR Research Space (South Africa)

    Lightfoot, N

    1999-03-01

    Full Text Available to cover most of what is required for a practising rock mechanics engineer to be able to use any of these five programs to solve practical mining problems. The chapters on specific programs discuss their individual strengths and weaknesses and highlight... and applications of numerical modelling in the context of the South African gold and platinum mining industries. This includes an example that utilises a number of different numerical 3 modelling programs to solve a single problem. This particular example...

  19. Adaptive regression for modeling nonlinear relationships

    CERN Document Server

    Knafl, George J

    2016-01-01

    This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...

  20. Numerical resolution of a bi-temperature MHD model with a general Ohm's law: Roe solver - Front-tracking - Nonlinear transport equations with discontinuous coefficients. Simulation of a Plasma Opening Switch

    International Nuclear Information System (INIS)

    Brassier, Stephane

    1998-01-01

    The Magnetohydrodynamic (MHD) equations represent the coupling between fluid dynamics equations and Maxwell's equations. We consider here a new MHD model with two temperatures. A Roe scheme is first constructed in the one dimensional case, for a multi-species model and a general equation of state. The multidimensional case is treated thanks to the Powell approach. The notion of Roe-Powell matrix, generalization of the notion of Roe matrix for multidimensional MHD, allows us to develop an original scheme on a curvilinear grid. We focus on a second part on the modelling of a Plasma Opening Switch (POS). A front-tracking method is first set up, in order to correctly handle the deformation of the front between the vacuum and the plasma. Besides, by taking into account a general Ohm's law, we have to deal with the Hall effect, which leads to nonlinear transport equations with discontinuous coefficients. Several numerical schemes are proposed and tested on a variety of test cases. This work has allowed us to construct an industrial MHD code, intended to handle complex flows and in particular to correctly simulate the behaviour of the POS. (author) [fr

  1. Numerical modeling of economic uncertainty

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans

    2007-01-01

    Representation and modeling of economic uncertainty is addressed by different modeling methods, namely stochastic variables and probabilities, interval analysis, and fuzzy numbers, in particular triple estimates. Focusing on discounted cash flow analysis numerical results are presented, comparisons...... are made between alternative modeling methods, and characteristics of the methods are discussed....

  2. Nonlinear flow model for well production in an underground formation

    Directory of Open Access Journals (Sweden)

    J. C. Guo

    2013-05-01

    Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.

  3. On a method of numerical calculation of nonlinear radial pulsations of stars

    International Nuclear Information System (INIS)

    Kosovichev, A.G.

    1984-01-01

    Some features of using the finite difference method for numerical investigation of nonradial pulsations of stars were considered. The mathematical model of these pulsations is described by time-dependent gasdynaMic equations with gravity. A one-dimentional (spherically-symmetric) case is considered. It was obtained a two-parametric family of ultimate conservative difference schemes where the diffepence analogy of the main conservative laws as well as the additional relations for the balance to individual kinds of energy are performed. Such difference schemes provide more exact calculation of nonlinear flows with shocks as compared with the other difference schemes with the same order of approximation. The methods of numerical solution of implicit (absolute stable) difference schemes for a given family were considered. The coupled equations are solved through iterative Newton method Using martrix and separate successive eliminations. Numerical method can be used for calculation of large amplitude radial pulsations of stars

  4. Numerical investigation of beam-driven PWFA in quasi-nonlinear regime

    International Nuclear Information System (INIS)

    Londrillo, P.; Gatti, C.; Ferrario, M.

    2014-01-01

    In beam-driven Plasma Based Wakefield Acceleration (PWFA), the quasi-nonlinear model has been designed to combine high efficient ‘blowout’ regimes, where cold and overdense driving electron beams form a totally rarefied plasma channel, with low charge beam distribution assuring the excited wakefield preserves relevant linear properties. This scheme can have applications in experimental facilities, like SPARC 150 MeV linac at LNF-INFN laboratories, where low-emittance, low-charge narrow electron beams can be produced to be injected on a preformed plasma channel. Here we present a preliminary numerical investigation of this configuration, using the fully 3D ALaDyn PIC code, as a preparatory work to design optimal conditions for the COMB experimental set-up. Specific numerical tools, having computational and diagnostic advantages in PWFA conditions and checks of the numerical outcomes with analytical results, are also presented and discussed

  5. A Study of the Behavior and Micromechanical Modelling of Granular Soil. Volume 3. A Numerical Investigation of the Behavior of Granular Media Using Nonlinear Discrete Element Simulation

    Science.gov (United States)

    1991-05-22

    plasticity, including those of DiMaggio and Sandier (1971), Baladi and Rohani (1979), Lade (1977), Prevost (1978, 1985), Dafalias and Herrmann (1982). In...distribution can be achieved only if the behavior at the contact is fully understood and rigorously modelled. 18 REFERENCES Baladi , G.Y. and Rohani, B. (1979

  6. Nonlinear models for autoregressive conditional heteroskedasticity

    DEFF Research Database (Denmark)

    Teräsvirta, Timo

    This paper contains a brief survey of nonlinear models of autore- gressive conditional heteroskedasticity. The models in question are parametric nonlinear extensions of the original model by Engle (1982). After presenting the individual models, linearity testing and parameter estimation are discu...

  7. Numerical Modeling of Shoreline Undulations

    DEFF Research Database (Denmark)

    Kærgaard, Kasper Hauberg

    model has been developed which describes the longshore sediment transport along arbitrarily shaped shorelines. The numerical model is based on a spectral wave model, a depth integrated flow model, a wave-phase resolving sediment transport description and a one-line shoreline model. First the theoretical...... of the feature and under predicts the migration speeds of the features. On the second shoreline, the shoreline model predicts undulations lengths which are longer than the observed undulations. Lastly the thesis considers field measurements of undulations of the bottom bathymetry along an otherwise straight...... length of the shoreline undulations is determined in the linear regime using a shoreline stability analysis based on the numerical model. The analysis shows that the length of the undulations in the linear regime depends on the incoming wave conditions and on the coastal profile. For larger waves...

  8. Relation between nonlinear models and gauge ambiguities

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Ramachandran, R.; Rupertsberger, H.; Skagerstam, B.S.

    1980-01-01

    We show that the solutions of a class of nonlinear models also generate gauge ambiguities in the vacuum sector of Yang-Mills theories. Our results extend known connections between gauge ambiguities and certain nonlinear sigma-models, and clarify the underlying group theory. For many nonlinear models, we also give a simple, intrinsic parametrization of physical fields (which have values in a homogeneous space of a group). (orig.)

  9. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    Science.gov (United States)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  10. Superspace formulation of new nonlinear sigma models

    International Nuclear Information System (INIS)

    Gates, S.J. Jr.

    1983-07-01

    The superspace formulation of two classes of supersymmetric nonlinear σ-models are presented. Two alternative N=1 superspace formulations are given for the d=2 supersymmetric nonlinear σ-models with Killing vector potentials: (a) formulation uses an active central charge and, (b) formulation uses a spurion superfield without inducing a classical breakdown of supersymmetry. The N=2 vector multiplet is used to construct a new class of d=4 nonlinear σ-models which when reduced to d=2 possess N=4 supersymmetry. Implications of these two classes of nonlinear σ-models for N>=4 superfield supergravity are discussed. (author)

  11. Convex models and probabilistic approach of nonlinear fatigue failure

    International Nuclear Information System (INIS)

    Qiu Zhiping; Lin Qiang; Wang Xiaojun

    2008-01-01

    This paper is concerned with the nonlinear fatigue failure problem with uncertainties in the structural systems. In the present study, in order to solve the nonlinear problem by convex models, the theory of ellipsoidal algebra with the help of the thought of interval analysis is applied. In terms of the inclusion monotonic property of ellipsoidal functions, the nonlinear fatigue failure problem with uncertainties can be solved. A numerical example of 25-bar truss structures is given to illustrate the efficiency of the presented method in comparison with the probabilistic approach

  12. Mathematical modeling and applications in nonlinear dynamics

    CERN Document Server

    Merdan, Hüseyin

    2016-01-01

    The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...

  13. Numerical Modelling Of Pumpkin Balloon Instability

    Science.gov (United States)

    Wakefield, D.

    Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.

  14. Symmetries and discretizations of the O(3) nonlinear sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Flore, Raphael [TPI, Universitaet Jena (Germany)

    2011-07-01

    Nonlinear sigma models possess many interesting properties like asymptotic freedom, confinement or dynamical mass generation, and hence serve as toy models for QCD and other theories. We derive a formulation of the N=2 supersymmetric extension of the O(3) nonlinear sigma model in terms of constrained field variables. Starting from this formulation, it is discussed how the model can be discretized in a way that maintains as many symmetries of the theory as possible. Finally, recent numerical results related to these discretizations are presented.

  15. International Benchmark on Numerical Simulations for 1D, Nonlinear Site Response (PRENOLIN) : Verification Phase Based on Canonical Cases

    NARCIS (Netherlands)

    Régnier, Julie; Bonilla, Luis-Fabian; Bard, Pierre-Yves; Bertrand, Etienne; Hollender, Fabrice; Kawase, Hiroshi; Sicilia, Deborah; Arduino, Pedro; Amorosi, Angelo; Asimaki, Dominiki; Pisano, F.

    2016-01-01

    PREdiction of NOn‐LINear soil behavior (PRENOLIN) is an international benchmark aiming to test multiple numerical simulation codes that are capable of predicting nonlinear seismic site response with various constitutive models. One of the objectives of this project is the assessment of the

  16. A numerical study on the impact of nonlinear interactions on the amplitude of the migrating semidiurnal tide

    Directory of Open Access Journals (Sweden)

    C. M. Huang

    2006-12-01

    Full Text Available To quantitatively study the effects of nonlinear interactions on tide structure, a nonlinear numerical tidal model is developed, and the reliability and convergence of the adopted algorithm and coding are checked by numerical experiments. Under the same conditions as those employed by the GSWM-00 (Global Scale Wave Model 2000, our model provides the nonlinear quasi-steady solution of the migrating semidiurnal tide, which differs from the GSWM-00 result (the linear steady solution in the MLT region, especially above 100 km. Additionally, their amplitude difference displays a remarkable month-to-month variation, and its significant magnitudes occur during the month with strong semidiurnal tide. A quantitative analysis suggests that the main cause for the amplitude difference is that the initial migrating 12-h tide will interact with the mean flow as well as the nonlinearity-excited 6-h tide, and subsequently yield a new 12-h tidal part. Furthermore, our simulations also show that the mean flow/tidal interaction will significantly alter the background wind and temperature fields. The large magnitudes of the tidal amplitude difference and the background alteration indicate that the nonlinear processes involved in tidal propagations should be comprehensively considered in the description of global atmospheric dynamics in the MLT region. The comparisons among our simulations, the GSWMs and some observations of tides suggest that the nonlinearity-induced tidal structure variation could be a possible mechanism to account for some discrepancies between the GSWMs and the observations.

  17. Numerical simulation of non-linear phenomena in geotechnical engineering

    DEFF Research Database (Denmark)

    Sørensen, Emil Smed

    Geotechnical problems are often characterized by the non-linear behavior of soils and rock which are strongly linked to the inherent properties of the porous structure of the material as well as the presence and possible flow of any surrounding fluids. Dynamic problems involving such soil-fluid i...

  18. Polynomial model inversion control: numerical tests and applications

    OpenAIRE

    Novara, Carlo

    2015-01-01

    A novel control design approach for general nonlinear systems is described in this paper. The approach is based on the identification of a polynomial model of the system to control and on the on-line inversion of this model. Extensive simulations are carried out to test the numerical efficiency of the approach. Numerical examples of applicative interest are presented, concerned with control of the Duffing oscillator, control of a robot manipulator and insulin regulation in a type 1 diabetic p...

  19. Numerical models for differential problems

    CERN Document Server

    Quarteroni, Alfio

    2017-01-01

    In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, an...

  20. Numerical simulation of Higgs models

    International Nuclear Information System (INIS)

    Jaster, A.

    1995-10-01

    The SU(2) Higgs and the Schwinger model on the lattice were analysed. Numerical simulations of the SU(2) Higgs model were performed to study the finite temperature electroweak phase transition. With the help of the multicanonical method the distribution of an order parameter at the phase transition point was measured. This was used to obtain the order of the phase transition and the value of the interface tension with the histogram method. Numerical simulations were also performed at zero temperature to perform renormalization. The measured values for the Wilson loops were used to determine the static potential and from this the renormalized gauge coupling. The Schwinger model was simulated at different gauge couplings to analyse the properties of the Kaplan-Shamir fermions. The prediction that the mass parameter gets only multiplicative renormalization was tested and verified. (orig.)

  1. Nonlinear integral equations for the sausage model

    Science.gov (United States)

    Ahn, Changrim; Balog, Janos; Ravanini, Francesco

    2017-08-01

    The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.

  2. Nonlinear reaction-diffusion equations with delay: some theorems, test problems, exact and numerical solutions

    Science.gov (United States)

    Polyanin, A. D.; Sorokin, V. G.

    2017-12-01

    The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.

  3. A Numerical Model for Trickle Bed Reactors

    Science.gov (United States)

    Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.

    2000-12-01

    Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.

  4. Numerical experiment for nonlinear full-wave tomography. 3; Hisenkei full wave tomography no suchi jikken

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, T [Dia Consultants Company, Tokyo (Japan)

    1996-10-01

    Nonlinear full-wave tomography (FWT) is under investigation to improve the estimation accuracy of Vp/Vs distributions. Full-wave tomography is one of the underground structure exploration methods mainly using Tarantola`s nonlinear local optimization method (LOM). Numerical experiment for FWT was carried out assuming relatively weak nonlinear underground structure. In the case of inversion by local optimization method, adequate preconditioning is important. Utilization of geological information is also effective in estimating low-frequency components of a model. As far as data are obtained under proper observation arrangement, even in actual field, precise estimation of Vp/Vs distributions is possible by FWT using explosion in a hole as wave source. In full-wave tomography, selection of observation arrangement is essential for both Vp and Vs. However, the proper arrangement is different between Vp and Vs. Approach to different analyses for Vp and Vs is also necessary by using only proper data for Vp and Vs among obtained data sets. 4 figs.

  5. Numerical methods for axisymmetric and 3D nonlinear beams

    Science.gov (United States)

    Pinton, Gianmarco F.; Trahey, Gregg E.

    2005-04-01

    Time domain algorithms that solve the Khokhlov--Zabolotzskaya--Kuznetsov (KZK) equation are described and implemented. This equation represents the propagation of finite amplitude sound beams in a homogenous thermoviscous fluid for axisymmetric and fully three dimensional geometries. In the numerical solution each of the terms is considered separately and the numerical methods are compared with known solutions. First and second order operator splitting are used to combine the separate terms in the KZK equation and their convergence is examined.

  6. Plasma modelling and numerical simulation

    International Nuclear Information System (INIS)

    Van Dijk, J; Kroesen, G M W; Bogaerts, A

    2009-01-01

    Plasma modelling is an exciting subject in which virtually all physical disciplines are represented. Plasma models combine the electromagnetic, statistical and fluid dynamical theories that have their roots in the 19th century with the modern insights concerning the structure of matter that were developed throughout the 20th century. The present cluster issue consists of 20 invited contributions, which are representative of the state of the art in plasma modelling and numerical simulation. These contributions provide an in-depth discussion of the major theories and modelling and simulation strategies, and their applications to contemporary plasma-based technologies. In this editorial review, we introduce and complement those papers by providing a bird's eye perspective on plasma modelling and discussing the historical context in which it has surfaced. (editorial review)

  7. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...

  8. Numerical combination for nonlinear analysis of structures coupled to layered soils

    Directory of Open Access Journals (Sweden)

    Wagner Queiroz Silva

    Full Text Available This paper presents an alternative coupling strategy between the Boundary Element Method (BEM and the Finite Element Method (FEM in order to create a computational code for the analysis of geometrical nonlinear 2D frames coupled to layered soils. The soil is modeled via BEM, considering multiple inclusions and internal load lines, through an alternative formulation to eliminate traction variables on subregions interfaces. A total Lagrangean formulation based on positions is adopted for the consideration of the geometric nonlinear behavior of frame structures with exact kinematics. The numerical coupling is performed by an algebraic strategy that extracts and condenses the equivalent soil's stiffness matrix and contact forces to be introduced into the frame structures hessian matrix and internal force vector, respectively. The formulation covers the analysis of shallow foundation structures and piles in any direction. Furthermore, the piles can pass through different layers. Numerical examples are shown in order to illustrate and confirm the accuracy and applicability of the proposed technique.

  9. Nonlinear Convective Models of RR Lyrae Stars

    Science.gov (United States)

    Feuchtinger, M.; Dorfi, E. A.

    The nonlinear behavior of RR Lyrae pulsations is investigated using a state-of-the-art numerical technique solving the full time-dependent system of radiation hydrodynamics. Grey radiative transfer is included by a variable Eddington-factor method and we use the time-dependent turbulent convection model according to Kuhfuss (1986, A&A 160, 116) in the version of Wuchterl (1995, Comp. Phys. Comm. 89, 19). OPAL opacities extended by the Alexander molecule opacities at temperatures below 6000 K and an equation of state according to Wuchterl (1990, A&A 238, 83) close the system. The resulting nonlinear system is discretized on an adaptive mesh developed by Dorfi & Drury (1987, J. Comp. Phys. 69, 175), which is important to provide the necessary spatial resolution in critical regions like ionization zones and shock waves. Additionally, we employ a second order advection scheme, a time centered temporal discretizaton and an artificial tensor viscosity in order to treat discontinuities. We compute fundamental as well first overtone models of RR Lyrae stars for a grid of stellar parameters both with and without convective energy transport in order to give a detailed picture of the pulsation-convection interaction. In order to investigate the influence of the different features of the convection model calculations with and without overshooting, turbulent pressure and turbulent viscosity are performed and compared with each other. A standard Fourier decomposition is used to confront the resulting light and radial velocity variations with recent observations and we show that the well known RR Lyrae phase discrepancy problem (Simon 1985, ApJ 299, 723) can be resolved with these stellar pulsation computations.

  10. NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS

    Directory of Open Access Journals (Sweden)

    Hasan YILDIZ

    2004-03-01

    Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.

  11. Numerical Solution of Stochastic Nonlinear Fractional Differential Equations

    KAUST Repository

    El-Beltagy, Mohamed A.; Al-Juhani, Amnah

    2015-01-01

    Using Wiener-Hermite expansion (WHE) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. WHE is the only known expansion that handles the white/colored noise exactly. This work introduces a numerical estimation of the stochastic response of the Duffing oscillator with fractional or variable order damping and driven by white noise. The WHE technique is integrated with the Grunwald-Letnikov approximation in case of fractional order and with Coimbra approximation in case of variable-order damping. The numerical solver was tested with the analytic solution and with Monte-Carlo simulations. The developed mixed technique was shown to be efficient in simulating SPDEs.

  12. Numerical Solution of Stochastic Nonlinear Fractional Differential Equations

    KAUST Repository

    El-Beltagy, Mohamed A.

    2015-01-07

    Using Wiener-Hermite expansion (WHE) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. WHE is the only known expansion that handles the white/colored noise exactly. This work introduces a numerical estimation of the stochastic response of the Duffing oscillator with fractional or variable order damping and driven by white noise. The WHE technique is integrated with the Grunwald-Letnikov approximation in case of fractional order and with Coimbra approximation in case of variable-order damping. The numerical solver was tested with the analytic solution and with Monte-Carlo simulations. The developed mixed technique was shown to be efficient in simulating SPDEs.

  13. Numerical model of thyroid counter

    Directory of Open Access Journals (Sweden)

    Szuchta Maciej

    2016-03-01

    Full Text Available The aim of this study was to develop a numerical model of spectrometric thyroid counter, which is used for the measurements of internal contamination by in vivo method. The modeled detector is used for a routine internal exposure monitoring procedure in the Radiation Protection Measurements Laboratory of National Centre for Nuclear Research (NCBJ. This procedure may also be used for monitoring of occupationally exposed nuclear medicine personnel. The developed model was prepared using Monte Carlo code FLUKA 2011 ver. 2b.6 Apr-14 and FLAIR ver. 1.2-5 interface. It contains a scintillation NaI(Tl detector, the collimator and the thyroid water phantom with a reference source of iodine 131I. The geometry of the model was designed and a gamma energy spectrum of iodine 131I deposited in the detector was calculated.

  14. Numerical simulation of the nonlinear dynamics of packets of spiral density waves

    International Nuclear Information System (INIS)

    Korchagin, V.I.

    1987-01-01

    In a numerical experiment, the behavior of nonlinear packets of spiral density waves in a gas disk has been investigated for different initial wave amplitudes. If the amplitude of the density perturbations is small (<5%), the wave packet is drawn toward the center or toward the periphery of the disk in accordance with the linear theory. The behavior of linear packets of waves with wavelength comparable to the disk radius (R/sub d//lambda = 4) exhibits good agreement with the conclusions of the linear theory of tightly wound spiral waves. The dynamics of wave packets with initial density amplitudes 16, 30, 50% demonstrates the nonlinear nature of the behavior. THe behavior is governed by whether or not the nonlinear effects of higher than third order in the wave amplitude play a part. If the wave packet dynamics is determined by the cubic nonlinearity, the results of the numerical experiment are in qualitative and quantitative agreement with the nonlinear theory of short waves, although the characteristic scale of the packet and the wavelength are of the order of the disk radius. In the cases when the nonlinear effects of higher orders in the amplitude play an important part, the behavior of a packet does not differ qualitatively from the behavior predicted by the theory of cubic nonlinearity, but the nonlinear spreading of the packet takes place more rapidly

  15. Comprehensive numerical modelling of tokamaks

    International Nuclear Information System (INIS)

    Cohen, R.H.; Cohen, B.I.; Dubois, P.F.

    1991-01-01

    We outline a plan for the development of a comprehensive numerical model of tokamaks. The model would consist of a suite of independent, communicating packages describing the various aspects of tokamak performance (core and edge transport coefficients and profiles, heating, fueling, magnetic configuration, etc.) as well as extensive diagnostics. These codes, which may run on different computers, would be flexibly linked by a user-friendly shell which would allow run-time specification of packages and generation of pre- and post-processing functions, including workstation-based visualization of output. One package in particular, the calculation of core transport coefficients via gyrokinetic particle simulation, will become practical on the scale required for comprehensive modelling only with the advent of teraFLOP computers. Incremental effort at LLNL would be focused on gyrokinetic simulation and development of the shell

  16. Numerical modeling of foam flows

    International Nuclear Information System (INIS)

    Cheddadi, Ibrahim

    2010-01-01

    Liquid foam flows are involved in numerous applications, e.g. food and cosmetics industries, oil extraction, nuclear decontamination. Moreover, their study leads to fundamental knowledge: as it is easier to manipulate and analyse, foam is used as a model material to understand the flow of emulsions, polymers, pastes, or cell aggregates, all of which display both solid and liquid behaviour. Systematic experiments performed by Francois Graner et al. provide precise data that emphasize the non Newtonian properties of the foam. Meanwhile, Pierre Saramito proposed a visco-elasto-plastic continuous tensorial model, akin to predict the behaviour of the foam. The goal of this thesis is to understand this complex behaviour, using these two elements. We have built and validated a resolution algorithm based on a bidimensional finite elements methods. The numerical solutions are in excellent agreement with the spatial distribution of all measured quantities, and confirm the predictive capabilities of the model. The dominant parameters have been identified and we evidenced the fact that the viscous, elastic, and plastic contributions to the flow have to be treated simultaneously in a tensorial formalism. We provide a substantial contribution to the understanding of foams and open the path to realistic simulations of complex VEP flows for industrial applications. (author)

  17. Comparing coefficients of nested nonlinear probability models

    DEFF Research Database (Denmark)

    Kohler, Ulrich; Karlson, Kristian Bernt; Holm, Anders

    2011-01-01

    In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general decomposi......In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general...... decomposition method that is unaffected by the rescaling or attenuation bias that arise in cross-model comparisons in nonlinear models. It recovers the degree to which a control variable, Z, mediates or explains the relationship between X and a latent outcome variable, Y*, underlying the nonlinear probability...

  18. Modeling of nonlinear responses for reciprocal transducers involving polarization switching

    DEFF Research Database (Denmark)

    Willatzen, Morten; Wang, Linxiang

    2007-01-01

    Nonlinearities and hysteresis effects in a reciprocal PZT transducer are examined by use of a dynamical mathematical model on the basis of phase-transition theory. In particular, we consider the perovskite piezoelectric ceramic in which the polarization process in the material can be modeled...... by Landau theory for the first-order phase transformation, in which each polarization state is associated with a minimum of the Landau free-energy function. Nonlinear constitutive laws are obtained by using thermodynamical equilibrium conditions, and hysteretic behavior of the material can be modeled...... intrinsically. The time-dependent Ginzburg-Landau theory is used in the parameter identification involving hysteresis effects. We use the Chebyshev collocation method in the numerical simulations. The elastic field is assumed to be coupled linearly with other fields, and the nonlinearity is in the E-D coupling...

  19. Eddy current modeling in linear and nonlinear multifilamentary composite materials

    Science.gov (United States)

    Menana, Hocine; Farhat, Mohamad; Hinaje, Melika; Berger, Kevin; Douine, Bruno; Lévêque, Jean

    2018-04-01

    In this work, a numerical model is developed for a rapid computation of eddy currents in composite materials, adaptable for both carbon fiber reinforced polymers (CFRPs) for NDT applications and multifilamentary high temperature superconductive (HTS) tapes for AC loss evaluation. The proposed model is based on an integro-differential formulation in terms of the electric vector potential in the frequency domain. The high anisotropy and the nonlinearity of the considered materials are easily handled in the frequency domain.

  20. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

  1. Parameter Estimation of Nonlinear Models in Forestry.

    OpenAIRE

    Fekedulegn, Desta; Mac Siúrtáin, Máirtín Pádraig; Colbert, Jim J.

    1999-01-01

    Partial derivatives of the negative exponential, monomolecular, Mitcherlich, Gompertz, logistic, Chapman-Richards, von Bertalanffy, Weibull and the Richard’s nonlinear growth models are presented. The application of these partial derivatives in estimating the model parameters is illustrated. The parameters are estimated using the Marquardt iterative method of nonlinear regression relating top height to age of Norway spruce (Picea abies L.) from the Bowmont Norway Spruce Thinnin...

  2. An Efficient Numerical Approach for Solving Nonlinear Coupled Hyperbolic Partial Differential Equations with Nonlocal Conditions

    Directory of Open Access Journals (Sweden)

    A. H. Bhrawy

    2014-01-01

    Full Text Available One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (PDEs as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions. This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical algorithm is efficient and very accurate.

  3. Forecasting with nonlinear time series models

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    In this paper, nonlinear models are restricted to mean nonlinear parametric models. Several such models popular in time series econo- metrics are presented and some of their properties discussed. This in- cludes two models based on universal approximators: the Kolmogorov- Gabor polynomial model...... applied to economic fore- casting problems, is briefly highlighted. A number of large published studies comparing macroeconomic forecasts obtained using different time series models are discussed, and the paper also contains a small simulation study comparing recursive and direct forecasts in a partic...... and two versions of a simple artificial neural network model. Techniques for generating multi-period forecasts from nonlinear models recursively are considered, and the direct (non-recursive) method for this purpose is mentioned as well. Forecasting with com- plex dynamic systems, albeit less frequently...

  4. Mathematical and Numerical Methods for Non-linear Beam Dynamics

    International Nuclear Information System (INIS)

    Herr, W

    2014-01-01

    Non-linear effects in accelerator physics are important for both successful operation of accelerators and during the design stage. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most important aspects are well described by methods established in other areas of physics and mathematics. The treatment will be focused on the problems in accelerators used for particle physics experiments. Although the main emphasis will be on accelerator physics issues, some of the aspects of more general interest will be discussed. In particular, we demonstrate that in recent years a framework has been built to handle the complex problems in a consistent form, technically superior and conceptually simpler than the traditional techniques. The need to understand the stability of particle beams has substantially contributed to the development of new techniques and is an important source of examples which can be verified experimentally. Unfortunately, the documentation of these developments is often poor or even unpublished, in many cases only available as lectures or conference proceedings

  5. A direct method for numerical solution of a class of nonlinear Volterra integro-differential equations and its application to the nonlinear fission and fusion reactor kinetics

    International Nuclear Information System (INIS)

    Nakahara, Yasuaki; Ise, Takeharu; Kobayashi, Kensuke; Itoh, Yasuyuki

    1975-12-01

    A new method has been developed for numerical solution of a class of nonlinear Volterra integro-differential equations with quadratic nonlinearity. After dividing the domain of the variable into subintervals, piecewise approximations are applied in the subintervals. The equation is first integrated over a subinterval to obtain the piecewise equation, to which six approximate treatments are applied, i.e. fully explicit, fully implicit, Crank-Nicolson, linear interpolation, quadratic and cubic spline. The numerical solution at each time step is obtained directly as a positive root of the resulting algebraic quadratic equation. The point reactor kinetics with a ramp reactivity insertion, linear temperature feedback and delayed neutrons can be described by one of this type of nonlinear Volterra integro-differential equations. The algorithm is applied to the Argonne benchmark problem and a model problem for a fast reactor without delayed neutrons. The fully implicit method has been found to be unconditionally stable in the sense that it always gives the positive real roots. The cubic spline method is divergent, and the other four methods are intermediate in between. From the estimation of the stability, convergency, accuracy and CPU time, it is concluded that the Crank-Nicolson method is best, then the linear interpolation method comes closely next to it. Discussions are also made on the possibility of applying the algorithm to the fusion reactor kinetics in the form of a nonlinear partial differential equation. (auth.)

  6. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    Science.gov (United States)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  7. Numerical Solution of Nonlinear Volterra Integral Equations System Using Simpson’s 3/8 Rule

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2012-01-01

    Full Text Available The Simpson’s 3/8 rule is used to solve the nonlinear Volterra integral equations system. Using this rule the system is converted to a nonlinear block system and then by solving this nonlinear system we find approximate solution of nonlinear Volterra integral equations system. One of the advantages of the proposed method is its simplicity in application. Further, we investigate the convergence of the proposed method and it is shown that its convergence is of order O(h4. Numerical examples are given to show abilities of the proposed method for solving linear as well as nonlinear systems. Our results show that the proposed method is simple and effective.

  8. Numerical Modeling of Ocean Circulation

    Science.gov (United States)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  9. Modelization of highly nonlinear waves in coastal regions

    Science.gov (United States)

    Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre

    2015-04-01

    The proposed work deals with the development of a highly non-linear model for water wave propagation in coastal regions. The accurate modelization of surface gravity waves is of major interest in ocean engineering, especially in the field of marine renewable energy. These marine structures are intended to be settled in coastal regions where the effect of variable bathymetry may be significant on local wave conditions. This study presents a numerical model for the wave propagation with complex bathymetry. It is based on High-Order Spectral (HOS) method, initially limited to the propagation of non-linear wave fields over flat bottom. Such a model has been developed and validated at the LHEEA Lab. (Ecole Centrale Nantes) over the past few years and the current developments will enlarge its application range. This new numerical model will keep the interesting numerical properties of the original pseudo-spectral approach (convergence, efficiency with the use of FFTs, …) and enable the possibility to propagate highly non-linear wave fields over long time and large distance. Different validations will be provided in addition to the presentation of the method. At first, Bragg reflection will be studied with the proposed approach. If the Bragg condition is satisfied, the reflected wave generated by a sinusoidal bottom patch should be amplified as a result of resonant quadratic interactions between incident wave and bottom. Comparisons will be provided with experiments and reference solutions. Then, the method will be used to consider the transformation of a non-linear monochromatic wave as it propagates up and over a submerged bar. As the waves travel up the front slope of the bar, it steepens and high harmonics are generated due to non-linear interactions. Comparisons with experimental data will be provided. The different test cases will assess the accuracy and efficiency of the method proposed.

  10. Numerical modelling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, C.

    1999-06-01

    The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs

  11. Nonlinear model predictive control theory and algorithms

    CERN Document Server

    Grüne, Lars

    2017-01-01

    This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...

  12. Topological approximation of the nonlinear Anderson model

    Science.gov (United States)

    Milovanov, Alexander V.; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  13. 3D nonlinear numerical simulation of the current-convective instability in detached diverter plasma

    Science.gov (United States)

    Stepanenko, Alexander; Krasheninnikov, Sergei

    2017-10-01

    One of the possible mechanisms responsible for strong radiation fluctuations observed in the recent experiments with detached plasmas at ASDEX Upgrade [Potzel et al., Nuclear Fusion, 2014] can be related to the onset of the current-convective instability (CCI) driven by strong asymmetry of detachment in the inner and outer tokamak divertors [Krasheninnikov and Smolyakov, PoP, 2016]. In this study we present the first results of 3D nonlinear numerical simulations of the CCI in divertor plasma for the conditions relevant to the AUG experiment. The general physical model used to simulate the CCI, qualitative estimates for the instability characteristic growth rate and transverse wavelengths derived for plasma, which is spatially inhomogeneous both across and along the magnetic field lines, are presented. The simulation results, demonstrating nonlinear dynamics of the CCI, provide the frequency spectra of turbulent divertor plasma fluctuations showing good agreement with the available experimental data. This material is based upon the work supported by the U.S. Department of Energy under Award No. DE-FG02-04ER54739 at UCSD and by the Russian Ministry of Education and Science Grant No. 14.Y26.31.0008 at MEPhI.

