WorldWideScience

Sample records for nonlinear multiple regression

  1. Nonlinear Regression with R

    CERN Document Server

    Ritz, Christian; Parmigiani, Giovanni

    2009-01-01

    R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.

  2. Robust nonlinear regression in applications

    OpenAIRE

    Lim, Changwon; Sen, Pranab K.; Peddada, Shyamal D.

    2013-01-01

    Robust statistical methods, such as M-estimators, are needed for nonlinear regression models because of the presence of outliers/influential observations and heteroscedasticity. Outliers and influential observations are commonly observed in many applications, especially in toxicology and agricultural experiments. For example, dose response studies, which are routinely conducted in toxicology and agriculture, sometimes result in potential outliers, especially in the high dose gr...

  3. Multiple linear regression analysis

    Science.gov (United States)

    Edwards, T. R.

    1980-01-01

    Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

  4. Business applications of multiple regression

    CERN Document Server

    Richardson, Ronny

    2015-01-01

    This second edition of Business Applications of Multiple Regression describes the use of the statistical procedure called multiple regression in business situations, including forecasting and understanding the relationships between variables. The book assumes a basic understanding of statistics but reviews correlation analysis and simple regression to prepare the reader to understand and use multiple regression. The techniques described in the book are illustrated using both Microsoft Excel and a professional statistical program. Along the way, several real-world data sets are analyzed in deta

  5. Multiple Regression and Its Discontents

    Science.gov (United States)

    Snell, Joel C.; Marsh, Mitchell

    2012-01-01

    Multiple regression is part of a larger statistical strategy originated by Gauss. The authors raise questions about the theory and suggest some changes that would make room for Mandelbrot and Serendipity.

  6. Multiple Regression and Its Discontents

    Science.gov (United States)

    Snell, Joel C.; Marsh, Mitchell

    2012-01-01

    Multiple regression is part of a larger statistical strategy originated by Gauss. The authors raise questions about the theory and suggest some changes that would make room for Mandelbrot and Serendipity.

  7. Adaptive regression for modeling nonlinear relationships

    CERN Document Server

    Knafl, George J

    2016-01-01

    This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...

  8. Bayesian nonlinear regression for large small problems

    KAUST Repository

    Chakraborty, Sounak

    2012-07-01

    Statistical modeling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. This is known as large p small n problem. Furthermore, the problem is more complicated when we have multiple correlated responses. We develop multivariate nonlinear regression models in this setup for accurate prediction. In this paper, we introduce a full Bayesian support vector regression model with Vapnik\\'s ε-insensitive loss function, based on reproducing kernel Hilbert spaces (RKHS) under the multivariate correlated response setup. This provides a full probabilistic description of support vector machine (SVM) rather than an algorithm for fitting purposes. We have also introduced a multivariate version of the relevance vector machine (RVM). Instead of the original treatment of the RVM relying on the use of type II maximum likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters and use Markov chain Monte Carlo technique for computation. We have also proposed an empirical Bayes method for our RVM and SVM. Our methods are illustrated with a prediction problem in the near-infrared (NIR) spectroscopy. A simulation study is also undertaken to check the prediction accuracy of our models. © 2012 Elsevier Inc.

  9. Curvatures for Parameter Subsets in Nonlinear Regression

    OpenAIRE

    1986-01-01

    The relative curvature measures of nonlinearity proposed by Bates and Watts (1980) are extended to an arbitrary subset of the parameters in a normal, nonlinear regression model. In particular, the subset curvatures proposed indicate the validity of linearization-based approximate confidence intervals for single parameters. The derivation produces the original Bates-Watts measures directly from the likelihood function. When the intrinsic curvature is negligible, the Bates-Watts parameter-effec...

  10. Correlation Weights in Multiple Regression

    Science.gov (United States)

    Waller, Niels G.; Jones, Jeff A.

    2010-01-01

    A general theory on the use of correlation weights in linear prediction has yet to be proposed. In this paper we take initial steps in developing such a theory by describing the conditions under which correlation weights perform well in population regression models. Using OLS weights as a comparison, we define cases in which the two weighting…

  11. Learning Inverse Rig Mappings by Nonlinear Regression.

    Science.gov (United States)

    Holden, Daniel; Saito, Jun; Komura, Taku

    2016-11-11

    We present a framework to design inverse rig-functions - functions that map low level representations of a character's pose such as joint positions or surface geometry to the representation used by animators called the animation rig. Animators design scenes using an animation rig, a framework widely adopted in animation production which allows animators to design character poses and geometry via intuitive parameters and interfaces. Yet most state-of-the-art computer animation techniques control characters through raw, low level representations such as joint angles, joint positions, or vertex coordinates. This difference often stops the adoption of state-of-the-art techniques in animation production. Our framework solves this issue by learning a mapping between the low level representations of the pose and the animation rig. We use nonlinear regression techniques, learning from example animation sequences designed by the animators. When new motions are provided in the skeleton space, the learned mapping is used to estimate the rig controls that reproduce such a motion. We introduce two nonlinear functions for producing such a mapping: Gaussian process regression and feedforward neural networks. The appropriate solution depends on the nature of the rig and the amount of data available for training. We show our framework applied to various examples including articulated biped characters, quadruped characters, facial animation rigs, and deformable characters. With our system, animators have the freedom to apply any motion synthesis algorithm to arbitrary rigging and animation pipelines for immediate editing. This greatly improves the productivity of 3D animation, while retaining the flexibility and creativity of artistic input.

  12. Multiple Instance Regression with Structured Data

    Science.gov (United States)

    Wagstaff, Kiri L.; Lane, Terran; Roper, Alex

    2008-01-01

    This slide presentation reviews the use of multiple instance regression with structured data from multiple and related data sets. It applies the concept to a practical problem, that of estimating crop yield using remote sensed country wide weekly observations.

  13. Some Simple Computational Formulas for Multiple Regression

    Science.gov (United States)

    Aiken, Lewis R., Jr.

    1974-01-01

    Short-cut formulas are presented for direct computation of the beta weights, the standard errors of the beta weights, and the multiple correlation coefficient for multiple regression problems involving three independent variables and one dependent variable. (Author)

  14. Assumptions of Multiple Regression: Correcting Two Misconceptions

    Directory of Open Access Journals (Sweden)

    Matt N. Williams

    2013-09-01

    Full Text Available In 2002, an article entitled - Four assumptions of multiple regression that researchers should always test- by.Osborne and Waters was published in PARE. This article has gone on to be viewed more than 275,000 times.(as of August 2013, and it is one of the first results displayed in a Google search for - regression.assumptions- . While Osborne and Waters' efforts in raising awareness of the need to check assumptions.when using regression are laudable, we note that the original article contained at least two fairly important.misconceptions about the assumptions of multiple regression: Firstly, that multiple regression requires the.assumption of normally distributed variables; and secondly, that measurement errors necessarily cause.underestimation of simple regression coefficients. In this article, we clarify that multiple regression models.estimated using ordinary least squares require the assumption of normally distributed errors in order for.trustworthy inferences, at least in small samples, but not the assumption of normally distributed response or.predictor variables. Secondly, we point out that regression coefficients in simple regression models will be.biased (toward zero estimates of the relationships between variables of interest when measurement error is.uncorrelated across those variables, but that when correlated measurement error is present, regression.coefficients may be either upwardly or downwardly biased. We conclude with a brief corrected summary of.the assumptions of multiple regression when using ordinary least squares.

  15. Practical Session: Multiple Linear Regression

    Science.gov (United States)

    Clausel, M.; Grégoire, G.

    2014-12-01

    Three exercises are proposed to illustrate the simple linear regression. In the first one investigates the influence of several factors on atmospheric pollution. It has been proposed by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr33.pdf) and is based on data coming from 20 cities of U.S. Exercise 2 is an introduction to model selection whereas Exercise 3 provides a first example of analysis of variance. Exercises 2 and 3 have been proposed by A. Dalalyan at ENPC (see Exercises 2 and 3 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_5.pdf).

  16. Incremental Net Effects in Multiple Regression

    Science.gov (United States)

    Lipovetsky, Stan; Conklin, Michael

    2005-01-01

    A regular problem in regression analysis is estimating the comparative importance of the predictors in the model. This work considers the 'net effects', or shares of the predictors in the coefficient of the multiple determination, which is a widely used characteristic of the quality of a regression model. Estimation of the net effects can be a…

  17. Nonlinear wavelet estimation of regression function with random desigm

    Institute of Scientific and Technical Information of China (English)

    张双林; 郑忠国

    1999-01-01

    The nonlinear wavelet estimator of regression function with random design is constructed. The optimal uniform convergence rate of the estimator in a ball of Besov space Bp,q? is proved under quite genera] assumpations. The adaptive nonlinear wavelet estimator with near-optimal convergence rate in a wide range of smoothness function classes is also constructed. The properties of the nonlinear wavelet estimator given for random design regression and only with bounded third order moment of the error can be compared with those of nonlinear wavelet estimator given in literature for equal-spaced fixed design regression with i.i.d. Gauss error.

  18. Multiple-Instance Regression with Structured Data

    Science.gov (United States)

    Wagstaff, Kiri L.; Lane, Terran; Roper, Alex

    2008-01-01

    We present a multiple-instance regression algorithm that models internal bag structure to identify the items most relevant to the bag labels. Multiple-instance regression (MIR) operates on a set of bags with real-valued labels, each containing a set of unlabeled items, in which the relevance of each item to its bag label is unknown. The goal is to predict the labels of new bags from their contents. Unlike previous MIR methods, MI-ClusterRegress can operate on bags that are structured in that they contain items drawn from a number of distinct (but unknown) distributions. MI-ClusterRegress simultaneously learns a model of the bag's internal structure, the relevance of each item, and a regression model that accurately predicts labels for new bags. We evaluated this approach on the challenging MIR problem of crop yield prediction from remote sensing data. MI-ClusterRegress provided predictions that were more accurate than those obtained with non-multiple-instance approaches or MIR methods that do not model the bag structure.

  19. ASYMPTOTIC EFFICIENT ESTIMATION IN SEMIPARAMETRIC NONLINEAR REGRESSION MODELS

    Institute of Scientific and Technical Information of China (English)

    ZhuZhongyi; WeiBocheng

    1999-01-01

    In this paper, the estimation method based on the “generalized profile likelihood” for the conditionally parametric models in the paper given by Severini and Wong (1992) is extendedto fixed design semiparametrie nonlinear regression models. For these semiparametrie nonlinear regression models,the resulting estimator of parametric component of the model is shown to beasymptotically efficient and the strong convergence rate of nonparametric component is investigated. Many results (for example Chen (1988) ,Gao & Zhao (1993), Rice (1986) et al. ) are extended to fixed design semiparametric nonlinear regression models.

  20. The M Word: Multicollinearity in Multiple Regression.

    Science.gov (United States)

    Morrow-Howell, Nancy

    1994-01-01

    Notes that existence of substantial correlation between two or more independent variables creates problems of multicollinearity in multiple regression. Discusses multicollinearity problem in social work research in which independent variables are usually intercorrelated. Clarifies problems created by multicollinearity, explains detection of…

  1. Nonlinear and Non Normal Regression Models in Physiological Research

    OpenAIRE

    1984-01-01

    Applications of nonlinear and non normal regression models are in increasing order for appropriate interpretation of complex phenomenon of biomedical sciences. This paper reviews critically some applications of these models physiological research.

  2. Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression

    DEFF Research Database (Denmark)

    Exterkate, Peter; Groenen, Patrick J.F.; Heij, Christiaan

    This paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation of the predi......This paper puts forward kernel ridge regression as an approach for forecasting with many predictors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor variables are mapped nonlinearly into a high-dimensional space, where estimation...... of the predictive regression model is based on a shrinkage estimator to avoid overfitting. We extend the kernel ridge regression methodology to enable its use for economic time-series forecasting, by including lags of the dependent variable or other individual variables as predictors, as typically desired...... in macroeconomic and financial applications. Monte Carlo simulations as well as an empirical application to various key measures of real economic activity confirm that kernel ridge regression can produce more accurate forecasts than traditional linear and nonlinear methods for dealing with many predictors based...

  3. Detecting outliers when fitting data with nonlinear regression - a new method based on robust nonlinear regression and the false discovery rate.

    Science.gov (United States)

    Motulsky, Harvey J; Brown, Ronald E

    2006-03-09

    Nonlinear regression, like linear regression, assumes that the scatter of data around the ideal curve follows a Gaussian or normal distribution. This assumption leads to the familiar goal of regression: to minimize the sum of the squares of the vertical or Y-value distances between the points and the curve. Outliers can dominate the sum-of-the-squares calculation, and lead to misleading results. However, we know of no practical method for routinely identifying outliers when fitting curves with nonlinear regression. We describe a new method for identifying outliers when fitting data with nonlinear regression. We first fit the data using a robust form of nonlinear regression, based on the assumption that scatter follows a Lorentzian distribution. We devised a new adaptive method that gradually becomes more robust as the method proceeds. To define outliers, we adapted the false discovery rate approach to handling multiple comparisons. We then remove the outliers, and analyze the data using ordinary least-squares regression. Because the method combines robust regression and outlier removal, we call it the ROUT method. When analyzing simulated data, where all scatter is Gaussian, our method detects (falsely) one or more outlier in only about 1-3% of experiments. When analyzing data contaminated with one or several outliers, the ROUT method performs well at outlier identification, with an average False Discovery Rate less than 1%. Our method, which combines a new method of robust nonlinear regression with a new method of outlier identification, identifies outliers from nonlinear curve fits with reasonable power and few false positives.

  4. Detecting outliers when fitting data with nonlinear regression – a new method based on robust nonlinear regression and the false discovery rate

    Directory of Open Access Journals (Sweden)

    Motulsky Harvey J

    2006-03-01

    Full Text Available Abstract Background Nonlinear regression, like linear regression, assumes that the scatter of data around the ideal curve follows a Gaussian or normal distribution. This assumption leads to the familiar goal of regression: to minimize the sum of the squares of the vertical or Y-value distances between the points and the curve. Outliers can dominate the sum-of-the-squares calculation, and lead to misleading results. However, we know of no practical method for routinely identifying outliers when fitting curves with nonlinear regression. Results We describe a new method for identifying outliers when fitting data with nonlinear regression. We first fit the data using a robust form of nonlinear regression, based on the assumption that scatter follows a Lorentzian distribution. We devised a new adaptive method that gradually becomes more robust as the method proceeds. To define outliers, we adapted the false discovery rate approach to handling multiple comparisons. We then remove the outliers, and analyze the data using ordinary least-squares regression. Because the method combines robust regression and outlier removal, we call it the ROUT method. When analyzing simulated data, where all scatter is Gaussian, our method detects (falsely one or more outlier in only about 1–3% of experiments. When analyzing data contaminated with one or several outliers, the ROUT method performs well at outlier identification, with an average False Discovery Rate less than 1%. Conclusion Our method, which combines a new method of robust nonlinear regression with a new method of outlier identification, identifies outliers from nonlinear curve fits with reasonable power and few false positives.

  5. Multiple Kernel Spectral Regression for Dimensionality Reduction

    Directory of Open Access Journals (Sweden)

    Bing Liu

    2013-01-01

    Full Text Available Traditional manifold learning algorithms, such as locally linear embedding, Isomap, and Laplacian eigenmap, only provide the embedding results of the training samples. To solve the out-of-sample extension problem, spectral regression (SR solves the problem of learning an embedding function by establishing a regression framework, which can avoid eigen-decomposition of dense matrices. Motivated by the effectiveness of SR, we incorporate multiple kernel learning (MKL into SR for dimensionality reduction. The proposed approach (termed MKL-SR seeks an embedding function in the Reproducing Kernel Hilbert Space (RKHS induced by the multiple base kernels. An MKL-SR algorithm is proposed to improve the performance of kernel-based SR (KSR further. Furthermore, the proposed MKL-SR algorithm can be performed in the supervised, unsupervised, and semi-supervised situation. Experimental results on supervised classification and semi-supervised classification demonstrate the effectiveness and efficiency of our algorithm.

  6. The Geometry of Enhancement in Multiple Regression.

    Science.gov (United States)

    Waller, Niels G

    2011-10-01

    In linear multiple regression, "enhancement" is said to occur when R (2)=b'r>r'r, where b is a p×1 vector of standardized regression coefficients and r is a p×1 vector of correlations between a criterion y and a set of standardized regressors, x. When p=1 then b≡r and enhancement cannot occur. When p=2, for all full-rank R xx≠I, R xx=E[xx']=V Λ V' (where V Λ V' denotes the eigen decomposition of R xx; λ 1>λ 2), the set [Formula: see text] contains four vectors; the set [Formula: see text]; [Formula: see text] contains an infinite number of vectors. When p≥3 (and λ 1>λ 2>⋯>λ p ), both sets contain an uncountably infinite number of vectors. Geometrical arguments demonstrate that B 1 occurs at the intersection of two hyper-ellipsoids in ℝ (p) . Equations are provided for populating the sets B 1 and B 2 and for demonstrating that maximum enhancement occurs when b is collinear with the eigenvector that is associated with λ p (the smallest eigenvalue of the predictor correlation matrix). These equations are used to illustrate the logic and the underlying geometry of enhancement in population, multiple-regression models. R code for simulating population regression models that exhibit enhancement of any degree and any number of predictors is included in Appendices A and B.

  7. A Dirty Model for Multiple Sparse Regression

    CERN Document Server

    Jalali, Ali; Sanghavi, Sujay

    2011-01-01

    Sparse linear regression -- finding an unknown vector from linear measurements -- is now known to be possible with fewer samples than variables, via methods like the LASSO. We consider the multiple sparse linear regression problem, where several related vectors -- with partially shared support sets -- have to be recovered. A natural question in this setting is whether one can use the sharing to further decrease the overall number of samples required. A line of recent research has studied the use of \\ell_1/\\ell_q norm block-regularizations with q>1 for such problems; however these could actually perform worse in sample complexity -- vis a vis solving each problem separately ignoring sharing -- depending on the level of sharing. We present a new method for multiple sparse linear regression that can leverage support and parameter overlap when it exists, but not pay a penalty when it does not. A very simple idea: we decompose the parameters into two components and regularize these differently. We show both theore...

  8. The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression?

    Directory of Open Access Journals (Sweden)

    Jiangshan Lai

    Full Text Available Precise estimation of root biomass is important for understanding carbon stocks and dynamics in forests. Traditionally, biomass estimates are based on allometric scaling relationships between stem diameter and coarse root biomass calculated using linear regression (LR on log-transformed data. Recently, it has been suggested that nonlinear regression (NLR is a preferable fitting method for scaling relationships. But while this claim has been contested on both theoretical and empirical grounds, and statistical methods have been developed to aid in choosing between the two methods in particular cases, few studies have examined the ramifications of erroneously applying NLR. Here, we use direct measurements of 159 trees belonging to three locally dominant species in east China to compare the LR and NLR models of diameter-root biomass allometry. We then contrast model predictions by estimating stand coarse root biomass based on census data from the nearby 24-ha Gutianshan forest plot and by testing the ability of the models to predict known root biomass values measured on multiple tropical species at the Pasoh Forest Reserve in Malaysia. Based on likelihood estimates for model error distributions, as well as the accuracy of extrapolative predictions, we find that LR on log-transformed data is superior to NLR for fitting diameter-root biomass scaling models. More importantly, inappropriately using NLR leads to grossly inaccurate stand biomass estimates, especially for stands dominated by smaller trees.

  9. Cardiovascular Response Identification Based on Nonlinear Support Vector Regression

    Science.gov (United States)

    Wang, Lu; Su, Steven W.; Chan, Gregory S. H.; Celler, Branko G.; Cheng, Teddy M.; Savkin, Andrey V.

    This study experimentally investigates the relationships between central cardiovascular variables and oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage. The modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with small training data set.

  10. Kernel Partial Least Squares for Nonlinear Regression and Discrimination

    Science.gov (United States)

    Rosipal, Roman; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.

  11. Geometric Properties of AR(q) Nonlinear Regression Models

    Institute of Scientific and Technical Information of China (English)

    LIUYing-ar; WEIBo-cheng

    2004-01-01

    This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on the weighted inner product by fisher information matrix. Several geometric properties related to statistical curvatures are given for the models. The results of this paper extended the work of Bates & Watts(1980,1988)[1.2] and Seber & Wild (1989)[3].

  12. Interpretation of Standardized Regression Coefficients in Multiple Regression.

    Science.gov (United States)

    Thayer, Jerome D.

    The extent to which standardized regression coefficients (beta values) can be used to determine the importance of a variable in an equation was explored. The beta value and the part correlation coefficient--also called the semi-partial correlation coefficient and reported in squared form as the incremental "r squared"--were compared for…

  13. Nonlinear Identification Using Orthogonal Forward Regression With Nested Optimal Regularization.

    Science.gov (United States)

    Hong, Xia; Chen, Sheng; Gao, Junbin; Harris, Chris J

    2015-12-01

    An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.

  14. An Excel Solver Exercise to Introduce Nonlinear Regression

    Science.gov (United States)

    Pinder, Jonathan P.

    2013-01-01

    Business students taking business analytics courses that have significant predictive modeling components, such as marketing research, data mining, forecasting, and advanced financial modeling, are introduced to nonlinear regression using application software that is a "black box" to the students. Thus, although correct models are…

  15. An Excel Solver Exercise to Introduce Nonlinear Regression

    Science.gov (United States)

    Pinder, Jonathan P.

    2013-01-01

    Business students taking business analytics courses that have significant predictive modeling components, such as marketing research, data mining, forecasting, and advanced financial modeling, are introduced to nonlinear regression using application software that is a "black box" to the students. Thus, although correct models are…

  16. Symmetric Nonlinear Regression. Research Report. ETS RR-07-13

    Science.gov (United States)

    Antal, Tamás

    2007-01-01

    An estimation tool for symmetric univariate nonlinear regression is presented. The method is based on introducing a nontrivial set of affine coordinates for diffeomorphisms of the real line. The main ingredient making the computations possible is the Connes-Moscovici Hopf algebra of these affine coordinates.

  17. A Toolbox for Nonlinear Regression in R: The Package nlstools

    Directory of Open Access Journals (Sweden)

    Florent Baty

    2015-08-01

    Full Text Available Nonlinear regression models are applied in a broad variety of scientific fields. Various R functions are already dedicated to fitting such models, among which the function nls( has a prominent position. Unlike linear regression fitting of nonlinear models relies on non-trivial assumptions and therefore users are required to carefully ensure and validate the entire modeling. Parameter estimation is carried out using some variant of the least- squares criterion involving an iterative process that ideally leads to the determination of the optimal parameter estimates. Therefore, users need to have a clear understanding of the model and its parameterization in the context of the application and data considered, an a priori idea about plausible values for parameter estimates, knowledge of model diagnostics procedures available for checking crucial assumptions, and, finally, an under- standing of the limitations in the validity of the underlying hypotheses of the fitted model and its implication for the precision of parameter estimates. Current nonlinear regression modules lack dedicated diagnostic functionality. So there is a need to provide users with an extended toolbox of functions enabling a careful evaluation of nonlinear regression fits. To this end, we introduce a unified diagnostic framework with the R package nlstools. In this paper, the various features of the package are presented and exemplified using a worked example from pulmonary medicine.

  18. Remaining Phosphorus Estimate Through Multiple Regression Analysis

    Institute of Scientific and Technical Information of China (English)

    M. E. ALVES; A. LAVORENTI

    2006-01-01

    The remaining phosphorus (Prem), P concentration that remains in solution after shaking soil with 0.01 mol L-1 CaCl2 containing 60 μg mL-1 P, is a very useful index for studies related to the chemistry of variable charge soils. Although the Prem determination is a simple procedure, the possibility of estimating accurate values of this index from easily and/or routinely determined soil properties can be very useful for practical purposes. The present research evaluated the Premestimation through multiple regression analysis in which routinely determined soil chemical data, soil clay content and soil pH measured in 1 mol L-1 NaF (pHNaF) figured as Prem predictor variables. The Prem can be estimated with acceptable accuracy using the above-mentioned approach, and PHNaF not only substitutes for clay content as a predictor variable but also confers more accuracy to the Prem estimates.

  19. Semiparametric maximum likelihood for nonlinear regression with measurement errors.

    Science.gov (United States)

    Suh, Eun-Young; Schafer, Daniel W

    2002-06-01

    This article demonstrates semiparametric maximum likelihood estimation of a nonlinear growth model for fish lengths using imprecisely measured ages. Data on the species corvina reina, found in the Gulf of Nicoya, Costa Rica, consist of lengths and imprecise ages for 168 fish and precise ages for a subset of 16 fish. The statistical problem may therefore be classified as nonlinear errors-in-variables regression with internal validation data. Inferential techniques are based on ideas extracted from several previous works on semiparametric maximum likelihood for errors-in-variables problems. The illustration of the example clarifies practical aspects of the associated computational, inferential, and data analytic techniques.

  20. CONSERVATIVE ESTIMATING FUNCTIONIN THE NONLINEAR REGRESSION MODEL WITHAGGREGATED DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The purpose of this paper is to study the theory of conservative estimating functions in nonlinear regression model with aggregated data. In this model, a quasi-score function with aggregated data is defined. When this function happens to be conservative, it is projection of the true score function onto a class of estimation functions. By constructing, the potential function for the projected score with aggregated data is obtained, which have some properties of log-likelihood function.

  1. On concurvity in nonlinear and nonparametric regression models

    Directory of Open Access Journals (Sweden)

    Sonia Amodio

    2014-12-01

    Full Text Available When data are affected by multicollinearity in the linear regression framework, then concurvity will be present in fitting a generalized additive model (GAM. The term concurvity describes nonlinear dependencies among the predictor variables. As collinearity results in inflated variance of the estimated regression coefficients in the linear regression model, the result of the presence of concurvity leads to instability of the estimated coefficients in GAMs. Even if the backfitting algorithm will always converge to a solution, in case of concurvity the final solution of the backfitting procedure in fitting a GAM is influenced by the starting functions. While exact concurvity is highly unlikely, approximate concurvity, the analogue of multicollinearity, is of practical concern as it can lead to upwardly biased estimates of the parameters and to underestimation of their standard errors, increasing the risk of committing type I error. We compare the existing approaches to detect concurvity, pointing out their advantages and drawbacks, using simulated and real data sets. As a result, this paper will provide a general criterion to detect concurvity in nonlinear and non parametric regression models.

  2. Robust Nonlinear Regression in Enzyme Kinetic Parameters Estimation

    Directory of Open Access Journals (Sweden)

    Maja Marasović

    2017-01-01

    Full Text Available Accurate estimation of essential enzyme kinetic parameters, such as Km and Vmax, is very important in modern biology. To this date, linearization of kinetic equations is still widely established practice for determining these parameters in chemical and enzyme catalysis. Although simplicity of linear optimization is alluring, these methods have certain pitfalls due to which they more often then not result in misleading estimation of enzyme parameters. In order to obtain more accurate predictions of parameter values, the use of nonlinear least-squares fitting techniques is recommended. However, when there are outliers present in the data, these techniques become unreliable. This paper proposes the use of a robust nonlinear regression estimator based on modified Tukey’s biweight function that can provide more resilient results in the presence of outliers and/or influential observations. Real and synthetic kinetic data have been used to test our approach. Monte Carlo simulations are performed to illustrate the efficacy and the robustness of the biweight estimator in comparison with the standard linearization methods and the ordinary least-squares nonlinear regression. We then apply this method to experimental data for the tyrosinase enzyme (EC 1.14.18.1 extracted from Solanum tuberosum, Agaricus bisporus, and Pleurotus ostreatus. The results on both artificial and experimental data clearly show that the proposed robust estimator can be successfully employed to determine accurate values of Km and Vmax.

  3. Relationship between Multiple Regression and Selected Multivariable Methods.

    Science.gov (United States)

    Schumacker, Randall E.

    The relationship of multiple linear regression to various multivariate statistical techniques is discussed. The importance of the standardized partial regression coefficient (beta weight) in multiple linear regression as it is applied in path, factor, LISREL, and discriminant analyses is emphasized. The multivariate methods discussed in this paper…

  4. Fuzzy multiple linear regression: A computational approach

    Science.gov (United States)

    Juang, C. H.; Huang, X. H.; Fleming, J. W.

    1992-01-01

    This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.

  5. A nonlinear regression model-based predictive control algorithm.

    Science.gov (United States)

    Dubay, R; Abu-Ayyad, M; Hernandez, J M

    2009-04-01

    This paper presents a unique approach for designing a nonlinear regression model-based predictive controller (NRPC) for single-input-single-output (SISO) and multi-input-multi-output (MIMO) processes that are common in industrial applications. The innovation of this strategy is that the controller structure allows nonlinear open-loop modeling to be conducted while closed-loop control is executed every sampling instant. Consequently, the system matrix is regenerated every sampling instant using a continuous function providing a more accurate prediction of the plant. Computer simulations are carried out on nonlinear plants, demonstrating that the new approach is easily implemented and provides tight control. Also, the proposed algorithm is implemented on two real time SISO applications; a DC motor, a plastic injection molding machine and a nonlinear MIMO thermal system comprising three temperature zones to be controlled with interacting effects. The experimental closed-loop responses of the proposed algorithm were compared to a multi-model dynamic matrix controller (MPC) with improved results for various set point trajectories. Good disturbance rejection was attained, resulting in improved tracking of multi-set point profiles in comparison to multi-model MPC.

  6. Improved Methodology for Parameter Inference in Nonlinear, Hydrologic Regression Models

    Science.gov (United States)

    Bates, Bryson C.

    1992-01-01

    A new method is developed for the construction of reliable marginal confidence intervals and joint confidence regions for the parameters of nonlinear, hydrologic regression models. A parameter power transformation is combined with measures of the asymptotic bias and asymptotic skewness of maximum likelihood estimators to determine the transformation constants which cause the bias or skewness to vanish. These optimized constants are used to construct confidence intervals and regions for the transformed model parameters using linear regression theory. The resulting confidence intervals and regions can be easily mapped into the original parameter space to give close approximations to likelihood method confidence intervals and regions for the model parameters. Unlike many other approaches to parameter transformation, the procedure does not use a grid search to find the optimal transformation constants. An example involving the fitting of the Michaelis-Menten model to velocity-discharge data from an Australian gauging station is used to illustrate the usefulness of the methodology.

  7. Fault Isolation for Nonlinear Systems Using Flexible Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Yufang Liu

    2014-01-01

    Full Text Available While support vector regression is widely used as both a function approximating tool and a residual generator for nonlinear system fault isolation, a drawback for this method is the freedom in selecting model parameters. Moreover, for samples with discordant distributing complexities, the selection of reasonable parameters is even impossible. To alleviate this problem we introduce the method of flexible support vector regression (F-SVR, which is especially suited for modelling complicated sample distributions, as it is free from parameters selection. Reasonable parameters for F-SVR are automatically generated given a sample distribution. Lastly, we apply this method in the analysis of the fault isolation of high frequency power supplies, where satisfactory results have been obtained.

  8. Vehicle Travel Time Predication based on Multiple Kernel Regression

    Directory of Open Access Journals (Sweden)

    Wenjing Xu

    2014-07-01

    Full Text Available With the rapid development of transportation and logistics economy, the vehicle travel time prediction and planning become an important topic in logistics. Travel time prediction, which is indispensible for traffic guidance, has become a key issue for researchers in this field. At present, the prediction of travel time is mainly short term prediction, and the predication methods include artificial neural network, Kaman filter and support vector regression (SVR method etc. However, these algorithms still have some shortcomings, such as highcomputationcomplexity, slow convergence rate etc. This paper exploits the learning ability of multiple kernel learning regression (MKLR in nonlinear prediction processing characteristics, logistics planning based on MKLR for vehicle travel time prediction. The method for Vehicle travel time prediction includes the following steps: (1 preprocessing historical data; (2 selecting appropriate kernel function, training the historical data and performing analysis ;(3 predicting the vehicle travel time based on the trained model. The experimental results show that, through the analysis of using different methods for prediction, the vehicle travel time prediction method proposed in this paper, archives higher accuracy than other methods. It also illustrates the feasibility and effectiveness of the proposed prediction method.

  9. Entrepreneurial intention modeling using hierarchical multiple regression

    Directory of Open Access Journals (Sweden)

    Marina Jeger

    2014-12-01

    Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.

  10. Abnormal behavior of the least squares estimate of multiple regression

    Institute of Scientific and Technical Information of China (English)

    陈希孺; 安鸿志

    1997-01-01

    An example is given to reveal the abnormal behavior of the least squares estimate of multiple regression. It is shown that the least squares estimate of the multiple linear regression may be "improved in the sense of weak consistency when nuisance parameters are introduced into the model. A discussion on the implications of this finding is given.

  11. Photonic Nonlinear Transient Computing with Multiple-Delay Wavelength Dynamics

    Science.gov (United States)

    Martinenghi, Romain; Rybalko, Sergei; Jacquot, Maxime; Chembo, Yanne K.; Larger, Laurent

    2012-06-01

    We report on the experimental demonstration of a hybrid optoelectronic neuromorphic computer based on a complex nonlinear wavelength dynamics including multiple delayed feedbacks with randomly defined weights. This neuromorphic approach is based on a new paradigm of a brain-inspired computational unit, intrinsically differing from Turing machines. This recent paradigm consists in expanding the input information to be processed into a higher dimensional phase space, through the nonlinear transient response of a complex dynamics excited by the input information. The computed output is then extracted via a linear separation of the transient trajectory in the complex phase space. The hyperplane separation is derived from a learning phase consisting of the resolution of a regression problem. The processing capability originates from the nonlinear transient, resulting in nonlinear transient computing. The computational performance is successfully evaluated on a standard benchmark test, namely, a spoken digit recognition task.

  12. General Nature of Multicollinearity in Multiple Regression Analysis.

    Science.gov (United States)

    Liu, Richard

    1981-01-01

    Discusses multiple regression, a very popular statistical technique in the field of education. One of the basic assumptions in regression analysis requires that independent variables in the equation should not be highly correlated. The problem of multicollinearity and some of the solutions to it are discussed. (Author)

  13. Reduction of the curvature of a class of nonlinear regression models

    Institute of Scientific and Technical Information of China (English)

    吴翊; 易东云

    2000-01-01

    It is proved that the curvature of nonlinear model can be reduced to zero by increasing measured data for a class of nonlinear regression models. The result is important to actual problem and has obtained satisfying effect on data fusing.

  14. Fast nonlinear regression method for CT brain perfusion analysis.

    Science.gov (United States)

    Bennink, Edwin; Oosterbroek, Jaap; Kudo, Kohsuke; Viergever, Max A; Velthuis, Birgitta K; de Jong, Hugo W A M

    2016-04-01

    Although computed tomography (CT) perfusion (CTP) imaging enables rapid diagnosis and prognosis of ischemic stroke, current CTP analysis methods have several shortcomings. We propose a fast nonlinear regression method with a box-shaped model (boxNLR) that has important advantages over the current state-of-the-art method, block-circulant singular value decomposition (bSVD). These advantages include improved robustness to attenuation curve truncation, extensibility, and unified estimation of perfusion parameters. The method is compared with bSVD and with a commercial SVD-based method. The three methods were quantitatively evaluated by means of a digital perfusion phantom, described by Kudo et al. and qualitatively with the aid of 50 clinical CTP scans. All three methods yielded high Pearson correlation coefficients ([Formula: see text]) with the ground truth in the phantom. The boxNLR perfusion maps of the clinical scans showed higher correlation with bSVD than the perfusion maps from the commercial method. Furthermore, it was shown that boxNLR estimates are robust to noise, truncation, and tracer delay. The proposed method provides a fast and reliable way of estimating perfusion parameters from CTP scans. This suggests it could be a viable alternative to current commercial and academic methods.

  15. Enhance-Synergism and Suppression Effects in Multiple Regression

    Science.gov (United States)

    Lipovetsky, Stan; Conklin, W. Michael

    2004-01-01

    Relations between pairwise correlations and the coefficient of multiple determination in regression analysis are considered. The conditions for the occurrence of enhance-synergism and suppression effects when multiple determination becomes bigger than the total of squared correlations of the dependent variable with the regressors are discussed. It…

  16. A Multiple Regression Approach to Normalization of Spatiotemporal Gait Features.

    Science.gov (United States)

    Wahid, Ferdous; Begg, Rezaul; Lythgo, Noel; Hass, Chris J; Halgamuge, Saman; Ackland, David C

    2016-04-01

    Normalization of gait data is performed to reduce the effects of intersubject variations due to physical characteristics. This study reports a multiple regression normalization approach for spatiotemporal gait data that takes into account intersubject variations in self-selected walking speed and physical properties including age, height, body mass, and sex. Spatiotemporal gait data including stride length, cadence, stance time, double support time, and stride time were obtained from healthy subjects including 782 children, 71 adults, 29 elderly subjects, and 28 elderly Parkinson's disease (PD) patients. Data were normalized using standard dimensionless equations, a detrending method, and a multiple regression approach. After normalization using dimensionless equations and the detrending method, weak to moderate correlations between walking speed, physical properties, and spatiotemporal gait features were observed (0.01 normalization using the multiple regression method reduced these correlations to weak values (|r| normalization using dimensionless equations and detrending resulted in significant differences in stride length and double support time of PD patients; however the multiple regression approach revealed significant differences in these features as well as in cadence, stance time, and stride time. The proposed multiple regression normalization may be useful in machine learning, gait classification, and clinical evaluation of pathological gait patterns.

  17. Research and analyze of physical health using multiple regression analysis

    Directory of Open Access Journals (Sweden)

    T. S. Kyi

    2014-01-01

    Full Text Available This paper represents the research which is trying to create a mathematical model of the "healthy people" using the method of regression analysis. The factors are the physical parameters of the person (such as heart rate, lung capacity, blood pressure, breath holding, weight height coefficient, flexibility of the spine, muscles of the shoulder belt, abdominal muscles, squatting, etc.., and the response variable is an indicator of physical working capacity. After performing multiple regression analysis, obtained useful multiple regression models that can predict the physical performance of boys the aged of fourteen to seventeen years. This paper represents the development of regression model for the sixteen year old boys and analyzed results.

  18. Coordinated formation control of multiple nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Wei KANG; Ning XI; Jindong TAN; Yiwen ZHAO; Yuechao WANG

    2005-01-01

    A general method of controller design is developed for the purpose of formation keeping and reconfiguration of nonlinear systems with multiple subsystems,such as the formation of multiple aircraft,ground vehicles,or robot arms.The model consists of multiple nonlinear systems.Controllers are designed to keep the subsystems in a required formation and to coordinate the subsystems in the presence of environmental changes.A step-by-step algorithm of controller design is developed.Sufficient conditions for the stability of formation tracking are proved.Simulations and experiments are conducted to demonstrate some useful coordination strategies such as movement with a leader,simultaneous movement,series connection of formations,and human-machine interaction.

  19. Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment

    Science.gov (United States)

    Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos

    2013-01-01

    In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…

  20. Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment

    Science.gov (United States)

    Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos

    2013-01-01

    In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…

  1. Direction of Effects in Multiple Linear Regression Models.

    Science.gov (United States)

    Wiedermann, Wolfgang; von Eye, Alexander

    2015-01-01

    Previous studies analyzed asymmetric properties of the Pearson correlation coefficient using higher than second order moments. These asymmetric properties can be used to determine the direction of dependence in a linear regression setting (i.e., establish which of two variables is more likely to be on the outcome side) within the framework of cross-sectional observational data. Extant approaches are restricted to the bivariate regression case. The present contribution extends the direction of dependence methodology to a multiple linear regression setting by analyzing distributional properties of residuals of competing multiple regression models. It is shown that, under certain conditions, the third central moments of estimated regression residuals can be used to decide upon direction of effects. In addition, three different approaches for statistical inference are discussed: a combined D'Agostino normality test, a skewness difference test, and a bootstrap difference test. Type I error and power of the procedures are assessed using Monte Carlo simulations, and an empirical example is provided for illustrative purposes. In the discussion, issues concerning the quality of psychological data, possible extensions of the proposed methods to the fourth central moment of regression residuals, and potential applications are addressed.

  2. Strategies for Identification and Detection of Outliers in Multiple Regression.

    Science.gov (United States)

    Vannoy, Martha

    Outliers are frequently found in data sets and can cause problems for researchers if not addressed. Failure to identify and deal with outliers in an appropriate manner may lead researchers to report erroneous results. Using a multiple regression context, this paper examines some of the reasons for the presence of outliers and simple methods for…

  3. Interpreting Multiple Linear Regression: A Guidebook of Variable Importance

    Science.gov (United States)

    Nathans, Laura L.; Oswald, Frederick L.; Nimon, Kim

    2012-01-01

    Multiple regression (MR) analyses are commonly employed in social science fields. It is also common for interpretation of results to typically reflect overreliance on beta weights, often resulting in very limited interpretations of variable importance. It appears that few researchers employ other methods to obtain a fuller understanding of what…

  4. Multiple regression for physiological data analysis: the problem of multicollinearity.

    Science.gov (United States)

    Slinker, B K; Glantz, S A

    1985-07-01

    Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.

  5. Simple and multiple linear regression: sample size considerations.

    Science.gov (United States)

    Hanley, James A

    2016-11-01

    The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Least Squares Adjustment: Linear and Nonlinear Weighted Regression Analysis

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2007-01-01

    This note primarily describes the mathematics of least squares regression analysis as it is often used in geodesy including land surveying and satellite positioning applications. In these fields regression is often termed adjustment. The note also contains a couple of typical land surveying...... and satellite positioning application examples. In these application areas we are typically interested in the parameters in the model typically 2- or 3-D positions and not in predictive modelling which is often the main concern in other regression analysis applications. Adjustment is often used to obtain...

  7. Proximate analysis based multiple regression models for higher heating value estimation of low rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Akkaya, Ali Volkan [Department of Mechanical Engineering, Yildiz Technical University, 34349 Besiktas, Istanbul (Turkey)

    2009-02-15

    In this paper, multiple nonlinear regression models for estimation of higher heating value of coals are developed using proximate analysis data obtained generally from the low rank coal samples as-received basis. In this modeling study, three main model structures depended on the number of proximate analysis parameters, which are named the independent variables, such as moisture, ash, volatile matter and fixed carbon, are firstly categorized. Secondly, sub-model structures with different arrangements of the independent variables are considered. Each sub-model structure is analyzed with a number of model equations in order to find the best fitting model using multiple nonlinear regression method. Based on the results of nonlinear regression analysis, the best model for each sub-structure is determined. Among them, the models giving highest correlation for three main structures are selected. Although the selected all three models predicts HHV rather accurately, the model involving four independent variables provides the most accurate estimation of HHV. Additionally, when the chosen model with four independent variables and a literature model are tested with extra proximate analysis data, it is seen that that the developed model in this study can give more accurate prediction of HHV of coals. It can be concluded that the developed model is effective tool for HHV estimation of low rank coals. (author)

  8. Multiple Retrieval Models and Regression Models for Prior Art Search

    CERN Document Server

    Lopez, Patrice

    2009-01-01

    This paper presents the system called PATATRAS (PATent and Article Tracking, Retrieval and AnalysiS) realized for the IP track of CLEF 2009. Our approach presents three main characteristics: 1. The usage of multiple retrieval models (KL, Okapi) and term index definitions (lemma, phrase, concept) for the three languages considered in the present track (English, French, German) producing ten different sets of ranked results. 2. The merging of the different results based on multiple regression models using an additional validation set created from the patent collection. 3. The exploitation of patent metadata and of the citation structures for creating restricted initial working sets of patents and for producing a final re-ranking regression model. As we exploit specific metadata of the patent documents and the citation relations only at the creation of initial working sets and during the final post ranking step, our architecture remains generic and easy to extend.

  9. A comparison of random forest regression and multiple linear regression for prediction in neuroscience.

    Science.gov (United States)

    Smith, Paul F; Ganesh, Siva; Liu, Ping

    2013-10-30

    Regression is a common statistical tool for prediction in neuroscience. However, linear regression is by far the most common form of regression used, with regression trees receiving comparatively little attention. In this study, the results of conventional multiple linear regression (MLR) were compared with those of random forest regression (RFR), in the prediction of the concentrations of 9 neurochemicals in the vestibular nucleus complex and cerebellum that are part of the l-arginine biochemical pathway (agmatine, putrescine, spermidine, spermine, l-arginine, l-ornithine, l-citrulline, glutamate and γ-aminobutyric acid (GABA)). The R(2) values for the MLRs were higher than the proportion of variance explained values for the RFRs: 6/9 of them were ≥ 0.70 compared to 4/9 for RFRs. Even the variables that had the lowest R(2) values for the MLRs, e.g. ornithine (0.50) and glutamate (0.61), had much lower proportion of variance explained values for the RFRs (0.27 and 0.49, respectively). The RSE values for the MLRs were lower than those for the RFRs in all but two cases. In general, MLRs seemed to be superior to the RFRs in terms of predictive value and error. In the case of this data set, MLR appeared to be superior to RFR in terms of its explanatory value and error. This result suggests that MLR may have advantages over RFR for prediction in neuroscience with this kind of data set, but that RFR can still have good predictive value in some cases. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Estimating Loess Plateau Average Annual Precipitation with Multiple Linear Regression Kriging and Geographically Weighted Regression Kriging

    Directory of Open Access Journals (Sweden)

    Qiutong Jin

    2016-06-01

    Full Text Available Estimating the spatial distribution of precipitation is an important and challenging task in hydrology, climatology, ecology, and environmental science. In order to generate a highly accurate distribution map of average annual precipitation for the Loess Plateau in China, multiple linear regression Kriging (MLRK and geographically weighted regression Kriging (GWRK methods were employed using precipitation data from the period 1980–2010 from 435 meteorological stations. The predictors in regression Kriging were selected by stepwise regression analysis from many auxiliary environmental factors, such as elevation (DEM, normalized difference vegetation index (NDVI, solar radiation, slope, and aspect. All predictor distribution maps had a 500 m spatial resolution. Validation precipitation data from 130 hydrometeorological stations were used to assess the prediction accuracies of the MLRK and GWRK approaches. Results showed that both prediction maps with a 500 m spatial resolution interpolated by MLRK and GWRK had a high accuracy and captured detailed spatial distribution data; however, MLRK produced a lower prediction error and a higher variance explanation than GWRK, although the differences were small, in contrast to conclusions from similar studies.

  11. CONFIDENCE REGIONS IN TERMS OF STATISTICAL CURVATURE FOR AR(q) NONLINEAR REGRESSION MODELS

    Institute of Scientific and Technical Information of China (English)

    刘应安; 韦博成

    2004-01-01

    This paper constructs a set of confidence regions of parameters in terms of statistical curvatures for AR(q) nonlinear regression models. The geometric frameworks are proposed for the model. Then several confidence regions for parameters and parameter subsets in terms of statistical curvatures are given based on the likelihood ratio statistics and score statistics. Several previous results, such as [1] and [2] are extended to AR(q)nonlinear regression models.

  12. Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data.

    Science.gov (United States)

    Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali

    2014-05-01

    Kernel function-based regression models were constructed and applied to a nonlinear hydro-chemical dataset pertaining to surface water for predicting the dissolved oxygen levels. Initial features were selected using nonlinear approach. Nonlinearity in the data was tested using BDS statistics, which revealed the data with nonlinear structure. Kernel ridge regression, kernel principal component regression, kernel partial least squares regression, and support vector regression models were developed using the Gaussian kernel function and their generalization and predictive abilities were compared in terms of several statistical parameters. Model parameters were optimized using the cross-validation procedure. The proposed kernel regression methods successfully captured the nonlinear features of the original data by transforming it to a high dimensional feature space using the kernel function. Performance of all the kernel-based modeling methods used here were comparable both in terms of predictive and generalization abilities. Values of the performance criteria parameters suggested for the adequacy of the constructed models to fit the nonlinear data and their good predictive capabilities.

  13. A Solution to Separation and Multicollinearity in Multiple Logistic Regression.

    Science.gov (United States)

    Shen, Jianzhao; Gao, Sujuan

    2008-10-01

    In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.

  14. Two SPSS programs for interpreting multiple regression results.

    Science.gov (United States)

    Lorenzo-Seva, Urbano; Ferrando, Pere J; Chico, Eliseo

    2010-02-01

    When multiple regression is used in explanation-oriented designs, it is very important to determine both the usefulness of the predictor variables and their relative importance. Standardized regression coefficients are routinely provided by commercial programs. However, they generally function rather poorly as indicators of relative importance, especially in the presence of substantially correlated predictors. We provide two user-friendly SPSS programs that implement currently recommended techniques and recent developments for assessing the relevance of the predictors. The programs also allow the user to take into account the effects of measurement error. The first program, MIMR-Corr.sps, uses a correlation matrix as input, whereas the second program, MIMR-Raw.sps, uses the raw data and computes bootstrap confidence intervals of different statistics. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from http://brm.psychonomic-journals.org/content/supplemental.

  15. MULTIPLE REGRESSION ANALYSIS OF MAIN ECONOMIC INDICATORS IN TOURISM

    Directory of Open Access Journals (Sweden)

    Erika KULCSÁR

    2009-12-01

    Full Text Available This paper analysis the measure between GDP dependent variable in the sector of hotels and restaurants and the following independent variables: overnight stays in the establishments of touristic reception, arrivals in the establishments of touristic reception and investments in hotels and restaurants sector in the period of analysis 1995-2007. With the multiple regression analysis I found that investments and tourist arrivals are significant predictors for the GDP dependent variable. Based on these results, I identified those components of the marketing mix, which in my opinion require investment, which could contribute to the positive development of tourist arrivals in the establishments of touristic reception.

  16. Forecasting relativistic electron flux using dynamic multiple regression models

    Directory of Open Access Journals (Sweden)

    H.-L. Wei

    2011-02-01

    Full Text Available The forecast of high energy electron fluxes in the radiation belts is important because the exposure of modern spacecraft to high energy particles can result in significant damage to onboard systems. A comprehensive physical model of processes related to electron energisation that can be used for such a forecast has not yet been developed. In the present paper a systems identification approach is exploited to deduce a dynamic multiple regression model that can be used to predict the daily maximum of high energy electron fluxes at geosynchronous orbit from data. It is shown that the model developed provides reliable predictions.

  17. MULTIPLE REGRESSION ANALYSIS OF MAIN ECONOMIC INDICATORS IN TOURISM

    Directory of Open Access Journals (Sweden)

    Erika KULCSÁR

    2009-12-01

    Full Text Available This paper analysis the measure between GDP dependent variable in the sector of hotels and restaurants and the following independent variables: overnight stays in the establishments of touristic reception, arrivals in the establishments of touristic reception and investments in hotels and restaurants sector in the period of analysis 1995-2007. With the multiple regression analysis I found that investments and tourist arrivals are significant predictors for the GDP dependent variable. Based on these results, I identified those components of the marketing mix, which in my opinion require investment, which could contribute to the positive development of tourist arrivals in the establishments of touristic reception.

  18. Interpret with caution: multicollinearity in multiple regression of cognitive data.

    Science.gov (United States)

    Morrison, Catriona M

    2003-08-01

    Shibihara and Kondo in 2002 reported a reanalysis of the 1997 Kanji picture-naming data of Yamazaki, Ellis, Morrison, and Lambon-Ralph in which independent variables were highly correlated. Their addition of the variable visual familiarity altered the previously reported pattern of results, indicating that visual familiarity, but not age of acquisition, was important in predicting Kanji naming speed. The present paper argues that caution should be taken when drawing conclusions from multiple regression analyses in which the independent variables are so highly correlated, as such multicollinearity can lead to unreliable output.

  19. Printed Arabic Text Recognition using Linear and Nonlinear Regression

    Directory of Open Access Journals (Sweden)

    Ashraf A. Shahin

    2017-01-01

    Full Text Available Arabic language is one of the most popular languages in the world. Hundreds of millions of people in many countries around the world speak Arabic as their native speaking. However, due to complexity of Arabic language, recognition of printed and handwritten Arabic text remained untouched for a very long time compared with English and Chinese. Although, in the last few years, significant number of researches has been done in recognizing printed and handwritten Arabic text, it stills an open research field due to cursive nature of Arabic script. This paper proposes automatic printed Arabic text recognition technique based on linear and ellipse regression techniques. After collecting all possible forms of each character, unique code is generated to represent each character form. Each code contains a sequence of lines and ellipses. To recognize fonts, a unique list of codes is identified to be used as a fingerprint of font. The proposed technique has been evaluated using over 14000 different Arabic words with different fonts and experimental results show that average recognition rate of the proposed technique is 86%.

  20. Hot Resistance Estimation for Dry Type Transformer Using Multiple Variable Regression, Multiple Polynomial Regression and Soft Computing Techniques

    Directory of Open Access Journals (Sweden)

    M. Srinivasan

    2012-01-01

    Full Text Available Problem statement: This study presents a novel method for the determination of average winding temperature rise of transformers under its predetermined field operating conditions. Rise in the winding temperature was determined from the estimated values of winding resistance during the heat run test conducted as per IEC standard. Approach: The estimation of hot resistance was modeled using Multiple Variable Regression (MVR, Multiple Polynomial Regression (MPR and soft computing techniques such as Artificial Neural Network (ANN and Adaptive Neuro Fuzzy Inference System (ANFIS. The modeled hot resistance will help to find the load losses at any load situation without using complicated measurement set up in transformers. Results: These techniques were applied for the hot resistance estimation for dry type transformer by using the input variables cold resistance, ambient temperature and temperature rise. The results are compared and they show a good agreement between measured and computed values. Conclusion: According to our experiments, the proposed methods are verified using experimental results, which have been obtained from temperature rise test performed on a 55 kVA dry-type transformer.

  1. Contiguous Uniform Deviation for Multiple Linear Regression in Pattern Recognition

    Science.gov (United States)

    Andriana, A. S.; Prihatmanto, D.; Hidaya, E. M. I.; Supriana, I.; Machbub, C.

    2017-01-01

    Understanding images by recognizing its objects is still a challenging task. Face elements detection has been developed by researchers but not yet shows enough information (low resolution in information) needed for recognizing objects. Available face recognition methods still have error in classification and need a huge amount of examples which may still be incomplete. Another approach which is still rare in understanding images uses pattern structures or syntactic grammars describing shape detail features. Image pixel values are also processed as signal patterns which are approximated by mathematical function curve fitting. This paper attempts to add contiguous uniform deviation method to curve fitting algorithm to increase applicability in image recognition system related to object movement. The combination of multiple linear regression and contiguous uniform deviation method are applied to the function of image pixel values, and show results in higher resolution (more information) of visual object detail description in object movement.

  2. Investigating nonlinear speculation in cattle, corn, and hog futures markets using logistic smooth transition regression models

    OpenAIRE

    Röthig, Andreas; Chiarella, Carl

    2006-01-01

    This article explores nonlinearities in the response of speculators' trading activity to price changes in live cattle, corn, and lean hog futures markets. Analyzing weekly data from March 4, 1997 to December 27, 2005, we reject linearity in all of these markets. Using smooth transition regression models, we find a similar structure of nonlinearities with regard to the number of different regimes, the choice of the transition variable, and the value at which the transition occurs.

  3. Exploring nonlinear relations: models of clinical decision making by regression with optimal scaling.

    Science.gov (United States)

    Hartmann, Armin; Van Der Kooij, Anita J; Zeeck, Almut

    2009-07-01

    In explorative regression studies, linear models are often applied without questioning the linearity of the relations between the predictor variables and the dependent variable, or linear relations are taken as an approximation. In this study, the method of regression with optimal scaling transformations is demonstrated. This method does not require predefined nonlinear functions and results in easy-to-interpret transformations that will show the form of the relations. The method is illustrated using data from a German multicenter project on the indication criteria for inpatient or day clinic psychotherapy treatment. The indication criteria to include in the regression model were selected with the Lasso, which is a tool for predictor selection that overcomes the disadvantages of stepwise regression methods. The resulting prediction model indicates that treatment status is (approximately) linearly related to some criteria and nonlinearly related to others.

  4. Non-linear regression model for spatial variation in precipitation chemistry for South India

    Science.gov (United States)

    Siva Soumya, B.; Sekhar, M.; Riotte, J.; Braun, Jean-Jacques

    Chemical composition of rainwater changes from sea to inland under the influence of several major factors - topographic location of area, its distance from sea, annual rainfall. A model is developed here to quantify the variation in precipitation chemistry under the influence of inland distance and rainfall amount. Various sites in India categorized as 'urban', 'suburban' and 'rural' have been considered for model development. pH, HCO 3, NO 3 and Mg do not change much from coast to inland while, SO 4 and Ca change is subjected to local emissions. Cl and Na originate solely from sea salinity and are the chemistry parameters in the model. Non-linear multiple regressions performed for the various categories revealed that both rainfall amount and precipitation chemistry obeyed a power law reduction with distance from sea. Cl and Na decrease rapidly for the first 100 km distance from sea, then decrease marginally for the next 100 km, and later stabilize. Regression parameters estimated for different cases were found to be consistent ( R2 ˜ 0.8). Variation in one of the parameters accounted for urbanization. Model was validated using data points from the southern peninsular region of the country. Estimates are found to be within 99.9% confidence interval. Finally, this relationship between the three parameters - rainfall amount, coastline distance, and concentration (in terms of Cl and Na) was validated with experiments conducted in a small experimental watershed in the south-west India. Chemistry estimated using the model was in good correlation with observed values with a relative error of ˜5%. Monthly variation in the chemistry is predicted from a downscaling model and then compared with the observed data. Hence, the model developed for rain chemistry is useful in estimating the concentrations at different spatio-temporal scales and is especially applicable for south-west region of India.