  14. Numerical Oscillations Analysis for Nonlinear Delay Differential Equations in Physiological Control Systems

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2012-01-01

    Full Text Available This paper deals with the oscillations of numerical solutions for the nonlinear delay differential equations in physiological control systems. The exponential θ-method is applied to p′(t=β0ωμp(t−τ/(ωμ+pμ(t−τ−γp(t and it is shown that the exponential θ-method has the same order of convergence as that of the classical θ-method. Several conditions under which the numerical solutions oscillate are derived. Moreover, it is proven that every nonoscillatory numerical solution tends to positive equilibrium of the continuous system. Finally, the main results are illustrated with numerical examples.

  15. Nonlinear mirror mode dynamics: Simulations and modeling

    Czech Academy of Sciences Publication Activity Database

    Califano, F.; Hellinger, Petr; Kuznetsov, E.; Passot, T.; Sulem, P. L.; Trávníček, Pavel

    2008-01-01

    Roč. 113, - (2008), A08219/1-A08219/20 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Grant - others:PECS(CZ) 98024 Institutional research plan: CEZ:AV0Z30420517 Keywords : mirror instability * nonlinear evolution * numerical simulations * magnetic holes * mirror structures * kinetic plasma instabilities Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.147, year: 2008

  16. Nonlinear control of the Salnikov model reaction

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1999-01-01

    This paper explores different nonlinear control schemes, applied to a simple model reaction. The model is the Salnikov model, consisting of two ordinary differential equations. The control strategies investigated are I/O-linearisation, Exact linearisation, exact linearisation combined with LQR...

  17. Generalized Roe's numerical scheme for a two-fluid model

    International Nuclear Information System (INIS)

    Toumi, I.; Raymond, P.

    1993-01-01

    This paper is devoted to a mathematical and numerical study of a six equation two-fluid model. We will prove that the model is strictly hyperbolic due to the inclusion of the virtual mass force term in the phasic momentum equations. The two-fluid model is naturally written under a nonconservative form. To solve the nonlinear Riemann problem for this nonconservative hyperbolic system, a generalized Roe's approximate Riemann solver, is used, based on a linearization of the nonconservative terms. A Godunov type numerical scheme is built, using this approximate Riemann solver. 10 refs., 5 figs,

  18. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  19. Numerical simulation of nonlinear wave force on a quasi-ellipse caisson

    Science.gov (United States)

    Wang, Yongxue; Ren, Xiaozhong; Wang, Guoyu

    2011-09-01

    A three dimensional numerical model of nonlinear wave action on a quasi-ellipse caisson in a time domain was developed in this paper. Navier-Stokes equations were solved by the finite difference method, and the volume of fluid (VOF) method was employed to trace the free surface. The partial cell method was used to deal with the irregular boundary typical of this type of problem during first-time wave interaction with the structure, and a satisfactory result was obtained. The numerical model was verified and used to investigate the effects of the relative wave height H/d, relative caisson width kD, and relative length-width ratio B/D on the wave forces of the quasi-ellipse caisson. It was shown that the relative wave height H/d has a significant effect on the wave forces of the caisson. Compared with the non-dimensional inline wave force, the relative length-width ratio B/D was shown to have significant influence on the non-dimensional transverse wave force.

  20. Numerical investigation into the highly nonlinear heat transfer equation with bremsstrahlung emission in the inertial confinement fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Habibi, M.; Oloumi, M.; Hosseinkhani, H.; Magidi, S. [Plasma and Fusion Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2015-10-15

    A highly nonlinear parabolic partial differential equation that models the electron heat transfer process in laser inertial fusion has been solved numerically. The strong temperature dependence of the electron thermal conductivity and heat loss term (Bremsstrahlung emission) makes this a highly nonlinear process. In this case, an efficient numerical method is developed for the energy transport mechanism from the region of energy deposition into the ablation surface by a combination of the Crank-Nicolson scheme and the Newton-Raphson method. The quantitative behavior of the electron temperature and the comparison between analytic and numerical solutions are also investigated. For more clarification, the accuracy and conservation of energy in the computations are tested. The numerical results can be used to evaluate the nonlinear electron heat conduction, considering the released energy of the laser pulse at the Deuterium-Tritium (DT) targets and preheating by heat conduction ahead of a compression shock in the inertial confinement fusion (ICF) approach. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. An analog model for quantum lightcone fluctuations in nonlinear optics

    International Nuclear Information System (INIS)

    Ford, L.H.; De Lorenci, V.A.; Menezes, G.; Svaiter, N.F.

    2013-01-01

    We propose an analog model for quantum gravity effects using nonlinear dielectrics. Fluctuations of the spacetime lightcone are expected in quantum gravity, leading to variations in the flight times of pulses. This effect can also arise in a nonlinear material. We propose a model in which fluctuations of a background electric field, such as that produced by a squeezed photon state, can cause fluctuations in the effective lightcone for probe pulses. This leads to a variation in flight times analogous to that in quantum gravity. We make some numerical estimates which suggest that the effect might be large enough to be observable. - Highlights: ► Lightcone fluctuations, quantum fluctuations of the effective speed of light, are a feature of quantum gravity. ► Nonlinear dielectrics have a variable speed of light, analogous to the effects of gravity. ► Fluctuating electric fields create the effect of lightcone fluctuations in a nonlinear material. ► We propose to use squeezed light in a nonlinear material as an analog model of lightcone fluctuations. ► Variation in the speed of propagation of pulses is the observational signature of lightcone fluctuations.

  2. Numerical modeling of bubble dynamics in magmas

    Science.gov (United States)

    Huber, Christian; Su, Yanqing; Parmigiani, Andrea

    2014-05-01

    Understanding the complex non-linear physics that governs volcanic eruptions is contingent on our ability to characterize the dynamics of bubbles and its effect on the ascending magma. The exsolution and migration of bubbles has also a great impact on the heat and mass transport in and out of magma bodies stored at shallow depths in the crust. Multiphase systems like magmas are by definition heterogeneous at small scales. Although mixture theory or homogenization methods are convenient to represent multiphase systems as a homogeneous equivalent media, these approaches do not inform us on possible feedbacks at the pore-scale and can be significantly misleading. In this presentation, we discuss the development and application of bubble-scale multiphase flow modeling to address the following questions : How do bubbles impact heat and mass transport in magma chambers ? How efficient are chemical exchanges between the melt and bubbles during magma decompression? What is the role of hydrodynamic interactions on the deformation of bubbles while the magma is sheared? Addressing these questions requires powerful numerical methods that accurately model the balance between viscous, capillary and pressure stresses. We discuss how these bubble-scale models can provide important constraints on the dynamics of magmas stored at shallow depth or ascending to the surface during an eruption.

  3. Numerical study of propagation properties of surface plasmon polaritons in nonlinear media

    KAUST Repository

    Sagor, Rakibul Hasan

    2016-03-29

    We present a time-domain algorithm for simulating nonlinear propagation of surface plasmon polaritons (SPPs) in chalcogenide glass. Due to the high non-linearity property and strong dispersion and confinement chalcogenide glasses are widely known as ultrafast nonlinear materials. We have used the finite difference time domain (FDTD) method to develop the simulation algorithm for the current analysis. We have modeled the frequency dependent dispersion properties and third order nonlinearity property of chalcogenide glass utilizing the general polarization algorithm merged in the auxiliary differential equation (ADE) method. The propagation dynamics of the whole structure with and without third order nonlinearity property of chalcogenide glass have been simulated and the effect of nonlinearity on the propagation properties of SPP has been investigated. © 2016 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  4. On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    H. Montazeri

    2012-01-01

    Full Text Available We consider a system of nonlinear equations F(x=0. A new iterative method for solving this problem numerically is suggested. The analytical discussions of the method are provided to reveal its sixth order of convergence. A discussion on the efficiency index of the contribution with comparison to the other iterative methods is also given. Finally, numerical tests illustrate the theoretical aspects using the programming package Mathematica.

  5. European Workshop on High Order Nonlinear Numerical Schemes for Evolutionary PDEs

    CERN Document Server

    Beaugendre, Héloïse; Congedo, Pietro; Dobrzynski, Cécile; Perrier, Vincent; Ricchiuto, Mario

    2014-01-01

    This book collects papers presented during the European Workshop on High Order Nonlinear Numerical Methods for Evolutionary PDEs (HONOM 2013) that was held at INRIA Bordeaux Sud-Ouest, Talence, France in March, 2013. The central topic is high order methods for compressible fluid dynamics. In the workshop, and in this proceedings, greater emphasis is placed on the numerical than the theoretical aspects of this scientific field. The range of topics is broad, extending through algorithm design, accuracy, large scale computing, complex geometries, discontinuous Galerkin, finite element methods, Lagrangian hydrodynamics, finite difference methods and applications and uncertainty quantification. These techniques find practical applications in such fields as fluid mechanics, magnetohydrodynamics, nonlinear solid mechanics, and others for which genuinely nonlinear methods are needed.

  6. Numerical approximations of nonlinear fractional differential difference equations by using modified He-Laplace method

    Directory of Open Access Journals (Sweden)

    J. Prakash

    2016-03-01

    Full Text Available In this paper, a numerical algorithm based on a modified He-Laplace method (MHLM is proposed to solve space and time nonlinear fractional differential-difference equations (NFDDEs arising in physical phenomena such as wave phenomena in fluids, coupled nonlinear optical waveguides and nanotechnology fields. The modified He-Laplace method is a combined form of the fractional homotopy perturbation method and Laplace transforms method. The nonlinear terms can be easily decomposed by the use of He’s polynomials. This algorithm has been tested against time-fractional differential-difference equations such as the modified Lotka Volterra and discrete (modified KdV equations. The proposed scheme grants the solution in the form of a rapidly convergent series. Three examples have been employed to illustrate the preciseness and effectiveness of the proposed method. The achieved results expose that the MHLM is very accurate, efficient, simple and can be applied to other nonlinear FDDEs.

  7. Numerical Treatment of Fixed Point Applied to the Nonlinear Fredholm Integral Equation

    Directory of Open Access Journals (Sweden)

    Berenguer MI

    2009-01-01

    Full Text Available The authors present a method of numerical approximation of the fixed point of an operator, specifically the integral one associated with a nonlinear Fredholm integral equation, that uses strongly the properties of a classical Schauder basis in the Banach space .

  8. Nonlinear Model Reduction for RTCVD

    National Research Council Canada - National Science Library

    Newman, Andrew J; Krishnaprasad, P. S

    1998-01-01

    ...) for semiconductor manufacturing. They focus on model reduction for the ordinary differential equation model describing heat transfer to, from, and within a semiconductor wafer in the RTCVD chamber...

  9. Nonlinear Modelling of Low Frequency Loudspeakers

    DEFF Research Database (Denmark)

    Olsen, Erling Sandermann

    1997-01-01

    In the Danish LoDist project on distortion from dynamic low frequency loudspeakers a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...

  10. Nonlinear Modelling of Low Frequency Loudspeakers

    DEFF Research Database (Denmark)

    Olsen, Erling Sandermann

    1997-01-01

    In the Danish LoDist project on distortion from dynamic low-frequency loudspeakers, a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...

  11. Modeling vector nonlinear time series using POLYMARS

    NARCIS (Netherlands)

    de Gooijer, J.G.; Ray, B.K.

    2003-01-01

    A modified multivariate adaptive regression splines method for modeling vector nonlinear time series is investigated. The method results in models that can capture certain types of vector self-exciting threshold autoregressive behavior, as well as provide good predictions for more general vector

  12. Comparative Study of FDTD-Adopted Numerical Algorithms for Kerr Nonlinearities

    DEFF Research Database (Denmark)

    Maksymov, Ivan S.; Sukhorukov, Andrey A.; Lavrinenko, Andrei

    2011-01-01

    Accurate finite-difference time-domain (FDTD) modeling of optical pulse propagation in nonlinear media usually implies the use of auxiliary differential equation (ADE) techniques. The updating of electric field in full-vectorial 3-D ADE FDTD modeling of the optical Kerr effect and two-photon abso...... approaches. Such schemes can significantly reduce the CPU time for nonlinear computations, especially in 3-D models....

  13. Nonlinear friction model for servo press simulation

    Science.gov (United States)

    Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo

    2013-12-01

    The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.

  14. Finite element model for nonlinear shells of revolution

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-01-01

    Nuclear material shipping containers have shells of revolution as basic structural components. Analytically modeling the response of these containers to severe accident impact conditions requires a nonlinear shell-of-revolution model that accounts for both geometric and material nonlinearities. Existing models are limited to large displacements, small rotations, and nonlinear materials. The paper presents a finite element model for a nonlinear shell of revolution that will account for large displacements, large strains, large rotations, and nonlinear materials

  15. Nonlinear modeling and identification of a DC motor for bidirectional operation with real time experiments

    International Nuclear Information System (INIS)

    Kara, Tolgay; Eker, Ilyas

    2004-01-01

    Modeling and identification of mechanical systems constitute an essential stage in practical control design and applications. Controllers commanding systems that operate at varying conditions or require high precision operation raise the need for a nonlinear approach in modeling and identification. Most mechanical systems used in industry are composed of masses moving under the action of position and velocity dependent forces. These forces exhibit nonlinear behavior in certain regions of operation. For a multi-mass rotational system, the nonlinearities, like Coulomb friction and dead zone, significantly influence the system operation when the rotation changes direction. The paper presents nonlinear modeling and identification of a DC motor rotating in two directions together with real time experiments. Linear and nonlinear models for the system are obtained for identification purposes, and the major nonlinearities in the system, such as Coulomb friction and dead zone, are investigated and integrated in the nonlinear model. The Hammerstein nonlinear system approach is used for identification of the nonlinear system model. Online identification of the linear and nonlinear system models is performed using the recursive least squares method. Results of the real time experiments are graphically and numerically presented, and the advantages of the nonlinear identification approach are revealed

  16. Modeling of Volatility with Non-linear Time Series Model

    OpenAIRE

    Kim Song Yon; Kim Mun Chol

    2013-01-01

    In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.

  17. Effect of P T symmetry on nonlinear waves for three-wave interaction models in the quadratic nonlinear media

    Science.gov (United States)

    Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao

    2018-04-01

    We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.

  18. A Weakly Nonlinear Model for Kelvin–Helmholtz Instability in Incompressible Fluids

    International Nuclear Information System (INIS)

    Li-Feng, Wang; Wen-Hua, Ye; Zheng-Feng, Fan; Chuang, Xue; Ying-Jun, Li

    2009-01-01

    A weakly nonlinear model is proposed for the Kelvin–Helmholtz instability in two-dimensional incompressible fluids by expanding the perturbation velocity potential to third order. The third-order harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The weakly nonlinear results are supported by numerical simulations. Density and resonance effects exist in the development of mode coupling. (fundamental areas of phenomenology (including applications))

  19. On nonlinear reduced order modeling

    International Nuclear Information System (INIS)

    Abdel-Khalik, Hany S.

    2011-01-01

    When applied to a model that receives n input parameters and predicts m output responses, a reduced order model estimates the variations in the m outputs of the original model resulting from variations in its n inputs. While direct execution of the forward model could provide these variations, reduced order modeling plays an indispensable role for most real-world complex models. This follows because the solutions of complex models are expensive in terms of required computational overhead, thus rendering their repeated execution computationally infeasible. To overcome this problem, reduced order modeling determines a relationship (often referred to as a surrogate model) between the input and output variations that is much cheaper to evaluate than the original model. While it is desirable to seek highly accurate surrogates, the computational overhead becomes quickly intractable especially for high dimensional model, n ≫ 10. In this manuscript, we demonstrate a novel reduced order modeling method for building a surrogate model that employs only 'local first-order' derivatives and a new tensor-free expansion to efficiently identify all the important features of the original model to reach a predetermined level of accuracy. This is achieved via a hybrid approach in which local first-order derivatives (i.e., gradient) of a pseudo response (a pseudo response represents a random linear combination of original model’s responses) are randomly sampled utilizing a tensor-free expansion around some reference point, with the resulting gradient information aggregated in a subspace (denoted by the active subspace) of dimension much less than the dimension of the input parameters space. The active subspace is then sampled employing the state-of-the-art techniques for global sampling methods. The proposed method hybridizes the use of global sampling methods for uncertainty quantification and local variational methods for sensitivity analysis. In a similar manner to

  20. Numerical simulation and comparison of nonlinear self-focusing based on iteration and ray tracing

    Science.gov (United States)

    Li, Xiaotong; Chen, Hao; Wang, Weiwei; Ruan, Wangchao; Zhang, Luwei; Cen, Zhaofeng

    2017-05-01

    Self-focusing is observed in nonlinear materials owing to the interaction between laser and matter when laser beam propagates. Some of numerical simulation strategies such as the beam propagation method (BPM) based on nonlinear Schrödinger equation and ray tracing method based on Fermat's principle have applied to simulate the self-focusing process. In this paper we present an iteration nonlinear ray tracing method in that the nonlinear material is also cut into massive slices just like the existing approaches, but instead of paraxial approximation and split-step Fourier transform, a large quantity of sampled real rays are traced step by step through the system with changing refractive index and laser intensity by iteration. In this process a smooth treatment is employed to generate a laser density distribution at each slice to decrease the error caused by the under-sampling. The characteristics of this method is that the nonlinear refractive indices of the points on current slice are calculated by iteration so as to solve the problem of unknown parameters in the material caused by the causal relationship between laser intensity and nonlinear refractive index. Compared with the beam propagation method, this algorithm is more suitable for engineering application with lower time complexity, and has the calculation capacity for numerical simulation of self-focusing process in the systems including both of linear and nonlinear optical media. If the sampled rays are traced with their complex amplitudes and light paths or phases, it will be possible to simulate the superposition effects of different beam. At the end of the paper, the advantages and disadvantages of this algorithm are discussed.

  1. Perturbation analysis of nonlinear matrix population models

    Directory of Open Access Journals (Sweden)

    Hal Caswell

    2008-03-01

    Full Text Available Perturbation analysis examines the response of a model to changes in its parameters. It is commonly applied to population growth rates calculated from linear models, but there has been no general approach to the analysis of nonlinear models. Nonlinearities in demographic models may arise due to density-dependence, frequency-dependence (in 2-sex models, feedback through the environment or the economy, and recruitment subsidy due to immigration, or from the scaling inherent in calculations of proportional population structure. This paper uses matrix calculus to derive the sensitivity and elasticity of equilibria, cycles, ratios (e.g. dependency ratios, age averages and variances, temporal averages and variances, life expectancies, and population growth rates, for both age-classified and stage-classified models. Examples are presented, applying the results to both human and non-human populations.

  2. Numerical models for high beta magnetohydrodynamic flow

    International Nuclear Information System (INIS)

    Brackbill, J.U.

    1987-01-01

    The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs

  3. Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations

    Science.gov (United States)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America

  4. Controlled Nonlinear Stochastic Delay Equations: Part I: Modeling and Approximations

    International Nuclear Information System (INIS)

    Kushner, Harold J.

    2012-01-01

    This two-part paper deals with “foundational” issues that have not been previously considered in the modeling and numerical optimization of nonlinear stochastic delay systems. There are new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. There are two basic and interconnected themes for these models. The first, dealt with in this part, concerns the definition of admissible control. The classical definition of an admissible control as a nonanticipative relaxed control is inadequate for these models and needs to be extended. This is needed for the convergence proofs of numerical approximations for optimal controls as well as to have a well-defined model. It is shown that the new classes of admissible controls do not enlarge the range of the value functions, is closed (together with the associated paths) under weak convergence, and is approximatable by ordinary controls. The second theme, dealt with in Part II, concerns transportation equation representations, and their role in the development of numerical algorithms with much reduced memory and computational requirements.

  5. Nonlinear distortion in wireless systems modeling and simulation with Matlab

    CERN Document Server

    Gharaibeh, Khaled M

    2011-01-01

    This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems

  6. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016...... approaches. (C) 2016 Optical Society of America...

  7. Nonlinear GARCH model and 1 / f noise

    Science.gov (United States)

    Kononovicius, A.; Ruseckas, J.

    2015-06-01

    Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.

  8. Numerical solution of a non-linear conservation law applicable to the interior dynamics of partially molten planets

    Science.gov (United States)

    Bower, Dan J.; Sanan, Patrick; Wolf, Aaron S.

    2018-01-01

    The energy balance of a partially molten rocky planet can be expressed as a non-linear diffusion equation using mixing length theory to quantify heat transport by both convection and mixing of the melt and solid phases. Crucially, in this formulation the effective or eddy diffusivity depends on the entropy gradient, ∂S / ∂r , as well as entropy itself. First we present a simplified model with semi-analytical solutions that highlights the large dynamic range of ∂S / ∂r -around 12 orders of magnitude-for physically-relevant parameters. It also elucidates the thermal structure of a magma ocean during the earliest stage of crystal formation. This motivates the development of a simple yet stable numerical scheme able to capture the large dynamic range of ∂S / ∂r and hence provide a flexible and robust method for time-integrating the energy equation. Using insight gained from the simplified model, we consider a full model, which includes energy fluxes associated with convection, mixing, gravitational separation, and conduction that all depend on the thermophysical properties of the melt and solid phases. This model is discretised and evolved by applying the finite volume method (FVM), allowing for extended precision calculations and using ∂S / ∂r as the solution variable. The FVM is well-suited to this problem since it is naturally energy conserving, flexible, and intuitive to incorporate arbitrary non-linear fluxes that rely on lookup data. Special attention is given to the numerically challenging scenario in which crystals first form in the centre of a magma ocean. The computational framework we devise is immediately applicable to modelling high melt fraction phenomena in Earth and planetary science research. Furthermore, it provides a template for solving similar non-linear diffusion equations that arise in other science and engineering disciplines, particularly for non-linear functional forms of the diffusion coefficient.

  9. Nonlinear Dynamic Models in Advanced Life Support

    Science.gov (United States)

    Jones, Harry

    2002-01-01

    To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.

  10. Numerical modeling of slow shocks

    International Nuclear Information System (INIS)

    Winske, D.

    1987-01-01

    This paper reviews previous attempt and the present status of efforts to understand the structure of slow shocks by means of time dependent numerical calculations. Studies carried out using MHD or hybrid-kinetic codes have demonstrated qualitative agreement with theory. A number of unresolved issues related to hybrid simulations of the internal shock structure are discussed in some detail. 43 refs., 8 figs

  11. Analysis of nonlinear systems using ARMA [autoregressive moving average] models

    International Nuclear Information System (INIS)

    Hunter, N.F. Jr.

    1990-01-01

    While many vibration systems exhibit primarily linear behavior, a significant percentage of the systems encountered in vibration and model testing are mildly to severely nonlinear. Analysis methods for such nonlinear systems are not yet well developed and the response of such systems is not accurately predicted by linear models. Nonlinear ARMA (autoregressive moving average) models are one method for the analysis and response prediction of nonlinear vibratory systems. In this paper we review the background of linear and nonlinear ARMA models, and illustrate the application of these models to nonlinear vibration systems. We conclude by summarizing the advantages and disadvantages of ARMA models and emphasizing prospects for future development. 14 refs., 11 figs

  12. Numerical Simulation of Freak Waves Based on the Four-Order Nonlinear Schr(o)dinger Equation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-qiu; ZHANG Ning-chuan; PEI Yu-guo

    2007-01-01

    A numerical wave model based on the modified four-order nonlinear Schrodinger (NLS) equation in deep water is developed to simulate freak waves. A standard split-step, pseudo-spectral method is used to solve NLS equation. The validation of the model is firstly verified, and then the simulation of freak waves is performed by changing sideband conditions. Results show that freak waves entirely consistent with the definition in the evolution of wave trains are obtained. The possible occurrence mechanism of freak waves is discussed and the relevant characteristics are also analyzed.

  13. A nonlinear model for AC induced corrosion

    Directory of Open Access Journals (Sweden)

    N. Ida

    2012-09-01

    Full Text Available The modeling of corrosion poses particular difficulties. The understanding of corrosion as an electrochemical process has led to simple capacitive-resistive models that take into account the resistance of the electrolytic cell and the capacitive effect of the surface potential at the interface between conductors and the electrolyte. In some models nonlinear conduction effects have been added to account for more complex observed behavior. While these models are sufficient to describe the behavior in systems with cathodic protection, the behavior in the presence of induced AC currents from power lines and from RF sources cannot be accounted for and are insufficient to describe the effects observed in the field. Field observations have shown that a rectifying effect exists that affects the cathodic protection potential and this effect is responsible for corrosion in the presence of AC currents. The rectifying effects of the metal-corrosion interface are totally missing from current models. This work proposes a nonlinear model based on finite element analysis that takes into account the nonlinear behavior of the metal-oxide interface and promises to improve modeling by including the rectification effects at the interface.

  14. Applicability of linear and non-linear potential flow models on a Wavestar float

    DEFF Research Database (Denmark)

    Bozonnet, Pauline; Dupin, Victor; Tona, Paolino

    2017-01-01

    as a model based on non-linear potential flow theory and weakscatterer hypothesis are successively considered. Simple tests, such as dip tests, decay tests and captive tests enable to highlight the improvements obtained with the introduction of nonlinearities. Float motion under wave actions and without...... control action, limited to small amplitude motion with a single float, is well predicted by the numerical models, including the linear one. Still, float velocity is better predicted by accounting for non-linear hydrostatic and Froude-Krylov forces.......Numerical models based on potential flow theory, including different types of nonlinearities are compared and validated against experimental data for the Wavestar wave energy converter technology. Exact resolution of the rotational motion, non-linear hydrostatic and Froude-Krylov forces as well...

  15. Parameter estimation in nonlinear models for pesticide degradation

    International Nuclear Information System (INIS)

    Richter, O.; Pestemer, W.; Bunte, D.; Diekkrueger, B.

    1991-01-01

    A wide class of environmental transfer models is formulated as ordinary or partial differential equations. With the availability of fast computers, the numerical solution of large systems became feasible. The main difficulty in performing a realistic and convincing simulation of the fate of a substance in the biosphere is not the implementation of numerical techniques but rather the incomplete data basis for parameter estimation. Parameter estimation is a synonym for statistical and numerical procedures to derive reasonable numerical values for model parameters from data. The classical method is the familiar linear regression technique which dates back to the 18th century. Because it is easy to handle, linear regression has long been established as a convenient tool for analysing relationships. However, the wide use of linear regression has led to an overemphasis of linear relationships. In nature, most relationships are nonlinear and linearization often gives a poor approximation of reality. Furthermore, pure regression models are not capable to map the dynamics of a process. Therefore, realistic models involve the evolution in time (and space). This leads in a natural way to the formulation of differential equations. To establish the link between data and dynamical models, numerical advanced parameter identification methods have been developed in recent years. This paper demonstrates the application of these techniques to estimation problems in the field of pesticide dynamics. (7 refs., 5 figs., 2 tabs.)

  16. A non-linear model of economic production processes

    Science.gov (United States)

    Ponzi, A.; Yasutomi, A.; Kaneko, K.

    2003-06-01

    We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.

  17. Numerical analysis of nonlinear behavior of steel-concrete composite structures

    Directory of Open Access Journals (Sweden)

    Í.J.M. LEMES

    Full Text Available Abstract This paper presents the development of an effective numerical formulation for the analysis of steel-concrete composite structures considering geometric and materials nonlinear effects. Thus, a methodology based on Refined Plastic Hinge Method (RPHM was developed and the stiffness parameters were obtained by homogenization of cross-section. The evaluation of structural elements strength is done through the Strain Compatibility Method (SCM. The Newton-Raphson Method with path-following strategies is adopted to solve nonlinear global and local (in cross-section level equations. The results are compared with experimental and numerical database presents in literature and a good accuracy is observed in composite cross sections, composite columns, and composite portal frames.

  18. Development of a numerical 2-dimensional beach evolution model

    DEFF Research Database (Denmark)

    Baykal, Cüneyt

    2014-01-01

    This paper presents the description of a 2-dimensional numerical model constructed for the simulation of beach evolution under the action of wind waves only over the arbitrary land and sea topographies around existing coastal structures and formations. The developed beach evolution numerical model...... is composed of 4 submodels: a nearshore spectral wave transformation model based on an energy balance equation including random wave breaking and diffraction terms to compute the nearshore wave characteristics, a nearshore wave-induced circulation model based on the nonlinear shallow water equations...... to compute the nearshore depth-averaged wave-induced current velocities and mean water level changes, a sediment transport model to compute the local total sediment transport rates occurring under the action of wind waves, and a bottom evolution model to compute the bed level changes in time based...

  19. A Versatile Nonlinear Method for Predictive Modeling

    Science.gov (United States)

    Liou, Meng-Sing; Yao, Weigang

    2015-01-01

    As computational fluid dynamics techniques and tools become widely accepted for realworld practice today, it is intriguing to ask: what areas can it be utilized to its potential in the future. Some promising areas include design optimization and exploration of fluid dynamics phenomena (the concept of numerical wind tunnel), in which both have the common feature where some parameters are varied repeatedly and the computation can be costly. We are especially interested in the need for an accurate and efficient approach for handling these applications: (1) capturing complex nonlinear dynamics inherent in a system under consideration and (2) versatility (robustness) to encompass a range of parametric variations. In our previous paper, we proposed to use first-order Taylor expansion collected at numerous sampling points along a trajectory and assembled together via nonlinear weighting functions. The validity and performance of this approach was demonstrated for a number of problems with a vastly different input functions. In this study, we are especially interested in enhancing the method's accuracy; we extend it to include the second-orer Taylor expansion, which however requires a complicated evaluation of Hessian matrices for a system of equations, like in fluid dynamics. We propose a method to avoid these Hessian matrices, while maintaining the accuracy. Results based on the method are presented to confirm its validity.

  20. Anti-symmetrically fused model and non-linear integral equations in the three-state Uimin-Sutherland model

    International Nuclear Information System (INIS)

    Fujii, Akira; Kluemper, Andreas

    1999-01-01

    We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation

  1. Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method

    International Nuclear Information System (INIS)

    Mokhtari, R.; Toodar, A. Samadi; Chegini, N. G.

    2011-01-01

    We the extend application of the generalized differential quadrature method (GDQM) to solve some coupled nonlinear Schrödinger equations. The cosine-based GDQM is employed and the obtained system of ordinary differential equations is solved via the fourth order Runge—Kutta method. The numerical solutions coincide with the exact solutions in desired machine precision and invariant quantities are conserved sensibly. Some comparisons with the methods applied in the literature are carried out. (general)

  2. A New Method to Solve Numeric Solution of Nonlinear Dynamic System

    Directory of Open Access Journals (Sweden)

    Min Hu

    2016-01-01

    Full Text Available It is well known that the cubic spline function has advantages of simple forms, good convergence, approximation, and second-order smoothness. A particular class of cubic spline function is constructed and an effective method to solve the numerical solution of nonlinear dynamic system is proposed based on the cubic spline function. Compared with existing methods, this method not only has high approximation precision, but also avoids the Runge phenomenon. The error analysis of several methods is given via two numeric examples, which turned out that the proposed method is a much more feasible tool applied to the engineering practice.

  3. Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order

    Science.gov (United States)

    Owolabi, Kolade M.

    2017-03-01

    In this paper, some nonlinear space-fractional order reaction-diffusion equations (SFORDE) on a finite but large spatial domain x ∈ [0, L], x = x(x , y , z) and t ∈ [0, T] are considered. Also in this work, the standard reaction-diffusion system with boundary conditions is generalized by replacing the second-order spatial derivatives with Riemann-Liouville space-fractional derivatives of order α, for 0 Fourier spectral method is introduced as a better alternative to existing low order schemes for the integration of fractional in space reaction-diffusion problems in conjunction with an adaptive exponential time differencing method, and solve a range of one-, two- and three-components SFORDE numerically to obtain patterns in one- and two-dimensions with a straight forward extension to three spatial dimensions in a sub-diffusive (0 reaction-diffusion case. With application to models in biology and physics, different spatiotemporal dynamics are observed and displayed.

  4. A Nonlinear Dynamic Model and Free Vibration Analysis of Deployable Mesh Reflectors

    Science.gov (United States)

    Shi, H.; Yang, B.; Thomson, M.; Fang, H.

    2011-01-01

    This paper presents a dynamic model of deployable mesh reflectors, in which geometric and material nonlinearities of such a space structure are fully described. Then, by linearization around an equilibrium configuration of the reflector structure, a linearized model is obtained. With this linearized model, the natural frequencies and mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable mesh reflectors is verified by using commercial finite element software in numerical simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) control of deployable mesh reflectors under thermal loads.

  5. Force-controlled absorption in a fully-nonlinear numerical wave tank

    International Nuclear Information System (INIS)

    Spinneken, Johannes; Christou, Marios; Swan, Chris

    2014-01-01

    An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes

  6. Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process

    Directory of Open Access Journals (Sweden)

    Dazi Li

    2015-01-01

    Full Text Available A new strategy for internal model control (IMC is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM. Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS, while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.

  7. Numerical modelling in material physics

    International Nuclear Information System (INIS)

    Proville, L.

    2004-12-01

    The author first briefly presents his past research activities: investigation of a dislocation sliding in solid solution by molecular dynamics, modelling of metal film growth by phase field and Monte Carlo kinetics, phase field model for surface self-organisation, phase field model for the Al 3 Zr alloy, calculation of anharmonic photons, mobility of bipolarons in superconductors. Then, he more precisely reports the mesoscopic modelling in phase field, and some atomistic modelling (dislocation sliding, Monte Carlo simulation of metal surface growth, anharmonic network optical spectrum modelling)

  8. Numerical modeling of polar mesocyclones generation mechanisms

    Science.gov (United States)

    Sergeev, Dennis; Stepanenko, Victor

    2013-04-01

    parameters, lateral boundary conditions are varied in the typically observed range. The approach is fully nonlinear: we use a three-dimensional non-hydrostatic mesoscale model NH3D_MPI [1] coupled with one-dimensional water body model LAKE. A key method used in the present study is the analysis of eddy kinetic and available potential energy budgets. References 1. Mikushin, D.N., and Stepanenko, V.M., The implementation of regional atmospheric model numerical algorithms for CBEA-based clusters. Lecture Notes in Computer Science, Parallel Processing and Applied Mathematics, 2010, vol. 6067, p. 525-534. 2. Rasmussen, E., and Turner, J. (eds), Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge: Cambridge University Press, 2003, 612 pp. 3. Yanase, W., and Niino, H., Dependence of Polar Low Development on Baroclinicity and Physical Processes: An Idealized High-Resolution Experiment, J. Atmos. Sci., 2006, vol. 64, p. 3044-3067.

  9. Linear theory for filtering nonlinear multiscale systems with model error.

    Science.gov (United States)

    Berry, Tyrus; Harlim, John

    2014-07-08

    In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online , as part of a filtering

  10. The influence of noise on nonlinear time series detection based on Volterra-Wiener-Korenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Lei Min [State Key Laboratory of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200030 (China)], E-mail: leimin@sjtu.edu.cn; Meng Guang [State Key Laboratory of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-04-15

    This paper studies the influence of noises on Volterra-Wiener-Korenberg (VWK) nonlinear test model. Our numerical results reveal that different types of noises lead to different behavior of VWK model detection. For dynamic noise, it is difficult to distinguish chaos from nonchaotic but nonlinear determinism. For time series, measure noise has no impact on chaos determinism detection. This paper also discusses various behavior of VWK model detection with surrogate data for different noises.

  11. Numerical Modeling and Mechanical Analysis of Flexible Risers

    Directory of Open Access Journals (Sweden)

    J. Y. Li

    2015-01-01

    Full Text Available ABAQUS is used to create a detailed finite element model for a 10-layer unbonded flexible riser to simulate the riser’s mechanical behavior under three load conditions: tension force and internal and external pressure. It presents a technique to create detailed finite element model and to analyze flexible risers. In FEM model, all layers are modeled separately with contact interfaces; interaction between steel trips in certain layers has been considered as well. FEM model considering contact interaction, geometric nonlinearity, and friction has been employed to accurately simulate the structural behavior of riser. The model includes the main features of the riser geometry with very little simplifying assumptions. The model was solved using a fully explicit time-integration scheme implemented in a parallel environment on an eight-processor cluster and 24 G memory computer. There is a very good agreement obtained from numerical and analytical comparisons, which validates the use of numerical model here. The results from the numerical simulation show that the numerical model takes into account various details of the riser. It has been shown that the detailed finite element model can be used to predict riser’s mechanics behavior under various load cases and bound conditions.

  12. Numerical modelling approach for mine backfill

    Indian Academy of Sciences (India)

    Muhammad Zaka Emad

    2017-07-24

    Jul 24, 2017 ... conditions. This paper discusses a numerical modelling strategy for modelling mine backfill material. The .... placed in an ore pass that leads the ore to the ore bin and crusher, from ... 1 year, depending on the mine plan.

  13. A numerical approach for assessing effects of shear on equivalent permeability and nonlinear flow characteristics of 2-D fracture networks

    Science.gov (United States)

    Liu, Richeng; Li, Bo; Jiang, Yujing; Yu, Liyuan

    2018-01-01

    Hydro-mechanical properties of rock fractures are core issues for many geoscience and geo-engineering practices. Previous experimental and numerical studies have revealed that shear processes could greatly enhance the permeability of single rock fractures, yet the shear effects on hydraulic properties of fractured rock masses have received little attention. In most previous fracture network models, single fractures are typically presumed to be formed by parallel plates and flow is presumed to obey the cubic law. However, related studies have suggested that the parallel plate model cannot realistically represent the surface characters of natural rock fractures, and the relationship between flow rate and pressure drop will no longer be linear at sufficiently large Reynolds numbers. In the present study, a numerical approach was established to assess the effects of shear on the hydraulic properties of 2-D discrete fracture networks (DFNs) in both linear and nonlinear regimes. DFNs considering fracture surface roughness and variation of aperture in space were generated using an originally developed code DFNGEN. Numerical simulations by solving Navier-Stokes equations were performed to simulate the fluid flow through these DFNs. A fracture that cuts through each model was sheared and by varying the shear and normal displacements, effects of shear on equivalent permeability and nonlinear flow characteristics of DFNs were estimated. The results show that the critical condition of quantifying the transition from a linear flow regime to a nonlinear flow regime is: 10-4 〈 J hydraulic gradient. When the fluid flow is in a linear regime (i.e., J reduce the equivalent permeability significantly in the orientation perpendicular to the sheared fracture as much as 53.86% when J = 1, shear displacement Ds = 7 mm, and normal displacement Dn = 1 mm. By fitting the calculated results, the mathematical expression for δ2 is established to help choose proper governing equations when

  14. Thermoviscous Model Equations in Nonlinear Acoustics

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne

    Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....

  15. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    Energy Technology Data Exchange (ETDEWEB)

    Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)

    2014-09-25

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.

  16. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    International Nuclear Information System (INIS)

    Barus, R. P. P.; Tjokronegoro, H. A.; Leksono, E.; Ismunandar

    2014-01-01

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range

  17. Landau fluid model for weakly nonlinear dispersive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Passot, T.; Sulem, P. L.

    2005-01-01

    In may astrophysical plasmas such as the solar wind, the terrestrial magnetosphere, or in the interstellar medium at small enough scales, collisions are negligible. When interested in the large-scale dynamics, a hydrodynamic approach is advantageous not only because its numerical simulations is easier than of the full Vlasov-Maxwell equations, but also because it provides a deep understanding of cross-scale nonlinear couplings. It is thus of great interest to construct fluid models that extended the classical magnetohydrodynamic (MHD) equations to collisionless situations. Two ingredients need to be included in such a model to capture the main kinetic effects: finite Larmor radius (FLR) corrections and Landau damping, the only fluid-particle resonance that can affect large scales and can be modeled in a relatively simple way. The Modelization of Landau damping in a fluid formalism is hardly possible in the framework of a systematic asymptotic expansion and was addressed mainly by means of parameter fitting in a linearized setting. We introduced a similar Landau fluid model but, that has the advantage of taking dispersive effects into account. This model properly describes dispersive MHD waves in quasi-parallel propagation. Since, by construction, the system correctly reproduces their linear dynamics, appropriate tests should address the nonlinear regime. In a first case, we show analytically that the weakly nonlinear modulational dynamics of quasi-parallel propagating Alfven waves is well captured. As a second test we consider the parametric decay instability of parallel Alfven waves and show that numerical simulations of the dispersive Landau fluid model lead to results that closely match the outcome of hybrid simulations. (Author)

  18. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  19. The inherent complexity in nonlinear business cycle model in resonance

    International Nuclear Information System (INIS)

    Ma Junhai; Sun Tao; Liu Lixia

    2008-01-01

    Based on Abraham C.-L. Chian's research, we applied nonlinear dynamic system theory to study the first-order and second-order approximate solutions to one category of the nonlinear business cycle model in resonance condition. We have also analyzed the relation between amplitude and phase of second-order approximate solutions as well as the relation between outer excitements' amplitude, frequency approximate solutions, and system bifurcation parameters. Then we studied the system quasi-periodical solutions, annulus periodical solutions and the path leading to system bifurcation and chaotic state with different parameter combinations. Finally, we conducted some numerical simulations for various complicated circumstances. Therefore this research will lay solid foundation for detecting the complexity of business cycles and systems in the future

  20. Model reduction of systems with localized nonlinearities.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph

    2006-03-01

    An LDRD funded approach to development of reduced order models for systems with local nonlinearities is presented. This method is particularly useful for problems of structural dynamics, but has potential application in other fields. The key elements of this approach are (1) employment of eigen modes of a reference linear system, (2) incorporation of basis functions with an appropriate discontinuity at the location of the nonlinearity. Galerkin solution using the above combination of basis functions appears to capture the dynamics of the system with a small basis set. For problems involving small amplitude dynamics, the addition of discontinuous (joint) modes appears to capture the nonlinear mechanics correctly while preserving the modal form of the predictions. For problems involving large amplitude dynamics of realistic joint models (macro-slip), the use of appropriate joint modes along with sufficient basis eigen modes to capture the frequencies of the system greatly enhances convergence, though the modal nature the result is lost. Also observed is that when joint modes are used in conjunction with a small number of elastic eigen modes in problems of macro-slip of realistic joint models, the resulting predictions are very similar to those of the full solution when seen through a low pass filter. This has significance both in terms of greatly reducing the number of degrees of freedom of the problem and in terms of facilitating the use of much larger time steps.

  1. Nonlinear Inertia Classification Model and Application

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2014-01-01

    Full Text Available Classification model of support vector machine (SVM overcomes the problem of a big number of samples. But the kernel parameter and the punishment factor have great influence on the quality of SVM model. Particle swarm optimization (PSO is an evolutionary search algorithm based on the swarm intelligence, which is suitable for parameter optimization. Accordingly, a nonlinear inertia convergence classification model (NICCM is proposed after the nonlinear inertia convergence (NICPSO is developed in this paper. The velocity of NICPSO is firstly defined as the weighted velocity of the inertia PSO, and the inertia factor is selected to be a nonlinear function. NICPSO is used to optimize the kernel parameter and a punishment factor of SVM. Then, NICCM classifier is trained by using the optical punishment factor and the optical kernel parameter that comes from the optimal particle. Finally, NICCM is applied to the classification of the normal state and fault states of online power cable. It is experimentally proved that the iteration number for the proposed NICPSO to reach the optimal position decreases from 15 to 5 compared with PSO; the training duration is decreased by 0.0052 s and the recognition precision is increased by 4.12% compared with SVM.

  2. NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    SILVA R. G.

    1999-01-01

    Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.

  3. Nonlinear chaotic model for predicting storm surges

    Directory of Open Access Journals (Sweden)

    M. Siek

    2010-09-01

    Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.

  4. Spatiotemporal drought forecasting using nonlinear models

    Science.gov (United States)

    Vasiliades, Lampros; Loukas, Athanasios

    2010-05-01

    Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. In order to achieve spatiotemporal forecasting, some mature analysis tools, e.g., time series and spatial statistics are extended to the spatial dimension and the temporal dimension, respectively. Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Despite the widespread application of nonlinear mathematical models, comparative studies on spatiotemporal drought forecasting using different models are still a huge task for modellers. This study uses a promising approach, the Gamma Test (GT), to select the input variables and the training data length, so that the trial and error workload could be greatly reduced. The GT enables to quickly evaluate and estimate the best mean squared error that can be achieved by a smooth model on any unseen data for a given selection of inputs, prior to model construction. The GT is applied to forecast droughts using monthly Standardized Precipitation Index (SPI) timeseries at multiple timescales in several precipitation stations at Pinios river basin in Thessaly region, Greece. Several nonlinear models have been developed efficiently, with the aid of the GT, for 1-month up to 12-month ahead forecasting. Several temporal and spatial statistical indices were considered for the performance evaluation of the models. The predicted results show reasonably good agreement with the actual data for short lead times, whereas the forecasting accuracy decreases with

  5. Dynamics in a nonlinear Keynesian good market model

    International Nuclear Information System (INIS)

    Naimzada, Ahmad; Pireddu, Marina

    2014-01-01

    In this paper, we show how a rich variety of dynamical behaviors can emerge in the standard Keynesian income-expenditure model when a nonlinearity is introduced, both in the cases with and without endogenous government spending. A specific sigmoidal functional form is used for the adjustment mechanism of income with respect to the excess demand, in order to bound the income variation. With the aid of analytical and numerical tools, we investigate the stability conditions, bifurcations, as well as periodic and chaotic dynamics. Globally, we study multistability phenomena, i.e., the coexistence of different kinds of attractors

  6. A Nonlinear Ship Manoeuvering Model: Identification and adaptive control with experiments for a model ship

    Directory of Open Access Journals (Sweden)

    Roger Skjetne

    2004-01-01

    Full Text Available Complete nonlinear dynamic manoeuvering models of ships, with numerical values, are hard to find in the literature. This paper presents a modeling, identification, and control design where the objective is to manoeuver a ship along desired paths at different velocities. Material from a variety of references have been used to describe the ship model, its difficulties, limitations, and possible simplifications for the purpose of automatic control design. The numerical values of the parameters in the model is identified in towing tests and adaptive manoeuvering experiments for a small ship in a marine control laboratory.

  7. Estimation methods for nonlinear state-space models in ecology

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro

    2011-01-01

    The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... logistic model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare the estimation performance of three alternative methods using simulated data. The first approach is to partition the state-space into a finite number of states and formulate the problem as a hidden...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...

  8. A Numerical Study of Nonlinear Nonhydrostatic Conditional Symmetric Instability in a Convectively Unstable Atmosphere.

    Science.gov (United States)

    Seman, Charles J.

    1994-06-01

    Nonlinear nonhydrostatic conditional symmetric instability (CSI) is studied as an initial value problem using a two-dimensional (y, z)nonlinear, nonhydrostatic numerical mesoscale/cloud model. The initial atmosphere for the rotating, baroclinic (BCF) simulation contains large convective available potential energy (CAPE). Analytical theory, various model output diagnostics, and a companion nonrotating barotropic (BTNF) simulation are used to interpret the results from the BCF simulation. A single warm moist thermal initiates convection for the two 8-h simulations.The BCF simulation exhibited a very intricate life cycle. Following the initial convection, a series of discrete convective cells developed within a growing mesoscale circulation. Between hours 4 and 8, the circulation grew upscale into a structure resembling that of a squall-line mesoscale convective system (MCS). The mesoscale updrafts were nearly vertical and the circulation was strongest on the baroclinically cool side of the initial convection, as predicted by a two-dimensional Lagrangian parcel model of CSI with CAPE. The cool-side mesoscale circulation grew nearly exponentially over the last 5 h as it slowly propagated toward the warm air. Significant vertical transport of zonal momentum occurred in the (multicellular) convection that developed, resulting in local subgeostrophic zonal wind anomalies aloft. Over time, geostrophic adjustment acted to balance these anomalies. The system became warm core, with mesohigh pressure aloft and mesolow pressure at the surface. A positive zonal wind anomaly also formed downstream from the mesohigh.Analysis of the BCF simulation showed that convective momentum transport played a key role in the evolution of the simulated MCS, in that it fostered the development of the nonlinear CSI on mesoscale time scales. The vertical momentum transport in the initial deep convection generated a subgeostrophic zonal momentum anomaly aloft; the resulting imbalance in pressure

  9. Numerical Modeling of Microelectrochemical Systems

    DEFF Research Database (Denmark)

    Adesokan, Bolaji James

    incorporates the finite size of ionic species in the transport equation. The model presents a more appropriate boundary conditions which describe the modified Butler-Volmer reaction kinetics and account for the surface capacitance of the thin electric double layer. We also have found analytical solution...... at the electrode in a microelectrochemical system. In our analysis, we account for the finite size properties of ions in the mass and the charge transport of ionic species in an electrochemical system. This term characterizes the saturation of the ionic species close to the electrode surface. We then analyse......The PhD dissertation is concerned with mathematical modeling and simulation of electrochemical systems. The first three chapters of the thesis consist of the introductory part, the model development chapter and the chapter on the summary of the main results. The remaining three chapters report...

  10. Modeling TAE Response To Nonlinear Drives

    Science.gov (United States)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-10-01

    Experiment has detected the Toroidal Alfven Eigenmodes (TAE) with signals at twice the eigenfrequency.These harmonic modes arise from the second order perturbation in amplitude of the MHD equation for the linear modes that are driven the energetic particle free energy. The structure of TAE in realistic geometry can be calculated by generalizing the linear numerical solver (AEGIS package). We have have inserted all the nonlinear MHD source terms, where are quadratic in the linear amplitudes, into AEGIS code. We then invert the linear MHD equation at the second harmonic frequency. The ratio of amplitudes of the first and second harmonic terms are used to determine the internal field amplitude. The spatial structure of energy and density distribution are investigated. The results can be directly employed to compare with experiments and determine the Alfven wave amplitude in the plasma region.

  11. Mathematical and Numerical Modeling in Maritime Geomechanics

    Directory of Open Access Journals (Sweden)

    Miguel Martín Stickle

    2012-04-01

    Full Text Available A theoretical and numerical framework to model the foundation of marine offshore structures is presented. The theoretical model is composed by a system of partial differential equations describing coupling between seabed solid skeleton and pore fluids (water, air, oil,... combined with a system of ordinary differential equations describing the specific constitutive relation of the seabed soil skeleton. Once the theoretical model is described, the finite element numerical procedure to achieve an approximate solution of the overning equations is outlined. In order to validate the proposed theoretical and numerical framework the seaward tilt mechanism induced by the action of breaking waves over a vertical breakwater is numerically reproduced. The results numerically attained are in agreement with the main conclusions drawn from the literature associated with this failure mechanism.

  12. A non-linear procedure for the numerical analysis of crack development in beams failing in shear

    Directory of Open Access Journals (Sweden)

    P. Bernardi

    2016-01-01

    Full Text Available In this work, a consistent formulation for the representation of concrete behavior before and after cracking has been implemented into a non-linear model for the analysis of reinforced concrete structures, named 2D-PARC. Several researches have indeed pointed out that the adoption of an effective modeling for concrete, combined with an accurate failure criterion, is crucial for the correct prediction of the structural behavior, not only in terms of failure load, but also with reference to a realistic representation of crack initiation and development. This last aspect is particularly relevant at serviceability conditions in order to verify the fulfillment of structural requirements provided by Design Codes, which limit the maximum crack width due to appearance and durability issues. In more details, a constitutive model originally proposed by Ottosen and based on non-linear elasticity has been here incorporated into 2D-PARC in order to improve the numerical efficiency of the adopted algorithm, providing at the same time an accurate prediction of the structural response. The effectiveness of this procedure has been verified against significant experimental results available in the technical literature and relative to reinforced concrete beams without stirrups failing in shear, which represent a problem of great theoretical and practical importance in the field of structural engineering. Numerical results have been compared to experimental evidences not only in terms of global structural response (i.e. applied load vs. midspan deflection, but also in terms of crack pattern evolution and maximum crack widths.

  13. Numerical modelling of reflood processes

    International Nuclear Information System (INIS)

    Glynn, D.R.; Rhodes, N.; Tatchell, D.G.

    1983-01-01

    The use of a detailed computer model to investigate the effects of grid size and the choice of wall-to-fluid heat-transfer correlations on the predictions obtained for reflooding of a vertical heated channel is described. The model employs equations for the momentum and enthalpy of vapour and liquid and hence accounts for both thermal non-equilibrium and slip between the phases. Empirical correlations are used to calculate interphase and wall-to-fluid friction and heat-transfer as functions of flow regime and local conditions. The empirical formulae have remained fixed with the exception of the wall-to-fluid heat-transfer correlations. These have been varied according to the practices adopted in other computer codes used to model reflood, namely REFLUX, RELAP and TRAC. Calculations have been performed to predict the CSNI standard problem number 7, and the results are compared with experiment. It is shown that the results are substantially grid-independent, and that the choice of correlation has a significant influence on the general flow behaviour, the rate of quenching and on the maximum cladding temperature predicted by the model. It is concluded that good predictions of reflooding rates can be obtained with particular correlation sets. (author)

  14. Nonlinear model predictive control of a wave energy converter based on differential flatness parameterisation

    Science.gov (United States)

    Li, Guang

    2017-01-01

    This paper presents a fast constrained optimization approach, which is tailored for nonlinear model predictive control of wave energy converters (WEC). The advantage of this approach relies on its exploitation of the differential flatness of the WEC model. This can reduce the dimension of the resulting nonlinear programming problem (NLP) derived from the continuous constrained optimal control of WEC using pseudospectral method. The alleviation of computational burden using this approach helps to promote an economic implementation of nonlinear model predictive control strategy for WEC control problems. The method is applicable to nonlinear WEC models, nonconvex objective functions and nonlinear constraints, which are commonly encountered in WEC control problems. Numerical simulations demonstrate the efficacy of this approach.

  15. Recent advances in numerical modeling of detonations

    Energy Technology Data Exchange (ETDEWEB)

    Mader, C.L.

    1986-12-01

    Three lectures were presented on recent advances in numerical modeling detonations entitled (1) Jet Initiation and Penetration of Explosives; (2) Explosive Desensitization by Preshocking; (3) Inert Metal-Loaded Explosives.

  16. A numerical reference model for themomechanical subduction

    DEFF Research Database (Denmark)

    Quinquis, Matthieu; Chemia, Zurab; Tosi, Nicola

    2010-01-01

    Building an advanced numerical model of subduction requires choosing values for various geometrical parameters and material properties, among others, the initial lithosphere thicknesses, representative lithological types and their mechanical and thermal properties, rheologies, initial temperature...

  17. Other relevant numerical modelling papers

    International Nuclear Information System (INIS)

    Chartier, M.

    1989-01-01

    The ocean modelling is a rapidly evolving science and a large number of results have been published. Several categories of papers are of particular interest for this review: the papers published by the international atomic institutions, such as the NEA (for the CRESP or Subseabed Programs), the IAEA (for example the Safety Series, the Technical Report Series or the TECDOC), and the ICRP, and the papers concerned by more fundamental research, which are published in specific scientific literature. This paper aims to list some of the most relevant publications for the CRESP purposes. It means by no way to be exhaustive, but informative on the incontestable progress recently achieved in that field. One should note that some of these papers are so recent that their final version has not yet been published

  18. Model of anisotropic nonlinearity in self-defocusing photorefractive media.

    Science.gov (United States)

    Barsi, C; Fleischer, J W

    2015-09-21

    We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.

  19. A new differential equations-based model for nonlinear history-dependent magnetic behaviour

    International Nuclear Information System (INIS)

    Aktaa, J.; Weth, A. von der

    2000-01-01

    The paper presents a new kind of numerical model describing nonlinear magnetic behaviour. The model is formulated as a set of differential equations taking into account history dependence phenomena like the magnetisation hysteresis as well as saturation effects. The capability of the model is demonstrated carrying out comparisons between measurements and calculations

  20. Numerical modelling of elastic space tethers

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall; Palmer, P. L.; Roberts, R. M.

    2012-01-01

    In this paper the importance of the ill-posedness of the classical, non-dissipative massive tether model on an orbiting tether system is studied numerically. The computations document that via the regularisation of bending resistance a more reliable numerical integrator can be produced. Furthermo....... It is also shown that on the slow manifold the dynamics of the satellites are well-approximated by the finite dimensional slack-spring model....

  1. Numerical models of groundwater flow and transport

    International Nuclear Information System (INIS)

    Konikow, L.F.

    1996-01-01

    This chapter reviews the state-of-the-art in deterministic modeling of groundwater flow and transport processes, which can be used for interpretation of isotope data through groundwater flow analyses. Numerical models which are available for this purpose are described and their applications to complex field problems are discussed. The theoretical bases of deterministic modeling are summarized, and advantages and limitations of numerical models are described. The selection of models for specific applications and their calibration procedures are described, and results of a few illustrative case study type applications are provided. (author). 145 refs, 17 figs, 2 tabs

  2. Numerical models of groundwater flow and transport

    Energy Technology Data Exchange (ETDEWEB)

    Konikow, L F [Geological Survey, Reston, VA (United States)

    1996-10-01

    This chapter reviews the state-of-the-art in deterministic modeling of groundwater flow and transport processes, which can be used for interpretation of isotope data through groundwater flow analyses. Numerical models which are available for this purpose are described and their applications to complex field problems are discussed. The theoretical bases of deterministic modeling are summarized, and advantages and limitations of numerical models are described. The selection of models for specific applications and their calibration procedures are described, and results of a few illustrative case study type applications are provided. (author). 145 refs, 17 figs, 2 tabs.

  3. Modeling and Analysis of a Nonlinear Age-Structured Model for Tumor Cell Populations with Quiescence

    Science.gov (United States)

    Liu, Zijian; Chen, Jing; Pang, Jianhua; Bi, Ping; Ruan, Shigui

    2018-05-01

    We present a nonlinear first-order hyperbolic partial differential equation model to describe age-structured tumor cell populations with proliferating and quiescent phases at the avascular stage in vitro. The division rate of the proliferating cells is assumed to be nonlinear due to the limitation of the nutrient and space. The model includes a proportion of newborn cells that enter directly the quiescent phase with age zero. This proportion can reflect the effect of treatment by drugs such as erlotinib. The existence and uniqueness of solutions are established. The local and global stabilities of the trivial steady state are investigated. The existence and local stability of the positive steady state are also analyzed. Numerical simulations are performed to verify the results and to examine the impacts of parameters on the nonlinear dynamics of the model.

  4. Numerical simulation of ultrasound-thermotherapy combining nonlinear wave propagation with broadband soft-tissue absorption.

    Science.gov (United States)

    Ginter, S

    2000-07-01

    Ultrasound (US) thermotherapy is used to treat tumours, located deep in human tissue, by heat. It features by the application of high intensity focused ultrasound (HIFU), high local temperatures of about 90 degrees C and short treating time of a few seconds. Dosage of the therapy remains a problem. To get it under control, one has to know the heat source, i.e. the amount of absorbed US power, which shows nonlinear influences. Therefore, accurate simulations are essential. In this paper, an improved simulation model is introduced which enables accurate investigations of US thermotherapy. It combines nonlinear US propagation effects, which lead to generation of higher harmonics, with a broadband frequency-power law absorption typical for soft tissue. Only the combination of both provides a reliable calculation of the generated heat. Simulations show the influence of nonlinearities and broadband damping for different source signals on the absorbed US power density distribution.

  5. PD/PID controller tuning based on model approximations: Model reduction of some unstable and higher order nonlinear models

    Directory of Open Access Journals (Sweden)

    Christer Dalen

    2017-10-01

    Full Text Available A model reduction technique based on optimization theory is presented, where a possible higher order system/model is approximated with an unstable DIPTD model by using only step response data. The DIPTD model is used to tune PD/PID controllers for the underlying possible higher order system. Numerous examples are used to illustrate the theory, i.e. both linear and nonlinear models. The Pareto Optimal controller is used as a reference controller.

  6. Numerical studies of non-linear evolution of kink and tearing modes in tokamaks

    International Nuclear Information System (INIS)

    White, R.; Monticello, D.; Rosenbluth, M.N.; Strauss, H.; Kadomtsev, B.B.

    1975-01-01

    A set of numerical techniques for investigating the full nonlinear unstable behavior of low β kink modes of given helical symmetry in Tokamaks is presented. Uniform current density plasmas display complicated deformations including the formation of large vacuum bubbles provided that the safety factor q is sufficiently close to integral. Fairly large m = 1 deformations, but not bubble formation, persist for a plasma with a parabolic current density profile (and hence shear). Deformations for m greater than or equal to 2 are, however, greatly suppressed. (auth)

  7. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem

    DEFF Research Database (Denmark)

    Delbary, Fabrice; Knudsen, Kim

    2014-01-01

    to the generalized Laplace equation. The 3D problem was solved in theory in late 1980s using complex geometrical optics solutions and a scattering transform. Several approximations to the reconstruction method have been suggested and implemented numerically in the literature, but here, for the first time, a complete...... computer implementation of the full nonlinear algorithm is given. First a boundary integral equation is solved by a Nystrom method for the traces of the complex geometrical optics solutions, second the scattering transform is computed and inverted using fast Fourier transform, and finally a boundary value...

  8. Numerical assessment of factors affecting nonlinear internal waves in the South China Sea

    Science.gov (United States)

    Li, Qiang

    2014-02-01

    Nonlinear internal waves in the South China Sea exhibit diverse characteristics, which are associated with the complex conditions in Luzon Strait, such as the double ridge topography, the Earth’s rotation, variations in stratification and the background current induced by the Kuroshio. These effects are individually assessed using the MITgcm. The performance of the model is first validated through comparison with field observations. Because of in-phased ray interaction, the western ridge in Luzon Strait intensifies the semidiurnal internal tides generated from the eastern ridge, thus reinforcing the formation of nonlinear internal waves. However, the ray interaction for K1 forcing becomes anti-phased so that the K1 internal tide generation is reduced by the western ridge. Not only does the rotational dispersion suppress internal tide generation, it also inhibits nonlinear steepening and consequent internal solitary wave formation. As a joint effect, the double ridges and the rotational dispersion result in a paradoxical phenomenon: diurnal barotropic tidal forcing is dominant in Luzon Strait, but semidiurnal internal tides prevail in the deep basin of the South China Sea. The seasonal variation of the Kuroshio is consistent with the seasonal appearance of nonlinear internal waves in the South China Sea. The model results show that the westward inflow due to the Kuroshio intrusion reduces the amplitude of internal tides in the South China Sea, causing the weakening or absence of internal solitary waves. Winter stratification cannot account for the significant reduction of nonlinear internal waves, because the amplitude growth of internal tides due to increased thermocline tilting counteracts the reduced nonlinearity caused by thermocline deepening.

  9. Nonlinear flight dynamics and stability of hovering model insects

    Science.gov (United States)

    Liang, Bin; Sun, Mao

    2013-01-01

    Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714

  10. Numerical 3-D Modelling of Overflows

    DEFF Research Database (Denmark)

    Larsen, Torben; Nielsen, L.; Jensen, B.

    2008-01-01

    -dimensional so-called Volume of Fluid Models (VOF-models) based on the full Navier-Stokes equations (named NS3 and developed by DHI Water & Environment) As a general conclusion, the two numerical models show excellent results when compared with measurements. However, considerable errors occur when...

  11. Nonlinear interaction model of subsonic jet noise.

    Science.gov (United States)

    Sandham, Neil D; Salgado, Adriana M

    2008-08-13

    Noise generation in a subsonic round jet is studied by a simplified model, in which nonlinear interactions of spatially evolving instability modes lead to the radiation of sound. The spatial mode evolution is computed using linear parabolized stability equations. Nonlinear interactions are found on a mode-by-mode basis and the sound radiation characteristics are determined by solution of the Lilley-Goldstein equation. Since mode interactions are computed explicitly, it is possible to find their relative importance for sound radiation. The method is applied to a single stream jet for which experimental data are available. The model gives Strouhal numbers of 0.45 for the most amplified waves in the jet and 0.19 for the dominant sound radiation. While in near field axisymmetric and the first azimuthal modes are both important, far-field sound is predominantly axisymmetric. These results are in close correspondence with experiment, suggesting that the simplified model is capturing at least some of the important mechanisms of subsonic jet noise.

  12. Nonlinear price impact from linear models

    Science.gov (United States)

    Patzelt, Felix; Bouchaud, Jean-Philippe

    2017-12-01

    The impact of trades on asset prices is a crucial aspect of market dynamics for academics, regulators, and practitioners alike. Recently, universal and highly nonlinear master curves were observed for price impacts aggregated on all intra-day scales (Patzelt and Bouchaud 2017 arXiv:1706.04163). Here we investigate how well these curves, their scaling, and the underlying return dynamics are captured by linear ‘propagator’ models. We find that the classification of trades as price-changing versus non-price-changing can explain the price impact nonlinearities and short-term return dynamics to a very high degree. The explanatory power provided by the change indicator in addition to the order sign history increases with increasing tick size. To obtain these results, several long-standing technical issues for model calibration and testing are addressed. We present new spectral estimators for two- and three-point cross-correlations, removing the need for previously used approximations. We also show when calibration is unbiased and how to accurately reveal previously overlooked biases. Therefore, our results contribute significantly to understanding both recent empirical results and the properties of a popular class of impact models.

  13. A numerical dressing method for the nonlinear superposition of solutions of the KdV equation

    International Nuclear Information System (INIS)

    Trogdon, Thomas; Deconinck, Bernard

    2014-01-01

    In this paper we present the unification of two existing numerical methods for the construction of solutions of the Korteweg–de Vries (KdV) equation. The first method is used to solve the Cauchy initial-value problem on the line for rapidly decaying initial data. The second method is used to compute finite-genus solutions of the KdV equation. The combination of these numerical methods allows for the computation of exact solutions that are asymptotically (quasi-)periodic finite-gap solutions and are a nonlinear superposition of dispersive, soliton and (quasi-)periodic solutions in the finite (x, t)-plane. Such solutions are referred to as superposition solutions. We compute these solutions accurately for all values of x and t. (paper)

  14. Applications of Kalman filters based on non-linear functions to numerical weather predictions

    Directory of Open Access Journals (Sweden)

    G. Galanis

    2006-10-01

    Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.