  5. Influencing Academic Library Use in Tanzania: A Multiple Regression Analysis

    Directory of Open Access Journals (Sweden)

    Leocardia L Juventus

    2016-12-01

    Full Text Available Library use is influenced by many factors. This study uses a multiple regression analysis to ascertain the connection between the level of library use and a few of these factors based on the questionnaire responses from 158 undergraduate students who use academic libraries in two Tanzania’s universities: Muhimbili University of Health and Allied Sciences (MUHAS, and Hubert Kairuki Memorial University (HKMU. It has been discovered that users of academic libraries in Tanzania are influenced by the need to: search and access online materials, check for new books or other resources, check out books and other materials, and enjoy a friendly environment for study. However, their library use is not influenced by either the free wireless network, or consultation from librarians. It is argued that, academic libraries need to devise and implement plans that can make these libraries better learning environment and platforms to drive socio-economic developmentparticularly in developing nations such as Tanzania. It is further argued that, this can be enhanced through investment in modern academic library infrastructures.

  6. Modeling Pan Evaporation for Kuwait by Multiple Linear Regression

    Directory of Open Access Journals (Sweden)

    Jaber Almedeij

    2012-01-01

    Full Text Available Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values.

  7. Overcoming multicollinearity in multiple regression using correlation coefficient

    Science.gov (United States)

    Zainodin, H. J.; Yap, S. J.

    2013-09-01

    Multicollinearity happens when there are high correlations among independent variables. In this case, it would be difficult to distinguish between the contributions of these independent variables to that of the dependent variable as they may compete to explain much of the similar variance. Besides, the problem of multicollinearity also violates the assumption of multiple regression: that there is no collinearity among the possible independent variables. Thus, an alternative approach is introduced in overcoming the multicollinearity problem in achieving a well represented model eventually. This approach is accomplished by removing the multicollinearity source variables on the basis of the correlation coefficient values based on full correlation matrix. Using the full correlation matrix can facilitate the implementation of Excel function in removing the multicollinearity source variables. It is found that this procedure is easier and time-saving especially when dealing with greater number of independent variables in a model and a large number of all possible models. Hence, in this paper detailed insight of the procedure is shown, compared and implemented.

  8. Novel applications of multitask learning and multiple output regression to multiple genetic trait prediction

    Science.gov (United States)

    Kuhn, David; Parida, Laxmi

    2016-01-01

    Given a set of biallelic molecular markers, such as SNPs, with genotype values encoded numerically on a collection of plant, animal or human samples, the goal of genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Genetic trait prediction is usually represented as linear regression models. In many cases, for the same set of samples and markers, multiple traits are observed. Some of these traits might be correlated with each other. Therefore, modeling all the multiple traits together may improve the prediction accuracy. In this work, we view the multitrait prediction problem from a machine learning angle: as either a multitask learning problem or a multiple output regression problem, depending on whether different traits share the same genotype matrix or not. We then adapted multitask learning algorithms and multiple output regression algorithms to solve the multitrait prediction problem. We proposed a few strategies to improve the least square error of the prediction from these algorithms. Our experiments show that modeling multiple traits together could improve the prediction accuracy for correlated traits. Availability and implementation: The programs we used are either public or directly from the referred authors, such as MALSAR (http://www.public.asu.edu/~jye02/Software/MALSAR/) package. The Avocado data set has not been published yet and is available upon request. Contact: dhe@us.ibm.com PMID:27307640

  9. On Calculating the Hougaard Measure of Skewness in a Nonlinear Regression Model with Two Parameters

    Directory of Open Access Journals (Sweden)

    S. A. EL-Shehawy

    2009-01-01

    Full Text Available Problem statement: This study presented an alternative computational algorithm for determining the values of the Hougaard measure of skewness as a nonlinearity measure in a Nonlinear Regression model (NLR-model with two parameters. Approach: These values indicated a degree of a nonlinear behavior in the estimator of the parameter in a NLR-model. Results: We applied the suggested algorithm on an example of a NLR-model in which there is a conditionally linear parameter. The algorithm is mainly based on many earlier studies in measures of nonlinearity. The algorithm was suited for implementation using computer algebra systems such as MAPLE, MATLAB and MATHEMATICA. Conclusion/Recommendations: The results with the corresponding output the same considering example will be compared with the results in some earlier studies.

  10. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Science.gov (United States)

    Drzewiecki, Wojciech

    2016-12-01

    In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.

  11. Forecasting Gold Prices Using Multiple Linear Regression Method

    Directory of Open Access Journals (Sweden)

    Z. Ismail

    2009-01-01

    Full Text Available Problem statement: Forecasting is a function in management to assist decision making. It is also described as the process of estimation in unknown future situations. In a more general term it is commonly known as prediction which refers to estimation of time series or longitudinal type data. Gold is a precious yellow commodity once used as money. It was made illegal in USA 41 years ago, but is now once again accepted as a potential currency. The demand for this commodity is on the rise. Approach: Objective of this study was to develop a forecasting model for predicting gold prices based on economic factors such as inflation, currency price movements and others. Following the melt-down of US dollars, investors are putting their money into gold because gold plays an important role as a stabilizing influence for investment portfolios. Due to the increase in demand for gold in Malaysian and other parts of the world, it is necessary to develop a model that reflects the structure and pattern of gold market and forecast movement of gold price. The most appropriate approach to the understanding of gold prices is the Multiple Linear Regression (MLR model. MLR is a study on the relationship between a single dependent variable and one or more independent variables, as this case with gold price as the single dependent variable. The fitted model of MLR will be used to predict the future gold prices. A naive model known as “forecast-1” was considered to be a benchmark model in order to evaluate the performance of the model. Results: Many factors determine the price of gold and based on “a hunch of experts”, several economic factors had been identified to have influence on the gold prices. Variables such as Commodity Research Bureau future index (CRB; USD/Euro Foreign Exchange Rate (EUROUSD; Inflation rate (INF; Money Supply (M1; New York Stock Exchange (NYSE; Standard and Poor 500 (SPX; Treasury Bill (T-BILL and US Dollar index (USDX were considered to

  12. Multiple regression technique for Pth degree polynominals with and without linear cross products

    Science.gov (United States)

    Davis, J. W.

    1973-01-01

    A multiple regression technique was developed by which the nonlinear behavior of specified independent variables can be related to a given dependent variable. The polynomial expression can be of Pth degree and can incorporate N independent variables. Two cases are treated such that mathematical models can be studied both with and without linear cross products. The resulting surface fits can be used to summarize trends for a given phenomenon and provide a mathematical relationship for subsequent analysis. To implement this technique, separate computer programs were developed for the case without linear cross products and for the case incorporating such cross products which evaluate the various constants in the model regression equation. In addition, the significance of the estimated regression equation is considered and the standard deviation, the F statistic, the maximum absolute percent error, and the average of the absolute values of the percent of error evaluated. The computer programs and their manner of utilization are described. Sample problems are included to illustrate the use and capability of the technique which show the output formats and typical plots comparing computer results to each set of input data.

  13. Control design approaches for nonlinear systems using multiple models

    Institute of Scientific and Technical Information of China (English)

    Junyong ZHAI; Shumin FEI; Feipeng DA

    2007-01-01

    It is difficult to realize control for some complex nonlinear systems operated in different operating regions.Based on developing local models for different operating regions of the process, a novel algorithm using multiple models is proposed. It utilizes dynamic model bank to establish multiple local models, and their membership functions are defined according to respective regions. Then the nonlinear system is approximated to a weighted combination of the local models.The stability of the nonlinear system is proven. Finally, simulations are given to demonstrate the validity of the proposed method.

  14. Multilayer perceptron for robust nonlinear interval regression analysis using genetic algorithms.

    Science.gov (United States)

    Hu, Yi-Chung

    2014-01-01

    On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets.

  15. Multilayer Perceptron for Robust Nonlinear Interval Regression Analysis Using Genetic Algorithms

    Science.gov (United States)

    2014-01-01

    On the basis of fuzzy regression, computational models in intelligence such as neural networks have the capability to be applied to nonlinear interval regression analysis for dealing with uncertain and imprecise data. When training data are not contaminated by outliers, computational models perform well by including almost all given training data in the data interval. Nevertheless, since training data are often corrupted by outliers, robust learning algorithms employed to resist outliers for interval regression analysis have been an interesting area of research. Several approaches involving computational intelligence are effective for resisting outliers, but the required parameters for these approaches are related to whether the collected data contain outliers or not. Since it seems difficult to prespecify the degree of contamination beforehand, this paper uses multilayer perceptron to construct the robust nonlinear interval regression model using the genetic algorithm. Outliers beyond or beneath the data interval will impose slight effect on the determination of data interval. Simulation results demonstrate that the proposed method performs well for contaminated datasets. PMID:25110755

  16. Regression Discontinuity Designs with Multiple Rating-Score Variables

    Science.gov (United States)

    Reardon, Sean F.; Robinson, Joseph P.

    2012-01-01

    In the absence of a randomized control trial, regression discontinuity (RD) designs can produce plausible estimates of the treatment effect on an outcome for individuals near a cutoff score. In the standard RD design, individuals with rating scores higher than some exogenously determined cutoff score are assigned to one treatment condition; those…

  17. An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models

    Energy Technology Data Exchange (ETDEWEB)

    Harlim, John, E-mail: jharlim@psu.edu [Department of Mathematics and Department of Meteorology, the Pennsylvania State University, University Park, PA 16802, Unites States (United States); Mahdi, Adam, E-mail: amahdi@ncsu.edu [Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (United States); Majda, Andrew J., E-mail: jonjon@cims.nyu.edu [Department of Mathematics and Center for Atmosphere and Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (United States)

    2014-01-15

    A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partial noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.

  18. Comparison of Linear and Non-linear Regression Analysis to Determine Pulmonary Pressure in Hyperthyroidism.

    Science.gov (United States)

    Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan

    2017-01-01

    This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second

  19. Variable selection in multiple linear regression: The influence of ...

    African Journals Online (AJOL)

    Akaike's information criterion, influential data cases, Mallows' Cp criterion, multiple ... In this paper we introduce two new measures of the selection influence of an ..... [1] Akaike H, 1973, Information theory and an extension of the maximum ...

  20. Robust Nonlinear Regression: A Greedy Approach Employing Kernels With Application to Image Denoising

    Science.gov (United States)

    Papageorgiou, George; Bouboulis, Pantelis; Theodoridis, Sergios

    2017-08-01

    We consider the task of robust non-linear regression in the presence of both inlier noise and outliers. Assuming that the unknown non-linear function belongs to a Reproducing Kernel Hilbert Space (RKHS), our goal is to estimate the set of the associated unknown parameters. Due to the presence of outliers, common techniques such as the Kernel Ridge Regression (KRR) or the Support Vector Regression (SVR) turn out to be inadequate. Instead, we employ sparse modeling arguments to explicitly model and estimate the outliers, adopting a greedy approach. The proposed robust scheme, i.e., Kernel Greedy Algorithm for Robust Denoising (KGARD), is inspired by the classical Orthogonal Matching Pursuit (OMP) algorithm. Specifically, the proposed method alternates between a KRR task and an OMP-like selection step. Theoretical results concerning the identification of the outliers are provided. Moreover, KGARD is compared against other cutting edge methods, where its performance is evaluated via a set of experiments with various types of noise. Finally, the proposed robust estimation framework is applied to the task of image denoising, and its enhanced performance in the presence of outliers is demonstrated.

  1. Aboveground biomass and carbon stocks modelling using non-linear regression model

    Science.gov (United States)

    Ain Mohd Zaki, Nurul; Abd Latif, Zulkiflee; Nazip Suratman, Mohd; Zainee Zainal, Mohd

    2016-06-01

    Aboveground biomass (AGB) is an important source of uncertainty in the carbon estimation for the tropical forest due to the variation biodiversity of species and the complex structure of tropical rain forest. Nevertheless, the tropical rainforest holds the most extensive forest in the world with the vast diversity of tree with layered canopies. With the usage of optical sensor integrate with empirical models is a common way to assess the AGB. Using the regression, the linkage between remote sensing and a biophysical parameter of the forest may be made. Therefore, this paper exemplifies the accuracy of non-linear regression equation of quadratic function to estimate the AGB and carbon stocks for the tropical lowland Dipterocarp forest of Ayer Hitam forest reserve, Selangor. The main aim of this investigation is to obtain the relationship between biophysical parameter field plots with the remotely-sensed data using nonlinear regression model. The result showed that there is a good relationship between crown projection area (CPA) and carbon stocks (CS) with Pearson Correlation (p < 0.01), the coefficient of correlation (r) is 0.671. The study concluded that the integration of Worldview-3 imagery with the canopy height model (CHM) raster based LiDAR were useful in order to quantify the AGB and carbon stocks for a larger sample area of the lowland Dipterocarp forest.

  2. Nonlinear and cooperative control of multiple hovercraft with input constraints

    OpenAIRE

    Dunbar, William B.; Olfati-Saber, Reza; Richard M Murray

    2003-01-01

    In this paper, we introduce an approach for distributed nonlinear control of multiple hovercraft-type underactuated vehicles with bounded and unidirectional inputs. First, a bounded nonlinear controller is given for stabilization and tracking of a single vehicle, using a cascade backstepping method. Then, this controller is combined with a distributed gradient-based control for multi-vehicle formation stabilization using formation potential functions previously constructed. The vehicles are u...

  3. Nonlinear Multiplicative Schwarz Preconditioning in Natural Convection Cavity Flow

    KAUST Repository

    Liu, Lulu

    2017-03-17

    A natural convection cavity flow problem is solved using nonlinear multiplicative Schwarz preconditioners, as a Gauss-Seidel-like variant of additive Schwarz preconditioned inexact Newton (ASPIN). The nonlinear preconditioning extends the domain of convergence of Newton’s method to high Rayleigh numbers. Convergence performance varies widely with respect to different groupings of the fields of this multicomponent problem, and with respect to different orderings of the groupings.

  4. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling.

    Science.gov (United States)

    Kawashima, Issaku; Kumano, Hiroaki

    2017-01-01

    Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  5. Application of nonlinear regression analysis for ammonium exchange by natural (Bigadic) clinoptilolite

    Energy Technology Data Exchange (ETDEWEB)

    Gunay, Ahmet [Deparment of Environmental Engineering, Faculty of Engineering and Architecture, Balikesir University (Turkey)], E-mail: ahmetgunay2@gmail.com

    2007-09-30

    The experimental data of ammonium exchange by natural Bigadic clinoptilolite was evaluated using nonlinear regression analysis. Three two-parameters isotherm models (Langmuir, Freundlich and Temkin) and three three-parameters isotherm models (Redlich-Peterson, Sips and Khan) were used to analyse the equilibrium data. Fitting of isotherm models was determined using values of standard normalization error procedure (SNE) and coefficient of determination (R{sup 2}). HYBRID error function provided lowest sum of normalized error and Khan model had better performance for modeling the equilibrium data. Thermodynamic investigation indicated that ammonium removal by clinoptilolite was favorable at lower temperatures and exothermic in nature.

  6. Describing Adequacy of cure with maximum hardness ratios and non-linear regression.

    Science.gov (United States)

    Bouschlicher, Murray; Berning, Kristen; Qian, Fang

    2008-01-01

    Knoop Hardness (KH) ratios (HR) > or = 80% are commonly used as criteria for the adequate cure of a composite. These per-specimen HRs can be misleading, as both numerator and denominator may increase concurrently, prior to reaching an asymptotic, top-surface maximum hardness value (H(MAX)). Extended cure times were used to establish H(MAX) and descriptive statistics, and non-linear regression analysis were used to describe the relationship between exposure duration and HR and predict the time required for HR-H(MAX) = 80%. Composite samples 2.00 x 5.00 mm diameter (n = 5/grp) were cured for 10 seconds, 20 seconds, 40 seconds, 60 seconds, 90 seconds, 120 seconds, 180 seconds and 240 seconds in a 2-composite x 2-light curing unit design. A microhybrid (Point 4, P4) or microfill resin (Heliomolar, HM) composite was cured with a QTH or LED light curing unit and then stored in the dark for 24 hours prior to KH testing. Non-linear regression was calculated with: H = (H(MAX)-c)(1-e(-kt)) +c, H(MAX) = maximum hardness (a theoretical asymptotic value), c = constant (t = 0), k = rate constant and t = exposure duration describes the relationship between radiant exposure (irradiance x time) and HRs. Exposure durations for HR-H(MAX) = 80% were calculated. Two-sample t-tests for pairwise comparisons evaluated relative performance of the light curing units for similar surface x composite x exposure (10-90s). A good measure of goodness-of-fit of the non-linear regression, r2, ranged from 0.68-0.95. (mean = 0.82). Microhybrid (P4) exposure to achieve HR-H(MAX = 80% was 21 seconds for QTH and 34 seconds for the LED light curing unit. Corresponding values for microfill (HM) were 71 and 74 seconds, respectively. P4 HR-H(MAX) of LED vs QTH was statistically similar for 10 to 40 seconds, while HM HR-H(MAX) of LED was significantly lower than QTH for 10 to 40 seconds. It was concluded that redefined hardness ratios based on maximum hardness used in conjunction with non-linear regression

  7. Heteroscedastic nonlinear regression models based on scale mixtures of skew-normal distributions.

    Science.gov (United States)

    Lachos, Victor H; Bandyopadhyay, Dipankar; Garay, Aldo M

    2011-08-01

    An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. We derive a simple EM-type algorithm for iteratively computing maximum likelihood (ML) estimates and the observed information matrix is derived analytically. Simulation studies demonstrate the robustness of this flexible class against outlying and influential observations, as well as nice asymptotic properties of the proposed EM-type ML estimates. Finally, the methodology is illustrated using an ultrasonic calibration data.

  8. The Detection and Interpretation of Interaction Effects between Continuous Variables in Multiple Regression.

    Science.gov (United States)

    Jaccard, James; And Others

    1990-01-01

    Issues in the detection and interpretation of interaction effects between quantitative variables in multiple regression analysis are discussed. Recent discussions associated with problems of multicollinearity are reviewed in the context of the conditional nature of multiple regression with product terms. (TJH)

  9. Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.

    Science.gov (United States)

    Hahne, J M; Biessmann, F; Jiang, N; Rehbaum, H; Farina, D; Meinecke, F C; Muller, K-R; Parra, L C

    2014-03-01

    In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices.

  10. Nonlinear coil sensitivity estimation for parallel magnetic resonance imaging using data-adaptive steering kernel regression method.

    Science.gov (United States)

    Fang, Sheng; Guo, Hua

    2013-01-01

    The parallel magnetic resonance imaging (parallel imaging) technique reduces the MR data acquisition time by using multiple receiver coils. Coil sensitivity estimation is critical for the performance of parallel imaging reconstruction. Currently, most coil sensitivity estimation methods are based on linear interpolation techniques. Such methods may result in Gibbs-ringing artifact or resolution loss, when the resolution of coil sensitivity data is limited. To solve the problem, we proposed a nonlinear coil sensitivity estimation method based on steering kernel regression, which performs a local gradient guided interpolation to the coil sensitivity. The in vivo experimental results demonstrate that this method can effectively suppress Gibbs ringing artifact in coil sensitivity and reduces both noise and residual aliasing artifact level in SENSE reconstruction.

  11. Utilization of multiple frequencies in 3D nonlinear microwave imaging

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob

    2012-01-01

    The use of multiple frequencies in a nonlinear microwave algorithm is considered. Using multiple frequencies allows for obtaining the improved resolution available at the higher frequencies while retaining the regularizing effects of the lower frequencies. However, a number of different challenges...... at lower frequencies are used as starting guesses for reconstructions at higher frequencies. The performance is illustrated using simulated 2-D data and data obtained with the 3-D DTU microwave imaging system....

  12. Multiple solutions to some singular nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Monica Lazzo

    2001-01-01

    Full Text Available We consider the equation $$ - h^2 Delta u + V_varepsilon(x u = |u|^{p-2} u $$ which arises in the study of standing waves of a nonlinear Schrodinger equation. We allow the potential $V_varepsilon$ to be unbounded below and prove existence and multiplicity results for positive solutions.

  13. Multiple solutions for inhomogeneous nonlinear elliptic problems arising in astrophyiscs

    Directory of Open Access Journals (Sweden)

    Marco Calahorrano

    2004-04-01

    Full Text Available Using variational methods we prove the existence and multiplicity of solutions for some nonlinear inhomogeneous elliptic problems on a bounded domain in $mathbb{R}^n$, with $ngeq 2$ and a smooth boundary, and when the domain is $mathbb{R}_+^n$

  14. Multiple linear regression with correlations among the predictor variables. Theory and computer algorithm ridge (FORTRAN 77)

    Science.gov (United States)

    van Gaans, P. F. M.; Vriend, S. P.

    Application of ridge regression in geoscience usually is a more appropriate technique than ordinary least-squares regression, especially in the situation of highly intercorrelated predictor variables. A FORTRAN 77 program RIDGE for ridged multiple linear regression is presented. The theory of linear regression and ridge regression is treated, to allow for a careful interpretation of the results and to understand the structure of the program. The program gives various parameters to evaluate the extent of multicollinearity within a given regression problem, such as the correlation matrix, multiple correlations among the predictors, variance inflation factors, eigenvalues, condition number, and the determinant of the predictors correlation matrix. The best method for the optimum choice of the ridge parameter with ridge regression has not been established yet. Estimates of the ridge bias, ridged variance inflation factors, estimates, and norms for the ridge parameter therefore are given as output by RIDGE and should complement inspection of the ridge traces. Application within the earth sciences is discussed.

  15. Statistical Downscaling: A Comparison of Multiple Linear Regression and k-Nearest Neighbor Approaches

    Science.gov (United States)

    Gangopadhyay, S.; Clark, M. P.; Rajagopalan, B.

    2002-12-01

    The success of short term (days to fortnight) streamflow forecasting largely depends on the skill of surface climate (e.g., precipitation and temperature) forecasts at local scales in the individual river basins. The surface climate forecasts are used to drive the hydrologic models for streamflow forecasting. Typically, Medium Range Forecast (MRF) models provide forecasts of large scale circulation variables (e.g. pressures, wind speed, relative humidity etc.) at different levels in the atmosphere on a regular grid - which are then used to "downscale" to the surface climate at locations within the model grid box. Several statistical and dynamical methods are available for downscaling. This paper compares the utility of two statistical downscaling methodologies: (1) multiple linear regression (MLR) and (2) a nonparametric approach based on k-nearest neighbor (k-NN) bootstrap method, in providing local-scale information of precipitation and temperature at a network of stations in the Upper Colorado River Basin. Downscaling to the stations is based on output of large scale circulation variables (i.e. predictors) from the NCEP Medium Range Forecast (MRF) database. Fourteen-day six hourly forecasts are developed using these two approaches, and their forecast skill evaluated. A stepwise regression is performed at each location to select the predictors for the MLR. The k-NN bootstrap technique resamples historical data based on their "nearness" to the current pattern in the predictor space. Prior to resampling a Principal Component Analysis (PCA) is performed on the predictor set to identify a small subset of predictors. Preliminary results using the MLR technique indicate a significant value in the downscaled MRF output in predicting runoff in the Upper Colorado Basin. It is expected that the k-NN approach will match the skill of the MLR approach at individual stations, and will have the added advantage of preserving the spatial co-variability between stations, capturing

  16. Stability and adaptability of runner peanut genotypes based on nonlinear regression and AMMI analysis

    Directory of Open Access Journals (Sweden)

    Roseane Cavalcanti dos Santos

    2012-08-01

    Full Text Available The objective of this work was to estimate the stability and adaptability of pod and seed yield in runner peanut genotypes based on the nonlinear regression and AMMI analysis. Yield data from 11 trials, distributed in six environments and three harvests, carried out in the Northeast region of Brazil during the rainy season were used. Significant effects of genotypes (G, environments (E, and GE interactions were detected in the analysis, indicating different behaviors among genotypes in favorable and unfavorable environmental conditions. The genotypes BRS Pérola Branca and LViPE‑06 are more stable and adapted to the semiarid environment, whereas LGoPE‑06 is a promising material for pod production, despite being highly dependent on favorable environments.

  17. Describing Growth Pattern of Bali Cows Using Non-linear Regression Models

    Directory of Open Access Journals (Sweden)

    Mohd. Hafiz A.W

    2016-12-01

    Full Text Available The objective of this study was to evaluate the best fit non-linear regression model to describe the growth pattern of Bali cows. Estimates of asymptotic mature weight, rate of maturing and constant of integration were derived from Brody, von Bertalanffy, Gompertz and Logistic models which were fitted to cross-sectional data of body weight taken from 74 Bali cows raised in MARDI Research Station Muadzam Shah Pahang. Coefficient of determination (R2 and residual mean squares (MSE were used to determine the best fit model in describing the growth pattern of Bali cows. Von Bertalanffy model was the best model among the four growth functions evaluated to determine the mature weight of Bali cattle as shown by the highest R2 and lowest MSE values (0.973 and 601.9, respectively, followed by Gompertz (0.972 and 621.2, respectively, Logistic (0.971 and 648.4, respectively and Brody (0.932 and 660.5, respectively models. The correlation between rate of maturing and mature weight was found to be negative in the range of -0.170 to -0.929 for all models, indicating that animals of heavier mature weight had lower rate of maturing. The use of non-linear model could summarize the weight-age relationship into several biologically interpreted parameters compared to the entire lifespan weight-age data points that are difficult and time consuming to interpret.

  18. Tightness of M-estimators for multiple linear regression in time series

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Bent

    We show tightness of a general M-estimator for multiple linear regression in time series. The positive criterion function for the M-estimator is assumed lower semi-continuous and sufficiently large for large argument: Particular cases are the Huber-skip and quantile regression. Tightness requires...

  19. Isolating and Examining Sources of Suppression and Multicollinearity in Multiple Linear Regression

    Science.gov (United States)

    Beckstead, Jason W.

    2012-01-01

    The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic…

  20. Support Vector Regression-Based Adaptive Divided Difference Filter for Nonlinear State Estimation Problems

    Directory of Open Access Journals (Sweden)

    Hongjian Wang

    2014-01-01

    Full Text Available We present a support vector regression-based adaptive divided difference filter (SVRADDF algorithm for improving the low state estimation accuracy of nonlinear systems, which are typically affected by large initial estimation errors and imprecise prior knowledge of process and measurement noises. The derivative-free SVRADDF algorithm is significantly simpler to compute than other methods and is implemented using only functional evaluations. The SVRADDF algorithm involves the use of the theoretical and actual covariance of the innovation sequence. Support vector regression (SVR is employed to generate the adaptive factor to tune the noise covariance at each sampling instant when the measurement update step executes, which improves the algorithm’s robustness. The performance of the proposed algorithm is evaluated by estimating states for (i an underwater nonmaneuvering target bearing-only tracking system and (ii maneuvering target bearing-only tracking in an air-traffic control system. The simulation results show that the proposed SVRADDF algorithm exhibits better performance when compared with a traditional DDF algorithm.

  1. A Kalman Filtering and Nonlinear Penalty Regression Approach for Noninvasive Anemia Detection with Palpebral Conjunctiva Images

    Directory of Open Access Journals (Sweden)

    Yi-Ming Chen

    2017-01-01

    Full Text Available Noninvasive medical procedures are usually preferable to their invasive counterparts in the medical community. Anemia examining through the palpebral conjunctiva is a convenient noninvasive procedure. The procedure can be automated to reduce the medical cost. We propose an anemia examining approach by using a Kalman filter (KF and a regression method. The traditional KF is often used in time-dependent applications. Here, we modified the traditional KF for the time-independent data in medical applications. We simply compute the mean value of the red component of the palpebral conjunctiva image as our recognition feature and use a penalty regression algorithm to find a nonlinear curve that best fits the data of feature values and the corresponding levels of hemoglobin (Hb concentration. To evaluate the proposed approach and several relevant approaches, we propose a risk evaluation scheme, where the entire Hb spectrum is divided into high-risk, low-risk, and doubtful intervals for anemia. The doubtful interval contains the Hb threshold, say 11 g/dL, separating anemia and nonanemia. A suspect sample is the sample falling in the doubtful interval. For the anemia screening purpose, we would like to have as less suspect samples as possible. The experimental results show that the modified KF reduces the number of suspect samples significantly for all the approaches considered here.

  2. Prediction of hearing outcomes by multiple regression analysis in patients with idiopathic sudden sensorineural hearing loss.

    Science.gov (United States)

    Suzuki, Hideaki; Tabata, Takahisa; Koizumi, Hiroki; Hohchi, Nobusuke; Takeuchi, Shoko; Kitamura, Takuro; Fujino, Yoshihisa; Ohbuchi, Toyoaki

    2014-12-01

    This study aimed to create a multiple regression model for predicting hearing outcomes of idiopathic sudden sensorineural hearing loss (ISSNHL). The participants were 205 consecutive patients (205 ears) with ISSNHL (hearing level ≥ 40 dB, interval between onset and treatment ≤ 30 days). They received systemic steroid administration combined with intratympanic steroid injection. Data were examined by simple and multiple regression analyses. Three hearing indices (percentage hearing improvement, hearing gain, and posttreatment hearing level [HLpost]) and 7 prognostic factors (age, days from onset to treatment, initial hearing level, initial hearing level at low frequencies, initial hearing level at high frequencies, presence of vertigo, and contralateral hearing level) were included in the multiple regression analysis as dependent and explanatory variables, respectively. In the simple regression analysis, the percentage hearing improvement, hearing gain, and HLpost showed significant correlation with 2, 5, and 6 of the 7 prognostic factors, respectively. The multiple correlation coefficients were 0.396, 0.503, and 0.714 for the percentage hearing improvement, hearing gain, and HLpost, respectively. Predicted values of HLpost calculated by the multiple regression equation were reliable with 70% probability with a 40-dB-width prediction interval. Prediction of HLpost by the multiple regression model may be useful to estimate the hearing prognosis of ISSNHL. © The Author(s) 2014.

  3. Multiple Positive Solutions for Nonlinear Semipositone Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Wen-Xue Zhou

    2012-01-01

    Full Text Available We present some new multiplicity of positive solutions results for nonlinear semipositone fractional boundary value problem D0+αu(t=p(tf(t,u(t-q(t,0

  4. The comparison between several robust ridge regression estimators in the presence of multicollinearity and multiple outliers

    Science.gov (United States)

    Zahari, Siti Meriam; Ramli, Norazan Mohamed; Moktar, Balkiah; Zainol, Mohammad Said

    2014-09-01

    In the presence of multicollinearity and multiple outliers, statistical inference of linear regression model using ordinary least squares (OLS) estimators would be severely affected and produces misleading results. To overcome this, many approaches have been investigated. These include robust methods which were reported to be less sensitive to the presence of outliers. In addition, ridge regression technique was employed to tackle multicollinearity problem. In order to mitigate both problems, a combination of ridge regression and robust methods was discussed in this study. The superiority of this approach was examined when simultaneous presence of multicollinearity and multiple outliers occurred in multiple linear regression. This study aimed to look at the performance of several well-known robust estimators; M, MM, RIDGE and robust ridge regression estimators, namely Weighted Ridge M-estimator (WRM), Weighted Ridge MM (WRMM), Ridge MM (RMM), in such a situation. Results of the study showed that in the presence of simultaneous multicollinearity and multiple outliers (in both x and y-direction), the RMM and RIDGE are more or less similar in terms of superiority over the other estimators, regardless of the number of observation, level of collinearity and percentage of outliers used. However, when outliers occurred in only single direction (y-direction), the WRMM estimator is the most superior among the robust ridge regression estimators, by producing the least variance. In conclusion, the robust ridge regression is the best alternative as compared to robust and conventional least squares estimators when dealing with simultaneous presence of multicollinearity and outliers.

  5. An improved multiple linear regression and data analysis computer program package

    Science.gov (United States)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  6. On the number of support points of maximin and Bayesian D-optimal designs in nonlinear regression models

    OpenAIRE

    Braess, Dietrich; Dette, Holger

    2004-01-01

    We consider maximin and Bayesian D -optimal designs for nonlinear regression models. The maximin criterion requires the specification of a region for the nonlinear parameters in the model, while the Bayesian optimality criterion assumes that a prior distribution for these parameters is available. It was observed empirically by many authors that an increase of uncertainty in the prior information (i.e. a larger range for the parameter space in the maximin criterion or a larger variance of the ...

  7. Prediction on adsorption ratio of carbon dioxide to methane on coals with multiple linear regression

    Institute of Scientific and Technical Information of China (English)

    YU Hong-guan; MENG Xian-ming; FAN Wei-tang; YE Jian-ping

    2007-01-01

    The multiple linear regression equations for adsorption ratio of CO2/CH4 and its coal quality indexes were built with SPSS software on basis of existing coal quality data and its adsorption amount of CO2 and CH4.The regression equations built were tested with data collected from some S,and the influences of coal quality indexes on adsorption ratio of CO2/CH4 were studied with investigation of regression equations.The study results show that the regression equation for adsorption ratio of CO2/CH4 and volatile matter,ash and moisture in coal can be Obtained with multiple linear regression analysis,that the influence of same coal quality index with the degree of metamorphosis or influence of coal quality indexes for same coal rank on adsorption ratio is not consistent.

  8. Simple multiple regression model for long range forecasting of Indian summer monsoon rainfall

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Murthy, T.V.R.

    ) and ISMR is found to be 0.62. The multiple correlation using the above two parameters is 0.85 which explains 72% variance in ISMR. Using the above two parameters a linear multiple regression model to predict ISMR is developed. The results are comparable...

  9. Variables Associated with Communicative Participation in People with Multiple Sclerosis: A Regression Analysis

    Science.gov (United States)

    Baylor, Carolyn; Yorkston, Kathryn; Bamer, Alyssa; Britton, Deanna; Amtmann, Dagmar

    2010-01-01

    Purpose: To explore variables associated with self-reported communicative participation in a sample (n = 498) of community-dwelling adults with multiple sclerosis (MS). Method: A battery of questionnaires was administered online or on paper per participant preference. Data were analyzed using multiple linear backward stepwise regression. The…

  10. Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.

    Science.gov (United States)

    Choi, Jae-Seok; Kim, Munchurl

    2017-03-01

    Super-resolution (SR) has become more vital, because of its capability to generate high-quality ultra-high definition (UHD) high-resolution (HR) images from low-resolution (LR) input images. Conventional SR methods entail high computational complexity, which makes them difficult to be implemented for up-scaling of full-high-definition input images into UHD-resolution images. Nevertheless, our previous super-interpolation (SI) method showed a good compromise between Peak-Signal-to-Noise Ratio (PSNR) performances and computational complexity. However, since SI only utilizes simple linear mappings, it may fail to precisely reconstruct HR patches with complex texture. In this paper, we present a novel SR method, which inherits the large-to-small patch conversion scheme from SI but uses global regression based on local linear mappings (GLM). Thus, our new SR method is called GLM-SI. In GLM-SI, each LR input patch is divided into 25 overlapped subpatches. Next, based on the local properties of these subpatches, 25 different local linear mappings are applied to the current LR input patch to generate 25 HR patch candidates, which are then regressed into one final HR patch using a global regressor. The local linear mappings are learned cluster-wise in our off-line training phase. The main contribution of this paper is as follows: Previously, linear-mapping-based conventional SR methods, including SI only used one simple yet coarse linear mapping to each patch to reconstruct its HR version. On the contrary, for each LR input patch, our GLM-SI is the first to apply a combination of multiple local linear mappings, where each local linear mapping is found according to local properties of the current LR patch. Therefore, it can better approximate nonlinear LR-to-HR mappings for HR patches with complex texture. Experiment results show that the proposed GLM-SI method outperforms most of the state-of-the-art methods, and shows comparable PSNR performance with much lower

  11. Linear and nonlinear regression analysis for heavy metals removal using Agaricus bisporus macrofungus

    Directory of Open Access Journals (Sweden)

    Boldizsar Nagy

    2017-05-01

    Full Text Available In the present study the biosorption characteristics of Cd (II and Zn (II ions from monocomponent aqueous solutions by Agaricus bisporus macrofungus were investigated. The initial metal ion concentrations, contact time, initial pH and temperature were parameters that influence the biosorption. Maximum removal efficiencies up to 76.10% and 70.09% (318 K for Cd (II and Zn (II, respectively and adsorption capacities up to 3.49 and 2.39 mg/g for Cd (II and Zn (II, respectively at the highest concentration, were calculated. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models, various isotherm models in linear and nonlinear (CMA-ES optimization algorithm regression and thermodynamic parameters were calculated. The results showed that the biosorption process of both studied metal ions, followed pseudo second-order kinetics, while equilibrium is best described by Sips isotherm. The changes in morphological structure after heavy metal-biomass interactions were evaluated by SEM analysis. Our results confirmed that macrofungus A. bisporus could be used as a cost effective, efficient biosorbent for the removal of Cd (II and Zn (II from aqueous synthetic solutions.

  12. Growth curve by Gompertz nonlinear regression model in female and males in tambaqui (Colossoma macropomum).

    Science.gov (United States)

    De Mello, Fernanda; Oliveira, Carlos A L; Ribeiro, Ricardo P; Resende, Emiko K; Povh, Jayme A; Fornari, Darci C; Barreto, Rogério V; McManus, Concepta; Streit, Danilo

    2015-01-01

    Was evaluated the pattern of growth among females and males of tambaqui by Gompertz nonlinear regression model. Five traits of economic importance were measured on 145 animals during the three years, totaling 981 morphometric data analyzed. Different curves were adjusted between males and females for body weight, height and head length and only one curve was adjusted to the width and body length. The asymptotic weight (a) and relative growth rate to maturity (k) were different between sexes in animals with ± 5 kg; slaughter weight practiced by a specific niche market, very profitable. However, there was no difference between males and females up to ± 2 kg; slaughter weight established to supply the bigger consumer market. Females showed weight greater than males (± 280 g), which are more suitable for fish farming purposes defined for the niche market to larger animals. In general, males had lower maximum growth rate (8.66 g / day) than females (9.34 g / day), however, reached faster than females, 476 and 486 days growth rate, respectively. The height and length body are the traits that contributed most to the weight at 516 days (P <0.001).

  13. A fast nonlinear regression method for estimating permeability in CT perfusion imaging.

    Science.gov (United States)

    Bennink, Edwin; Riordan, Alan J; Horsch, Alexander D; Dankbaar, Jan Willem; Velthuis, Birgitta K; de Jong, Hugo W

    2013-11-01

    Blood-brain barrier damage, which can be quantified by measuring vascular permeability, is a potential predictor for hemorrhagic transformation in acute ischemic stroke. Permeability is commonly estimated by applying Patlak analysis to computed tomography (CT) perfusion data, but this method lacks precision. Applying more elaborate kinetic models by means of nonlinear regression (NLR) may improve precision, but is more time consuming and therefore less appropriate in an acute stroke setting. We propose a simplified NLR method that may be faster and still precise enough for clinical use. The aim of this study is to evaluate the reliability of in total 12 variations of Patlak analysis and NLR methods, including the simplified NLR method. Confidence intervals for the permeability estimates were evaluated using simulated CT attenuation-time curves with realistic noise, and clinical data from 20 patients. Although fixating the blood volume improved Patlak analysis, the NLR methods yielded significantly more reliable estimates, but took up to 12 × longer to calculate. The simplified NLR method was ∼4 × faster than other NLR methods, while maintaining the same confidence intervals (CIs). In conclusion, the simplified NLR method is a new, reliable way to estimate permeability in stroke, fast enough for clinical application in an acute stroke setting.

  14. The Chaotic Prediction for Aero-Engine Performance Parameters Based on Nonlinear PLS Regression

    Directory of Open Access Journals (Sweden)

    Chunxiao Zhang

    2012-01-01

    Full Text Available The prediction of the aero-engine performance parameters is very important for aero-engine condition monitoring and fault diagnosis. In this paper, the chaotic phase space of engine exhaust temperature (EGT time series which come from actual air-borne ACARS data is reconstructed through selecting some suitable nearby points. The partial least square (PLS based on the cubic spline function or the kernel function transformation is adopted to obtain chaotic predictive function of EGT series. The experiment results indicate that the proposed PLS chaotic prediction algorithm based on biweight kernel function transformation has significant advantage in overcoming multicollinearity of the independent variables and solve the stability of regression model. Our predictive NMSE is 16.5 percent less than that of the traditional linear least squares (OLS method and 10.38 percent less than that of the linear PLS approach. At the same time, the forecast error is less than that of nonlinear PLS algorithm through bootstrap test screening.

  15. Modeling of retardance in ferrofluid with Taguchi-based multiple regression analysis

    Science.gov (United States)

    Lin, Jing-Fung; Wu, Jyh-Shyang; Sheu, Jer-Jia

    2015-03-01

    The citric acid (CA) coated Fe3O4 ferrofluids are prepared by a co-precipitation method and the magneto-optical retardance property is measured by a Stokes polarimeter. Optimization and multiple regression of retardance in ferrofluids are executed by combining Taguchi method and Excel. From the nine tests for four parameters, including pH of suspension, molar ratio of CA to Fe3O4, volume of CA, and coating temperature, influence sequence and excellent program are found. Multiple regression analysis and F-test on the significance of regression equation are performed. It is found that the model F value is much larger than Fcritical and significance level P <0.0001. So it can be concluded that the regression model has statistically significant predictive ability. Substituting excellent program into equation, retardance is obtained as 32.703°, higher than the highest value in tests by 11.4%.

  16. Tools to support interpreting multiple regression in the face of multicollinearity.

    Science.gov (United States)

    Kraha, Amanda; Turner, Heather; Nimon, Kim; Zientek, Linda Reichwein; Henson, Robin K

    2012-01-01

    While multicollinearity may increase the difficulty of interpreting multiple regression (MR) results, it should not cause undue problems for the knowledgeable researcher. In the current paper, we argue that rather than using one technique to investigate regression results, researchers should consider multiple indices to understand the contributions that predictors make not only to a regression model, but to each other as well. Some of the techniques to interpret MR effects include, but are not limited to, correlation coefficients, beta weights, structure coefficients, all possible subsets regression, commonality coefficients, dominance weights, and relative importance weights. This article will review a set of techniques to interpret MR effects, identify the elements of the data on which the methods focus, and identify statistical software to support such analyses.

  17. On asymptotics of t-type regression estimation in multiple linear model

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    We consider a robust estimator (t-type regression estimator) of multiple linear regression model by maximizing marginal likelihood of a scaled t-type error t-distribution.The marginal likelihood can also be applied to the de-correlated response when the withinsubject correlation can be consistently estimated from an initial estimate of the model based on the independent working assumption. This paper shows that such a t-type estimator is consistent.

  18. A comparative study between nonlinear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence

    Science.gov (United States)

    Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...

  19. Multiple sources and multiple measures based traffic flow prediction using the chaos theory and support vector regression method

    Science.gov (United States)

    Cheng, Anyu; Jiang, Xiao; Li, Yongfu; Zhang, Chao; Zhu, Hao

    2017-01-01

    This study proposes a multiple sources and multiple measures based traffic flow prediction algorithm using the chaos theory and support vector regression method. In particular, first, the chaotic characteristics of traffic flow associated with the speed, occupancy, and flow are identified using the maximum Lyapunov exponent. Then, the phase space of multiple measures chaotic time series are reconstructed based on the phase space reconstruction theory and fused into a same multi-dimensional phase space using the Bayesian estimation theory. In addition, the support vector regression (SVR) model is designed to predict the traffic flow. Numerical experiments are performed using the data from multiple sources. The results show that, compared with the single measure, the proposed method has better performance for the short-term traffic flow prediction in terms of the accuracy and timeliness.

  20. A non-linear regression method for CT brain perfusion analysis

    Science.gov (United States)

    Bennink, E.; Oosterbroek, J.; Viergever, M. A.; Velthuis, B. K.; de Jong, H. W. A. M.

    2015-03-01

    CT perfusion (CTP) imaging allows for rapid diagnosis of ischemic stroke. Generation of perfusion maps from CTP data usually involves deconvolution algorithms providing estimates for the impulse response function in the tissue. We propose the use of a fast non-linear regression (NLR) method that we postulate has similar performance to the current academic state-of-art method (bSVD), but that has some important advantages, including the estimation of vascular permeability, improved robustness to tracer-delay, and very few tuning parameters, that are all important in stroke assessment. The aim of this study is to evaluate the fast NLR method against bSVD and a commercial clinical state-of-art method. The three methods were tested against a published digital perfusion phantom earlier used to illustrate the superiority of bSVD. In addition, the NLR and clinical methods were also tested against bSVD on 20 clinical scans. Pearson correlation coefficients were calculated for each of the tested methods. All three methods showed high correlation coefficients (>0.9) with the ground truth in the phantom. With respect to the clinical scans, the NLR perfusion maps showed higher correlation with bSVD than the perfusion maps from the clinical method. Furthermore, the perfusion maps showed that the fast NLR estimates are robust to tracer-delay. In conclusion, the proposed fast NLR method provides a simple and flexible way of estimating perfusion parameters from CT perfusion scans, with high correlation coefficients. This suggests that it could be a better alternative to the current clinical and academic state-of-art methods.

  1. Technical Note: Predicting ruminal methane inhibition by condensed tannins using nonlinear exponential decay regression analysis.

    Science.gov (United States)

    Naumann, H D; Tedeschi, L O; Fonseca, M A

    2015-11-01

    Methane (CH) is a potent greenhouse gas that is normally produced by microbial fermentation in the rumen and released to the environment mainly during eructation. Prediction of ruminal CH production is important for ruminant nutrition, especially for the determination of ME intake to assess the amount of total GE available for metabolism by an animal. Equations have been developed to predict ruminal CH production based on dietary constituents, but none have considered condensed tannins (CT), which are known to impact CH production by ruminants. The objective was to develop an equation to predict ruminal CH, accounting for CT effects. Methane production data were acquired from 48-h in vitro fermentation of a diverse group of warm-season perennial forage legumes containing different concentrations of CT over the course of 3 yr ( = 113). The following nonlinear exponential decay regression equation was developed: CH₄ = 113.6 × exp (-0.1751 x CT) - 2.18), [corrected] in which CH is expressed in grams per kilogram of fermentable organic matter and CT is in percentage of the DM. This equation predicted that CH production could be reduced by approximately 50% when CT is 3.9% DM. This equation is likely more accurate when screening CT-containing forages for their potential ability to mitigate in vitro CH production by ruminants when the CT concentration is greater than 3% DM. Therefore, despite the degree of variability in ruminal CH production, this equation could be used as a tool for screening CT-containing forages for their potential to inhibit ruminal CH. Future research should focus on the development of predictive equations when other potential reducers of ruminal CH are used in conjunction with CT.

  2. A case study found that a regression tree outperformed multiple linear regression in predicting the relationship between impairments and Social and Productive Activities scores.

    Science.gov (United States)

    Allore, Heather; Tinetti, Mary E; Araujo, Katy L B; Hardy, Susan; Peduzzi, Peter

    2005-02-01

    Many important physiologic and clinical predictors are continuous. Clinical investigators and epidemiologists' interest in these predictors lies, in part, in the risk they pose for adverse outcomes, which may be continuous as well. The relationship between continuous predictors and a continuous outcome may be complex and difficult to interpret. Therefore, methods to detect levels of a predictor variable that predict the outcome and determine the threshold for clinical intervention would provide a beneficial tool for clinical investigators and epidemiologists. We present a case study using regression tree methodology to predict Social and Productive Activities score at 3 years using five modifiable impairments. The predictive ability of regression tree methodology was compared with multiple linear regression using two independent data sets, one for development and one for validation. The regression tree approach and the multiple linear regression model provided similar fit (model deviances) on the development cohort. In the validation cohort, the deviance of the multiple linear regression model was 31% greater than the regression tree approach. Regression tree analysis developed a better model of impairments predicting Social and Productive Activities score that may be more easily applied in research settings than multiple linear regression alone.

  3. A Modified Gauss-Jordan Procedure as an Alternative to Iterative Procedures in Multiple Regression.

    Science.gov (United States)

    Roscoe, John T.; Kittleson, Howard M.

    Correlation matrices involving linear dependencies are common in educational research. In such matrices, there is no unique solution for the multiple regression coefficients. Although computer programs using iterative techniques are used to overcome this problem, these techniques possess certain disadvantages. Accordingly, a modified Gauss-Jordan…

  4. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    Science.gov (United States)

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  5. A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants

    Science.gov (United States)

    Cooper, Paul D.

    2010-01-01

    A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…

  6. A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants

    Science.gov (United States)

    Cooper, Paul D.

    2010-01-01

    A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…

  7. Prediction of flow characteristics using multiple regression and neural networks: A case study in Zimbabwe

    NARCIS (Netherlands)

    Mazvimavi, D.; Meijerink, A.M.J.; Savenije, H.H.G.; Stein, A.

    2005-01-01

    The feasibility of predicting flow characteristics from basin descriptors using multiple regression and neural networks has been investigated on 52 basins in Zimbabwe. Flow characteristics considered were average annual runoff, base flow index, flow duration curve, and average monthly runoff . Mean

  8. The Performance of the Full Information Maximum Likelihood Estimator in Multiple Regression Models with Missing Data.

    Science.gov (United States)

    Enders, Craig K.

    2001-01-01

    Examined the performance of a recently available full information maximum likelihood (FIML) estimator in a multiple regression model with missing data using Monte Carlo simulation and considering the effects of four independent variables. Results indicate that FIML estimation was superior to that of three ad hoc techniques, with less bias and less…

  9. A Spreadsheet Tool for Learning the Multiple Regression F-Test, T-Tests, and Multicollinearity

    Science.gov (United States)

    Martin, David

    2008-01-01

    This note presents a spreadsheet tool that allows teachers the opportunity to guide students towards answering on their own questions related to the multiple regression F-test, the t-tests, and multicollinearity. The note demonstrates approaches for using the spreadsheet that might be appropriate for three different levels of statistics classes,…

  10. Assessing the Impact of Influential Observations on Multiple Regression Analysis on Human Resource Research.

    Science.gov (United States)

    Bates, Reid A.; Holton, Elwood F., III; Burnett, Michael F.

    1999-01-01

    A case study of learning transfer demonstrates the possible effect of influential observation on linear regression analysis. A diagnostic method that tests for violation of assumptions, multicollinearity, and individual and multiple influential observations helps determine which observation to delete to eliminate bias. (SK)

  11. [Prediction model of health workforce and beds in county hospitals of Hunan by multiple linear regression].

    Science.gov (United States)

    Ling, Ru; Liu, Jiawang

    2011-12-01

    To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.

  12. Linear and Non-linear Modeling of Cement-bonded Moulding Sand System Using Conventional Statistical Regression Analysis

    Science.gov (United States)

    Parappagoudar, Mahesh B.; Pratihar, Dilip K.; Datta, Gouranga L.

    2008-08-01

    A cement-bonded moulding sand system takes a fairly long time to attain the required strength. Hence, the moulds prepared with cement as a bonding material will have to wait a long time for the metal to be poured. In this work, an accelerator was used to accelerate the process of developing the bonding strength. Regression analysis was carried out on the experimental data collected as per statistical design of experiments (DOE) to establish input-output relationships of the process. The experiments were conducted to measure compression strength and hardness (output parameters) by varying the input variables, namely amount of cement, amount of accelerator, water in the form of cement-to-water ratio, and testing time. A two-level full-factorial design was used for linear regression model, whereas a three-level central composite design (CCD) had been utilized to develop non-linear regression model. Surface plots and main effects plots were used to study the effects of amount of cement, amount of accelerator, water and testing time on compression strength, and mould hardness. It was observed from both the linear as well as non-linear models that amount of cement, accelerator, and testing time have some positive contributions, whereas cement-to-water ratio has negative contribution to both the above responses. Compression strength was found to have linear relationship with the amount of cement and accelerator, and non-linear relationship with the remaining process parameters. Mould hardness was seen to vary linearly with testing time and non-linearly with the other parameters. Analysis of variance (ANOVA) was performed to test statistical adequacy of the models. Twenty random test cases were considered to test and compare their performances. Non-linear regression models were found to perform better than the linear models for both the responses. An attempt was also made to express compression strength of the moulding sand system as a function of mould hardness.

  13. Prediction of cavity growth rate during underground coal gasification using multiple regression analysis

    Institute of Scientific and Technical Information of China (English)

    Mehdi Najafi; Seyed Mohammad Esmaiel Jalali; Reza KhaloKakaie; Farrokh Forouhandeh

    2015-01-01

    During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 11 UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR.

  14. Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure.

    Science.gov (United States)

    Li, Yanming; Nan, Bin; Zhu, Ji

    2015-06-01

    We propose a multivariate sparse group lasso variable selection and estimation method for data with high-dimensional predictors as well as high-dimensional response variables. The method is carried out through a penalized multivariate multiple linear regression model with an arbitrary group structure for the regression coefficient matrix. It suits many biology studies well in detecting associations between multiple traits and multiple predictors, with each trait and each predictor embedded in some biological functional groups such as genes, pathways or brain regions. The method is able to effectively remove unimportant groups as well as unimportant individual coefficients within important groups, particularly for large p small n problems, and is flexible in handling various complex group structures such as overlapping or nested or multilevel hierarchical structures. The method is evaluated through extensive simulations with comparisons to the conventional lasso and group lasso methods, and is applied to an eQTL association study.

  15. Manifold learning for object tracking with multiple nonlinear models.

    Science.gov (United States)

    Nascimento, Jacinto C; Silva, Jorge G; Marques, Jorge S; Lemos, Joao M

    2014-04-01

    This paper presents a novel manifold learning algorithm for high-dimensional data sets. The scope of the application focuses on the problem of motion tracking in video sequences. The framework presented is twofold. First, it is assumed that the samples are time ordered, providing valuable information that is not presented in the current methodologies. Second, the manifold topology comprises multiple charts, which contrasts to the most current methods that assume one single chart, being overly restrictive. The proposed algorithm, Gaussian process multiple local models (GP-MLM), can deal with arbitrary manifold topology by decomposing the manifold into multiple local models that are probabilistic combined using Gaussian process regression. In addition, the paper presents a multiple filter architecture where standard filtering techniques are integrated within the GP-MLM. The proposed approach exhibits comparable performance of state-of-the-art trackers, namely multiple model data association and deep belief networks, and compares favorably with Gaussian process latent variable models. Extensive experiments are presented using real video data, including a publicly available database of lip sequences and left ventricle ultrasound images, in which the GP-MLM achieves state of the art results.

  16. Multiple-time correlation functions for non-Markovian interaction: Beyond the Quantum Regression Theorem

    CERN Document Server

    Alonso, D; Alonso, Daniel; Vega, In\\'es de

    2004-01-01

    Multiple time correlation functions are found in the dynamical description of different phenomena. They encode and describe the fluctuations of the dynamical variables of a system. In this paper we formulate a theory of non-Markovian multiple-time correlation functions (MTCF) for a wide class of systems. We derive the dynamical equation of the {\\it reduced propagator}, an object that evolve state vectors of the system conditioned to the dynamics of its environment, which is not necessarily at the vacuum state at the initial time. Such reduced propagator is the essential piece to obtain multiple-time correlation functions. An average over the different environmental histories of the reduced propagator permits us to obtain the evolution equations of the multiple-time correlation functions. We also study the evolution of MTCF within the weak coupling limit and it is shown that the multiple-time correlation function of some observables satisfy the Quantum Regression Theorem (QRT), whereas other correlations do no...

  17. Factor analysis and multiple regression between topography and precipitation on Jeju Island, Korea

    Science.gov (United States)

    Um, Myoung-Jin; Yun, Hyeseon; Jeong, Chang-Sam; Heo, Jun-Haeng

    2011-11-01

    SummaryIn this study, new factors that influence precipitation were extracted from geographic variables using factor analysis, which allow for an accurate estimation of orographic precipitation. Correlation analysis was also used to examine the relationship between nine topographic variables from digital elevation models (DEMs) and the precipitation in Jeju Island. In addition, a spatial analysis was performed in order to verify the validity of the regression model. From the results of the correlation analysis, it was found that all of the topographic variables had a positive correlation with the precipitation. The relations between the variables also changed in accordance with a change in the precipitation duration. However, upon examining the correlation matrix, no significant relationship between the latitude and the aspect was found. According to the factor analysis, eight topographic variables (latitude being the exception) were found to have a direct influence on the precipitation. Three factors were then extracted from the eight topographic variables. By directly comparing the multiple regression model with the factors (model 1) to the multiple regression model with the topographic variables (model 3), it was found that model 1 did not violate the limits of statistical significance and multicollinearity. As such, model 1 was considered to be appropriate for estimating the precipitation when taking into account the topography. In the study of model 1, the multiple regression model using factor analysis was found to be the best method for estimating the orographic precipitation on Jeju Island.

  18. A comparative study of linear and non-linear regression analysis for ammonium exchange by clinoptilolite zeolite.

    Science.gov (United States)

    Karadag, Dogan; Koc, Yunus; Turan, Mustafa; Ozturk, Mustafa

    2007-06-01

    Ammonium ion exchange from aqueous solution using clinoptilolite zeolite was investigated at laboratory scale. Batch experimental studies were conducted to evaluate the effect of various parameters such as pH, zeolite dosage, contact time, initial ammonium concentration and temperature. Freundlich and Langmuir isotherm models and pseudo-second-order model were fitted to experimental data. Linear and non-linear regression methods were compared to determine the best fitting of isotherm and kinetic model to experimental data. The rate limiting mechanism of ammonium uptake by zeolite was determined as chemical exchange. Non-linear regression has better performance for analyzing experimental data and Freundlich model was better than Langmuir to represent equilibrium data.