  15. Ferrofluids: Modeling, numerical analysis, and scientific computation

    Science.gov (United States)

    Tomas, Ignacio

    This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a

  16. A NONLINEAR MATHEMATICAL MODEL FOR ASTHMA: EFFECT OF ENVIRONMENTAL POLLUTION

    Directory of Open Access Journals (Sweden)

    NARESHA RAM

    2009-04-01

    Full Text Available In this paper, we explore a nonlinear mathematical model to study the spread of asthma due to inhaled pollutants from industry as well as tobacco smoke from smokers in a variable size population. The model is analyzed using stability theory of differential equations and computer simulation. It is shown that with an increase in the level of air pollutants concentration, the asthmatic (diseased population increases. It is also shown that along with pollutants present in the environment, smoking (active or passive also helps in the spread of asthma. Moreover, with the increase in the rate of interaction between susceptibles and smokers, the persistence of the spread of asthma is higher. A numerical study of the model is also performed to see the role of certain key parameters on the spread of asthma and to support the analytical results.

  17. Numerical Modeling of Subglacial Sediment Deformation

    DEFF Research Database (Denmark)

    Damsgaard, Anders

    2015-01-01

    may cause mass loss in the near future to exceed current best estimates. Ice flow in larger ice sheets focuses in fast-moving streams due to mechanical non-linearity of ice. These ice streams often move at velocities several magnitudes larger than surrounding ice and consequentially constitute...... glaciers move by deforming their sedimentary beds. Several modern ice streams, in particular, move as plug flows due to basal sediment deformation. An intense and long-winded discussion about the appropriate description for subglacial sediment mechanics followed this discovery, with good reason...... incompatible with commonly accepted till rheology models. Variation in pore-water pressure proves to cause reorganization in the internal stress network and leads to slow creeping deformation. The rate of creep is non-linearly dependent on the applied stresses. Granular creep can explain slow glacial...

  18. Comparisons of measurements and numerical simulations of a nonlinear beam subjected to a multi-harmonic non-ideal input signal

    International Nuclear Information System (INIS)

    Claeys, M.; Sinou, J.J.; Lambelin, J.P.; Alcoverro, B.

    2014-01-01

    This study presents a direct comparison of measured and predicted nonlinear vibrations of a clamped-clamped steel beam. A multi-harmonic comparison of simulations with measurements is performed at the vicinity of the primary resonance. First of all, a nonlinear analytical model of the beam is developed taking into account non-ideal boundary conditions. The Harmonic Balance Method is implemented to estimate the nonlinear behavior of the clamped-clamped beam. This nonlinear method enables to simulate the vibration stationary response of a nonlinear system projected on several harmonics. This study then proposes a method to compare numerical simulations with measurements on all these harmonics. A signal analysis tool is developed to extract the system harmonics' frequency responses from a temporal signal of a swept sine experiment. An evolutionary updating algorithm (Covariance Matrix Adaptation Evolution Strategy), coupled with highly selective filters is used to identify both fundamental frequency and harmonics' amplitude in the temporal signal, at every moment. This tool enables to extract the harmonic amplitudes of the output signal as well as the input signal. The input of the Harmonic Balance Method can then be either an ideal mono-harmonic signal or a multi-harmonic experimental input signal. Finally, the present work focuses on the comparison of experimental and simulated results. From experimental output harmonics and numerical simulations, it is shown that it is possible to distinguish the nonlinearities of the clamped-clamped beam and the effect of the non-ideal input signal. (authors)

  19. Comparing numerically exact and modelled static friction

    Directory of Open Access Journals (Sweden)

    Krengel Dominik

    2017-01-01

    Full Text Available Currently there exists no mechanically consistent “numerically exact” implementation of static and dynamic Coulomb friction for general soft particle simulations with arbitrary contact situations in two or three dimension, but only along one dimension. We outline a differential-algebraic equation approach for a “numerically exact” computation of friction in two dimensions and compare its application to the Cundall-Strack model in some test cases.

  20. Reactor Thermal Hydraulic Numerical Calculation And Modeling

    International Nuclear Information System (INIS)

    Duong Ngoc Hai; Dang The Ba

    2008-01-01

    In the paper the results of analysis of thermal hydraulic state models using the numerical codes such as COOLOD, EUREKA and RELAP5 for simulation of the reactor thermal hydraulic states are presented. The calculations, analyses of reactor thermal hydraulic state and safety were implemented using different codes. The received numerical results, which were compared each to other, to experiment measurement of Dalat (Vietnam) research reactor and published results, show their appropriateness and capacity for analyses of different appropriate cases. (author)

  1. Numerical Modeling of Ablation Heat Transfer

    Science.gov (United States)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  2. Numerical methods and modelling for engineering

    CERN Document Server

    Khoury, Richard

    2016-01-01

    This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems. Uses a “building-block” approach, starting with simpler mathemati...

  3. On the Hughes model and numerical aspects

    KAUST Repository

    Gomes, Diogo A.

    2017-01-05

    We study a crowd model proposed by R. Hughes in [11] and we describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an eikonal equation with Dirichlet or Neumann data. First, we establish a priori estimates for the solutions. Second, we study radial solutions and identify a shock formation mechanism. Third, we illustrate the existence of congestion, the breakdown of the model, and the trend to the equilibrium. Finally, we propose a new numerical method and consider two examples.

  4. On the Hughes model and numerical aspects

    KAUST Repository

    Gomes, Diogo A.; Machado Velho, Roberto

    2017-01-01

    We study a crowd model proposed by R. Hughes in [11] and we describe a numerical approach to solve it. This model comprises a Fokker-Planck equation coupled with an eikonal equation with Dirichlet or Neumann data. First, we establish a priori

  5. Anomalous Transport of Cosmic Rays in a Nonlinear Diffusion Model

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton 3240 (New Zealand); Fichtner, Horst; Walter, Dominik [Institut für Theoretische Physik IV, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum (Germany)

    2017-05-20

    We investigate analytically and numerically the transport of cosmic rays following their escape from a shock or another localized acceleration site. Observed cosmic-ray distributions in the vicinity of heliospheric and astrophysical shocks imply that anomalous, superdiffusive transport plays a role in the evolution of the energetic particles. Several authors have quantitatively described the anomalous diffusion scalings, implied by the data, by solutions of a formal transport equation with fractional derivatives. Yet the physical basis of the fractional diffusion model remains uncertain. We explore an alternative model of the cosmic-ray transport: a nonlinear diffusion equation that follows from a self-consistent treatment of the resonantly interacting cosmic-ray particles and their self-generated turbulence. The nonlinear model naturally leads to superdiffusive scalings. In the presence of convection, the model yields a power-law dependence of the particle density on the distance upstream of the shock. Although the results do not refute the use of a fractional advection–diffusion equation, they indicate a viable alternative to explain the anomalous diffusion scalings of cosmic-ray particles.

  6. Nonlinear Model of Tape Wound Core Transformers

    Directory of Open Access Journals (Sweden)

    A. Vahedi

    2015-03-01

    Full Text Available Recently, tape wound cores due to their excellent magnetic properties, are widely used in different types of transformers. Performance prediction of these transformers needs an accurate model with ability to determine flux distribution within the core and magnetic loss. Spiral structure of tape wound cores affects the flux distribution and always cause complication of analysis. In this paper, a model based on reluctance networks method is presented for analysis of magnetic flux in wound cores. Using this model, distribution of longitudinal and transverse fluxes within the core can be determined. To consider the nonlinearity of the core, a dynamic hysteresis model is included in the presented model. Having flux density in different points of the core, magnetic losses can be calculated. To evaluate the validity of the model, results are compared with 2-D FEM simulations. In addition, a transformer designed for series-resonant converter and simulation results are compared with experimental measurements. Comparisons show accuracy of the model besides simplicity and fast convergence

  7. NONLINEAR PLANT PIECEWISE-CONTINUOUS MODEL MATRIX PARAMETERS ESTIMATION

    Directory of Open Access Journals (Sweden)

    Roman L. Leibov

    2017-09-01

    Full Text Available This paper presents a nonlinear plant piecewise-continuous model matrix parameters estimation technique using nonlinear model time responses and random search method. One of piecewise-continuous model application areas is defined. The results of proposed approach application for aircraft turbofan engine piecewisecontinuous model formation are presented

  8. Numerical modelling of multimode fibre-optic communication lines

    Energy Technology Data Exchange (ETDEWEB)

    Sidelnikov, O S; Fedoruk, M P [Novosibirsk State University, Novosibirsk (Russian Federation); Sygletos, S; Ferreira, F [Aston University, England, Birmingham, B4 7ET (United Kingdom)

    2016-01-31

    The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one. (fibre-optic communication lines)

  9. Nonlinear Analysis and Modeling of Tires

    Science.gov (United States)

    Noor, Ahmed K.

    1996-01-01

    The objective of the study was to develop efficient modeling techniques and computational strategies for: (1) predicting the nonlinear response of tires subjected to inflation pressure, mechanical and thermal loads; (2) determining the footprint region, and analyzing the tire pavement contact problem, including the effect of friction; and (3) determining the sensitivity of the tire response (displacements, stresses, strain energy, contact pressures and contact area) to variations in the different material and geometric parameters. Two computational strategies were developed. In the first strategy the tire was modeled by using either a two-dimensional shear flexible mixed shell finite elements or a quasi-three-dimensional solid model. The contact conditions were incorporated into the formulation by using a perturbed Lagrangian approach. A number of model reduction techniques were applied to substantially reduce the number of degrees of freedom used in describing the response outside the contact region. The second strategy exploited the axial symmetry of the undeformed tire, and uses cylindrical coordinates in the development of three-dimensional elements for modeling each of the different parts of the tire cross section. Model reduction techniques are also used with this strategy.

  10. Influence of Non-linear Radiation Heat Flux on Rotating Maxwell Fluid over a Deformable Surface: A Numerical Study

    Science.gov (United States)

    Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A.

    2018-04-01

    Mathematical model for Maxwell fluid flow in rotating frame induced by an isothermal stretching wall is explored numerically. Scale analysis based boundary layer approximations are applied to simplify the conservation relations which are later converted to similar forms via appropriate substitutions. A numerical approach is utilized to derive similarity solutions for broad range of Deborah number. The results predict that velocity distributions are inversely proportional to the stress relaxation time. This outcome is different from that observed for the elastic parameter of second grade fluid. Unlike non-rotating frame, the solution curves are oscillatory decaying functions of similarity variable. As angular velocity enlarges, temperature rises and significant drop in the heat transfer coefficient occurs. We note that the wall slope of temperature has an asymptotically decaying profile against the wall to ambient ratio parameter. From the qualitative view point, temperature ratio parameter and radiation parameter have similar effect on the thermal boundary layer. Furthermore, radiation parameter has a definite role in improving the cooling process of the stretching boundary. A comparative study of current numerical computations and those from the existing studies is also presented in a limiting case. To our knowledge, the phenomenon of non-linear radiation in rotating viscoelastic flow due to linearly stretched plate is just modeled here.

  11. Numerical modeling of the 2017 active seismic infrasound balloon experiment

    Science.gov (United States)

    Brissaud, Q.; Komjathy, A.; Garcia, R.; Cutts, J. A.; Pauken, M.; Krishnamoorthy, S.; Mimoun, D.; Jackson, J. M.; Lai, V. H.; Kedar, S.; Levillain, E.

    2017-12-01

    We have developed a numerical tool to propagate acoustic and gravity waves in a coupled solid-fluid medium with topography. It is a hybrid method between a continuous Galerkin and a discontinuous Galerkin method that accounts for non-linear atmospheric waves, visco-elastic waves and topography. We apply this method to a recent experiment that took place in the Nevada desert to study acoustic waves from seismic events. This experiment, developed by JPL and its partners, wants to demonstrate the viability of a new approach to probe seismic-induced acoustic waves from a balloon platform. To the best of our knowledge, this could be the only way, for planetary missions, to perform tomography when one faces challenging surface conditions, with high pressure and temperature (e.g. Venus), and thus when it is impossible to use conventional electronics routinely employed on Earth. To fully demonstrate the effectiveness of such a technique one should also be able to reconstruct the observed signals from numerical modeling. To model the seismic hammer experiment and the subsequent acoustic wave propagation, we rely on a subsurface seismic model constructed from the seismometers measurements during the 2017 Nevada experiment and an atmospheric model built from meteorological data. The source is considered as a Gaussian point source located at the surface. Comparison between the numerical modeling and the experimental data could help future mission designs and provide great insights into the planet's interior structure.

  12. Fundamentals of Numerical Modelling of Casting Processes

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Pryds, Nini; Thorborg, Jesper

    Fundamentals of Numerical Modelling of Casting Processes comprises a thorough presentation of the basic phenomena that need to be addressed in numerical simulation of casting processes. The main philosophy of the book is to present the topics in view of their physical meaning, whenever possible......, rather than relying strictly on mathematical formalism. The book, aimed both at the researcher and the practicing engineer, as well as the student, is naturally divided into four parts. Part I (Chapters 1-3) introduces the fundamentals of modelling in a 1-dimensional framework. Part II (Chapter 4...

  13. Fractional-Order Nonlinear Systems Modeling, Analysis and Simulation

    CERN Document Server

    Petráš, Ivo

    2011-01-01

    "Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. ...

  14. Numerical modeling techniques for flood analysis

    Science.gov (United States)

    Anees, Mohd Talha; Abdullah, K.; Nawawi, M. N. M.; Ab Rahman, Nik Norulaini Nik; Piah, Abd. Rahni Mt.; Zakaria, Nor Azazi; Syakir, M. I.; Mohd. Omar, A. K.

    2016-12-01

    Topographic and climatic changes are the main causes of abrupt flooding in tropical areas. It is the need to find out exact causes and effects of these changes. Numerical modeling techniques plays a vital role for such studies due to their use of hydrological parameters which are strongly linked with topographic changes. In this review, some of the widely used models utilizing hydrological and river modeling parameters and their estimation in data sparse region are discussed. Shortcomings of 1D and 2D numerical models and the possible improvements over these models through 3D modeling are also discussed. It is found that the HEC-RAS and FLO 2D model are best in terms of economical and accurate flood analysis for river and floodplain modeling respectively. Limitations of FLO 2D in floodplain modeling mainly such as floodplain elevation differences and its vertical roughness in grids were found which can be improve through 3D model. Therefore, 3D model was found to be more suitable than 1D and 2D models in terms of vertical accuracy in grid cells. It was also found that 3D models for open channel flows already developed recently but not for floodplain. Hence, it was suggested that a 3D model for floodplain should be developed by considering all hydrological and high resolution topographic parameter's models, discussed in this review, to enhance the findings of causes and effects of flooding.

  15. Nonlinear model of epidemic spreading in a complex social network.

    Science.gov (United States)

    Kosiński, Robert A; Grabowski, A

    2007-10-01

    The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.

  16. Computational Models for Nonlinear Aeroelastic Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...

  17. Modelling nonlinear viscoelastic behaviours of loudspeaker suspensions-like structures

    Science.gov (United States)

    Maillou, Balbine; Lotton, Pierrick; Novak, Antonin; Simon, Laurent

    2018-03-01

    Mechanical properties of an electrodynamic loudspeaker are mainly determined by its suspensions (surround and spider) that behave nonlinearly and typically exhibit frequency dependent viscoelastic properties such as creep effect. The paper aims at characterizing the mechanical behaviour of electrodynamic loudspeaker suspensions at low frequencies using nonlinear identification techniques developed in recent years. A Generalized Hammerstein based model can take into account both frequency dependency and nonlinear properties. As shown in the paper, the model generalizes existing nonlinear or viscoelastic models commonly used for loudspeaker modelling. It is further experimentally shown that a possible input-dependent law may play a key role in suspension characterization.

  18. Model Updating Nonlinear System Identification Toolbox, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology (ZONA) proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology that utilizes flight data with...

  19. Nonlinear structural mechanics theory, dynamical phenomena and modeling

    CERN Document Server

    Lacarbonara, Walter

    2013-01-01

    Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...

  20. Nonlinear Rheology in a Model Biological Tissue

    Science.gov (United States)

    Matoz-Fernandez, D. A.; Agoritsas, Elisabeth; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten

    2017-04-01

    The rheological response of dense active matter is a topic of fundamental importance for many processes in nature such as the mechanics of biological tissues. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with an increasing shear rate. To rationalize this nonlinear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are, respectively, generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.

  1. Coherent nonlinear quantum model for composite fermions

    Energy Technology Data Exchange (ETDEWEB)

    Reinisch, Gilbert [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Gudmundsson, Vidar, E-mail: vidar@hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2014-04-01

    Originally proposed by Read [1] and Jain [2], the so-called “composite-fermion” is a phenomenological quasi-particle resulting from the attachment of two local flux quanta, seen as nonlocal vortices, to electrons situated on a two-dimensional (2D) surface embedded in a strong orthogonal magnetic field. In this Letter this phenomenon is described as a highly-nonlinear and coherent mean-field quantum process of the soliton type by use of a 2D stationary Schrödinger–Poisson differential model with only two Coulomb-interacting electrons. At filling factor ν=1/3 of the lowest Landau level the solution agrees with both the exact two-electron antisymmetric Schrödinger wavefunction and with Laughlin's Jastrow-type guess for the fractional quantum Hall effect, hence providing this latter with a tentative physical justification deduced from the experimental results and based on first principles.

  2. Nonlinear Kalman Filtering in Affine Term Structure Models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris

    When the relationship between security prices and state variables in dynamic term structure models is nonlinear, existing studies usually linearize this relationship because nonlinear fi…ltering is computationally demanding. We conduct an extensive investigation of this linearization and analyze...... the potential of the unscented Kalman …filter to properly capture nonlinearities. To illustrate the advantages of the unscented Kalman …filter, we analyze the cross section of swap rates, which are relatively simple non-linear instruments, and cap prices, which are highly nonlinear in the states. An extensive...

  3. Numerical validation of selected computer programs in nonlinear analysis of steel frame exposed to fire

    Science.gov (United States)

    Maślak, Mariusz; Pazdanowski, Michał; Woźniczka, Piotr

    2018-01-01

    Validation of fire resistance for the same steel frame bearing structure is performed here using three different numerical models, i.e. a bar one prepared in the SAFIR environment, and two 3D models developed within the framework of Autodesk Simulation Mechanical (ASM) and an alternative one developed in the environment of the Abaqus code. The results of the computer simulations performed are compared with the experimental results obtained previously, in a laboratory fire test, on a structure having the same characteristics and subjected to the same heating regimen. Comparison of the experimental and numerically determined displacement evolution paths for selected nodes of the considered frame during the simulated fire exposure constitutes the basic criterion applied to evaluate the validity of the numerical results obtained. The experimental and numerically determined estimates of critical temperature specific to the considered frame and related to the limit state of bearing capacity in fire have been verified as well.

  4. Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2013-01-01

    The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...

  5. A numerical analysis for non-linear radiation in MHD flow around a cylindrical surface with chemically reactive species

    Directory of Open Access Journals (Sweden)

    Junaid Ahmad Khan

    2018-03-01

    Full Text Available Boundary layer flow around a stretchable rough cylinder is modeled by taking into account boundary slip and transverse magnetic field effects. The main concern is to resolve heat/mass transfer problem considering non-linear radiative heat transfer and temperature/concentration jump aspects. Using conventional similarity approach, the equations of motion and heat transfer are converted into a boundary value problem whose solution is computed by shooting method for broad range of slip coefficients. The proposed numerical scheme appears to improve as the strengths of magnetic field and slip coefficients are enhanced. Axial velocity and temperature are considerably influenced by a parameter M which is inversely proportional to the radius of cylinder. A significant change in temperature profile is depicted for growing wall to ambient temperature ratio. Relevant physical quantities such as wall shear stress, local Nusselt number and local Sherwood number are elucidated in detail. Keywords: Stretchable boundary, Thermal radiation, Chemical reaction, Mathematical modeling, Non-linear differential system, Mass transfer

  6. An Adjoint-based Numerical Method for a class of nonlinear Fokker-Planck Equations

    KAUST Repository

    Festa, Adriano; Gomes, Diogo A.; Machado Velho, Roberto

    2017-01-01

    Here, we introduce a numerical approach for a class of Fokker-Planck (FP) equations. These equations are the adjoint of the linearization of Hamilton-Jacobi (HJ) equations. Using this structure, we show how to transfer the properties of schemes for HJ equations to the FP equations. Hence, we get numerical schemes with desirable features such as positivity and mass-preservation. We illustrate this approach in examples that include mean-field games and a crowd motion model.

  7. An Adjoint-based Numerical Method for a class of nonlinear Fokker-Planck Equations

    KAUST Repository

    Festa, Adriano

    2017-03-22

    Here, we introduce a numerical approach for a class of Fokker-Planck (FP) equations. These equations are the adjoint of the linearization of Hamilton-Jacobi (HJ) equations. Using this structure, we show how to transfer the properties of schemes for HJ equations to the FP equations. Hence, we get numerical schemes with desirable features such as positivity and mass-preservation. We illustrate this approach in examples that include mean-field games and a crowd motion model.

  8. Numerical Calculation and Measurement of Nonlinear Acoustic Fields in Ultrasound Diagnosis

    Science.gov (United States)

    Kawagishi, Tetsuya; Saito, Shigemi; Mine, Yoshitaka

    2002-05-01

    In order to develop a tool for designing on the ultrasonic probe and its peripheral devices for tissue-harmonic-imaging systems, a study is carried out to compare the calculation and observation results of nonlinear acoustic fields for a diagnostic ultrasound system. The pulsed ultrasound with a center frequency of 2.5 MHz is emanated from a weakly focusing sector probe with a 6.5 mm aperture radius and a 50 mm focal length into an agar phantom with an attenuation coefficient of about 0.6 dB/cm/MHz or 1.2 dB/cm/MHz. The nonlinear acoustic field is measured using a needle-type hydrophone. The calculation is based on the Khokhlov-Zabolotskaya-Kuznetsov(KZK) equation which is modified so that the frequency dependence of the attenuation coefficient is the same as that in biological tissue. This equation is numerically solved with the implicit backward method employing the iterative method. The measured and calculated amplitude spectra show good agreement with each other.

  9. Basset force in numerical models of saltation

    Czech Academy of Sciences Publication Activity Database

    Lukerchenko, Nikolay; Dolanský, Jindřich; Vlasák, Pavel

    2012-01-01

    Roč. 60, č. 4 (2012), s. 277-287 ISSN 0042-790X R&D Projects: GA ČR GA103/09/1718 Institutional research plan: CEZ:AV0Z20600510 Keywords : basset force * bed load transport * numerical model * particle-bed collision Subject RIV: BK - Fluid Dynamics Impact factor: 0.653, year: 2012

  10. Thin sheet numerical modelling of continental collision

    NARCIS (Netherlands)

    Jimenez-Munt, I.; Garcia-Gastellanos, D.; Fernandez, M.

    2005-01-01

    We study the effects of incorporating surface mass transport and the gravitational potential energy of both crust and lithospheric mantle to the viscous thin sheet approach. Recent 2D (cross-section) numerical models show that surface erosion and sediment transport can play a major role in shaping

  11. Numerical modelling of steel arc welding

    International Nuclear Information System (INIS)

    Hamide, M.

    2008-07-01

    Welding is a highly used assembly technique. Welding simulation software would give access to residual stresses and information about the weld's microstructure, in order to evaluate the mechanical resistance of a weld. It would also permit to evaluate the process feasibility when complex geometrical components are to be made, and to optimize the welding sequences in order to minimize defects. This work deals with the numerical modelling of arc welding process of steels. After describing the industrial context and the state of art, the models implemented in TransWeld (software developed at CEMEF) are presented. The set of macroscopic equations is followed by a discussion on their numerical implementation. Then, the theory of re-meshing and our adaptive anisotropic re-meshing strategy are explained. Two welding metal addition techniques are investigated and are compared in terms of the joint size and transient temperature and stresses. The accuracy of the finite element model is evaluated based on experimental results and the results of the analytical solution. Comparative analysis between experimental and numerical results allows the assessment of the ability of the numerical code to predict the thermomechanical and metallurgical response of the welded structure. The models limitations and the phenomena identified during this study are finally discussed and permit to define interesting orientations for future developments. (author)

  12. Numerical modeling of magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, Onno

    2001-01-01

    This report explains the numerical programs behind a comprehensive modeling effort of magma-repository interactions. Magma-repository interactions occur when a magma dike with high-volatile content magma ascends through surrounding rock and encounters a tunnel or drift filled with either a magmatic

  13. Graphical interpretation of numerical model results

    International Nuclear Information System (INIS)

    Drewes, D.R.

    1979-01-01

    Computer software has been developed to produce high quality graphical displays of data from a numerical grid model. The code uses an existing graphical display package (DISSPLA) and overcomes some of the problems of both line-printer output and traditional graphics. The software has been designed to be flexible enough to handle arbitrarily placed computation grids and a variety of display requirements

  14. An efficient nonlinear finite-difference approach in the computational modeling of the dynamics of a nonlinear diffusion-reaction equation in microbial ecology.

    Science.gov (United States)

    Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E

    2013-12-01

    In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Numerical study of nonlinear singular fractional differential equations arising in biology by operational matrix of shifted Legendre polynomials

    Directory of Open Access Journals (Sweden)

    D. Jabari Sabeg

    2016-10-01

    Full Text Available In this paper, we present a new computational method for solving nonlinear singular boundary value problems of fractional order arising in biology. To this end, we apply the operational matrices of derivatives of shifted Legendre polynomials to reduce such problems to a system of nonlinear algebraic equations. To demonstrate the validity and applicability of the presented method, we present some numerical examples.

  16. FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.

    Science.gov (United States)

    Dissanayake, Chethiya M; Premaratne, Malin; Rukhlenko, Ivan D; Agrawal, Govind P

    2010-09-27

    A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.

  17. COMBINING LONG MEMORY AND NONLINEAR MODEL OUTPUTS FOR INFLATION FORECAST

    OpenAIRE

    Heri Kuswanto; Irhamah Alimuhajin; Laylia Afidah

    2014-01-01

    Long memory and nonlinearity have been proven as two models that are easily to be mistaken. In other words, nonlinearity is a strong candidate of spurious long memory by introducing a certain degree of fractional integration that lies in the region of long memory. Indeed, nonlinear process belongs to short memory with zero integration order. The idea of the forecast is to obtain the future condition with minimum error. Some researches argued that no matter what the model is, the important thi...

  18. A stochastic delay model for pricing debt and equity: Numerical techniques and applications

    Science.gov (United States)

    Tambue, Antoine; Kemajou Brown, Elisabeth; Mohammed, Salah

    2015-01-01

    Delayed nonlinear models for pricing corporate liabilities and European options were recently developed. Using self-financed strategy and duplication we were able to derive a Random Partial Differential Equation (RPDE) whose solutions describe the evolution of debt and equity values of a corporate in the last delay period interval in the accompanied paper (Kemajou et al., 2012) [14]. In this paper, we provide robust numerical techniques to solve the delayed nonlinear model for the corporate value, along with the corresponding RPDEs modeling the debt and equity values of the corporate. Using financial data from some firms, we forecast and compare numerical solutions from both the nonlinear delayed model and classical Merton model with the real corporate data. From this comparison, it comes up that in corporate finance the past dependence of the firm value process may be an important feature and therefore should not be ignored.

  19. Numerical modelling in non linear fracture mechanics

    Directory of Open Access Journals (Sweden)

    Viggo Tvergaard

    2007-07-01

    Full Text Available Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence, and a model for intergranular creep failure with diffusive growth of grain boundary cavities leading to micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damage mechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesive zone models to represent the fracture process is discussed.

  20. The spectral cell method in nonlinear earthquake modeling

    Science.gov (United States)

    Giraldo, Daniel; Restrepo, Doriam

    2017-12-01

    This study examines the applicability of the spectral cell method (SCM) to compute the nonlinear earthquake response of complex basins. SCM combines fictitious-domain concepts with the spectral-version of the finite element method to solve the wave equations in heterogeneous geophysical domains. Nonlinear behavior is considered by implementing the Mohr-Coulomb and Drucker-Prager yielding criteria. We illustrate the performance of SCM with numerical examples of nonlinear basins exhibiting physically and computationally challenging conditions. The numerical experiments are benchmarked with results from overkill solutions, and using MIDAS GTS NX, a finite element software for geotechnical applications. Our findings show good agreement between the two sets of results. Traditional spectral elements implementations allow points per wavelength as low as PPW = 4.5 for high-order polynomials. Our findings show that in the presence of nonlinearity, high-order polynomials (p ≥ 3) require mesh resolutions above of PPW ≥ 10 to ensure displacement errors below 10%.

  1. Non-perturbative aspects of nonlinear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Flore, Raphael

    2012-12-07

    The aim of this thesis was the study and further development of non-perturbative methods of quantum field theory by means of their application to nonlinear sigma models. While a large part of the physical phenomena of quantum field theory can be successfully predicted by the perturbation theory, some aspects in the region of large coupling strengths are not definitively understood and require suited non-perturbative methods for its analysis. This thesis is concentrated on two approaches, the numerical treatment of field theories on discrete space-time lattices and the functional renormalization group (FRG) as description of the renormalization flux of effective actions. Considerations of the nonlinear O(N) models have shown that for the correct analysis of the critical properties in the framework of the FRG an approach must be chosen, which contained fourth-derivation orders. For this a covariant formalism was developed, which is based on a background-field expansion and the development of a heat kernel. Apart from a destabilizing coupling the results suggest a nontrivial fixed point and by this a non-perturbative renormalizability of these models. The resulting flow diagrams were finally still compared with the results of a numerical analysis of the renormalization flow by means of the Monte-Carlo renormalization group, and hereby qualitative agreement was found. Furthermore an alternative formulation of the FRG in phase-space coordinates was studied and their consistency tested on simple examples. Beyond this an alternative expansion of the effective action in orders of the canonical momenta was applied to the nonlinear O(N) models with the result of a stable non-trivial fixed point, the critical properties of which however show not the expected N-dependence. By means of the FRG finally still the renormalization of topological operators was studied by means of the winding number of the O(3){approx_equal}CP{sup 1} model. By the generalization of the topological

  2. Non-perturbative aspects of nonlinear sigma models

    International Nuclear Information System (INIS)

    Flore, Raphael

    2012-01-01

    The aim of this thesis was the study and further development of non-perturbative methods of quantum field theory by means of their application to nonlinear sigma models. While a large part of the physical phenomena of quantum field theory can be successfully predicted by the perturbation theory, some aspects in the region of large coupling strengths are not definitively understood and require suited non-perturbative methods for its analysis. This thesis is concentrated on two approaches, the numerical treatment of field theories on discrete space-time lattices and the functional renormalization group (FRG) as description of the renormalization flux of effective actions. Considerations of the nonlinear O(N) models have shown that for the correct analysis of the critical properties in the framework of the FRG an approach must be chosen, which contained fourth-derivation orders. For this a covariant formalism was developed, which is based on a background-field expansion and the development of a heat kernel. Apart from a destabilizing coupling the results suggest a nontrivial fixed point and by this a non-perturbative renormalizability of these models. The resulting flow diagrams were finally still compared with the results of a numerical analysis of the renormalization flow by means of the Monte-Carlo renormalization group, and hereby qualitative agreement was found. Furthermore an alternative formulation of the FRG in phase-space coordinates was studied and their consistency tested on simple examples. Beyond this an alternative expansion of the effective action in orders of the canonical momenta was applied to the nonlinear O(N) models with the result of a stable non-trivial fixed point, the critical properties of which however show not the expected N-dependence. By means of the FRG finally still the renormalization of topological operators was studied by means of the winding number of the O(3)≅CP 1 model. By the generalization of the topological operator and the

  3. Numeric treatment of nonlinear second order multi-point boundary value problems using ANN, GAs and sequential quadratic programming technique

    Directory of Open Access Journals (Sweden)

    Zulqurnain Sabir

    2014-06-01

    Full Text Available In this paper, computational intelligence technique are presented for solving multi-point nonlinear boundary value problems based on artificial neural networks, evolutionary computing approach, and active-set technique. The neural network is to provide convenient methods for obtaining useful model based on unsupervised error for the differential equations. The motivation for presenting this work comes actually from the aim of introducing a reliable framework that combines the powerful features of ANN optimized with soft computing frameworks to cope with such challenging system. The applicability and reliability of such methods have been monitored thoroughly for various boundary value problems arises in science, engineering and biotechnology as well. Comprehensive numerical experimentations have been performed to validate the accuracy, convergence, and robustness of the designed scheme. Comparative studies have also been made with available standard solution to analyze the correctness of the proposed scheme.

  4. A numerical analysis for non-linear radiation in MHD flow around a cylindrical surface with chemically reactive species

    Science.gov (United States)

    Khan, Junaid Ahmad; Mustafa, M.

    2018-03-01

    Boundary layer flow around a stretchable rough cylinder is modeled by taking into account boundary slip and transverse magnetic field effects. The main concern is to resolve heat/mass transfer problem considering non-linear radiative heat transfer and temperature/concentration jump aspects. Using conventional similarity approach, the equations of motion and heat transfer are converted into a boundary value problem whose solution is computed by shooting method for broad range of slip coefficients. The proposed numerical scheme appears to improve as the strengths of magnetic field and slip coefficients are enhanced. Axial velocity and temperature are considerably influenced by a parameter M which is inversely proportional to the radius of cylinder. A significant change in temperature profile is depicted for growing wall to ambient temperature ratio. Relevant physical quantities such as wall shear stress, local Nusselt number and local Sherwood number are elucidated in detail.

  5. Geometrical nonlinear deformation model and its experimental study on bimorph giant magnetostrictive thin film

    Institute of Scientific and Technical Information of China (English)

    Wei LIU; Zhenyuan JIA; Fuji WANG; Yongshun ZHANG; Dongming GUO

    2008-01-01

    The geometrical nonlinearity of a giant magne-tostrictive thin film (GMF) can be clearly detected under the magnetostriction effect. Thus, using geometrical linear elastic theory to describe the strain, stress, and constitutive relationship of GMF is inaccurate. According to nonlinear elastic theory, a nonlinear deformation model of the bimorph GMF is established based on assumptions that the magnetostriction effect is equivalent to the effect of body force loaded on the GMF. With Taylor series method, the numerical solution is deduced. Experiments on TbDyFe/Polyimide (PI)/SmFe and TbDyFe/Cu/SmFe are then conducted to verify the proposed model, respectively. Results indicate that the nonlinear deflection curve model is in good conformity with the experimental data.

  6. A numerical study of one-dimensional replicating patterns in reaction-diffusion systems with non-linear diffusion coefficients

    International Nuclear Information System (INIS)

    Ferreri, J. C.; Carmen, A. del

    1998-01-01

    A numerical study of the dynamics of pattern evolution in reaction-diffusion systems is performed, although limited to one spatial dimension. The diffusion coefficients are nonlinear, based on powers of the scalar variables. The system keeps the dynamics of previous studies in the literature, but the presence of nonlinear diffusion generates a field of strong nonlinear interactions due to the presence of receding travelling waves. This field is limited by the plane of symmetry of the space domain and the last born outgoing travelling wave. These effects are discussed. (author). 10 refs., 7 figs

  7. Analytical model for nonlinear piezoelectric energy harvesting devices

    International Nuclear Information System (INIS)

    Neiss, S; Goldschmidtboeing, F; M Kroener; Woias, P

    2014-01-01

    In this work we propose analytical expressions for the jump-up and jump-down point of a nonlinear piezoelectric energy harvester. In addition, analytical expressions for the maximum power output at optimal resistive load and the 3 dB-bandwidth are derived. So far, only numerical models have been used to describe the physics of a piezoelectric energy harvester. However, this approach is not suitable to quickly evaluate different geometrical designs or piezoelectric materials in the harvester design process. In addition, the analytical expressions could be used to predict the jump-frequencies of a harvester during operation. In combination with a tuning mechanism, this would allow the design of an efficient control algorithm to ensure that the harvester is always working on the oscillator's high energy attractor. (paper)

  8. Rao-Blackwellization for Adaptive Gaussian Sum Nonlinear Model Propagation

    Science.gov (United States)

    Semper, Sean R.; Crassidis, John L.; George, Jemin; Mukherjee, Siddharth; Singla, Puneet

    2015-01-01

    When dealing with imperfect data and general models of dynamic systems, the best estimate is always sought in the presence of uncertainty or unknown parameters. In many cases, as the first attempt, the Extended Kalman filter (EKF) provides sufficient solutions to handling issues arising from nonlinear and non-Gaussian estimation problems. But these issues may lead unacceptable performance and even divergence. In order to accurately capture the nonlinearities of most real-world dynamic systems, advanced filtering methods have been created to reduce filter divergence while enhancing performance. Approaches, such as Gaussian sum filtering, grid based Bayesian methods and particle filters are well-known examples of advanced methods used to represent and recursively reproduce an approximation to the state probability density function (pdf). Some of these filtering methods were conceptually developed years before their widespread uses were realized. Advanced nonlinear filtering methods currently benefit from the computing advancements in computational speeds, memory, and parallel processing. Grid based methods, multiple-model approaches and Gaussian sum filtering are numerical solutions that take advantage of different state coordinates or multiple-model methods that reduced the amount of approximations used. Choosing an efficient grid is very difficult for multi-dimensional state spaces, and oftentimes expensive computations must be done at each point. For the original Gaussian sum filter, a weighted sum of Gaussian density functions approximates the pdf but suffers at the update step for the individual component weight selections. In order to improve upon the original Gaussian sum filter, Ref. [2] introduces a weight update approach at the filter propagation stage instead of the measurement update stage. This weight update is performed by minimizing the integral square difference between the true forecast pdf and its Gaussian sum approximation. By adaptively updating

  9. Numerical modeling of fires on gas pipelines

    International Nuclear Information System (INIS)

    Zhao Yang; Jianbo Lai; Lu Liu

    2011-01-01

    When natural gas is released through a hole on a high-pressure pipeline, it disperses in the atmosphere as a jet. A jet fire will occur when the leaked gas meets an ignition source. To estimate the dangerous area, the shape and size of the fire must be known. The evolution of the jet fire in air is predicted by using a finite-volume procedure to solve the flow equations. The model is three-dimensional, elliptic and calculated by using a compressibility corrected version of the k - ξ turbulence model, and also includes a probability density function/laminar flamelet model of turbulent non-premixed combustion process. Radiation heat transfer is described using an adaptive version of the discrete transfer method. The model is compared with the experiments about a horizontal jet fire in a wind tunnel in the literature with success. The influence of wind and jet velocity on the fire shape has been investigated. And a correlation based on numerical results for predicting the stoichiometric flame length is proposed. - Research highlights: → We developed a model to predict the evolution of turbulent jet diffusion flames. → Measurements of temperature distributions match well with the numerical predictions. → A correlation has been proposed to predict the stoichiometric flame length. → Buoyancy effects are higher in the numerical results. → The radiative heat loss is bigger in the experimental results.

  10. Sine sweep and steady-state response of simplified solar array models with nonlinear elements

    NARCIS (Netherlands)

    Fey, R.H.B.; van Liempt, F.P.H.

    2002-01-01

    In this paper the nonlinear dynamic behaviour of two simplified solar array systems is investigated experimentally and numerically. A simplified beam model supported by one snubber (a bilinear spring which can only take compressive forces) is used to investigate the dynamics of the extension arm on

  11. Nonlinear Growth Models in M"plus" and SAS

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam

    2009-01-01

    Nonlinear growth curves or growth curves that follow a specified nonlinear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this article we describe how a variety of sigmoid curves can be fit using the M"plus" structural modeling program and the nonlinear…

  12. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  13. Non-Linear Slosh Damping Model Development and Validation

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Propellant tank slosh dynamics are typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control (GN&C) analysis. For a partially-filled smooth wall propellant tank, the critical damping based on classical empirical correlation is as low as 0.05%. Due to this low value of damping, propellant slosh is potential sources of disturbance critical to the stability of launch and space vehicles. It is postulated that the commonly quoted slosh damping is valid only under the linear regime where the slosh amplitude is small. With the increase of slosh amplitude, the critical damping value should also increase. If this nonlinearity can be verified and validated, the slosh stability margin can be significantly improved, and the level of conservatism maintained in the GN&C analysis can be lessened. The purpose of this study is to explore and to quantify the dependence of slosh damping with slosh amplitude. Accurately predicting the extremely low damping value of a smooth wall tank is very challenging for any Computational Fluid Dynamics (CFD) tool. One must resolve thin boundary layers near the wall and limit numerical damping to minimum. This computational study demonstrates that with proper grid resolution, CFD can indeed accurately predict the low damping physics from smooth walls under the linear regime. Comparisons of extracted damping values with experimental data for different tank sizes show very good agreements. Numerical simulations confirm that slosh damping is indeed a function of slosh amplitude. When slosh amplitude is low, the damping ratio is essentially constant, which is consistent with the empirical correlation. Once the amplitude reaches a critical value, the damping ratio becomes a linearly increasing function of the slosh amplitude. A follow-on experiment validated the developed nonlinear damping relationship. This discovery can

  14. Analytical and numerical modeling for flexible pipes

    Science.gov (United States)

    Wang, Wei; Chen, Geng

    2011-12-01

    The unbonded flexible pipe of eight layers, in which all the layers except the carcass layer are assumed to have isotropic properties, has been analyzed. Specifically, the carcass layer shows the orthotropic characteristics. The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness. With consideration of the effective elastic moduli, the structure can be properly analyzed. Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated. A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque. Further, the friction and contact of interlayer have been considered. Comparison between the finite element model and experimental results obtained in literature has been given and discussed, which might provide practical and technical support for the application of unbonded flexible pipes.

  15. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.

    Science.gov (United States)

    Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan

    2013-09-01

    Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.

  16. Analysis by numerical simulations of non-linear phenomenons in vertical pump rotor dynamic

    International Nuclear Information System (INIS)

    Bediou, J.; Pasqualini, G.

    1992-01-01

    Controlling dynamical behavior of main coolant pumps shaftlines is an interesting subject for the user and the constructor. The first is mainly concerned by the interpretation of on field observed behavior, monitoring, reliability and preventive maintenance of his machines. The second must in addition manage with sometimes contradictory requirements related to mechanical design and performances optimization (shaft diameter reduction, clearance,...). The use of numerical modeling is now a classical technique for simple analysis (rough prediction of critical speeds for instance) but is still limited, in particular for vertical shaftline especially when equipped with hydrodynamic bearings, due to the complexity of encountered phenomenons in that type of machine. The vertical position of the shaftline seems to be the origin of non linear dynamical behavior, the analysis of which, as presented in the following discussion, requires specific modelization of fluid film, particularly for hydrodynamic bearings. The low static load generally no longer allows use of stiffness and damping coefficients classically calculated by linearizing fluid film equations near a stable static equilibrium position. For the analysis of such machines, specific numerical models have been developed at Electricite de France in a package for general rotordynamics analysis. Numerical models are briefly described. Then an example is precisely presented and discussed to illustrate some considered phenomenons and their consequences on machine behavior. In this example, the authors interpret the observed behavior by using numerical models, and demonstrate the advantage of such analysis for better understanding of vertical pumps rotordynamic

  17. Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Wen, Shuangchun; Xiang, Yuanjiang; Dai, Xiaoyu; Tang, Zhixiang; Su, Wenhua; Fan, Dianyuan

    2007-01-01

    A metamaterial (MM) differs from an ordinary optical material mainly in that it has a dispersive magnetic permeability and offers greatly enhanced design freedom to alter the linear and nonlinear properties. This makes it possible for us to control the propagation of ultrashort electromagnetic pulses at will. Here we report on generic features of ultrashort electromagnetic pulse propagation and demonstrate the controllability of both the linear and nonlinear parameters of models for pulse propagation in MMs. First, we derive a generalized system of coupled three-dimensional nonlinear Schroedinger equations (NLSEs) suitable for few-cycle pulse propagation in a MM with both nonlinear electric polarization and nonlinear magnetization. The coupled equations recover previous models for pulse propagation in both ordinary material and a MM under the same conditions. Second, by using the coupled NLSEs in the Drude dispersive model as an example, we identify the respective roles of the dispersive electric permittivity and magnetic permeability in ultrashort pulse propagation and disclose some additional features of pulse propagation in MMs. It is shown that, for linear propagation, the sign and magnitude of space-time focusing can be controlled through adjusting the linear dispersive permittivity and permeability. For nonlinear propagation, the linear dispersive permittivity and permeability are incorporated into the nonlinear magnetization and nonlinear polarization, respectively, resulting in controllable magnetic and electric self-steepening effects and higher-order dispersively nonlinear terms in the propagation models

  18. A new nonlinear turbulence model based on Partially-Averaged Navier-Stokes Equations

    International Nuclear Information System (INIS)

    Liu, J T; Wu, Y L; Cai, C; Liu, S H; Wang, L Q

    2013-01-01

    Partially-averaged Navier-Stokes (PANS) Model was recognized as a Reynolds-averaged Navier-Stokes (RANS) to direct numerical simulation (DNS) bridging method. PANS model was purported for any filter width-from RANS to DNS. PANS method also shared some similarities with the currently popular URANS (unsteady RANS) method. In this paper, a new PANS model was proposed, which was based on RNG k-ε turbulence model. The Standard and RNG k-ε turbulence model were both isotropic models, as well as PANS models. The sheer stress in those PANS models was solved by linear equation. The linear hypothesis was not accurate in the simulation of complex flow, such as stall phenomenon. The sheer stress here was solved by nonlinear method proposed by Ehrhard. Then, the nonlinear PANS model was set up. The pressure coefficient of the suction side of the NACA0015 hydrofoil was predicted. The result of pressure coefficient agrees well with experimental result, which proves that the nonlinear PANS model can capture the high pressure gradient flow. A low specific centrifugal pump was used to verify the capacity of the nonlinear PANS model. The comparison between the simulation results of the centrifugal pump and Particle Image Velocimetry (PIV) results proves that the nonlinear PANS model can be used in the prediction of complex flow field

  19. Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory

    DEFF Research Database (Denmark)

    Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav

    model is presented in the form of partial differential equations (PDE). Galerkin's method is then applied to obtain a set of ordinary differential equations such that the cable model is approximated by a FEM model. Based on the FEM model, a nonlinear observer is designed to estimate the cable...

  20. Numerical Modeling of Piezoelectric Transducers Using Physical Parameters

    NARCIS (Netherlands)

    Cappon, H.; Keesman, K.J.

    2012-01-01

    Design of ultrasonic equipment is frequently facilitated with numerical models. These numerical models, however, need a calibration step, because usually not all characteristics of the materials used are known. Characterization of material properties combined with numerical simulations and

  1. A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Lin-Jie, Chen; Chang-Feng, Ma

    2010-01-01

    This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form u t + αuu x + βu n u x + γu xx + δu xxx + ζu xxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions. (general)

  2. Finite Element Analysis of Biot’s Consolidation with a Coupled Nonlinear Flow Model

    Directory of Open Access Journals (Sweden)

    Yue-bao Deng

    2016-01-01

    Full Text Available A nonlinear flow relationship, which assumes that the fluid flow in the soil skeleton obeys the Hansbo non-Darcian flow and that the coefficient of permeability changes with void ratio, was incorporated into Biot’s general consolidation theory for a consolidation simulation of normally consolidated soft ground with or without vertical drains. The governing equations with the coupled nonlinear flow model were presented first for the force equilibrium condition and then for the continuity condition. Based on the weighted residual method, the finite element (FE formulations were then derived, and an existing FE program was modified accordingly to take the nonlinear flow model into consideration. Comparative analyses using established theoretical solutions and numerical solutions were completed, and the results were satisfactory. On this basis, we investigated the effect of the coupled nonlinear flow on consolidation development.

  3. Numerical modeling in materials science and engineering

    CERN Document Server

    Rappaz, Michel; Deville, Michel

    2003-01-01

    This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.

  4. Lattice Boltzmann model for numerical relativity.

    Science.gov (United States)

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  5. Infrared radiation parameterizations in numerical climate models

    Science.gov (United States)

    Chou, Ming-Dah; Kratz, David P.; Ridgway, William

    1991-01-01

    This study presents various approaches to parameterizing the broadband transmission functions for utilization in numerical climate models. One-parameter scaling is applied to approximate a nonhomogeneous path with an equivalent homogeneous path, and the diffuse transmittances are either interpolated from precomputed tables or fit by analytical functions. Two-parameter scaling is applied to parameterizing the carbon dioxide and ozone transmission functions in both the lower and middle atmosphere. Parameterizations are given for the nitrous oxide and methane diffuse transmission functions.

  6. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima

    2017-07-10

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order nonlinear system with similar disturbance-output properties to the original plant. The proposed model reduction strategy preserves the nonlinearity and the input disturbance nature of the model. It guarantees a sufficiently small error between the outputs of the original and the reduced-order systems, and also maintains the properties of input-to-state stability. The matrices of the reduced order system are given in terms of a set of linear matrix inequalities (LMIs). The paper concludes with a demonstration of the proposed approach on model reduction of a nonlinear electronic circuit with additive disturbances.

  7. Modeling of Nonlinear Beat Signals of TAE's

    Science.gov (United States)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-03-01

    Experiments on Alcator C-Mod reveal Toroidal Alfven Eigenmodes (TAE) together with signals at various beat frequencies, including those at twice the mode frequency. The beat frequencies are sidebands driven by quadratic nonlinear terms in the MHD equations. These nonlinear sidebands have not yet been quantified by any existing codes. We extend the AEGIS code to capture nonlinear effects by treating the nonlinear terms as a driving source in the linear MHD solver. Our goal is to compute the spatial structure of the sidebands for realistic geometry and q-profile, which can be directly compared with experiment in order to interpret the phase contrast imaging diagnostic measurements and to enable the quantitative determination of the Alfven wave amplitude in the plasma core

  8. Model reduction tools for nonlinear structural dynamics

    NARCIS (Netherlands)

    Slaats, P.M.A.; Jongh, de J.; Sauren, A.A.H.J.

    1995-01-01

    Three mode types are proposed for reducing nonlinear dynamical system equations, resulting from finite element discretizations: tangent modes, modal derivatives, and newly added static modes. Tangent modes are obtained from an eigenvalue problem with a momentary tangent stiffness matrix. Their

  9. Advanced Numerical Model for Irradiated Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Giorla, Alain B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some

  10. Time Domain Modeling and Simulation of Nonlinear Slender Viscoelastic Beams Associating Cosserat Theory and a Fractional Derivative Model

    Directory of Open Access Journals (Sweden)

    Adailton S. Borges

    Full Text Available Abstract A broad class of engineering systems can be satisfactory modeled under the assumptions of small deformations and linear material properties. However, many mechanical systems used in modern applications, like structural elements typical of aerospace and petroleum industries, have been characterized by increased slenderness and high static and dynamic loads. In such situations, it becomes indispensable to consider the nonlinear geometric effects and/or material nonlinear behavior. At the same time, in many cases involving dynamic loads, there comes the need for attenuation of vibration levels. In this context, this paper describes the development and validation of numerical models of viscoelastic slender beam-like structures undergoing large displacements. The numerical approach is based on the combination of the nonlinear Cosserat beam theory and a viscoelastic model based on Fractional Derivatives. Such combination enables to derive nonlinear equations of motion that, upon finite element discretization, can be used for predicting the dynamic behavior of the structure in the time domain, accounting for geometric nonlinearity and viscoelastic damping. The modeling methodology is illustrated and validated by numerical simulations, the results of which are compared to others available in the literature.

  11. Numerical solution of two-dimensional non-linear partial differential ...

    African Journals Online (AJOL)

    linear partial differential equations using a hybrid method. The solution technique involves discritizing the non-linear system of partial differential equations (PDEs) to obtain a corresponding nonlinear system of algebraic difference equations to be ...

  12. Numerical study of propagation properties of surface plasmon polaritons in nonlinear media

    KAUST Repository

    Sagor, Rakibul Hasan; Ghulam Saber, Md.; Alsunaidi, Mohammad

    2016-01-01

    We present a time-domain algorithm for simulating nonlinear propagation of surface plasmon polaritons (SPPs) in chalcogenide glass. Due to the high non-linearity property and strong dispersion and confinement chalcogenide glasses are widely known

  13. Applications of Nonlinear Dynamics Model and Design of Complex Systems

    CERN Document Server

    In, Visarath; Palacios, Antonio

    2009-01-01

    This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.

  14. Nonlinear Modeling of the PEMFC Based On NNARX Approach

    OpenAIRE

    Shan-Jen Cheng; Te-Jen Chang; Kuang-Hsiung Tan; Shou-Ling Kuo

    2015-01-01

    Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accurac...

  15. Nonlinear State Space Modeling and System Identification for Electrohydraulic Control

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2013-01-01

    Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.

  16. Numerical model simulation of atmospheric coolant plumes

    International Nuclear Information System (INIS)

    Gaillard, P.

    1980-01-01

    The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr

  17. Numerical modelling of methanol liquid pool fires

    Science.gov (United States)

    Prasad, Kuldeep; Li, Chiping; Kailasanath, K.; Ndubizu, Chuka; Ananth, Ramagopal; Tatem, P. A.

    1999-12-01

    The focus of this paper is on numerical modelling of methanol liquid pool fires. A mathematical model is first developed to describe the evaporation and burning of a two-dimensional or axisymmetric pool containing pure liquid methanol. Then, the complete set of unsteady, compressible Navier-Stokes equations for reactive flows are solved in the gas phase to describe the convection of the fuel gases away from the pool surface, diffusion of the gases into the surrounding air and the oxidation of the fuel into product species. Heat transfer into the liquid pool and the metal container through conduction, convection and radiation are modelled by solving a modified form of the energy equation. Clausius-Clapeyron relationships are invoked to model the evaporation rate of a two-dimensional pool of pure liquid methanol. The governing equations along with appropriate boundary and interface conditions are solved using the flux-corrected transport algorithm. Numerical results exhibit a flame structure that compares well with experimental observations. Temperature profiles and burning rates were found to compare favourably with experimental data from single- and three-compartment laboratory burners. The model predicts a puffing frequency of approximately 12 Hz for a 1 cm diameter methanol pool in the absence of any air co-flow. It is also observed that increasing the air co-flow velocity helps in stabilizing the diffusion flame, by pushing the vortical structures away from the flame region.

  18. Physics constrained nonlinear regression models for time series

    International Nuclear Information System (INIS)

    Majda, Andrew J; Harlim, John

    2013-01-01

    A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)

  19. Variational Boussinesq model for strongly nonlinear dispersive waves

    NARCIS (Netherlands)

    Lawrence, C.; Adytia, D.; van Groesen, E.

    2018-01-01

    For wave tank, coastal and oceanic applications, a fully nonlinear Variational Boussinesq model with optimized dispersion is derived and a simple Finite Element implementation is described. Improving a previous weakly nonlinear version, high waves over flat and varying bottom are shown to be

  20. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima; Laleg-Kirati, Taous-Meriem

    2017-01-01

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order

  1. Numerical model for wind-driven circulation in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Bahulayan, N.; Varadachari, V.V.R.

    Wind-driven circulation in the Bay of Bengal, generated by a southwest wind of constant speed (10 m.sec -1) and direction (225 degrees TN), is presented. A non-linear hydrodynamic model is used for the simulation of circulation. Numerical...

  2. Mathematical and numerical study of nonlinear boundary problems related to plasma physics

    International Nuclear Information System (INIS)

    Sermange, M.

    1982-06-01

    After the study of some equations based on the Hodgkin-Huxley model, the work presented here is concerned with nonlinear boundary problems in MHD. They are gathered in two subjects: equilibrium equations and stability equations. The axisymmetric MHD equilibrium equations with free boundary have been studied by different authors, particularly the existence, regularity, unicity and non-unicity. Here, bifurcation, convergence of calculation methods existence of solutions in a discontinuous frame are studied. MHD stability can be determined by the principle of Bernstein et al; the mathematical work concerned here bears on the equivalence, in the case of two-dimensional or axisymmetric stability, between this model and a scalar eigenvalue problem which is introduced. At last, modules for computing MHD equilibrium for the simulation of plasma confinement in a tokamak are described [fr

  3. Numerical modelling of swirling diffusive flames

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa

    2016-01-01

    Full Text Available Computational Fluid Dynamics has been used to study the mixing and combustion of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model solves 3D transient Navier Stokes for turbulent and reactive flows. Averaged velocity profiles using RNG swirl dominated k-epsilon model have been validated with experimental measurements from other sources for the non reactive case. The combustion model is Probability Density Function. Bearing in mind the annular jet has swirl number over 0.5, a vortex breakdown appears in the axis of the burner. Besides, the sudden expansion with a ratio of 2 in diameter between nozzle exits and the test chamber produces the boundary layer separation with the corresponding torus shape recirculation. Contrasting the mixing and combustion models, the last one produces the reduction of the vortex breakdown.

  4. Collapse arresting in an inhomogeneous quintic nonlinear Schrodinger model

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Schjødt-Eriksen, Jens; Christiansen, Peter Leth

    1999-01-01

    Collapse of (1 + 1)-dimensional beams in the inhomogeneous one-dimensional quintic nonlinear Schrodinger equation is analyzed both numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams in which the homogeneous medium would blow up...

  5. Numerical simulation of nonlinear beam-plasma interaction for the application to solar radio burst

    International Nuclear Information System (INIS)

    Takakura, T.

    1981-01-01

    By the use of semi-analytical method the numerical simulations for the nonlinear scattering of axially symmetric plasma waves into plasma waves and radio waves have been made. The initial electron beam has a finite length and one-dimensional velocity distribution of power law. Induced back-scattering of plasma waves by thermal ions is strong even for a solar electron stream of rather low flux, say 2x10 11 cm -2 above 5 keV at fsub(p) of 40 MHz, which is enough to emit the observed type III bursts as the second harmonic. The ratio between the energy densities of plasma waves and thermal electrons (nkT) is of the order of 10 -6 , which may be a few orders lower than the threshold value for a caviton collapse of the plasma waves to occur. The second harmonic radio emission as attributed to the coalescence of two plasma waves, i.e. one excited by electron beam and one back-scattered by ions, is several orders higher than the fundamental radio emission caused by the scattering of plasma waves by thermal ions. (Auth.)

  6. Numerical solution of large nonlinear boundary value problems by quadratic minimization techniques

    International Nuclear Information System (INIS)

    Glowinski, R.; Le Tallec, P.

    1984-01-01

    The objective of this paper is to describe the numerical treatment of large highly nonlinear two or three dimensional boundary value problems by quadratic minimization techniques. In all the different situations where these techniques were applied, the methodology remains the same and is organized as follows: 1) derive a variational formulation of the original boundary value problem, and approximate it by Galerkin methods; 2) transform this variational formulation into a quadratic minimization problem (least squares methods) or into a sequence of quadratic minimization problems (augmented lagrangian decomposition); 3) solve each quadratic minimization problem by a conjugate gradient method with preconditioning, the preconditioning matrix being sparse, positive definite, and fixed once for all in the iterative process. This paper will illustrate the methodology above on two different examples: the description of least squares solution methods and their application to the solution of the unsteady Navier-Stokes equations for incompressible viscous fluids; the description of augmented lagrangian decomposition techniques and their application to the solution of equilibrium problems in finite elasticity

  7. Nonlinear adaptive inverse control via the unified model neural network

    Science.gov (United States)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  8. Nonlinear Model Predictive Control with Constraint Satisfactions for a Quadcopter

    Science.gov (United States)

    Wang, Ye; Ramirez-Jaime, Andres; Xu, Feng; Puig, Vicenç

    2017-01-01

    This paper presents a nonlinear model predictive control (NMPC) strategy combined with constraint satisfactions for a quadcopter. The full dynamics of the quadcopter describing the attitude and position are nonlinear, which are quite sensitive to changes of inputs and disturbances. By means of constraint satisfactions, partial nonlinearities and modeling errors of the control-oriented model of full dynamics can be transformed into the inequality constraints. Subsequently, the quadcopter can be controlled by an NMPC controller with the updated constraints generated by constraint satisfactions. Finally, the simulation results applied to a quadcopter simulator are provided to show the effectiveness of the proposed strategy.

  9. Heterotic sigma models and non-linear strings

    International Nuclear Information System (INIS)

    Hull, C.M.

    1986-01-01

    The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)

  10. Hybrid fully nonlinear BEM-LBM numerical wave tank with applications in naval hydrodynamics

    Science.gov (United States)

    Mivehchi, Amin; Grilli, Stephan T.; Dahl, Jason M.; O'Reilly, Chris M.; Harris, Jeffrey C.; Kuznetsov, Konstantin; Janssen, Christian F.

    2017-11-01

    simulation of the complex dynamics response of ships in waves is typically modeled by nonlinear potential flow theory, usually solved with a higher order BEM. In some cases, the viscous/turbulent effects around a structure and in its wake need to be accurately modeled to capture the salient physics of the problem. Here, we present a fully 3D model based on a hybrid perturbation method. In this method, the velocity and pressure are decomposed as the sum of an inviscid flow and viscous perturbation. The inviscid part is solved over the whole domain using a BEM based on cubic spline element. These inviscid results are then used to force a near-field perturbation solution on a smaller domain size, which is solved with a NS model based on LBM-LES, and implemented on GPUs. The BEM solution for large grids is greatly accelerated by using a parallelized FMM, which is efficiently implemented on large and small clusters, yielding an almost linear scaling with the number of unknowns. A new representation of corners and edges is implemented, which improves the global accuracy of the BEM solver, particularly for moving boundaries. We present model results and the recent improvements of the BEM, alongside results of the hybrid model, for applications to problems. Office of Naval Research Grants N000141310687 and N000141612970.

  11. Reproducing the nonlinear dynamic behavior of a structured beam with a generalized continuum model

    Science.gov (United States)

    Vila, J.; Fernández-Sáez, J.; Zaera, R.

    2018-04-01

    In this paper we study the coupled axial-transverse nonlinear vibrations of a kind of one dimensional structured solids by application of the so called Inertia Gradient Nonlinear continuum model. To show the accuracy of this axiomatic model, previously proposed by the authors, its predictions are compared with numeric results from a previously defined finite discrete chain of lumped masses and springs, for several number of particles. A continualization of the discrete model equations based on Taylor series allowed us to set equivalent values of the mechanical properties in both discrete and axiomatic continuum models. Contrary to the classical continuum model, the inertia gradient nonlinear continuum model used herein is able to capture scale effects, which arise for modes in which the wavelength is comparable to the characteristic distance of the structured solid. The main conclusion of the work is that the proposed generalized continuum model captures the scale effects in both linear and nonlinear regimes, reproducing the behavior of the 1D nonlinear discrete model adequately.

  12. Aerosol numerical modelling at local scale

    International Nuclear Information System (INIS)

    Albriet, Bastien

    2007-01-01

    At local scale and in urban areas, an important part of particulate pollution is due to traffic. It contributes largely to the high number concentrations observed. Two aerosol sources are mainly linked to traffic. Primary emission of soot particles and secondary nanoparticle formation by nucleation. The emissions and mechanisms leading to the formation of such bimodal distribution are still badly understood nowadays. In this thesis, we try to provide an answer to this problematic by numerical modelling. The Modal Aerosol Model MAM is used, coupled with two 3D-codes: a CFD (Mercure Saturne) and a CTM (Polair3D). A sensitivity analysis is performed, at the border of a road but also in the first meters of an exhaust plume, to identify the role of each process involved and the sensitivity of different parameters used in the modelling. (author) [fr

  13. Posttraumatic Orbital Emphysema: A Numerical Model

    Directory of Open Access Journals (Sweden)

    Andrzej Skorek

    2014-01-01

    Full Text Available Orbital emphysema is a common symptom accompanying orbital fracture. The pathomechanism is still not recognized and the usually assumed cause, elevated pressure in the upper airways connected with sneezing or coughing, does not always contribute to the occurrence of this type of fracture. Observations based on the finite model (simulating blowout type fracture of the deformations of the inferior orbital wall after a strike in its lower rim. Authors created a computer numeric model of the orbit with specified features—thickness and resilience modulus. During simulation an evenly spread 14400 N force was applied to the nodular points in the inferior rim (the maximal value not causing cracking of the outer rim, but only ruptures in the inferior wall. The observation was made from 1·10-3 to 1·10-2 second after a strike. Right after a strike dislocations of the inferior orbital wall toward the maxillary sinus were observed. Afterwards a retrograde wave of the dislocation of the inferior wall toward the orbit was noticed. Overall dislocation amplitude reached about 6 mm. Based on a numeric model of the orbit submitted to a strike in the inferior wall an existence of a retrograde shock wave causing orbital emphysema has been found.

  14. Numerical modeling of atmospheric washout processes

    International Nuclear Information System (INIS)

    Bayer, D.; Beheng, K.D.; Herbert, F.

    1987-01-01

    For the washout of particles from the atmosphere by clouds and rain one has to distinguish between processes which work in the first phase of cloud development, when condensation nuclei build up in saturated air (Nucleation Aerosol Scavenging, NAS) and those processes which work at the following cloud development. In the second case particles are taken off by cloud droplets or by falling rain drops via collision (Collision Aerosol Scavenging, CAS). The physics of both processes is described. For the CAS process a numerical model is presented. The report contains a documentation of the mathematical equations and the computer programs (FORTRAN). (KW) [de

  15. Nonlinear mechanics of thin-walled structures asymptotics, direct approach and numerical analysis

    CERN Document Server

    Vetyukov, Yury

    2014-01-01

    This book presents a hybrid approach to the mechanics of thin bodies. Classical theories of rods, plates and shells with constrained shear are based on asymptotic splitting of the equations and boundary conditions of three-dimensional elasticity. The asymptotic solutions become accurate as the thickness decreases, and the three-dimensional fields of stresses and displacements can be determined. The analysis includes practically important effects of electromechanical coupling and material inhomogeneity. The extension to the geometrically nonlinear range uses the direct approach based on the principle of virtual work. Vibrations and buckling of pre-stressed structures are studied with the help of linearized incremental formulations, and direct tensor calculus rounds out the list of analytical techniques used throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exa...