  19. Modeling of Soil Aggregate Stability using Support Vector Machines and Multiple Linear Regression

    Directory of Open Access Journals (Sweden)

    Ali Asghar Besalatpour

    2016-02-01

    by 20-m digital elevation model (DEM. The data set was divided into two subsets of training and testing. The training subset was randomly chosen from 70% of the total set of the data and the remaining samples (30% of the data were used as the testing set. The correlation coefficient (r, mean square error (MSE, and error percentage (ERROR% between the measured and the predicted GMD values were used to evaluate the performance of the models. Results and Discussion: The description statistics showed that there was little variability in the sample distributions of the variables used in this study to develop the GMD prediction models, indicating that their values were all normally distributed. The constructed SVM model had better performance in predicting GMD compared to the traditional multiple linear regression model. The obtained MSE and r values for the developed SVM model for soil aggregate stability prediction were 0.005 and 0.86, respectively. The obtained ERROR% value for soil aggregate stability prediction using the SVM model was 10.7% while it was 15.7% for the regression model. The scatter plot figures also showed that the SVM model was more accurate in GMD estimation than the MLR model, since the predicted GMD values were closer in agreement with the measured values for most of the samples. The worse performance of the MLR model might be due to the larger amount of data that is required for developing a sustainable regression model compared to intelligent systems. Furthermore, only the linear effects of the predictors on the dependent variable can be extracted by linear models while in many cases the effects may not be linear in nature. Meanwhile, the SVM model is suitable for modelling nonlinear relationships and its major advantage is that the method can be developed without knowing the exact form of the analytical function on which the model should be built. All these indicate that the SVM approach would be a better choice for predicting soil aggregate

  20. Diagnosis of multiple sclerosis from EEG signals using nonlinear methods.

    Science.gov (United States)

    Torabi, Ali; Daliri, Mohammad Reza; Sabzposhan, Seyyed Hojjat

    2017-09-08

    EEG signals have essential and important information about the brain and neural diseases. The main purpose of this study is classifying two groups of healthy volunteers and Multiple Sclerosis (MS) patients using nonlinear features of EEG signals while performing cognitive tasks. EEG signals were recorded when users were doing two different attentional tasks. One of the tasks was based on detecting a desired change in color luminance and the other task was based on detecting a desired change in direction of motion. EEG signals were analyzed in two ways: EEG signals analysis without rhythms decomposition and EEG sub-bands analysis. After recording and preprocessing, time delay embedding method was used for state space reconstruction; embedding parameters were determined for original signals and their sub-bands. Afterwards nonlinear methods were used in feature extraction phase. To reduce the feature dimension, scalar feature selections were done by using T-test and Bhattacharyya criteria. Then, the data were classified using linear support vector machines (SVM) and k-nearest neighbor (KNN) method. The best combination of the criteria and classifiers was determined for each task by comparing performances. For both tasks, the best results were achieved by using T-test criterion and SVM classifier. For the direction-based and the color-luminance-based tasks, maximum classification performances were 93.08 and 79.79% respectively which were reached by using optimal set of features. Our results show that the nonlinear dynamic features of EEG signals seem to be useful and effective in MS diseases diagnosis.

  1. Using Regression Equations Built from Summary Data in the Psychological Assessment of the Individual Case: Extension to Multiple Regression

    Science.gov (United States)

    Crawford, John R.; Garthwaite, Paul H.; Denham, Annie K.; Chelune, Gordon J.

    2012-01-01

    Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because…

  2. On the Relationship Between Confidence Sets and Exchangeable Weights in Multiple Linear Regression.

    Science.gov (United States)

    Pek, Jolynn; Chalmers, R Philip; Monette, Georges

    2016-01-01

    When statistical models are employed to provide a parsimonious description of empirical relationships, the extent to which strong conclusions can be drawn rests on quantifying the uncertainty in parameter estimates. In multiple linear regression (MLR), regression weights carry two kinds of uncertainty represented by confidence sets (CSs) and exchangeable weights (EWs). Confidence sets quantify uncertainty in estimation whereas the set of EWs quantify uncertainty in the substantive interpretation of regression weights. As CSs and EWs share certain commonalities, we clarify the relationship between these two kinds of uncertainty about regression weights. We introduce a general framework describing how CSs and the set of EWs for regression weights are estimated from the likelihood-based and Wald-type approach, and establish the analytical relationship between CSs and sets of EWs. With empirical examples on posttraumatic growth of caregivers (Cadell et al., 2014; Schneider, Steele, Cadell & Hemsworth, 2011) and on graduate grade point average (Kuncel, Hezlett & Ones, 2001), we illustrate the usefulness of CSs and EWs for drawing strong scientific conclusions. We discuss the importance of considering both CSs and EWs as part of the scientific process, and provide an Online Appendix with R code for estimating Wald-type CSs and EWs for k regression weights.

  3. Simultaneous Multiple Response Regression and Inverse Covariance Matrix Estimation via Penalized Gaussian Maximum Likelihood.

    Science.gov (United States)

    Lee, Wonyul; Liu, Yufeng

    2012-10-01

    Multivariate regression is a common statistical tool for practical problems. Many multivariate regression techniques are designed for univariate response cases. For problems with multiple response variables available, one common approach is to apply the univariate response regression technique separately on each response variable. Although it is simple and popular, the univariate response approach ignores the joint information among response variables. In this paper, we propose three new methods for utilizing joint information among response variables. All methods are in a penalized likelihood framework with weighted L(1) regularization. The proposed methods provide sparse estimators of conditional inverse co-variance matrix of response vector given explanatory variables as well as sparse estimators of regression parameters. Our first approach is to estimate the regression coefficients with plug-in estimated inverse covariance matrices, and our second approach is to estimate the inverse covariance matrix with plug-in estimated regression parameters. Our third approach is to estimate both simultaneously. Asymptotic properties of these methods are explored. Our numerical examples demonstrate that the proposed methods perform competitively in terms of prediction, variable selection, as well as inverse covariance matrix estimation.

  4. Nonlinear Spline Kernel-based Partial Least Squares Regression Method and Its Application

    Institute of Scientific and Technical Information of China (English)

    JIA Jin-ming; WEN Xiang-jun

    2008-01-01

    Inspired by the traditional Wold's nonlinear PLS algorithm comprises of NIPALS approach and a spline inner function model,a novel nonlinear partial least squares algorithm based on spline kernel(named SK-PLS)is proposed for nonlinear modeling in the presence of multicollinearity.Based on the iuner-product kernel spanned by the spline basis functions with infinite numher of nodes,this method firstly maps the input data into a high dimensional feature space,and then calculates a linear PLS model with reformed NIPALS procedure in the feature space and gives a unified framework of traditional PLS"kernel"algorithms in consequence.The linear PLS in the feature space corresponds to a nonlinear PLS in the original input (primal)space.The good approximating property of spline kernel function enhances the generalization ability of the novel model,and two numerical experiments are given to illustrate the feasibility of the proposed method.

  5. Prediction of blast boulders in open pit mines via multiple regression and artificial neural networks

    Institute of Scientific and Technical Information of China (English)

    Ghiasi Majid; Askarnejad Nematollah; Dindarloo Saeid R.; Shamsoddini Hamed

    2016-01-01

    The most important objective of blasting in open pit mines is rock fragmentation. Prediction of produced boulders (oversized crushed rocks) is a key parameter in designing blast patterns. In this study, the amount of boulder produced in blasting operations of Golegohar iron ore open pit mine, Iran was pre-dicted via multiple regression method and artificial neural networks. Results of 33 blasts in the mine were collected for modeling. Input variables were: joints spacing, density and uniaxial compressive strength of the intact rock, burden, spacing, stemming, bench height to burden ratio, and specific charge. The dependent variable was ratio of boulder volume to pattern volume. Both techniques were successful in predicting the ratio. In this study, the multiple regression method was superior with coefficient of determination and root mean squared error values of 0.89 and 0.19, respectively.

  6. Neural network and multiple linear regression to predict school children dimensions for ergonomic school furniture design.

    Science.gov (United States)

    Agha, Salah R; Alnahhal, Mohammed J

    2012-11-01

    The current study investigates the possibility of obtaining the anthropometric dimensions, critical to school furniture design, without measuring all of them. The study first selects some anthropometric dimensions that are easy to measure. Two methods are then used to check if these easy-to-measure dimensions can predict the dimensions critical to the furniture design. These methods are multiple linear regression and neural networks. Each dimension that is deemed necessary to ergonomically design school furniture is expressed as a function of some other measured anthropometric dimensions. Results show that out of the five dimensions needed for chair design, four can be related to other dimensions that can be measured while children are standing. Therefore, the method suggested here would definitely save time and effort and avoid the difficulty of dealing with students while measuring these dimensions. In general, it was found that neural networks perform better than multiple linear regression in the current study.

  7. COLOR IMAGE RETRIEVAL BASED ON FEATURE FUSION THROUGH MULTIPLE LINEAR REGRESSION ANALYSIS

    Directory of Open Access Journals (Sweden)

    K. Seetharaman

    2015-08-01

    Full Text Available This paper proposes a novel technique based on feature fusion using multiple linear regression analysis, and the least-square estimation method is employed to estimate the parameters. The given input query image is segmented into various regions according to the structure of the image. The color and texture features are extracted on each region of the query image, and the features are fused together using the multiple linear regression model. The estimated parameters of the model, which is modeled based on the features, are formed as a vector called a feature vector. The Canberra distance measure is adopted to compare the feature vectors of the query and target images. The F-measure is applied to evaluate the performance of the proposed technique. The obtained results expose that the proposed technique is comparable to the other existing techniques.

  8. Multiple Linear Regression Application on the Inter-Network Settlement of Internet

    Institute of Scientific and Technical Information of China (English)

    YANG Qing-feng; ZHANG Qi-xiang; L(U) Ting-jie

    2006-01-01

    This paper develops an analytical framework to explain the Internet interconnection settlement issues. The paper shows that multiple linear regression can be used in assessing the network value of Internet Backbone Providers (IBPs).By using the exchange rate of each network, we can define a rate of network value, which reflects the contribution of each network to interconnection and the interconnected network resource usage by each of the network.

  9. FORECASTING THE FINANCIAL RETURNS FOR USING MULTIPLE REGRESSION BASED ON PRINCIPAL COMPONENT ANALYSIS

    Directory of Open Access Journals (Sweden)

    Nop Sopipan

    2013-01-01

    Full Text Available The aim of this study was to forecast the returns for the Stock Exchange of Thailand (SET Index by adding some explanatory variables and stationary Autoregressive order p (AR (p in the mean equation of returns. In addition, we used Principal Component Analysis (PCA to remove possible complications caused by multicollinearity. Results showed that the multiple regressions based on PCA, has the best performance.

  10. Multivariate Multiple Regression Models for a Big Data-Empowered SON Framework in Mobile Wireless Networks

    Directory of Open Access Journals (Sweden)

    Yoonsu Shin

    2016-01-01

    Full Text Available In the 5G era, the operational cost of mobile wireless networks will significantly increase. Further, massive network capacity and zero latency will be needed because everything will be connected to mobile networks. Thus, self-organizing networks (SON are needed, which expedite automatic operation of mobile wireless networks, but have challenges to satisfy the 5G requirements. Therefore, researchers have proposed a framework to empower SON using big data. The recent framework of a big data-empowered SON analyzes the relationship between key performance indicators (KPIs and related network parameters (NPs using machine-learning tools, and it develops regression models using a Gaussian process with those parameters. The problem, however, is that the methods of finding the NPs related to the KPIs differ individually. Moreover, the Gaussian process regression model cannot determine the relationship between a KPI and its various related NPs. In this paper, to solve these problems, we proposed multivariate multiple regression models to determine the relationship between various KPIs and NPs. If we assume one KPI and multiple NPs as one set, the proposed models help us process multiple sets at one time. Also, we can find out whether some KPIs are conflicting or not. We implement the proposed models using MapReduce.

  11. Multiple linear regression models for shear strength prediction and design of simplysupported deep beams subjected to symmetrical point loads

    Directory of Open Access Journals (Sweden)

    Panatchai Chetchotisak

    2015-09-01

    Full Text Available Because of nonlinear strain distributions caused either by abrupt changes in geometry or in loading in deep beam, the approach for conventional beams is not applicable. Consequently, strut-and-tie model (STM has been applied as the most rational and simple method for strength prediction and design of reinforced concrete deep beams. A deep beam is idealized by the STM as a truss-like structure consisting of diagonal concrete struts and tension ties. There have been numerous works proposing the STMs for deep beams. However, uncertainty and complexity in shear strength computations of deep beams can be found in some STMs. Therefore, improvement of methods for predicting the shear strengths of deep beams are still needed. By means of a large experimental database of 406 deep beam test results covering a wide range of influencing parameters, several shapes and geometry of STM and six state-of-the-art formulation of the efficiency factors found in the design codes and literature, the new STMs for predicting the shear strength of simply supported reinforced concrete deep beams using multiple linear regression analysis is proposed in this paper. Furthermore, the regression diagnostics and the validation process are included in this study. Finally, two numerical examples are also provided for illustration.

  12. Pseudo-second order models for the adsorption of safranin onto activated carbon: comparison of linear and non-linear regression methods.

    Science.gov (United States)

    Kumar, K Vasanth

    2007-04-02

    Kinetic experiments were carried out for the sorption of safranin onto activated carbon particles. The kinetic data were fitted to pseudo-second order model of Ho, Sobkowsk and Czerwinski, Blanchard et al. and Ritchie by linear and non-linear regression methods. Non-linear method was found to be a better way of obtaining the parameters involved in the second order rate kinetic expressions. Both linear and non-linear regression showed that the Sobkowsk and Czerwinski and Ritchie's pseudo-second order models were the same. Non-linear regression analysis showed that both Blanchard et al. and Ho have similar ideas on the pseudo-second order model but with different assumptions. The best fit of experimental data in Ho's pseudo-second order expression by linear and non-linear regression method showed that Ho pseudo-second order model was a better kinetic expression when compared to other pseudo-second order kinetic expressions.

  13. Evaluating Non-Linear Regression Models in Analysis of Persian Walnut Fruit Growth

    Directory of Open Access Journals (Sweden)

    I. Karamatlou

    2016-02-01

    Full Text Available Introduction: Persian walnut (Juglans regia L. is a large, wind-pollinated, monoecious, dichogamous, long lived, perennial tree cultivated for its high quality wood and nuts throughout the temperate regions of the world. Growth model methodology has been widely used in the modeling of plant growth. Mathematical models are important tools to study the plant growth and agricultural systems. These models can be applied for decision-making anddesigning management procedures in horticulture. Through growth analysis, planning for planting systems, fertilization, pruning operations, harvest time as well as obtaining economical yield can be more accessible.Non-linear models are more difficult to specify and estimate than linear models. This research was aimed to studynon-linear regression models based on data obtained from fruit weight, length and width. Selecting the best models which explain that fruit inherent growth pattern of Persian walnut was a further goal of this study. Materials and Methods: The experimental material comprising 14 Persian walnut genotypes propagated by seed collected from a walnut orchard in Golestan province, Minoudasht region, Iran, at latitude 37◦04’N; longitude 55◦32’E; altitude 1060 m, in a silt loam soil type. These genotypes were selected as a representative sampling of the many walnut genotypes available throughout the Northeastern Iran. The age range of walnut trees was 30 to 50 years. The annual mean temperature at the location is16.3◦C, with annual mean rainfall of 690 mm.The data used here is the average of walnut fresh fruit and measured withgram/millimeter/day in2011.According to the data distribution pattern, several equations have been proposed to describesigmoidal growth patterns. Here, we used double-sigmoid and logistic–monomolecular models to evaluate fruit growth based on fruit weight and4different regression models in cluding Richards, Gompertz, Logistic and Exponential growth for evaluation

  14. Exchange Rates and Monetary Fundamentals: What Do We Learn from Linear and Nonlinear Regressions?

    Directory of Open Access Journals (Sweden)

    Guangfeng Zhang

    2014-01-01

    Full Text Available This paper revisits the association between exchange rates and monetary fundamentals with the focus on both linear and nonlinear approaches. With the monthly data of Euro/US dollar and Japanese yen/US dollar, our linear analysis demonstrates the monetary model is a long-run description of exchange rate movements, and our nonlinear modelling suggests the error correction model describes the short-run adjustment of deviations of exchange rates, and monetary fundamentals are capable of explaining exchange rate dynamics under an unrestricted framework.

  15. Exploring lipids with nonlinear optical microscopy in multiple biological systems

    Science.gov (United States)

    Alfonso-Garcia, Alba

    Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by

  16. Forecasting Value-at-Risk Using Nonlinear Regression Quantiles and the Intraday Range

    NARCIS (Netherlands)

    C.W.S. Chen (Cathy); R. Gerlach (Richard); B.B.K. Hwang (Bruce); M.J. McAleer (Michael)

    2011-01-01

    textabstractValue-at-Risk (VaR) is commonly used for financial risk measurement. It has recently become even more important, especially during the 2008-09 global financial crisis. We propose some novel nonlinear threshold conditional autoregressive VaR (CAViar) models that incorporate intra-day pric

  17. Sublinear Expectation Nonlinear Regression for the Financial Risk Measurement and Management

    Directory of Open Access Journals (Sweden)

    Yunquan Song

    2013-01-01

    normality of the estimation and the mini-max property of the prediction are obtained. Finally, simulation study and real data analysis are carried out to illustrate the new model and methods. In this paper, the notions and methodological developments are nonclassical and original, and the proposed modeling and inference methods establish the foundations for nonlinear expectation statistics.

  18. MULTIPLE LOGISTIC REGRESSION MODEL TO PREDICT RISK FACTORS OF ORAL HEALTH DISEASES

    Directory of Open Access Journals (Sweden)

    Parameshwar V. Pandit

    2012-06-01

    Full Text Available Purpose: To analysis the dependence of oral health diseases i.e. dental caries and periodontal disease on considering the number of risk factors through the applications of logistic regression model. Method: The cross sectional study involves a systematic random sample of 1760 permanent dentition aged between 18-40 years in Dharwad, Karnataka, India. Dharwad is situated in North Karnataka. The mean age was 34.26±7.28. The risk factors of dental caries and periodontal disease were established by multiple logistic regression model using SPSS statistical software. Results: The factors like frequency of brushing, timings of cleaning teeth and type of toothpastes are significant persistent predictors of dental caries and periodontal disease. The log likelihood value of full model is –1013.1364 and Akaike’s Information Criterion (AIC is 1.1752 as compared to reduced regression model are -1019.8106 and 1.1748 respectively for dental caries. But, the log likelihood value of full model is –1085.7876 and AIC is 1.2577 followed by reduced regression model are -1019.8106 and 1.1748 respectively for periodontal disease. The area under Receiver Operating Characteristic (ROC curve for the dental caries is 0.7509 (full model and 0.7447 (reduced model; the ROC for the periodontal disease is 0.6128 (full model and 0.5821 (reduced model. Conclusions: The frequency of brushing, timings of cleaning teeth and type of toothpastes are main signifi cant risk factors of dental caries and periodontal disease. The fitting performance of reduced logistic regression model is slightly a better fit as compared to full logistic regression model in identifying the these risk factors for both dichotomous dental caries and periodontal disease.

  19. Assessing Credit Default using Logistic Regression and Multiple Discriminant Analysis: Empirical Evidence from Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Deni Memić

    2015-01-01

    Full Text Available This article has an aim to assess credit default prediction on the banking market in Bosnia and Herzegovina nationwide as well as on its constitutional entities (Federation of Bosnia and Herzegovina and Republika Srpska. Ability to classify companies info different predefined groups or finding an appropriate tool which would replace human assessment in classifying companies into good and bad buckets has been one of the main interests on risk management researchers for a long time. We investigated the possibility and accuracy of default prediction using traditional statistical methods logistic regression (logit and multiple discriminant analysis (MDA and compared their predictive abilities. The results show that the created models have high predictive ability. For logit models, some variables are more influential on the default prediction than the others. Return on assets (ROA is statistically significant in all four periods prior to default, having very high regression coefficients, or high impact on the model's ability to predict default. Similar results are obtained for MDA models. It is also found that predictive ability differs between logistic regression and multiple discriminant analysis.

  20. Research on the multiple linear regression in non-invasive blood glucose measurement.

    Science.gov (United States)

    Zhu, Jianming; Chen, Zhencheng

    2015-01-01

    A non-invasive blood glucose measurement sensor and the data process algorithm based on the metabolic energy conservation (MEC) method are presented in this paper. The physiological parameters of human fingertip can be measured by various sensing modalities, and blood glucose value can be evaluated with the physiological parameters by the multiple linear regression analysis. Five methods such as enter, remove, forward, backward and stepwise in multiple linear regression were compared, and the backward method had the best performance. The best correlation coefficient was 0.876 with the standard error of the estimate 0.534, and the significance was 0.012 (sig. regression equation was valid. The Clarke error grid analysis was performed to compare the MEC method with the hexokinase method, using 200 data points. The correlation coefficient R was 0.867 and all of the points were located in Zone A and Zone B, which shows the MEC method provides a feasible and valid way for non-invasive blood glucose measurement.

  1. Multiplicity of ground state solutions for discrete nonlinear Schrodinger equations with unbounded potentials

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2017-02-01

    Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. In this article, we consider a class of discrete nonlinear Schrodinger equations with unbounded potentials. We obtain some new sufficient conditions on the multiplicity results of ground state solutions for the equations by using the symmetric mountain pass lemma. Recent results in the literature are greatly improved.

  2. TESTING OF CORRELATION AND HETEROSCEDASTICITY IN NONLINEAR REGRESSION MODELS WITH DBL(p,q,1) RANDOM ERRORS

    Institute of Scientific and Technical Information of China (English)

    Liu Yingan; Wei Bocheng

    2008-01-01

    Chaos theory has taught us that a system which has both nonlinearity and random input will most likely produce irregular data. If random errors are irregular data, then random error process will raise nonlinearity (Kantz and Schreiber (1997)). Tsai (1986) introduced a composite test for autocorrelation and heteroscedasticity in linear models with AR(1) errors. Liu (2003) introduced a composite test for correlation and heteroscedasticity in nonlinear models with DBL(p, 0, 1) errors. Therefore, the important problems in regres- sion model are detections of bilinearity, correlation and heteroscedasticity. In this article, the authors discuss more general case of nonlinear models with DBL(p, q, 1) random errors by score test. Several statistics for the test of bilinearity, correlation, and heteroscedas-ticity are obtained, and expressed in simple matrix formulas. The results of regression models with linear errors are extended to those with bilinear errors. The simulation study is carried out to investigate the powers of the test statistics. All results of this article extend and develop results of Tsai (1986), Wei, et al (1995), and Liu, et al (2003).

  3. Early cost estimating for road construction projects using multiple regression techniques

    Directory of Open Access Journals (Sweden)

    Ibrahim Mahamid

    2011-12-01

    Full Text Available The objective of this study is to develop early cost estimating models for road construction projects using multiple regression techniques, based on 131 sets of data collected in the West Bank in Palestine. As the cost estimates are required at early stages of a project, considerations were given to the fact that the input data for the required regression model could be easily extracted from sketches or scope definition of the project. 11 regression models are developed to estimate the total cost of road construction project in US dollar; 5 of them include bid quantities as input variables and 6 include road length and road width. The coefficient of determination r2 for the developed models is ranging from 0.92 to 0.98 which indicate that the predicted values from a forecast models fit with the real-life data. The values of the mean absolute percentage error (MAPE of the developed regression models are ranging from 13% to 31%, the results compare favorably with past researches which have shown that the estimate accuracy in the early stages of a project is between ±25% and ±50%.

  4. FRICTION MODELING OF Al-Mg ALLOY SHEETS BASED ON MULTIPLE REGRESSION ANALYSIS AND NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Hirpa G. Lemu

    2017-03-01

    Full Text Available This article reports a proposed approach to a frictional resistance description in sheet metal forming processes that enables determination of the friction coefficient value under a wide range of friction conditions without performing time-consuming experiments. The motivation for this proposal is the fact that there exists a considerable amount of factors affect the friction coefficient value and as a result building analytical friction model for specified process conditions is practically impossible. In this proposed approach, a mathematical model of friction behaviour is created using multiple regression analysis and artificial neural networks. The regression analysis was performed using a subroutine in MATLAB programming code and STATISTICA Neural Networks was utilized to build an artificial neural networks model. The effect of different training strategies on the quality of neural networks was studied. As input variables for regression model and training of radial basis function networks, generalized regression neural networks and multilayer networks the results of strip drawing friction test were utilized. Four kinds of Al-Mg alloy sheets were used as a test material.

  5. Multivariate quantiles and multiple-output regression quantiles: From $L_1$ optimization to halfspace depth

    CERN Document Server

    Hallin, Marc; Šiman, Miroslav; 10.1214/09-AOS723

    2010-01-01

    A new multivariate concept of quantile, based on a directional version of Koenker and Bassett's traditional regression quantiles, is introduced for multivariate location and multiple-output regression problems. In their empirical version, those quantiles can be computed efficiently via linear programming techniques. Consistency, Bahadur representation and asymptotic normality results are established. Most importantly, the contours generated by those quantiles are shown to coincide with the classical halfspace depth contours associated with the name of Tukey. This relation does not only allow for efficient depth contour computations by means of parametric linear programming, but also for transferring from the quantile to the depth universe such asymptotic results as Bahadur representations. Finally, linear programming duality opens the way to promising developments in depth-related multivariate rank-based inference.

  6. Nonlinear decoupling controller design based on least squares support vector regression

    Institute of Scientific and Technical Information of China (English)

    WEN Xiang-jun; ZHANG Yu-nong; YAN Wei-wu; XU Xiao-ming

    2006-01-01

    Support Vector Machines (SVMs) have been widely used in pattern recognition and have also drawn considerable interest in control areas. Based on a method of least squares SVM (LS-SVM) for multivariate function estimation, a generalized inverse system is developed for the linearization and decoupling control ora general nonlinear continuous system. The approach of inverse modelling via LS-SVM and parameters optimization using the Bayesian evidence framework is discussed in detail. In this paper, complex high-order nonlinear system is decoupled into a number of pseudo-linear Single Input Single Output (SISO) subsystems with linear dynamic components. The poles of pseudo-linear subsystems can be configured to desired positions. The proposed method provides an effective alternative to the controller design of plants whose accurate mathematical model is unknown or state variables are difficult or impossible to measure. Simulation results showed the efficacy of the method.

  7. Multiple linear combination (MLC) regression tests for common variants adapted to linkage disequilibrium structure

    Science.gov (United States)

    Yoo, Yun Joo; Sun, Lei; Poirier, Julia G.; Paterson, Andrew D.

    2016-01-01

    ABSTRACT By jointly analyzing multiple variants within a gene, instead of one at a time, gene‐based multiple regression can improve power, robustness, and interpretation in genetic association analysis. We investigate multiple linear combination (MLC) test statistics for analysis of common variants under realistic trait models with linkage disequilibrium (LD) based on HapMap Asian haplotypes. MLC is a directional test that exploits LD structure in a gene to construct clusters of closely correlated variants recoded such that the majority of pairwise correlations are positive. It combines variant effects within the same cluster linearly, and aggregates cluster‐specific effects in a quadratic sum of squares and cross‐products, producing a test statistic with reduced degrees of freedom (df) equal to the number of clusters. By simulation studies of 1000 genes from across the genome, we demonstrate that MLC is a well‐powered and robust choice among existing methods across a broad range of gene structures. Compared to minimum P‐value, variance‐component, and principal‐component methods, the mean power of MLC is never much lower than that of other methods, and can be higher, particularly with multiple causal variants. Moreover, the variation in gene‐specific MLC test size and power across 1000 genes is less than that of other methods, suggesting it is a complementary approach for discovery in genome‐wide analysis. The cluster construction of the MLC test statistics helps reveal within‐gene LD structure, allowing interpretation of clustered variants as haplotypic effects, while multiple regression helps to distinguish direct and indirect associations. PMID:27885705

  8. Optimization of rheological parameter for micro-bubble drilling fluids by multiple regression experimental design

    Institute of Scientific and Technical Information of China (English)

    郑力会; 王金凤; 李潇鹏; 张燕; 李都

    2008-01-01

    In order to optimize plastic viscosity of 18 mPa·s circulating micro-bubble drilling fluid formula,orthogonal and uniform experimental design methods were applied,and the plastic viscosities of 36 and 24 groups of agent were tested,respectively.It is found that these two experimental design methods show drawbacks,that is,the amount of agent is difficult to determine,and the results are not fully optimized.Therefore,multiple regression experimental method was used to design experimental formula.By randomly selecting arbitrary agent with the amount within the recommended range,17 groups of drilling fluid formula were designed,and the plastic viscosity of each experiment formula was measured.Set plastic viscosity as the objective function,through multiple regressions,then quadratic regression model is obtained,whose correlation coefficient meets the requirement.Set target values of plastic viscosity to be 18,20 and 22 mPa·s,respectively,with the trial method,5 drilling fluid formulas are obtained with accuracy of 0.000 3,0.000 1 and 0.000 3.Arbitrarily select target value of each of the two groups under the formula for experimental verification of drilling fluid,then the measurement errors between theoretical and tested plastic viscosity are less than 5%,confirming that regression model can be applied to optimizing the circulating of plastic-foam drilling fluid viscosity.In accordance with the precision of different formulations of drilling fluid for other constraints,the methods result in the optimization of the circulating micro-bubble drilling fluid parameters.

  9. Multivariate nonlinear regression analysis of trajectory tracking performance using force reflecting joystick in chronic stroke-induced hemiparesis.

    Science.gov (United States)

    Feng, Xin; Winters, Jack M

    2011-01-01

    Individualizing a neurorehabilitation training protocol requires understanding the performance of subjects with various capabilities under different task settings. We use multivariate regression to evaluate the performance of subjects with stroke-induced hemiparesis in trajectory tracking tasks using a force-reflecting joystick. A nonlinear effect was consistently shown in both dimensions of force field strength and impairment level for selected kinematic performance measures, with greatest sensitivity at lower force fields. This suggests that the form of a force field may play a different "role" for subjects with various impairment levels, and confirms that to achieve optimized therapeutic benefit, it is necessary to personalize interfaces.

  10. Multiple Regression Analysis of Unconfined Compression Strength of Mine Tailings Matrices

    Directory of Open Access Journals (Sweden)

    Mahmood Ali A.

    2017-01-01

    Full Text Available As part of a novel approach of sustainable development of mine tailings, experimental and numerical analysis is carried out on newly formulated tailings matrices. Several physical characteristic tests are carried out including the unconfined compression strength test to ascertain the integrity of these matrices when subjected to loading. The current paper attempts a multiple regression analysis of the unconfined compressive strength test results of these matrices to investigate the most pertinent factors affecting their strength. Results of this analysis showed that the suggested equation is reasonably applicable to the range of binder combinations used.

  11. Variable selection in multiple linear regression: The influence of individual cases

    Directory of Open Access Journals (Sweden)

    SJ Steel

    2007-12-01

    Full Text Available The influence of individual cases in a data set is studied when variable selection is applied in multiple linear regression. Two different influence measures, based on the C_p criterion and Akaike's information criterion, are introduced. The relative change in the selection criterion when an individual case is omitted is proposed as the selection influence of the specific omitted case. Four standard examples from the literature are considered and the selection influence of the cases is calculated. It is argued that the selection procedure may be improved by taking the selection influence of individual data cases into account.

  12. Analysis of aromatic constituents in multicomponent hydrocarbon mixtures by infrared spectroscopy using multiple linear regression

    Science.gov (United States)

    Vesnin, V. L.; Muradov, V. G.

    2012-09-01

    Absorption spectra of multicomponent hydrocarbon mixtures based on n-heptane and isooctane with addition of benzene (up to 1%) and toluene and o-xylene (up to 20%) were investigated experimentally in the region of the first overtones of the hydrocarbon groups (λ = 1620-1780 nm). It was shown that their concentrations could be determined separately by using a multiple linear regression method. The optimum result was obtained by including four wavelengths at 1671, 1680, 1685, and 1695 nm, which took into account absorption of CH groups in benzene, toluene, and o-xylene and CH3 groups, respectively.

  13. Statistical selection of multiple-input multiple-output nonlinear dynamic models of spike train transformation.

    Science.gov (United States)

    Song, Dong; Chan, Rosa H M; Marmarelis, Vasilis Z; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W

    2007-01-01

    Multiple-input multiple-output nonlinear dynamic model of spike train to spike train transformations was previously formulated for hippocampal-cortical prostheses. This paper further described the statistical methods of selecting significant inputs (self-terms) and interactions between inputs (cross-terms) of this Volterra kernel-based model. In our approach, model structure was determined by progressively adding self-terms and cross-terms using a forward stepwise model selection technique. Model coefficients were then pruned based on Wald test. Results showed that the reduced kernel models, which contained much fewer coefficients than the full Volterra kernel model, gave good fits to the novel data. These models could be used to analyze the functional interactions between neurons during behavior.

  14. Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression

    NARCIS (Netherlands)

    D.E. Allen (David); A.K. Singh (Abhay); R.J. Powell (Robert); M.J. McAleer (Michael); J. Taylor (James); L. Thomas (Lyn)

    2013-01-01

    textabstractThe purpose of this paper is to examine the asymmetric relationship between price and implied volatility and the associated extreme quantile dependence using linear and non linear quantile regression approach. Our goal in this paper is to demonstrate that the relationship between the

  15. Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico

    Science.gov (United States)

    Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.

    1998-01-01

    This report documents the application of nonlinear-regression methods to a numerical model of ground-water flow in the Albuquerque Basin, New Mexico. In the Albuquerque Basin, ground water is the primary source for most water uses. Ground-water withdrawal has steadily increased since the 1940's, resulting in large declines in water levels in the Albuquerque area. A ground-water flow model was developed in 1994 and revised and updated in 1995 for the purpose of managing basin ground- water resources. In the work presented here, nonlinear-regression methods were applied to a modified version of the previous flow model. Goals of this work were to use regression methods to calibrate the model with each of six different configurations of the basin subsurface and to assess and compare optimal parameter estimates, model fit, and model error among the resulting calibrations. The Albuquerque Basin is one in a series of north trending structural basins within the Rio Grande Rift, a region of Cenozoic crustal extension. Mountains, uplifts, and fault zones bound the basin, and rock units within the basin include pre-Santa Fe Group deposits, Tertiary Santa Fe Group basin fill, and post-Santa Fe Group volcanics and sediments. The Santa Fe Group is greater than 14,000 feet (ft) thick in the central part of the basin. During deposition of the Santa Fe Group, crustal extension resulted in development of north trending normal faults with vertical displacements of as much as 30,000 ft. Ground-water flow in the Albuquerque Basin occurs primarily in the Santa Fe Group and post-Santa Fe Group deposits. Water flows between the ground-water system and surface-water bodies in the inner valley of the basin, where the Rio Grande, a network of interconnected canals and drains, and Cochiti Reservoir are located. Recharge to the ground-water flow system occurs as infiltration of precipitation along mountain fronts and infiltration of stream water along tributaries to the Rio Grande; subsurface

  16. Multiple-input multiple-output symbol rate signal digital predistorter for non-linear multi-carrier satellite channels

    OpenAIRE

    Zenteno, Efrain; Piazza, Roberto; M. R. Bhavani Shankar; Rönnow, Daniel; Ottersten, Björn

    2015-01-01

    A digital predistortion (DPD) scheme is presented for non-linear distortion mitigation in multi-carrier satellite communication channels. The proposed DPD has a multiple-input multiple-output architecture similar to data DPD schemes. However, it enhances the mitigation performance of data DPDs using a multi-rate processing algorithm to achieve spectrum broadening of non-linear operators. Compared to single carrier (single-input single-output) signal (waveform) DPD schemes, the proposed DPD ha...

  17. A note on the use of multiple linear regression in molecular ecology.

    Science.gov (United States)

    Frasier, Timothy R

    2016-03-01

    Multiple linear regression analyses (also often referred to as generalized linear models--GLMs, or generalized linear mixed models--GLMMs) are widely used in the analysis of data in molecular ecology, often to assess the relative effects of genetic characteristics on individual fitness or traits, or how environmental characteristics influence patterns of genetic differentiation. However, the coefficients resulting from multiple regression analyses are sometimes misinterpreted, which can lead to incorrect interpretations and conclusions within individual studies, and can propagate to wider-spread errors in the general understanding of a topic. The primary issue revolves around the interpretation of coefficients for independent variables when interaction terms are also included in the analyses. In this scenario, the coefficients associated with each independent variable are often interpreted as the independent effect of each predictor variable on the predicted variable. However, this interpretation is incorrect. The correct interpretation is that these coefficients represent the effect of each predictor variable on the predicted variable when all other predictor variables are zero. This difference may sound subtle, but the ramifications cannot be overstated. Here, my goals are to raise awareness of this issue, to demonstrate and emphasize the problems that can result and to provide alternative approaches for obtaining the desired information.

  18. Problems of correlations between explanatory variables in multiple regression analyses in the dental literature.

    Science.gov (United States)

    Tu, Y-K; Kellett, M; Clerehugh, V; Gilthorpe, M S

    2005-10-01

    Multivariable analysis is a widely used statistical methodology for investigating associations amongst clinical variables. However, the problems of collinearity and multicollinearity, which can give rise to spurious results, have in the past frequently been disregarded in dental research. This article illustrates and explains the problems which may be encountered, in the hope of increasing awareness and understanding of these issues, thereby improving the quality of the statistical analyses undertaken in dental research. Three examples from different clinical dental specialties are used to demonstrate how to diagnose the problem of collinearity/multicollinearity in multiple regression analyses and to illustrate how collinearity/multicollinearity can seriously distort the model development process. Lack of awareness of these problems can give rise to misleading results and erroneous interpretations. Multivariable analysis is a useful tool for dental research, though only if its users thoroughly understand the assumptions and limitations of these methods. It would benefit evidence-based dentistry enormously if researchers were more aware of both the complexities involved in multiple regression when using these methods and of the need for expert statistical consultation in developing study design and selecting appropriate statistical methodologies.

  19. Performance Evaluation of Button Bits in Coal Measure Rocks by Using Multiple Regression Analyses

    Science.gov (United States)

    Su, Okan

    2016-02-01

    Electro-hydraulic and jumbo drills are commonly used for underground coal mines and tunnel drives for the purpose of blasthole drilling and rock bolt installations. Not only machine parameters but also environmental conditions have significant effects on drilling. This study characterizes the performance of button bits during blasthole drilling in coal measure rocks by using multiple regression analyses. The penetration rate of jumbo and electro-hydraulic drills was measured in the field by employing bits in different diameters and the specific energy of the drilling was calculated at various locations, including highway tunnels and underground roadways of coal mines. Large block samples were collected from each location at which in situ drilling measurements were performed. Then, the effects of rock properties and machine parameters on the drilling performance were examined. Multiple regression models were developed for the prediction of the specific energy of the drilling and the penetration rate. The results revealed that hole area, impact (blow) energy, blows per minute of the piston within the drill, and some rock properties, such as the uniaxial compressive strength (UCS) and the drilling rate index (DRI), influence the drill performance.

  20. Creating a non-linear total sediment load formula using polynomial best subset regression model

    Science.gov (United States)

    Okcu, Davut; Pektas, Ali Osman; Uyumaz, Ali

    2016-08-01

    The aim of this study is to derive a new total sediment load formula which is more accurate and which has less application constraints than the well-known formulae of the literature. 5 most known stream power concept sediment formulae which are approved by ASCE are used for benchmarking on a wide range of datasets that includes both field and flume (lab) observations. The dimensionless parameters of these widely used formulae are used as inputs in a new regression approach. The new approach is called Polynomial Best subset regression (PBSR) analysis. The aim of the PBRS analysis is fitting and testing all possible combinations of the input variables and selecting the best subset. Whole the input variables with their second and third powers are included in the regression to test the possible relation between the explanatory variables and the dependent variable. While selecting the best subset a multistep approach is used that depends on significance values and also the multicollinearity degrees of inputs. The new formula is compared to others in a holdout dataset and detailed performance investigations are conducted for field and lab datasets within this holdout data. Different goodness of fit statistics are used as they represent different perspectives of the model accuracy. After the detailed comparisons are carried out we figured out the most accurate equation that is also applicable on both flume and river data. Especially, on field dataset the prediction performance of the proposed formula outperformed the benchmark formulations.

  1. Isotherm investigation for the sorption of fluoride onto Bio-F: comparison of linear and non-linear regression method

    Science.gov (United States)

    Yadav, Manish; Singh, Nitin Kumar

    2017-08-01

    A comparison of the linear and non-linear regression method in selecting the optimum isotherm among three most commonly used adsorption isotherms (Langmuir, Freundlich, and Redlich-Peterson) was made to the experimental data of fluoride (F) sorption onto Bio-F at a solution temperature of 30 ± 1 °C. The coefficient of correlation (r2 ) was used to select the best theoretical isotherm among the investigated ones. A total of four Langmuir linear equations were discussed and out of which linear form of most popular Langmuir-1 and Langmuir-2 showed the higher coefficient of determination (0.976 and 0.989) as compared to other Langmuir linear equations. Freundlich and Redlich-Peterson isotherms showed a better fit to the experimental data in linear least-square method, while in non-linear method Redlich-Peterson isotherm equations showed the best fit to the tested data set. The present study showed that the non-linear method could be a better way to obtain the isotherm parameters and represent the most suitable isotherm. Redlich-Peterson isotherm was found to be the best representative (r2 = 0.999) for this sorption system. It is also observed that the values of β are not close to unity, which means the isotherms are approaching the Freundlich but not the Langmuir isotherm.

  2. Nonlinear network coding based on multiplication and exponentiation in GF(2m)

    Institute of Scientific and Technical Information of China (English)

    JIANG An-you; ZHU Jin-kang

    2009-01-01

    This article proposes a novel nonlinear network code in the GF(2m) finite field. Different from previous linear network codes that linearly mix multiple input flows, the proposed nonlinear network code mixes input flows through both multiplication and exponentiation in the GF(2m). Three relevant rules for selecting proper parameters for the proposed nonlinear network code are discussed, and the relationship between the power parameter and the coding coefficient K is explored. Further analysis shows that the proposed nonlinear network code is equivalent to a linear network code with deterministic coefficients.

  3. Fundamental Analysis of the Linear Multiple Regression Technique for Quantification of Water Quality Parameters from Remote Sensing Data. Ph.D. Thesis - Old Dominion Univ.

    Science.gov (United States)

    Whitlock, C. H., III

    1977-01-01

    Constituents with linear radiance gradients with concentration may be quantified from signals which contain nonlinear atmospheric and surface reflection effects for both homogeneous and non-homogeneous water bodies provided accurate data can be obtained and nonlinearities are constant with wavelength. Statistical parameters must be used which give an indication of bias as well as total squared error to insure that an equation with an optimum combination of bands is selected. It is concluded that the effect of error in upwelled radiance measurements is to reduce the accuracy of the least square fitting process and to increase the number of points required to obtain a satisfactory fit. The problem of obtaining a multiple regression equation that is extremely sensitive to error is discussed.

  4. Nonlinear Decoupling PID Control Using Neural Networks and Multiple Models

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.

  5. Nonlinear interpolation fractal classifier for multiple cardiac arrhythmias recognition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.-H. [Department of Electrical Engineering, Kao-Yuan University, No. 1821, Jhongshan Rd., Lujhu Township, Kaohsiung County 821, Taiwan (China); Institute of Biomedical Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China)], E-mail: eechl53@cc.kyu.edu.tw; Du, Y.-C.; Chen Tainsong [Institute of Biomedical Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China)

    2009-11-30

    This paper proposes a method for cardiac arrhythmias recognition using the nonlinear interpolation fractal classifier. A typical electrocardiogram (ECG) consists of P-wave, QRS-complexes, and T-wave. Iterated function system (IFS) uses the nonlinear interpolation in the map and uses similarity maps to construct various data sequences including the fractal patterns of supraventricular ectopic beat, bundle branch ectopic beat, and ventricular ectopic beat. Grey relational analysis (GRA) is proposed to recognize normal heartbeat and cardiac arrhythmias. The nonlinear interpolation terms produce family functions with fractal dimension (FD), the so-called nonlinear interpolation function (NIF), and make fractal patterns more distinguishing between normal and ill subjects. The proposed QRS classifier is tested using the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database. Compared with other methods, the proposed hybrid methods demonstrate greater efficiency and higher accuracy in recognizing ECG signals.

  6. Multiple scales analysis and travelling wave solutions for KdV type nonlinear evolution equations

    Science.gov (United States)

    Ayhan, Burcu; Ozer, M. Naci; Bekir, Ahmet

    2017-01-01

    Nonlinear evolution equations are the mathematical models of problems that arise in many field of science. These equations has become an important field of study in applied mathematics in recent years. We apply exact solution methods and multiple scale method which is known as a perturbation method to nonlinear evolution equations. Using exact solution methods we get travelling wave solutions expressed by hyperbolic functions, trigonometric functions and rational functions. Also we derive Nonlinear Schrödinger (NLS) type equations from Korteweg-de Vries (KdV) type nonlinear evolution equations and we get approximate solutions for KdV type equations using multiple scale method. The proposed methods are direct and effective and can be used for many nonlinear evolution equations. It is shown that these methods provide a powerful mathematical tool to solve nonlinear evolution equations in mathematical physics.

  7. Step-up multiple regression model to compute Chlorophyll a in the coastal waters off Cochin, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Balachandran, K.K.; Jayalakshmy, K.V.; Laluraj, C.M.; Nair, M.; Joseph, T.; Sheeba, P.

    The interaction effects of abiotic processes in the production of phytoplankton in a coastal marine region off Cochin are evaluated using multiple regression models. The study shows that chlorophyll production is not limited by nutrients...

  8. Using the Coefficient of Determination "R"[superscript 2] to Test the Significance of Multiple Linear Regression

    Science.gov (United States)

    Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.

    2013-01-01

    This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)

  9. Using the Coefficient of Determination "R"[superscript 2] to Test the Significance of Multiple Linear Regression

    Science.gov (United States)

    Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.

    2013-01-01

    This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)

  10. Multiple linear regression models of urban runoff pollutant load and event mean concentration considering rainfall variables.

    Science.gov (United States)

    Maniquiz, Marla C; Lee, Soyoung; Kim, Lee-Hyung

    2010-01-01

    Rainfall is an important factor in estimating the event mean concentration (EMC) which is used to quantify the washed-off pollutant concentrations from non-point sources (NPSs). Pollutant loads could also be calculated using rainfall, catchment area and runoff coefficient. In this study, runoff quantity and quality data gathered from a 28-month monitoring conducted on the road and parking lot sites in Korea were evaluated using multiple linear regression (MLR) to develop equations for estimating pollutant loads and EMCs as a function of rainfall variables. The results revealed that total event rainfall and average rainfall intensity are possible predictors of pollutant loads. Overall, the models are indicators of the high uncertainties of NPSs; perhaps estimation of EMCs and loads could be accurately obtained by means of water quality sampling or a long-term monitoring is needed to gather more data that can be used for the development of estimation models.

  11. Application of genetic algorithm - multiple linear regressions to predict the activity of RSK inhibitors

    Directory of Open Access Journals (Sweden)

    Avval Zhila Mohajeri

    2015-01-01

    Full Text Available This paper deals with developing a linear quantitative structure-activity relationship (QSAR model for predicting the RSK inhibition activity of some new compounds. A dataset consisting of 62 pyrazino [1,2-α] indole, diazepino [1,2-α] indole, and imidazole derivatives with known inhibitory activities was used. Multiple linear regressions (MLR technique combined with the stepwise (SW and the genetic algorithm (GA methods as variable selection tools was employed. For more checking stability, robustness and predictability of the proposed models, internal and external validation techniques were used. Comparison of the results obtained, indicate that the GA-MLR model is superior to the SW-MLR model and that it isapplicable for designing novel RSK inhibitors.

  12. Multiple Regression Prediction Model for Cutting Forces in Turning Carbon-Reinforced PEEK CF30

    Directory of Open Access Journals (Sweden)

    Francisco Mata

    2010-01-01

    Full Text Available Among the thermoplastic polymers available, the reinforced polyetheretherketone with 30% of carbon fibres (PEEK CF 30 demonstrates a particularly good combination of strength, rigidity, and hardness, which prove ideal for industrial applications. Considering these properties and potential areas of application, it is necessary to investigate the machining of PEEK CF30. In this study, response surface methodology was applied to predict the cutting forces in turning operations using TiN-coated cutting tools under dry conditions where the machining parameters are cutting speed ranges, feed rate, and depth of cut. For this study, the experiments have been conducted using full factorial design in the design of experiments (DOEs on CNC turning machine. Based on statistical analysis, multiple quadratic regression model for cutting forces was derived with satisfactory 2-squared correlation. This model proved to be highly preferment for predicting cutting forces.

  13. Melanin and blood concentration in human skin studied by multiple regression analysis: experiments

    Science.gov (United States)

    Shimada, M.; Yamada, Y.; Itoh, M.; Yatagai, T.

    2001-09-01

    Knowledge of the mechanism of human skin colour and measurement of melanin and blood concentration in human skin are needed in the medical and cosmetic fields. The absorbance spectrum from reflectance at the visible wavelength of human skin increases under several conditions such as a sunburn or scalding. The change of the absorbance spectrum from reflectance including the scattering effect does not correspond to the molar absorption spectrum of melanin and blood. The modified Beer-Lambert law is applied to the change in the absorbance spectrum from reflectance of human skin as the change in melanin and blood is assumed to be small. The concentration of melanin and blood was estimated from the absorbance spectrum reflectance of human skin using multiple regression analysis. Estimated concentrations were compared with the measured one in a phantom experiment and this method was applied to in vivo skin.

  14. Transformation of nitrogen dioxide into ozone and prediction of ozone concentrations using multiple linear regression techniques.

    Science.gov (United States)

    Ghazali, Nurul Adyani; Ramli, Nor Azam; Yahaya, Ahmad Shukri; Yusof, Noor Faizah Fitri M D; Sansuddin, Nurulilyana; Al Madhoun, Wesam Ahmed

    2010-06-01

    Analysis and forecasting of air quality parameters are important topics of atmospheric and environmental research today due to the health impact caused by air pollution. This study examines transformation of nitrogen dioxide (NO(2)) into ozone (O(3)) at urban environment using time series plot. Data on the concentration of environmental pollutants and meteorological variables were employed to predict the concentration of O(3) in the atmosphere. Possibility of employing multiple linear regression models as a tool for prediction of O(3) concentration was tested. Results indicated that the presence of NO(2) and sunshine influence the concentration of O(3) in Malaysia. The influence of the previous hour ozone on the next hour concentrations was also demonstrated.

  15. Genetic-algorithm-based multiple regression with fuzzy inference system for detection of nocturnal hypoglycemic episodes.

    Science.gov (United States)

    Ling, Steve S H; Nguyen, Hung T

    2011-03-01

    Hypoglycemia or low blood glucose is dangerous and can result in unconsciousness, seizures, and even death. It is a common and serious side effect of insulin therapy in patients with diabetes. Hypoglycemic monitor is a noninvasive monitor that measures some physiological parameters continuously to provide detection of hypoglycemic episodes in type 1 diabetes mellitus patients (T1DM). Based on heart rate (HR), corrected QT interval of the ECG signal, change of HR, and the change of corrected QT interval, we develop a genetic algorithm (GA)-based multiple regression with fuzzy inference system (FIS) to classify the presence of hypoglycemic episodes. GA is used to find the optimal fuzzy rules and membership functions of FIS and the model parameters of regression method. From a clinical study of 16 children with T1DM, natural occurrence of nocturnal hypoglycemic episodes is associated with HRs and corrected QT intervals. The overall data were organized into a training set (eight patients) and a testing set (another eight patients) randomly selected. The results show that the proposed algorithm performs a good sensitivity with an acceptable specificity.

  16. Multiple Regression Analysis of mRNA-miRNA Associations in Colorectal Cancer Pathway

    Directory of Open Access Journals (Sweden)

    Fengfeng Wang

    2014-01-01

    Full Text Available Background. MicroRNA (miRNA is a short and endogenous RNA molecule that regulates posttranscriptional gene expression. It is an important factor for tumorigenesis of colorectal cancer (CRC, and a potential biomarker for diagnosis, prognosis, and therapy of CRC. Our objective is to identify the related miRNAs and their associations with genes frequently involved in CRC microsatellite instability (MSI and chromosomal instability (CIN signaling pathways. Results. A regression model was adopted to identify the significantly associated miRNAs targeting a set of candidate genes frequently involved in colorectal cancer MSI and CIN pathways. Multiple linear regression analysis was used to construct the model and find the significant mRNA-miRNA associations. We identified three significantly associated mRNA-miRNA pairs: BCL2 was positively associated with miR-16 and SMAD4 was positively associated with miR-567 in the CRC tissue, while MSH6 was positively associated with miR-142-5p in the normal tissue. As for the whole model, BCL2 and SMAD4 models were not significant, and MSH6 model was significant. The significant associations were different in the normal and the CRC tissues. Conclusion. Our results have laid down a solid foundation in exploration of novel CRC mechanisms, and identification of miRNA roles as oncomirs or tumor suppressor mirs in CRC.

  17. Multiple linear and principal component regressions for modelling ecotoxicity bioassay response.

    Science.gov (United States)

    Gomes, Ana I; Pires, José C M; Figueiredo, Sónia A; Boaventura, Rui A R

    2014-01-01

    The ecotoxicological response of the living organisms in an aquatic system depends on the physical, chemical and bacteriological variables, as well as the interactions between them. An important challenge to scientists is to understand the interaction and behaviour of factors involved in a multidimensional process such as the ecotoxicological response. With this aim, multiple linear regression (MLR) and principal component regression were applied to the ecotoxicity bioassay response of Chlorella vulgaris and Vibrio fischeri in water collected at seven sites of Leça river during five monitoring campaigns (February, May, June, August and September of 2006). The river water characterization included the analysis of 22 physicochemical and 3 microbiological parameters. The model that best fitted the data was MLR, which shows: (i) a negative correlation with dissolved organic carbon, zinc and manganese, and a positive one with turbidity and arsenic, regarding C. vulgaris toxic response; (ii) a negative correlation with conductivity and turbidity and a positive one with phosphorus, hardness, iron, mercury, arsenic and faecal coliforms, concerning V. fischeri toxic response. This integrated assessment may allow the evaluation of the effect of future pollution abatement measures over the water quality of Leça River.

  18. Thermodynamic Analysis of Simple Gas Turbine Cycle with Multiple Regression Modelling and Optimization

    Directory of Open Access Journals (Sweden)

    Abdul Ghafoor Memon

    2014-03-01

    Full Text Available In this study, thermodynamic and statistical analyses were performed on a gas turbine system, to assess the impact of some important operating parameters like CIT (Compressor Inlet Temperature, PR (Pressure Ratio and TIT (Turbine Inlet Temperature on its performance characteristics such as net power output, energy efficiency, exergy efficiency and fuel consumption. Each performance characteristic was enunciated as a function of operating parameters, followed by a parametric study and optimization. The results showed that the performance characteristics increase with an increase in the TIT and a decrease in the CIT, except fuel consumption which behaves oppositely. The net power output and efficiencies increase with the PR up to certain initial values and then start to decrease, whereas the fuel consumption always decreases with an increase in the PR. The results of exergy analysis showed the combustion chamber as a major contributor to the exergy destruction, followed by stack gas. Subsequently, multiple regression models were developed to correlate each of the response variables (performance characteristic with the predictor variables (operating parameters. The regression model equations showed a significant statistical relationship between the predictor and response variables.

  19. Random regressions models to describe the genetic variation of milk yield over multiple parities in Buffaloes

    Directory of Open Access Journals (Sweden)

    H. Tonhati

    2010-02-01

    Full Text Available The objectives of this study were to estimate (covariance functions for additive genetic and permanent environmental effects, as well as the genetic parameters for milk yield over multiple parities, using random regressions models (RRM. Records of 4,757 complete lactations of Murrah breed buffaloes from 12 herds were analyzed. Ages at calving were between 2 and 11 years. The model included the additive genetic and permanent environmental random effects and the fixed effects of contemporary groups (herd, year and calving season and milking frequency (1 or 2. A cubic regression on Legendre orthogonal polynomials of ages was used to model the mean trend. The additive genetic and permanent environmental effects were modeled by Legendre orthogonal polynomials. Residual variances were considered homogenous or heterogeneous, modeled through variance functions or step functions with 5, 7 or 10 classes. Results from Akaike’s and Schwarz’s Bayesian information criterion indicated that a RRM considering a third order polynomial for the additive genetic and permanent environmental effects and a step function with 5 classes for residual variances fitted best. Heritability estimates obtained by this model varied from 0.10 to 0.28. Genetic correlations were high between consecutive ages, but decreased when intervals between ages increased

  20. Modeling the Philippines' real gross domestic product: A normal estimation equation for multiple linear regression

    Science.gov (United States)

    Urrutia, Jackie D.; Tampis, Razzcelle L.; Mercado, Joseph; Baygan, Aaron Vito M.; Baccay, Edcon B.