  16. A deep belief network with PLSR for nonlinear system modeling.

    Science.gov (United States)

    Qiao, Junfei; Wang, Gongming; Li, Wenjing; Li, Xiaoli

    2017-10-31

    Nonlinear system modeling plays an important role in practical engineering, and deep learning-based deep belief network (DBN) is now popular in nonlinear system modeling and identification because of the strong learning ability. However, the existing weights optimization for DBN is based on gradient, which always leads to a local optimum and a poor training result. In this paper, a DBN with partial least square regression (PLSR-DBN) is proposed for nonlinear system modeling, which focuses on the problem of weights optimization for DBN using PLSR. Firstly, unsupervised contrastive divergence (CD) algorithm is used in weights initialization. Secondly, initial weights derived from CD algorithm are optimized through layer-by-layer PLSR modeling from top layer to bottom layer. Instead of gradient method, PLSR-DBN can determine the optimal weights using several PLSR models, so that a better performance of PLSR-DBN is achieved. Then, the analysis of convergence is theoretically given to guarantee the effectiveness of the proposed PLSR-DBN model. Finally, the proposed PLSR-DBN is tested on two benchmark nonlinear systems and an actual wastewater treatment system as well as a handwritten digit recognition (nonlinear mapping and modeling) with high-dimension input data. The experiment results show that the proposed PLSR-DBN has better performances of time and accuracy on nonlinear system modeling than that of other methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. NUMERICAL MODEL APPLICATION IN ROWING SIMULATOR DESIGN

    Directory of Open Access Journals (Sweden)

    Petr Chmátal

    2016-04-01

    Full Text Available The aim of the research was to carry out a hydraulic design of rowing/sculling and paddling simulator. Nowadays there are two main approaches in the simulator design. The first one includes a static water with no artificial movement and counts on specially cut oars to provide the same resistance in the water. The second approach, on the other hand uses pumps or similar devices to force the water to circulate but both of the designs share many problems. Such problems are affecting already built facilities and can be summarized as unrealistic feeling, unwanted turbulent flow and bad velocity profile. Therefore, the goal was to design a new rowing simulator that would provide nature-like conditions for the racers and provide an unmatched experience. In order to accomplish this challenge, it was decided to use in-depth numerical modeling to solve the hydraulic problems. The general measures for the design were taken in accordance with space availability of the simulator ́s housing. The entire research was coordinated with other stages of the construction using BIM. The detailed geometry was designed using a numerical model in Ansys Fluent and parametric auto-optimization tools which led to minimum negative hydraulic phenomena and decreased investment and operational costs due to the decreased hydraulic losses in the system.

  18. Model Updating Nonlinear System Identification Toolbox, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology by adopting the flight data with state-of-the-art...

  19. Sphaleron in a non-linear sigma model

    International Nuclear Information System (INIS)

    Sogo, Kiyoshi; Fujimoto, Yasushi.

    1989-08-01

    We present an exact classical saddle point solution in a non-linear sigma model. It has a topological charge 1/2 and mediates the vacuum transition. The quantum fluctuations and the transition rate are also examined. (author)

  20. Computational Models for Nonlinear Aeroelastic Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate a new and efficient computational method of modeling nonlinear aeroelastic systems. The...

  1. forecasting with nonlinear time series model: a monte-carlo

    African Journals Online (AJOL)

    PUBLICATIONS1

    Carlo method of forecasting using a special nonlinear time series model, called logistic smooth transition ... We illustrate this new method using some simulation ..... in MATLAB 7.5.0. ... process (DGP) using the logistic smooth transi-.

  2. Pressure fluctuation prediction of a model pump turbine at no load opening by a nonlinear k-ε turbulence model

    International Nuclear Information System (INIS)

    Liu, J T; Zuo, Z G; Liu, S H; Wu, Y L

    2014-01-01

    In this paper, a new nonlinear k-ε turbulence model based on RNG k-ε turbulence model and Wilcox's k-ω turbulence model was proposed to simulate the unsteady flow and to predict the pressure fluctuation through a model pump turbine for engineering application. Calculations on a curved rectangular duct proved that the nonlinear k-ε turbulence model is applicable for high pressure gradient flows and large curvature flows. The numerically predicted relative pressure amplitude (peak to peak) in time domain to the pump turbine head at no load condition is very close to the experimental data. It is indicated that the prediction of the pressure fluctuation is valid by the present nonlinear k-ε method. The high pressure fluctuation in this area is the main issue for pump turbine design, especially at high head condition

  3. Numerical modeling of materials under extreme conditions

    CERN Document Server

    Brown, Eric

    2014-01-01

    The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.

  4. Partial Differential Equations Modeling and Numerical Simulation

    CERN Document Server

    Glowinski, Roland

    2008-01-01

    This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...

  5. Extinction and persistence of a stochastic nonlinear SIS epidemic model with jumps

    Science.gov (United States)

    Ge, Qing; Ji, Guilin; Xu, Jiabo; Fan, Xiaolin

    2016-11-01

    In this paper, Brownian motion and L e ´ vy jumps are introduced to a SIS type epidemic model with nonlinear incidence rate. The dynamical behavior of the considered model is investigated. In order to reveal the extinction and permanence of the disease, two threshold values R˜0 ,R¯0 are showed. We find that if R˜0 1, the disease may be persistent. Finally, the numerical simulations are presented to illustrate our mathematical results.

  6. Dynamic Behavior for an SIRS Model with Nonlinear Incidence Rate and Treatment

    Directory of Open Access Journals (Sweden)

    Junhong Li

    2013-01-01

    Full Text Available This paper considers an SIRS model with nonlinear incidence rate and treatment. It is assumed that susceptible and infectious individuals have constant immigration rates. We investigate the existence of equilibrium and prove the global asymptotical stable results of the endemic equilibrium. We then obtained that the model undergoes a Hopf bifurcation and existences a limit cycle. Some numerical simulations are given to illustrate the analytical results.

  7. Hopf bifurcation in love dynamical models with nonlinear couples and time delays

    International Nuclear Information System (INIS)

    Liao Xiaofeng; Ran Jiouhong

    2007-01-01

    A love dynamical models with nonlinear couples and two delays is considered. Local stability of this model is studied by analyzing the associated characteristic transcendental equation. We find that the Hopf bifurcation occurs when the sum of the two delays varies and passes a sequence of critical values. The stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. Numerical example is given to illustrate our results

  8. A deterministic combination of numerical and physical models for coastal waves

    DEFF Research Database (Denmark)

    Zhang, Haiwen

    2006-01-01

    of numerical and physical modelling hence provides an attractive alternative to the use of either tool on it's own. The goal of this project has been to develop a deterministically combined numerical/physical model where the physical wave tank is enclosed in a much larger computational domain, and the two......Numerical and physical modelling are the two main tools available for predicting the influence of water waves on coastlines and structures placed in the near-shore environment. Numerical models can cover large areas at the correct scale, but are limited in their ability to capture strong...... nonlinearities, wave breaking, splash, mixing, and other such complicated physics. Physical models naturally include the real physics (at the model scale), but are limited by the physical size of the facility and must contend with the fact that different physical effects scale differently. An integrated use...

  9. A delta-rule model of numerical and non-numerical order processing.

    Science.gov (United States)

    Verguts, Tom; Van Opstal, Filip

    2014-06-01

    Numerical and non-numerical order processing share empirical characteristics (distance effect and semantic congruity), but there are also important differences (in size effect and end effect). At the same time, models and theories of numerical and non-numerical order processing developed largely separately. Currently, we combine insights from 2 earlier models to integrate them in a common framework. We argue that the same learning principle underlies numerical and non-numerical orders, but that environmental features determine the empirical differences. Implications for current theories on order processing are pointed out. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. Discretization model for nonlinear dynamic analysis of three dimensional structures

    International Nuclear Information System (INIS)

    Hayashi, Y.

    1982-12-01

    A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt

  11. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-09-25

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  12. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali; Choi, Yun Seok

    2012-01-01

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  13. Nonlinear dynamics of avian influenza epidemic models.

    Science.gov (United States)

    Liu, Sanhong; Ruan, Shigui; Zhang, Xinan

    2017-01-01

    Avian influenza is a zoonotic disease caused by the transmission of the avian influenza A virus, such as H5N1 and H7N9, from birds to humans. The avian influenza A H5N1 virus has caused more than 500 human infections worldwide with nearly a 60% death rate since it was first reported in Hong Kong in 1997. The four outbreaks of the avian influenza A H7N9 in China from March 2013 to June 2016 have resulted in 580 human cases including 202 deaths with a death rate of nearly 35%. In this paper, we construct two avian influenza bird-to-human transmission models with different growth laws of the avian population, one with logistic growth and the other with Allee effect, and analyze their dynamical behavior. We obtain a threshold value for the prevalence of avian influenza and investigate the local or global asymptotical stability of each equilibrium of these systems by using linear analysis technique or combining Liapunov function method and LaSalle's invariance principle, respectively. Moreover, we give necessary and sufficient conditions for the occurrence of periodic solutions in the avian influenza system with Allee effect of the avian population. Numerical simulations are also presented to illustrate the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Adaptive Numerical Algorithms in Space Weather Modeling

    Science.gov (United States)

    Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.; hide

    2010-01-01

    Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical

  15. Nonlinear signal processing using neural networks: Prediction and system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A.; Farber, R.

    1987-06-01

    The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.

  16. Nonlinear dynamics new directions models and applications

    CERN Document Server

    Ugalde, Edgardo

    2015-01-01

    This book, along with its companion volume, Nonlinear Dynamics New Directions: Theoretical Aspects, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: ·         Develops applications of nonlinear dynamics on a diversity of topics such as patterns of synchrony in neuronal networks, laser synchronization, control of chaotic systems, and the study of transient dynam...

  17. Special class of nonlinear damping models in flexible space structures

    Science.gov (United States)

    Hu, Anren; Singh, Ramendra P.; Taylor, Lawrence W.

    1991-01-01

    A special class of nonlinear damping models is investigated in which the damping force is proportional to the product of positive integer or the fractional power of the absolute values of displacement and velocity. For a one-degree-of-freedom system, the classical Krylov-Bogoliubov 'averaging' method is used, whereas for a distributed system, both an ad hoc perturbation technique and the finite difference method are employed to study the effects of nonlinear damping. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on the damping ratio but also on the initial amplitude, the time to measure the response, the frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce the energy of the system and to pass energy to lower modes.

  18. A finite element model for nonlinear shells of revolution

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-01-01

    A shell-of-revolution model was developed to analyze impact problems associated with the safety analysis of nuclear material shipping containers. The nonlinear shell theory presented by Eric Reissner in 1972 was used to develop our model. Reissner's approach includes transverse shear deformation and moments turning about the middle surface normal. With these features, this approach is valid for both thin and thick shells. His theory is formulated in terms of strain and stress resultants that refer to the undeformed geometry. This nonlinear shell model is developed using the virtual work principle associated with Reissner's equilibrium equations. First, the virtual work principle is modified for incremental loading; then it is linearized by assuming that the nonlinear portions of the strains are known. By iteration, equilibrium is then approximated for each increment. A benefit of this approach is that this iteration process makes it possible to use nonlinear material properties. (orig.)

  19. On the instability of a 3-dimensional attachment line boundary layer: Weakly nonlinear theory and a numerical approach

    Science.gov (United States)

    Hall, P.; Malik, M. R.

    1984-01-01

    The instability of a three dimensional attachment line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time dependent Navier-Stokes equations for the attachment line flow have been solved using a Fourier-Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment line boundary layer is also investigated.

  20. On the instability of a three-dimensional attachment-line boundary layer - Weakly nonlinear theory and a numerical approach

    Science.gov (United States)

    Hall, P.; Malik, M. R.

    1986-01-01

    The instability of a three-dimensional attachment-line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite-amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time-dependent Navier-Stokes equations for the attachment-line flow have been solved using a Fourier-Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite-amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment-line boundary layer is also investigated.

  1. Robust Numerical Methods for Nonlinear Wave-Structure Interaction in a Moving Frame of Reference

    DEFF Research Database (Denmark)

    Kontos, Stavros; Lindberg, Ole

    This project is focused on improving the state of the art for predicting the interaction between nonlinear ocean waves and marine structures. To achieve this goal, a flexible order finite difference potential flow solver has been extended to calculate for fully nonlinear wave-structure interaction...

  2. Numerical methods for solution of some nonlinear problems of mathematical physics

    International Nuclear Information System (INIS)

    Zhidkov, E.P.

    1981-01-01

    The continuous analog of the Newton method and its application to some nonlinear problems of mathematical physics using a computer is considered. It is shown that the application of this method in JINR to the wide range of nonlinear problems has shown its universality and high efficiency [ru

  3. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  4. Modeling and numerical simulations of the influenced Sznajd model

    Science.gov (United States)

    Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep

    2017-08-01

    This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.

  5. NUMERICAL MODELLING OF THE SOIL BEHAVIOUR BY USING NEWLY DEVELOPED ADVANCED MATERIAL MODEL

    Directory of Open Access Journals (Sweden)

    Jan Veselý

    2017-02-01

    Full Text Available This paper describes a theoretical background, implementation and validation of the newly developed Jardine plastic hardening-softening model (JPHS model, which can be used for numerical modelling of the soils behaviour. Although the JPHS model is based on the elasto-plastic theory, like the Mohr-Coulomb model that is widely used in geotechnics, it contains some improvements, which removes the main disadvantages of the MC model. The presented model is coupled with an isotopically hardening and softening law, non-linear elastic stress-strain law, non-associated elasto-plastic material description and a cap yield surface. The validation of the model is done by comparing the numerical results with real measured data from the laboratory tests and by testing of the model on the real project of the tunnel excavation. The 3D numerical analysis is performed and the comparison between the JPHS, Mohr-Coulomb, Modified Cam-Clay, Hardening small strain model and monitoring in-situ data is done.

  6. Numerical Analysis of Ginzburg-Landau Models for Superconductivity.

    Science.gov (United States)

    Coskun, Erhan

    Thin film conventional, as well as High T _{c} superconductors of various geometric shapes placed under both uniform and variable strength magnetic field are studied using the universially accepted macroscopic Ginzburg-Landau model. A series of new theoretical results concerning the properties of solution is presented using the semi -discrete time-dependent Ginzburg-Landau equations, staggered grid setup and natural boundary conditions. Efficient serial algorithms including a novel adaptive algorithm is developed and successfully implemented for solving the governing highly nonlinear parabolic system of equations. Refinement technique used in the adaptive algorithm is based on modified forward Euler method which was also developed by us to ease the restriction on time step size for stability considerations. Stability and convergence properties of forward and modified forward Euler schemes are studied. Numerical simulations of various recent physical experiments of technological importance such as vortes motion and pinning are performed. The numerical code for solving time-dependent Ginzburg-Landau equations is parallelized using BlockComm -Chameleon and PCN. The parallel code was run on the distributed memory multiprocessors intel iPSC/860, IBM-SP1 and cluster of Sun Sparc workstations, all located at Mathematics and Computer Science Division, Argonne National Laboratory.

  7. Mathematical models and numerical simulation in electromagnetism

    CERN Document Server

    Bermúdez, Alfredo; Salgado, Pilar

    2014-01-01

    The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory  based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.

  8. Numerical modeling capabilities to predict repository performance

    International Nuclear Information System (INIS)

    1979-09-01

    This report presents a summary of current numerical modeling capabilities that are applicable to the design and performance evaluation of underground repositories for the storage of nuclear waste. The report includes codes that are available in-house, within Golder Associates and Lawrence Livermore Laboratories; as well as those that are generally available within the industry and universities. The first listing of programs are in-house codes in the subject areas of hydrology, solute transport, thermal and mechanical stress analysis, and structural geology. The second listing of programs are divided by subject into the following categories: site selection, structural geology, mine structural design, mine ventilation, hydrology, and mine design/construction/operation. These programs are not specifically designed for use in the design and evaluation of an underground repository for nuclear waste; but several or most of them may be so used

  9. Practical Soil-Shallow Foundation Model for Nonlinear Structural Analysis

    Directory of Open Access Journals (Sweden)

    Moussa Leblouba

    2016-01-01

    Full Text Available Soil-shallow foundation interaction models that are incorporated into most structural analysis programs generally lack accuracy and efficiency or neglect some aspects of foundation behavior. For instance, soil-shallow foundation systems have been observed to show both small and large loops under increasing amplitude load reversals. This paper presents a practical macroelement model for soil-shallow foundation system and its stability under simultaneous horizontal and vertical loads. The model comprises three spring elements: nonlinear horizontal, nonlinear rotational, and linear vertical springs. The proposed macroelement model was verified using experimental test results from large-scale model foundations subjected to small and large cyclic loading cases.

  10. A REMARK ON FORMAL MODELS FOR NONLINEARLY ELASTIC MEMBRANE SHELLS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper gives all the two-dimensional membrane models obtained from formal asymptotic analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural nonlinear ones. The author also gives the formal equations solved by the associated stress tensor and points out that only one of those models leads, by linearization, to the “classical” linear limiting membrane model, whose juetification has already been established by a convergence theorem.

  11. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.

    Science.gov (United States)

    Humphrey, V F

    2000-03-01

    In high amplitude ultrasonic fields, such as those used in medical ultrasound, nonlinear propagation can result in waveform distortion and the generation of harmonics of the initial frequency. In the nearfield of a transducer this process is complicated by diffraction effects associated with the source. The results of a programme to study the nonlinear propagation in the fields of circular, focused and rectangular transducers are described, and comparisons made with numerical predictions obtained using a finite difference solution to the Khokhlov-Zabolotskaya-Kuznetsov (or KZK) equation. These results are extended to consider nonlinear propagation in tissue-like media and the implications for ultrasonic measurements and ultrasonic heating are discussed. The narrower beamwidths and reduced side-lobe levels of the harmonic beams are illustrated and the use of harmonics to form diagnostic images with improved resolution is described.

  12. Nature Inspired Computational Technique for the Numerical Solution of Nonlinear Singular Boundary Value Problems Arising in Physiology

    Directory of Open Access Journals (Sweden)

    Suheel Abdullah Malik

    2014-01-01

    Full Text Available We present a hybrid heuristic computing method for the numerical solution of nonlinear singular boundary value problems arising in physiology. The approximate solution is deduced as a linear combination of some log sigmoid basis functions. A fitness function representing the sum of the mean square error of the given nonlinear ordinary differential equation (ODE and its boundary conditions is formulated. The optimization of the unknown adjustable parameters contained in the fitness function is performed by the hybrid heuristic computation algorithm based on genetic algorithm (GA, interior point algorithm (IPA, and active set algorithm (ASA. The efficiency and the viability of the proposed method are confirmed by solving three examples from physiology. The obtained approximate solutions are found in excellent agreement with the exact solutions as well as some conventional numerical solutions.

  13. Study of intermittent bifurcations and chaos in boost PFC converters by nonlinear discrete models

    International Nuclear Information System (INIS)

    Zhang Hao; Ma Xikui; Xue Bianling; Liu Weizeng

    2005-01-01

    This paper mainly deals with nonlinear phenomena like intermittent bifurcations and chaos in boost PFC converters under peak-current control mode. Two nonlinear models in the form of discrete maps are derived to describe precisely the nonlinear dynamics of boost PFC converters from two points of view, i.e., low- and high-frequency regimes. Based on the presented discrete models, both the evolution of intermittent behavior and the periodicity of intermittency are investigated in detail from the fast and slow-scale aspects, respectively. Numerical results show that the occurrence of intermittent bifurcations and chaos with half one line period is one of the most distinguished dynamical characteristics. Finally, we make some instructive conclusions, which prove to be helpful in improving the performances of practical circuits

  14. An axisymmetrical non-linear finite element model for induction heating in injection molding tools

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Menotti, Stefano

    2016-01-01

    To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed......, including the non-linear temperature dependent magnetic data described by a three-parameter modified Frohlich equation fitted to the magnetic saturation curve, and solved with an iterative procedure. The numerical calculations are compared with experiments conducted with two types of induction coils, built...... in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear permeability to use...

  15. A variational numerical method based on finite elements for the nonlinear solution characteristics of the periodically forced Chen system

    Science.gov (United States)

    Khan, Sabeel M.; Sunny, D. A.; Aqeel, M.

    2017-09-01

    Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.

  16. Physics, Nonlinear Time Series Analysis, Data Assimilation and Hyperfast Modeling of Nonlinear Ocean Waves

    Science.gov (United States)

    2010-09-30

    Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING

  17. Ocean wave prediction using numerical and neural network models

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...

  18. A nonlinear complementarity approach for the national energy modeling system

    International Nuclear Information System (INIS)

    Gabriel, S.A.; Kydes, A.S.

    1995-01-01

    The National Energy Modeling System (NEMS) is a large-scale mathematical model that computes equilibrium fuel prices and quantities in the U.S. energy sector. At present, to generate these equilibrium values, NEMS sequentially solves a collection of linear programs and nonlinear equations. The NEMS solution procedure then incorporates the solutions of these linear programs and nonlinear equations in a nonlinear Gauss-Seidel approach. The authors describe how the current version of NEMS can be formulated as a particular nonlinear complementarity problem (NCP), thereby possibly avoiding current convergence problems. In addition, they show that the NCP format is equally valid for a more general form of NEMS. They also describe several promising approaches for solving the NCP form of NEMS based on recent Newton type methods for general NCPs. These approaches share the feature of needing to solve their direction-finding subproblems only approximately. Hence, they can effectively exploit the sparsity inherent in the NEMS NCP

  19. Third-order-accurate numerical methods for efficient, large time-step solutions of mixed linear and nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.W.

    1995-02-01

    There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.

  20. Single-step emulation of nonlinear fiber-optic link with gaussian mixture model

    DEFF Research Database (Denmark)

    Borkowski, Robert; Doberstein, Andy; Haisch, Hansjörg

    2015-01-01

    We use a fast and low-complexity statistical signal processing method to emulate nonlinear noise in fiber links. The proposed emulation technique stands in good agreement with the numerical NLSE simulation for 32 Gbaud DP-16QAM nonlinear transmission.......We use a fast and low-complexity statistical signal processing method to emulate nonlinear noise in fiber links. The proposed emulation technique stands in good agreement with the numerical NLSE simulation for 32 Gbaud DP-16QAM nonlinear transmission....

  1. Numerical Modelling of Flow and Settling in Secondary Settling Tanks

    DEFF Research Database (Denmark)

    Dahl, Claus Poulsen

    This thesis discusses the development of a numerical model for the simulation of secondary settling tanks. In the first part, the status on the development of numerical models for settling tanks and a discussion of the current design practice are presented. A study of the existing numerical models...... and design practice proved a demand for further development to include numerical models in the design of settling tanks, thus improving the future settling tanks....

  2. Numerical simulation of the nonlinear dynamics of harmonically driven Riesz-fractional extensions of the Fermi-Pasta-Ulam chains

    Science.gov (United States)

    Macías-Díaz, J. E.

    2018-02-01

    In this work, we introduce a spatially discrete model that is a modification of the well-known α-Fermi-Pasta-Ulam chain with damping. The system is perturbed at one end by a harmonic disturbance irradiating at a frequency in the forbidden band-gap of the classical regime, and a nonlocal coupling between the oscillators is considered using discrete Riesz fractional derivatives. We propose fully discrete expressions to approximate an energy functional of the system, and we use them to calculate the total energy of fractional chains over a relatively long period of time [Fract. Diff. Appl. 4 (2004) 153-162]. The approach is thoroughly tested in the case of local couplings against known qualitative results, including simulations of the process of nonlinear recurrence in the traditional chains of anharmonic oscillators. As an application, we provide evidence that the process of supratransmission is present in spatially discrete Fermi-Pasta-Ulam lattices with Riesz fractional derivatives in space. Moreover, we perform numerical experiments for small and large amplitudes of the harmonic disturbance. In either case, we establish the dependency of the critical amplitude at which supratransmission begins as a function of the driving frequency. Our results are in good agreement with the analytic predictions for the classical Fermi-Pasta-Ulam chain.

  3. Inference of a Nonlinear Stochastic Model of the Cardiorespiratory Interaction

    Science.gov (United States)

    Smelyanskiy, V. N.; Luchinsky, D. G.; Stefanovska, A.; McClintock, P. V.

    2005-03-01

    We reconstruct a nonlinear stochastic model of the cardiorespiratory interaction in terms of a set of polynomial basis functions representing the nonlinear force governing system oscillations. The strength and direction of coupling and noise intensity are simultaneously inferred from a univariate blood pressure signal. Our new inference technique does not require extensive global optimization, and it is applicable to a wide range of complex dynamical systems subject to noise.

  4. Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control

    KAUST Repository

    Domínguez, Luis F.

    2011-01-19

    In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.

  5. Modeling of nonlinear biological phenomena modeled by S-systems.

    Science.gov (United States)

    Mansouri, Majdi M; Nounou, Hazem N; Nounou, Mohamed N; Datta, Aniruddha A

    2014-03-01

    A central challenge in computational modeling of biological systems is the determination of the model parameters. In such cases, estimating these variables or parameters from other easily obtained measurements can be extremely useful. For example, time-series dynamic genomic data can be used to develop models representing dynamic genetic regulatory networks, which can be used to design intervention strategies to cure major diseases and to better understand the behavior of biological systems. Unfortunately, biological measurements are usually highly infected by errors that hide the important characteristics in the data. Therefore, these noisy measurements need to be filtered to enhance their usefulness in practice. This paper addresses the problem of state and parameter estimation of biological phenomena modeled by S-systems using Bayesian approaches, where the nonlinear observed system is assumed to progress according to a probabilistic state space model. The performances of various conventional and state-of-the-art state estimation techniques are compared. These techniques include the extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filter (PF), and the developed variational Bayesian filter (VBF). Specifically, two comparative studies are performed. In the first comparative study, the state variables (the enzyme CadA, the model cadBA, the cadaverine Cadav and the lysine Lys for a model of the Cad System in Escherichia coli (CSEC)) are estimated from noisy measurements of these variables, and the various estimation techniques are compared by computing the estimation root mean square error (RMSE) with respect to the noise-free data. In the second comparative study, the state variables as well as the model parameters are simultaneously estimated. In this case, in addition to comparing the performances of the various state estimation techniques, the effect of the number of estimated model parameters on the accuracy and convergence of these

  6. Fuzzy model-based servo and model following control for nonlinear systems.

    Science.gov (United States)

    Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O

    2009-12-01

    This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.

  7. High-precision numerical simulation with autoadaptative grid technique in nonlinear thermal diffusion

    International Nuclear Information System (INIS)

    Chambarel, A.; Pumborios, M.

    1992-01-01

    This paper reports that many engineering problems concern the determination of a steady state solution in the case with strong thermal gradients, and results obtained using the finite-element technique are sometimes inaccurate, particularly for nonlinear problems with unadapted meshes. Building on previous results in linear problems, we propose an autoadaptive technique for nonlinear cases that uses quasi-Newtonian iterations to reevaluate an interpolation error estimation. The authors perfected an automatic refinement technique to solve the nonlinear thermal problem of temperature calculus in a cast-iron cylinder head of a diesel engine

  8. A New Numerical Technique for Solving Systems Of Nonlinear Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Mountassir Hamdi Cherif

    2017-11-01

    Full Text Available In this paper, we apply an efficient method called the Aboodh decomposition method to solve systems of nonlinear fractional partial differential equations. This method is a combined form of Aboodh transform with Adomian decomposition method. The theoretical analysis of this investigated for systems of nonlinear fractional partial differential equations is calculated in the explicit form of a power series with easily computable terms. Some examples are given to shows that this method is very efficient and accurate. This method can be applied to solve others nonlinear systems problems.

  9. Rigid-body-spring model numerical analysis of joint performance of engineered cementitious composites and concrete

    Science.gov (United States)

    Khmurovska, Y.; Štemberk, P.; Křístek, V.

    2017-09-01

    This paper presents a numerical investigation of effectiveness of using engineered cementitious composites with polyvinyl alcohol fibers for concrete cover layer repair. A numerical model of a monolithic concaved L-shaped concrete structural detail which is strengthened with an engineered cementitious composite layer with polyvinyl alcohol fibers is created and loaded with bending moment. The numerical analysis employs nonlinear 3-D Rigid-Body-Spring Model. The proposed material model shows reliable results and can be used in further studies. The engineered cementitious composite shows extremely good performance in tension due to the strain-hardening effect. Since durability of the bond can be decreased significantly by its degradation due to the thermal loading, this effect should be also taken into account in the future work, as well as the experimental investigation, which should be performed for validation of the proposed numerical model.

  10. Modeling and nonlinear heading control for sailing yachts

    DEFF Research Database (Denmark)

    Xiao, Lin; Jouffroy, Jerome

    2014-01-01

    This paper presents a study on the development and testing of a model-based heading controller for a sailing yacht. Using Fossen’s compact notation for marine vehicles, we first describe a nonlinear four-degree-of-freedom (DOF) dynamic model for a sailing yacht, including roll. Our model also...

  11. Modeling and nonlinear heading control for sailing yachts

    DEFF Research Database (Denmark)

    Xiao, Lin; Jouffroy, Jerome

    2011-01-01

    This paper presents a study on the development and testing of a model-based heading controller for a sailing yacht. Using Fossen's compact notation for marine vehicles, we first describe a nonlinear 4-DOF dynamic model for a sailing yacht, including roll. Starting from this model, we then design...

  12. A Nonlinear Model of Mix Coil Spring – Rubber for Vertical Suspension of Railway Vehicle

    Directory of Open Access Journals (Sweden)

    Dumitriu Mădălina

    2016-03-01

    Full Text Available The paper focuses on a nonlinear model to represent the mechanical behaviour of a mix coil spring - rubber used in the secondary suspension of passenger rail vehicles. The principle of the model relies on overlapping of the forces corresponding to three components - the elastic component, the viscous component and the dry friction component. The model has two sources on non-linearity, in the elastic force and the friction force, respectively. The main attributes of the model are made visible by its response to an imposed displacement-type harmonic excitation. The results thus obtained from the applications of numerical simulation show a series of basic properties of the model, namely the dependence on amplitude and the excitation frequency of the model response, as well as of its stiffness and damping.

  13. Non-linear Growth Models in Mplus and SAS

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam

    2013-01-01

    Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134

  14. An Improved Nonlinear Five-Point Model for Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Sakaros Bogning Dongue

    2013-01-01

    Full Text Available This paper presents an improved nonlinear five-point model capable of analytically describing the electrical behaviors of a photovoltaic module for each generic operating condition of temperature and solar irradiance. The models used to replicate the electrical behaviors of operating PV modules are usually based on some simplified assumptions which provide convenient mathematical model which can be used in conventional simulation tools. Unfortunately, these assumptions cause some inaccuracies, and hence unrealistic economic returns are predicted. As an alternative, we used the advantages of a nonlinear analytical five-point model to take into account the nonideal diode effects and nonlinear effects generally ignored, which PV modules operation depends on. To verify the capability of our method to fit PV panel characteristics, the procedure was tested on three different panels. Results were compared with the data issued by manufacturers and with the results obtained using the five-parameter model proposed by other authors.

  15. Numerical modeling of the autumnal thermal bar

    Science.gov (United States)

    Tsydenov, Bair O.

    2018-03-01

    The autumnal riverine thermal bar of Kamloops Lake has been simulated using atmospheric data from December 1, 2015, to January 4, 2016. The nonhydrostatic 2.5D mathematical model developed takes into account the diurnal variability of the heat fluxes and wind on the lake surface. The average values for shortwave and longwave radiation and latent and sensible heat fluxes were 19.7 W/m2, - 95.9 W/m2, - 11.8 W/m2, and - 32.0 W/m2 respectively. Analysis of the wind regime data showed prevailing easterly winds and maximum speed of 11 m/s on the 8th and 19th days. Numerical experiments with different boundary conditions at the lake surface were conducted to evaluate effects of variable heat flux and wind stress. The results of modeling demonstrated that the variable heat flux affects the process of thermal bar evolution, especially during the lengthy night cooling. However, the wind had the greatest impact on the behavior of the autumnal thermal bar: The easterly winds contributed to an earlier appearance of the thermal bar, but the strong winds generating the intensive circulations (the velocity of the upper lake flow increased to 6 cm/s) may destroy the thermal bar front.

  16. A numerical model of aerosol scavenging

    International Nuclear Information System (INIS)

    Bradley, M.M.; Molenkamp, C.R.

    1991-10-01

    Using a three-dimensional numerical cloud/smoke-plume model, we have simulated the burning of a large, mid-latitude city following a nuclear exchange. The model includes 18 dynamic and microphysical equations that predict the fire-driven airflow, cloud processes, and smoke-cloud interactions. In the simulation, the intense heating from the burning city produces a firestorm with updraft velocities exceeding 60 m/s. Within 15 minutes of ignition, the smoke plume penetrates the tropopause. The updraft triggers a cumulonimbus cloud that produces significant quantities of ice, snow, and hail. These solid hydrometeors, as well as cloud droplets and rain, interact with the smoke particles from the fire. At the end of the one-hour simulation, over 20% of the smoke is in slowly falling snowflakes. If the snow reaches the ground before the flakes completely sublimate (or melt and then evaporate), then only approximately 50% of the smoke will survive the scavenging processes and remain in the atmosphere to affect the global climate

  17. Numerical Modelling of Seismic Slope Stability

    Science.gov (United States)

    Bourdeau, Céline; Havenith, Hans-Balder; Fleurisson, Jean-Alain; Grandjean, Gilles

    Earthquake ground-motions recorded worldwide have shown that many morphological and geological structures (topography, sedimentary basin) are prone to amplify the seismic shaking (San Fernando, 1971 [Davis and West 1973] Irpinia, 1980 [Del Pezzo et al. 1983]). This phenomenon, called site effects, was again recently observed in El Salvador when, on the 13th of January 2001, the country was struck by a M = 7.6 earthquake. Indeed, while horizontal accelerations on a rock site at Berlin, 80 km from the epicentre, did not exceed 0.23 g, they reached 0.6 g at Armenia, 110 km from the epicentre. Armenia is located on a small hill underlaid by a few meters thick pyroclastic deposits. Both the local topography and the presence of surface layers are likely to have caused the observed amplification effects, which are supposed to have contributed to the triggering of some of the hundreds of landslides related to this seismic event (Murphy et al. 2002). In order to better characterize the way site effects may influence the triggering of landslides along slopes, 2D numerical elastic and elasto-plastic models were developed. Various geometrical, geological and seismic conditions were analysed and the dynamic behaviour of the slope under these con- ditions was studied in terms of creation and location of a sliding surface. Preliminary results suggest that the size of modelled slope failures is dependent on site effects.

  18. Study of the nonlinear imperfect software debugging model

    International Nuclear Information System (INIS)

    Wang, Jinyong; Wu, Zhibo

    2016-01-01

    In recent years there has been a dramatic proliferation of research on imperfect software debugging phenomena. Software debugging is a complex process and is affected by a variety of factors, including the environment, resources, personnel skills, and personnel psychologies. Therefore, the simple assumption that debugging is perfect is inconsistent with the actual software debugging process, wherein a new fault can be introduced when removing a fault. Furthermore, the fault introduction process is nonlinear, and the cumulative number of nonlinearly introduced faults increases over time. Thus, this paper proposes a nonlinear, NHPP imperfect software debugging model in consideration of the fact that fault introduction is a nonlinear process. The fitting and predictive power of the NHPP-based proposed model are validated through related experiments. Experimental results show that this model displays better fitting and predicting performance than the traditional NHPP-based perfect and imperfect software debugging models. S-confidence bounds are set to analyze the performance of the proposed model. This study also examines and discusses optimal software release-time policy comprehensively. In addition, this research on the nonlinear process of fault introduction is significant given the recent surge of studies on software-intensive products, such as cloud computing and big data. - Highlights: • Fault introduction is a nonlinear changing process during the debugging phase. • The assumption that the process of fault introduction is nonlinear is credible. • Our proposed model can better fit and accurately predict software failure behavior. • Research on fault introduction case is significant to software-intensive products.

  19. Mathematical and numerical methods for the nonlinear hyperbolic propagation problem: d2GAMMA/dt2 = d/dz [dGAMMA/dt dGAMMA/dz

    International Nuclear Information System (INIS)

    Stanco, L.; Vaccaro, V.G.; Funk, U.; Krueger, U.; Mika, K.; Wuestefeld, G.

    1982-03-01

    In the first part of this report a physical model is presented, which describes the deforming of a bunch in a storage ring influenced only by its own space charge field. A system of two differential equations for the density and the momentum of the particles is set up, which is independent of any special machine parameter. Due to the sign of the inductance of the chamber walls and the sign of the dispersion of the revolution frequency, we distinguish between a de-bunching and a self-bunching situation. The de-bunching corresponds to a nonlinear hyperbolic propagation problem well-known in gas dynamics, and the self-bunching to a nonlinear elliptic initial value problem. The second part deals with a mathematical and numerical treatment of an approximate equation for the hyperbolic case. For this nonlinear second order partial differential equation we first present three particular integrals: the solution by separating the variables, the similarity solution, and the solution for a parabolic initial distribution of the density. For a more realistic initial condition, we must resort to other methods: Results are obtained in three different ways, first from a highly accurate Taylor series expansion, second from a common finite difference method, and thirdly from the numerical method of characteristics. The appearance of a shock discontinuity is furthermore established in each of these cases. (orig.)

  20. A Nonlinear differential equation model of Asthma effect of environmental pollution using LHAM

    Science.gov (United States)

    Joseph, G. Arul; Balamuralitharan, S.

    2018-04-01

    In this paper, we investigated a nonlinear differential equation mathematical model to study the spread of asthma in the environmental pollutants from industry and mainly from tobacco smoke from smokers in different type of population. Smoking is the main cause to spread Asthma in the environment. Numerical simulation is also discussed. Finally by using Liao’s Homotopy analysis Method (LHAM), we found that the approximate analytical solution of Asthmatic disease in the environmental.

  1. Discrete Bogomolny equations for the nonlinear O(3) σ model in 2+1 dimensions

    International Nuclear Information System (INIS)

    Leese, R.

    1989-01-01

    Discrete analogues of the topological charge and of the Bogomolny equations are constructed for the nonlinear O(3) σ model in 2+1 dimensions, subject to the restriction that the energy density be radially symmetric. These are then incorporated into a discretized version of the evolution equations. Using the discrete Bogomolny relations to construct the initial data for numerical simulations removes the ''lattice wobble'' sometimes observed at low kinetic energies. This feature is very important for the delicate question of instanton stability

  2. Understanding Etna flank instability through numerical models

    Science.gov (United States)

    Apuani, Tiziana; Corazzato, Claudia; Merri, Andrea; Tibaldi, Alessandro

    2013-02-01

    As many active volcanoes, Mount Etna shows clear evidence of flank instability, and different mechanisms were suggested to explain this flank dynamics, based on the recorded deformation pattern and character. Shallow and deep deformations, mainly associated with both eruptive and seismic events, are concentrated along recognised fracture and fault systems, mobilising the eastern and south-eastern flank of the volcano. Several interacting causes were postulated to control the phenomenon, including gravity force, magma ascent along the feeding system, and a very complex local and/or regional tectonic activity. Nevertheless, the complexity of such dynamics is still an open subject of research and being the volcano flanks heavily urbanised, the comprehension of the gravitative dynamics is a major issue for public safety and civil protection. The present research explores the effects of the main geological features (in particular the role of the subetnean clays, interposed between the Apennine-Maghrebian flysch and the volcanic products) and the role of weakness zones, identified by fracture and fault systems, on the slope instability process. The effects of magma intrusions are also investigated. The problem is addressed by integrating field data, laboratory tests and numerical modelling. A bi- and tri-dimensional stress-strain analysis was performed by a finite difference numerical code (FLAC and FLAC3D), mainly aimed at evaluating the relationship among geological features, volcano-tectonic structures and magmatic activity in controlling the deformation processes. The analyses are well supported by dedicated structural-mechanical field surveys, which allowed to estimate the rock mass strength and deformability parameters. To take into account the uncertainties which inevitably occur in a so complicated model, many efforts were done in performing a sensitivity analysis along a WNW-ESE section crossing the volcano summit and the Valle del Bove depression. This was

  3. Nonlinear approaches in engineering applications applied mechanics, vibration control, and numerical analysis

    CERN Document Server

    Jazar, Reza

    2015-01-01

    This book focuses on the latest applications of nonlinear approaches in different disciplines of engineering. For each selected topic, detailed concept development, derivations, and relevant knowledge are provided for the convenience of the readers. The topics range from dynamic systems and control to optimal approaches in nonlinear dynamics. The volume includes invited chapters from world class experts in the field. The selected topics are of great interest in the fields of engineering and physics and this book is ideal for engineers and researchers working in a broad range of practical topics and approaches. This book also: ·         Explores the most up-to-date applications and underlying principles of nonlinear approaches to problems in engineering and physics, including sections on analytic nonlinearity and practical nonlinearity ·         Enlightens readers to the conceptual significance of nonlinear approaches with examples of applications in scientific and engineering problems from v...

  4. Nonlinear System Identification Using Quasi-ARX RBFN Models with a Parameter-Classified Scheme

    Directory of Open Access Journals (Sweden)

    Lan Wang

    2017-01-01

    Full Text Available Quasi-linear autoregressive with exogenous inputs (Quasi-ARX models have received considerable attention for their usefulness in nonlinear system identification and control. In this paper, identification methods of quasi-ARX type models are reviewed and categorized in three main groups, and a two-step learning approach is proposed as an extension of the parameter-classified methods to identify the quasi-ARX radial basis function network (RBFN model. Firstly, a clustering method is utilized to provide statistical properties of the dataset for determining the parameters nonlinear to the model, which are interpreted meaningfully in the sense of interpolation parameters of a local linear model. Secondly, support vector regression is used to estimate the parameters linear to the model; meanwhile, an explicit kernel mapping is given in terms of the nonlinear parameter identification procedure, in which the model is transformed from the nonlinear-in-nature to the linear-in-parameter. Numerical and real cases are carried out finally to demonstrate the effectiveness and generalization ability of the proposed method.

  5. Numerical modeling of atoll island hydrogeology.

    Science.gov (United States)

    Bailey, R T; Jenson, J W; Olsen, A E

    2009-01-01

    We implemented Ayers and Vachers' (1986) inclusive conceptual model for atoll island aquifers in a comprehensive numerical modeling study to evaluate the response of the fresh water lens to selected controlling climatic and geologic variables. Climatic factors include both constant and time-varying recharge rates, with particular attention paid to the effects of El Niño and the associated drought it brings to the western Pacific. Geologic factors include island width; hydraulic conductivity of the uppermost Holocene-age aquifer, which contains the fresh water lens; the depth to the contact with the underlying, and much more conductive, Pleistocene karst aquifer, which transmits tidal signals to the base of the lens; and the presence or absence of a semiconfining reef flat plate on the ocean side. Sensitivity analyses of steady-steady simulations show that lens thickness is most strongly sensitive to the depth to the Holocene-Pleistocene contact and to the hydraulic conductivity of the Holocene aquifer, respectively. Comparisons between modeling results and published observations of atoll island lens thicknesses suggest a hydraulic conductivity of approximately 50 m/d for leeward islands and approximately 400 m/d for windward islands. Results of transient simulations show that lens thickness fluctuations during average seasonal conditions and El Niño events are quite sensitive to island width, recharge rate, and hydraulic conductivity of the Holocene aquifer. In general, the depletion of the lens during drought conditions is most drastic for small, windward islands. Simulation results suggest that recovery from a 6-month drought requires about 1.5 years.

  6. Numerical Simulations for Nonlinear Waves Interaction with Multiple Perforated Quasi-Ellipse Caissons

    Directory of Open Access Journals (Sweden)

    Xiaozhong Ren

    2015-01-01

    Full Text Available A three-dimensional numerical flume is developed to study cnoidal wave interaction with multiple arranged perforated quasi-ellipse caissons. The continuity equation and the Navier-Stokes equations are used as the governing equation, and the VOF method is adopted to capture the free surface elevation. The equations are discretized on staggered cells and then solved using a finite difference method. The generation and propagation of cnoidal waves in the numerical flume are tested first. And the ability of the present model to simulate interactions between waves and structures is verified by known experimental results. Then cnoidal waves with varying incident wave height and period are generated and interact with multiple quasi-ellipse caissons with and without perforation. It is found that the perforation plays an effective role in reducing wave runup/rundown and wave forces on the caissons. The wave forces on caissons reduce with the decreasing incident wave period. The influence of the transverse distance of multiple caissons on wave forces is also investigated. A closer transverse distance between caissons can produce larger wave forces. But when relative adjacent distance L/D (L is the transverse distance and D is the width of the quasi-ellipse caisson is larger than 3, the effect of adjacent distance is limited.

  7. Modelling and control of a nonlinear magnetostrictive actuator system

    Science.gov (United States)

    Ramli, M. H. M.; Majeed, A. P. P. Abdul; Anuar, M. A. M.; Mohamed, Z.

    2018-04-01

    This paper explores the implementation of a feedforward control method to a nonlinear control system, in particular, Magnetostrictive Actuators (MA) that has excellent properties of energy conversion between the mechanical and magnetic form through magnetostriction effects which could be used in actuating and sensing application. MA is known to exhibit hysteresis behaviour and it is rate dependent (the level of hysteresis depends closely on the rate of input excitation frequency). This is, nonetheless, an undesirable behaviour and has to be eliminated in realising high precision application. The MA is modelled by a phenomenological modelling approach via Prandtl-Ishlinskii (P-I) operator to characterise the hysteresis nonlinearities. A feedforward control strategy is designed and implemented to linearize and eliminate the hysteresis by model inversion. The results show that the P-I operator has the capability to model the hysteretic nonlinearity of MA with an acceptable accuracy. Furthermore, the proposed control scheme has demonstrated to be effective in providing superior trajectory tracking.

  8. A Simple Model for Nonlinear Confocal Ultrasonic Beams

    Science.gov (United States)

    Zhang, Dong; Zhou, Lin; Si, Li-Sheng; Gong, Xiu-Fen

    2007-01-01

    A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

  9. NUMERICAL WITHOUT ITERATION METHOD OF MODELING OF ELECTROMECHANICAL PROCESSES IN ASYNCHRONOUS ENGINES

    Directory of Open Access Journals (Sweden)

    D. G. Patalakh

    2018-02-01

    Full Text Available Purpose. Development of calculation of electromagnetic and electromechanic transients is in asynchronous engines without iterations. Methodology. Numeral methods of integration of usual differential equations, programming. Findings. As the system of equations, describing the dynamics of asynchronous engine, contents the products of rotor and stator currents and product of rotation frequency of rotor and currents, so this system is nonlinear one. The numeral solution of nonlinear differential equations supposes an iteration process on every step of integration. Time-continuing and badly converging iteration process may be the reason of calculation slowing. The improvement of numeral method by the way of an iteration process removing is offered. As result the modeling time is reduced. The improved numeral method is applied for integration of differential equations, describing the dynamics of asynchronous engine. Originality. The improvement of numeral method allowing to execute numeral integrations of differential equations containing product of functions is offered, that allows to avoid an iteration process on every step of integration and shorten modeling time. Practical value. On the basis of the offered methodology the universal program of modeling of electromechanics processes in asynchronous engines could be developed as taking advantage on fast-acting.

  10. Effects of Nonlinear Inhomogeneity on the Cosmic Expansion with Numerical Relativity.

    Science.gov (United States)

    Bentivegna, Eloisa; Bruni, Marco

    2016-06-24

    We construct a three-dimensional, fully relativistic numerical model of a universe filled with an inhomogeneous pressureless fluid, starting from initial data that represent a perturbation of the Einstein-de Sitter model. We then measure the departure of the average expansion rate with respect to this homogeneous and isotropic reference model, comparing local quantities to the predictions of linear perturbation theory. We find that collapsing perturbations reach the turnaround point much earlier than expected from the reference spherical top-hat collapse model and that the local deviation of the expansion rate from the homogeneous one can be as high as 28% at an underdensity, for an initial density contrast of 10^{-2}. We then study, for the first time, the exact behavior of the backreaction term Q_{D}. We find that, for small values of the initial perturbations, this term exhibits a 1/a scaling, and that it is negative with a linearly growing absolute value for larger perturbation amplitudes, thereby contributing to an overall deceleration of the expansion. Its magnitude, on the other hand, remains very small even for relatively large perturbations.

  11. Numerical Modeling of Electrical Contact Conductance of Rough Bodies

    Directory of Open Access Journals (Sweden)

    M. V. Murashov

    2015-01-01

    Full Text Available Since the beginning of the 20th century to the present time, efforts have been made to develop a model of the electrical contact conductance. The development of micro- and nanotechnologies make contact conductance problem more essential. To conduct borrowing from a welldeveloped thermal contact conductance models on the basis of thermal and electrical conductivity analogy is often not possible due to a number of fundamental differences. While some 3Dmodels of rough bodies deformation have been developed in one way or another, a 3D-model of the electrical conductance through rough bodies contact is still not. A spatial model of electrical contact of rough bodies is proposed, allows one to calculate the electrical contact conductance as a function of the contact pressure. Representative elements of the bodies are parallelepipeds with deterministic roughness on the contacting surfaces. First the non-linear elastic-plastic deformation of rough surface under external pressure is solved using the finite element software ANSYS. Then the solution of electrostatic problem goes on the same finite element mesh. Aluminum AD1 is used as the material of the contacting bodies with properties that account for cold work hardening of the surface. The numerical model is built within the continuum mechanics and nanoscale effects are not taken into account. The electrical contact conductance was calculated on the basis of the concept of electrical resistance of the model as the sum of the electrical resistances of the contacting bodies and the contact itself. It was assumed that there is no air in the gap between the bodies. The dependence of the electrical contact conductance on the contact pressure is calculated as well as voltage and current density distributions in the contact bodies. It is determined that the multi-asperity contact mode, adequate to real roughness, is achieved at pressures higher than 3MPa, while results within the single contact spot are

  12. Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity

    Directory of Open Access Journals (Sweden)

    Isao Ishida

    2015-01-01

    Full Text Available We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor’s 500 (S&P 500 and several other indices, we obtained good performance using these models in an out-of-sample forecasting exercise compared with the forecasts obtained based on the usual linear heterogeneous autoregressive and other models of realized volatility.

  13. Dissipative quantum dynamics and nonlinear sigma-model

    International Nuclear Information System (INIS)

    Tarasov, V.E.

    1992-01-01

    Sedov variational principle which is the generalization of the least action principle for the dissipative and irreversible processes and the classical dissipative mechanics in the phase space is considered. Quantum dynamics for the dissipative and irreversible processes is constructed. As an example of the dissipative quantum theory the nonlinear two-dimensional sigma-model is considered. The conformal anomaly of the energy momentum tensor trace for closed bosonic string on the affine-metric manifold is investigated. The two-loop metric beta-function for nonlinear dissipative sigma-model was calculated. The results are compared with the ultraviolet two-loop conterterms for affine-metric sigma model. 71 refs

  14. On the Validation of a Numerical Model for the Analysis of Soil-Structure Interaction Problems

    Directory of Open Access Journals (Sweden)

    Jorge Luis Palomino Tamayo

    Full Text Available Abstract Modeling and simulation of mechanical response of structures, relies on the use of computational models. Therefore, verification and validation procedures are the primary means of assessing accuracy, confidence and credibility in modeling. This paper is concerned with the validation of a three dimensional numerical model based on the finite element method suitable for the dynamic analysis of soil-structure interaction problems. The soil mass, structure, structure's foundation and the appropriate boundary conditions can be represented altogether in a single model by using a direct approach. The theory of porous media of Biot is used to represent the soil mass as a two-phase material which is considered to be fully saturated with water; meanwhile other parts of the system are treated as one-phase materials. Plasticity of the soil mass is the main source of non-linearity in the problem and therefore an iterative-incremental algorithm based on the Newton-Raphson procedure is used to solve the nonlinear equilibrium equations. For discretization in time, the Generalized Newmark-β method is used. The soil is represented by a plasticity-based, effective-stress constitutive model suitable for liquefaction. Validation of the present numerical model is done by comparing analytical and centrifuge test results of soil and soil-pile systems with those results obtained with the present numerical model. A soil-pile-structure interaction problem is also presented in order to shown the potentiality of the numerical tool.

  15. The Lie-Poisson structure of integrable classical non-linear sigma models

    International Nuclear Information System (INIS)

    Bordemann, M.; Forger, M.; Schaeper, U.; Laartz, J.

    1993-01-01

    The canonical structure of classical non-linear sigma models on Riemannian symmetric spaces, which constitute the most general class of classical non-linear sigma models known to be integrable, is shown to be governed by a fundamental Poisson bracket relation that fits into the r-s-matrix formalism for non-ultralocal integrable models first discussed by Maillet. The matrices r and s are computed explicitly and, being field dependent, satisfy fundamental Poisson bracket relations of their own, which can be expressed in terms of a new numerical matrix c. It is proposed that all these Poisson brackets taken together are representation conditions for a new kind of algebra which, for this class of models, replaces the classical Yang-Baxter algebra governing the canonical structure of ultralocal models. The Poisson brackets for the transition matrices are also computed, and the notorious regularization problem associated with the definition of the Poisson brackets for the monodromy matrices is discussed. (orig.)

  16. On the kinematic criterion for the inception of breaking in surface gravity waves: Fully nonlinear numerical simulations and experimental verification

    Science.gov (United States)

    Khait, A.; Shemer, L.

    2018-05-01

    The evolution of unidirectional wave trains containing a wave that gradually becomes steep is evaluated experimentally and numerically using the Boundary Element Method (BEM). The boundary conditions for the nonlinear numerical simulations corresponded to the actual movements of the wavemaker paddle as recorded in the physical experiments, allowing direct comparison between the measured in experiments' characteristics of the wave train and the numerical predictions. The high level of qualitative and quantitative agreement between the measurements and simulations validated the kinematic criterion for the inception of breaking and the location of the spilling breaker, on the basis of the BEM computations and associated experiments. The breaking inception is associated with the fluid particle at the crest of the steep wave that has been accelerated to match and surpass the crest velocity. The previously observed significant slow-down of the crest while approaching breaking is verified numerically; both narrow-/broad-banded wave trains are considered. Finally, the relative importance of linear and nonlinear contributions is analyzed.

  17. Convergence Guaranteed Nonlinear Constraint Model Predictive Control via I/O Linearization

    Directory of Open Access Journals (Sweden)

    Xiaobing Kong

    2013-01-01

    Full Text Available Constituting reliable optimal solution is a key issue for the nonlinear constrained model predictive control. Input-output feedback linearization is a popular method in nonlinear control. By using an input-output feedback linearizing controller, the original linear input constraints will change to nonlinear constraints and sometimes the constraints are state dependent. This paper presents an iterative quadratic program (IQP routine on the continuous-time system. To guarantee its convergence, another iterative approach is incorporated. The proposed algorithm can reach a feasible solution over the entire prediction horizon. Simulation results on both a numerical example and the continuous stirred tank reactors (CSTR demonstrate the effectiveness of the proposed method.

  18. Dynamic modeling of geometrically nonlinear electrostatically actuated microbeams (Corotational Finite Element formulation and analysis)

    Energy Technology Data Exchange (ETDEWEB)

    Borhan, H; Ahmadian, M T [Sharif University of Technology, Center of Excellence for Design, Robotics and Automation, School of Mechanical Engineering, PO Box 11365-9567, Tehran (Iran, Islamic Republic of)

    2006-04-01

    In this paper, a complete nonlinear finite element model for coupled-domain MEMS devices with electrostatic actuation and squeeze film effect is developed. For this purpose, a corotational finite element formulation for the dynamic analysis of planer Euler beams is employed. In this method, the internal nodal forces due to deformation and intrinsic residual stresses, the inertial nodal forces, and the damping effect of squeezed air film are systematically derived by consistent linearization of the fully geometrically nonlinear beam theory using d'Alamber and virtual work principles. An incremental-iterative method based on the Newmark direct integration procedure and the Newton-Raphson algorithm is used to solve the nonlinear dynamic equilibrium equations. Numerical examples are presented and compared with experimental findings which indicate properly good agreement.

  19. A numerical model for simulating electroosmotic micro- and nanochannel flows under non-Boltzmann equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoungjin; Kwak, Ho Sang [School of Mechanical Engineering, Kumoh National Institute of Technology, 1 Yangho, Gumi, Gyeongbuk 730-701 (Korea, Republic of); Song, Tae-Ho, E-mail: kimkj@kumoh.ac.kr, E-mail: hskwak@kumoh.ac.kr, E-mail: thsong@kaist.ac.kr [Department of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong, Yuseong, Daejeon 305-701 (Korea, Republic of)

    2011-08-15

    This paper describes a numerical model for simulating electroosmotic flows (EOFs) under non-Boltzmann equilibrium in a micro- and nanochannel. The transport of ionic species is represented by employing the Nernst-Planck equation. Modeling issues related to numerical difficulties are discussed, which include the handling of boundary conditions based on surface charge density, the associated treatment of electric potential and the evasion of nonlinearity due to the electric body force. The EOF in the entrance region of a straight channel is examined. The numerical results show that the present model is useful for the prediction of the EOFs requiring a fine resolution of the electric double layer under either the Boltzmann equilibrium or non-equilibrium. Based on the numerical results, the correlation between the surface charge density and the zeta potential is investigated.

  20. Two dimensional fully nonlinear numerical wave tank based on the BEM

    Science.gov (United States)

    Sun, Zhe; Pang, Yongjie; Li, Hongwei

    2012-12-01

    The development of a two dimensional numerical wave tank (NWT) with a rocker or piston type wavemaker based on the high order boundary element method (BEM) and mixed Eulerian-Lagrangian (MEL) is examined. The cauchy principle value (CPV) integral is calculated by a special Gauss type quadrature and a change of variable. In addition the explicit truncated Taylor expansion formula is employed in the time-stepping process. A modified double nodes method is assumed to tackle the corner problem, as well as the damping zone technique is used to absorb the propagation of the free surface wave at the end of the tank. A variety of waves are generated by the NWT, for example; a monochromatic wave, solitary wave and irregular wave. The results confirm the NWT model is efficient and stable.

  1. Relaxation and Numerical Approximation of a Two-Fluid Two-Pressure Diphasic Model

    International Nuclear Information System (INIS)

    Ambroso, A.; Chalons, Ch.; Galie, Th.; Chalons, Ch.; Coquel, F.; Coquel, F.

    2009-01-01

    This paper is concerned with the numerical approximation of the solutions of a two-fluid two-pressure model used in the modelling of two-phase flows. We present a relaxation strategy for easily dealing with both the nonlinearities associated with the pressure laws and the nonconservative terms that are inherently present in the set of convective equations and that couple the two phases. In particular, the proposed approximate Riemann solver is given by explicit formulas, preserves the natural phase space, and exactly captures the coupling waves between the two phases. Numerical evidences are given to corroborate the validity of our approach. (authors)

  2. Model reduction and frequency residuals for a robust estimation of nonlinearities in subspace identification

    Science.gov (United States)

    De Filippis, G.; Noël, J. P.; Kerschen, G.; Soria, L.; Stephan, C.

    2017-09-01

    The introduction of the frequency-domain nonlinear subspace identification (FNSI) method in 2013 constitutes one in a series of recent attempts toward developing a realistic, first-generation framework applicable to complex structures. If this method showed promising capabilities when applied to academic structures, it is still confronted with a number of limitations which needs to be addressed. In particular, the removal of nonphysical poles in the identified nonlinear models is a distinct challenge. In the present paper, it is proposed as a first contribution to operate directly on the identified state-space matrices to carry out spurious pole removal. A modal-space decomposition of the state and output matrices is examined to discriminate genuine from numerical poles, prior to estimating the extended input and feedthrough matrices. The final state-space model thus contains physical information only and naturally leads to nonlinear coefficients free of spurious variations. Besides spurious variations due to nonphysical poles, vibration modes lying outside the frequency band of interest may also produce drifts of the nonlinear coefficients. The second contribution of the paper is to include residual terms, accounting for the existence of these modes. The proposed improved FNSI methodology is validated numerically and experimentally using a full-scale structure, the Morane-Saulnier Paris aircraft.

  3. A 2D nonlinear multiring model for blood flow in large elastic arteries

    Science.gov (United States)

    Ghigo, Arthur R.; Fullana, Jose-Maria; Lagrée, Pierre-Yves

    2017-12-01

    In this paper, we propose a two-dimensional nonlinear ;multiring; model to compute blood flow in axisymmetric elastic arteries. This model is designed to overcome the numerical difficulties of three-dimensional fluid-structure interaction simulations of blood flow without using the over-simplifications necessary to obtain one-dimensional blood flow models. This multiring model is derived by integrating over concentric rings of fluid the simplified long-wave Navier-Stokes equations coupled to an elastic model of the arterial wall. The resulting system of balance laws provides a unified framework in which both the motion of the fluid and the displacement of the wall are dealt with simultaneously. The mathematical structure of the multiring model allows us to use a finite volume method that guarantees the conservation of mass and the positivity of the numerical solution and can deal with nonlinear flows and large deformations of the arterial wall. We show that the finite volume numerical solution of the multiring model provides at a reasonable computational cost an asymptotically valid description of blood flow velocity profiles and other averaged quantities (wall shear stress, flow rate, ...) in large elastic and quasi-rigid arteries. In particular, we validate the multiring model against well-known solutions such as the Womersley or the Poiseuille solutions as well as against steady boundary layer solutions in quasi-rigid constricted and expanded tubes.

  4. An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models

    International Nuclear Information System (INIS)

    Harlim, John; Mahdi, Adam; Majda, Andrew J.

    2014-01-01

    A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partial noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model

  5. A Comparative Study Of Stock Price Forecasting Using Nonlinear Models

    Directory of Open Access Journals (Sweden)

    Diteboho Xaba

    2017-03-01

    Full Text Available This study compared the in-sample forecasting accuracy of three forecasting nonlinear models namely: the Smooth Transition Regression (STR model, the Threshold Autoregressive (TAR model and the Markov-switching Autoregressive (MS-AR model. Nonlinearity tests were used to confirm the validity of the assumptions of the study. The study used model selection criteria, SBC to select the optimal lag order and for the selection of appropriate models. The Mean Square Error (MSE, Mean Absolute Error (MAE and Root Mean Square Error (RMSE served as the error measures in evaluating the forecasting ability of the models. The MS-AR models proved to perform well with lower error measures as compared to LSTR and TAR models in most cases.

  6. Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime

    Science.gov (United States)

    Zhou, H. Y.; Xiao, C. Z.; Zou, D. B.; Li, X. Z.; Yin, Y.; Shao, F. Q.; Zhuo, H. B.

    2018-06-01

    Nonlinear behaviors of stimulated Raman scattering driven by finite bandwidth pumps are studied by one dimensional particle-in-cell simulations. The broad spectral feature of plasma waves and backscattered light reveals the different coupling and growth mechanisms, which lead to the suppression effect before the deep nonlinear stage. It causes nonperiodic plasma wave packets and reduces packet and etching velocities. Based on the negative frequency shift and electron energy distribution, the long-time evolution of instability can be divided into two stages by the relaxation time. It is a critical time after which the alleviation effects of nonlinear frequency shift and hot electrons are replaced by enhancement. Thus, the broadband pump suppresses instability at early time. However, it aggravates in the deep nonlinear stage by lifting the saturation level due to the coupling of the incident pump with each frequency shifted plasma wave. Our simulation results show that the nonlinear effects are valid in a bandwidth range from 2.25% to 3.0%, and the physics are similar within a nearby parameter space.

  7. Large scale experiments as a tool for numerical model development

    DEFF Research Database (Denmark)

    Kirkegaard, Jens; Hansen, Erik Asp; Fuchs, Jesper

    2003-01-01

    Experimental modelling is an important tool for study of hydrodynamic phenomena. The applicability of experiments can be expanded by the use of numerical models and experiments are important for documentation of the validity of numerical tools. In other cases numerical tools can be applied...

  8. forecasting with nonlinear time series model: a monte-carlo

    African Journals Online (AJOL)

    PUBLICATIONS1

    erated recursively up to any step greater than one. For nonlinear time series model, point forecast for step one can be done easily like in the linear case but forecast for a step greater than or equal to ..... London. Franses, P. H. (1998). Time series models for business and Economic forecasting, Cam- bridge University press.

  9. Nonlinear Dynamics of a Helicopter Model in Ground Resonance

    Science.gov (United States)

    Tang, D. M.; Dowell, E. H.

    1985-01-01

    An approximate theoretical method is presented which determined the limit cycle behavior of a helicopter model which has one or two nonlinear dampers. The relationship during unstable ground resonance oscillations between lagging motion of the blades and fuselage motion is discussed. An experiment was carried out on using a helicopter scale model. The experimental results agree with those of the theoretical analysis.

  10. Linear and Nonlinear Career Models: Metaphors, Paradigms, and Ideologies.

    Science.gov (United States)

    Buzzanell, Patrice M.; Goldzwig, Steven R.

    1991-01-01

    Examines the linear or bureaucratic career models (dominant in career research, metaphors, paradigms, and ideologies) which maintain career myths of flexibility and individualized routes to success in organizations incapable of offering such versatility. Describes nonlinear career models which offer suggestive metaphors for re-visioning careers…

  11. Numerical modelling of new rockfall interception nets

    Science.gov (United States)

    von Boetticher, Albrecht; Volkwein, Axel; Wendeler, Corinna

    2010-05-01

    The design and certification of effective rockfall protection barriers is mainly achieved through 1:1 prototype testing. In order to reduce development costs of a prototype it is recommended that pre-studies using numerical simulations are performed. A large component to modelling rockfall protection systems is the numerical simulation of the nets. To date there exist several approaches to model the different mesh types such as ring nets or diagonal meshes (Nicot 1999, Cazzani et al. 2002, Volkwein 2004). However, the consideration of chain link meshes has not yet been realised. Chain link meshes are normally found as standard fence structures. However, they also exist in setups using high-strength steel and wire bundles. These variants show an enormous capacity to retain loads e.g. rockfalls, and at the same time are very efficient due to their low demand of steel material. The increasing application of chain link mesh in barrier systems requires an accurate model is available to complete prototype studies. A new approach now aims to perform a Finite Element simulation of such chain link meshes. The main challenge herein is to achieve the net deformation behaviour that is observed in field tests also in the simulation. A simulation using simple truss elements would not work since it neglects the out-of-plane-height of the mesh construction providing important reserves for local and global high deformations. Thus addressing this, a specially developed Discrete Element is able to reconstruct the mechanical behaviour of the single chain wire (bundles). As input parameters it utilises typical properties such as longitudinal and transversal mesh widths, and break loads resulting from in-plane-tension tests and steel strength. The single chain elements then can be combined to a complete mesh (e.g. 130 x 65 mm, 3 - 4 mm wire with a strength of 1770 N-mm2). Combining these elements with a supporting structure consisting of posts, ropes and energy absorbers, enables the

  12. Nonlinear Dynamic Modeling of Langevin-Type Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Nicolás Peréz Alvarez

    2015-11-01

    Full Text Available Langevin transducers are employed in several applications, such as power ultrasound systems, naval hydrophones, and high-displacement actuators. Nonlinear effects can influence their performance, especially at high vibration amplitude levels. These nonlinear effects produce variations in the resonant frequency, harmonics of the excitation frequency, in addition to loss of symmetry in the frequency response and “frequency domain hysteresis”. In this context, this paper presents a simplified nonlinear dynamic model of power ultrasound transducers requiring only two parameters for simulating the most relevant nonlinear effects. One parameter reproduces the changes in the resonance frequency and the other introduces the dependence of the frequency response on the history of the system. The piezoelectric constitutive equations are extended by a linear dependence of the elastic constant on the mechanical displacement amplitude. For introducing the frequency hysteresis, the elastic constant is computed by combining the current value of the mechanical amplitude with the previous state amplitude. The model developed in this work is applied for predicting the dynamic responses of a 26 kHz ultrasonic transducer. The comparison of theoretical and experimental responses, obtained at several input voltages around the tuned frequency, shows a good agreement, indicating that the model can accurately describe the transducer nonlinear behavior.