    2016-02-01

    The objective of this research is to formulate a mathematical model for the Philippines' Real Gross Domestic Product (Real GDP). The following factors are considered: Consumers' Spending (x1), Government's Spending (x2), Capital Formation (x3) and Imports (x4) as the Independent Variables that can actually influence in the Real GDP in the Philippines (y). The researchers used a Normal Estimation Equation using Matrices to create the model for Real GDP and used α = 0.01.The researchers analyzed quarterly data from 1990 to 2013. The data were acquired from the National Statistical Coordination Board (NSCB) resulting to a total of 96 observations for each variable. The data have undergone a logarithmic transformation particularly the Dependent Variable (y) to satisfy all the assumptions of the Multiple Linear Regression Analysis. The mathematical model for Real GDP was formulated using Matrices through MATLAB. Based on the results, only three of the Independent Variables are significant to the Dependent Variable namely: Consumers' Spending (x1), Capital Formation (x3) and Imports (x4), hence, can actually predict Real GDP (y). The regression analysis displays that 98.7% (coefficient of determination) of the Independent Variables can actually predict the Dependent Variable. With 97.6% of the result in Paired T-Test, the Predicted Values obtained from the model showed no significant difference from the Actual Values of Real GDP. This research will be essential in appraising the forthcoming changes to aid the Government in implementing policies for the development of the economy.

  1. Reconstruction the Missing Pixels for Landsat ETM+SLC-off Images Using Multiple Linear Regression Model

    Directory of Open Access Journals (Sweden)

    Asmaa S. Abdul Jabar

    2016-09-01

    Full Text Available On 31 May 2003, the scan line corrector (SLC of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+ sensor which compensates for the forward motion of the satellite in the imagery acquired failed permanently, resulting in loss of the ability to scan about 20% of the pixels in each Landsat 7 SLC-off image. This permanent failure has seriously hampered the scientific applications of ETM+ images. In this study, an innovative gap filling approach has been introduced to recover the missing pixels in the SLC-off images using multi-temporal ETM+ SLC-off auxiliary fill images. A correlation is established between the corresponding pixels in the target SLC-off image and two fill images in parallel using the multiple linear regressions (MLR model. Simulated and actual SLC-off ETM+ images were used to assess the performance of the proposed method by comparing with multi-temporal data based methods, the LLHM method which is based on simple linear regression (SLR model. The qualitative and quantitative evaluations indicate that the proposed method can recover the value of un-scanned pixels accurately, especially in heterogeneous landscape and even with more temporally distant fill images.

  2. Predicting Fuel Ignition Quality Using 1H NMR Spectroscopy and Multiple Linear Regression

    KAUST Repository

    Abdul Jameel, Abdul Gani

    2016-09-14

    An improved model for the prediction of ignition quality of hydrocarbon fuels has been developed using 1H nuclear magnetic resonance (NMR) spectroscopy and multiple linear regression (MLR) modeling. Cetane number (CN) and derived cetane number (DCN) of 71 pure hydrocarbons and 54 hydrocarbon blends were utilized as a data set to study the relationship between ignition quality and molecular structure. CN and DCN are functional equivalents and collectively referred to as D/CN, herein. The effect of molecular weight and weight percent of structural parameters such as paraffinic CH3 groups, paraffinic CH2 groups, paraffinic CH groups, olefinic CH–CH2 groups, naphthenic CH–CH2 groups, and aromatic C–CH groups on D/CN was studied. A particular emphasis on the effect of branching (i.e., methyl substitution) on the D/CN was studied, and a new parameter denoted as the branching index (BI) was introduced to quantify this effect. A new formula was developed to calculate the BI of hydrocarbon fuels using 1H NMR spectroscopy. Multiple linear regression (MLR) modeling was used to develop an empirical relationship between D/CN and the eight structural parameters. This was then used to predict the DCN of many hydrocarbon fuels. The developed model has a high correlation coefficient (R2 = 0.97) and was validated with experimentally measured DCN of twenty-two real fuel mixtures (e.g., gasolines and diesels) and fifty-nine blends of known composition, and the predicted values matched well with the experimental data.

  3. H∞ Control for Nonlinear Stochastic Systems with Time-Delay and Multiplicative Noise

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2015-01-01

    Full Text Available This paper studies the infinite horizon H∞ control problem for a general class of nonlinear stochastic systems with time-delay and multiplicative noise. The exponential/asymptotic mean square H∞ control design of delayed nonlinear stochastic systems is presented by solving Hamilton-Jacobi inequalities. Two numerical examples are provided to show the effectiveness of the proposed design method.

  4. PERFORMANCE OF MULITPLE LINEAR REGRESSION AND NONLINEAR NEURAL NETWORKS AND FUZZY LOGIC TECHNIQUES IN MODELLING HOUSE PRICES

    Directory of Open Access Journals (Sweden)

    Gurudeo Anand Tularam

    2012-01-01

    Full Text Available House price prediction continues to be important for government agencies insurance companies and real estate industry. This study investigates the performance of house sales price models based on linear and non-linear approaches to study the effects of selected variables. Linear stepwise Multivariate Regression (MR and nonlinear models of Neural Network (NN and Adaptive Neuro-Fuzzy (ANFIS are developed and compared. The GIS methods are used to integrate the data for the study area (Bathurst, Australia. While it was expected that the nonlinear methods would be much better the analysis shows NN and ANFIS are only slightly better than MR suggesting questions about high R2 often found in the literature. While structural data and macro-finance variables may contribute to higher R2 performance comparison was the goal of this study and besides the Australian data lacked structural elements. The results show that MR model could be improved. Also, the land value and location explained at best about 45% of the sale price variation. The analysis of price forecasts (within the 10% range of the actual prediction on average revealed that the non-linear models performed slightly better (29% than the linear (26%. The inclusion of social data improves the MR prediction in most of the suburbs. The suburbs analysis shows the importance of socially based locations and also variance due to types of housing dominant. In general terms of R2, the NN model (0.45 performed only slightly better than ANFIS 0.39 and better than MR (0.37; but the linear MRsoc performed better (0.42. In suburb level, the NN model (7/15 performed better than ANFIS (3/15 but the linear MR (5/15 was better than ANFIS. The improved linear MR (6/15 performed nearly as well as the non-linear NN. Linear methods appear to just as precise as the the more time consuming non linear methods in most cases for accounting for the differences and variation. However, when a much more in depth analysis is

  5. Determination of Constitutive Equation for Thermo-mechanical Processing of INCONEL 718 Through Double Multivariate Nonlinear Regression Analysis

    Science.gov (United States)

    Hussain, Mirza Zahid; Li, Fuguo; Wang, Jing; Yuan, Zhanwei; Li, Pan; Wu, Tao

    2015-07-01

    The present study comprises the determination of constitutive relationship for thermo-mechanical processing of INCONEL 718 through double multivariate nonlinear regression, a newly developed approach which not only considers the effect of strain, strain rate, and temperature on flow stress but also explains the interaction effect of these thermo-mechanical parameters on flow behavior of the alloy. Hot isothermal compression experiments were performed on Gleeble-3500 thermo-mechanical testing machine in the temperature range of 1153 to 1333 K within the strain rate range of 0.001 to 10 s-1. The deformation behavior of INCONEL 718 is analyzed and summarized by establishing the high temperature deformation constitutive equation. The calculated correlation coefficient ( R) and average absolute relative error ( AARE) underline the precision of proposed constitutive model.

  6. Kinetics and Isotherm Studies of Copper Removal by Brushite Calcium Phosphate: Linear and Non-Linear Regression Comparison

    Directory of Open Access Journals (Sweden)

    Adnane El Hamidi

    2012-01-01

    Full Text Available Interactions of Cu(II ions with calcium phosphate Brushite (DCPD in aqueous solutions were investigated by batch conditions and under several sorption parameters like contact time, pH of solution and initial metal concentration. The retention of copper was found maximum and dominated by exchange reaction process in the pH range 4-6. The reaction process was found initially fast and more than 98% was removed at equilibrium. The kinetics data of batch interaction was analyzed with various kinetic models. It was found that the pseudo-first order model using the non-linear regression method predicted best the experimental data. Furthermore, the adsorption process was modeled by Langmuir isotherm and the removal capacity was 331.64 mg.g-1. Consequently, Cu2+ concentration independent kinetics and single surface layer sorption isotherm are then suggested as appropriate mechanisms for the whole process.

  7. MULTIPLE POSITIVE SOLUTIONS TO A SYSTEM OF NONLINEAR HAMMERSTEIN TYPE INTEGRAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Wang Feng; Zhang Fang; Liu Chunhan

    2009-01-01

    In this paper, we use cone theory and a new method of computation of fixed point index to study a system of nonlinear Hammerstein type integral equations, and the existence of multiple positive solutions to the system is discussed.

  8. Evidencing the association between swimming capacities and performance indicators in water polo: a multiple regression study.

    Science.gov (United States)

    Kontic, Dean; Zenic, Natasa; Uljevic, Ognjen; Sekulic, Damir; Lesnik, Blaz

    2017-06-01

    Swimming capacities are hypothesized to be important determinants of water polo performance but there is an evident lack of studies examining different swimming capacities in relation to specific offensive and defensive performance variables in this sport. The aim of this study was to determine the relationship between five swimming capacities and six performance determinants in water polo. The sample comprised 79 high-level youth water polo players (all males, 17-18 years of age). The variables included six performance-related variables (agility in offence and defense, efficacy in offence and defense, polyvalence in offence and defense), and five swimming-capacity tests (water polo sprint test [15 m], swimming sprint test [25 m], short-distance [100 m], aerobic endurance [400 m] and an anaerobic lactate endurance test [4× 50 m]). First, multiple regressions were calculated for one-half of the sample of subjects which were then validated with the remaining half of the sample. The 25-m swim was not included in the regression analyses due to the multicollinearity with other predictors. The originally calculated regression models were validated for defensive agility (R=0.67 and R=0.55 for the original regression calculation and validation subsample, respectively) offensive agility (R=0.59 and R=0.61), and offensive efficacy (R=0.64 and R=0.58). Anaerobic lactate endurance is a significant predictor of offensive and defensive agility, while 15 m sprint significantly contributes to offensive efficacy. Swimming capacities are not found to be related to the polyvalence of the players. The most superior offensive performance can be expected from those players with a high level of anaerobic lactate endurance and advanced sprinting capacity, while anaerobic lactate endurance is recognized as most important quality in defensive duties. Future studies should observe players' polyvalence in relation to (theoretical) knowledge of technical and tactical tasks. Results reinforce

  9. A Performance Study of Data Mining Techniques: Multiple Linear Regression vs. Factor Analysis

    CERN Document Server

    Taneja, Abhishek

    2011-01-01

    The growing volume of data usually creates an interesting challenge for the need of data analysis tools that discover regularities in these data. Data mining has emerged as disciplines that contribute tools for data analysis, discovery of hidden knowledge, and autonomous decision making in many application domains. The purpose of this study is to compare the performance of two data mining techniques viz., factor analysis and multiple linear regression for different sample sizes on three unique sets of data. The performance of the two data mining techniques is compared on following parameters like mean square error (MSE), R-square, R-Square adjusted, condition number, root mean square error(RMSE), number of variables included in the prediction model, modified coefficient of efficiency, F-value, and test of normality. These parameters have been computed using various data mining tools like SPSS, XLstat, Stata, and MS-Excel. It is seen that for all the given dataset, factor analysis outperform multiple linear re...

  10. A critical assessment of shrinkage-based regression approaches for estimating the adverse health effects of multiple air pollutants

    Science.gov (United States)

    Roberts, Steven; Martin, Michael

    Most investigations of the adverse health effects of multiple air pollutants analyse the time series involved by simultaneously entering the multiple pollutants into a Poisson log-linear model. Concerns have been raised about this type of analysis, and it has been stated that new methodology or models should be developed for investigating the adverse health effects of multiple air pollutants. In this paper, we introduce the use of the lasso for this purpose and compare its statistical properties to those of ridge regression and the Poisson log-linear model. Ridge regression has been used in time series analyses on the adverse health effects of multiple air pollutants but its properties for this purpose have not been investigated. A series of simulation studies was used to compare the performance of the lasso, ridge regression, and the Poisson log-linear model. In these simulations, realistic mortality time series were generated with known air pollution mortality effects permitting the performance of the three models to be compared. Both the lasso and ridge regression produced more accurate estimates of the adverse health effects of the multiple air pollutants than those produced using the Poisson log-linear model. This increase in accuracy came at the expense of increased bias. Ridge regression produced more accurate estimates than the lasso, but the lasso produced more interpretable models. The lasso and ridge regression offer a flexible way of obtaining more accurate estimation of pollutant effects than that provided by the standard Poisson log-linear model.

  11. A New Measurement Equivalence Technique Based on Latent Class Regression as Compared with Multiple Indicators Multiple Causes

    Science.gov (United States)

    Jamali, Jamshid; Ayatollahi, Seyyed Mohammad Taghi; Jafari, Peyman

    2016-01-01

    Background: Measurement equivalence is an essential prerequisite for making valid comparisons in mental health questionnaires across groups. In most methods used for assessing measurement equivalence, which is known as Differential Item Functioning (DIF), latent variables are assumed to be continuous. Objective: To compare a new method called Latent Class Regression (LCR) designed for discrete latent variable with the multiple indicators multiple cause (MIMIC) as a continuous latent variable technique to assess the measurement equivalence of the 12-item General Health Questionnaire (GHQ-12), which is a cross deferent subgroup of Iranian nurses. Methods: A cross-sectional survey was conducted in 2014 among 771 nurses working in the hospitals of Fars and Bushehr provinces of southern Iran. To identify the Minor Psychiatric Disorders (MPD), the nurses completed self-report GHQ-12 questionnaires and sociodemographic questions. Two uniform-DIF detection methods, LCR and MIMIC, were applied for comparability when the GHQ-12 score was assumed to be discrete and continuous, respectively. Results: The result of fitting LCR with 2 classes indicated that 27.4% of the nurses had MPD. Gender was identified as an influential factor of the level of MPD.LCR and MIMIC agree with detection of DIF and DIF-free items by gender, age, education and marital status in 83.3, 100.0, 91.7 and 83.3% cases, respectively. Conclusions: The results indicated that the GHQ-12 is to a great degree, an invariant measure for the assessment of MPD among nurses. High convergence between the two methods suggests using the LCR approach in cases of discrete latent variable, e.g. GHQ-12 and adequate sample size. PMID:27482129

  12. Multiple nonlinear parameter estimation using PI feedback control

    NARCIS (Netherlands)

    Lith, van P. F.; Witteveen, H.; Betlem, B.H.L.; Roffel, B.

    2001-01-01

    Nonlinear parameters often need to be estimated during the building of chemical process models. To accomplish this, many techniques are available. This paper discusses an alternative view to parameter estimation, where the concept of PI feedback control is used to estimate model parameters. The appr

  13. A review of the most relevant multiple regression models for sales forecasting in gas stations; Uma revisao dos principais modelos de regressao multipla para previsao de vendas de postos de combustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Peter [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Pesquisa e Pos-Graduacao em Administracao de Empresas (COPPEAD). Centro de Estudos em Logistica

    2004-07-01

    In this paper, the most relevant multiple regression models for sales forecasting of gas stations, developed over the past ten years, are reviewed. The most significant variables related to gas station sales, the types of the multiple regression models (linear or non-linear), the most common uses in supporting decision making and its limits are presented. The predictive power of each model and its impact on decision-making, such as sensitivity analysis and confidence intervals for independent variables, are also commented. Four models are presented, based on studies conducted in South Africa, Portugal and Brazil. In conclusion, suggestions for future developments are presented based on past developments. (author)

  14. Uncertainty Quantification and Bifurcation Analysis of an Airfoil with Multiple Nonlinearities

    Directory of Open Access Journals (Sweden)

    Haitao Liao

    2013-01-01

    Full Text Available In order to calculate the limit cycle oscillations and bifurcations of nonlinear aeroelastic system, the problem of finding periodic solutions with maximum vibration amplitude is transformed into a nonlinear optimization problem. An algebraic system of equations obtained by the harmonic balance method and the stability condition derived from the Floquet theory are used to construct the general nonlinear equality and inequality constraints. The resulting constrained maximization problem is then solved by using the MultiStart algorithm. Finally, the proposed approach is validated, and the effects of structural parameter uncertainty on the limit cycle oscillations and bifurcations of an airfoil with multiple nonlinearities are studied. Numerical examples show that the coexistence of multiple nonlinearities may lead to low amplitude limit cycle oscillation.

  15. [Multiple dependent variables LS-SVM regression algorithm and its application in NIR spectral quantitative analysis].

    Science.gov (United States)

    An, Xin; Xu, Shuo; Zhang, Lu-Da; Su, Shi-Guang

    2009-01-01

    In the present paper, on the basis of LS-SVM algorithm, we built a multiple dependent variables LS-SVM (MLS-SVM) regression model whose weights can be optimized, and gave the corresponding algorithm. Furthermore, we theoretically explained the relationship between MLS-SVM and LS-SVM. Sixty four broomcorn samples were taken as experimental material, and the sample ratio of modeling set to predicting set was 51 : 13. We first selected randomly and uniformly five weight groups in the interval [0, 1], and then in the way of leave-one-out (LOO) rule determined one appropriate weight group and parameters including penalizing parameters and kernel parameters in the model according to the criterion of the minimum of average relative error. Then a multiple dependent variables quantitative analysis model was built with NIR spectrum and simultaneously analyzed three chemical constituents containing protein, lysine and starch. Finally, the average relative errors between actual values and predicted ones by the model of three components for the predicting set were 1.65%, 6.47% and 1.37%, respectively, and the correlation coefficients were 0.9940, 0.8392 and 0.8825, respectively. For comparison, LS-SVM was also utilized, for which the average relative errors were 1.68%, 6.25% and 1.47%, respectively, and the correlation coefficients were 0.9941, 0.8310 and 0.8800, respectively. It is obvious that MLS-SVM algorithm is comparable to LS-SVM algorithm in modeling analysis performance, and both of them can give satisfying results. The result shows that the model with MLS-SVM algorithm is capable of doing multi-components NIR quantitative analysis synchronously. Thus MLS-SVM algorithm offers a new multiple dependent variables quantitative analysis approach for chemometrics. In addition, the weights have certain effect on the prediction performance of the model with MLS-SVM, which is consistent with our intuition and is validated in this study. Therefore, it is necessary to optimize

  16. Optimization of end-members used in multiple linear regression geochemical mixing models

    Science.gov (United States)

    Dunlea, Ann G.; Murray, Richard W.

    2015-11-01

    Tracking marine sediment provenance (e.g., of dust, ash, hydrothermal material, etc.) provides insight into contemporary ocean processes and helps construct paleoceanographic records. In a simple system with only a few end-members that can be easily quantified by a unique chemical or isotopic signal, chemical ratios and normative calculations can help quantify the flux of sediment from the few sources. In a more complex system (e.g., each element comes from multiple sources), more sophisticated mixing models are required. MATLAB codes published in Pisias et al. solidified the foundation for application of a Constrained Least Squares (CLS) multiple linear regression technique that can use many elements and several end-members in a mixing model. However, rigorous sensitivity testing to check the robustness of the CLS model is time and labor intensive. MATLAB codes provided in this paper reduce the time and labor involved and facilitate finding a robust and stable CLS model. By quickly comparing the goodness of fit between thousands of different end-member combinations, users are able to identify trends in the results that reveal the CLS solution uniqueness and the end-member composition precision required for a good fit. Users can also rapidly check that they have the appropriate number and type of end-members in their model. In the end, these codes improve the user's confidence that the final CLS model(s) they select are the most reliable solutions. These advantages are demonstrated by application of the codes in two case studies of well-studied datasets (Nazca Plate and South Pacific Gyre).

  17. Existence of Multiple Fixed Points for Nonlinear Operators and Applications

    Institute of Scientific and Technical Information of China (English)

    Jing Xian SUN; Ke Mei ZHANG

    2008-01-01

    In this paper,by the fixed point index theory,the number of fixed points for sublinear and asymptotically linear operators via two coupled parallel sub-super solutions is studied.Under suitable conditions,the existence of at least nine or seven distinct fixed points for sublinear and asymptotically linear operators is proved.Finally,the theoretical results are applied to a nonlinear system of Hammerstein integral equations.

  18. Quantitative structure-property relationship modeling of water-to-wet butyl acetate partition coefficient of 76 organic solutes using multiple linear regression and artificial neural network.

    Science.gov (United States)

    Dashtbozorgi, Zahra; Golmohammadi, Hassan

    2010-12-01

    The main aim of this study was the development of a quantitative structure-property relationship method using an artificial neural network (ANN) for predicting the water-to-wet butyl acetate partition coefficients of organic solutes. As a first step, a genetic algorithm-multiple linear regression model was developed; the descriptors appearing in this model were considered as inputs for the ANN. These descriptors are principal moment of inertia C (I(C)), area-weighted surface charge of hydrogen-bonding donor atoms (HACA-2), Kier and Hall index (order 2) ((2)χ), Balaban index (J), minimum bond order of a C atom (P(C)) and relative negative-charged SA (RNCS). Then a 6-4-1 neural network was generated for the prediction of water-to-wet butyl acetate partition coefficients of 76 organic solutes. By comparing the results obtained from multiple linear regression and ANN models, it can be seen that statistical parameters (Fisher ratio, correlation coefficient and standard error) of the ANN model are better than that regression model, which indicates that nonlinear model can simulate the relationship between the structural descriptors and the partition coefficients of the investigated molecules more accurately.

  19. Multiple linear regression model for predicting biomass digestibility from structural features.

    Science.gov (United States)

    Zhu, Li; O'Dwyer, Jonathan P; Chang, Vincent S; Granda, Cesar B; Holtzapple, Mark T

    2010-07-01

    A total of 147 model lignocellulose samples with a broad spectrum of structural features (lignin contents, acetyl contents, and crystallinity indices) were hydrolyzed with a wide range of cellulase loadings during 1-, 6-, and 72-h hydrolysis periods. Carbohydrate conversions at 1, 6, and 72 h were linearly proportional to the logarithm of cellulase loadings from approximately 10% to 90% conversion, indicating that the simplified HCH-1 model is valid for predicting lignocellulose digestibility. The HCH-1 model is a modified Michaelis-Menton model that accounts for the fraction of insoluble substrate available to bind with enzyme. The slopes and intercepts of a simplified HCH-1 model were correlated with structural features using multiple linear regression (MLR) models. The agreement between the measured and predicted 1-, 6-, and 72-h slopes and intercepts of glucan, xylan, and total sugar hydrolyses indicate that lignin content, acetyl content, and cellulose crystallinity are key factors that determine biomass digestibility. The 1-, 6-, and 72-h glucan, xylan, and total sugar conversions predicted from structural features using MLR models and the simplified HCH-1 model fit satisfactorily with the measured data (R(2) approximately 1.0). The parameter selection suggests that lignin content and cellulose crystallinity more strongly affect on digestibility than acetyl content. Cellulose crystallinity has greater influence during short hydrolysis periods whereas lignin content has more influence during longer hydrolysis periods. Cellulose crystallinity shows more influence on glucan hydrolysis whereas lignin content affects xylan hydrolysis to a greater extent.

  20. A simplified calculation procedure for mass isotopomer distribution analysis (MIDA) based on multiple linear regression.

    Science.gov (United States)

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; García Alonso, J Ignacio

    2016-10-01

    We have developed a novel, rapid and easy calculation procedure for Mass Isotopomer Distribution Analysis based on multiple linear regression which allows the simultaneous calculation of the precursor pool enrichment and the fraction of newly synthesized labelled proteins (fractional synthesis) using linear algebra. To test this approach, we used the peptide RGGGLK as a model tryptic peptide containing three subunits of glycine. We selected glycine labelled in two (13) C atoms ((13) C2 -glycine) as labelled amino acid to demonstrate that spectral overlap is not a problem in the proposed methodology. The developed methodology was tested first in vitro by changing the precursor pool enrichment from 10 to 40% of (13) C2 -glycine. Secondly, a simulated in vivo synthesis of proteins was designed by combining the natural abundance RGGGLK peptide and 10 or 20% (13) C2 -glycine at 1 : 1, 1 : 3 and 3 : 1 ratios. Precursor pool enrichments and fractional synthesis values were calculated with satisfactory precision and accuracy using a simple spreadsheet. This novel approach can provide a relatively rapid and easy means to measure protein turnover based on stable isotope tracers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. MANUFACTURING AND CONTINUOUS IMPROVEMENT AREAS USING PARTIAL LEAST SQUARE PATH MODELING WITH MULTIPLE REGRESSION COMPARISON

    Directory of Open Access Journals (Sweden)

    Carlos Monge Perry

    2014-07-01

    Full Text Available Structural equation modeling (SEM has traditionally been deployed in areas of marketing, consumer satisfaction and preferences, human behavior, and recently in strategic planning. These areas are considered their niches; however, there is a remarkable tendency in empirical research studies that indicate a more diversified use of the technique.  This paper shows the application of structural equation modeling using partial least square (PLS-SEM, in areas of manufacturing, quality, continuous improvement, operational efficiency, and environmental responsibility in Mexico’s medium and large manufacturing plants, while using a small sample (n = 40.  The results obtained from the PLS-SEM model application mentioned, are highly positive, relevant, and statistically significant. Also shown in this paper, for purposes of validity, reliability, and statistical power confirmation of PLS-SEM, is a comparative analysis against multiple regression showing very similar results to those obtained by PLS-SEM.  This fact validates the use of PLS-SEM in areas of untraditional scientific research, and suggests and invites the use of the technique in diversified fields of the scientific research

  2. QSAR modeling of antimalarial activity of urea derivatives using genetic algorithm–multiple linear regressions

    Directory of Open Access Journals (Sweden)

    Abolghasem Beheshti

    2016-05-01

    Full Text Available A quantitative structure–activity relationship (QSAR was performed to analyze antimalarial activities of 68 urea derivatives using multiple linear regressions (MLR. QSAR analyses were performed on the available 68 IC50 oral data based on theoretical molecular descriptors. A suitable set of molecular descriptors were calculated to represent the molecular structures of compounds, such as constitutional, topological, geometrical, electrostatic and quantum-chemical descriptors. The important descriptors were selected with the aid of the genetic algorithm (GA method. The obtained model was validated using leave-one-out (LOO cross-validation; external test set and Y-randomization test. The root mean square errors (RMSE of the training set, and the test set for GA–MLR model were calculated to be 0.314 and 0.486, the square of correlation coefficients (R2 were obtained 0.801 and 0.803, respectively. Results showed that the predictive ability of the model was satisfactory, and it can be used for designing similar group of antimalarial compounds.

  3. QSAR study of prolylcarboxypeptidase inhibitors by genetic algorithm: Multiple linear regressions

    Indian Academy of Sciences (India)

    Eslam Pourbasheer; Saadat Vahdani; Reza Aalizadeh; Alireza Banaei; Mohammad Reza Ganjali

    2015-07-01

    The predictive analysis based on quantitative structure activity relationships (QSAR) on benzim-idazolepyrrolidinyl amides as prolylcarboxypeptidase (PrCP) inhibitors was performed. Molecules were represented by chemical descriptors that encode constitutional, topological, geometrical, and electronic structure features. The hierarchical clustering method was used to classify the dataset into training and test subsets. The important descriptors were selected with the aid of the genetic algorithm method. The QSAR model was constructed, using the multiple linear regressions (MLR), and its robustness and predictability were verified by internal and external cross-validation methods. Furthermore, the calculation of the domain of applicability defines the area of reliable predictions. The root mean square errors (RMSE) of the training set and the test set for GA-MLR model were calculated to be 0.176, 0.279 and the correlation coefficients (R2) were obtained to be 0.839, 0.923, respectively. The proposed model has good stability, robustness and predictability when verified by internal and external validation.

  4. Determination of useful ranges of mixing conditions for glycerin Fatty Acid ester by multiple regression analysis.

    Science.gov (United States)

    Uchimoto, Takeaki; Iwao, Yasunori; Hattori, Hiroaki; Noguchi, Shuji; Itai, Shigeru

    2013-01-01

    The interaction of the effects of the triglycerin full behenate (TR-FB) concentration and the mixing time on lubrication and tablet properties were analyzed under a two-factor central composite design, and compared with those of magnesium stearate (Mg-St). Various amounts of lubricant (0.07-3.0%) were added to granules and mixed for 1-30 min. A multiple linear regression analysis was performed to identify the effect of the mixing conditions on each physicochemical property. The mixing conditions did not significantly affect the lubrication properties of TR-FB. For tablet properties, tensile strength decreased and disintegration time increased when the lubricant concentration and the mixing time were increased for Mg-St. The direct interaction of the Mg-St concentration and the mixing time had a significant negative effect on the disintegration time. In contrast, any mixing conditions of TR-FB did not affect the tablet properties. In addition, the range of mixing conditions which satisfied the lubrication and tablet property criteria was broader for TR-FB than that for Mg-St, suggesting that TR-FB allows tablets with high quality attributes to be produced consistently. Therefore, TR-FB is a potential lubricant alternative to Mg-St.

  5. [Clinical research XX. From clinical judgment to multiple logistic regression model].

    Science.gov (United States)

    Berea-Baltierra, Ricardo; Rivas-Ruiz, Rodolfo; Pérez-Rodríguez, Marcela; Palacios-Cruz, Lino; Moreno, Jorge; Talavera, Juan O

    2014-01-01

    The complexity of the causality phenomenon in clinical practice implies that the result of a maneuver is not solely caused by the maneuver, but by the interaction among the maneuver and other baseline factors or variables occurring during the maneuver. This requires methodological designs that allow the evaluation of these variables. When the outcome is a binary variable, we use the multiple logistic regression model (MLRM). This multivariate model is useful when we want to predict or explain, adjusting due to the effect of several risk factors, the effect of a maneuver or exposition over the outcome. In order to perform an MLRM, the outcome or dependent variable must be a binary variable and both categories must mutually exclude each other (i.e. live/death, healthy/ill); on the other hand, independent variables or risk factors may be either qualitative or quantitative. The effect measure obtained from this model is the odds ratio (OR) with 95 % confidence intervals (CI), from which we can estimate the proportion of the outcome's variability explained through the risk factors. For these reasons, the MLRM is used in clinical research, since one of the main objectives in clinical practice comprises the ability to predict or explain an event where different risk or prognostic factors are taken into account.

  6. Tests of Simple Slopes in Multiple Regression Models with an Interaction: Comparison of Four Approaches.

    Science.gov (United States)

    Liu, Yu; West, Stephen G; Levy, Roy; Aiken, Leona S

    2017-01-01

    In multiple regression researchers often follow up significant tests of the interaction between continuous predictors X and Z with tests of the simple slope of Y on X at different sample-estimated values of the moderator Z (e.g., ±1 SD from the mean of Z). We show analytically that when X and Z are randomly sampled from the population, the variance expression of the simple slope at sample-estimated values of Z differs from the traditional variance expression obtained when the values of X and Z are fixed. A simulation study using randomly sampled predictors compared four approaches: (a) the Aiken and West ( 1991 ) test of simple slopes at fixed population values of Z, (b) the Aiken and West test at sample-estimated values of Z, (c) a 95% percentile bootstrap confidence interval approach, and (d) a fully Bayesian approach with diffuse priors. The results showed that approach (b) led to inflated Type 1 error rates and 95% confidence intervals with inadequate coverage rates, whereas other approaches maintained acceptable Type 1 error rates and adequate coverage of confidence intervals. Approach (c) had asymmetric rejection rates at small sample sizes. We used an empirical data set to illustrate these approaches.

  7. Forecasting on the total volumes of Malaysia's imports and exports by multiple linear regression

    Science.gov (United States)

    Beh, W. L.; Yong, M. K. Au

    2017-04-01

    This study is to give an insight on the doubt of the important of macroeconomic variables that affecting the total volumes of Malaysia's imports and exports by using multiple linear regression (MLR) analysis. The time frame for this study will be determined by using quarterly data of the total volumes of Malaysia's imports and exports covering the period between 2000-2015. The macroeconomic variables will be limited to eleven variables which are the exchange rate of US Dollar with Malaysia Ringgit (USD-MYR), exchange rate of China Yuan with Malaysia Ringgit (RMB-MYR), exchange rate of European Euro with Malaysia Ringgit (EUR-MYR), exchange rate of Singapore Dollar with Malaysia Ringgit (SGD-MYR), crude oil prices, gold prices, producer price index (PPI), interest rate, consumer price index (CPI), industrial production index (IPI) and gross domestic product (GDP). This study has applied the Johansen Co-integration test to investigate the relationship among the total volumes to Malaysia's imports and exports. The result shows that crude oil prices, RMB-MYR, EUR-MYR and IPI play important roles in the total volumes of Malaysia's imports. Meanwhile crude oil price, USD-MYR and GDP play important roles in the total volumes of Malaysia's exports.

  8. Performance Prediction Modelling for Flexible Pavement on Low Volume Roads Using Multiple Linear Regression Analysis

    Directory of Open Access Journals (Sweden)

    C. Makendran

    2015-01-01

    Full Text Available Prediction models for low volume village roads in India are developed to evaluate the progression of different types of distress such as roughness, cracking, and potholes. Even though the Government of India is investing huge quantum of money on road construction every year, poor control over the quality of road construction and its subsequent maintenance is leading to the faster road deterioration. In this regard, it is essential that scientific maintenance procedures are to be evolved on the basis of performance of low volume flexible pavements. Considering the above, an attempt has been made in this research endeavor to develop prediction models to understand the progression of roughness, cracking, and potholes in flexible pavements exposed to least or nil routine maintenance. Distress data were collected from the low volume rural roads covering about 173 stretches spread across Tamil Nadu state in India. Based on the above collected data, distress prediction models have been developed using multiple linear regression analysis. Further, the models have been validated using independent field data. It can be concluded that the models developed in this study can serve as useful tools for the practicing engineers maintaining flexible pavements on low volume roads.

  9. Multiple regression as a preventive tool for determining the risk of Legionella spp.

    Directory of Open Access Journals (Sweden)

    Enrique Gea-Izquierdo

    2012-04-01

    Full Text Available To determine the interrelationship between health & hygiene conditions for prevention of legionellosis, the compositionof materials used in water distribution systems, the water origin and Legionella pneumophila risk. Material and methods. Include adescriptive study and multiple regression analysis on a sample of golf course sprinkler irrigation systems (n=31 pertaining to hotelslocated on the Costa del Sol (Malaga, Spain. The study was carried out in 2009. Results. Presented a significant lineal relation, withall the independent variables contributing significantly (p<0.05 to the model’s fit. The relationship between water type and the risk ofLegionella, as well as the material composition and the latter, is lineal and positive. In contrast, the relationship between health-hygieneconditions and Legionella risk is lineal and negative. Conclusion. The characterization of Legionella pneumophila concentration, asdefined by the risk in water and through use of the predictive method, can contribute to the consideration of new influence variables inthe development of the agent, resulting in improved control and prevention of the disease.

  10. Multiple regression method to determine aerosol optical depth in atmospheric column in Penang, Malaysia

    Science.gov (United States)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Zubir Matjafri, M.; Holben, B.

    2014-02-01

    Aerosol optical depth (AOD) from AERONET data has a very fine resolution but air pollution index (API), visibility and relative humidity from the ground truth measurements are coarse. To obtain the local AOD in the atmosphere, the relationship between these three parameters was determined using multiple regression analysis. The data of southwest monsoon period (August to September, 2012) taken in Penang, Malaysia, was used to establish a quantitative relationship in which the AOD is modeled as a function of API, relative humidity, and visibility. The highest correlated model was used to predict AOD values during southwest monsoon period. When aerosol is not uniformly distributed in the atmosphere then the predicted AOD can be highly deviated from the measured values. Therefore these deviated data can be removed by comparing between the predicted AOD values and the actual AERONET data which help to investigate whether the non uniform source of the aerosol is from the ground surface or from higher altitude level. This model can accurately predict AOD if only the aerosol is uniformly distributed in the atmosphere. However, further study is needed to determine this model is suitable to use for AOD predicting not only in Penang, but also other state in Malaysia or even global.

  11. A factor analysis-multiple regression model for source apportionment of suspended particulate matter

    Science.gov (United States)

    Okamoto, Shin'ichi; Hayashi, Masayuki; Nakajima, Masaomi; Kainuma, Yasutaka; Shiozawa, Kiyoshige

    A factor analysis-multiple regression (FA-MR) model has been used for a source apportionment study in the Tokyo metropolitan area. By a varimax rotated factor analysis, five source types could be identified: refuse incineration, soil and automobile, secondary particles, sea salt and steel mill. Quantitative estimations using the FA-MR model corresponded to the calculated contributing concentrations determined by using a weighted least-squares CMB model. However, the source type of refuse incineration identified by the FA-MR model was similar to that of biomass burning, rather than that produced by an incineration plant. The estimated contributions of sea salt and steel mill by the FA-MR model contained those of other sources, which have the same temporal variation of contributing concentrations. This symptom was caused by a multicollinearity problem. Although this result shows the limitation of the multivariate receptor model, it gives useful information concerning source types and their distribution by comparing with the results of the CMB model. In the Tokyo metropolitan area, the contributions from soil (including road dust), automobile, secondary particles and refuse incineration (biomass burning) were larger than industrial contributions: fuel oil combustion and steel mill. However, since vanadium is highly correlated with SO 42- and other secondary particle related elements, a major portion of secondary particles is considered to be related to fuel oil combustion.

  12. Recursive and non-linear logistic regression: moving on from the original EuroSCORE and EuroSCORE II methodologies.

    Science.gov (United States)

    Poullis, Michael

    2014-11-01

    EuroSCORE II, despite improving on the original EuroSCORE system, has not solved all the calibration and predictability issues. Recursive, non-linear and mixed recursive and non-linear regression analysis were assessed with regard to sensitivity, specificity and predictability of the original EuroSCORE and EuroSCORE II systems. The original logistic EuroSCORE, EuroSCORE II and recursive, non-linear and mixed recursive and non-linear regression analyses of these risk models were assessed via receiver operator characteristic curves (ROC) and Hosmer-Lemeshow statistic analysis with regard to the accuracy of predicting in-hospital mortality. Analysis was performed for isolated coronary artery bypass grafts (CABGs) (n = 2913), aortic valve replacement (AVR) (n = 814), mitral valve surgery (n = 340), combined AVR and CABG (n = 517), aortic (n = 350), miscellaneous cases (n = 642), and combinations of the above cases (n = 5576). The original EuroSCORE had an ROC below 0.7 for isolated AVR and combined AVR and CABG. None of the methods described increased the ROC above 0.7. The EuroSCORE II risk model had an ROC below 0.7 for isolated AVR only. Recursive regression, non-linear regression, and mixed recursive and non-linear regression all increased the ROC above 0.7 for isolated AVR. The original EuroSCORE had a Hosmer-Lemeshow statistic that was above 0.05 for all patients and the subgroups analysed. All of the techniques markedly increased the Hosmer-Lemeshow statistic. The EuroSCORE II risk model had a Hosmer-Lemeshow statistic that was significant for all patients (P linear regression failed to improve on the original Hosmer-Lemeshow statistic. The mixed recursive and non-linear regression using the EuroSCORE II risk model was the only model that produced an ROC of 0.7 or above for all patients and procedures and had a Hosmer-Lemeshow statistic that was highly non-significant. The original EuroSCORE and the EuroSCORE II risk models do not have adequate ROC and Hosmer

  13. Evapotranspiration Modeling by Linear, Nonlinear Regression and Artificial Neural Network in Greenhouse (Case study Reference Crop, Cucumber and Tomato

    Directory of Open Access Journals (Sweden)

    vahid Rezaverdinejad

    2017-01-01

    important models to estimate ETc in greenhouse. The inputs of these models are net radiation, temperature, day after planting and air vapour pressure deficit (or relative humidity. Materials and Methods: In this study, daily ETc of reference crop, greenhouse tomato and cucumber crops were measured using lysimeter method in Urmia region. Several linear, nonlinear regressions and artificial neural networks were considered for ETc modelling in greenhouse. For this purpose, the effective meteorological parameters on ETc process includes: air temperature (T, air humidity (RH, air pressure (P, air vapour pressure deficit (VPD, day after planting (N and greenhouse net radiation (SR were considered and measured. According to the goodness of fit, different models of artificial neural networks and regression were compared and evaluated. Furthermore, based on partial derivatives of regression models, sensitivity analysis was conducted. The accuracy and performance of the employed models was judged by ten statistical indices namely root mean square error (RMSE, normalized root mean square error (NRMSE and coefficient of determination (R2. Results and Discussion: Based on the results, the most accurate regression model to reference ETc prediction was obtained three variables exponential function of VPD, RH and SR with RMSE=0.378 mm day-1. The RMSE of optimal artificial neural network to reference ET prediction for train and test data sets were obtained 0.089 and 0.365 mm day-1, respectively. The performance of logarithmic and exponential functions to prediction of cucumber ETc were proper, with high dependent variables especially, and the most accurate regression model to cucumber ET prediction was obtained for exponential function of five variables: VPD, N, T, RH and SR with RMSE=0.353 mm day-1. In addition, for tomato ET prediction, the most accurate regression model was obtained for exponential function of four variables: VPD, N, RH and SR with RMSE= 0.329 mm day-1. The best

  14. Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis.

    Science.gov (United States)

    Ncibi, Mohamed Chaker

    2008-05-01

    In any single component isotherm study, determining the best-fitting model is a key analysis to mathematically describe the involved sorption system and, therefore, to explore the related theoretical assumptions. Hence, several error calculation functions have been widely used to estimate the error deviations between experimental and theoretically predicted equilibrium adsorption values (Q(e,exp)vs.Q(e,theo) as X- and Y-axis, respectively), including the average relative error deviation, the Marquardt's percent standard error deviation, the hybrid fractional error function, the sum of the squares of the errors, the correlation coefficient and the residuals. In this study, five other statistical functions are analysed to investigate their applicability as suitable tools to evaluate isotherm model fitness, namely the Pearson correlation coefficient, the coefficient of determination, the Chi-square test, the F-test and the Student's T-test, using the commonly-used functions as references. The adsorption of textile dye onto Posidonia oceanica seagrass fibres was carried out, as study case, in batch mode at 20 degrees C. Besides, and in order to get an overall approach of the possible utilization of these statistical functions within the studied item, the examination was realized for both linear and non-linear regression analysis. The related results showed that, among the five studied statistical tools, the chi(2) and Student's T-tests were suitable to determine the best-fitting isotherm model for the case of linear modelling approach. On the other hand, dealing with the non-linear analysis, despite the Student's T-test, all the other functions gave satisfactorily results, by agreeing the commonly-used error functions calculation.

  15. Energy production through organic fraction of municipal solid waste-A multiple regression modeling approach.

    Science.gov (United States)

    Ramesh, N; Ramesh, S; Vennila, G; Abdul Bari, J; MageshKumar, P

    2016-12-01

    In the 21st century, people migrated from rural to urban areas for several reasons. As a result, the populations of Indian cities are increasing day by day. On one hand, the country is developing in the field of science and technology and on the other hand, it is encountering a serious problem called 'Environmental degradation'. Due to increase in population, the generation of solid waste is also increased and is being disposed in open dumps and landfills which lead to air and land pollution. This study is attempted to generate energy out of organic solid waste by the bio- fermentation process. The study was conducted for a period of 7 months at Erode, Tamilnadu and the reading on various parameters like Hydraulic retention time, organic loading rate, sludge loading rate, influent pH, effluent pH, inlet volatile acids, out let volatile fatty acids, inlet VSS/TS ratio, outlet VSS/TS ratio, influent COD, effluent COD and % of COD removal are recorded for every 10 days. The aim of the present study is to develop a model through multiple linear regression analysis with COD as dependent variable and various parameters like HRT, OLR, SLR, influent, effluent, VSS/TS ratio, influent COD, effluent COD, etc as independent variables and to analyze the impact of these parameters on COD. The results of the model developed through step-wise regression method revealed that only four parameters Influent COD, effluent COD, VSS/TS and Influent/pH were main influencers of COD removal. The parameters influent COD and VSS/TS have positive impact on COD removal and the parameters effluent COD and Influent/pH have negative impact. The parameter Influent COD has the highest order of impact, followed by effluent COD, VSS/TS and influent pH. The other parameters HRT, OLR, SLR, INLET VFA and OUTLET VFA were not significantly contributing to the removal of COD. The implementation of the process suggested through this study might bring in dual benefit to the community, viz treatment of solid

  16. DESIGNING A FORECAST MODEL FOR ECONOMIC GROWTH OF JAPAN USING COMPETITIVE (HYBRID ANN VS MULTIPLE REGRESSION MODELS

    Directory of Open Access Journals (Sweden)

    Ahmet DEMIR

    2015-07-01

    Full Text Available Artificial neural network models have been already used on many different fields successfully. However, many researches show that ANN models provide better optimum results than other competitive models in most of the researches. But does it provide optimum solutions in case ANN is proposed as hybrid model? The answer of this question is given in this research by using these models on modelling a forecast for GDP growth of Japan. Multiple regression models utilized as competitive models versus hybrid ANN (ANN + multiple regression models. Results have shown that hybrid model gives better responds than multiple regression models. However, variables, which were significantly affecting GDP growth, were determined and some of the variables, which were assumed to be affecting GDP growth of Japan, were eliminated statistically.

  17. 具有AR(q)误差非线性回归模型的几何性质%Geometric Properties of AR(q) Nonlinear Regression Models

    Institute of Scientific and Technical Information of China (English)

    刘应安; 韦博成

    2004-01-01

    This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on the weighted inner product by fisher information matrix. Several geometric properties related to statistical curvatures are given for the models. The results of this paper extended the work of Bates & Watts(1980,1988) [1,2] and Seber & Wild(1989) [3].

  18. Stability analysis of nonlinear systems by multiple time scaling. [using perturbation methods

    Science.gov (United States)

    Morino, L.

    1974-01-01

    The asymptotic solution for the transient analysis of a general nonlinear system in the neighborhood of the stability boundary was obtained by using the multiple-time-scaling asymptotic-expansion method. The nonlinearities are assumed to be of algebraic nature. Terms of order epsilon to the 3rd power (where epsilon is the order of amplitude of the unknown) are included in the solution. The solution indicates that there is always a limit cycle which is stable (unstable) and exists above (below) the stability boundary if the nonlinear terms are stabilizing (destabilizing). Extension of the solution to include fifth order nonlinear terms is also presented. Comparisons with harmonic balance and with multiple-time-scaling solution of panel flutter equations are also included.

  19. Source apportionment based on an atmospheric dispersion model and multiple linear regression analysis

    Science.gov (United States)

    Fushimi, Akihiro; Kawashima, Hiroto; Kajihara, Hideo

    Understanding the contribution of each emission source of air pollutants to ambient concentrations is important to establish effective measures for risk reduction. We have developed a source apportionment method based on an atmospheric dispersion model and multiple linear regression analysis (MLR) in conjunction with ambient concentrations simultaneously measured at points in a grid network. We used a Gaussian plume dispersion model developed by the US Environmental Protection Agency called the Industrial Source Complex model (ISC) in the method. Our method does not require emission amounts or source profiles. The method was applied to the case of benzene in the vicinity of the Keiyo Central Coastal Industrial Complex (KCCIC), one of the biggest industrial complexes in Japan. Benzene concentrations were simultaneously measured from December 2001 to July 2002 at sites in a grid network established in the KCCIC and the surrounding residential area. The method was used to estimate benzene emissions from the factories in the KCCIC and from automobiles along a section of a road, and then the annual average contribution of the KCCIC to the ambient concentrations was estimated based on the estimated emissions. The estimated contributions of the KCCIC were 65% inside the complex, 49% at 0.5-km sites, 35% at 1.5-km sites, 20% at 3.3-km sites, and 9% at a 5.6-km site. The estimated concentrations agreed well with the measured values. The estimated emissions from the factories and the road were slightly larger than those reported in the first Pollutant Release and Transfer Register (PRTR). These results support the reliability of our method. This method can be applied to other chemicals or regions to achieve reasonable source apportionments.

  20. Oral health-related risk behaviours and attitudes among Croatian adolescents--multiple logistic regression analysis.

    Science.gov (United States)

    Spalj, Stjepan; Spalj, Vedrana Tudor; Ivanković, Luida; Plancak, Darije

    2014-03-01

    The aim of this study was to explore the patterns of oral health-related risk behaviours in relation to dental status, attitudes, motivation and knowledge among Croatian adolescents. The assessment was conducted in the sample of 750 male subjects - military recruits aged 18-28 in Croatia using the questionnaire and clinical examination. Mean number of decayed, missing and filled teeth (DMFT) and Significant Caries Index (SIC) were calculated. Multiple logistic regression models were crated for analysis. Although models of risk behaviours were statistically significant their explanatory values were quite low. Five of them--rarely toothbrushing, not using hygiene auxiliaries, rarely visiting dentist, toothache as a primary reason to visit dentist, and demand for tooth extraction due to toothache--had the highest explanatory values ranging from 21-29% and correctly classified 73-89% of subjects. Toothache as a primary reason to visit dentist, extraction as preferable therapy when toothache occurs, not having brushing education in school and frequent gingival bleeding were significantly related to population with high caries experience (DMFT > or = 14 according to SiC) producing Odds ratios of 1.6 (95% CI 1.07-2.46), 2.1 (95% CI 1.29-3.25), 1.8 (95% CI 1.21-2.74) and 2.4 (95% CI 1.21-2.74) respectively. DMFT> or = 14 model had low explanatory value of 6.5% and correctly classified 83% of subjects. It can be concluded that oral health-related risk behaviours are interrelated. Poor association was seen between attitudes concerning oral health and oral health-related risk behaviours, indicating insufficient motivation to change lifestyle and habits. Self-reported oral hygiene habits were not strongly related to dental status.

  1. Watershed Regressions for Pesticides (WARP) models for predicting stream concentrations of multiple pesticides

    Science.gov (United States)

    Stone, Wesley W.; Crawford, Charles G.; Gilliom, Robert J.

    2013-01-01

    Watershed Regressions for Pesticides for multiple pesticides (WARP-MP) are statistical models developed to predict concentration statistics for a wide range of pesticides in unmonitored streams. The WARP-MP models use the national atrazine WARP models in conjunction with an adjustment factor for each additional pesticide. The WARP-MP models perform best for pesticides with application timing and methods similar to those used with atrazine. For other pesticides, WARP-MP models tend to overpredict concentration statistics for the model development sites. For WARP and WARP-MP, the less-than-ideal sampling frequency for the model development sites leads to underestimation of the shorter-duration concentration; hence, the WARP models tend to underpredict 4- and 21-d maximum moving-average concentrations, with median errors ranging from 9 to 38% As a result of this sampling bias, pesticides that performed well with the model development sites are expected to have predictions that are biased low for these shorter-duration concentration statistics. The overprediction by WARP-MP apparent for some of the pesticides is variably offset by underestimation of the model development concentration statistics. Of the 112 pesticides used in the WARP-MP application to stream segments nationwide, 25 were predicted to have concentration statistics with a 50% or greater probability of exceeding one or more aquatic life benchmarks in one or more stream segments. Geographically, many of the modeled streams in the Corn Belt Region were predicted to have one or more pesticides that exceeded an aquatic life benchmark during 2009, indicating the potential vulnerability of streams in this region.

  2. Multiple Linear Regression for Reconstruction of Gene Regulatory Networks in Solving Cascade Error Problems

    Directory of Open Access Journals (Sweden)

    Faridah Hani Mohamed Salleh

    2017-01-01

    Full Text Available Gene regulatory network (GRN reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C as a direct interaction (A → C. Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5.

  3. Monte Carlo simulation of parameter confidence intervals for non-linear regression analysis of biological data using Microsoft Excel.

    Science.gov (United States)

    Lambert, Ronald J W; Mytilinaios, Ioannis; Maitland, Luke; Brown, Angus M

    2012-08-01

    This study describes a method to obtain parameter confidence intervals from the fitting of non-linear functions to experimental data, using the SOLVER and Analysis ToolPaK Add-In of the Microsoft Excel spreadsheet. Previously we have shown that Excel can fit complex multiple functions to biological data, obtaining values equivalent to those returned by more specialized statistical or mathematical software. However, a disadvantage of using the Excel method was the inability to return confidence intervals for the computed parameters or the correlations between them. Using a simple Monte-Carlo procedure within the Excel spreadsheet (without recourse to programming), SOLVER can provide parameter estimates (up to 200 at a time) for multiple 'virtual' data sets, from which the required confidence intervals and correlation coefficients can be obtained. The general utility of the method is exemplified by applying it to the analysis of the growth of Listeria monocytogenes, the growth inhibition of Pseudomonas aeruginosa by chlorhexidine and the further analysis of the electrophysiological data from the compound action potential of the rodent optic nerve.

  4. Characterization of acid functional groups of carbon dots by nonlinear regression data fitting of potentiometric titration curves

    Science.gov (United States)

    Alves, Larissa A.; de Castro, Arthur H.; de Mendonça, Fernanda G.; de Mesquita, João P.

    2016-05-01

    The oxygenated functional groups present on the surface of carbon dots with an average size of 2.7 ± 0.5 nm were characterized by a variety of techniques. In particular, we discussed the fit data of potentiometric titration curves using a nonlinear regression method based on the Levenberg-Marquardt algorithm. The results obtained by statistical treatment of the titration curve data showed that the best fit was obtained considering the presence of five Brønsted-Lowry acids on the surface of the carbon dots with constant ionization characteristics of carboxylic acids, cyclic ester, phenolic and pyrone-like groups. The total number of oxygenated acid groups obtained was 5 mmol g-1, with approximately 65% (∼2.9 mmol g-1) originating from groups with pKa < 6. The methodology showed good reproducibility and stability with standard deviations below 5%. The nature of the groups was independent of small variations in experimental conditions, i.e. the mass of carbon dots titrated and initial concentration of HCl solution. Finally, we believe that the methodology used here, together with other characterization techniques, is a simple, fast and powerful tool to characterize the complex acid-base properties of these so interesting and intriguing nanoparticles.

  5. Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression

    Directory of Open Access Journals (Sweden)

    Neela Deshpande

    2014-12-01

    Full Text Available In the recent past Artificial Neural Networks (ANN have emerged out as a promising technique for predicting compressive strength of concrete. In the present study back propagation was used to predict the 28 day compressive strength of recycled aggregate concrete (RAC along with two other data driven techniques namely Model Tree (MT and Non-linear Regression (NLR. Recycled aggregate is the current need of the hour owing to its environmental friendly aspect of re-use of the construction waste. The study observed that, prediction of 28 day compressive strength of RAC was done better by ANN than NLR and MT. The input parameters were cubic meter proportions of Cement, Natural fine aggregate, Natural coarse Aggregates, recycled aggregates, Admixture and Water (also called as raw data. The study also concluded that ANN performs better when non-dimensional parameters like Sand–Aggregate ratio, Water–total materials ratio, Aggregate–Cement ratio, Water–Cement ratio and Replacement ratio of natural aggregates by recycled aggregates, were used as additional input parameters. Study of each network developed using raw data and each non dimensional parameter facilitated in studying the impact of each parameter on the performance of the models developed using ANN, MT and NLR as well as performance of the ANN models developed with limited number of inputs. The results indicate that ANN learn from the examples and grasp the fundamental domain rules governing strength of concrete.

  6. EXACT LINEARIZATION BASED MULTIPLE-SUBSPACE ITERATIVE RESOLUTION TO AFFINE NONLINEAR CONTROL SYSTEM

    Institute of Scientific and Technical Information of China (English)

    XU Zi-xiang; ZHOU De-yun; DENG Zi-chen

    2006-01-01

    To the optimal control problem of affine nonlinear system, based on differential geometry theory, feedback precise linearization was used. Then starting from the simulative relationship between computational structural mechanics and optimal control,multiple-substructure method was inducted to solve the optimal control problem which was linearized. And finally the solution to the original nonlinear system was found. Compared with the classical linearizational method of Taylor expansion, this one diminishes the abuse of error expansion with the enlargement of used region.

  7. Improved spatial regression analysis of diffusion tensor imaging for lesion detection during longitudinal progression of multiple sclerosis in individual subjects

    Science.gov (United States)

    Liu, Bilan; Qiu, Xing; Zhu, Tong; Tian, Wei; Hu, Rui; Ekholm, Sven; Schifitto, Giovanni; Zhong, Jianhui

    2016-03-01

    Subject-specific longitudinal DTI study is vital for investigation of pathological changes of lesions and disease evolution. Spatial Regression Analysis of Diffusion tensor imaging (SPREAD) is a non-parametric permutation-based statistical framework that combines spatial regression and resampling techniques to achieve effective detection of localized longitudinal diffusion changes within the whole brain at individual level without a priori hypotheses. However, boundary blurring and dislocation limit its sensitivity, especially towards detecting lesions of irregular shapes. In the present study, we propose an improved SPREAD (dubbed improved SPREAD, or iSPREAD) method by incorporating a three-dimensional (3D) nonlinear anisotropic diffusion filtering method, which provides edge-preserving image smoothing through a nonlinear scale space approach. The statistical inference based on iSPREAD was evaluated and compared with the original SPREAD method using both simulated and in vivo human brain data. Results demonstrated that the sensitivity and accuracy of the SPREAD method has been improved substantially by adapting nonlinear anisotropic filtering. iSPREAD identifies subject-specific longitudinal changes in the brain with improved sensitivity, accuracy, and enhanced statistical power, especially when the spatial correlation is heterogeneous among neighboring image pixels in DTI.

  8. Analyzing Regression-Discontinuity Designs with Multiple Assignment Variables: A Comparative Study of Four Estimation Methods

    Science.gov (United States)

    Wong, Vivian C.; Steiner, Peter M.; Cook, Thomas D.