  13. 2D and 3D numerical modeling of seismic waves from explosion sources

    International Nuclear Information System (INIS)

    McLaughlin, K.L.; Stevens, J.L.; Barker, T.G.; Shkoller, B.; Day, S.M.

    1993-01-01

    Over the last decade, nonlinear and linear 2D axisymmetric finite difference codes have been used in conjunction with far-field seismic Green's functions to simulate seismic waves from a variety of sources. In this paper we briefly review some of the results and conclusions that have resulted from numerical simulations and explosion modeling in support of treaty verification research at S-CUBED in the last decade. We then describe in more detail the results from two recent projects. Our goal is to provide a flavor for the kinds of problems that can be examined with numerical methods for modeling excitation of seismic waves from explosions. Two classes of problems have been addressed; nonlinear and linear near-source interactions. In both classes of problems displacements and tractions are saved on a closed surface in the linear region and the representation theorem is used to propagate the seismic waves to the far-field

  14. Numerical modelling of nearshore wave transformation

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B.U.; SanilKumar, V.

    A software has been developed for numerical refraction study based on finite amplitude wave theories. Wave attenuation due to shoaling, bottom friction, bottom percolation and viscous dissipation has also been incorporated. The software...

  15. Numerical modelling of multicomponent LNAPL dissolution kinetics ...

    Indian Academy of Sciences (India)

    subsequent removal of free phase liquid, still the organic compounds are present .... Since the flow through porous media is mainly restricted to the pore space ..... initial and boundary conditions for the numerical scheme are given in table 2.

  16. Enzymatic Synthesis of Ampicillin: Nonlinear Modeling, Kinetics Estimation, and Adaptive Control

    Directory of Open Access Journals (Sweden)

    Monica Roman

    2012-01-01

    Full Text Available Nowadays, the use of advanced control strategies in biotechnology is quite low. A main reason is the lack of quality of the data, and the fact that more sophisticated control strategies must be based on a model of the dynamics of bioprocesses. The nonlinearity of the bioprocesses and the absence of cheap and reliable instrumentation require an enhanced modeling effort and identification strategies for the kinetics. The present work approaches modeling and control strategies for the enzymatic synthesis of ampicillin that is carried out inside a fed-batch bioreactor. First, a nonlinear dynamical model of this bioprocess is obtained by using a novel modeling procedure for biotechnology: the bond graph methodology. Second, a high gain observer is designed for the estimation of the imprecisely known kinetics of the synthesis process. Third, by combining an exact linearizing control law with the on-line estimation kinetics algorithm, a nonlinear adaptive control law is designed. The case study discussed shows that a nonlinear feedback control strategy applied to the ampicillin synthesis bioprocess can cope with disturbances, noisy measurements, and parametric uncertainties. Numerical simulations performed with MATLAB environment are included in order to test the behavior and the performances of the proposed estimation and control strategies.

  17. Finite Element Model for Nonlinear Analysis of Reinforced Concrete Beams and Plane Frames

    Directory of Open Access Journals (Sweden)

    R.S.B. STRAMANDINOLI

    Full Text Available Abstract In this work, a two-dimensional finite element (FE model for physical and geometric nonlinear analysis of reinforced concrete beams and plane frames, developed by the authors, is presented. The FE model is based on the Euler-Bernoulli Beam Theory, in which shear deformations are neglected. The bar elements have three nodes with a total of seven degrees of freedom. Three Gauss-points are utilized for the element integration, with the element section discretized into layers at each Gauss point (Fiber Model. It is assumed that concrete and reinforcing bars are perfectly bonded, and each section layer is assumed to be under a uniaxial stress-state. Nonlinear constitutive laws are utilized for both concrete and reinforcing steel layers, and a refined tension-stiffening model, developed by the authors, is included. The Total Lagrangean Formulation is adopted for geometric nonlinear consideration and several methods can be utilized to achieve equilibrium convergence of the nonlinear equations. The developed model is implemented into a computer program named ANEST/CA, which is validated by comparison with some tests on RC beams and plane frames, showing an excellent correlation between numerical and experimental results.

  18. Note on off-shell relations in nonlinear sigma model

    International Nuclear Information System (INIS)

    Chen, Gang; Du, Yi-Jian; Li, Shuyi; Liu, Hanqing

    2015-01-01

    In this note, we investigate relations between tree-level off-shell currents in nonlinear sigma model. Under Cayley parametrization, all odd-point currents vanish. We propose and prove a generalized U(1) identity for even-point currents. The off-shell U(1) identity given in http://dx.doi.org/10.1007/JHEP01(2014)061 is a special case of the generalized identity studied in this note. The on-shell limit of this identity is equivalent with the on-shell KK relation. Thus this relation provides the full off-shell correspondence of tree-level KK relation in nonlinear sigma model.

  19. Likelihood-Based Inference in Nonlinear Error-Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    We consider a class of vector nonlinear error correction models where the transfer function (or loadings) of the stationary relation- ships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long- run cointegration parameters, and the short-run parameters. Asymp- totic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normaity can be found. A simulation study...

  20. A model reduction approach to numerical inversion for a parabolic partial differential equation

    International Nuclear Information System (INIS)

    Borcea, Liliana; Druskin, Vladimir; Zaslavsky, Mikhail; Mamonov, Alexander V

    2014-01-01

    We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss–Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments. (paper)

  1. A model reduction approach to numerical inversion for a parabolic partial differential equation

    Science.gov (United States)

    Borcea, Liliana; Druskin, Vladimir; Mamonov, Alexander V.; Zaslavsky, Mikhail

    2014-12-01

    We propose a novel numerical inversion algorithm for the coefficients of parabolic partial differential equations, based on model reduction. The study is motivated by the application of controlled source electromagnetic exploration, where the unknown is the subsurface electrical resistivity and the data are time resolved surface measurements of the magnetic field. The algorithm presented in this paper considers inversion in one and two dimensions. The reduced model is obtained with rational interpolation in the frequency (Laplace) domain and a rational Krylov subspace projection method. It amounts to a nonlinear mapping from the function space of the unknown resistivity to the small dimensional space of the parameters of the reduced model. We use this mapping as a nonlinear preconditioner for the Gauss-Newton iterative solution of the inverse problem. The advantage of the inversion algorithm is twofold. First, the nonlinear preconditioner resolves most of the nonlinearity of the problem. Thus the iterations are less likely to get stuck in local minima and the convergence is fast. Second, the inversion is computationally efficient because it avoids repeated accurate simulations of the time-domain response. We study the stability of the inversion algorithm for various rational Krylov subspaces, and assess its performance with numerical experiments.

  2. Nonlinear thermal reduced model for Microwave Circuit Analysis

    OpenAIRE

    Chang, Christophe; Sommet, Raphael; Quéré, Raymond; Dueme, Ph.

    2004-01-01

    With the constant increase of transistor power density, electro thermal modeling is becoming a necessity for accurate prediction of device electrical performances. For this reason, this paper deals with a methodology to obtain a precise nonlinear thermal model based on Model Order Reduction of a three dimensional thermal Finite Element (FE) description. This reduced thermal model is based on the Ritz vector approach which ensure the steady state solution in every case. An equi...

  3. Modelling the nonlinear behaviour of an underplatform damper test rig for turbine applications

    Science.gov (United States)

    Pesaresi, L.; Salles, L.; Jones, A.; Green, J. S.; Schwingshackl, C. W.

    2017-02-01

    Underplatform dampers (UPD) are commonly used in aircraft engines to mitigate the risk of high-cycle fatigue failure of turbine blades. The energy dissipated at the friction contact interface of the damper reduces the vibration amplitude significantly, and the couplings of the blades can also lead to significant shifts of the resonance frequencies of the bladed disk. The highly nonlinear behaviour of bladed discs constrained by UPDs requires an advanced modelling approach to ensure that the correct damper geometry is selected during the design of the turbine, and that no unexpected resonance frequencies and amplitudes will occur in operation. Approaches based on an explicit model of the damper in combination with multi-harmonic balance solvers have emerged as a promising way to predict the nonlinear behaviour of UPDs correctly, however rigorous experimental validations are required before approaches of this type can be used with confidence. In this study, a nonlinear analysis based on an updated explicit damper model having different levels of detail is performed, and the results are evaluated against a newly-developed UPD test rig. Detailed linear finite element models are used as input for the nonlinear analysis, allowing the inclusion of damper flexibility and inertia effects. The nonlinear friction interface between the blades and the damper is described with a dense grid of 3D friction contact elements which allow accurate capturing of the underlying nonlinear mechanism that drives the global nonlinear behaviour. The introduced explicit damper model showed a great dependence on the correct contact pressure distribution. The use of an accurate, measurement based, distribution, better matched the nonlinear dynamic behaviour of the test rig. Good agreement with the measured frequency response data could only be reached when the zero harmonic term (constant term) was included in the multi-harmonic expansion of the nonlinear problem, highlighting its importance

  4. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme

    Science.gov (United States)

    Tu, GuoHua; Deng, XiaoGang; Mao, MeiLiang

    2013-04-01

    A modified transition model is given based on the shear stress transport (SST) turbulence model and an intermittency transport equation. The energy gradient term in the original model is replaced by flow strain rate to saving computational costs. The model employs local variables only, and then it can be conveniently implemented in modern computational fluid dynamics codes. The fifth-order weighted compact nonlinear scheme and the fourth-order staggered scheme are applied to discrete the governing equations for the purpose of minimizing discretization errors, so as to mitigate the confusion between numerical errors and transition model errors. The high-order package is compared with a second-order TVD method on simulating the transitional flow of a flat plate. Numerical results indicate that the high-order package give better grid convergence property than that of the second-order method. Validation of the transition model is performed for transitional flows ranging from low speed to hypersonic speed.

  5. Numerical Modelling of Sediment Transport in Combined Sewer Systems

    DEFF Research Database (Denmark)

    Schlütter, Flemming

    A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed.......A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed....

  6. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...... symmetric non-linear error correction considered. A simulation study shows that the fi…nite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....

  7. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...... symmetric non-linear error correction are considered. A simulation study shows that the finite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....

  8. Mathematical models for suspension bridges nonlinear structural instability

    CERN Document Server

    Gazzola, Filippo

    2015-01-01

    This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.

  9. Numerical Analysis of Strongly Nonlinear Oscillation Systems using He's Max-Min Method

    DEFF Research Database (Denmark)

    Babazadeh, H; Domairry, G; Barari, Amin

    2011-01-01

    Nonlinear functions are crucial points and terms in engineering problems. Actual and physical problems can be solved by solving and processing such functions. Thus, most scientists and engineers focus on solving these equations. This paper presents a novel method called the max-min method...

  10. CIP - a new numerical solver for general nonlinear hyperbolic equations in multi-dimension

    International Nuclear Information System (INIS)

    Yabe, Takashi; Takewaki, Hideaki.

    1986-12-01

    A new method CIP (Cubic-Interpolated Pseudo-particle) to solve hyperbolic equations is proposed. The method gives a stable and less diffusive result for square wave propagation compared with FCT (Flux-Corrected Transport) and a better result for propagation of a sine wave with a discontinuity. The scheme is extended to nonlinear and multi-dimensional problems. (orig.) [de

  11. A numerical 4D Collision Risk Model

    Science.gov (United States)

    Schmitt, Pal; Culloch, Ross; Lieber, Lilian; Kregting, Louise

    2017-04-01

    With the growing number of marine renewable energy (MRE) devices being installed across the world, some concern has been raised about the possibility of harming mobile, marine fauna by collision. Although physical contact between a MRE device and an organism has not been reported to date, these novel sub-sea structures pose a challenge for accurately estimating collision risks as part of environmental impact assessments. Even if the animal motion is simplified to linear translation, ignoring likely evasive behaviour, the mathematical problem of establishing an impact probability is not trivial. We present a numerical algorithm to obtain such probability distributions using transient, four-dimensional simulations of a novel marine renewable device concept, Deep Green, Minesto's power plant and hereafter referred to as the 'kite' that flies in a figure-of-eight configuration. Simulations were carried out altering several configurations including kite depth, kite speed and kite trajectory while keeping the speed of the moving object constant. Since the kite assembly is defined as two parts in the model, a tether (attached to the seabed) and the kite, collision risk of each part is reported independently. By comparing the number of collisions with the number of collision-free simulations, a probability of impact for each simulated position in the cross- section of the area is considered. Results suggest that close to the bottom, where the tether amplitude is small, the path is always blocked and the impact probability is 100% as expected. However, higher up in the water column, the collision probability is twice as high in the mid line, where the tether passes twice per period than at the extremes of its trajectory. The collision probability distribution is much more complex in the upper end of the water column, where the kite and tether can simultaneously collide with the object. Results demonstrate the viability of such models, which can also incorporate empirical

  12. Modeling and non-linear responses of MEMS capacitive accelerometer

    Directory of Open Access Journals (Sweden)

    Sri Harsha C.

    2014-01-01

    Full Text Available A theoretical investigation of an electrically actuated beam has been illustrated when the electrostatic-ally actuated micro-cantilever beam is separated from the electrode by a moderately large gap for two distinct types of geometric configurations of MEMS accelerometer. Higher order nonlinear terms have been taken into account for studying the pull in voltage analysis. A nonlinear model of gas film squeezing damping, another source of nonlinearity in MEMS devices is included in obtaining the dynamic responses. Moreover, in the present work, the possible source of nonlinearities while formulating the mathematical model of a MEMS accelerometer and their influences on the dynamic responses have been investigated. The theoretical results obtained by using MATLAB has been verified with the results obtained in FE software and has been found in good agreement. Criterion towards stable micro size accelerometer for each configuration has been investigated. This investigation clearly provides an understanding of nonlinear static and dynamics characteristics of electrostatically micro cantilever based device in MEMS.

  13. Modelling of a bridge-shaped nonlinear piezoelectric energy harvester

    International Nuclear Information System (INIS)

    Gafforelli, G; Corigliano, A; Xu, R; Kim, S G

    2013-01-01

    Piezoelectric MicroElectroMechanical Systems (MEMS) energy harvesting is an attractive technology for harvesting small magnitudes of energy from ambient vibrations. Increasing the operating frequency bandwidth of such devices is one of the major issues for real world applications. A MEMS-scale doubly clamped nonlinear beam resonator is designed and developed to demonstrate very wide bandwidth and high power density. In this paper a first complete theoretical discussion of nonlinear resonating piezoelectric energy harvesting is provided. The sectional behaviour of the beam is studied through the Classical Lamination Theory (CLT) specifically modified to introduce the piezoelectric coupling and nonlinear Green-Lagrange strain tensor. A lumped parameter model is built through Rayleigh-Ritz Method and the resulting nonlinear coupled equations are solved in the frequency domain through the Harmonic Balance Method (HBM). Finally, the influence of external load resistance on the dynamic behaviour is studied. The theoretical model shows that nonlinear resonant harvesters have much wider power bandwidth than that of linear resonators but their maximum power is still bounded by the mechanical damping as is the case for linear resonating harvesters

  14. Global-local nonlinear model reduction for flows in heterogeneous porous media

    KAUST Repository

    AlOtaibi, Manal; Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan; Ghommem, Mehdi

    2015-01-01

    In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.

  15. Global-local nonlinear model reduction for flows in heterogeneous porous media

    KAUST Repository

    AlOtaibi, Manal

    2015-08-01

    In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.

  16. [New approaches in pharmacology: numerical modelling and simulation].

    Science.gov (United States)

    Boissel, Jean-Pierre; Cucherat, Michel; Nony, Patrice; Dronne, Marie-Aimée; Kassaï, Behrouz; Chabaud, Sylvie

    2005-01-01

    The complexity of pathophysiological mechanisms is beyond the capabilities of traditional approaches. Many of the decision-making problems in public health, such as initiating mass screening, are complex. Progress in genomics and proteomics, and the resulting extraordinary increase in knowledge with regard to interactions between gene expression, the environment and behaviour, the customisation of risk factors and the need to combine therapies that individually have minimal though well documented efficacy, has led doctors to raise new questions: how to optimise choice and the application of therapeutic strategies at the individual rather than the group level, while taking into account all the available evidence? This is essentially a problem of complexity with dimensions similar to the previous ones: multiple parameters with nonlinear relationships between them, varying time scales that cannot be ignored etc. Numerical modelling and simulation (in silico investigations) have the potential to meet these challenges. Such approaches are considered in drug innovation and development. They require a multidisciplinary approach, and this will involve modification of the way research in pharmacology is conducted.

  17. Numerical

    Directory of Open Access Journals (Sweden)

    M. Boumaza

    2015-07-01

    Full Text Available Transient convection heat transfer is of fundamental interest in many industrial and environmental situations, as well as in electronic devices and security of energy systems. Transient fluid flow problems are among the more difficult to analyze and yet are very often encountered in modern day technology. The main objective of this research project is to carry out a theoretical and numerical analysis of transient convective heat transfer in vertical flows, when the thermal field is due to different kinds of variation, in time and space of some boundary conditions, such as wall temperature or wall heat flux. This is achieved by the development of a mathematical model and its resolution by suitable numerical methods, as well as performing various sensitivity analyses. These objectives are achieved through a theoretical investigation of the effects of wall and fluid axial conduction, physical properties and heat capacity of the pipe wall on the transient downward mixed convection in a circular duct experiencing a sudden change in the applied heat flux on the outside surface of a central zone.

  18. Bayesian nonlinear structural FE model and seismic input identification for damage assessment of civil structures

    Science.gov (United States)

    Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.

    2017-09-01

    A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.

  19. Nonlinear finite element modeling of concrete deep beams with openings strengthened with externally-bonded composites

    International Nuclear Information System (INIS)

    Hawileh, Rami A.; El-Maaddawy, Tamer A.; Naser, Mohannad Z.

    2012-01-01

    Highlights: ► A 3D nonlinear FE model is developed of RC deep beams with web openings. ► We used cohesion elements to simulate bond. ► The developed FE model is suitable for analysis of such complex structures. -- Abstract: This paper aims to develop 3D nonlinear finite element (FE) models for reinforced concrete (RC) deep beams containing web openings and strengthened in shear with carbon fiber reinforced polymer (CFRP) composite sheets. The web openings interrupted the natural load path either fully or partially. The FE models adopted realistic materials constitutive laws that account for the nonlinear behavior of materials. In the FE models, solid elements for concrete, multi-layer shell elements for CFRP and link elements for steel reinforcement were used to simulate the physical models. Special interface elements were implemented in the FE models to simulate the interfacial bond behavior between the concrete and CFRP composites. A comparison between the FE results and experimental data published in the literature demonstrated the validity of the computational models in capturing the structural response for both unstrengthened and CFRP-strengthened deep beams with openings. The developed FE models can serve as a numerical platform for performance prediction of RC deep beams with openings strengthened in shear with CFRP composites.

  20. Nonlinear Dynamic Model of PMBLDC Motor Considering Core Losses

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech

    2017-01-01

    The phase variable model is used commonly when simulating a motor drive system with a three-phase permanent magnet brushless DC (PMBLDC) motor. The phase variable model neglects core losses and this affects its accuracy when modelling fractional-slot machines. The inaccuracy of phase variable mod...... on the detailed analysis of the flux path and the variation of flux in different components of the machine. A prototype of fractional slot axial flux PMBLDC in-wheel motor is used to assess the proposed nonlinear dynamic model....... of fractional-slot machines can be attributed to considerable armature flux harmonics, which causes an increased core loss. This study proposes a nonlinear phase variable model of PMBLDC motor that considers the core losses induced in the stator and the rotor. The core loss model is developed based...

  1. A Numerical Scheme for Ordinary Differential Equations Having Time Varying and Nonlinear Coefficients Based on the State Transition Matrix

    Science.gov (United States)

    Bartels, Robert E.

    2002-01-01

    A variable order method of integrating initial value ordinary differential equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. While it is more complex than most other methods, it produces exact solutions at arbitrary time step size when the time variation of the system can be modeled exactly by a polynomial. Solutions to several nonlinear problems exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with an exact solution and with solutions obtained by established methods.

  2. Study of dispersive and nonlinear effects of coastal wave dynamics with a fully nonlinear potential flow model

    Science.gov (United States)

    Benoit, Michel; Yates, Marissa L.; Raoult, Cécile

    2017-04-01

    Efficient and accurate numerical models simulating wave propagation are required for a variety of engineering projects including the evaluation of coastal risks, the design of protective coastal structures, and the estimation of the potential for marine renewable energy devices. Nonlinear and dispersive effects are particularly significant in the coastal zone where waves interact with the bottom, the shoreline, and coastal structures. The main challenge in developing a numerical models is finding a compromise between computational efficiency and the required accuracy of the simulated wave field. Here, a potential approach is selected and the (fully nonlinear) water wave problem is formulated using the Euler-Zakharov equations (Zakharov, 1968) describing the temporal evolution of the free surface elevation and velocity potential. The proposed model (Yates and Benoit, 2015) uses a spectral approach in the vertical (i.e. the vertical variation of the potential is approximated by a linear combination of the first NT+1 Chebyshev polynomials, following the work of Tian and Sato (2008)). The Zakharov equations are integrated in time using a fourth-order Runge-Kutta scheme with a constant time step. At each sub-timestep, the Laplace Boundary Value Problem (BVP) is solved to estimate the free surface vertical velocity using the spectral approach, with typical values of NT between 5 to 8 for practical applications. The 1DH version of the code is validated with comparisons to the experimental data set of Becq-Girard et al. (1999), which studied the propagation of irregular waves over a beach profile with a submerged bar. The nonlinear and dispersive capacities of the model are verified with the correct representation of wave-wave interactions, in particular the transfer of energy between different harmonic components during wave propagation (analysis of the transformation of the variance spectrum along the channel). Evolution of wave skewness, asymmetry and kurtosis along the

  3. Global Nonlinear Model Identification with Multivariate Splines

    NARCIS (Netherlands)

    De Visser, C.C.

    2011-01-01

    At present, model based control systems play an essential role in many aspects of modern society. Application areas of model based control systems range from food processing to medical imaging, and from process control in oil refineries to the flight control systems of modern aircraft. Central to a

  4. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models.

    Science.gov (United States)

    Pozo, Carlos; Marín-Sanguino, Alberto; Alves, Rui; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Sorribas, Albert

    2011-08-25

    Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

  5. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models

    Directory of Open Access Journals (Sweden)

    Sorribas Albert

    2011-08-01

    Full Text Available Abstract Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

  6. Masonry constructions mechanical models and numerical applications

    CERN Document Server

    Lucchesi, Massimiliano; Padovani, Cristina

    2008-01-01

    Numerical methods for the structural analysis of masonry constructions can be of great value in assessing the safety of artistically important masonry buildings and optimizing potential operations of maintenance and strengthening in terms of their cost-effectiveness, architectural impact and static effectiveness. This monograph firstly provides a detailed description of the constitutive equation of masonry-like materials, clearly setting out its most important features. It then goes on to provide a numerical procedure to solve the equilibrium problem of masonry solids. A large portion of the w

  7. The cultural implications of growth: Modeling nonlinear interaction of trait selection and population dynamics

    Science.gov (United States)

    Antoci, Angelo; Galeotti, Marcello; Russu, Paolo; Luigi Sacco, Pier

    2018-05-01

    In this paper, we study a nonlinear model of the interaction between trait selection and population dynamics, building on previous work of Ghirlanda et al. [Theor. Popul. Biol. 77, 181-188 (2010)] and Antoci et al. [Commun. Nonlinear Sci. Numer. Simul. 58, 92-106 (2018)]. We establish some basic properties of the model dynamics and present some simulations of the fine-grained structure of alternative dynamic regimes for chosen combinations of parameters. The role of the parameters that govern the reinforcement/corruption of maladaptive vs. adaptive traits is of special importance in determining the model's dynamic evolution. The main implication of this result is the need to pay special attention to the structural forces that may favor the emergence and consolidation of maladaptive traits in contemporary socio-economies, as it is the case, for example, for the stimulation of dysfunctional consumption habits and lifestyles in the pursuit of short-term profits.

  8. The cultural implications of growth: Modeling nonlinear interaction of trait selection and population dynamics.

    Science.gov (United States)

    Antoci, Angelo; Galeotti, Marcello; Russu, Paolo; Luigi Sacco, Pier

    2018-05-01

    In this paper, we study a nonlinear model of the interaction between trait selection and population dynamics, building on previous work of Ghirlanda et al. [Theor. Popul. Biol. 77, 181-188 (2010)] and Antoci et al. [Commun. Nonlinear Sci. Numer. Simul. 58, 92-106 (2018)]. We establish some basic properties of the model dynamics and present some simulations of the fine-grained structure of alternative dynamic regimes for chosen combinations of parameters. The role of the parameters that govern the reinforcement/corruption of maladaptive vs. adaptive traits is of special importance in determining the model's dynamic evolution. The main implication of this result is the need to pay special attention to the structural forces that may favor the emergence and consolidation of maladaptive traits in contemporary socio-economies, as it is the case, for example, for the stimulation of dysfunctional consumption habits and lifestyles in the pursuit of short-term profits.

  9. Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel

    Science.gov (United States)

    Aghalari, Alireza; Shahravi, Morteza

    2017-12-01

    The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.

  10. Fuzzy Control Model and Simulation for Nonlinear Supply Chain System with Lead Times

    Directory of Open Access Journals (Sweden)

    Songtao Zhang

    2017-01-01

    Full Text Available A new fuzzy robust control strategy for the nonlinear supply chain system in the presence of lead times is proposed. Based on Takagi-Sugeno fuzzy control system, the fuzzy control model of the nonlinear supply chain system with lead times is constructed. Additionally, we design a fuzzy robust H∞ control strategy taking the definition of maximal overlapped-rules group into consideration to restrain the impacts such as those caused by lead times, switching actions among submodels, and customers’ stochastic demands. This control strategy can not only guarantee that the nonlinear supply chain system is robustly asymptotically stable but also realize soft switching among subsystems of the nonlinear supply chain to make the less fluctuation of the system variables by introducing the membership function of fuzzy system. The comparisons between the proposed fuzzy robust H∞ control strategy and the robust H∞ control strategy are finally illustrated through numerical simulations on a two-stage nonlinear supply chain with lead times.

  11. Numerical and Experimental Studies on Nonlinear Dynamics and Performance of a Bistable Piezoelectric Cantilever Generator

    Directory of Open Access Journals (Sweden)

    Kangkang Guo

    2015-01-01

    Full Text Available A piezo-magneto-elastically coupled distributed-parameter model of a bistable piezoelectric cantilever generator is developed by using the generalized Hamilton principle. The influence of the spacing between two adjacent magnets on the static bifurcation characteristics of the system is studied and the range of magnet spacing corresponding to the bistable states is obtained. Numerical and experimental studies are carried out to analyze the bifurcation, response characteristics, and their impact on the electrical output performance under varying external excitations. Results indicate that interwell limit cycle motion of the beam around the two centers corresponds to optimum power output; interwell chaotic motion and multiperiodic motion including intrawell oscillations are less effective. At a given frequency, the phenomena of symmetric-breaking and amplitude-phase modulation are observed with increase of base excitation. Both period-doubling bifurcation and intermittency routes to chaotic motion in the bistable system are found. It can be observed that the power output is not proportional to the excitation level because of the bifurcation behaviours.

  12. Nonlinear behavior analysis of split-winding dry-type transformer using a new star model and a coupled field-circuit approach

    Directory of Open Access Journals (Sweden)

    Azizian Davood

    2016-12-01

    Full Text Available Regarding the importance of short circuit and inrush current simulations in the split-winding transformer, a novel nonlinear equivalent circuit is introduced in this paper for nonlinear simulation of this transformer. The equivalent circuit is extended using the nonlinear inductances. Employing a numerical method, leakage and magnetizing inductances in the split-winding transformer are extracted and the nonlinear model inductances are estimated using these inductances. The introduced model is validated and using this nonlinear model, inrush and short-circuit currents are calculated. It has been seen that the introduced model is valid and suitable for simulations of the split-winding transformer due to various loading conditions. Finally, the effects of nonlinearity of the model inductances are discussed in the following.

  13. Nonlinear Dispersive Elastic Waves in Solids: Exact, Approximate, and Numerical Solutions

    Science.gov (United States)

    Khajehtourian, Romik

    Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. A particular class of problems is concerned with the propagation of elastic waves in a solid medium, such as a fiber-reinforced composite material responding to vibratory excitations, or soil and rock admitting seismic waves moments after the onset of an earthquake, or phonon transport in a semiconducting crystal like silicon. Regardless of the type of wave, the dispersion relation provides a fundamental characterization of the elastodynamic properties of the medium. The first part of the dissertation examines the propagation of a large-amplitude elastic wave in a one-dimensional homogeneous medium with a focus on the effects of inherent nonlinearities on the dispersion relation. Considering a thin rod, where the thickness is small compared to the wavelength, an exact, closed-form formulation is presented for the treatment of two types of nonlinearity in the strain-displacement gradient relation: Green-Lagrange and Hencky. The derived relation is then verified by direct time-domain simulations, examining both instantaneous dispersion (by direct observation) and short-term, pre-breaking dispersion (by Fourier transformation). A high-order perturbation analysis is also conducted yielding an explicit analytical space-time solution, which is shown to be spectrally accurate. The results establish a perfect match between theory and simulation and reveal that regardless of the strength of the nonlinearity, the dispersion relation fully embodies all information pertaining to the nonlinear harmonic generation mechanism that unfolds as an arbitrary-profiled wave evolves in the medium. In the second part of the dissertation, the analysis is extended to a continuous periodic thin rod exhibiting multiple phases or embedded local resonators. The

  14. Numerical analysis of the asymptotic behavior of solutions of a boundary problem for a nonlinear parabolic equation

    International Nuclear Information System (INIS)

    Vasileva, D.P.

    1993-01-01

    Blow-up and global time self-similar solutions of a boundary problem for a nonlinear equation u t = Δ u σ+1 + u β are found in the case β = σ + 1. It is shown that they describe the asymptotic behavior of a wide class of initial perturbations. A numerical investigation of the solutions in the case β>σ + 1 is also made. A hypothesis is done that the behavior for large times of global time solutions is described by the self-similar solutions of the equation without source.(author). 20 refs.; 9 figs

  15. Numerical considerations for Lagrangian stochastic dispersion models: Eliminating rogue trajectories, and the importance of numerical accuracy

    Science.gov (United States)

    When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...

  16. An Effective Numerical Method and Its Utilization to Solution of Fractional Models Used in Bioengineering Applications

    Directory of Open Access Journals (Sweden)

    Petráš Ivo

    2011-01-01

    Full Text Available This paper deals with the fractional-order linear and nonlinear models used in bioengineering applications and an effective method for their numerical solution. The proposed method is based on the power series expansion of a generating function. Numerical solution is in the form of the difference equation, which can be simply applied in the Matlab/Simulink to simulate the dynamics of system. Several illustrative examples are presented, which can be widely used in bioengineering as well as in the other disciplines, where the fractional calculus is often used.

  17. Current algebra of classical non-linear sigma models

    International Nuclear Information System (INIS)

    Forger, M.; Laartz, J.; Schaeper, U.

    1992-01-01

    The current algebra of classical non-linear sigma models on arbitrary Riemannian manifolds is analyzed. It is found that introducing, in addition to the Noether current j μ associated with the global symmetry of the theory, a composite scalar field j, the algebra closes under Poisson brackets. (orig.)

  18. Dynamics of breathers in discrete nonlinear Schrodinger models

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Johansson, Magnus; Aubry, Serge

    1998-01-01

    We review some recent results concerning the existence and stability of spatially localized and temporally quasiperiodic (non-stationary) excitations in discrete nonlinear Schrodinger (DNLS) models. In two dimensions, we show the existence of linearly stable, stationary and non-stationary localized...

  19. Control mechanisms for a nonlinear model of international relations

    Energy Technology Data Exchange (ETDEWEB)

    Pentek, A.; Kadtke, J. [Univ. of California, San Diego, La Jolla, CA (United States). Inst. for Pure and Applied Physical Sciences; Lenhart, S. [Univ. of Tennessee, Knoxville, TN (United States). Mathematics Dept.; Protopopescu, V. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.

    1997-07-15

    Some issues of control in complex dynamical systems are considered. The authors discuss two control mechanisms, namely: a short range, reactive control based on the chaos control idea and a long-term strategic control based on an optimal control algorithm. They apply these control ideas to simple examples in a discrete nonlinear model of a multi-nation arms race.

  20. S-AMP for non-linear observation models

    DEFF Research Database (Denmark)

    Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

    2015-01-01

    Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...