    2013-01-01

    In a traditional regression-discontinuity design (RDD), units are assigned to treatment on the basis of a cutoff score and a continuous assignment variable. The treatment effect is measured at a single cutoff location along the assignment variable. This article introduces the multivariate regression-discontinuity design (MRDD), where multiple…

  9. Simreg: a Software Including Some New Developments in Multiple Comparison and Simultaneous Confidence Bands for Linear Regression Models

    Directory of Open Access Journals (Sweden)

    Mortaza Jamshidian

    2005-01-01

    Full Text Available The problem of simultaneous inference and multiple comparison for comparing means of k( ≥ 3 populations has been long studied in the statistics literature and is widely available in statistics literature. However to-date, the problem of multiple comparison of regression models has not found its way to the software. It is only recently that the computational aspects of this problem have been resolved in a general setting. SimReg employs this new methodology and provides users with software for multiple regression of several regression models. The comparisons can be among any set of pairs, and moreover any number of predictors can be included in the model. More importantly predictors can be constrained to their natural boundaries, if known. Computational methods for the problem of simultaneous confidence bands when predictors are constrained to intervals has also recently been addressed. SimReg utilizes this recent development to offer simultaneous confidence bands for regression models with any number of predictor variables. Again, the predictors can be constrained to their natural boundaries which results in narrower bands, as compared to the case where no restriction is imposed. A by-product of these confidence bands is a new method for comparing two regression surfaces, that is more informative than the usual partial F test.

  10. The Overall Odds Ratio as an Intuitive Effect Size Index for Multiple Logistic Regression: Examination of Further Refinements

    Science.gov (United States)

    Le, Huy; Marcus, Justin

    2012-01-01

    This study used Monte Carlo simulation to examine the properties of the overall odds ratio (OOR), which was recently introduced as an index for overall effect size in multiple logistic regression. It was found that the OOR was relatively independent of study base rate and performed better than most commonly used R-square analogs in indexing model…

  11. Multiple linear regression to develop strength scaled equations for knee and elbow joints based on age, gender and segment mass

    DEFF Research Database (Denmark)

    D'Souza, Sonia; Rasmussen, John; Schwirtz, Ansgar

    2012-01-01

    and valuable ergonomic tool. Objective: To investigate age and gender effects on the torque-producing ability in the knee and elbow in older adults. To create strength scaled equations based on age, gender, upper/lower limb lengths and masses using multiple linear regression. To reduce the number of dependent...

  12. Physical and Cognitive-Affective Factors Associated with Fatigue in Individuals with Fibromyalgia: A Multiple Regression Analysis

    Science.gov (United States)

    Muller, Veronica; Brooks, Jessica; Tu, Wei-Mo; Moser, Erin; Lo, Chu-Ling; Chan, Fong

    2015-01-01

    Purpose: The main objective of this study was to determine the extent to which physical and cognitive-affective factors are associated with fibromyalgia (FM) fatigue. Method: A quantitative descriptive design using correlation techniques and multiple regression analysis. The participants consisted of 302 members of the National Fibromyalgia &…

  13. The Overall Odds Ratio as an Intuitive Effect Size Index for Multiple Logistic Regression: Examination of Further Refinements

    Science.gov (United States)

    Le, Huy; Marcus, Justin

    2012-01-01

    This study used Monte Carlo simulation to examine the properties of the overall odds ratio (OOR), which was recently introduced as an index for overall effect size in multiple logistic regression. It was found that the OOR was relatively independent of study base rate and performed better than most commonly used R-square analogs in indexing model…

  14. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran.

    Science.gov (United States)

    Azadi, Sama; Karimi-Jashni, Ayoub

    2016-02-01

    Predicting the mass of solid waste generation plays an important role in integrated solid waste management plans. In this study, the performance of two predictive models, Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) was verified to predict mean Seasonal Municipal Solid Waste Generation (SMSWG) rate. The accuracy of the proposed models is illustrated through a case study of 20 cities located in Fars Province, Iran. Four performance measures, MAE, MAPE, RMSE and R were used to evaluate the performance of these models. The MLR, as a conventional model, showed poor prediction performance. On the other hand, the results indicated that the ANN model, as a non-linear model, has a higher predictive accuracy when it comes to prediction of the mean SMSWG rate. As a result, in order to develop a more cost-effective strategy for waste management in the future, the ANN model could be used to predict the mean SMSWG rate.

  15. Multiple linear regression to estimate time-frequency electrophysiological responses in single trials.

    Science.gov (United States)

    Hu, L; Zhang, Z G; Mouraux, A; Iannetti, G D

    2015-05-01

    Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical

  16. Existence and multiplicity of solutions for nonlinear discrete inclusions

    Directory of Open Access Journals (Sweden)

    Nicu Marcu

    2012-11-01

    Full Text Available A non-smooth abstract result is used for proving the existence of at least one nontrivial solution of an algebraic discrete inclusion. Successively, a multiplicity theorem for the same class of discrete problems is also established by using a locally Lipschitz continuous version of the famous Brezis-Nirenberg theoretical result in presence of splitting. Some applications to tridiagonal, fourth-order and partial difference inclusions are pointed out.

  17. Supervised feature selection for linear and non-linear regression of L⁎a⁎b⁎ color from multispectral images of meat

    DEFF Research Database (Denmark)

    Sharifzadeh, Sara; Clemmensen, Line Katrine Harder; Borggaard, Claus

    2014-01-01

    feature selection method outperforms the PCA for both linear and non-linear methods. The highest performance was obtained by linear ridge regression applied on the selected features from the proposed Elastic net (EN) -based feature selection strategy. All the best models use a reduced number...... of meat samples (430–970 nm) were used for training and testing of the L⁎a⁎b prediction models. Finding a sparse solution or the use of a minimum number of bands is of particular interest to make an industrial vision set-up simpler and cost effective. In this paper, a wide range of linear, non-linear......, kernel-based regression and sparse regression methods are compared. In order to improve the prediction results of these models, we propose a supervised feature selection strategy which is compared with the Principal component analysis (PCA) as a pre-processing step. The results showed that the proposed...

  18. Quantifying TiO2 Abundance of Lunar Soils:Partial Least Squares and Stepwise Multiple Regression Analysis for Determining Causal Effect

    Institute of Scientific and Technical Information of China (English)

    Lin Li

    2011-01-01

    Partial least squares (PLS) regression was applied to the Lunar Soil Characterization Consortium (LSCC) dataset for spectral estimation of TiO2.The LSCC dataset was split into a number of subsets including the low-Ti,high-Ti,total mare soils,total highland,Apollo 16,and Apollo 14 soils to investigete the effects of interfering minerals and nonlinearity on the PLS performance.The PLS weight loading vectors were analyzed through stepwise multiple regression analysis (SMRA) to identify mineral species driving and interfering the PLS performance.PLS exhibits high performance for estimating TiO2 for the LSCC low-Ti and high-Ti mare samples and both groups analyzed together.The results suggest that while the dominant TiO2-bearing minerals are few,additional PLS factors are required to compensate the effects on the important PLS factors of minerals that are not highly corrected to TiO2,to accommodate nonlinear relationships between reflectance and TiO2,and to correct inconsistent mineral-TiO2 correlations between the high-Ti and iow-Ti mare samples.Analysis of the LSCC highland soil samples indicates that the Apollo 16 soils are responsible for the large errors of TiO2 estimates when the soils are modeled with other subgroups.For the LSCC Apollo 16 samples,the dominant spectral effects of plagioclase over other dark minerals are primarily responsible for large errors of estimated TiO2.For the Apollo 14 soils,more accurate estimation for TiO2 is attributed to the positive correlation between a major TiO2-bearing component and TiO2,explaining why the Apollo 14 soils follow the regression trend when analyzed with other soils groups.

  19. Improving the accuracies of bathymetric models based on multiple regression for calibration (case study: Sarca River, Italy)

    Science.gov (United States)

    Niroumand-Jadidi, Milad; Vitti, Alfonso

    2016-10-01

    The optical imagery has the potential for extraction of spatially and temporally explicit bathymetric information in inland/coastal waters. Lyzenga's model and optimal band ratio analysis (OBRA) are main bathymetric models which both provide linear relations with water depths. The former model is sensitive and the latter is quite robust to substrate variability. The simple regression is the widely used approach for calibration of bathymetric models either Lyzenga's model or OBRA model. In this research, a multiple regression is examined for empirical calibration of the models in order to take the advantage of all spectral channels of the imagery. This method is applied on both Lyzenga's model and OBRA model for the bathymetry of a shallow Alpine river in Italy, using WorldView-2 (WV-2) and GeoEye images. Insitu depths are recorded using RTK GPS in two reaches. One-half of the data is used for calibration of models and the remaining half as independent check-points for accuracy assessment. In addition, radiative transfer model is used to simulate a set of spectra in a range of depths, substrate types, and water column properties. The simulated spectra are convolved to the sensors' spectral bands for further bathymetric analysis. Investigating the simulated spectra, it is concluded that the multiple regression improves the robustness of the Lyzenga's model with respect to the substrate variability. The improvements of multiple regression approach are much more pronounced for the Lyzenga's model rather than the OBRA model. This is in line with findings from real imagery; for instance, the multiple regression applied for calibration of Lyzenga's and OBRA models demonstrated, respectively, 22% and 9% higher determination coefficients (R2) as well as 3 cm and 1 cm better RMSEs compared to the simple regression using the WV-2 image.

  20. SPECIFICS OF THE APPLICATIONS OF MULTIPLE REGRESSION MODEL IN THE ANALYSES OF THE EFFECTS OF GLOBAL FINANCIAL CRISES

    Directory of Open Access Journals (Sweden)

    Željko V. Račić

    2010-12-01

    Full Text Available This paper aims to present the specifics of the application of multiple linear regression model. The economic (financial crisis is analyzed in terms of gross domestic product which is in a function of the foreign trade balance (on one hand and the credit cards, i.e. indebtedness of the population on this basis (on the other hand, in the USA (from 1999. to 2008. We used the extended application model which shows how the analyst should run the whole development process of regression model. This process began with simple statistical features and the application of regression procedures, and ended with residual analysis, intended for the study of compatibility of data and model settings. This paper also analyzes the values of some standard statistics used in the selection of appropriate regression model. Testing of the model is carried out with the use of the Statistics PASW 17 program.

  1. QSAR study of the non-peptidic inhibitors of procollagen C-proteinase based on Multiple linear regression, principle component regression, and partial least squares

    Directory of Open Access Journals (Sweden)

    Ardeshir Khazaei

    2017-09-01

    Full Text Available The quantitative structure–activity relationship (QSAR analyses were carried out in a series of novel sulfonamide derivatives as the procollagen C-proteinase inhibitors for treatment of fibrotic conditions. Sphere exclusion method was used to classify data set into categories of train and test set at different radii ranging from 0.9 to 0.5. Multiple linear regression (MLR, principal component regression (PCR and partial least squares (PLS were used as the regression methods and stepwise, Genetic algorithm (GA, and simulated annealing (SA were used as the feature selection methods. Three of the statistically best significant models were chosen from the results for discussion. Model 1 was obtained by MLR–SA methodology at a radius of 1.6. This model with a coefficient of determination (r2 = 0.71 can well predict the real inhibitor activities. Cross-validated q2 of this model, 0.64, indicates good internal predictive power of the model. External validation of the model (pred_r2 = 0.85 showed that the model can well predict activity of novel PCP inhibitors. The model 2 which developed using PLS–SW explains 72% (r2 = 0.72 of the total variance in the training set as well as it has internal (q2 and external (pred_r2 predictive ability of ∼67% and ∼71% respectively. The last developed model by PCR–SA has a correlation coefficient (r2 of 0.68 which can explains 68% of the variance in the observed activity values. In this case internal and external validations are 0.61 and 0.75, respectively. Alignment Independent (AI and atomic valence connectivity index (chiv have the greatest effect on the biological activities. Developed models can be useful in designing and synthesis of effective and optimized novel PCP inhibitors which can be used for treatment of fibrotic conditions.

  2. Multiple nested basin boundaries in nonlinear driven oscillators☆

    Science.gov (United States)

    Zhang, Yongxiang; Xie, Xiangpeng; Luo, Guanwei

    2017-03-01

    A special type of basins of attraction for high-period coexisting attractors is investigated, which basin boundaries possess multiple nested structures in a driven oscillator. We analyze the global organization of basins and discuss the mechanism for the appearance of layered structures. The unstable periodic orbits and unstable limit cycle are also detected in the oscillator. The basin organization is governed by the ordering of regular saddles and the regular saddle connections are the interrupted by the unstable limit cycle. Wada basin boundary with different Wada number is discovered. Wada basin boundaries for the hidden and rare attractors are also verified.

  3. Nonlinear control of multiple spacecraft formation flying using the constraint forces in Lagrangian systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Getting inspiration from the constraint forces in the classical mechanics, we presented the nonlinear control method of multiple spacecraft formation flying to accurately keep the desired formation arrays. Considering nonlinearity and perturbation, we changed the question of the formation array control to the Lagrange equations with the holonomic constraints and the differential algebraic equations (DAE), and developed the nonlinear control for design of the follower spacecraft tracking control laws by solving the DAE. Because of using the idea of the constraint forces, this approach can adequately utilize the characteristic of the dynamic equations, i.e., the space natural forces, and accurately keep the arbitrary formation array. Simulation results of the circular formation keeping with the linear and nonlinear dynamical equations were included to illuminate the control performance.

  4. Nonlinear control for global stabilization of multiple-integrator system by bounded controls

    Institute of Scientific and Technical Information of China (English)

    Bin ZHOU; Guangren DUAN; Liu ZHANG

    2008-01-01

    The global stabilization problem of the multiple-integrator system by bounded controls is considered.A nonlinear feedback law consisting of nested saturation functions is proposed.This type of nonlinear feedback law that is a modification and generalization of the result given in[1] needs only[(n+1)/2](n is the dimensions of the system)saturation elements,which is fewer than that which the other nonlinear laws need.Funhermore.the poles of the closedloop system Can be placed on any location on the left real axis when none of the saturafion elements in the control laws is saturated.This type of nonlinear control law exhibits a simpler structure and call significantly improve the transient performances of the closed-loop system,and is very superior to the other existing methods.Simulation on a fourth-order system is used to validate the proposed method.

  5. Multiple time scale based reduction scheme for nonlinear chemical dynamics

    Science.gov (United States)

    Das, D.; Ray, D. S.

    2013-07-01

    A chemical reaction is often characterized by multiple time scales governing the kinetics of reactants, products and intermediates. We eliminate the fast relaxing intermediates in autocatalytic reaction by transforming the original system into a new one in which the linearized part is diagonal. This allows us to reduce the dynamical system by identifying the associated time scales and subsequent adiabatic elimination of the fast modes. It has been shown that the reduced system sustains the robust qualitative signatures of the original system and at times the generic form of the return map for the chaotic system from which complex dynamics stems out in the original system can be identified. We illustrate the scheme for a three-variable cubic autocatalytic reaction and four-variable peroxidase-oxidase reaction.

  6. Adaptive switching control of discrete time nonlinear systems based on multiple models

    Institute of Scientific and Technical Information of China (English)

    Rui KAN

    2004-01-01

    We use the approach of "optimal" switching to design the adaptive control because the design among multiple models is intuitively more practically feasible than the traditional adaptive control in improving the performances. We prove that for a typical class of nonlinear systems disturbed by random noise, the multiple model adaptive switching control based on WLS(Weighted Least Squares) or projected-LS (Least Squares) is stable and convergent.

  7. FIRE: an SPSS program for variable selection in multiple linear regression analysis via the relative importance of predictors.

    Science.gov (United States)

    Lorenzo-Seva, Urbano; Ferrando, Pere J

    2011-03-01

    We provide an SPSS program that implements currently recommended techniques and recent developments for selecting variables in multiple linear regression analysis via the relative importance of predictors. The approach consists of: (1) optimally splitting the data for cross-validation, (2) selecting the final set of predictors to be retained in the equation regression, and (3) assessing the behavior of the chosen model using standard indices and procedures. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from brm.psychonomic-journals.org/content/supplemental.

  8. Investigations upon the indefinite rolls quality assurance in multiple regression analysis

    Directory of Open Access Journals (Sweden)

    Kiss, I.

    2012-04-01

    Full Text Available The rolling rolls quality has been enhanced mainly due to the improvements of the chemical compositions of rolls materials. The realization of an optimal chemical composition can constitute a technical efficient mode to assure the exploitation properties, the material from which the rolling mills rolls are manufactured having a higher importance in this sense. This paper continues to present the scientifically results of our experimental research in the area of the rolling rolls. The basic research contains concrete elements of immediate practical utilities in the metallurgical enterprises, for the quality improvements of rolls, having in last as the aim the durability growth and the safety in exploitation. This paper presents an analysis of the chemical composition, the influences upon the mechanical properties of the indefinite cast iron rolls. We present some mathematical correlations and graphical interpretations between the hardness (on the working surface and on necks and the chemical composition. Using the double and triple correlations which is really helpful in the foundry practice, as it allows us to determine variation boundaries for the chemical composition, in view the obtaining the optimal values of the hardness. We suggest a mathematical interpretation of the influence of the chemical composition over the hardness of these indefinite rolling rolls. In this sense we use the multiple regression analysis which can be an important statistical tool for the investigation of relationships between variables. The enunciation of some mathematically modeling results can be described through a number of multi-component equations determined for the spaces with 3 and 4 dimensions. Also, the regression surfaces, curves of levels and volumes of variations can be represented and interpreted by technologists considering these as correlation diagrams between the analyzed variables. In this sense, these researches results can be used in the engineers

  9. Computing effective properties of nonlinear structures exposed to strong high-frequency loading at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2006-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  10. On Fitting Nonlinear Latent Curve Models to Multiple Variables Measured Longitudinally

    Science.gov (United States)

    Blozis, Shelley A.

    2007-01-01

    This article shows how nonlinear latent curve models may be fitted for simultaneous analysis of multiple variables measured longitudinally using Mx statistical software. Longitudinal studies often involve observation of several variables across time with interest in the associations between change characteristics of different variables measured…

  11. Multiple periodic solutions for a class of second-order nonlinear neutral delay equations

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available By means of a variational structure and Z 2 -group index theory, we obtain multiple periodic solutions to a class of second-order nonlinear neutral delay equations of the form0, au>0$"> x ″ ( t − τ + λ ( t f ( t , x ( t , x ( t − τ , x ( t − 2 τ = x ( t , λ ( t > 0 , τ > 0 .

  12. Multiple four-wave mixing and Kerr combs in a bichromatically pumped nonlinear fiber ring cavity.

    Science.gov (United States)

    Ceoldo, D; Bendahmane, A; Fatome, J; Millot, G; Hansson, T; Modotto, D; Wabnitz, S; Kibler, B

    2016-12-01

    We report numerical and experimental studies of multiple four-wave mixing processes emerging from dual-frequency pumping of a passive nonlinear fiber ring cavity. We observe the formation of a periodic train of nearly background-free soliton pulses associated with Kerr frequency combs. The generation of resonant dispersive waves is also reported.

  13. ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR NONLINEAR SYSTEM WITH MULTIPLE DELAYS

    Institute of Scientific and Technical Information of China (English)

    曹显兵

    2003-01-01

    The existence of T-periodic solutions of the nonlinear system with multiple delaysis studied. By using the topological degree method, sufficient conditions are obtained forthe existence of T-periodic solutions. As an application, the existence of positive periodicsolution for a logarithmic population model is established under some conditions.

  14. Multiple Positive Solutions of Boundary Value Problems for Systems of Nonlinear Third-Order Differential Equations

    Institute of Scientific and Technical Information of China (English)

    Yaohong LI; Xiaoyan ZHANG

    2013-01-01

    In this paper,we consider boundary value problems for systems of nonlinear thirdorder differential equations.By applying the fixed point theorems of cone expansion and compression of norm type and Leggett-Williams fixed point theorem,the existence of multiple positive solutions is obtained.As application,we give some examples to demonstrate our results.

  15. Complex Nonlinear Behavior in Metabolic Processes: Global Bifurcation Analysis of Escherichia coli Growth on Multiple Substrates

    Directory of Open Access Journals (Sweden)

    Hyun-Seob Song

    2013-09-01

    Full Text Available The nonlinear behavior of metabolic systems can arise from at least two different sources. One comes from the nonlinear kinetics of chemical reactions in metabolism and the other from nonlinearity associated with regulatory processes. Consequently, organisms at a constant growth rate (as experienced in a chemostat could display multiple metabolic states or display complex oscillatory behavior both with potentially serious implications to process operation. This paper explores the nonlinear behavior of a metabolic model of Escherichia coli growth on mixed substrates with sufficient detail to include regulatory features through the cybernetic postulate that metabolic regulation is the consequence of a dynamic objective function ensuring the organism’s survival. The chief source of nonlinearity arises from the optimal formulation with the metabolic state determined by a convex combination of reactions contributing to the objective function. The model for anaerobic growth of E. coli was previously examined for multiple steady states in a chemostat fed by a mixture of glucose and pyruvate substrates under very specific conditions and experimentally verified. In this article, we explore the foregoing model for nonlinear behavior over the full range of parameters, γ (the fractional concentration of glucose in the feed mixture and D (the dilution rate. The observed multiplicity is in the cybernetic variables combining elementary modes. The results show steady-state multiplicity up to seven. No Hopf bifurcation was encountered, however. Bifurcation analysis of cybernetic models is complicated by the non-differentiability of the cybernetic variables for enzyme activities. A methodology is adopted here to overcome this problem, which is applicable to more complicated metabolic networks.

  16. Hierarchical Cluster-based Partial Least Squares Regression (HC-PLSR is an efficient tool for metamodelling of nonlinear dynamic models

    Directory of Open Access Journals (Sweden)

    Omholt Stig W

    2011-06-01

    Full Text Available Abstract Background Deterministic dynamic models of complex biological systems contain a large number of parameters and state variables, related through nonlinear differential equations with various types of feedback. A metamodel of such a dynamic model is a statistical approximation model that maps variation in parameters and initial conditions (inputs to variation in features of the trajectories of the state variables (outputs throughout the entire biologically relevant input space. A sufficiently accurate mapping can be exploited both instrumentally and epistemically. Multivariate regression methodology is a commonly used approach for emulating dynamic models. However, when the input-output relations are highly nonlinear or non-monotone, a standard linear regression approach is prone to give suboptimal results. We therefore hypothesised that a more accurate mapping can be obtained by locally linear or locally polynomial regression. We present here a new method for local regression modelling, Hierarchical Cluster-based PLS regression (HC-PLSR, where fuzzy C-means clustering is used to separate the data set into parts according to the structure of the response surface. We compare the metamodelling performance of HC-PLSR with polynomial partial least squares regression (PLSR and ordinary least squares (OLS regression on various systems: six different gene regulatory network models with various types of feedback, a deterministic mathematical model of the mammalian circadian clock and a model of the mouse ventricular myocyte function. Results Our results indicate that multivariate regression is well suited for emulating dynamic models in systems biology. The hierarchical approach turned out to be superior to both polynomial PLSR and OLS regression in all three test cases. The advantage, in terms of explained variance and prediction accuracy, was largest in systems with highly nonlinear functional relationships and in systems with positive feedback

  17. On optimal performance of nonlinear energy sinks in multiple-degree-of-freedom systems

    Science.gov (United States)

    Tripathi, Astitva; Grover, Piyush; Kalmár-Nagy, Tamás

    2017-02-01

    We study the problem of optimizing the performance of a nonlinear spring-mass-damper attached to a class of multiple-degree-of-freedom systems. We aim to maximize the rate of one-way energy transfer from primary system to the attachment, and focus on impulsive excitation of a two-degree-of-freedom primary system with an essentially nonlinear attachment. The nonlinear attachment is shown to be able to perform as a 'nonlinear energy sink' (NES) by taking away energy from the primary system irreversibly for some types of impulsive excitations. Using perturbation analysis and exploiting separation of time scales, we perform dimensionality reduction of this strongly nonlinear system. Our analysis shows that efficient energy transfer to nonlinear attachment in this system occurs for initial conditions close to homoclinic orbit of the slow time-scale undamped system, a phenomenon that has been previously observed for the case of single-degree-of-freedom primary systems. Analytical formulae for optimal parameters for given impulsive excitation input are derived. Generalization of this framework to systems with arbitrary number of degrees-of-freedom of the primary system is also discussed. The performance of both linear and nonlinear optimally tuned attachments is compared. While NES performance is sensitive to magnitude of the initial impulse, our results show that NES performance is more robust than linear tuned mass damper to several parametric perturbations. Hence, our work provides evidence that homoclinic orbits of the underlying Hamiltonian system play a crucial role in efficient nonlinear energy transfers, even in high dimensional systems, and gives new insight into robustness of systems with essential nonlinearity.

  18. Estimating Driver Performance Using Multiple Electroencephalography (EEG)-Based Regression Algorithms

    Science.gov (United States)

    2014-09-01

    driving simulation and ecologically valid subject pool to which the simple linear regression algorithm was applied. Table 2 Average squared...Bones PJ, Jones RD. Detection of lapses in responsiveness from the EEG. Journal of Neural Engineering. 2011;8(1):1–15. Perez CA, Palma A, Holzmann

  19. Use of Structure Coefficients in Published Multiple Regression Articles: Beta Is Not Enough.

    Science.gov (United States)

    Courville, Troy; Thompson, Bruce

    2001-01-01

    Reviewed articles published in the "Journal of Applied Psychology" (JAP) to determine how interpretations might have differed if standardized regression coefficients and structure coefficients (or bivariate "r"s of predictors with the criterion) had been interpreted. Summarizes some dramatic misinterpretations or incomplete…

  20. Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Pierobon, Leonardo; Wronski, Jorrit;

    2014-01-01

    to power. In this study we propose four linear regression models to predict the maximum obtainable thermal efficiency for simple and recuperated ORCs. A previously derived methodology is able to determine the maximum thermal efficiency among many combinations of fluids and processes, given the boundary...

  1. The Generalized Regression Discontinuity Design: Using Multiple Assignment Variables and Cutoffs to Estimate Treatment Effects

    Science.gov (United States)

    Wong, Vivian C.; Steiner, Peter M.; Cook, Thomas D.

    2009-01-01

    This paper introduces a generalization of the regression-discontinuity design (RDD). Traditionally, RDD is considered in a two-dimensional framework, with a single assignment variable and cutoff. Treatment effects are measured at a single location along the assignment variable. However, this represents a specialized (and straight-forward)…

  2. Analyzing Regression-Discontinuity Designs with Multiple Assignment Variables: A Comparative Study of Four Estimation Methods

    Science.gov (United States)

    Wong, Vivian C.; Steiner, Peter M.; Cook, Thomas D.

    2012-01-01

    In a traditional regression-discontinuity design (RDD), units are assigned to treatment and comparison conditions solely on the basis of a single cutoff score on a continuous assignment variable. The discontinuity in the functional form of the outcome at the cutoff represents the treatment effect, or the average treatment effect at the cutoff.…

  3. Point Estimates and Confidence Intervals for Variable Importance in Multiple Linear Regression

    Science.gov (United States)

    Thomas, D. Roland; Zhu, PengCheng; Decady, Yves J.

    2007-01-01

    The topic of variable importance in linear regression is reviewed, and a measure first justified theoretically by Pratt (1987) is examined in detail. Asymptotic variance estimates are used to construct individual and simultaneous confidence intervals for these importance measures. A simulation study of their coverage properties is reported, and an…

  4. Hierarchical Multiple Regression in Counseling Research: Common Problems and Possible Remedies.

    Science.gov (United States)

    Petrocelli, John V.

    2003-01-01

    A brief content analysis was conducted on the use of hierarchical regression in counseling research published in the "Journal of Counseling Psychology" and the "Journal of Counseling & Development" during the years 1997-2001. Common problems are cited and possible remedies are described. (Contains 43 references and 3 tables.) (Author)

  5. A Generalized Logistic Regression Procedure to Detect Differential Item Functioning among Multiple Groups

    Science.gov (United States)

    Magis, David; Raiche, Gilles; Beland, Sebastien; Gerard, Paul

    2011-01-01

    We present an extension of the logistic regression procedure to identify dichotomous differential item functioning (DIF) in the presence of more than two groups of respondents. Starting from the usual framework of a single focal group, we propose a general approach to estimate the item response functions in each group and to test for the presence…

  6. Multiple Logistic Regression Analysis of Cigarette Use among High School Students

    Science.gov (United States)

    Adwere-Boamah, Joseph

    2011-01-01

    A binary logistic regression analysis was performed to predict high school students' cigarette smoking behavior from selected predictors from 2009 CDC Youth Risk Behavior Surveillance Survey. The specific target student behavior of interest was frequent cigarette use. Five predictor variables included in the model were: a) race, b) frequency of…

  7. Spontaneous Regression of Hepatocellular Carcinoma with Multiple Lung Metastases: A Case Report and Review of the Literature.

    Science.gov (United States)

    Pectasides, Eirini; Miksad, Rebecca; Pyatibrat, Sergey; Srivastava, Amogh; Bullock, Andrea

    2016-09-01

    Spontaneous regression of hepatocellular carcinoma (HCC) is a rare event. Here we present a case of spontaneous regression of metastatic HCC. A 53-year-old man with hepatitis C and alcoholic cirrhosis was found to have a large liver mass consistent with HCC based on its radiographic features. Imaging also revealed left portal and hepatic vein thrombosis, as well as multiple lung nodules concerning for metastases. Approximately 2 months after the initial diagnosis, both the primary liver lesion and the lung metastases decreased in size and eventually resolved without any intervention. Thereafter, the left hepatic vein thrombus progressed into the inferior vena cava and the right atrium, and the patient died due to right heart failure. In this case report and literature review, we discuss the potential mechanisms for and review the literature on spontaneous regression of metastatic HCC.

  8. Nonlinear Modeling and Identification of an Aluminum Honeycomb Panel with Multiple Bolts

    Directory of Open Access Journals (Sweden)

    Yongpeng Chu

    2016-01-01

    Full Text Available This paper focuses on the nonlinear dynamics modeling and parameter identification of an Aluminum Honeycomb Panel (AHP with multiple bolted joints. Finite element method using eight-node solid elements is exploited to model the panel and the bolted connection interface as a homogeneous, isotropic plate and as a thin layer of nonlinear elastic-plastic material, respectively. The material properties of a thin layer are defined by a bilinear elastic plastic model, which can describe the energy dissipation and softening phenomena in the bolted joints under nonlinear states. Experimental tests at low and high excitation levels are performed to reveal the dynamic characteristics of the bolted structure. In particular, the linear material parameters of the panel are identified via experimental tests at low excitation levels, whereas the nonlinear material parameters of the thin layer are updated by using the genetic algorithm to minimize the residual error between the measured and the simulation data at a high excitation level. It is demonstrated by comparing the frequency responses of the updated FEM and the experimental system that the thin layer of bilinear elastic-plastic material is very effective for modeling the nonlinear joint interface of the assembled structure with multiple bolts.

  9. Multiple Regression Analysis of mRNA-miRNA Associations in Colorectal Cancer Pathway

    OpenAIRE

    Fengfeng Wang; S. C. Cesar Wong; Lawrence W. C. Chan; Cho, William C. S.; S. P. Yip; Yung, Benjamin Y. M.

    2014-01-01

    Background. MicroRNA (miRNA) is a short and endogenous RNA molecule that regulates posttranscriptional gene expression. It is an important factor for tumorigenesis of colorectal cancer (CRC), and a potential biomarker for diagnosis, prognosis, and therapy of CRC. Our objective is to identify the related miRNAs and their associations with genes frequently involved in CRC microsatellite instability (MSI) and chromosomal instability (CIN) signaling pathways. Results. A regression model was adopt...

  10. A methodology for the design of experiments in computational intelligence with multiple regression models.

    Science.gov (United States)

    Fernandez-Lozano, Carlos; Gestal, Marcos; Munteanu, Cristian R; Dorado, Julian; Pazos, Alejandro

    2016-01-01

    The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the field of Computational Intelligence and especially on a correct comparison between the different results provided for different methods, as those techniques are complex systems that require further study to be fully understood. A methodology commonly accepted in Computational intelligence is implemented in an R package called RRegrs. This package includes ten simple and complex regression models to carry out predictive modeling using Machine Learning and well-known regression algorithms. The framework for experimental design presented herein is evaluated and validated against RRegrs. Our results are different for three out of five state-of-the-art simple datasets and it can be stated that the selection of the best model according to our proposal is statistically significant and relevant. It is of relevance to use a statistical approach to indicate whether the differences are statistically significant using this kind of algorithms. Furthermore, our results with three real complex datasets report different best models than with the previously published methodology. Our final goal is to provide a complete methodology for the use of different steps in order to compare the results obtained in Computational Intelligence problems, as well as from other fields, such as for bioinformatics, cheminformatics, etc., given that our proposal is open and modifiable.

  11. A methodology for the design of experiments in computational intelligence with multiple regression models

    Directory of Open Access Journals (Sweden)

    Carlos Fernandez-Lozano

    2016-12-01

    Full Text Available The design of experiments and the validation of the results achieved with them are vital in any research study. This paper focuses on the use of different Machine Learning approaches for regression tasks in the field of Computational Intelligence and especially on a correct comparison between the different results provided for different methods, as those techniques are complex systems that require further study to be fully understood. A methodology commonly accepted in Computational intelligence is implemented in an R package called RRegrs. This package includes ten simple and complex regression models to carry out predictive modeling using Machine Learning and well-known regression algorithms. The framework for experimental design presented herein is evaluated and validated against RRegrs. Our results are different for three out of five state-of-the-art simple datasets and it can be stated that the selection of the best model according to our proposal is statistically significant and relevant. It is of relevance to use a statistical approach to indicate whether the differences are statistically significant using this kind of algorithms. Furthermore, our results with three real complex datasets report different best models than with the previously published methodology. Our final goal is to provide a complete methodology for the use of different steps in order to compare the results obtained in Computational Intelligence problems, as well as from other fields, such as for bioinformatics, cheminformatics, etc., given that our proposal is open and modifiable.

  12. Smooth solutions of non-linear stochastic partial differential equations driven by multiplicative noises

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, we study the regularity of solutions of nonlinear stochastic partial differential equations (SPDEs) with multiplicative noises in the framework of Hilbert scales. Then we apply our abstract result to several typical nonlinear SPDEs such as stochastic Burgers and Ginzburg-Landau equations on the real line, stochastic 2D Navier-Stokes equations (SNSEs) in the whole space and a stochastic tamed 3D Navier-Stokes equation in the whole space, and obtain the existence of their smooth solutions respectively. In particular, we also get the existence of local smooth solutions for 3D SNSEs.

  13. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease.

    Science.gov (United States)

    Zhang, Daoqiang; Shen, Dinggang

    2012-01-16

    Many machine learning and pattern classification methods have been applied to the diagnosis of Alzheimer's disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). Recently, rather than predicting categorical variables as in classification, several pattern regression methods have also been used to estimate continuous clinical variables from brain images. However, most existing regression methods focus on estimating multiple clinical variables separately and thus cannot utilize the intrinsic useful correlation information among different clinical variables. On the other hand, in those regression methods, only a single modality of data (usually only the structural MRI) is often used, without considering the complementary information that can be provided by different modalities. In this paper, we propose a general methodology, namely multi-modal multi-task (M3T) learning, to jointly predict multiple variables from multi-modal data. Here, the variables include not only the clinical variables used for regression but also the categorical variable used for classification, with different tasks corresponding to prediction of different variables. Specifically, our method contains two key components, i.e., (1) a multi-task feature selection which selects the common subset of relevant features for multiple variables from each modality, and (2) a multi-modal support vector machine which fuses the above-selected features from all modalities to predict multiple (regression and classification) variables. To validate our method, we perform two sets of experiments on ADNI baseline MRI, FDG-PET, and cerebrospinal fluid (CSF) data from 45 AD patients, 91 MCI patients, and 50 healthy controls (HC). In the first set of experiments, we estimate two clinical variables such as Mini Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), as well as one categorical variable (with value of 'AD', 'MCI' or 'HC'), from the

  14. Comparing cluster-level dynamic treatment regimens using sequential, multiple assignment, randomized trials: Regression estimation and sample size considerations.

    Science.gov (United States)

    NeCamp, Timothy; Kilbourne, Amy; Almirall, Daniel

    2017-08-01

    Cluster-level dynamic treatment regimens can be used to guide sequential treatment decision-making at the cluster level in order to improve outcomes at the individual or patient-level. In a cluster-level dynamic treatment regimen, the treatment is potentially adapted and re-adapted over time based on changes in the cluster that could be impacted by prior intervention, including aggregate measures of the individuals or patients that compose it. Cluster-randomized sequential multiple assignment randomized trials can be used to answer multiple open questions preventing scientists from developing high-quality cluster-level dynamic treatment regimens. In a cluster-randomized sequential multiple assignment randomized trial, sequential randomizations occur at the cluster level and outcomes are observed at the individual level. This manuscript makes two contributions to the design and analysis of cluster-randomized sequential multiple assignment randomized trials. First, a weighted least squares regression approach is proposed for comparing the mean of a patient-level outcome between the cluster-level dynamic treatment regimens embedded in a sequential multiple assignment randomized trial. The regression approach facilitates the use of baseline covariates which is often critical in the analysis of cluster-level trials. Second, sample size calculators are derived for two common cluster-randomized sequential multiple assignment randomized trial designs for use when the primary aim is a between-dynamic treatment regimen comparison of the mean of a continuous patient-level outcome. The methods are motivated by the Adaptive Implementation of Effective Programs Trial which is, to our knowledge, the first-ever cluster-randomized sequential multiple assignment randomized trial in psychiatry.

  15. Multivariate linear regression of high-dimensional fMRI data with multiple target variables.

    Science.gov (United States)

    Valente, Giancarlo; Castellanos, Agustin Lage; Vanacore, Gianluca; Formisano, Elia

    2014-05-01

    Multivariate regression is increasingly used to study the relation between fMRI spatial activation patterns and experimental stimuli or behavioral ratings. With linear models, informative brain locations are identified by mapping the model coefficients. This is a central aspect in neuroimaging, as it provides the sought-after link between the activity of neuronal populations and subject's perception, cognition or behavior. Here, we show that mapping of informative brain locations using multivariate linear regression (MLR) may lead to incorrect conclusions and interpretations. MLR algorithms for high dimensional data are designed to deal with targets (stimuli or behavioral ratings, in fMRI) separately, and the predictive map of a model integrates information deriving from both neural activity patterns and experimental design. Not accounting explicitly for the presence of other targets whose associated activity spatially overlaps with the one of interest may lead to predictive maps of troublesome interpretation. We propose a new model that can correctly identify the spatial patterns associated with a target while achieving good generalization. For each target, the training is based on an augmented dataset, which includes all remaining targets. The estimation on such datasets produces both maps and interaction coefficients, which are then used to generalize. The proposed formulation is independent of the regression algorithm employed. We validate this model on simulated fMRI data and on a publicly available dataset. Results indicate that our method achieves high spatial sensitivity and good generalization and that it helps disentangle specific neural effects from interaction with predictive maps associated with other targets.

  16. Using Multiple Regression in Estimating (semi) VOC Emissions and Concentrations at the European Scale

    DEFF Research Database (Denmark)

    Fauser, Patrik; Thomsen, Marianne; Pistocchi, Alberto

    2010-01-01

    for an in-depth risk assessment. Uncertainty measures are not available for the RAR data; however, uncertainties for the applied regression models are given in the paper. Evaluation of the methods reveals that between 79% and 93% of all emission and PEC estimates are within one order of magnitude...... of the reported RAR values. Bearing in mind that the domain of the method comprises organic industrial high-production volume chemicals, four chemicals, prioritized in the Water Framework Directive and the Stockholm Convention on Persistent Organic Pollutants, were used to test the method for estimated emissions...

  17. Auxiliary variables in multiple imputation in regression with missing X: a warning against including too many in small sample research

    Science.gov (United States)

    2012-01-01

    Background Multiple imputation is becoming increasingly popular. Theoretical considerations as well as simulation studies have shown that the inclusion of auxiliary variables is generally of benefit. Methods A simulation study of a linear regression with a response Y and two predictors X1 and X2 was performed on data with n = 50, 100 and 200 using complete cases or multiple imputation with 0, 10, 20, 40 and 80 auxiliary variables. Mechanisms of missingness were either 100% MCAR or 50% MAR + 50% MCAR. Auxiliary variables had low (r=.10) vs. moderate correlations (r=.50) with X’s and Y. Results The inclusion of auxiliary variables can improve a multiple imputation model. However, inclusion of too many variables leads to downward bias of regression coefficients and decreases precision. When the correlations are low, inclusion of auxiliary variables is not useful. Conclusion More research on auxiliary variables in multiple imputation should be performed. A preliminary rule of thumb could be that the ratio of variables to cases with complete data should not go below 1 : 3. PMID:23216665

  18. Analysis of search-extension method for finding multiple solutions of nonlinear problem

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    For numerical computations of multiple solutions of the nonlinear elliptic problemΔu+ f(u)=0 inΩ, u=0 onΓ, a search-extension method (SEM) was proposed and systematically studied by the authors. This paper shall complete its theoretical analysis. It is assumed that the nonlinearity is non-convex and its solution is isolated, under some conditions the corresponding linearized problem has a unique solution. By use of the compactness of the solution family and the contradiction argument, in general conditions, the high order regularity of the solution u∈H1+α,α>0 is proved. Assume that some initial value searched by suitably many eigenbases is already fallen into the neighborhood of the isolated solution, then the optimal error estimates of its nonlinear finite element approximation are shown by the duality argument and continuation method.

  19. Normalization Ridge Regression in Practice II: The Estimation of Multiple Feedback Linkages.

    Science.gov (United States)

    Bulcock, J. W.

    The use of the two-stage least squares (2 SLS) procedure for estimating nonrecursive social science models is often impractical when multiple feedback linkages are required. This is because 2 SLS is extremely sensitive to multicollinearity. The standard statistical solution to the multicollinearity problem is a biased, variance reduced procedure…

  20. Predicting agility performance with other performance variables in pubescent boys: a multiple-regression approach.

    Science.gov (United States)

    Sekulic, Damir; Spasic, Miodrag; Esco, Michael R

    2014-04-01

    The goal was to investigate the influence of balance, jumping power, reactive-strength, speed, and morphological variables on five different agility performances in early pubescent boys (N = 71). The predictors included body height and mass, countermovement and broad jumps, overall stability index, 5 m sprint, and bilateral side jumps test of reactive strength. Forward stepwise regressions calculated on 36 randomly selected participants explained 47% of the variance in performance of the forward-backward running test, 50% of the 180 degrees turn test, 55% of the 20 yd. shuttle test, 62% of the T-shaped course test, and 44% of the zig-zag test, with the bilateral side jumps as the single best predictor. Regression models were cross-validated using the second half of the sample (n = 35). Correlation between predicted and achieved scores did not provide statistically significant validation statistics for the continuous-movement zig-zag test. Further study is needed to assess other predictors of agility in early pubescent boys.

  1. Numerical method of studying nonlinear interactions between long waves and multiple short waves

    Institute of Scientific and Technical Information of China (English)

    Xie Tao; Kuang Hai-Lan; William Perrie; Zou Guang-Hui; Nan Cheng-Feng; He Chao; Shen Tao; Chen Wei

    2009-01-01

    Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically,the solution is less tractable in more general cases involving multiple short waves.In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water.Specifically,this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves.Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train.From simulation results,we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train(expressed as wave train 2)leads to the energy focusing of the other short wave train(expressed as wave train 31.This mechanism Occurs on wave components with a narrow frequency bandwidth,whose frequencies are near that of wave train 3.

  2. Designing a mixture experiment when the components are subject to a nonlinear multiple-component constraint

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Greg F.; Cooley, Scott K.; Vienna, John D.; Crum, Jarrod V.

    2015-12-14

    This article presents a case study of developing an experimental design for a constrained mixture experiment when the experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this article. The case study involves a 15-component nuclear waste glass example in which SO3 is one of the components. SO3 has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO3 solubility limit had previously been modeled by a partial quadratic mixture (PQM) model expressed in the relative proportions of the 14 other components. The PQM model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This article discusses the waste glass example and how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study.

  3. Multiple Linear Regression Model Based on Neural Network and Its Application in the MBR Simulation

    Directory of Open Access Journals (Sweden)

    Chunqing Li

    2012-01-01

    Full Text Available The computer simulation of the membrane bioreactor MBR has become the research focus of the MBR simulation. In order to compensate for the defects, for example, long test period, high cost, invisible equipment seal, and so forth, on the basis of conducting in-depth study of the mathematical model of the MBR, combining with neural network theory, this paper proposed a three-dimensional simulation system for MBR wastewater treatment, with fast speed, high efficiency, and good visualization. The system is researched and developed with the hybrid programming of VC++ programming language and OpenGL, with a multifactor linear regression model of affecting MBR membrane fluxes based on neural network, applying modeling method of integer instead of float and quad tree recursion. The experiments show that the three-dimensional simulation system, using the above models and methods, has the inspiration and reference for the future research and application of the MBR simulation technology.

  4. [Inversion of the lake total nitrogen concentration by multiple regression kriging model based on hyperspectral data of HJ-1A].

    Science.gov (United States)

    Pan, Bang-long; Yi, Wei-ning; Wang, Xian-hua; Qin, Hui-ping; Wang, Jia-cheng; Qiao, Yan-li

    2011-07-01

    The content of total nitrogen in the waters is an important index to measure lake water quality, and the technique of remote sensing plays a large role in quantitatively monitoring the dynamic change and timely grasping the status of lake pollution. Taking Chaohu as an example, quantitative inversion models of total nitrogen were established by multivariable regression Kriging under analyzing of an correlation between total nitrogen and chlorophyll-a or suspended solids by HIS hyperspectral remote sensing data of HJ-1A satellite. The result shows that the correlation of 0.76 was discovered between total nitrogen and the multiple combination with band 72, band 79 and band 97, while the correlation could be increased to 0.83 by applying combined model of multiple linear regression and ordinary Kriging. The optimization of the residuals of the conventional regression model can improve the accuracy of the inversion effectively. These results also provide useful exploration for further establishing a common model of quantitative inversion of lake total nitrogen concentration.

  5. Exact stationary solutions independent of energy for strongly nonlinear stochastic systems of multiple degrees of freedom

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new procedure is proposed to construct strongly nonlinear systems of multiple degrees of freedom subjected to parametric and/or external Gaussian white noises, whose exact stationary solutions are independent of energy. Firstly, the equivalent Fokker-Planck-Kolmogorov (FPK) equations are derived by using exterior differentiation. The main difference between the equivalent FPK equation and the original FPK equation lies in the additional arbitrary antisymmetric diffusion matrix. Then the exact stationary solutions and the structures of the original systems can be obtained by using the coefficients of antisymmetric diffusion matrix. The obtained exact stationary solutions, which are generally independent of energy, are for the most general class of strongly nonlinear stochastic systems multiple degrees of freedom (MDOF) so far, and some classes of the known ones dependent on energy belong to the special cases of them.

  6. An algorithm for continuum modeling of rocks with multiple embedded nonlinearly-compliant joints

    Science.gov (United States)

    Hurley, R. C.; Vorobiev, O. Y.; Ezzedine, S. M.

    2017-08-01

    We present a numerical method for modeling the mechanical effects of nonlinearly-compliant joints in elasto-plastic media. The method uses a series of strain-rate and stress update algorithms to determine joint closure, slip, and solid stress within computational cells containing multiple "embedded" joints. This work facilitates efficient modeling of nonlinear wave propagation in large spatial domains containing a large number of joints that affect bulk mechanical properties. We implement the method within the massively parallel Lagrangian code GEODYN-L and provide verification and examples. We highlight the ability of our algorithms to capture joint interactions and multiple weakness planes within individual computational cells, as well as its computational efficiency. We also discuss the motivation for developing the proposed technique: to simulate large-scale wave propagation during the Source Physics Experiments (SPE), a series of underground explosions conducted at the Nevada National Security Site (NNSS).

  7. A multiple-scale power series method for solving nonlinear ordinary differential equations

    Directory of Open Access Journals (Sweden)

    Chein-Shan Liu

    2016-02-01

    Full Text Available The power series solution is a cheap and effective method to solve nonlinear problems, like the Duffing-van der Pol oscillator, the Volterra population model and the nonlinear boundary value problems. A novel power series method by considering the multiple scales $R_k$ in the power term $(t/R_k^k$ is developed, which are derived explicitly to reduce the ill-conditioned behavior in the data interpolation. In the method a huge value times a tiny value is avoided, such that we can decrease the numerical instability and which is the main reason to cause the failure of the conventional power series method. The multiple scales derived from an integral can be used in the power series expansion, which provide very accurate numerical solutions of the problems considered in this paper.

  8. Exact stationary solutions independent of energy for strongly nonlinear stochastic systems of multiple degrees of freedom

    Institute of Scientific and Technical Information of China (English)

    HUANG ZhiLong; JIN XiaoLing

    2009-01-01

    A new procedure is proposed to construct strongly nonlinear systems of multiple degrees of freedom subjected to parametric and/or external Gaussian white noises,whose exact stationary solutions are independent of energy.Firstly,the equivalent Fokker-Planck-Kolmogorov(FPK)equations are derived by using exterior differentiation.The main difference between the equivalent FPK equation and the original FPK equation lies in the additional arbitrary antisymmetric diffusion matrix.Then the exact stationary solutions and the structures of the original systems can be obtained by using the coefficients of antisymmetric diffusion matrix.The obtained exact stationary solutions,which are generally independent of energy,are for the most general class of strongly nonlinear stochastic systems multiple degrees of freedom(MDOF)so far,and some classes of the known ones dependent on energy belong to the special cases of them.

  9. Assessing the impact of local meteorological variables on surface ozone in Hong Kong during 2000-2015 using quantile and multiple line regression models

    Science.gov (United States)

    Zhao, Wei; Fan, Shaojia; Guo, Hai; Gao, Bo; Sun, Jiaren; Chen, Laiguo

    2016-11-01

    The quantile regression (QR) method has been increasingly introduced to atmospheric environmental studies to explore the non-linear relationship between local meteorological conditions and ozone mixing ratios. In this study, we applied QR for the first time, together with multiple linear regression (MLR), to analyze the dominant meteorological parameters influencing the mean, 10th percentile, 90th percentile and 99th percentile of maximum daily 8-h average (MDA8) ozone concentrations in 2000-2015 in Hong Kong. The dominance analysis (DA) was used to assess the relative importance of meteorological variables in the regression models. Results showed that the MLR models worked better at suburban and rural sites than at urban sites, and worked better in winter than in summer. QR models performed better in summer for 99th and 90th percentiles and performed better in autumn and winter for 10th percentile. And QR models also performed better in suburban and rural areas for 10th percentile. The top 3 dominant variables associated with MDA8 ozone concentrations, changing with seasons and regions, were frequently associated with the six meteorological parameters: boundary layer height, humidity, wind direction, surface solar radiation, total cloud cover and sea level pressure. Temperature rarely became a significant variable in any season, which could partly explain the peak of monthly average ozone concentrations in October in Hong Kong. And we found the effect of solar radiation would be enhanced during extremely ozone pollution episodes (i.e., the 99th percentile). Finally, meteorological effects on MDA8 ozone had no significant changes before and after the 2010 Asian Games.

  10. Multiple trait model combining random regressions for daily feed intake with single measured performance traits of growing pigs

    Directory of Open Access Journals (Sweden)

    Künzi Niklaus

    2002-01-01

    Full Text Available Abstract A random regression model for daily feed intake and a conventional multiple trait animal model for the four traits average daily gain on test (ADG, feed conversion ratio (FCR, carcass lean content and meat quality index were combined to analyse data from 1 449 castrated male Large White pigs performance tested in two French central testing stations in 1997. Group housed pigs fed ad libitum with electronic feed dispensers were tested from 35 to 100 kg live body weight. A quadratic polynomial in days on test was used as a regression function for weekly means of daily feed intake and to escribe its residual variance. The same fixed (batch and random (additive genetic, pen and individual permanent environmental effects were used for regression coefficients of feed intake and single measured traits. Variance components were estimated by means of a Bayesian analysis using Gibbs sampling. Four Gibbs chains were run for 550 000 rounds each, from which 50 000 rounds were discarded from the burn-in period. Estimates of posterior means of covariance matrices were calculated from the remaining two million samples. Low heritabilities of linear and quadratic regression coefficients and their unfavourable genetic correlations with other performance traits reveal that altering the shape of the feed intake curve by direct or indirect selection is difficult.

  11. Multiple solutions for a class of nonlinear elliptic equations on the Sierpi(n)ski gasket

    Institute of Scientific and Technical Information of China (English)

    HU; Jiaxin

    2004-01-01

    This paper investigates a class of nonlinear elliptic equations on a fractal domain. We establish a strong Sobolev-type inequality which leads to the existence of multiple non-trivial solutions of △u + c(x)u = f(x, u), with zero Dirichlet boundary conditions on the Sierpinski gasket. Our existence results do not require any growth conditions of f(x, t)in t, in contrast to the classical theory of elliptic equations on smooth domains.

  12. Multiple positive solutions for Kirchhoff type problems involving concave and convex nonlinearities in R^3

    Directory of Open Access Journals (Sweden)

    Xiaofei Cao

    2016-11-01

    Full Text Available In this article, we consider the multiplicity of positive solutions for a class of Kirchhoff type problems with concave and convex nonlinearities. Under appropriate assumptions, we prove that the problem has at least two positive solutions, moreover, one of which is a positive ground state solution. Our approach is mainly based on the Nehari manifold, Ekeland variational principle and the theory of Lagrange multipliers.

  13. Early Parallel Activation of Semantics and Phonology in Picture Naming: Evidence from a Multiple Linear Regression MEG Study.

    Science.gov (United States)

    Miozzo, Michele; Pulvermüller, Friedemann; Hauk, Olaf

    2015-10-01

    The time course of brain activation during word production has become an area of increasingly intense investigation in cognitive neuroscience. The predominant view has been that semantic and phonological processes are activated sequentially, at about 150 and 200-400 ms after picture onset. Although evidence from prior studies has been interpreted as supporting this view, these studies were arguably not ideally suited to detect early brain activation of semantic and phonological processes. We here used a multiple linear regression approach to magnetoencephalography (MEG) analysis of picture naming in order to investigate early effects of variables specifically related to visual, semantic, and phonological processing. This was combined with distributed minimum-norm source estimation and region-of-interest analysis. Brain activation associated with visual image complexity appeared in occipital cortex at about 100 ms after picture presentation onset. At about 150 ms, semantic variables became physiologically manifest in left frontotemporal regions. In the same latency range, we found an effect of phonological variables in the left middle temporal gyrus. Our results demonstrate that multiple linear regression analysis is sensitive to early effects of multiple psycholinguistic variables in picture naming. Crucially, our results suggest that access to phonological information might begin in parallel with semantic processing around 150 ms after picture onset.

  14. Multiple positive solutions for singular semipositone nonlinear integral boundary-value problems on infinite intervals

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2015-03-01

    Full Text Available In this article, we study the existence of multiple positive solutions for singular semipositone boundary-value problem (BVP with integral boundary conditions on infinite intervals. By using the properties of the Green's function and the Guo-Krasnosel'skii fixed point theorem, we obtain the existence of multiple positive solutions under conditions concerning the nonlinear functions. The method in this article can be used for a large number of problems. We illustrate the validity of our results with an example in the last section.

  15. INFLUENCE OF TOURISM SECTOR IN ALBANIAN GDP: STIMATION USING MULTIPLE REGRESSION METHOD

    Directory of Open Access Journals (Sweden)

    Eglantina HYSA

    2012-06-01

    Full Text Available During last years, tourism sector has significantly increased in Albania, since after year 1990 Albania has passed from a centralized economy to a liberal one. Tourism sector plays an important role in economic and social development. The contributions of this sector reflect directly into the generation of national income. The two main components matching the tourism movements are the number of tourists and the number of overnights in hotels. Investments done in this sector could be expected to have high positive influence in the country's GDP. This study seeks to identify the influence of tourists, their overnights in hotels and capital investment spending by all sectors directly involved in tourism sector on tourism total contribution to gross domestic product of Albania during 1996-2009. A regression analysis has been performed taking as dependent variable GDP generated by tourism sector and as independent variables, capital investment, tourist number and overnights in hotels. Even if all the variables have been found to be positivlye related, the variable ‘overnights of foreigners and Albanians in hotels' have beenfound insignificant.

  16. A calibration method of Argo floats based on multiple regression analysis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Argo floats are free-moving floats that report vertical profiles of salinity, temperature and pressure at regular time intervals. These floats give good measurements of temperature and pressure, but salinity measurements may show significant sensor drifting with time. It is found that sensor drifting with time is not purely linear as presupposed by Wong (2003). A new method is developed to calibrate conductivity data measured by Argo floats. In this method, Wong's objective analysis method was adopted to estimate the background climatological salinity field on potential temperature surfaces from nearby historical data in WOD01. Furthermore, temperature and time factors are taken into account, and stepwise regression was used for a time-varying or temperature-varying slope in potential conductivity space to correct the drifting in these profiling float salinity data. The result shows salinity errors using this method are smaller than that of Wong's method, the quantitative and qualitative analysis of the conductivity sensor can be carried out with our method.

  17. Detection and parameter estimation for quantitative trait loci using regression models and multiple markers

    Directory of Open Access Journals (Sweden)

    Schook Lawrence B

    2000-07-01

    Full Text Available Abstract A strategy of multi-step minimal conditional regression analysis has been developed to determine the existence of statistical testing and parameter estimation for a quantitative trait locus (QTL that are unaffected by linked QTLs. The estimation of marker-QTL recombination frequency needs to consider only three cases: 1 the chromosome has only one QTL, 2 one side of the target QTL has one or more QTLs, and 3 either side of the target QTL has one or more QTLs. Analytical formula was derived to estimate marker-QTL recombination frequency for each of the three cases. The formula involves two flanking markers for case 1, two flanking markers plus a conditional marker for case 2, and two flanking markers plus two conditional markers for case 3. Each QTL variance and effect, and the total QTL variance were also estimated using analytical formulae. Simulation data show that the formulae for estimating marker-QTL recombination frequency could be a useful statistical tool for fine QTL mapping. With 1 000 observations, a QTL could be mapped to a narrow chromosome region of 1.5 cM if no linked QTL is present, and to a 2.8 cM chromosome region if either side of the target QTL has at least one linked QTL.

  18. Relative Efficiency of Maximum Likelihood and Other Estimators in a Nonlinear Regression Model with Small Measurement Errors

    OpenAIRE

    Kukush, Alexander; Schneeweiss, Hans

    2004-01-01

    We compare the asymptotic covariance matrix of the ML estimator in a nonlinear measurement error model to the asymptotic covariance matrices of the CS and SQS estimators studied in Kukush et al (2002). For small measurement error variances they are equal up to the order of the measurement error variance and thus nearly equally efficient.

  19. Multiple regression and Artificial Neural Network for long-term rainfall forecasting using large scale climate modes

    Science.gov (United States)

    Mekanik, F.; Imteaz, M. A.; Gato-Trinidad, S.; Elmahdi, A.

    2013-10-01

    In this study, the application of Artificial Neural Networks (ANN) and Multiple regression analysis (MR) to forecast long-term seasonal spring rainfall in Victoria, Australia was investigated using lagged El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) as potential predictors. The use of dual (combined lagged ENSO-IOD) input sets for calibrating and validating ANN and MR Models is proposed to investigate the simultaneous effect of past values of these two major climate modes on long-term spring rainfall prediction. The MR models that did not violate the limits of statistical significance and multicollinearity were selected for future spring rainfall forecast. The ANN was developed in the form of multilayer perceptron using Levenberg-Marquardt algorithm. Both MR and ANN modelling were assessed statistically using mean square error (MSE), mean absolute error (MAE), Pearson correlation (r) and Willmott index of agreement (d). The developed MR and ANN models were tested on out-of-sample test sets; the MR models showed very poor generalisation ability for east Victoria with correlation coefficients of -0.99 to -0.90 compared to ANN with correlation coefficients of 0.42-0.93; ANN models also showed better generalisation ability for central and west Victoria with correlation coefficients of 0.68-0.85 and 0.58-0.97 respectively. The ability of multiple regression models to forecast out-of-sample sets is compatible with ANN for Daylesford in central Victoria and Kaniva in west Victoria (r = 0.92 and 0.67 respectively). The errors of the testing sets for ANN models are generally lower compared to multiple regression models. The statistical analysis suggest the potential of ANN over MR models for rainfall forecasting using large scale climate modes.

  20. Prediction of Rotor Spun Yarn Strength Using Adaptive Neuro-fuzzy Inference System and Linear Multiple Regression Methods

    Institute of Scientific and Technical Information of China (English)

    NURWAHA Deogratias; WANG Xin-hou

    2008-01-01

    This paper presents a comparison study of two models for predicting the strength of rotor spun cotton yarns from fiber properties. The adaptive neuro-fuzzy system inference (ANFIS) and Multiple Linear Regression models are used to predict the rotor spun yarn strength. Fiber properties and yarn count are used as inputs to train the two models and the count-strength-product (CSP) was the target. The predictive performances of the two models are estimated and compared. We found that the ANFIS has a better predictive power in comparison with linear multipleregression model. The impact of each fiber property is also illustrated.

  1. Assessment of the expected construction company’s net profit using neural network and multiple regression models

    Directory of Open Access Journals (Sweden)

    H.H. Mohamad

    2013-09-01

    This research aims to develop a mathematical model for assessing the expected net profit of any construction company. To achieve the research objective, four steps were performed. First, the main factors affecting firms’ net profit were identified. Second, pertinent data regarding the net profit factors were collected. Third, two different net profit models were developed using the Multiple Regression (MR and the Neural Network (NN techniques. The validity of the proposed models was also investigated. Finally, the results of both MR and NN models were compared to investigate the predictive capabilities of the two models.

  2. Ca analysis: an Excel based program for the analysis of intracellular calcium transients including multiple, simultaneous regression analysis.

    Science.gov (United States)

    Greensmith, David J

    2014-01-01

    Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow.

  3. Sequential Monte Carlo tracking of the marginal artery by multiple cue fusion and random forest regression.

    Science.gov (United States)

    Cherry, Kevin M; Peplinski, Brandon; Kim, Lauren; Wang, Shijun; Lu, Le; Zhang, Weidong; Liu, Jianfei; Wei, Zhuoshi; Summers, Ronald M

    2015-01-01

    Given the potential importance of marginal artery localization in automated registration in computed tomography colonography (CTC), we have devised a semi-automated method of marginal vessel detection employing sequential Monte Carlo tracking (also known as particle filtering tracking) by multiple cue fusion based on intensity, vesselness, organ detection, and minimum spanning tree information for poorly enhanced vessel segments. We then employed a random forest algorithm for intelligent cue fusion and decision making which achieved high sensitivity and robustness. After applying a vessel pruning procedure to the tracking results, we achieved statistically significantly improved precision compared to a baseline Hessian detection method (2.7% versus 75.2%, prandom forest) with a sequential Monte Carlo tracking mechanism. In so doing, we present the effective application of an anatomical probability map to vessel pruning as well as a supplementary spatial coordinate system for colonic segmentation and registration when this task has been confounded by colon lumen collapse.

  4. Integrative analysis of multiple diverse omics datasets by sparse group multitask regression

    Directory of Open Access Journals (Sweden)

    Dongdong eLin

    2014-10-01

    Full Text Available A variety of high throughput genome-wide assays enable the exploration of genetic risk factors underlying complex traits. Although these studies have remarkable impact on identifying susceptible biomarkers, they suffer from issues such as limited sample size and low reproducibility. Combining individual studies of different genetic levels/platforms has the promise to improve the power and consistency of biomarker identification. In this paper, we propose a novel integrative method, namely sparse group multitask regression, for integrating diverse omics datasets, platforms and populations to identify risk genes/factors of complex diseases. This method combines multitask learning with sparse group regularization, which will: 1 treat the biomarker identification in each single study as a task and then combine them by multitask learning; 2 group variables from all studies for identifying significant genes; 3 enforce sparse constraint on groups of variables to overcome the ‘small sample, but large variables’ problem. We introduce two sparse group penalties: sparse group lasso and sparse group ridge in our multitask model, and provide an effective algorithm for each model. In addition, we propose a significance test for the identification of potential risk genes. Two simulation studies are performed to evaluate the performance of our integrative method by comparing it with conventional meta-analysis method. The results show that our sparse group multitask method outperforms meta-analysis method significantly. In an application to our osteoporosis studies, 7 genes are identified as significant genes by our method and are found to have significant effects in other three independent studies for validation. The most significant gene SOD2 has been identified in our previous osteoporosis study involving the same expression dataset. Several other genes such as TREML2, HTR1E and GLO1 are shown to be novel susceptible genes for osteoporosis, as confirmed

  5. Multiple logistic regression model of signalling practices of drivers on urban highways

    Science.gov (United States)

    Puan, Othman Che; Ibrahim, Muttaka Na'iya; Zakaria, Rozana

    2015-05-01

    Giving signal is a way of informing other road users, especially to the conflicting drivers, the intention of a driver to change his/her movement course. Other users are exposed to hazard situation and risks of accident if the driver who changes his/her course failed to give signal as required. This paper describes the application of logistic regression model for the analysis of driver's signalling practices on multilane highways based on possible factors affecting driver's decision such as driver's gender, vehicle's type, vehicle's speed and traffic flow intensity. Data pertaining to the analysis of such factors were collected manually. More than 2000 drivers who have performed a lane changing manoeuvre while driving on two sections of multilane highways were observed. Finding from the study shows that relatively a large proportion of drivers failed to give any signals when changing lane. The result of the analysis indicates that although the proportion of the drivers who failed to provide signal prior to lane changing manoeuvre is high, the degree of compliances of the female drivers is better than the male drivers. A binary logistic model was developed to represent the probability of a driver to provide signal indication prior to lane changing manoeuvre. The model indicates that driver's gender, type of vehicle's driven, speed of vehicle and traffic volume influence the driver's decision to provide a signal indication prior to a lane changing manoeuvre on a multilane urban highway. In terms of types of vehicles driven, about 97% of motorcyclists failed to comply with the signal indication requirement. The proportion of non-compliance drivers under stable traffic flow conditions is much higher than when the flow is relatively heavy. This is consistent with the data which indicates a high degree of non-compliances when the average speed of the traffic stream is relatively high.

  6. Velocity Curve Analysis of Spectroscopic Binary Stars AI Phe, GM Dra, HD 93917 and V502 Oph by Nonlinear Regression

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We introduce a new method to derive the orbital parameters of spectroscopic binary stars by nonlinear least squares of (o - c). Using the measured radial velocity data of the four double lined spectroscopic binary systems,AI Phe,GM Dra,HD 93917 and V502 Oph,we derived both the orbital and combined spectroscopic elements of these systems.Our numerical results are in good agreement with the those obtained using the method of Lehmann-Filhés.

  7. Multiple Regression Analysis for Grading and Prognosis of Cubital Tunnel Syndrome:Assessment of Akahori’s Classification

    Directory of Open Access Journals (Sweden)

    Nishida,Keiichiro

    2013-02-01

    Full Text Available The purpose of this study was to quantitatively evaluate Akahori's preoperative classification of cubital tunnel syndrome. We analyzed the results for 57 elbows that were treated by a simple decompression procedure from 1997 to 2004. The relationship between each item of Akahori's preoperative classification and clinical stage was investigated based on the parameter distribution. We evaluated Akahori's classification system using multiple regression analysis, and investigated the association between the stage and treatment results. The usefulness of the regression equation was evaluated by analysis of variance of the expected and observed scores. In the parameter distribution, each item of Akahori's classification was mostly associated with the stage, but it was difficult to judge the severity of palsy. In the mathematical evaluation, the most effective item in determining the stage was sensory conduction velocity. It was demonstrated that the established regression equation was highly reliable (R=0.922. Akahori's preoperative classification can also be used in postoperative classification, and this classification was correlated with postoperative prognosis. Our results indicate that Akahori's preoperative classification is a suitable system. It is reliable, reproducible and well-correlated with the postoperative prognosis. In addition, the established prediction formula is useful to reduce the diagnostic complexity of Akahori's classification.

  8. Non-linear affine embedding of the Dirac field from the multiplicity-free SL(4,R) unirreps

    CERN Document Server

    López-Pinto, A; Tresguerres, R

    1995-01-01

    The correspondence between the linear multiplicity-free unirreps of SL(4, R) studied by Ne'eman and {\\~{S}}ija{\\~{c}}ki and the non-linear realizations of the affine group is worked out. The results obtained clarify the inclusion of spinorial fields in a non-linear affine gauge theory of gravitation.

  9. ESTIMATE OF CO2 EFFLUX OF SOIL, OF A TRANSITION FOREST IN NORTHWEST OF MATO GROSSO STATE, USING MULTIPLE REGRESSION

    Directory of Open Access Journals (Sweden)

    Carla Maria Abido Valentini

    2008-03-01

    Full Text Available Many research groups have being studying the contribution of tropical forests to the global carbon cycle, and theclimatic consequences of substituting the forests for pastures. Considering that soil CO2 efflux is the greater component of the carboncycle of the biosphere, this work found an equation for estimating the soil CO2 efflux of an area of the Transition Forest, using a modelof multiple regression for time series data of temperature and soil moisture. The study was carried out in the northwest of MatoGrosso, Brazil (11°24.75’S; 55°19.50’W, in a transition forest between cerrado and AmazonForest, 50 km far from Sinop county.Each month, throughout one year, it was measured soil CO2 efflux, temperature and soil moisture. The annual average of soil CO2 efflux was 7.5 ± 0.6 (mean ± SE ì mol m-2 s-1, the annual mean soil temperature was 25,06 ± 0.12 (mean ± SE ºC. The study indicatedthat the humidity had high influence on soil CO2 efflux; however the results were more significant using a multiple regression modelthat estimated the logarithm of soil CO2 efflux, considering time, soil moisture and the interaction between time duration and theinverse of soil temperature. .

  10. A Robust Recursive Filter for Nonlinear Systems with Correlated Noises, Packet Losses, and Multiplicative Noises

    Directory of Open Access Journals (Sweden)

    Hua-Ming Qian

    2014-01-01

    Full Text Available A robust filtering problem is formulated and investigated for a class of nonlinear systems with correlated noises, packet losses, and multiplicative noises. The packet losses are assumed to be independent Bernoulli random variables. The multiplicative noises are described as random variables with bounded variance. Different from the traditional robust filter based on the assumption that the process noises are uncorrelated with the measurement noises, the objective of the addressed robust filtering problem is to design a recursive filter such that, for packet losses and multiplicative noises, the state prediction and filtering covariance matrices have the optimized upper bounds in the case that there are correlated process and measurement noises. Two examples are used to illustrate the effectiveness of the proposed filter.

  11. Multiple (′/)-expansion method and its applications to nonlinear evolution equations in mathematical physics

    Indian Academy of Sciences (India)

    Junchao Chen; Biao Li

    2012-03-01

    In this paper, an extended multiple (′/)-expansion method is proposed to seek exact solutions of nonlinear evolution equations. The validity and advantages of the proposed method is illustrated by its applications to the Sharma–Tasso–Olver equation, the sixth-order Ramani equation, the generalized shallow water wave equation, the Caudrey–Dodd–Gibbon–Sawada–Kotera equation, the sixth-order Boussinesq equation and the Hirota–Satsuma equations. As a result, various complexiton solutions consisting of hyperbolic functions, trigonometric functions, rational functions and their mixture with parameters are obtained. When some parameters are taken as special values, the known double solitary-like wave solutions are derived from the double hyperbolic function solution. In addition, this method can also be used to deal with some high-dimensional and variable coefficients’ nonlinear evolution equations.

  12. Measurement of nonlinear refractive index based on multiple configuration of FBG in generating multi wavelength

    Science.gov (United States)

    Abdullah, Mohd Nizam; Shaari, Sahbudin; Ehsan, Abang Annuar; Menon, Susthitha; Zakaria, Osman

    2015-06-01

    A reliable method for measurement of the nonlinear refractive index through application of multi wavelength phenomenon. Multi wavelength realisation based on Erbium doped fibre laser (EDFL) is proposed and experimentally demonstrated. A combination of 15 m high efficiency Erbium doped fibre (EDF) and a 20 m Photonic Crystal Fibre (PCF) as main catalyst to suppress the homogenous broadening of EDF and to obtain highly stability of multi wavelength through insertion of a set of fibre Bragg gratings (FBGs) in the cavity. This PCF has zero dispersion of 1040 nm which mismatch from transmission window of 1550 nm. A reliable repeatability of multi wavelength based on multiple configuration of FBGs less than 0.2% obtained. This consistent results influence in determination of nonlinear refractive index by relation of four wave mixing (FWM).

  13. Distributed consensus tracking for multiple uncertain nonlinear strict-feedback systems under a directed graph.

    Science.gov (United States)

    Yoo, Sung Jin

    2013-04-01

    In this brief, we study the distributed consensus tracking control problem for multiple strict-feedback systems with unknown nonlinearities under a directed graph topology. It is assumed that the leader's output is time-varying and has been accessed by only a small fraction of followers in a group. The distributed dynamic surface design approach is proposed to design local consensus controllers in order to guarantee the consensus tracking between the followers and the leader. The function approximation technique using neural networks is employed to compensate unknown nonlinear terms induced from the controller design procedure. From the Lyapunov stability theorem, it is shown that the consensus errors are cooperatively semiglobally uniformly ultimately bounded and converge to an adjustable neighborhood of the origin.

  14. Synchronous and non-synchronous responses of systems with multiple identical nonlinear vibration absorbers

    Science.gov (United States)

    Issa, Jimmy S.; Shaw, Steven W.

    2015-07-01

    In this work we investigate the nonlinear dynamic response of systems composed of a primary inertia to which multiple identical vibration absorbers are attached. This problem is motivated by observations of systems of centrifugal pendulum vibration absorbers that are designed to reduce engine order torsional vibrations in rotating systems, but the results are relevant to translational systems as well. In these systems the total absorber mass is split into multiple equal masses for purposes of distribution and/or balance, and it is generally expected that the absorbers will act in unison, corresponding to a synchronous response. In order to capture nonlinear effects of the responses of the absorbers, specifically, their amplitude-dependent frequency, we consider them to possess nonlinear stiffness. The equations of motion for the system are derived and it is shown how one can uncouple the equations for the absorbers from that for the primary inertia, resulting in a system of identical resonators that are globally coupled. These symmetric equations are scaled for weak nonlinear effects, near resonant forcing, and small damping. The method of averaging is applied, from which steady-state responses and their stability are investigated. The response of systems with two, three, and four absorbers are considered in detail, demonstrating a rich variety of bifurcations of the synchronous response, resulting in responses with various levels of symmetry in which sub-groups of absorbers are mutually synchronous. It is also shown that undamped models with more than two absorbers possess a degenerate response, which is made robust by the addition of damping to the model. Design guidelines are proposed based on the nature of the system response, with the aim of minimizing the acceleration of the primary system. It is shown that the desired absorber parameters are selected so that the system achieves a stable synchronous response which does not undergo jumps via saddle

  15. QSRR Study of GC Retention Indices of Volatile Compounds Emitted from Mosla chinensis Maxim by Multiple Linear Regression%QSRR Study of GC Retention Indices of Volatile Compounds Emitted from Mosla chinensis Maxim by Multiple Linear Regression

    Institute of Scientific and Technical Information of China (English)

    曹慧; 李祖光; 陈小珍

    2011-01-01

    The volatile compounds emitted from Mosla chinensis Maxim were analyzed by headspace solid-phase micro- extraction (HS-SPME) and headspace liquid-phase microextraction (HS-LPME) combined with gas chromatography-mass spectrometry (GC-MS). The main volatiles from Mosla chinensis Maxim were studied in this paper. It can be seen that 61 compounds were separated and identified. Forty-nine volatile compounds were identified by SPME method, mainly including myrcene, a-terpinene, p-cymene, (E)-ocimene, thymol, thymol acetate and (E)-fl-farnesene. Forty-five major volatile compounds were identified by LPME method, including a-thujene, a-pinene, camphene, butanoic acid, 2-methylpropyl ester, myrcene, butanoic acid, butyl ester, a-terpinene, p-cymene, (E)-ocimene, butane, 1,1-dibutoxy-, thymol, thymol acetate and (E)-fl-farnesene. After analyzing the volatile compounds, multiple linear regression (MLR) method was used for building the regression model. Then the quantitative structure-retention relationship (QSRR) model was validated by predictive-ability test. The prediction results were in good agreement with the experimental values. The results demonstrated that headspace SPME-GC-MS and LPME-GC-MS are the simple, rapid and easy sample enrichment technique suitable for analysis of volatile compounds. This investigation provided an effective method for predicting the retention indices of new compounds even in the absence of the standard candidates.

  16. Nonlinear acoustic propagation in bubbly liquids: Multiple scattering, softening and hardening phenomena.

    Science.gov (United States)

    Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel

    2016-04-01

    The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials.

  17. Analysis and Application of Multiple-Precision Computation and Round-off Error for Nonlinear Dynamical Systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demonstrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression.

  18. Solutions and Multiple Solutions for p(x)-Laplacian Equations with Nonlinear Boundary Condition

    Institute of Scientific and Technical Information of China (English)

    Zifei SHEN; Chenyin QIAN

    2009-01-01

    The authors study the p(x)-Laplacian equations with nonlinear boundary condition.By using the variational method,under appropriate assumptions on the perturbation terms f1(x,u),f2(x,u) and h1(x),h2(x),such that the associated functional satisfies the "mountain pass lemma" and "fountain theorem" respectively,the existence and multiplicity of solutions are obtained.The discussion is based on the theory of variable exponent Lebesgue and Sobolev spaces.

  19. An all-optical matrix multiplication scheme with non-linear material based switching system

    Institute of Scientific and Technical Information of China (English)

    Archan Kumar Das; Sourangshu Mukhopadhyay

    2005-01-01

    Optics is a potential candidate in information, data, and image processing. In all-optical data and information processing, optics has been used as information carrying signal because of its inherent advantages of parallelism. Several optical methods are proposed in support of the above processing. In many algebraic,arithmetic, and image processing schemes fundamental logic and memory operations are conducted exploring all-optical devices. In this communication we report an all-optical matrix multiplication operation with non-linear material based switching circuit.

  20. Application of a new hybrid model with seasonal auto-regressive integrated moving average (ARIMA) and nonlinear auto-regressive neural network (NARNN) in forecasting incidence cases of HFMD in Shenzhen, China.

    Science.gov (United States)

    Yu, Lijing; Zhou, Lingling; Tan, Li; Jiang, Hongbo; Wang, Ying; Wei, Sheng; Nie, Shaofa

    2014-01-01

    Outbreaks of hand-foot-mouth disease (HFMD) have been reported for many times in Asia during the last decades. This emerging disease has drawn worldwide attention and vigilance. Nowadays, the prevention and control of HFMD has become an imperative issue in China. Early detection and response will be helpful before it happening, using modern information technology during the epidemic. In this paper, a hybrid model combining seasonal auto-regressive integrated moving average (ARIMA) model and nonlinear auto-regressive neural network (NARNN) is proposed to predict the expected incidence cases from December 2012 to May 2013, using the retrospective observations obtained from China Information System for Disease Control and Prevention from January 2008 to November 2012. The best-fitted hybrid model was combined with seasonal ARIMA [Formula: see text] and NARNN with 15 hidden units and 5 delays. The hybrid model makes the good forecasting performance and estimates the expected incidence cases from December 2012 to May 2013, which are respectively -965.03, -1879.58, 4138.26, 1858.17, 4061.86 and 6163.16 with an obviously increasing trend. The model proposed in this paper can predict the incidence trend of HFMD effectively, which could be helpful to policy makers. The usefulness of expected cases of HFMD perform not only in detecting outbreaks or providing probability statements, but also in providing decision makers with a probable trend of the variability of future observations that contains both historical and recent information.

  1. Time Series Analysis of Soil Radon Data Using Multiple Linear Regression and Artificial Neural Network in Seismic Precursory Studies

    Science.gov (United States)

    Singh, S.; Jaishi, H. P.; Tiwari, R. P.; Tiwari, R. C.

    2017-07-01

    This paper reports the analysis of soil radon data recorded in the seismic zone-V, located in the northeastern part of India (latitude 23.73N, longitude 92.73E). Continuous measurements of soil-gas emission along Chite fault in Mizoram (India) were carried out with the replacement of solid-state nuclear track detectors at weekly interval. The present study was done for the period from March 2013 to May 2015 using LR-115 Type II detectors, manufactured by Kodak Pathe, France. In order to reduce the influence of meteorological parameters, statistical analysis tools such as multiple linear regression and artificial neural network have been used. Decrease in radon concentration was recorded prior to some earthquakes that occurred during the observation period. Some false anomalies were also recorded which may be attributed to the ongoing crustal deformation which was not major enough to produce an earthquake.

  2. Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America

    Science.gov (United States)

    Soares dos Santos, T.; Mendes, D.; Rodrigues Torres, R.

    2016-01-01

    Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANNs) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon; northeastern Brazil; and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model output and observed monthly precipitation. We used general circulation model (GCM) experiments for the 20th century (RCP historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results indicate that the ANNs significantly outperform the MLR downscaling of monthly precipitation variability.

  3. A multiple linear regression analysis of hot corrosion attack on a series of nickel base turbine alloys

    Science.gov (United States)

    Barrett, C. A.

    1985-01-01

    Multiple linear regression analysis was used to determine an equation for estimating hot corrosion attack for a series of Ni base cast turbine alloys. The U transform (i.e., 1/sin (% A/100) to the 1/2) was shown to give the best estimate of the dependent variable, y. A complete second degree equation is described for the centered" weight chemistries for the elements Cr, Al, Ti, Mo, W, Cb, Ta, and Co. In addition linear terms for the minor elements C, B, and Zr were added for a basic 47 term equation. The best reduced equation was determined by the stepwise selection method with essentially 13 terms. The Cr term was found to be the most important accounting for 60 percent of the explained variability hot corrosion attack.

  4. Effect size and power in assessing moderating effects of categorical variables using multiple regression: a 30-year review.

    Science.gov (United States)

    Aguinis, Herman; Beaty, James C; Boik, Robert J; Pierce, Charles A

    2005-01-01

    The authors conducted a 30-year review (1969-1998) of the size of moderating effects of categorical variables as assessed using multiple regression. The median observed effect size (f(2)) is only .002, but 72% of the moderator tests reviewed had power of .80 or greater to detect a targeted effect conventionally defined as small. Results suggest the need to minimize the influence of artifacts that produce a downward bias in the observed effect size and put into question the use of conventional definitions of moderating effect sizes. As long as an effect has a meaningful impact, the authors advise researchers to conduct a power analysis and plan future research designs on the basis of smaller and more realistic targeted effect sizes.

  5. FORECASTING RETURNS FOR THE STOCK EXCHANGE OF THAILAND INDEX USING MULTIPLE REGRESSION BASED ON PRINCIPAL COMPONENT ANALYSIS

    Directory of Open Access Journals (Sweden)

    Nop Sopipan

    2013-01-01

    Full Text Available The aim of this study was to forecast the returns for the Stock Exchange of Thailand (SET Index by adding some explanatory variables and stationary Autoregressive Moving-Average order p and q (ARMA (p, q in the mean equation of returns. In addition, we used Principal Component Analysis (PCA to remove possible complications caused by multicollinearity. Afterwards, we forecast the volatility of the returns for the SET Index. Results showed that the ARMA (1,1, which includes multiple regression based on PCA, has the best performance. In forecasting the volatility of returns, the GARCH model performs best for one day ahead; and the EGARCH model performs best for five days, ten days and twenty-two days ahead.

  6. Estimation of nutrients and organic matter in Korean swine slurry using multiple regression analysis of physical and chemical properties.

    Science.gov (United States)

    Suresh, Arumuganainar; Choi, Hong Lim

    2011-10-01

    Swine waste land application has increased due to organic fertilization, but excess application in an arable system can cause environmental risk. Therefore, in situ characterizations of such resources are important prior to application. To explore this, 41 swine slurry samples were collected from Korea, and wide differences were observed in the physico-biochemical properties. However, significant (Pspecific gravity (SG), electrical conductivity (EC), total solids (TS) and pH. The different combinations of hydrometer, EC meter, drying oven and pH meter were found useful to estimate Mn, Fe, Ca, K, Al, Na, N and 5-day biochemical oxygen demands (BOD₅) at improved R² values of 0.83, 0.82, 0.77, 0.75, 0.67, 0.47, 0.88 and 0.70, respectively. The results from this study suggest that multiple property regressions can facilitate the prediction of micronutrients and organic matter much better than a single property regression for livestock waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Reducing force transmissibility in multiple degrees of freedom structures through anti-symmetric nonlinear viscous damping

    Institute of Scientific and Technical Information of China (English)

    Z.-K.Peng; Z.-Q.Lang; G.Meng; S.A.Billings

    2012-01-01

    In the present study,the Volterra series theory is adopted to theoretically investigate the force transmissibility of multiple degrees of freedom (MDOF) structures,in which an isolator with nonlinear anti-symmetric viscous damping is assembled.The results reveal that the anti-symmetric nonlinear viscous damping can significantly reduce the force transmissibility over all resonance regions for MDOF structures with little effect on the transmissibility over non-resonant and isolation regions.The results indicate that the vibration isolators with an anti-symmetric damping characteristic have great potential to solve the dilemma occurring in the design of linear viscously damped vibration isolators where an increase of the damping level reduces the force transmissibility over resonant frequencies but increases the transmissibility over non-resonant frequency regions.This work is an extension of a previous study in which MDOF structures installed on the mount through an isolator with cubic nonlinear damping are considered.The theoretical analysis results are also verified by simulation studies.

  8. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.

    Science.gov (United States)

    Ventura, Cristina; Latino, Diogo A R S; Martins, Filomena

    2013-01-01

    The performance of two QSAR methodologies, namely Multiple Linear Regressions (MLR) and Neural Networks (NN), towards the modeling and prediction of antitubercular activity was evaluated and compared. A data set of 173 potentially active compounds belonging to the hydrazide family and represented by 96 descriptors was analyzed. Models were built with Multiple Linear Regressions (MLR), single Feed-Forward Neural Networks (FFNNs), ensembles of FFNNs and Associative Neural Networks (AsNNs) using four different data sets and different types of descriptors. The predictive ability of the different techniques used were assessed and discussed on the basis of different validation criteria and results show in general a better performance of AsNNs in terms of learning ability and prediction of antitubercular behaviors when compared with all other methods. MLR have, however, the advantage of pinpointing the most relevant molecular characteristics responsible for the behavior of these compounds against Mycobacterium tuberculosis. The best results for the larger data set (94 compounds in training set and 18 in test set) were obtained with AsNNs using seven descriptors (R(2) of 0.874 and RMSE of 0.437 against R(2) of 0.845 and RMSE of 0.472 in MLRs, for test set). Counter-Propagation Neural Networks (CPNNs) were trained with the same data sets and descriptors. From the scrutiny of the weight levels in each CPNN and the information retrieved from MLRs, a rational design of potentially active compounds was attempted. Two new compounds were synthesized and tested against M. tuberculosis showing an activity close to that predicted by the majority of the models.

  9. Multiple-octave spanning mid-IR supercontinuum generation in bulk quadratic nonlinear crystals

    CERN Document Server

    Zhou, Binbin

    2016-01-01

    Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystal like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal pumped in the mid-IR gives multiple-octave spanning supercontinua. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed (covering 1.6-$7.0~\\mu$m). The results were recorded in a commercially available crystal LiInS$_2$ pumped in the 3-$4~\\mu$m range, but other mid-IR crystals ...

  10. Statistical analysis of water-quality data containing multiple detection limits: S-language software for regression on order statistics

    Science.gov (United States)

    Lee, L.; Helsel, D.

    2005-01-01

    Trace contaminants in water, including metals and organics, often are measured at sufficiently low concentrations to be reported only as values below the instrument detection limit. Interpretation of these "less thans" is complicated when multiple detection limits occur. Statistical methods for multiply censored, or multiple-detection limit, datasets have been developed for medical and industrial statistics, and can be employed to estimate summary statistics or model the distributions of trace-level environmental data. We describe S-language-based software tools that perform robust linear regression on order statistics (ROS). The ROS method has been evaluated as one of the most reliable procedures for developing summary statistics of multiply censored data. It is applicable to any dataset that has 0 to 80% of its values censored. These tools are a part of a software library, or add-on package, for the R environment for statistical computing. This library can be used to generate ROS models and associated summary statistics, plot modeled distributions, and predict exceedance probabilities of water-quality standards. ?? 2005 Elsevier Ltd. All rights reserved.

  11. Diagnostic Measures for Nonlinear Regression Models Based on Empirical Likelihood Method%非线性回归模型的经验似然诊断

    Institute of Scientific and Technical Information of China (English)

    丁先文; 徐亮; 林金官

    2012-01-01

    经验似然方法已经被广泛用于线性模型和广义线性模型.本文基于经验似然方法对非线性回归模型进行统计诊断.首先得到模型参数的极大经验似然估计;其次基于经验似然研究了三种不同的影响曲率度量;最后通过一个实际例子,说明了诊断方法的有效性.%The empirical likelihood method has been extensively applied to linear regression and generalized linear regression models. In this paper, the diagnostic measures for nonlinear regression models are studied based on the empirical likelihood method. First, the maximum empirical likelihood estimate of the parameters are obtained. Then, three different measures of influence curvatures are studied. Last, real data analysis are given to illustrate the validity of statistical diagnostic measures.

  12. Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises.

    Science.gov (United States)

    Chang, Wen-Jer; Huang, Bo-Jyun

    2014-11-01

    The multi-constrained robust fuzzy control problem is investigated in this paper for perturbed continuous-time nonlinear stochastic systems. The nonlinear system considered in this paper is represented by a Takagi-Sugeno fuzzy model with perturbations and state multiplicative noises. The multiple performance constraints considered in this paper include stability, passivity and individual state variance constraints. The Lyapunov stability theory is employed to derive sufficient conditions to achieve the above performance constraints. By solving these sufficient conditions, the contribution of this paper is to develop a parallel distributed compensation based robust fuzzy control approach to satisfy multiple performance constraints for perturbed nonlinear systems with multiplicative noises. At last, a numerical example for the control of perturbed inverted pendulum system is provided to illustrate the applicability and effectiveness of the proposed multi-constrained robust fuzzy control method.

  13. Asymptotics for the multiple pole solutions of the nonlinear Schrödinger equation

    Science.gov (United States)

    Schiebold, Cornelia

    2017-07-01

    Multiple pole solutions consist of groups of weakly bound solitons. For the (focusing) nonlinear Schrödinger equation the double pole solution was constructed by Zakharov and Shabat. In the sequel particular cases have been discussed in the literature, but it has remained an open problem to understand multiple pole solutions in their full complexity. In the present work this problem is solved, in the sense that a rigorous and complete asymptotic description of the multiple pole solutions is given. More precisely, the asymptotic paths of the solitons are determined and their position- and phase-shifts are computed explicitly. As a corollary we generalize the conservation law known for the N-solitons. In the special case of one wave packet, our result confirms a conjecture of Olmedilla. Our method stems from an operator theoretic approach to integrable systems. To facilitate comparison with the literature, we also establish the link to the construction of multiple pole solutions via the inverse scattering method. The work is rounded off by many examples and Mathematica plots and a detailed discussion of the transition to the next level of degeneracy.

  14. Assessment of triglyceride and cholesterol in overweight people based on multiple linear regression and artificial intelligence model.

    Science.gov (United States)

    Ma, Jing; Yu, Jiong; Hao, Guangshu; Wang, Dan; Sun, Yanni; Lu, Jianxin; Cao, Hongcui; Lin, Feiyan

    2017-02-20

    The prevalence of high hyperlipemia is increasing around the world. Our aims are to analyze the relationship of triglyceride (TG) and cholesterol (TC) with indexes of liver function and kidney function, and to develop a prediction model of TG, TC in overweight people. A total of 302 adult healthy subjects and 273 overweight subjects were enrolled in this study. The levels of fasting indexes of TG (fs-TG), TC (fs-TC), blood glucose, liver function, and kidney function were measured and analyzed by correlation analysis and multiple linear regression (MRL). The back propagation artificial neural network (BP-ANN) was applied to develop prediction models of fs-TG and fs-TC. The results showed there was significant difference in biochemical indexes between healthy people and overweight people. The correlation analysis showed fs-TG was related to weight, height, blood glucose, and indexes of liver and kidney function; while fs-TC was correlated with age, indexes of liver function (P < 0.01). The MRL analysis indicated regression equations of fs-TG and fs-TC both had statistic significant (P < 0.01) when included independent indexes. The BP-ANN model of fs-TG reached training goal at 59 epoch, while fs-TC model achieved high prediction accuracy after training 1000 epoch. In conclusions, there was high relationship of fs-TG and fs-TC with weight, height, age, blood glucose, indexes of liver function and kidney function. Based on related variables, the indexes of fs-TG and fs-TC can be predicted by BP-ANN models in overweight people.

  15. Combining different functions to describe milk, fat, and protein yield in goats using Bayesian multiple-trait random regression models.

    Science.gov (United States)

    Oliveira, H R; Silva, F F; Siqueira, O H G B D; Souza, N O; Junqueira, V S; Resende, M D V; Borquis, R R A; Rodrigues, M T

    2016-05-01

    We proposed multiple-trait random regression models (MTRRM) combining different functions to describe milk yield (MY) and fat (FP) and protein (PP) percentage in dairy goat genetic evaluation by using Bayesian inference. A total of 3,856 MY, FP, and PP test-day records, measured between 2000 and 2014, from 535 first lactations of Saanen and Alpine goats, including their cross, were used in this study. The initial analyses were performed using the following single-trait random regression models (STRRM): third- and fifth-order Legendre polynomials (Leg3 and Leg5), linear B-splines with 3 and 5 knots, the Ali and Schaeffer function (Ali), and Wilmink function. Heterogeneity of residual variances was modeled considering 3 classes. After the selection of the best STRRM to describe each trait on the basis of the deviance information criterion (DIC) and posterior model probabilities (PMP), the functions were combined to compose the MTRRM. All combined MTRRM presented lower DIC values and higher PMP, showing the superiority of these models when compared to other MTRRM based only on the same function assumed for all traits. Among the combined MTRRM, those considering Ali to describe MY and PP and Leg5 to describe FP (Ali_Leg5_Ali model) presented the best fit. From the Ali_Leg5_Ali model, heritability estimates over time for MY, FP. and PP ranged from 0.25 to 0.54, 0.27 to 0.48, and 0.35 to 0.51, respectively. Genetic correlation between MY and FP, MY and PP, and FP and PP ranged from -0.58 to 0.03, -0.46 to 0.12, and 0.37 to 0.64, respectively. We concluded that combining different functions under a MTRRM approach can be a plausible alternative for joint genetic evaluation of milk yield and milk constituents in goats.

  16. Construction of a single/multiple wavelength RZ optical pulse source at 40 GHz by use of wavelength conversion in a high-nonlinearity DSF-NOLM

    DEFF Research Database (Denmark)

    Yu, Jianjun; Yujun, Qian; Jeppesen, Palle;

    2001-01-01

    A single or multiple wavelength RZ optical pulse source at 40 GHz is successfully obtained by using wavelength conversion in a nonlinear optical loop mirror consisting of high nonlinearity-dispersion shifted fiber.......A single or multiple wavelength RZ optical pulse source at 40 GHz is successfully obtained by using wavelength conversion in a nonlinear optical loop mirror consisting of high nonlinearity-dispersion shifted fiber....

  17. Examination of Parameters Affecting the House Prices by Multiple Regression Analysis and its Contributions to Earthquake-Based Urban Transformation

    Science.gov (United States)

    Denli, H. H.; Durmus, B.

    2016-12-01

    The purpose of this study is to examine the factors which may affect the apartment prices with multiple linear regression analysis models and visualize the results by value maps. The study is focused on a county of Istanbul - Turkey. Totally 390 apartments around the county Umraniye are evaluated due to their physical and locational conditions. The identification of factors affecting the price of apartments in the county with a population of approximately 600k is expected to provide a significant contribution to the apartment market.Physical factors are selected as the age, number of rooms, size, floor numbers of the building and the floor that the apartment is positioned in. Positional factors are selected as the distances to the nearest hospital, school, park and police station. Totally ten physical and locational parameters are examined by regression analysis.After the regression analysis has been performed, value maps are composed from the parameters age, price and price per square meters. The most significant of the composed maps is the price per square meters map. Results show that the location of the apartment has the most influence to the square meter price information of the apartment. A different practice is developed from the composed maps by searching the ability of using price per square meters map in urban transformation practices. By marking the buildings older than 15 years in the price per square meters map, a different and new interpretation has been made to determine the buildings, to which should be given priority during an urban transformation in the county.This county is very close to the North Anatolian Fault zone and is under the threat of earthquakes. By marking the apartments older than 15 years on the price per square meters map, both older and expensive square meters apartments list can be gathered. By the help of this list, the priority could be given to the selected higher valued old apartments to support the economy of the country

  18. A Comparison of Different Versions of the Method of Multiple Scales for an Arbitrary Model of Odd Nonlinearities

    OpenAIRE

    Pakdemirli, Mehmet; Boyacı, Hakan

    1999-01-01

    A general model of cubic and fifth order nonlinearities is considered. The linear part as well as the nonlinearities are expressed in terms of arbitrary operators. Two different versions of the method of multiple scales are used in constructing the general transient and steady-state solutions of the model: Modified Rahman-Burton method and the Reconstitution method. It is found that the usual ordering of reconstitution can be used, if at higher orders of approximation, the time scale correspo...

  19. Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants

    Directory of Open Access Journals (Sweden)

    Baxter Lisa K

    2008-05-01

    Full Text Available Abstract Background There is a growing body of literature linking GIS-based measures of traffic density to asthma and other respiratory outcomes. However, no consensus exists on which traffic indicators best capture variability in different pollutants or within different settings. As part of a study on childhood asthma etiology, we examined variability in outdoor concentrations of multiple traffic-related air pollutants within urban communities, using a range of GIS-based predictors and land use regression techniques. Methods We measured fine particulate matter (PM2.5, nitrogen dioxide (NO2, and elemental carbon (EC outside 44 homes representing a range of traffic densities and neighborhoods across Boston, Massachusetts and nearby communities. Multiple three to four-day average samples were collected at each home during winters and summers from 2003 to 2005. Traffic indicators were derived using Massachusetts Highway Department data and direct traffic counts. Multivariate regression analyses were performed separately for each pollutant, using traffic indicators, land use, meteorology, site characteristics, and central site concentrations. Results PM2.5 was strongly associated with the central site monitor (R2 = 0.68. Additional variability was explained by total roadway length within 100 m of the home, smoking or grilling near the monitor, and block-group population density (R2 = 0.76. EC showed greater spatial variability, especially during winter months, and was predicted by roadway length within 200 m of the home. The influence of traffic was greater under low wind speed conditions, and concentrations were lower during summer (R2 = 0.52. NO2 showed significant spatial variability, predicted by population density and roadway length within 50 m of the home, modified by site characteristics (obstruction, and with higher concentrations during summer (R2 = 0.56. Conclusion Each pollutant examined displayed somewhat different spatial patterns

  20. Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms, non-linear regression and a radiative transfer-based look-up table

    Science.gov (United States)

    Huttunen, Jani; Kokkola, Harri; Mielonen, Tero; Esa Juhani Mononen, Mika; Lipponen, Antti; Reunanen, Juha; Vilhelm Lindfors, Anders; Mikkonen, Santtu; Erkki Juhani Lehtinen, Kari; Kouremeti, Natalia; Bais, Alkiviadis; Niska, Harri; Arola, Antti

    2016-07-01

    In order to have a good estimate of the current forcing by anthropogenic aerosols, knowledge on past aerosol levels is needed. Aerosol optical depth (AOD) is a good measure for aerosol loading. However, dedicated measurements of AOD are only available from the 1990s onward. One option to lengthen the AOD time series beyond the 1990s is to retrieve AOD from surface solar radiation (SSR) measurements taken with pyranometers. In this work, we have evaluated several inversion methods designed for this task. We compared a look-up table method based on radiative transfer modelling, a non-linear regression method and four machine learning methods (Gaussian process, neural network, random forest and support vector machine) with AOD observations carried out with a sun photometer at an Aerosol Robotic Network (AERONET) site in Thessaloniki, Greece. Our results show that most of the machine learning methods produce AOD estimates comparable to the look-up table and non-linear regression methods. All of the applied methods produced AOD values that corresponded well to the AERONET observations with the lowest correlation coefficient value being 0.87 for the random forest method. While many of the methods tended to slightly overestimate low AODs and underestimate high AODs, neural network and support vector machine showed overall better correspondence for the whole AOD range. The differences in producing both ends of the AOD range seem to be caused by differences in the aerosol composition. High AODs were in most cases those with high water vapour content which might affect the aerosol single scattering albedo (SSA) through uptake of water into aerosols. Our study indicates that machine learning methods benefit from the fact that they do not constrain the aerosol SSA in the retrieval, whereas the LUT method assumes a constant value for it. This would also mean that machine learning methods could have potential in reproducing AOD from SSR even though SSA would have changed during

  1. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data

    Science.gov (United States)

    Ramoelo, A.; Skidmore, A. K.; Cho, M. A.; Mathieu, R.; Heitkönig, I. M. A.; Dudeni-Tlhone, N.; Schlerf, M.; Prins, H. H. T.

    2013-08-01

    Grass nitrogen (N) and phosphorus (P) concentrations are direct indicators of rangeland quality and provide imperative information for sound management of wildlife and livestock. It is challenging to estimate grass N and P concentrations using remote sensing in the savanna ecosystems. These areas are diverse and heterogeneous in soil and plant moisture, soil nutrients, grazing pressures, and human activities. The objective of the study is to test the performance of non-linear partial least squares regression (PLSR) for predicting grass N and P concentrations through integrating in situ hyperspectral remote sensing and environmental variables (climatic, edaphic and topographic). Data were collected along a land use gradient in the greater Kruger National Park region. The data consisted of: (i) in situ-measured hyperspectral spectra, (ii) environmental variables and measured grass N and P concentrations. The hyperspectral variables included published starch, N and protein spectral absorption features, red edge position, narrow-band indices such as simple ratio (SR) and normalized difference vegetation index (NDVI). The results of the non-linear PLSR were compared to those of conventional linear PLSR. Using non-linear PLSR, integrating in situ hyperspectral and environmental variables yielded the highest grass N and P estimation accuracy (R2 = 0.81, root mean square error (RMSE) = 0.08, and R2 = 0.80, RMSE = 0.03, respectively) as compared to using remote sensing variables only, and conventional PLSR. The study demonstrates the importance of an integrated modeling approach for estimating grass quality which is a crucial effort towards effective management and planning of protected and communal savanna ecosystems.

  2. Fouling resistance prediction using artificial neural network nonlinear auto-regressive with exogenous input model based on operating conditions and fluid properties correlations

    Science.gov (United States)

    Biyanto, Totok R.

    2016-06-01

    Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO2 emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.

  3. Fouling resistance prediction using artificial neural network nonlinear auto-regressive with exogenous input model based on operating conditions and fluid properties correlations

    Energy Technology Data Exchange (ETDEWEB)

    Biyanto, Totok R. [Department of Engineering Physics, Institute Technology of Sepuluh Nopember Surabaya, Surabaya, Indonesia 60111 (Indonesia)

    2016-06-03

    Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.

  4. On-line Multiple-model Based Adaptive Control Reconfiguration for a Class of Non-linear Control Systems

    DEFF Research Database (Denmark)

    Yang, Z.; Izadi-Zamanabadi, Roozbeh; Blanke, M.

    2000-01-01

    Based on the model-matching strategy, an adaptive control reconfiguration method for a class of nonlinear control systems is proposed by using the multiple-model scheme. Instead of requiring the nominal and faulty nonlinear systems to match each other directly in some proper sense, three sets...... of LTI models are employed to approximate the faulty, reconfigured and nominal nonlinear systems respectively with respect to the on-line information of the operating system, and a set of compensating modules are proposed and designed so as to make the local LTI model approximating to the reconfigured...

  5. On-line Multiple-model Based Adaptive Control Reconfiguration for a Class of Non-linear Control Systems

    DEFF Research Database (Denmark)

    Yang, Z.; Izadi-Zamanabadi, Roozbeh; Blanke, M.

    2000-01-01

    Based on the model-matching strategy, an adaptive control reconfiguration method for a class of nonlinear control systems is proposed by using the multiple-model scheme. Instead of requiring the nominal and faulty nonlinear systems to match each other directly in some proper sense, three sets of ...... corresponding to the updating of local LTI models, which validations are determined by the model approximation errors and the optimal index of local design. The test on a nonlinear ship propulsion system shows the promising potential of this method for system reconfiguration...

  6. Logistic regression.

    Science.gov (United States)

    Nick, Todd G; Campbell, Kathleen M

    2007-01-01

    The Medical Subject Headings (MeSH) thesaurus used by the National Library of Medicine defines logistic regression models as "statistical models which describe the relationship between a qualitative dependent variable (that is, one which can take only certain discrete values, such as the presence or absence of a disease) and an independent variable." Logistic regression models are used to study effects of predictor variables on categorical outcomes and normally the outcome is binary, such as presence or absence of disease (e.g., non-Hodgkin's lymphoma), in which case the model is called a binary logistic model. When there are multiple predictors (e.g., risk factors and treatments) the model is referred to as a multiple or multivariable logistic regression model and is one of the most frequently used statistical model in medical journals. In this chapter, we examine both simple and multiple binary logistic regression models and present related issues, including interaction, categorical predictor variables, continuous predictor variables, and goodness of fit.

  7. Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries

    Science.gov (United States)

    Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung

    2017-09-01

    Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.

  8. Estimation of the retention behaviour of s-triazine derivatives applying multiple regression analysis of selected molecular descriptors

    Directory of Open Access Journals (Sweden)

    Jevrić Lidija R.

    2013-01-01

    Full Text Available The estimation of retention factors by correlation equations with physico-chemical properties can be of great helpl in chromatographic studies. The retention factors were experimentally measured by RP-HPTLC on impregnated silica gel with paraffin oil using two-component solvent systems. The relationships between solute retention and modifier concentration were described by Snyder’s linear equation. A quantitative structure-retention relationship was developed for a series of s-triazine compounds by the multiple linear regression (MLR analysis. The MLR procedure was used to model the relationships between the molecular descriptors and retention of s-triazine derivatives. The physicochemical molecular descriptors were calculated from the optimized structures. The physico-chemical properties were the lipophilicity (log P, connectivity indices (χ, total energy (Et, water solubility (log W, dissociation constant (pKa, molar refractivity (MR, and Gibbs energy (GibbsE of s-triazines. A high agreement between the experimental and predicted retention parameters was obtained when the dissociation constant and the hydrophilic-lipophilic balance were used as the molecular descriptors. The empirical equations may be successfully used for the prediction of the various chromatographic characteristics of substances, with a similar chemical structure. [Projekat Ministarstva nauke Republike Srbije, br. 31055, br. 172012, br. 172013 i br. 172014

  9. 2D Quantitative Structure-Property Relationship Study of Mycotoxins by Multiple Linear Regression and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Fereshteh Shiri

    2010-08-01

    Full Text Available In the present work, support vector machines (SVMs and multiple linear regression (MLR techniques were used for quantitative structure–property relationship (QSPR studies of retention time (tR in standardized liquid chromatography–UV–mass spectrometry of 67 mycotoxins (aflatoxins, trichothecenes, roquefortines and ochratoxins based on molecular descriptors calculated from the optimized 3D structures. By applying missing value, zero and multicollinearity tests with a cutoff value of 0.95, and genetic algorithm method of variable selection, the most relevant descriptors were selected to build QSPR models. MLRand SVMs methods were employed to build QSPR models. The robustness of the QSPR models was characterized by the statistical validation and applicability domain (AD. The prediction results from the MLR and SVM models are in good agreement with the experimental values. The correlation and predictability measure by r2 and q2 are 0.931 and 0.932, repectively, for SVM and 0.923 and 0.915, respectively, for MLR. The applicability domain of the model was investigated using William’s plot. The effects of different descriptors on the retention times are described.

  10. Comparing Effects of Biologic Agents in Treating Patients with Rheumatoid Arthritis: A Multiple Treatment Comparison Regression Analysis.

    Directory of Open Access Journals (Sweden)

    Ingunn Fride Tvete

    Full Text Available Rheumatoid arthritis patients have been treated with disease modifying anti-rheumatic drugs (DMARDs and the newer biologic drugs. We sought to compare and rank the biologics with respect to efficacy. We performed a literature search identifying 54 publications encompassing 9 biologics. We conducted a multiple treatment comparison regression analysis letting the number experiencing a 50% improvement on the ACR score be dependent upon dose level and disease duration for assessing the comparable relative effect between biologics and placebo or DMARD. The analysis embraced all treatment and comparator arms over all publications. Hence, all measured effects of any biologic agent contributed to the comparison of all biologic agents relative to each other either given alone or combined with DMARD. We found the drug effect to be dependent on dose level, but not on disease duration, and the impact of a high versus low dose level was the same for all drugs (higher doses indicated a higher frequency of ACR50 scores. The ranking of the drugs when given without DMARD was certolizumab (ranked highest, etanercept, tocilizumab/ abatacept and adalimumab. The ranking of the drugs when given with DMARD was certolizumab (ranked highest, tocilizumab, anakinra/rituximab, golimumab/ infliximab/ abatacept, adalimumab/ etanercept [corrected]. Still, all drugs were effective. All biologic agents were effective compared to placebo, with certolizumab the most effective and adalimumab (without DMARD treatment and adalimumab/ etanercept (combined with DMARD treatment the least effective. The drugs were in general more effective, except for etanercept, when given together with DMARDs.

  11. Crude oil price forecasting based on hybridizing wavelet multiple linear regression model, particle swarm optimization techniques, and principal component analysis.

    Science.gov (United States)

    Shabri, Ani; Samsudin, Ruhaidah

    2014-01-01

    Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.

  12. Prediction of Currency Volume Issued in Taiwan Using a Hybrid Artificial Neural Network and Multiple Regression Approach

    Directory of Open Access Journals (Sweden)

    Yuehjen E. Shao

    2013-01-01

    Full Text Available Because the volume of currency issued by a country always affects its interest rate, price index, income levels, and many other important macroeconomic variables, the prediction of currency volume issued has attracted considerable attention in recent years. In contrast to the typical single-stage forecast model, this study proposes a hybrid forecasting approach to predict the volume of currency issued in Taiwan. The proposed hybrid models consist of artificial neural network (ANN and multiple regression (MR components. The MR component of the hybrid models is established for a selection of fewer explanatory variables, wherein the selected variables are of higher importance. The ANN component is then designed to generate forecasts based on those important explanatory variables. Subsequently, the model is used to analyze a real dataset of Taiwan's currency from 1996 to 2011 and twenty associated explanatory variables. The prediction results reveal that the proposed hybrid scheme exhibits superior forecasting performance for predicting the volume of currency issued in Taiwan.

  13. Ranking contributing areas of salt and selenium in the Lower Gunnison River Basin, Colorado, using multiple linear regression models

    Science.gov (United States)

    Linard, Joshua I.

    2013-01-01

    Mitigating the effects of salt and selenium on water quality in the Grand Valley and lower Gunnison River Basin in western Colorado is a major concern for land managers. Previous modeling indicated means to improve the models by including more detailed geospatial data and a more rigorous method for developing the models. After evaluating all possible combinations of geospatial variables, four multiple linear regression models resulted that could estimate irrigation-season salt yield, nonirrigation-season salt yield, irrigation-season selenium yield, and nonirrigation-season selenium yield. The adjusted r-squared and the residual standard error (in units of log-transformed yield) of the models were, respectively, 0.87 and 2.03 for the irrigation-season salt model, 0.90 and 1.25 for the nonirrigation-season salt model, 0.85 and 2.94 for the irrigation-season selenium model, and 0.93 and 1.75 for the nonirrigation-season selenium model. The four models were used to estimate yields and loads from contributing areas corresponding to 12-digit hydrologic unit codes in the lower Gunnison River Basin study area. Each of the 175 contributing areas was ranked according to its estimated mean seasonal yield of salt and selenium.

  14. Association between resting-state brain network topological organization and creative ability: Evidence from a multiple linear regression model.

    Science.gov (United States)

    Jiao, Bingqing; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Li, Junchao; Cai, Yuxuan; Gao, Mengxia; Gao, Zhenni; Chang, Song; Huang, Ruiwang; Liu, Ming

    2017-09-07

    Previous studies have indicated a tight linkage between resting-state functional connectivity of the human brain and creative ability. This study aimed to further investigate the association between the topological organization of resting-state brain networks and creativity. Therefore, we acquired resting-state fMRI data from 22 high-creativity participants and 22 low-creativity participants (as determined by their Torrance Tests of Creative Thinking scores). We then constructed functional brain networks for each participant and assessed group differences in network topological properties before exploring the relationships between respective network topological properties and creative ability. We identified an optimized organization of intrinsic brain networks in both groups. However, compared with low-creativity participants, high-creativity participants exhibited increased global efficiency and substantially decreased path length, suggesting increased efficiency of information transmission across brain networks in creative individuals. Using a multiple linear regression model, we further demonstrated that regional functional integration properties (i.e., the betweenness centrality and global efficiency) of brain networks, particularly the default mode network (DMN) and sensorimotor network (SMN), significantly predicted the individual differences in creative ability. Furthermore, the associations between network regional properties and creative performance were creativity-level dependent, where the difference in the resource control component may be important in explaining individual difference in creative performance. These findings provide novel insights into the neural substrate of creativity and may facilitate objective identification of creative ability. Copyright © 2017. Published by Elsevier B.V.

  15. A parallel implementation of the network identification by multiple regression (NIR algorithm to reverse-engineer regulatory gene networks.

    Directory of Open Access Journals (Sweden)

    Francesco Gregoretti

    Full Text Available The reverse engineering of gene regulatory networks using gene expression profile data has become crucial to gain novel biological knowledge. Large amounts of data that need to be analyzed are currently being produced due to advances in microarray technologies. Using current reverse engineering algorithms to analyze large data sets can be very computational-intensive. These emerging computational requirements can be met using parallel computing techniques. It has been shown that the Network Identification by multiple Regression (NIR algorithm performs better than the other ready-to-use reverse engineering software. However it cannot be used with large networks with thousands of nodes--as is the case in biological networks--due to the high time and space complexity. In this work we overcome this limitation by designing and developing a parallel version of the NIR algorithm. The new implementation of the algorithm reaches a very good accuracy even for large gene networks, improving our understanding of the gene regulatory networks that is crucial for a wide range of biomedical applications.

  16. Multiple Linear Regressions by Maximizing the Likelihood under Assumption of Generalized Gauss-Laplace Distribution of the Error.

    Science.gov (United States)

    Jäntschi, Lorentz; Bálint, Donatella; Bolboacă, Sorana D

    2016-01-01

    Multiple linear regression analysis is widely used to link an outcome with predictors for better understanding of the behaviour of the outcome of interest. Usually, under the assumption that the errors follow a normal distribution, the coefficients of the model are estimated by minimizing the sum of squared deviations. A new approach based on maximum likelihood estimation is proposed for finding the coefficients on linear models with two predictors without any constrictive assumptions on the distribution of the errors. The algorithm was developed, implemented, and tested as proof-of-concept using fourteen sets of compounds by investigating the link between activity/property (as outcome) and structural feature information incorporated by molecular descriptors (as predictors). The results on real data demonstrated that in all investigated cases the power of the error is significantly different by the convenient value of two when the Gauss-Laplace distribution was used to relax the constrictive assumption of the normal distribution of the error. Therefore, the Gauss-Laplace distribution of the error could not be rejected while the hypothesis that the power of the error from Gauss-Laplace distribution is normal distributed also failed to be rejected.

  17. Risk Assessment and Prediction of Flyrock Distance by Combined Multiple Regression Analysis and Monte Carlo Simulation of Quarry Blasting

    Science.gov (United States)

    Armaghani, Danial Jahed; Mahdiyar, Amir; Hasanipanah, Mahdi; Faradonbeh, Roohollah Shirani; Khandelwal, Manoj; Amnieh, Hassan Bakhshandeh

    2016-09-01

    Flyrock is considered as one of the main causes of human injury, fatalities, and structural damage among all undesirable environmental impacts of blasting. Therefore, it seems that the proper prediction/simulation of flyrock is essential, especially in order to determine blast safety area. If proper control measures are taken, then the flyrock distance can be controlled, and, in return, the risk of damage can be reduced or eliminated. The first objective of this study was to develop a predictive model for flyrock estimation based on multiple regression (MR) analyses, and after that, using the developed MR model, flyrock phenomenon was simulated by the Monte Carlo (MC) approach. In order to achieve objectives of this study, 62 blasting operations were investigated in Ulu Tiram quarry, Malaysia, and some controllable and uncontrollable factors were carefully recorded/calculated. The obtained results of MC modeling indicated that this approach is capable of simulating flyrock ranges with a good level of accuracy. The mean of simulated flyrock by MC was obtained as 236.3 m, while this value was achieved as 238.6 m for the measured one. Furthermore, a sensitivity analysis was also conducted to investigate the effects of model inputs on the output of the system. The analysis demonstrated that powder factor is the most influential parameter on fly rock among all model inputs. It is noticeable that the proposed MR and MC models should be utilized only in the studied area and the direct use of them in the other conditions is not recommended.

  18. Crude Oil Price Forecasting Based on Hybridizing Wavelet Multiple Linear Regression Model, Particle Swarm Optimization Techniques, and Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Ani Shabri

    2014-01-01

    Full Text Available Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI, has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.

  19. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models

    Science.gov (United States)

    Welp, Gerhard; Thiel, Michael

    2017-01-01

    Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties–sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC) and nitrogen–in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models–multiple linear regression (MLR), random forest regression (RFR), support vector machine (SVM), stochastic gradient boosting (SGB)–were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June) were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices of

  20. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models.

    Science.gov (United States)

    Forkuor, Gerald; Hounkpatin, Ozias K L; Welp, Gerhard; Thiel, Michael

    2017-01-01

    Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties-sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC) and nitrogen-in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models-multiple linear regression (MLR), random forest regression (RFR), support vector machine (SVM), stochastic gradient boosting (SGB)-were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June) were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices of redness

  1. A comparison on parameter-estimation methods in multiple regression analysis with existence of multicollinearity among independent variables

    Directory of Open Access Journals (Sweden)

    Hukharnsusatrue, A.

    2005-11-01

    Full Text Available The objective of this research is to compare multiple regression coefficients estimating methods with existence of multicollinearity among independent variables. The estimation methods are Ordinary Least Squares method (OLS, Restricted Least Squares method (RLS, Restricted Ridge Regression method (RRR and Restricted Liu method (RL when restrictions are true and restrictions are not true. The study used the Monte Carlo Simulation method. The experiment was repeated 1,000 times under each situation. The analyzed results of the data are demonstrated as follows. CASE 1: The restrictions are true. In all cases, RRR and RL methods have a smaller Average Mean Square Error (AMSE than OLS and RLS method, respectively. RRR method provides the smallest AMSE when the level of correlations is high and also provides the smallest AMSE for all level of correlations and all sample sizes when standard deviation is equal to 5. However, RL method provides the smallest AMSE when the level of correlations is low and middle, except in the case of standard deviation equal to 3, small sample sizes, RRR method provides the smallest AMSE.The AMSE varies with, most to least, respectively, level of correlations, standard deviation and number of independent variables but inversely with to sample size.CASE 2: The restrictions are not true.In all cases, RRR method provides the smallest AMSE, except in the case of standard deviation equal to 1 and error of restrictions equal to 5%, OLS method provides the smallest AMSE when the level of correlations is low or median and there is a large sample size, but the small sample sizes, RL method provides the smallest AMSE. In addition, when error of restrictions is increased, OLS method provides the smallest AMSE for all level, of correlations and all sample sizes, except when the level of correlations is high and sample sizes small. Moreover, the case OLS method provides the smallest AMSE, the most RLS method has a smaller AMSE than

  2. Relating relapse and T2 lesion changes to disability progression in multiple sclerosis: a systematic literature review and regression analysis

    Science.gov (United States)

    2013-01-01

    Background In the treatment of multiple sclerosis (MS), the most important therapeutic aim of disease-modifying treatments (DMTs) is to prevent or postpone long-term disability. Given the typically slow progression observed in the majority of relapsing-remitting MS (RRMS) patients, the primary endpoint for most randomized clinical trials (RCTs) is a reduction in relapse rate. It is widely assumed that reducing relapse rate will slow disability progression. Similarly, MRI studies suggest that reducing T2 lesions will be associated with slowing long-term disability in MS. The objective of this study was to evaluate the relationship between treatment effects on relapse rates and active T2 lesions to differences in disease progression (as measured by the Expanded Disability Status Scale [EDSS]) in trials evaluating patients with clinically isolated syndrome (CIS), RRMS, and secondary progressive MS (SPMS). Methods A systematic literature review was conducted in Medline, Embase, CENTRAL, and PsycINFO to identify randomized trials published in English from January 1, 1993-June 3, 2013 evaluating DMTs in adult MS patients using keywords for CIS, RRMS, and SPMS combined with keywords for relapse and recurrence. Eligible studies were required to report outcomes of relapse and T2 lesion changes or disease progression in CIS, RRMS, or SPMS patients receiving DMTs and have a follow-up duration of at least 22 months. Ultimately, 40 studies satisfied these criteria for inclusion. Regression analyses were conducted on RCTs to relate differences between the effect of treatments on relapse rates and on active T2 lesions to differences between the effects of treatments on disease progression (as measured by EDSS). Results Regression analysis determined there is a substantive clinically and statistically significant association between concurrent treatment effects in relapse rate and EDSS; p EDSS measures also were found (p < 0.05), with some suggestion that the strength of

  3. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    Science.gov (United States)

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  4. State estimation of stochastic non-linear hybrid dynamic system using an interacting multiple model algorithm.

    Science.gov (United States)

    Elenchezhiyan, M; Prakash, J

    2015-09-01

    In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme.

  5. Predicting strength of recycled aggregate concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression

    Directory of Open Access Journals (Sweden)

    Faezehossadat Khademi

    2016-12-01

    Full Text Available Compressive strength of concrete, recognized as one of the most significant mechanical properties of concrete, is identified as one of the most essential factors for the quality assurance of concrete. In the current study, three different data-driven models, i.e., Artificial Neural Network (ANN, Adaptive Neuro-Fuzzy Inference System (ANFIS, and Multiple Linear Regression (MLR were used to predict the 28 days compressive strength of recycled aggregate concrete (RAC. Recycled aggregate is the current need of the hour owing to its environmental pleasant aspect of re-using the wastes due to construction. 14 different input parameters, including both dimensional and non-dimensional parameters, were used in this study for predicting the 28 days compressive strength of concrete. The present study concluded that estimation of 28 days compressive strength of recycled aggregate concrete was performed better by ANN and ANFIS in comparison to MLR. In other words, comparing the test step of all the three models, it can be concluded that the MLR model is better to be utilized for preliminary mix design of concrete, and ANN and ANFIS models are suggested to be used in the mix design optimization and in the case of higher accuracy necessities. In addition, the performance of data-driven models with and without the non-dimensional parameters is explored. It was observed that the data-driven models show better accuracy when the non-dimensional parameters were used as additional input parameters. Furthermore, the effect of each non-dimensional parameter on the performance of each data-driven model is investigated. Finally, the effect of number of input parameters on 28 days compressive strength of concrete is examined.

  6. Predicting punching acceleration from selected strength and power variables in elite karate athletes: a multiple regression analysis.

    Science.gov (United States)

    Loturco, Irineu; Artioli, Guilherme Giannini; Kobal, Ronaldo; Gil, Saulo; Franchini, Emerson

    2014-07-01

    This study investigated the relationship between punching acceleration and selected strength and power variables in 19 professional karate athletes from the Brazilian National Team (9 men and 10 women; age, 23 ± 3 years; height, 1.71 ± 0.09 m; and body mass [BM], 67.34 ± 13.44 kg). Punching acceleration was assessed under 4 different conditions in a randomized order: (a) fixed distance aiming to attain maximum speed (FS), (b) fixed distance aiming to attain maximum impact (FI), (c) self-selected distance aiming to attain maximum speed, and (d) self-selected distance aiming to attain maximum impact. The selected strength and power variables were as follows: maximal dynamic strength in bench press and squat-machine, squat and countermovement jump height, mean propulsive power in bench throw and jump squat, and mean propulsive velocity in jump squat with 40% of BM. Upper- and lower-body power and maximal dynamic strength variables were positively correlated to punch acceleration in all conditions. Multiple regression analysis also revealed predictive variables: relative mean propulsive power in squat jump (W·kg-1), and maximal dynamic strength 1 repetition maximum in both bench press and squat-machine exercises. An impact-oriented instruction and a self-selected distance to start the movement seem to be crucial to reach the highest acceleration during punching execution. This investigation, while demonstrating strong correlations between punching acceleration and strength-power variables, also provides important information for coaches, especially for designing better training strategies to improve punching speed.

  7. Multiple regression models of δ13C and δ15N for fish populations in the eastern Gulf of Mexico

    Science.gov (United States)

    Radabaugh, Kara R.; Peebles, Ernst B.

    2014-08-01

    Multiple regression models were created to explain spatial and temporal variation in the δ13C and δ15N values of fish populations on the West Florida Shelf (eastern Gulf of Mexico, USA). Extensive trawl surveys from three time periods were used to acquire muscle samples from seven groundfish species. Isotopic variation (δ13Cvar and δ15Nvar) was calculated as the deviation from the isotopic mean of each fish species. Static spatial data and dynamic water quality parameters were used to create models predicting δ13Cvar and δ15Nvar in three fish species that were caught in the summers of 2009 and 2010. Additional data sets were then used to determine the accuracy of the models for predicting isotopic variation (1) in a different time period (fall 2010) and (2) among four entirely different fish species that were collected during summer 2009. The δ15Nvar model was relatively stable and could be applied to different time periods and species with similar accuracy (mean absolute errors 0.31-0.33‰). The δ13Cvar model had a lower predictive capability and mean absolute errors ranged from 0.42 to 0.48‰. δ15N trends are likely linked to gradients in nitrogen fixation and Mississippi River influence on the West Florida Shelf, while δ13C trends may be linked to changes in algal species, photosynthetic fractionation, and abundance of benthic vs. planktonic basal resources. These models of isotopic variability may be useful for future stable isotope investigations of trophic level, basal resource use, and animal migration on the West Florida Shelf.

  8. A comparison of Bayesian and non-linear regression methods for robust estimation of pharmacokinetics in DCE-MRI and how it affects cancer diagnosis.

    Science.gov (United States)

    Dikaios, Nikolaos; Atkinson, David; Tudisca, Chiara; Purpura, Pierpaolo; Forster, Martin; Ahmed, Hashim; Beale, Timothy; Emberton, Mark; Punwani, Shonit

    2017-03-01

    The aim of this work is to compare Bayesian Inference for nonlinear models with commonly used traditional non-linear regression (NR) algorithms for estimating tracer kinetics in Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI). The algorithms are compared in terms of accuracy, and reproducibility under different initialization settings. Further it is investigated how a more robust estimation of tracer kinetics affects cancer diagnosis. The derived tracer kinetics from the Bayesian algorithm were validated against traditional NR algorithms (i.e. Levenberg-Marquardt, simplex) in terms of accuracy on a digital DCE phantom and in terms of goodness-of-fit (Kolmogorov-Smirnov test) on ROI-based concentration time courses from two different patient cohorts. The first cohort consisted of 76 men, 20 of whom had significant peripheral zone prostate cancer (any cancer-core-length (CCL) with Gleason>3+3 or any-grade with CCL>=4mm) following transperineal template prostate mapping biopsy. The second cohort consisted of 9 healthy volunteers and 24 patients with head and neck squamous cell carcinoma. The diagnostic ability of the derived tracer kinetics was assessed with receiver operating characteristic area under curve (ROC AUC) analysis. The Bayesian algorithm accurately recovered the ground-truth tracer kinetics for the digital DCE phantom consistently improving the Structural Similarity Index (SSIM) across the 50 different initializations compared to NR. For optimized initialization, Bayesian did not improve significantly the fitting accuracy on both patient cohorts, and it only significantly improved the ve ROC AUC on the HN population from ROC AUC=0.56 for the simplex to ROC AUC=0.76. For both cohorts, the values and the diagnostic ability of tracer kinetic parameters estimated with the Bayesian algorithm weren't affected by their initialization. To conclude, the Bayesian algorithm led to a more accurate and reproducible quantification of tracer kinetic

  9. COMPUTER COMPUTATION OF THE METHOD OF MULTIPLE SCALES-DIRICHLET PROBLEM FOR A CLASS OF SYSTEM OF NONLINEAR DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    谢腊兵; 江福汝

    2003-01-01

    The method of boundary layer with multiple scales and computer algebra were applied to study the asymptotic behavior of solution of boundary value problems for a class of system of nonlinear differential equations. The asymptotic expansions of solution were constructed. The remainders were estimated. And an example was analysed. It provides a new foreground for the application of the method of boundary layer with multiple scales.

  10. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  11. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches.

    Science.gov (United States)

    Basant, Nikita; Gupta, Shikha; Singh, Kunwar P

    2015-11-01

    In this study, we established nonlinear quantitative-structure toxicity relationship (QSTR) models for predicting the toxicities of chemical pesticides in multiple aquatic test species following the OECD (Organization for Economic Cooperation and Development) guidelines. The decision tree forest (DTF) and decision tree boost (DTB) based QSTR models were constructed using a pesticides toxicity dataset in Selenastrum capricornutum and a set of six descriptors. Other six toxicity data sets were used for external validation of the constructed QSTRs. Global QSTR models were also constructed using the combined dataset of all the seven species. The diversity in chemical structures and nonlinearity in the data were evaluated. Model validation was performed deriving several statistical coefficients for the test data and the prediction and generalization abilities of the QSTRs were evaluated. Both the QSTR models identified WPSA1 (weighted charged partial positive surface area) as the most influential descriptor. The DTF and DTB QSTRs performed relatively better than the single decision tree (SDT) and support vector machines (SVM) models used as a benchmark here and yielded R(2) of 0.886 and 0.964 between the measured and predicted toxicity values in the complete dataset (S. capricornutum). The QSTR models applied to six other aquatic species toxicity data yielded R(2) of >0.92 (DTF) and >0.97 (DTB), respectively. The prediction accuracies of the global models were comparable with those of the S. capricornutum models. The results suggest for the appropriateness of the developed QSTR models to reliably predict the aquatic toxicity of chemicals and can be used for regulatory purpose.

  12. Multiple positive solutions for quasilinear elliptic equations of p(x-Laplacian type with sign-changing nonlinearity

    Directory of Open Access Journals (Sweden)

    Ky Ho

    2014-11-01

    Full Text Available We establish sufficient conditions for the existence of multiple positive solutions to nonautonomous quasilinear elliptic equations with p(x-Laplacian and sign-changing nonlinearity. For solving the Dirichlet boundary-value problem we use variational and topological methods. The nonexistence of positive solutions is also studied.

  13. An Investigation of the Relationship of Intellective and Personality Variables to Success in an Independent Study Science Course Through the Use of a Modified Multiple Regression Model.

    Science.gov (United States)

    Szabo, Michael; Feldhusen, John F.

    This is an empirical study of selected learner characteristics and their relation to academic success, as indicated by course grades, in a structured independent study learning program. This program, called the Audio-Tutorial System, was utilized in an undergraduate college course in the biological sciences. By use of multiple regression analysis,…

  14. Regressão múltipla stepwise e hierárquica em Psicologia Organizacional: aplicações, problemas e soluções Stepwise and hierarchical multiple regression in organizational psychology: Applications, problemas and solutions

    Directory of Open Access Journals (Sweden)

    Gardênia Abbad

    2002-01-01

    Full Text Available Este artigo discute algumas aplicações das técnicas de análise de regressão múltipla stepwise e hierárquica, as quais são muito utilizadas em pesquisas da área de Psicologia Organizacional. São discutidas algumas estratégias de identificação e de solução de problemas relativos à ocorrência de erros do Tipo I e II e aos fenômenos de supressão, complementaridade e redundância nas equações de regressão múltipla. São apresentados alguns exemplos de pesquisas nas quais esses padrões de associação entre variáveis estiveram presentes e descritas as estratégias utilizadas pelos pesquisadores para interpretá-los. São discutidas as aplicações dessas análises no estudo de interação entre variáveis e na realização de testes para avaliação da linearidade do relacionamento entre variáveis. Finalmente, são apresentadas sugestões para lidar com as limitações das análises de regressão múltipla (stepwise e hierárquica.This article discusses applications of stepwise and hierarchical multiple regression analyses to research in organizational psychology. Strategies for identifying type I and II errors, and solutions to potential problems that may arise from such errors are proposed. In addition, phenomena such as suppression, complementarity, and redundancy are reviewed. The article presents examples of research where these phenomena occurred, and the manner in which they were explained by researchers. Some applications of multiple regression analyses to studies involving between-variable interactions are presented, along with tests used to analyze the presence of linearity among variables. Finally, some suggestions are provided for dealing with limitations implicit in multiple regression analyses (stepwise and hierarchical.

  15. Isokinetic knee strength qualities as predictors of jumping performance in high-level volleyball athletes: multiple regression approach.

    Science.gov (United States)

    Sattler, Tine; Sekulic, Damir; Spasic, Miodrag; Osmankac, Nedzad; Vicente João, Paulo; Dervisevic, Edvin; Hadzic, Vedran

    2016-01-01

    Previous investigations noted potential importance of isokinetic strength in rapid muscular performances, such as jumping. This study aimed to identify the influence of isokinetic-knee-strength on specific jumping performance in volleyball. The secondary aim of the study was to evaluate reliability and validity of the two volleyball-specific jumping tests. The sample comprised 67 female (21.96±3.79 years; 68.26±8.52 kg; 174.43±6.85 cm) and 99 male (23.62±5.27 years; 84.83±10.37 kg; 189.01±7.21 cm) high- volleyball players who competed in 1st and 2nd National Division. Subjects were randomly divided into validation (N.=55 and 33 for males and females, respectively) and cross-validation subsamples (N.=54 and 34 for males and females, respectively). Set of predictors included isokinetic tests, to evaluate the eccentric and concentric strength capacities of the knee extensors, and flexors for dominant and non-dominant leg. The main outcome measure for the isokinetic testing was peak torque (PT) which was later normalized for body mass and expressed as PT/Kg. Block-jump and spike-jump performances were measured over three trials, and observed as criteria. Forward stepwise multiple regressions were calculated for validation subsamples and then cross-validated. Cross validation included correlations between and t-test differences between observed and predicted scores; and Bland Altman graphics. Jumping tests were found to be reliable (spike jump: ICC of 0.79 and 0.86; block-jump: ICC of 0.86 and 0.90; for males and females, respectively), and their validity was confirmed by significant t-test differences between 1st vs. 2nd division players. Isokinetic variables were found to be significant predictors of jumping performance in females, but not among males. In females, the isokinetic-knee measures were shown to be stronger and more valid predictors of the block-jump (42% and 64% of the explained variance for validation and cross-validation subsample, respectively

  16. A C*-based Extended Multiple Linear Regression Method to Determine Decadal Changes in Anthropogenic CO2 in the Ocean

    Science.gov (United States)

    Clement, Dominic; Gruber, Nicolas

    2017-04-01

    Major progress has been made by the international community (e.g., GO-SHIP, IOCCP, IMBER/SOLAS carbon working groups) in recent years by collecting and providing homogenized datasets for carbon and other biogeochemical variables in the surface ocean (SOCAT) and interior ocean (GLODAPv2). Together with previous efforts, this has enabled the community to develop methods to assess changes in the ocean carbon cycle through time. Of particular interest is the determination of the decadal change in the anthropogenic CO2 inventory solely based on in-situ measurements from at least two time periods in the interior ocean. However, all such methods face the difficulty of a scarce dataset in both space and time, making the use of appropriate interpolation techniques in time and space a crucial element of any method. Here we present a new method based on the parameter C*, whose variations reflect the total change in dissolved inorganic carbon (DIC) driven by the exchange of CO2 across the air-sea interface. We apply the extended Multiple Linear Regression method (Friis et al., 2005) on C* in order (1) to calculate the change in anthropogenic CO2 from the original DIC/C* measurements, and (2) to interpolate the result onto a spatial grid using other biogeochemical variables (T,S,AOU, etc.). These calculations are made on isopycnal slabs across whole ocean basins. In combination with the transient steady state assumption (Tanhua et al., 2007) providing a temporal correction factor, we address the spatial and temporal interpolation challenges. Using synthetic data from a hindcast simulation with a global ocean biogeochemistry model (NCAR-CCSM with BEC), we tested the method for robustness and accuracy in determining ΔCant. We will present data-based results for all ocean basins, with the most recent estimate of an global uptake of 32±6 Pg C between 1994 and 2007, indicating an uptake rate 2.5±0.5 Pg C yr-1 for this time period. These results are compared with regional and

  17. Linear and Nonlinear Regression Methods for Equilibrium Modelling of p-Nitrophenol Biosorption by Rhizopus oryzae: Comparison of Error Analysis Criteria

    Directory of Open Access Journals (Sweden)

    Zvezdelina Lyubenova Yaneva

    2013-01-01

    Full Text Available The study assessed the applicability of Rhizopus oryzae dead fungi as a biosorbent medium for p-nitrophenol (p-NP removal from aqueous phase. The extent of biosorption was measured through five equilibrium sorption isotherms represented by the Langmuir, Freundlich, Redlich-Peterson, multilayer and Fritz-Schlunder models. Linear and nonlinear regression methods were compared to determine the best-fitting equilibrium model to the experimental data. A detailed error analysis was undertaken to investigate the effect of applying seven error criteria for the determination of the single-component isotherm parameters. According to the comparison of the error functions and to the estimation of the corrected Akaike information criterion (, the Freundlich equation was ranked as the first and the Fritz-Schlunder as the second best-fitting models describing the experimental data. The present investigations proved the high efficiency (94% of Rhizopus Oryzae as an alternative adsorbent for p-NP removal from aqueous phase and revealed the mechanism of the separation process.

  18. 非线性半参数EV模型的最大经验似然估计%Maximum Empirical Likelihood Estimators in Nonlinear Semiparametric EV Regression Models

    Institute of Scientific and Technical Information of China (English)

    冯三营; 薛留根

    2012-01-01

    考虑非参数协变量带有测量误差(EV)的非线性半参数模型,在测量误差分布为普通光滑分布时,利用经验似然方法,给出了回归系数,光滑函数以及误差方差的最大经验似然估计.在一定条件下证明了所得估计量的渐近正态性和相合性.最后通过数值模拟研究了所提估计方法在有限样本下的实际表现.%In this paper, we consider the nonlinear semiparametric models with measurement error in the nonparametric part. When the error is ordinarily smooth, we obtain the maximum empirical likelihood estimators of regression coefficient, smooth function and error variance by using the empirical likelihood method. The asymptotic normality and consistency of the proposed estimators are proved under some appropriate conditions. Finite sample performance of the proposed method is illustrated in a simulation study.

  19. Step-response of a torsional device with multiple discontinuous non-linearities: Formulation of a vibratory experiment

    Science.gov (United States)

    Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra

    2016-03-01

    A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.

  20. Distributed Containment Control for Multiple Unknown Second-Order Nonlinear Systems With Application to Networked Lagrangian Systems.

    Science.gov (United States)

    Mei, Jie; Ren, Wei; Li, Bing; Ma, Guangfu

    2015-09-01

    In this paper, we consider the distributed containment control problem for multiagent systems with unknown nonlinear dynamics. More specifically, we focus on multiple second-order nonlinear systems and networked Lagrangian systems. We first study the distributed containment control problem for multiple second-order nonlinear systems with multiple dynamic leaders in the presence of unknown nonlinearities and external disturbances under a general directed graph that characterizes the interaction among the leaders and the followers. A distributed adaptive control algorithm with an adaptive gain design based on the approximation capability of neural networks is proposed. We present a necessary and sufficient condition on the directed graph such that the containment error can be reduced as small as desired. As a byproduct, the leaderless consensus problem is solved with asymptotical convergence. Because relative velocity measurements between neighbors are generally more difficult to obtain than relative position measurements, we then propose a distributed containment control algorithm without using neighbors' velocity information. A two-step Lyapunov-based method is used to study the convergence of the closed-loop system. Next, we apply the ideas to deal with the containment control problem for networked unknown Lagrangian systems under a general directed graph. All the proposed algorithms are distributed and can be implemented using only local measurements in the absence of communication. Finally, simulation examples are provided to show the effectiveness of the proposed control algorithms.

  1. Nonlinear optical responses of multiply ionized noble gases: Dispersion and spin multiplicity effects

    Science.gov (United States)

    Tarazkar, M.; Romanov, D. A.; Levis, R. J.

    2016-07-01

    Dynamic second-order hyperpolarizabilities of atomic noble gases and their multiply ionized ions are computed using ab initio multiconfigurational self-consistent field cubic response theory. For each species, the calculations are performed at wavelengths ranging from the static regime to those about 100 nm above the first multiphoton resonance. The second-order hyperpolarizability coefficients progressively decrease as the electrons are removed from the system, in qualitative agreement with phenomenological calculations. In higher ionization states, the resulting nonlinear refractive index becomes less dispersive as a function of wavelength. At each ionization stage, the sign of the optical response depends on the number of electrons in the system and, if multiple state symmetries are possible, on the spin of the particular quantum state. Thus, for N e3 + and N e4 + , the hyperpolarizability coefficients in the low-spin states (P2u, and S1g, respectively) are positive, while in the high-spin states (S4u, and P3g) they are negative. However, for doubly, triply, and quadruply charged Ar and Kr these coefficients do not undergo a sign change.

  2. Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals

    CERN Document Server

    Okano, Masayuki; Tanaka, Akira; Subashchandran, Shanthi; Takeuchi, Shigeki; 10.1364/OE.20.013977

    2012-01-01

    We propose a novel method for generating broadband spontaneous parametric fluorescence by using a set of bulk nonlinear crystals (NLCs). We also demonstrate this scheme experimentally. Our method employs a superposition of spontaneous parametric fluorescence spectra generated using multiple bulk NLCs. A typical bandwidth of 160 nm (73 THz) with a degenerate wavelength of 808 nm was achieved using two beta-barium-borate (BBO) crystals, whereas a typical bandwidth of 75 nm (34 THz) was realized using a single BBO crystal. We also observed coincidence counts of generated photon pairs in a non-collinear configuration. The bandwidth could be further broadened by increasing the number of NLCs. Our demonstration suggests that a set of four BBO crystals could realize a bandwidth of approximately 215 nm (100 THz).We also discuss the stability of Hong-Ou-Mandel two-photon interference between the parametric fluorescence generated by this scheme. Our simple scheme is easy to implement with conventional NLCs and does not...

  3. Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals.

    Science.gov (United States)

    Okano, Masayuki; Okamoto, Ryo; Tanaka, Akira; Subashchandran, Shanthi; Takeuchi, Shigeki

    2012-06-18

    We propose a novel method for generating broadband spontaneous parametric fluorescence by using a set of bulk nonlinear crystals (NLCs). We also demonstrate this scheme experimentally. Our method employs a superposition of spontaneous parametric fluorescence spectra generated using multiple bulk NLCs. A typical bandwidth of 160 nm (73 THz) with a degenerate wavelength of 808 nm was achieved using two β-barium-borate (BBO) crystals, whereas a typical bandwidth of 75 nm (34 THz) was realized using a single BBO crystal. We also observed coincidence counts of generated photon pairs in a non-collinear configuration. The bandwidth could be further broadened by increasing the number of NLCs. Our demonstration suggests that a set of four BBO crystals could realize a bandwidth of approximately 215 nm (100 THz). We also discuss the stability of Hong-Ou-Mandel two-photon interference between the parametric fluorescence generated by this scheme. Our simple scheme is easy to implement with conventional NLCs and does not require special devices.

  4. A Multiple-Model Approach for Synchronous Generator Nonlinear System Identification

    Science.gov (United States)

    Ahmadi, Seyed Salman; Karrari, Mehdi

    2012-07-01

    In this paper, a multiple model approach is proposed for the identification of synchronous generators. In the literature, the same structure often is used for all local models. Therefore, to obtain a precise model for the operating condition of the synchronous generator with severely nonlinear behavior, many local models are required. The proposed method determines the complexity of local models based on complexity of behavior of the synchronous generator at different operating conditions. There are two choices for increasing model precision at each iteration of the proposed method: (i) increasing the number of local models in one region, or (ii) increasing local model complexity in the same region. The proposed method has been tested on experimental data collected on a 3 kVA micro-machine. In the study, the field voltage is considered as the input and the active output power and the terminal voltage are considered as the outputs of the synchronous generator. The proposed method provides a more precise model with fewer parameters compared to some well known methods such as LOLIMOT and global polynomial models.

  5. Method of Multiple Scales and Travelling Wave Solutions for (2+1)-Dimensional KdV Type Nonlinear Evolution Equations

    Science.gov (United States)

    Ayhan, Burcu; Özer, M. Naci; Bekir, Ahmet

    2016-08-01

    In this article, we applied the method of multiple scales for Korteweg-de Vries (KdV) type equations and we derived nonlinear Schrödinger (NLS) type equations. So we get a relation between KdV type equations and NLS type equations. In addition, exact solutions were found for KdV type equations. The ( G'} over G )-expansion methods and the ( {G'} over G, {1 over G}} )-expansion methods were proposed to establish new exact solutions for KdV type differential equations. We obtained periodic and hyperbolic function solutions for these equations. These methods are very effective for getting travelling wave solutions of nonlinear evolution equations (NEEs).

  6. Linear regression

    CERN Document Server

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  7. Partial least squares regression can aid in detecting differential abundance of multiple features in sets of metagenomic samples

    Directory of Open Access Journals (Sweden)

    Ondrej eLibiger

    2015-12-01

    Full Text Available It is now feasible to examine the composition and diversity of microbial communities (i.e., `microbiomes‘ that populate different human organs and orifices using DNA sequencing and related technologies. To explore the potential links between changes in microbial communities and various diseases in the human body, it is essential to test associations involving different species within and across microbiomes, environmental settings and disease states. Although a number of statistical techniques exist for carrying out relevant analyses, it is unclear which of these techniques exhibit the greatest statistical power to detect associations given the complexity of most microbiome datasets. We compared the statistical power of principal component regression, partial least squares regression, regularized regression, distance-based regression, Hill's diversity measures, and a modified test implemented in the popular and widely used microbiome analysis methodology 'Metastats‘ across a wide range of simulated scenarios involving changes in feature abundance between two sets of metagenomic samples. For this purpose, simulation studies were used to change the abundance of microbial species in a real dataset from a published study examining human hands. Each technique was applied to the same data, and its ability to detect the simulated change in abundance was assessed. We hypothesized that a small subset of methods would outperform the rest in terms of the statistical power. Indeed, we found that the Metastats technique modified to accommodate multivariate analysis and partial least squares regression yielded high power under the models and data sets we studied. The statistical power of diversity measure-based tests, distance-based regression and regularized regression was significantly lower. Our results provide insight into powerful analysis strategies that utilize information on species counts from large microbiome data sets exhibiting skewed frequency

  8. Min-max model predictive control for constrained nonlinear systems via multiple LPV embeddings

    Institute of Scientific and Technical Information of China (English)

    ZHAO Min; LI Ning; LI ShaoYuan

    2009-01-01

    A min-max model predictive control strategy is proposed for a class of constrained nonlinear system whose trajectories can be embedded within those of a bank of linear parameter varying (LPV) models. The embedding LPV models can yield much better approximation of the nonlinear system dynamics than a single LTV model. For each LPV model, a parameter-dependent Lyapunov function is introduced to obtain poly-quadratically stable control law and to guarantee the feasibility and stability of the original nonlinear system. This approach can greatly reduce computational burden in traditional nonlinear predictive control strategy. Finally a simulation example illustrating the strategy is presented.

  9. Relationship of push-ups and sit-ups tests to selected anthropometric variables and performance results: a multiple regression study.

    Science.gov (United States)

    Esco, Michael R; Olson, Michele S; Williford, Henry

    2008-11-01

    The purpose of this study was to explore whether selected anthropometric measures such as specific skinfold sites, along with weight, height, body mass index (BMI), waist and hip circumferences, and waist/hip ratio (WHR) were associated with sit-ups (SU) and push-ups (PU) performance, and to build a regression model for SU and PU tests. One hundred apparently healthy adults (40 men and 60 women) served as the subjects for test validation. The subjects performed 60-second SU and PU tests. The variables analyzed via multiple regression included weight, height, BMI, hip and waist circumferences, WHR, skinfolds at the abdomen (SFAB), thigh (SFTH), and subscapularis (SFSS), and sex. An additional cohort of 40 subjects (17 men and 23 women) was used to cross-validate the regression models. Validity was confirmed by correlation and paired t-tests. The regression analysis yielded a four-variable (PU, height, SFAB, and SFTH) multiple regression equation for estimating SU (R2 = 0.64, SEE = 7.5 repetitions). For PU, only SU was loaded into the regression equation (R2 = 0.43, SEE = 9.4 repetitions). Thus, the variables in the regression models accounted for 64% and 43% of the variation in SU and PU, respectively. The cross-validation sample elicited a high correlation for SU (r = 0.87) and PU (r = 0.79) scores. Moreover, paired-samples t-tests revealed that there were no significant differences between actual and predicted SU and PU scores. Therefore, this study shows that there are a number of selected, health-related anthropometric variables that account significantly for, and are predictive of, SU and PU tests.

  10. Sleep duration and risk of all-cause mortality: A flexible, non-linear, meta-regression of 40 prospective cohort studies.

    Science.gov (United States)

    Liu, Tong-Zu; Xu, Chang; Rota, Matteo; Cai, Hui; Zhang, Chao; Shi, Ming-Jun; Yuan, Rui-Xia; Weng, Hong; Meng, Xiang-Yu; Kwong, Joey S W; Sun, Xin

    2017-04-01

    Approximately 27-37% of the general population experience prolonged sleep duration and 12-16% report shortened sleep duration. However, prolonged or shortened sleep duration may be associated with serious health problems. A comprehensive, flexible, non-linear meta-regression with restricted cubic spline (RCS) was used to investigate the dose-response relationship between sleep duration and all-cause mortality in adults. Medline (Ovid), Embase, EBSCOhost-PsycINFO, and EBSCOhost-CINAHL Plus databases, reference lists of relevant review articles, and included studies were searched up to Nov. 29, 2015. Prospective cohort studies investigating the association between sleep duration and all-cause mortality in adults with at least three categories of sleep duration were eligible for inclusion. We eventually included in our study 40 cohort studies enrolling 2,200,425 participants with 271,507 deaths. A J-shaped association between sleep duration and all-cause mortality was present: compared with 7 h of sleep (reference for 24-h sleep duration), both shortened and prolonged sleep durations were associated with increased risk of all-cause mortality (4 h: relative risk [RR] = 1.05; 95% confidence interval [CI] = 1.02-1.07; 5 h: RR = 1.06; 95% CI = 1.03-1.09; 6 h: RR = 1.04; 95% CI = 1.03-1.06; 8 h: RR = 1.03; 95% CI = 1.02-1.05; 9 h: RR = 1.13; 95% CI = 1.10-1.16; 10 h: RR = 1.25; 95% CI = 1.22-1.28; 11 h: RR = 1.38; 95% CI = 1.33-1.44; n = 29; P < 0.01 for non-linear test). With regard to the night-sleep duration, prolonged night-sleep duration was associated with increased all-cause mortality (8 h: RR = 1.01; 95% CI = 0.99-1.02; 9 h: RR = 1.08; 95% CI = 1.05-1.11; 10 h: RR = 1.24; 95% CI = 1.21-1.28; n = 13; P < 0.01 for non-linear test). Subgroup analysis showed females with short sleep duration a day (<7 h) were at high risk of all-cause mortality (4 h: RR = 1.07; 95% CI = 1.02-1.13; 5 h: RR = 1.08; 95

  11. Multiple-μJ mid-IR supercontinuum generation in quadratic nonlinear crystals

    DEFF Research Database (Denmark)

    Bache, Morten; Zhou, Binbin; Ashihara, S.

    2016-01-01

    Pumping a quadratic nonlinear crystal in the mid-IR we observe octave-spanning mid-IR supercontinua. A self-acting cascaded process leads to the formation of a self-defocusing nonlinearity, allowing formation of filament-free octave-spanning supercontinua in the 2.0–7.0 μm range with 10s of μ...

  12. Study of optical non-linear properties of a constant total effective length multiple quantum wells system

    Energy Technology Data Exchange (ETDEWEB)

    Solaimani, M.; Morteza, Izadifard [Faculty of Physics, Shahrood University of technology, Shahrood (Iran, Islamic Republic of); Arabshahi, H., E-mail: arabshahi@um.ac.ir [Department of Physics, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Physics Department, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Reza, Sarkardehi Mohammad [Physics Department, Al-Zahra University, Vanak, Tehran (Iran, Islamic Republic of)

    2013-02-15

    In this work, we have studied the effect of the number of the wells, in a multiple quantum wells structure with constant total effective length, on the optical properties of multiple quantum wells like the absorption coefficient and the refractive index by means of compact density matrix approach. GaAs/Al{sub x}Ga{sub (1-x)}As multiple quantum wells systems was selected as an example. Besides, the effect of varying number of wells on the subband energies, wave functions, number of bound states, and the Fermi energy have been also investigated. Our calculation revealed that the number of wells in a multiple quantum well is a criterion with which we can control the amount of nonlinearity. This study showed that for the third order refractive index change there is two regimes of variations and the critical well number was six. In our calculations, we have used the same wells and barrier thicknesses to construct the multiple quantum wells system. - Highlights: Black-Right-Pointing-Pointer OptiOptical Non-Linear. Black-Right-Pointing-Pointer Total Effective Length. Black-Right-Pointing-Pointer Multiple Quantum Wells System - genetic algorithm Black-Right-Pointing-Pointer Schroedinger equation solution. Black-Right-Pointing-Pointer Nanostructure.

  13. Multiple Linear Regression Analysis of Factors Affecting Real Property Price Index From Case Study Research In Istanbul/Turkey

    Science.gov (United States)

    Denli, H. H.; Koc, Z.

    2015-12-01

    Estimation of real properties depending on standards is difficult to apply in time and location. Regression analysis construct mathematical models which describe or explain relationships that may exist between variables. The problem of identifying price differences of properties to obtain a price index can be converted into a regression problem, and standard techniques of regression analysis can be used to estimate the index. Considering regression analysis for real estate valuation, which are presented in real marketing process with its current characteristics and quantifiers, the method will help us to find the effective factors or variables in the formation of the value. In this study, prices of housing for sale in Zeytinburnu, a district in Istanbul, are associated with its characteristics to find a price index, based on information received from a real estate web page. The associated variables used for the analysis are age, size in m2, number of floors having the house, floor number of the estate and number of rooms. The price of the estate represents the dependent variable, whereas the rest are independent variables. Prices from 60 real estates have been used for the analysis. Same price valued locations have been found and plotted on the map and equivalence curves have been drawn identifying the same valued zones as lines.

  14. Multiple Regression with Varying Levels of Correlation among Predictors: Monte Carlo Sampling from Normal and Non-Normal Populations.

    Science.gov (United States)

    Vasu, Ellen Storey

    1978-01-01

    The effects of the violation of the assumption of normality in the conditional distributions of the dependent variable, coupled with the condition of multicollinearity upon the outcome of testing the hypothesis that the regression coefficient equals zero, are investigated via a Monte Carlo study. (Author/JKS)

  15. Modeling nonstationary extreme value distributions with nonlinear functions: An application using multiple precipitation projections for U.S. cities

    Science.gov (United States)

    Um, Myoung-Jin; Kim, Yeonjoo; Markus, Momcilo; Wuebbles, Donald J.

    2017-09-01

    Climate extremes, such as heavy precipitation events, have become more common in recent decades, and nonstationarity concepts have increasingly been adopted to model hydrologic extremes. Various issues are associated with applying nonstationary modeling to extremes, and in this study, we focus on assessing the need for different forms of nonlinear functions in a nonstationary generalized extreme value (GEV) model of different annual maximum precipitation (AMP) time series. Moreover, we suggest an efficient approach for selecting the nonlinear functions of a nonstationary GEV model. Based on observed and multiple projected AMP data for eight cities across the U.S., three separate tasks are proposed. First, we conduct trend and stationarity tests for the observed and projected data. Second, AMP series are fit with thirty different nonlinear functions, and the best functions among these are selected. Finally, the selected nonlinear functions are used to model the location parameter of a nonstationary GEV model and stationary and nonstationary GEV models with a linear function. Our results suggest that the simple use of nonlinear functions might prove useful with nonstationary GEV models of AMP for different locations with different types of model results.

  16. Optical multiple-image encryption in diffractive-imaging-based scheme using spectral fusion and nonlinear operation.

    Science.gov (United States)

    Qin, Yi; Gong, Qiong; Wang, Zhipeng; Wang, Hongjuan

    2016-11-14

    We report a new method for multiple-image encryption in diffractive-imaging-based encryption (DIBE) scheme. The discrete cosine transformation (DCT) spectra of the primary images are extracted, compacted and then nonlinear-transformed before being sent to the DIBE, where they are encoded into a single intensity pattern. With the help of a suggested phase retrieval algorithm, the original images can be recovered with high quality. Furthermore, due to the introduction of the nonlinear operation, the proposal is demonstrated to be robust to the currently available cryptographic attacks. The proposal probes a new way for multiple-image encryption in DIBE, and its effectiveness and feasibility have been supported by numerical simulations.

  17. Uso de regressões logísticas múltiplas para mapeamento digital de solos no Planalto Médio do RS Multiple logistic regression applied to soil survey in rio grande do sul state, Brazil

    Directory of Open Access Journals (Sweden)

    Samuel Ribeiro Figueiredo

    2008-12-01

    hydrographic variables (distance to rivers, flow length, topographical wetness index, and stream power index. Multiple logistic regressions were established between the soil classes mapped on the basis of a traditional survey at a scale of 1:80.000 and the land variables calculated using the DEM. The regressions were used to calculate the probability of occurrence of each soil class. The final estimated soil map was drawn by assigning the soil class with highest probability of occurrence to each cell. The general accuracy was evaluated at 58 % and the Kappa coefficient at 38 % in a comparison of the original soil map with the map estimated at the original scale. A legend simplification had little effect to increase the general accuracy of the map (general accuracy of 61 % and Kappa coefficient of 39 %. It was concluded that multiple logistic regressions have a predictive potential as tool of supervised soil mapping.

  18. Multiple omnidirectional defect modes and nonlinear magnetic-field effects in metamaterial photonic superlattices with a polaritonic defect

    Science.gov (United States)

    Robles-Uriza, A. X.; Reyes Gómez, F.; Mejía-Salazar, J. R.

    2016-09-01

    We report the existence of multiple omnidirectional defect modes in the zero-nbar gap of photonic stacks, made of alternate layers of conventional dielectric and double-negative metamaterial, with a polaritonic defect layer. In the case of nonlinear magnetic metamaterials, the optical bistability phenomenon leads to switching from negligible to perfect transmission around these defect modes. We hope these findings have potential applications in the design and development of multichannel optical filters, power limiters, optical-diodes and optical-transistors.

  19. A new approach to sparse decomposition of nonstationary signals with multiple scale structures using self-consistent nonlinear waves

    Science.gov (United States)

    Young, Hsu-Wen Vincent; Hsu, Ke-Hsin; Pham, Van-Truong; Tran, Thi-Thao; Lo, Men-Tzung

    2017-09-01

    A new method for signal decomposition is proposed and tested. Based on self-consistent nonlinear wave equations with self-sustaining physical mechanisms in mind, the new method is adaptive and particularly effective for dealing with synthetic signals consisting of components of multiple time scales. By formulating the method into an optimization problem and developing the corresponding algorithm and tool, we have proved its usefulness not only for analyzing simulated signals, but, more importantly, also for real clinical data.

  20. Multiple Regression and Mediator Variables can be used to Avoid Double Counting when Economic Values are Derived using Stochastic Herd Simulation

    DEFF Research Database (Denmark)

    Østergaard, Søren; Ettema, Jehan Frans; Hjortø, Line

    Multiple regression and model building with mediator variables was addressed to avoid double counting when economic values are estimated from data simulated with herd simulation modeling (using the SimHerd model). The simulated incidence of metritis was analyzed statistically as the independent...... variable, while using the traits representing the direct effects of metritis on yield, fertility and occurrence of other diseases as mediator variables. The economic value of metritis was estimated to be €78 per 100 cow-years for each 1% increase of metritis in the period of 1-100 days in milk...... in multiparous cows. The merit of using this approach was demonstrated since the economic value of metritis was estimated to be 81% higher when no mediator variables were included in the multiple regression analysis...

  1. A comparative study of multiple regression analysis and back propagation neural network approaches on plain carbon steel in submerged-arc welding

    Indian Academy of Sciences (India)

    ABHIJIT SARKAR; PRASENJIT DEY; R N RAI; SUBHAS CHANDRA SAHA

    2016-05-01

    Weld bead plays an important role in determining the quality of welding particularly in high heat input processes. This research paper presents the development of multiple regression analysis (MRA) and artificial neural network (ANN) models to predict weld bead geometry and HAZ width in submerged arcwelding process. Design of experiments is based on Taguchi’s L16 orthogonal array by varying wire feed rate,transverse speed and stick out to develop a multiple regression model, which has been checked for adequacy andsignificance. Also, ANN model was accomplished with the back propagation approach in MATLAB program to predict bead geometry and HAZ width. Finally, the results of two prediction models were compared and analyzed. It is found that the error related to the prediction of bead geometry and HAZ width is smaller in ANN than MRA.

  2. Guide to using Multiple Regression in Excel (MRCX v.1.1) for Removal of River Stage Effects from Well Water Levels

    Energy Technology Data Exchange (ETDEWEB)

    Mackley, Rob D.; Spane, Frank A.; Pulsipher, Trenton C.; Allwardt, Craig H.

    2010-09-01

    A software tool was created in Fiscal Year 2010 (FY11) that enables multiple-regression correction of well water levels for river-stage effects. This task was conducted as part of the Remediation Science and Technology project of CH2MHILL Plateau Remediation Company (CHPRC). This document contains an overview of the correction methodology and a user’s manual for Multiple Regression in Excel (MRCX) v.1.1. It also contains a step-by-step tutorial that shows users how to use MRCX to correct river effects in two different wells. This report is accompanied by an enclosed CD that contains the MRCX installer application and files used in the tutorial exercises.

  3. Multiple-model-and-neural-network-based nonlinear multivariable adaptive control

    Institute of Scientific and Technical Information of China (English)

    Yue FU; Tianyou CHAI

    2007-01-01

    A multivariable adaptive controller feasible for implementation on distributed computer systems (DCS) is presented for a class of uncertain nonlinear multivariable discrete time systems. The adaptive controller is composed of a linear adaptive controller, a neural network nonlinear adaptive controller and a switching mechanism. The linear controller can provide boundedness of the input and output signals, and the nonlinear controller can improve the performance of the system. The purpose of using the switching mechanism is to obtain the improved system performance and stability simultaneously. Theory analysis and simulation results are presented to show the effectiveness of the proposed method.

  4. Gene-based multiple regression association testing for combined examination of common and low frequency variants in quantitative trait analysis

    Directory of Open Access Journals (Sweden)

    Yun Joo eYoo

    2013-11-01

    Full Text Available Multi-marker methods for genetic association analysis can be performed for common and low frequency SNPs to improve power. Regression models are an intuitive way to formulate multi-marker tests. In previous studies we evaluated regression-based multi-marker tests for common SNPs, and through identification of bins consisting of correlated SNPs, developed a multi-bin linear combination (MLC test that is a compromise between a 1df linear combination test and a multi-df global test. Bins of SNPs in high linkage disequilibrium (LD are identified, and a linear combination of individual SNP statistics is constructed within each bin. Then association with the phenotype is represented by an overall statistic with df as many or few as the number of bins. In this report we evaluate multi-marker tests for SNPs that occur at low frequencies. There are many linear and quadratic multi-marker tests that are suitable for common or low frequency variant analysis. We compared the performance of the MLC tests with various linear and quadratic statistics in joint or marginal regressions. For these comparisons, we performed a simulation study of genotypes and quantitative traits for 85 genes with many low frequency SNPs based on HapMap Phase III. We compared the tests using 1 set of all SNPs in a gene, 2 set of common SNPs in a gene (MAF≥5%, 3 set of low frequency SNPs (1%≤MAF

  5. Bayesian quantile regression-based partially linear mixed-effects joint models for longitudinal data with multiple features.

    Science.gov (United States)

    Zhang, Hanze; Huang, Yangxin; Wang, Wei; Chen, Henian; Langland-Orban, Barbara

    2017-01-01

    In longitudinal AIDS studies, it is of interest to investigate the relationship between HIV viral load and CD4 cell counts, as well as the complicated time effect. Most of common models to analyze such complex longitudinal data are based on mean-regression, which fails to provide efficient estimates due to outliers and/or heavy tails. Quantile regression-based partially linear mixed-effects models, a special case of semiparametric models enjoying benefits of both parametric and nonparametric models, have the flexibility to monitor the viral dynamics nonparametrically and detect the varying CD4 effects parametrically at different quantiles of viral load. Meanwhile, it is critical to consider various data features of repeated measurements, including left-censoring due to a limit of detection, covariate measurement error, and asymmetric distribution. In this research, we first establish a Bayesian joint models that accounts for all these data features simultaneously in the framework of quantile regression-based partially linear mixed-effects models. The proposed models are applied to analyze the Multicenter AIDS Cohort Study (MACS) data. Simulation studies are also conducted to assess the performance of the proposed methods under different scenarios.

  6. Principal Component and Multiple Regression Analyses for the Estimation of Suspended Sediment Yield in Ungauged Basins of Northern Thailand

    Directory of Open Access Journals (Sweden)

    Piyawat Wuttichaikitcharoen

    2014-08-01

    Full Text Available Predicting sediment yield is necessary for good land and water management in any river basin. However, sometimes, the sediment data is either not available or is sparse, which renders estimating sediment yield a daunting task. The present study investigates the factors influencing suspended sediment yield using the principal component analysis (PCA. Additionally, the regression relationships for estimating suspended sediment yield, based on the selected key factors from the PCA, are developed. The PCA shows six components of key factors that can explain at least up to 86.7% of the variation of all variables. The regression models show that basin size, channel network characteristics, land use, basin steepness and rainfall distribution are the key factors affecting sediment yield. The validation of regression relationships for estimating suspended sediment yield shows the error of estimation ranging from −55% to +315% and −59% to +259% for suspended sediment yield and for area-specific suspended sediment yield, respectively. The proposed relationships may be considered useful for predicting suspended sediment yield in ungauged basins of Northern Thailand that have geologic, climatic and hydrologic conditions similar to the study area.

  7. Improved Stability Analysis of Nonlinear Networked Control Systems over Multiple Communication Links

    OpenAIRE

    Delavar, Rahim; Tavassoli, Babak; Beheshti, Mohammad Taghi Hamidi

    2015-01-01

    In this paper, we consider a nonlinear networked control system (NCS) in which controllers, sensors and actuators are connected via several communication links. In each link, networking effects such as the transmission delay, packet loss, sampling jitter and data packet miss-ordering are captured by time-varying delays. Stability analysis is carried out based on the Lyapunov Krasovskii method to obtain a condition for stability of the nonlinear NCS in the form of linear matrix inequality (LMI...

  8. Multi-Modal Multi-Task Learning for Joint Prediction of Multiple Regression and Classification Variables in Alzheimer’s Disease

    Science.gov (United States)

    Zhang, Daoqiang; Shen, Dinggang

    2011-01-01

    Many machine learning and pattern classification methods have been applied to the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). Recently, rather than predicting categorical variables as in classification, several pattern regression methods have also been used to estimate continuous clinical variables from brain images. However, most existing regression methods focus on estimating multiple clinical variables separately and thus cannot utilize the intrinsic useful correlation information among different clinical variables. On the other hand, in those regression methods, only a single modality of data (usually only the structural MRI) is often used, without considering the complementary information that can be provided by different modalities. In this paper, we propose a general methodology, namely Multi-Modal Multi-Task (M3T) learning, to jointly predict multiple variables from multi-modal data. Here, the variables include not only the clinical variables used for regression but also the categorical variable used for classification, with different tasks corresponding to prediction of different variables. Specifically, our method contains two key components, i.e., (1) a multi-task feature selection which selects the common subset of relevant features for multiple variables from each modality, and (2) a multi-modal support vector machine which fuses the above-selected features from all modalities to predict multiple (regression and classification) variables. To validate our method, we perform two sets of experiments on ADNI baseline MRI, FDG-PET, and cerebrospinal fluid (CSF) data from 45 AD patients, 91 MCI patients, and 50 healthy controls (HC). In the first set of experiments, we estimate two clinical variables such as Mini Mental State Examination (MMSE) and Alzheimer’s Disease Assessment Scale - Cognitive Subscale (ADAS-Cog), as well as one categorical variable (with value of ‘AD’, ‘MCI’ or

  9. Digital soil mapping using multiple logistic regression on terrain parameters in southern Brazil Mapeamento digital de solos utilizando regressões logísticas múltiplas e parâmetros do terreno no sul do Brasil

    Directory of Open Access Journals (Sweden)

    Elvio Giasson

    2006-06-01

    Full Text Available Soil surveys are necessary sources of information for land use planning, but they are not always available. This study proposes the use of multiple logistic regressions on the prediction of occurrence of soil types based on reference areas. From a digitalized soil map and terrain parameters derived from the digital elevation model in ArcView environment, several sets of multiple logistic regressions were defined using statistical software Minitab, establishing relationship between explanatory terrain variables and soil types, using either the original legend or a simplified legend, and using or not stratification of the study area by drainage classes. Terrain parameters, such as elevation, distance to stream, flow accumulation, and topographic wetness index, were the variables that best explained soil distribution. Stratification by drainage classes did not have significant effect. Simplification of the original legend increased the accuracy of the method on predicting soil distribution.Os levantamentos de solos são fontes de informação necessárias para o planejamento de uso das terras, entretanto eles nem sempre estão disponíveis. Este estudo propõe o uso de regressões logísticas múltiplas na predição de ocorrência de classes de solos a partir de áreas de referência. Baseado no mapa original de solos em formato digital e parâmetros do terreno derivados do modelo numérico do terreno em ambiente ArcView, vários conjuntos de regressões logísticas múltiplas foram definidas usando o programa estatístico Minitab, estabelecendo relações entre as variáveis do terreno independentes e tipos de solos, usando tanto a legenda original como uma legenda simplificada, e usando ou não estratificação da área de estudo por classes de drenagem. Os parâmetros do terreno como elevação, distância dos rios, acúmulo de fluxo e índice de umidade topográfica foram as variáveis que melhor explicaram a distribuição das classes de

  10. Multivariate Regression Approach To Integrate Multiple Satellite And Tide Gauge Data For Real Time Sea Level Prediction

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per

    2010-01-01

    The Sea Level Thematic Assembly Center in the EUFP7 MyOcean project aims at build a sea level service for multiple satellite sea level observations at a European level for GMES marine applications. It aims to improve the sea level related products to guarantee the sustainability and the quality o...... stations with satellite altimetry....

  11. Investigating the Quantitative Structure-Activity Relationships for Antibody Recognition of Two Immunoassays for Polycyclic Aromatic Hydrocarbons by Multiple Regression Methods

    Directory of Open Access Journals (Sweden)

    Yan-Feng Zhang

    2012-07-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are ubiquitous contaminants found in the environment. Immunoassays represent useful analytical methods to complement traditional analytical procedures for PAHs. Cross-reactivity (CR is a very useful character to evaluate the extent of cross-reaction of a cross-reactant in immunoreactions and immunoassays. The quantitative relationships between the molecular properties and the CR of PAHs were established by stepwise multiple linear regression, principal component regression and partial least square regression, using the data of two commercial enzyme-linked immunosorbent assay (ELISA kits. The objective is to find the most important molecular properties that affect the CR, and predict the CR by multiple regression methods. The results show that the physicochemical, electronic and topological properties of the PAH molecules have an integrated effect on the CR properties for the two ELISAs, among which molar solubility (Sm and valence molecular connectivity index (3χv are the most important factors. The obtained regression equations for RisC kit are all statistically significant (p < 0.005 and show satisfactory ability for predicting CR values, while equations for RaPID kit are all not significant (p > 0.05 and not suitable for predicting. It is probably because that the RisC immunoassay employs a monoclonal antibody, while the RaPID kit is based on polyclonal antibody. Considering the important effect of solubility on the CR values, cross-reaction potential (CRP is calculated and used as a complement of CR for evaluation of cross-reactions in immunoassays. Only the compounds with both high CR and high CRP can cause intense cross-reactions in immunoassays.

  12. Prediction of coal grindability based on petrography, proximate and ultimate analysis using multiple regression and artificial neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Chelgani, S. Chehreh; Jorjani, E.; Mesroghli, Sh.; Bagherieh, A.H. [Department of Mining Engineering, Research and Science Campus, Islamic Azad University, Poonak, Hesarak Tehran (Iran); Hower, James C. [Center for Applied Energy Research, University of Kentucky, 2540 Research Park Drive, Lexington, KY 40511 (United States)

    2008-01-15

    The effects of proximate and ultimate analysis, maceral content, and coal rank (R{sub max}) for a wide range of Kentucky coal samples from calorific value of 4320 to 14960 (BTU/lb) (10.05 to 34.80 MJ/kg) on Hardgrove Grindability Index (HGI) have been investigated by multivariable regression and artificial neural network methods (ANN). The stepwise least square mathematical method shows that the relationship between (a) Moisture, ash, volatile matter, and total sulfur; (b) ln (total sulfur), hydrogen, ash, ln ((oxygen + nitrogen)/carbon) and moisture; (c) ln (exinite), semifusinite, micrinite, macrinite, resinite, and R{sub max} input sets with HGI in linear condition can achieve the correlation coefficients (R{sup 2}) of 0.77, 0.75, and 0.81, respectively. The ANN, which adequately recognized the characteristics of the coal samples, can predict HGI with correlation coefficients of 0.89, 0.89 and 0.95 respectively in testing process. It was determined that ln (exinite), semifusinite, micrinite, macrinite, resinite, and R{sub max} can be used as the best predictor for the estimation of HGI on multivariable regression (R{sup 2} = 0.81) and also artificial neural network methods (R{sup 2} = 0.95). The ANN based prediction method, as used in this paper, can be further employed as a reliable and accurate method, in the hardgrove grindability index prediction. (author)

  13. Constrained Sparse Galerkin Regression

    CERN Document Server

    Loiseau, Jean-Christophe

    2016-01-01

    In this work, we demonstrate the use of sparse regression techniques from machine learning to identify nonlinear low-order models of a fluid system purely from measurement data. In particular, we extend the sparse identification of nonlinear dynamics (SINDy) algorithm to enforce physical constraints in the regression, leading to energy conservation. The resulting models are closely related to Galerkin projection models, but the present method does not require the use of a full-order or high-fidelity Navier-Stokes solver to project onto basis modes. Instead, the most parsimonious nonlinear model is determined that is consistent with observed measurement data and satisfies necessary constraints. The constrained Galerkin regression algorithm is implemented on the fluid flow past a circular cylinder, demonstrating the ability to accurately construct models from data.

  14. Component mode synthesis and large deflection vibration of complex structures. Volume 3: Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    Science.gov (United States)

    Mei, Chuh; Shen, Mo-How

    1987-01-01

    Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.

  15. Evaluation of heat transfer mathematical models and multiple linear regression to predict the inside variables in semi-solar greenhouse

    Directory of Open Access Journals (Sweden)

    M Taki

    2017-05-01

    Full Text Available Introduction Controlling greenhouse microclimate not only influences the growth of plants, but also is critical in the spread of diseases inside the greenhouse. The microclimate parameters were inside air, greenhouse roof and soil temperature, relative humidity and solar radiation intensity. Predicting the microclimate conditions inside a greenhouse and enabling the use of automatic control systems are the two main objectives of greenhouse climate model. The microclimate inside a greenhouse can be predicted by conducting experiments or by using simulation. Static and dynamic models are used for this purpose as a function of the metrological conditions and the parameters of the greenhouse components. Some works were done in past to 2015 year to simulation and predict the inside variables in different greenhouse structures. Usually simulation has a lot of problems to predict the inside climate of greenhouse and the error of simulation is higher in literature. The main objective of this paper is comparison between heat transfer and regression models to evaluate them to predict inside air and roof temperature in a semi-solar greenhouse in Tabriz University. Materials and Methods In this study, a semi-solar greenhouse was designed and constructed at the North-West of Iran in Azerbaijan Province (geographical location of 38°10′ N and 46°18′ E with elevation of 1364 m above the sea level. In this research, shape and orientation of the greenhouse, selected between some greenhouses common shapes and according to receive maximum solar radiation whole the year. Also internal thermal screen and cement north wall was used to store and prevent of heat lost during the cold period of year. So we called this structure, ‘semi-solar’ greenhouse. It was covered with glass (4 mm thickness. It occupies a surface of approximately 15.36 m2 and 26.4 m3. The orientation of this greenhouse was East–West and perpendicular to the direction of the wind prevailing

  16. A non-linear preprocessing for opto-digital image encryption using multiple-parameter discrete fractional Fourier transform

    Science.gov (United States)

    Azoug, Seif Eddine; Bouguezel, Saad

    2016-01-01

    In this paper, a novel opto-digital image encryption technique is proposed by introducing a new non-linear preprocessing and using the multiple-parameter discrete fractional Fourier transform (MPDFrFT). The non-linear preprocessing is performed digitally on the input image in the spatial domain using a piecewise linear chaotic map (PLCM) coupled with the bitwise exclusive OR (XOR). The resulting image is multiplied by a random phase mask before applying the MPDFrFT to whiten the image. Then, a chaotic permutation is performed on the output of the MPDFrFT using another PLCM different from the one used in the spatial domain. Finally, another MPDFrFT is applied to obtain the encrypted image. The parameters of the PLCMs together with the multiple fractional orders of the MPDFrFTs constitute the secret key for the proposed cryptosystem. Computer simulation results and security analysis are presented to show the robustness of the proposed opto-digital image encryption technique and the great importance of the new non-linear preprocessing introduced to enhance the security of the cryptosystem and overcome the problem of linearity encountered in the existing permutation-based opto-digital image encryption schemes.

  17. Application of least squares support vector regression and linear multiple regression for modeling removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and activated carbon prepared from Pistacia atlantica wood.

    Science.gov (United States)

    Ghaedi, M; Rahimi, Mahmoud Reza; Ghaedi, A M; Tyagi, Inderjeet; Agarwal, Shilpi; Gupta, Vinod Kumar

    2016-01-01

    Two novel and eco friendly adsorbents namely tin oxide nanoparticles loaded on activated carbon (SnO2-NP-AC) and activated carbon prepared from wood tree Pistacia atlantica (AC-PAW) were used for the rapid removal and fast adsorption of methyl orange (MO) from the aqueous phase. The dependency of MO removal with various adsorption influential parameters was well modeled and optimized using multiple linear regressions (MLR) and least squares support vector regression (LSSVR). The optimal parameters for the LSSVR model were found based on γ value of 0.76 and σ(2) of 0.15. For testing the data set, the mean square error (MSE) values of 0.0010 and the coefficient of determination (R(2)) values of 0.976 were obtained for LSSVR model, and the MSE value of 0.0037 and the R(2) value of 0.897 were obtained for the MLR model. The adsorption equilibrium and kinetic data was found to be well fitted and in good agreement with Langmuir isotherm model and second-order equation and intra-particle diffusion models respectively. The small amount of the proposed SnO2-NP-AC and AC-PAW (0.015 g and 0.08 g) is applicable for successful rapid removal of methyl orange (>95%). The maximum adsorption capacity for SnO2-NP-AC and AC-PAW was 250 mg g(-1) and 125 mg g(-1) respectively.

  18. EXISTENCE AND UNIQUENESS OF ANTI-PERIODIC SOLUTIONS TO AN nTH-ORDER NONLINEAR DIFFERENTIAL EQUATION WITH MULTIPLE DEVIATING ARGUMENTS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper,we use the Leray-Schauder degree theory to establish some new results on the existence and uniqueness of anti-periodic solutions to an nth-order nonlinear differential equation with multiple deviating arguments.

  19. Melanin and blood concentration in a human skin model studied by multiple regression analysis: assessment by Monte Carlo simulation

    Science.gov (United States)

    Shimada, M.; Yamada, Y.; Itoh, M.; Yatagai, T.

    2001-09-01

    Measurement of melanin and blood concentration in human skin is needed in the medical and the cosmetic fields because human skin colour is mainly determined by the colours of melanin and blood. It is difficult to measure these concentrations in human skin because skin has a multi-layered structure and scatters light strongly throughout the visible spectrum. The Monte Carlo simulation currently used for the analysis of skin colour requires long calculation times and knowledge of the specific optical properties of each skin layer. A regression analysis based on the modified Beer-Lambert law is presented as a method of measuring melanin and blood concentration in human skin in a shorter period of time and with fewer calculations. The accuracy of this method is assessed using Monte Carlo simulations.

  20. Application of single-step genomic best linear unbiased prediction with a multiple-lactation random regression test-day model for Japanese Holsteins.

    Science.gov (United States)

    Baba, Toshimi; Gotoh, Yusaku; Yamaguchi, Satoshi; Nakagawa, Satoshi; Abe, Hayato; Masuda, Yutaka; Kawahara, Takayoshi

    2017-08-01

    This study aimed to evaluate a validation reliability of single-step genomic best linear unbiased prediction (ssGBLUP) with a multiple-lactation random regression test-day model and investigate an effect of adding genotyped cows on the reliability. Two data sets for test-day records from the first three lactations were used: full data from February 1975 to December 2015 (60 850 534 records from 2 853 810 cows) and reduced data cut off in 2011 (53 091 066 records from 2 502 307 cows). We used marker genotypes of 4480 bulls and 608 cows. Genomic enhanced breeding values (GEBV) of 305-day milk yield in all the lactations were estimated for at least 535 young bulls using two marker data sets: bull genotypes only and both bulls and cows genotypes. The realized reliability (R(2) ) from linear regression analysis was used as an indicator of validation reliability. Using only genotyped bulls, R(2) was ranged from 0.41 to 0.46 and it was always higher than parent averages. The very similar R(2) were observed when genotyped cows were added. An application of ssGBLUP to a multiple-lactation random regression model is feasible and adding a limited number of genotyped cows has no significant effect on reliability of GEBV for genotyped bulls. © 2016 Japanese Society of Animal Science.

  1. Non-linear dynamics of a geared rotor-bearing system with multiple clearances

    Science.gov (United States)

    Kahraman, A.; Singh, R.

    1991-02-01

    Non-linear frequency response characteristics of a geared rotor-bearing system are examined in this paper. A three-degree-of-freedom dynamic model is developed which includes non-linearities associated with radial clearances in the radial rolling element bearings and backlash between a spur gear pair; linear time-invariant gear meshing stiffness is assumed. The corresponding linear system problem is also solved, and predicted natural frequencies and modes match with finite element method results. The bearing non-linear stiffness function is approximated for the sake of convenience by a simple model which is identical to that used for the gear mesh. This approximate bearing model has been verified by comparing steady state frequency spectra. Applicability of both analytical and numerical solution techniques to the multi-degree-of-freedom non-linear problem is investigated. Satisfactory agreement has been found between our theory and available experimental data. Several key issues such as non-linear modal interactions and differences between internal static transmission error excitation and external torque excitation are discussed. Additionally, parametric studies are performed to understand the effect of system parameters such as bearing stiffness to gear mesh stiffness ratio, alternating to mean force ratio and radial bearing preload to mean force ratio on the non-linear dynamic behavior. A criterion used to classify the steady state solutions is presented, and the conditions for chaotic, quasi-periodic and subharmonic steady state solutions are determined. Two typical routes to chaos observed in this geared system are also identified.

  2. Multiple-output support vector machine regression with feature selection for arousal/valence space emotion assessment.

    Science.gov (United States)

    Torres-Valencia, Cristian A; Álvarez, Mauricio A; Orozco-Gutiérrez, Alvaro A

    2014-01-01

    Human emotion recognition (HER) allows the assessment of an affective state of a subject. Until recently, such emotional states were described in terms of discrete emotions, like happiness or contempt. In order to cover a high range of emotions, researchers in the field have introduced different dimensional spaces for emotion description that allow the characterization of affective states in terms of several variables or dimensions that measure distinct aspects of the emotion. One of the most common of such dimensional spaces is the bidimensional Arousal/Valence space. To the best of our knowledge, all HER systems so far have modelled independently, the dimensions in these dimensional spaces. In this paper, we study the effect of modelling the output dimensions simultaneously and show experimentally the advantages in modeling them in this way. We consider a multimodal approach by including features from the Electroencephalogram and a few physiological signals. For modelling the multiple outputs, we employ a multiple output regressor based on support vector machines. We also include an stage of feature selection that is developed within an embedded approach known as Recursive Feature Elimination (RFE), proposed initially for SVM. The results show that several features can be eliminated using the multiple output support vector regressor with RFE without affecting the performance of the regressor. From the analysis of the features selected in smaller subsets via RFE, it can be observed that the signals that are more informative into the arousal and valence space discrimination are the EEG, Electrooculogram/Electromiogram (EOG/EMG) and the Galvanic Skin Response (GSR).

  3. A comparison between Joint Regression Analysis and the Additive Main and Multiplicative Interaction model: the robustness with increasing amounts of missing data

    Directory of Open Access Journals (Sweden)

    Paulo Canas Rodrigues

    2011-12-01

    Full Text Available This paper joins the main properties of joint regression analysis (JRA, a model based on the Finlay-Wilkinson regression to analyse multi-environment trials, and of the additive main effects and multiplicative interaction (AMMI model. The study compares JRA and AMMI with particular focus on robustness with increasing amounts of randomly selected missing data. The application is made using a data set from a breeding program of durum wheat (Triticum turgidum L., Durum Group conducted in Portugal. The results of the two models result in similar dominant cultivars (JRA and winner of mega-environments (AMMI for the same environments. However, JRA had more stable results with the increase in the incidence rates of missing values.

  4. Multiple-response regression analysis links magnetic resonance imaging features to de-regulated protein expression and pathway activity in lower grade glioma.

    Science.gov (United States)

    Lehrer, Michael; Bhadra, Anindya; Ravikumar, Visweswaran; Chen, James Y; Wintermark, Max; Hwang, Scott N; Holder, Chad A; Huang, Erich P; Fevrier-Sullivan, Brenda; Freymann, John B; Rao, Arvind

    2017-05-01

    Lower grade gliomas (LGGs), lesions of WHO grades II and III, comprise 10-15% of primary brain tumors. In this first-of-a-kind study, we aim to carry out a radioproteomic characterization of LGGs using proteomics data from the TCGA and imaging data from the TCIA cohorts, to obtain an association between tumor MRI characteristics and protein measurements. The availability of linked imaging and molecular data permits the assessment of relationships between tumor genomic/proteomic measurements with phenotypic features. Multiple-response regression of the image-derived, radiologist scored features with reverse-phase protein array (RPPA) expression levels generated correlation coefficients for each combination of image-feature and protein or phospho-protein in the RPPA dataset. Significantly-associated proteins for VASARI features were analyzed with Ingenuity Pathway Analysis software. Hierarchical clustering of the results of the pathway analysis was used to determine which feature groups were most strongly correlated with pathway activity and cellular functions. The multiple-response regression approach identified multiple proteins associated with each VASARI imaging feature. VASARI features were found to be correlated with expression of IL8, PTEN, PI3K/Akt, Neuregulin, ERK/MAPK, p70S6K and EGF signaling pathways. Radioproteomics analysis might enable an insight into the phenotypic consequences of molecular aberrations in LGGs.

  5. STATISTICAL METHODOLOGY FOR THE SIMULTANEOUS ANALYSIS OF MULTIPLE TYPES OF OUTCOMES IN NONLINEAR THRESHOLD MODELS.

    Science.gov (United States)

    Multiple outcomes are often measured on each experimental unit in toxicology experiments. These multiple observations typically imply the existence of correlation between endpoints, and a statistical analysis that incorporates it may result in improved inference. When both disc...

  6. Relative accuracy of spatial predictive models for lynx Lynx canadensis derived using logistic regression-AIC, multiple criteria evaluation and Bayesian approaches

    Institute of Scientific and Technical Information of China (English)

    Hejun KANG; Shelley M.ALEXANDER

    2009-01-01

    We compared probability surfaces derived using one set of environmental variables in three Geographic Information Systems (GIS) -based approaches: logistic regression and Akaike's Information Criterion (AIC),Multiple Criteria Evaluation (MCE),and Bayesian Analysis (specifically Dempster-Shafer theory). We used lynx Lynx canadensis as our focal species,and developed our environment relationship model using track data collected in Banff National Park,Alberta,Canada,during winters from 1997 to 2000. The accuracy of the three spatial models were compared using a contingency table method. We determined the percentage of cases in which both presence and absence points were correctly classified (overall accuracy),the failure to predict a species where it occurred (omission error) and the prediction of presence where there was absence (commission error). Our overall accuracy showed the logistic regression approach was the most accurate (74.51% ). The multiple criteria evaluation was intermediate (39.22%),while the Dempster-Shafer (D-S) theory model was the poorest (29.90%). However,omission and commission error tell us a different story: logistic regression had the lowest commission error,while D-S theory produced the lowest omission error. Our results provide evidence that habitat modellers should evaluate all three error measures when ascribing confidence in their model. We suggest that for our study area at least,the logistic regression model is optimal. However,where sample size is small or the species is very rare,it may also be useful to explore and/or use a more ecologically cautious modelling approach (e.g. Dempster-Shafer) that would over-predict,protect more sites,and thereby minimize the risk of missing critical habitat in conservation plans.

  7. Multivariate research in areas of phosphorus cast-iron brake shoes manufacturing using the statistical analysis and the multiple regression equations

    Science.gov (United States)

    Kiss, I.; Cioată, V. G.; Alexa, V.; Raţiu, S. A.

    2017-05-01

    The braking system is one of the most important and complex subsystems of railway vehicles, especially when it comes for safety. Therefore, installing efficient safe brakes on the modern railway vehicles is essential. Nowadays is devoted attention to solving problems connected with using high performance brake materials and its impact on thermal and mechanical loading of railway wheels. The main factor that influences the selection of a friction material for railway applications is the performance criterion, due to the interaction between the brake block and the wheel produce complex thermos-mechanical phenomena. In this work, the investigated subjects are the cast-iron brake shoes, which are still widely used on freight wagons. Therefore, the cast-iron brake shoes - with lamellar graphite and with a high content of phosphorus (0.8-1.1%) - need a special investigation. In order to establish the optimal condition for the cast-iron brake shoes we proposed a mathematical modelling study by using the statistical analysis and multiple regression equations. Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. Multivariate visualization comes to the fore when researchers have difficulties in comprehending many dimensions at one time. Technological data (hardness and chemical composition) obtained from cast-iron brake shoes were used for this purpose. In order to settle the multiple correlation between the hardness of the cast-iron brake shoes, and the chemical compositions elements several model of regression equation types has been proposed. Because a three-dimensional surface with variables on three axes is a common way to illustrate multivariate data, in which the maximum and minimum values are easily highlighted, we plotted graphical representation of the regression equations in order to explain interaction of the variables and locate the optimal level of each variable for

  8. Relative accuracy of spatial predictive models for lynx Lynx canadensis derived using logistic regression-AIC, multiple criteria evaluation and Bayesian approaches

    Directory of Open Access Journals (Sweden)

    Shelley M. ALEXANDER

    2009-02-01

    Full Text Available We compared probability surfaces derived using one set of environmental variables in three Geographic Information Systems (GIS-based approaches: logistic regression and Akaike’s Information Criterion (AIC, Multiple Criteria Evaluation (MCE, and Bayesian Analysis (specifically Dempster-Shafer theory. We used lynx Lynx canadensis as our focal species, and developed our environment relationship model using track data collected in Banff National Park, Alberta, Canada, during winters from 1997 to 2000. The accuracy of the three spatial models were compared using a contingency table method. We determined the percentage of cases in which both presence and absence points were correctly classified (overall accuracy, the failure to predict a species where it occurred (omission error and the prediction of presence where there was absence (commission error. Our overall accuracy showed the logistic regression approach was the most accurate (74.51%. The multiple criteria evaluation was intermediate (39.22%, while the Dempster-Shafer (D-S theory model was the poorest (29.90%. However, omission and commission error tell us a different story: logistic regression had the lowest commission error, while D-S theory produced the lowest omission error. Our results provide evidence that habitat modellers should evaluate all three error measures when ascribing confidence in their model. We suggest that for our study area at least, the logistic regression model is optimal. However, where sample size is small or the species is very rare, it may also be useful to explore and/or use a more ecologically cautious modelling approach (e.g. Dempster-Shafer that would over-predict, protect more sites, and thereby minimize the risk of missing critical habitat in conservation plans[Current Zoology 55(1: 28 – 40, 2009].

  9. Radiologic assessment of third molar tooth and spheno-occipital synchondrosis for age estimation: a multiple regression analysis study.

    Science.gov (United States)

    Demirturk Kocasarac, Husniye; Sinanoglu, Alper; Noujeim, Marcel; Helvacioglu Yigit, Dilek; Baydemir, Canan

    2016-05-01

    For forensic age estimation, radiographic assessment of third molar mineralization is important between 14 and 21 years which coincides with the legal age in most countries. The spheno-occipital synchondrosis (SOS) is an important growth site during development, and its use for age estimation is beneficial when combined with other markers. In this study, we aimed to develop a regression model to estimate and narrow the age range based on the radiologic assessment of third molar and SOS in a Turkish subpopulation. Panoramic radiographs and cone beam CT scans of 349 subjects (182 males, 167 females) with age between 8 and 25 were evaluated. Four-stage system was used to evaluate the fusion degree of SOS, and Demirjian's eight stages of development for calcification for third molars. The Pearson correlation indicated a strong positive relationship between age and third molar calcification for both sexes (r = 0.850 for females, r = 0.839 for males, P age and SOS fusion for females (r = 0.814), but a moderate relationship was found for males (r = 0.599), P age determination formula using these scores was established.

  10. Fiber nonlinearity compensation of an 8-channel WDM PDM-QPSK signal using multiple phase conjugations

    DEFF Research Database (Denmark)

    Hu, Hao; Jopson, R. M.; Dinu, M.;

    2013-01-01

    We demonstrate compensation of fiber nonlinearities using optical phase conjugation of an 8-chamiel WDM 32-Gbaud PDM QPSK signal. Conjugating phase every 600 km in a fiber loop enabled a 6000 km transmission over True Wave fiber. © 2013 Optical Society of America....

  11. Quantitative structure-property relationship study of acidity constants of some 9,10-anthraquinone derivatives using multiple linear regression and partial least-squares procedures.

    Science.gov (United States)

    Shamsipur, M; Hemmateenejad, B; Akhond, M; Sharghi, H

    2001-07-06

    A quantitative structure-property relationship study is suggested for the prediction of acidity constants of some recently synthesized 9,10-anthraquinone derivatives in binary methanol-water mixtures. Modeling of the acidity constant of the anthraquinones as a function of physicochemical parameters and mole fraction of methanol was established by means of the partial least-squares algorithm based on singular value decomposition (PLS-SVD) and multiple linear regression. The PLS-SVD procedure resulted in a better prediction ability and was found to be insensitive to noneffective descriptors. The classification of anthraquinones by the calculated descriptors was established.

  12. Prediction of acute in vivo toxicity of some amine and amide drugs to rats by multiple linear regression, partial least squares and an artificial neural network.

    Science.gov (United States)

    Mahani, Mohamad Khayatzadeh; Chaloosi, Marzieh; Maragheh, Mohamad Ghanadi; Khanchi, Ali Reza; Afzali, Daryoush

    2007-09-01

    The oral acute in vivo toxicity of 32 amine and amide drugs was related to their structural-dependent properties. Genetic algorithm-partial least-squares and stepwise variable selection was applied to select of meaningful descriptors. Multiple linear regression (MLR), artificial neural network (ANN) and partial least square (PLS) models were created with selected descriptors. The predictive ability of all three models was evaluated and compared on a set of five drugs, which were not used in modeling steps. Average errors of 0.168, 0.169 and 0.259 were obtained for MLR, ANN and PLS, respectively.

  13. Multiple Regression Analysis of Reading Performance Data from Twin Pairs with Reading Difficulties and Non-twin Siblings: The Augmented Model

    OpenAIRE

    Wadsworth, S J; Olson, R. K.; Willcutt, E.G.; DeFries, J. C.

    2012-01-01

    The augmented multiple regression model for the analysis of data from selected twin pairs was extended to facilitate analyses of data from twin pairs and non-twin siblings. Fitting this extended model to data from both selected twin pairs and siblings yields direct estimates of heritability (h2) and the difference between environmental influences shared by members of twin pairs and those of sib or twin/sib pairs [i.e., c2(t) − c2(s)]. When this model was fitted to reading performance data fro...

  14. Diplotype Trend Regression Analysis of the ADH Gene Cluster and the ALDH2 Gene: Multiple Significant Associations with Alcohol Dependence

    Science.gov (United States)

    Luo, Xingguang; Kranzler, Henry R.; Zuo, Lingjun; Wang, Shuang; Schork, Nicholas J.; Gelernter, Joel

    2006-01-01

    The set of alcohol-metabolizing enzymes has considerable genetic and functional complexity. The relationships between some alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) genes and alcohol dependence (AD) have long been studied in many populations, but not comprehensively. In the present study, we genotyped 16 markers within the ADH gene cluster (including the ADH1A, ADH1B, ADH1C, ADH5, ADH6, and ADH7 genes), 4 markers within the ALDH2 gene, and 38 unlinked ancestry-informative markers in a case-control sample of 801 individuals. Associations between markers and disease were analyzed by a Hardy-Weinberg equilibrium (HWE) test, a conventional case-control comparison, a structured association analysis, and a novel diplotype trend regression (DTR) analysis. Finally, the disease alleles were fine mapped by a Hardy-Weinberg disequilibrium (HWD) measure (J). All markers were found to be in HWE in controls, but some markers showed HWD in cases. Genotypes of many markers were associated with AD. DTR analysis showed that ADH5 genotypes and diplotypes of ADH1A, ADH1B, ADH7, and ALDH2 were associated with AD in European Americans and/or African Americans. The risk-influencing alleles were fine mapped from among the markers studied and were found to coincide with some well-known functional variants. We demonstrated that DTR was more powerful than many other conventional association methods. We also found that several ADH genes and the ALDH2 gene were susceptibility loci for AD, and the associations were best explained by several independent risk genes. PMID:16685648

  15. APPLICATION OF GENETIC ALGORITHM-MULTIPLE LINEAR REGRESSION (GA-MLR FOR PREDICTION OF ANTI-FUNGAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    Stephen Eyije Abechi

    2016-04-01

    Full Text Available Aim: To develop good and rational Quantitative Structure Activity Relationship (QSAR mathematical models that can predict to a significant level the anti-tyrosinase and anti-Candida Albicans Minimum inhibitory concentration (MIC of ketone and tetra- etone derivatives. Place and Duration of Study: Department of Chemistry (Mathieson Laboratory (3-Physical Chemistry unit, Ahmadu Bello University, Zaria, Nigeria, between December 2015 and March 2016. Methodology: A set of 44 ketone and tetra-ketone derivatives with their anti-tyrosinase and anti-Candida Albicans activities in terms of minimum inhibitory concentration (MIC against the gram-positive fungal and hyperpigmentation were selected for 1D-3D quantitative structure activity relationship (QSAR analysis using the parameterization method 6 (PM6 basis set. The computed descriptors were correlated with their experimental MIC. Genetic Function Approximation (GFA method and Multi-Linear Regression analysis (MLR were used to derive the most statistically significant QSAR model. Results: The result obtained indicates that the most statistically significant QSAR model was a five- parametric linear equation with the squared correlation coefficient (R2 value of 0.9914, adjusted squared correlation coefficient (R 2 adj value of 0.9896 and Leave one out (LOO cross validation coefficient (Q2 value of 0.9853. An external set was used for confirming the predictive power of the model, its R2 pred = 0.9618 and rm^2 = 0.8981. Conclusion: The QSAR results reveal that molecular mass, atomic mass, polarity, electronic and topological predominantly influence the anti-tyrosinase and anti-Candida Albicans activity of the complexes. The wealth of information in this study will provide an insight to designing novel bioactive ketones and tetra-ketones compound that will curb the emerging trend of multi-drug resistant strain of fungal and hyperpigmentation

  16. Application of a New Hybrid Model with Seasonal Auto-Regressive Integrated Moving Average (ARIMA) and Nonlinear Auto-Regressive Neural Network (NARNN) in Forecasting Incidence Cases of HFMD in Shenzhen, China

    OpenAIRE

    Lijing Yu; Lingling Zhou; Li Tan; Hongbo Jiang; Ying Wang; Sheng Wei; Shaofa Nie

    2014-01-01

    BACKGROUND: Outbreaks of hand-foot-mouth disease (HFMD) have been reported for many times in Asia during the last decades. This emerging disease has drawn worldwide attention and vigilance. Nowadays, the prevention and control of HFMD has become an imperative issue in China. Early detection and response will be helpful before it happening, using modern information technology during the epidemic. METHOD: In this paper, a hybrid model combining seasonal auto-regressive integrated moving average...

  17. [Multiple imputation and complete case analysis in logistic regression models: a practical assessment of the impact of incomplete covariate data].

    Science.gov (United States)

    Camargos, Vitor Passos; César, Cibele Comini; Caiaffa, Waleska Teixeira; Xavier, Cesar Coelho; Proietti, Fernando Augusto

    2011-12-01

    Researchers in the health field often deal with the problem of incomplete databases. Complete Case Analysis (CCA), which restricts the analysis to subjects with complete data, reduces the sample size and may result in biased estimates. Based on statistical grounds, Multiple Imputation (MI) uses all collected data and is recommended as an alternative to CCA. Data from the study Saúde em Beagá, attended by 4,048 adults from two of nine health districts in the city of Belo Horizonte, Minas Gerais State, Brazil, in 2008-2009, were used to evaluate CCA and different MI approaches in the context of logistic models with incomplete covariate data. Peculiarities in some variables in this study allowed analyzing a situation in which the missing covariate data are recovered and thus the results before and after recovery are compared. Based on the analysis, even the more simplistic MI approach performed better than CCA, since it was closer to the post-recovery results.

  18. Binary Logistic Regression Versus Boosted Regression Trees in Assessing Landslide Susceptibility for Multiple-Occurring Regional Landslide Events: Application to the 2009 Storm Event in Messina (Sicily, southern Italy).

    Science.gov (United States)

    Lombardo, L.; Cama, M.; Maerker, M.; Parisi, L.; Rotigliano, E.

    2014-12-01

    This study aims at comparing the performances of Binary Logistic Regression (BLR) and Boosted Regression Trees (BRT) methods in assessing landslide susceptibility for multiple-occurrence regional landslide events within the Mediterranean region. A test area was selected in the north-eastern sector of Sicily (southern Italy), corresponding to the catchments of the Briga and the Giampilieri streams both stretching for few kilometres from the Peloritan ridge (eastern Sicily, Italy) to the Ionian sea. This area was struck on the 1st October 2009 by an extreme climatic event resulting in thousands of rapid shallow landslides, mainly of debris flows and debris avalanches types involving the weathered layer of a low to high grade metamorphic bedrock. Exploiting the same set of predictors and the 2009 landslide archive, BLR- and BRT-based susceptibility models were obtained for the two catchments separately, adopting a random partition (RP) technique for validation; besides, the models trained in one of the two catchments (Briga) were tested in predicting the landslide distribution in the other (Giampilieri), adopting a spatial partition (SP) based validation procedure. All the validation procedures were based on multi-folds tests so to evaluate and compare the reliability of the fitting, the prediction skill, the coherence in the predictor selection and the precision of the susceptibility estimates. All the obtained models for the two methods produced very high predictive performances, with a general congruence between BLR and BRT in the predictor importance. In particular, the research highlighted that BRT-models reached a higher prediction performance with respect to BLR-models, for RP based modelling, whilst for the SP-based models the difference in predictive skills between the two methods dropped drastically, converging to an analogous excellent performance. However, when looking at the precision of the probability estimates, BLR demonstrated to produce more robust

  19. Development of a regression model to predict copper toxicity to Daphnia magna and site-specific copper criteria across multiple surface-water drainages in an arid landscape.

    Science.gov (United States)

    Fulton, Barry A; Meyer, Joseph S

    2014-08-01

    The water effect ratio (WER) procedure developed by the US Environmental Protection Agency is commonly used to derive site-specific criteria for point-source metal discharges into perennial waters. However, experience is limited with this method in the ephemeral and intermittent systems typical of arid climates. The present study presents a regression model to develop WER-based site-specific criteria for a network of ephemeral and intermittent streams influenced by nonpoint sources of Cu in the southwestern United States. Acute (48-h) Cu toxicity tests were performed concurrently with Daphnia magna in site water samples and hardness-matched laboratory waters. Median effect concentrations (EC50s) for Cu in site water samples (n=17) varied by more than 12-fold, and the range of calculated WER values was similar. Statistically significant (α=0.05) univariate predictors of site-specific Cu toxicity included (in sequence of decreasing significance) dissolved organic carbon (DOC), hardness/alkalinity ratio, alkalinity, K, and total dissolved solids. A multiple-regression model developed from a combination of DOC and alkalinity explained 85% of the toxicity variability in site water samples, providing a strong predictive tool that can be used in the WER framework when site-specific criteria values are derived. The biotic ligand model (BLM) underpredicted toxicity in site waters by more than 2-fold. Adjustments to the default BLM parameters improved the model's performance but did not provide a better predictive tool compared with the regression model developed from DOC and alkalinity.

  20. Computing mammographic density from a multiple regression model constructed with image-acquisition parameters from a full-field digital mammographic unit

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lee-Jane W [Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555-1109 (United States); Nishino, Thomas K [Department of Radiology, University of Texas Medical Branch, Galveston, TX 77555-0709 (United States); Khamapirad, Tuenchit [Department of Radiology, University of Texas Medical Branch, Galveston, TX 77555-0709 (United States); Grady, James J [Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555-1109 (United States); Jr, Morton H Leonard [Department of Radiology, University of Texas Medical Branch, Galveston, TX 77555-0709 (United States); Brunder, Donald G [Department of Academic Computing/Academic Resources, University of Texas Medical Branch, Galveston, TX 77555-1035 (United States)

    2007-08-21

    Breast density (the percentage of fibroglandular tissue in the breast) has been suggested to be a useful surrogate marker for breast cancer risk. It is conventionally measured using screen-film mammographic images by a labor-intensive histogram segmentation method (HSM). We have adapted and modified the HSM for measuring breast density from raw digital mammograms acquired by full-field digital mammography. Multiple regression model analyses showed that many of the instrument parameters for acquiring the screening mammograms (e.g. breast compression thickness, radiological thickness, radiation dose, compression force, etc) and image pixel intensity statistics of the imaged breasts were strong predictors of the observed threshold values (model R{sup 2} = 0.93) and %-density (R{sup 2} = 0.84). The intra-class correlation coefficient of the %-density for duplicate images was estimated to be 0.80, using the regression model-derived threshold values, and 0.94 if estimated directly from the parameter estimates of the %-density prediction regression model. Therefore, with additional research, these mathematical models could be used to compute breast density objectively, automatically bypassing the HSM step, and could greatly facilitate breast cancer research studies.

  1. Computing mammographic density from a multiple regression model constructed with image-acquisition parameters from a full-field digital mammographic unit

    Science.gov (United States)

    Lu, Lee-Jane W.; Nishino, Thomas K.; Khamapirad, Tuenchit; Grady, James J.; Leonard, Morton H., Jr.; Brunder, Donald G.

    2007-08-01

    Breast density (the percentage of fibroglandular tissue in the breast) has been suggested to be a useful surrogate marker for breast cancer risk. It is conventionally measured using screen-film mammographic images by a labor-intensive histogram segmentation method (HSM). We have adapted and modified the HSM for measuring breast density from raw digital mammograms acquired by full-field digital mammography. Multiple regression model analyses showed that many of the instrument parameters for acquiring the screening mammograms (e.g. breast compression thickness, radiological thickness, radiation dose, compression force, etc) and image pixel intensity statistics of the imaged breasts were strong predictors of the observed threshold values (model R2 = 0.93) and %-density (R2 = 0.84). The intra-class correlation coefficient of the %-density for duplicate images was estimated to be 0.80, using the regression model-derived threshold values, and 0.94 if estimated directly from the parameter estimates of the %-density prediction regression model. Therefore, with additional research, these mathematical models could be used to compute breast density objectively, automatically bypassing the HSM step, and could greatly facilitate breast cancer research studies.

  2. A comparative study between the use of artificial neural networks and multiple linear regression for caustic concentration prediction in a stage of alumina production

    Directory of Open Access Journals (Sweden)

    Giovanni Leopoldo Rozza

    2015-09-01

    Full Text Available With world becoming each day a global village, enterprises continuously seek to optimize their internal processes to hold or improve their competitiveness and make better use of natural resources. In this context, decision support tools are an underlying requirement. Such tools are helpful on predicting operational issues, avoiding cost risings, loss of productivity, work-related accident leaves or environmental disasters. This paper has its focus on the prediction of spent liquor caustic concentration of Bayer process for alumina production. Caustic concentration measuring is essential to keep it at expected levels, otherwise quality issues might arise. The organization requests caustic concentration by chemical analysis laboratory once a day, such information is not enough to issue preventive actions to handle process inefficiencies that will be known only after new measurement on the next day. Thereby, this paper proposes using Multiple Linear Regression and Artificial Neural Networks techniques a mathematical model to predict the spent liquor´s caustic concentration. Hence preventive actions will occur in real time. Such models were built using software tool for numerical computation (MATLAB and a statistical analysis software package (SPSS. The models output (predicted caustic concentration were compared with the real lab data. We found evidence suggesting superior results with use of Artificial Neural Networks over Multiple Linear Regression model. The results demonstrate that replacing laboratorial analysis by the forecasting model to support technical staff on decision making could be feasible.

  3. Regressing Multiple Viral Plaques and Skin Fragility Syndrome in a Cat Coinfected with FcaPV2 and FcaPV3

    Directory of Open Access Journals (Sweden)

    Alberto Alberti

    2015-01-01

    Full Text Available Feline viral plaques are uncommon skin lesions clinically characterized by multiple, often pigmented, and slightly raised lesions. Numerous reports suggest that papillomaviruses (PVs are involved in their development. Immunosuppressed and immunocompetent cats are both affected, the biological behavior is variable, and the regression is possible but rarely documented. Here we report a case of a FIV-positive cat with skin fragility syndrome and regressing multiple viral plaques in which the contemporary presence of two PV types (FcaPV2 and FcaPV3 was demonstrated by combining a quantitative molecular approach to histopathology. The cat, under glucocorticoid therapy for stomatitis and pruritus, developed skin fragility and numerous grouped slightly raised nonulcerated pigmented macules and plaques with histological features of epidermal thickness, mild dysplasia, and presence of koilocytes. Absolute quantification of the viral DNA copies (4555 copies/microliter of FcaPV2 and 8655 copies/microliter of FcaPV3 was obtained. Eighteen months after discontinuation of glucocorticoid therapy skin fragility and viral plaques had resolved. The role of the two viruses cannot be established and it remains undetermined how each of the viruses has contributed to the onset of VP; the spontaneous remission of skin lesions might have been induced by FIV status change over time due to glucocorticoid withdraw and by glucocorticoids withdraw itself.

  4. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2013-06-01

    Full Text Available squares regression (PLSR) for predicting grass N and P concentrations through integrating in situ hyperspectral remote sensing and environmental variables (climatic, edaphic and topographic). Data were collected along a land use gradient in the greater...

  5. Characterizing the Effective Bandwidth of Nonlinear Vibratory Energy Harvesters Possessing Multiple Stable Equilibria

    Science.gov (United States)

    Panyam Mohan Ram, Meghashyam

    In the last few years, advances in micro-fabrication technologies have lead to the development of low-power electronic devices spanning critical fields related to sensing, data transmission, and medical implants. Unfortunately, effective utilization of these devices is currently hindered by their reliance on batteries. In many of these applications, batteries may not be a viable choice as they have a fixed storage capacity and need to be constantly replaced or recharged. In light of such challenges, several novel concepts for micro-power generation have been recently introduced to harness, otherwise, wasted ambient energy from the environment and maintain these low-power devices. Vibratory energy harvesting is one such concept which has received significant attention in recent years. While linear vibratory energy harvesters have been well studied in the literature and their performance metrics have been established, recent research has focused on deliberate introduction of stiffness nonlinearities into the design of these devices. It has been shown that, nonlinear energy harvesters have a wider steady-state frequency bandwidth as compared to their linear counterparts, leading to the premise that they can used to improve performance, and decrease sensitivity to variations in the design and excitation parameters. This dissertation aims to investigate this premise by developing an analytical framework to study the influence of stiffness nonlinearities on the performance and effective bandwidth of nonlinear vibratory energy harvesters. To achieve this goal, the dissertation is divided into three parts. The first part investigates the performance of bi-stable energy harvesters possessing a symmetric quartic potential energy function under harmonic excitations and carries out a detailed analysis to define their effective frequency bandwidth. The second part investigates the relative performance of mono- and bi-stable energy harvesters under optimal electric loading

  6. Quantile regression

    CERN Document Server

    Hao, Lingxin

    2007-01-01

    Quantile Regression, the first book of Hao and Naiman's two-book series, establishes the seldom recognized link between inequality studies and quantile regression models. Though separate methodological literature exists for each subject, the authors seek to explore the natural connections between this increasingly sought-after tool and research topics in the social sciences. Quantile regression as a method does not rely on assumptions as restrictive as those for the classical linear regression; though more traditional models such as least squares linear regression are more widely utilized, Hao

  7. Univariate and multiple linear regression analyses for 23 single nucleotide polymorphisms in 14 genes predisposing to chronic glomerular diseases and IgA nephropathy in Han Chinese

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2014-01-01

    Full Text Available Immunoglobulin A nephropathy (IgAN is a complex trait regulated by the inter-action among multiple physiologic regulatory systems and probably involving numerous genes, which leads to inconsistent findings in genetic studies. One possibility of failure to replicate some single-locus results is that the underlying genetics of IgAN nephropathy is based on multiple genes with minor effects. To learn the association between 23 single nucleotide polymorphisms (SNPs in 14 genes predisposing to chronic glomerular diseases and IgAN in Han males, the 23 SNPs genotypes of 21 Han males were detected and analyzed with a BaiO gene chip, and their asso-ciations were analyzed with univariate analysis and multiple linear regression analysis. Analysis showed that CTLA4 rs231726 and CR2 rs1048971 revealed a significant association with IgAN. These findings support the multi-gene nature of the etiology of IgAN and propose a potential gene-gene interactive model for future studies.

  8. Non-crossing weighted kernel quantile regression with right censored data.

    Science.gov (United States)

    Bang, Sungwan; Eo, Soo-Heang; Cho, Yong Mee; Jhun, Myoungshic; Cho, HyungJun

    2016-01-01

    Regarding survival data analysis in regression modeling, multiple conditional quantiles are useful summary statistics to assess covariate effects on survival times. In this study, we consider an estimation problem of multiple nonlinear quantile functions with right censored survival data. To account for censoring in estimating a nonlinear quantile function, weighted kernel quantile regression (WKQR) has been developed by using the kernel trick and inverse-censoring-probability weights. However, the individually estimated quantile functions based on the WKQR often cross each other and consequently violate the basic properties of quantiles. To avoid this problem of quantile crossing, we propose the non-crossing weighted kernel quantile regression (NWKQR), which estimates multiple nonlinear conditional quantile functions simultaneously by enforcing the non-crossing constraints on kernel coefficients. The numerical results are presented to demonstrate the competitive performance of the proposed NWKQR over the WKQR.

  9. Biplots in Reduced-Rank Regression

    NARCIS (Netherlands)

    Braak, ter C.J.F.; Looman, C.W.N.

    1994-01-01

    Regression problems with a number of related response variables are typically analyzed by separate multiple regressions. This paper shows how these regressions can be visualized jointly in a biplot based on reduced-rank regression. Reduced-rank regression combines multiple regression and principal c

  10. On the multiplicity of solutions of the nonlinear reactive transport model

    Directory of Open Access Journals (Sweden)

    Elyas Shivanian

    2014-06-01

    Full Text Available The generalization of the nonlinear reaction–diffusion model in porous catalysts the so called one dimensional steady state reactive transport model is revisited. This model, which originates also in fluid and solute transport in soft tissues and microvessels, has been recently given analytical solution in terms of Taylor’s series for different families of reaction terms. This article considers the mentioned model without advective transport in the case of including Michaelis–Menten reaction term and shows that it is exactly solvable and furthermore, gives analytical exact solution in the implicit form for further physical interpretation. It is also revealed that the problem may admit unique or dual or even more triple solutions in some domains for the parameters of the model.

  11. Multiple mental tasks classification based on nonlinear parameter of mean period using support vector machines

    Institute of Scientific and Technical Information of China (English)

    Liu Hailong; Wang Jue; Zheng Chongxun

    2007-01-01

    Mental task classification is one of the most important problems in Brain-computer interface. This paper studies the classification of five-class mental tasks. The nonlinear parameter of mean period obtained from frequency domain information was used as features for classification implemented by using the method of SVM (support vector machines). The averaged classification accuracy of 85.6% over 7 subjects was achieved for 2-second EEG segments. And the results for EEG segments of 0.5s and 5.0s compared favorably to those of Garrett's. The results indicate that the parameter of mean period represents mental tasks well for classification. Furthermore, the method of mean period is less computationally demanding, which indicates its potential use for online BCI systems.

  12. Adaptive Fuzzy Bounded Control for Consensus of Multiple Strict-Feedback Nonlinear Systems.

    Science.gov (United States)

    Wang, Wei; Tong, Shaocheng

    2017-01-10

    This paper studies the adaptive fuzzy bounded control problem for leader-follower multiagent systems, where each follower is modeled by the uncertain nonlinear strict-feedback system. Combining the fuzzy approximation with the dynamic surface control, an adaptive fuzzy control scheme is developed to guarantee the output consensus of all agents under directed communication topologies. Different from the existing results, the bounds of the control inputs are known as a priori, and they can be determined by the feedback control gains. To realize smooth and fast learning, a predictor is introduced to estimate each error surface, and the corresponding predictor error is employed to learn the optimal fuzzy parameter vector. It is proved that the developed adaptive fuzzy control scheme guarantees the uniformly ultimate boundedness of the closed-loop systems, and the tracking error converges to a small neighborhood of the origin. The simulation results and comparisons are provided to show the validity of the control strategy presented in this paper.

  13. The severity of Minamata disease declined in 25 years: temporal profile of the neurological findings analyzed by multiple logistic regression model.

    Science.gov (United States)

    Uchino, Makoto; Hirano, Teruyuki; Satoh, Hiroshi; Arimura, Kimiyoshi; Nakagawa, Masanori; Wakamiya, Jyunji

    2005-01-01

    Minamata disease (MD) was caused by ingestion of seafood from the methylmercury-contaminated areas. Although 50 years have passed since the discovery of MD, there have been only a few studies on the temporal profile of neurological findings in certified MD patients. Thus, we evaluated changes in neurological symptoms and signs of MD using discriminants by multiple logistic regression analysis. The severity of predictive index declined in 25 years in most of the patients. Only a few patients showed aggravation of neurological findings, which was due to complications such as spino-cerebellar degeneration. Patients with chronic MD aged over 45 years had several concomitant diseases so that their clinical pictures were complicated. It was difficult to differentiate chronic MD using statistically established discriminants based on sensory disturbance alone. In conclusion, the severity of MD declined in 25 years along with the modification by age-related concomitant disorders.

  14. Multiple Regression Analysis of the Variable Component in the Near-Infrared Region for Type 1 AGN MCG+08-11-011

    CERN Document Server

    Tomita, H; Kobayashi, Y; Minezaki, T; Enya, K; Suganuma, M; Aoki, T; Koshida, S; Yamauchi, M; Tomita, Hiroyuki; Yoshii, Yuzuru; Kobayashi, Yukiyasu; Minezaki, Takeo; Enya, Keigo; Suganuma, Masahiro; Aoki, Tsutomu; Koshida, Shintaro; Yamauchi, Masahiro

    2006-01-01

    We propose a new method of analysing a variable component for type 1 active galactic nuclei (AGNs) in the near-infrared wavelength region. This analysis uses a multiple regression technique and divides the variable component into two components originating in the accretion disk at the center of AGNs and from the dust torus that far surrounds the disk. Applying this analysis to the long-term $VHK$ monitoring data of MCG+08-11-011 that were obtained by the MAGNUM project, we found that the $(H-K)$-color temperature of the dust component is $T = 1635$K $\\pm20$K, which agrees with the sublimation temperature of dust grains, and that the time delay of $K$ to $H$ variations is $\\Delta t\\approx 6$ days, which indicates the existence of a radial temperature gradient in the dust torus. As for the disk component, we found that the power-law spectrum of $f_\

  15. A comparative analysis of the effects of instructional design factors on student success in e-learning: multiple-regression versus neural networks

    Directory of Open Access Journals (Sweden)

    Halil Ibrahim Cebeci

    2009-12-01

    Full Text Available This study explores the relationship between the student performance and instructional design. The research was conducted at the E-Learning School at a university in Turkey. A list of design factors that had potential influence on student success was created through a review of the literature and interviews with relevant experts. From this, the five most import design factors were chosen. The experts scored 25 university courses on the extent to which they demonstrated the chosen design factors. Multiple-regression and supervised artificial neural network (ANN models were used to examine the relationship between student grade point averages and the scores on the five design factors. The results indicated that there is no statistical difference between the two models. Both models identified the use of examples and applications as the most influential factor. The ANN model provided more information and was used to predict the course-specific factor values required for a desired level of success.

  16. A modified parallel constitutive model for elevated temperature flow behavior of Ti-6Al-4V alloy based on multiple regression

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jun; Shi, Jiamin; Wang, Kuaishe; Wang, Wen; Wang, Qingjuan; Liu, Yingying [Xi' an Univ. of Architecture and Technology, Xi' an (China). School of Metallurgical Engineering; Li, Fuguo [Northwestern Polytechnical Univ., Xi' an (China). School of Materials Science and Engineering

    2017-07-15

    Constitutive analysis for hot working of Ti-6Al-4V alloy was carried out by using experimental stress-strain data from isothermal hot compression tests. A new kind of constitutive equation called a modified parallel constitutive model was proposed by considering the independent effects of strain, strain rate and temperature. The predicted flow stress data were compared with the experimental data. Statistical analysis was introduced to verify the validity of the developed constitutive equation. Subsequently, the accuracy of the proposed constitutive equations was evaluated by comparing with other constitutive models. The results showed that the developed modified parallel constitutive model based on multiple regression could predict flow stress of Ti-6Al-4V alloy with good correlation and generalization.

  17. Multiple Linear Regression Analysis Indicates Association of P-Glycoprotein Substrate or Inhibitor Character with Bitterness Intensity, Measured with a Sensor.

    Science.gov (United States)

    Yano, Kentaro; Mita, Suzune; Morimoto, Kaori; Haraguchi, Tamami; Arakawa, Hiroshi; Yoshida, Miyako; Yamashita, Fumiyoshi; Uchida, Takahiro; Ogihara, Takuo

    2015-09-01

    P-glycoprotein (P-gp) regulates absorption of many drugs in the gastrointestinal tract and their accumulation in tumor tissues, but the basis of substrate recognition by P-gp remains unclear. Bitter-tasting phenylthiocarbamide, which stimulates taste receptor 2 member 38 (T2R38), increases P-gp activity and is a substrate of P-gp. This led us to hypothesize that bitterness intensity might be a predictor of P-gp-inhibitor/substrate status. Here, we measured the bitterness intensity of a panel of P-gp substrates and nonsubstrates with various taste sensors, and used multiple linear regression analysis to examine the relationship between P-gp-inhibitor/substrate status and various physical properties, including intensity of bitter taste measured with the taste sensor. We calculated the first principal component analysis score (PC1) as the representative value of bitterness, as all taste sensor's outputs shared significant correlation. The P-gp substrates showed remarkably greater mean bitterness intensity than non-P-gp substrates. We found that Km value of P-gp substrates were correlated with molecular weight, log P, and PC1 value, and the coefficient of determination (R(2) ) of the linear regression equation was 0.63. This relationship might be useful as an aid to predict P-gp substrate status at an early stage of drug discovery.

  18. Development and application of a multiple linear regression model to consider the impact of weekly waste container capacity on the yield from kerbside recycling programmes in Scotland.

    Science.gov (United States)

    Baird, Jim; Curry, Robin; Reid, Tim

    2013-03-01

    This article describes the development and application of a multiple linear regression model to identify how the key elements of waste and recycling infrastructure, namely container capacity and frequency of collection, affect the yield from municipal kerbside recycling programmes. The overall aim of the research was to gain an understanding of the factors affecting the yield from municipal kerbside recycling programmes in Scotland with an underlying objective to evaluate the efficacy of the model as a decision-support tool for informing the design of kerbside recycling programmes. The study isolates the principal kerbside collection service offered by all 32 councils across Scotland, eliminating those recycling programmes associated with flatted properties or multi-occupancies. The results of the regression analysis model have identified three principal factors which explain 80% of the variability in the average yield of the principal dry recyclate services: weekly residual waste capacity, number of materials collected and the weekly recycling capacity. The use of the model has been evaluated and recommendations made on ongoing methodological development and the use of the results in informing the design of kerbside recycling programmes. We hope that the research can provide insights for the further development of methods to optimise the design and operation of kerbside recycling programmes.

  19. An improved approach for measuring the impact of multiple CO2 conductances on the apparent photorespiratory CO2 compensation point through slope-intercept regression.

    Science.gov (United States)

    Walker, Berkley J; Skabelund, Dane C; Busch, Florian A; Ort, Donald R

    2016-06-01

    Biochemical models of leaf photosynthesis, which are essential for understanding the impact of photosynthesis to changing environments, depend on accurate parameterizations. One such parameter, the photorespiratory CO2 compensation point can be measured from the intersection of several CO2 response curves measured under sub-saturating illumination. However, determining the actual intersection while accounting for experimental noise can be challenging. Additionally, leaf photosynthesis model outcomes are sensitive to the diffusion paths of CO2 released from the mitochondria. This diffusion path of CO2 includes both chloroplastic as well as cell wall resistances to CO2 , which are not readily measurable. Both the difficulties of determining the photorespiratory CO2 compensation point and the impact of multiple intercellular resistances to CO2 can be addressed through application of slope-intercept regression. This technical report summarizes an improved framework for implementing slope-intercept regression to evaluate measurements of the photorespiratory CO2 compensation point. This approach extends past work to include the cases of both Rubisco and Ribulose-1,5-bisphosphate (RuBP)-limited photosynthesis. This report further presents two interactive graphical applications and a spreadsheet-based tool to allow users to apply slope-intercept theory to their data.

  20. Multiple regression and inverse moments improve the characterization of the spatial scaling behavior of daily streamflows in the Southeast United States

    Science.gov (United States)

    Farmer, William H.; Over, Thomas M.; Vogel, Richard M.

    2015-01-01

    Understanding the spatial structure of daily streamflow is essential for managing freshwater resources, especially in poorly-gaged regions. Spatial scaling assumptions are common in flood frequency prediction (e.g., index-flood method) and the prediction of continuous streamflow at ungaged sites (e.g. drainage-area ratio), with simple scaling by drainage area being the most common assumption. In this study, scaling analyses of daily streamflow from 173 streamgages in the southeastern US resulted in three important findings. First, the use of only positive integer moment orders, as has been done in most previous studies, captures only the probabilistic and spatial scaling behavior of flows above an exceedance probability near the median; negative moment orders (inverse moments) are needed for lower streamflows. Second, assessing scaling by using drainage area alone is shown to result in a high degree of omitted-variable bias, masking the true spatial scaling behavior. Multiple regression is shown to mitigate this bias, controlling for regional heterogeneity of basin attributes, especially those correlated with drainage area. Previous univariate scaling analyses have neglected the scaling of low-flow events and may have produced biased estimates of the spatial scaling exponent. Third, the multiple regression results show that mean flows scale with an exponent of one, low flows scale with spatial scaling exponents greater than one, and high flows scale with exponents less than one. The relationship between scaling exponents and exceedance probabilities may be a fundamental signature of regional streamflow. This signature may improve our understanding of the physical processes generating streamflow at different exceedance probabilities.