WorldWideScience

Sample records for nonlinear multiple model

  1. Control design approaches for nonlinear systems using multiple models

    Institute of Scientific and Technical Information of China (English)

    Junyong ZHAI; Shumin FEI; Feipeng DA

    2007-01-01

    It is difficult to realize control for some complex nonlinear systems operated in different operating regions.Based on developing local models for different operating regions of the process, a novel algorithm using multiple models is proposed. It utilizes dynamic model bank to establish multiple local models, and their membership functions are defined according to respective regions. Then the nonlinear system is approximated to a weighted combination of the local models.The stability of the nonlinear system is proven. Finally, simulations are given to demonstrate the validity of the proposed method.

  2. Statistical selection of multiple-input multiple-output nonlinear dynamic models of spike train transformation.

    Science.gov (United States)

    Song, Dong; Chan, Rosa H M; Marmarelis, Vasilis Z; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W

    2007-01-01

    Multiple-input multiple-output nonlinear dynamic model of spike train to spike train transformations was previously formulated for hippocampal-cortical prostheses. This paper further described the statistical methods of selecting significant inputs (self-terms) and interactions between inputs (cross-terms) of this Volterra kernel-based model. In our approach, model structure was determined by progressively adding self-terms and cross-terms using a forward stepwise model selection technique. Model coefficients were then pruned based on Wald test. Results showed that the reduced kernel models, which contained much fewer coefficients than the full Volterra kernel model, gave good fits to the novel data. These models could be used to analyze the functional interactions between neurons during behavior.

  3. Manifold learning for object tracking with multiple nonlinear models.

    Science.gov (United States)

    Nascimento, Jacinto C; Silva, Jorge G; Marques, Jorge S; Lemos, Joao M

    2014-04-01

    This paper presents a novel manifold learning algorithm for high-dimensional data sets. The scope of the application focuses on the problem of motion tracking in video sequences. The framework presented is twofold. First, it is assumed that the samples are time ordered, providing valuable information that is not presented in the current methodologies. Second, the manifold topology comprises multiple charts, which contrasts to the most current methods that assume one single chart, being overly restrictive. The proposed algorithm, Gaussian process multiple local models (GP-MLM), can deal with arbitrary manifold topology by decomposing the manifold into multiple local models that are probabilistic combined using Gaussian process regression. In addition, the paper presents a multiple filter architecture where standard filtering techniques are integrated within the GP-MLM. The proposed approach exhibits comparable performance of state-of-the-art trackers, namely multiple model data association and deep belief networks, and compares favorably with Gaussian process latent variable models. Extensive experiments are presented using real video data, including a publicly available database of lip sequences and left ventricle ultrasound images, in which the GP-MLM achieves state of the art results.

  4. Nonlinear Decoupling PID Control Using Neural Networks and Multiple Models

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.

  5. Adaptive switching control of discrete time nonlinear systems based on multiple models

    Institute of Scientific and Technical Information of China (English)

    Rui KAN

    2004-01-01

    We use the approach of "optimal" switching to design the adaptive control because the design among multiple models is intuitively more practically feasible than the traditional adaptive control in improving the performances. We prove that for a typical class of nonlinear systems disturbed by random noise, the multiple model adaptive switching control based on WLS(Weighted Least Squares) or projected-LS (Least Squares) is stable and convergent.

  6. On Fitting Nonlinear Latent Curve Models to Multiple Variables Measured Longitudinally

    Science.gov (United States)

    Blozis, Shelley A.

    2007-01-01

    This article shows how nonlinear latent curve models may be fitted for simultaneous analysis of multiple variables measured longitudinally using Mx statistical software. Longitudinal studies often involve observation of several variables across time with interest in the associations between change characteristics of different variables measured…

  7. Nonlinear Modeling and Identification of an Aluminum Honeycomb Panel with Multiple Bolts

    Directory of Open Access Journals (Sweden)

    Yongpeng Chu

    2016-01-01

    Full Text Available This paper focuses on the nonlinear dynamics modeling and parameter identification of an Aluminum Honeycomb Panel (AHP with multiple bolted joints. Finite element method using eight-node solid elements is exploited to model the panel and the bolted connection interface as a homogeneous, isotropic plate and as a thin layer of nonlinear elastic-plastic material, respectively. The material properties of a thin layer are defined by a bilinear elastic plastic model, which can describe the energy dissipation and softening phenomena in the bolted joints under nonlinear states. Experimental tests at low and high excitation levels are performed to reveal the dynamic characteristics of the bolted structure. In particular, the linear material parameters of the panel are identified via experimental tests at low excitation levels, whereas the nonlinear material parameters of the thin layer are updated by using the genetic algorithm to minimize the residual error between the measured and the simulation data at a high excitation level. It is demonstrated by comparing the frequency responses of the updated FEM and the experimental system that the thin layer of bilinear elastic-plastic material is very effective for modeling the nonlinear joint interface of the assembled structure with multiple bolts.

  8. An algorithm for continuum modeling of rocks with multiple embedded nonlinearly-compliant joints

    Science.gov (United States)

    Hurley, R. C.; Vorobiev, O. Y.; Ezzedine, S. M.

    2017-08-01

    We present a numerical method for modeling the mechanical effects of nonlinearly-compliant joints in elasto-plastic media. The method uses a series of strain-rate and stress update algorithms to determine joint closure, slip, and solid stress within computational cells containing multiple "embedded" joints. This work facilitates efficient modeling of nonlinear wave propagation in large spatial domains containing a large number of joints that affect bulk mechanical properties. We implement the method within the massively parallel Lagrangian code GEODYN-L and provide verification and examples. We highlight the ability of our algorithms to capture joint interactions and multiple weakness planes within individual computational cells, as well as its computational efficiency. We also discuss the motivation for developing the proposed technique: to simulate large-scale wave propagation during the Source Physics Experiments (SPE), a series of underground explosions conducted at the Nevada National Security Site (NNSS).

  9. Min-max model predictive control for constrained nonlinear systems via multiple LPV embeddings

    Institute of Scientific and Technical Information of China (English)

    ZHAO Min; LI Ning; LI ShaoYuan

    2009-01-01

    A min-max model predictive control strategy is proposed for a class of constrained nonlinear system whose trajectories can be embedded within those of a bank of linear parameter varying (LPV) models. The embedding LPV models can yield much better approximation of the nonlinear system dynamics than a single LTV model. For each LPV model, a parameter-dependent Lyapunov function is introduced to obtain poly-quadratically stable control law and to guarantee the feasibility and stability of the original nonlinear system. This approach can greatly reduce computational burden in traditional nonlinear predictive control strategy. Finally a simulation example illustrating the strategy is presented.

  10. On-line Multiple-model Based Adaptive Control Reconfiguration for a Class of Non-linear Control Systems

    DEFF Research Database (Denmark)

    Yang, Z.; Izadi-Zamanabadi, Roozbeh; Blanke, M.

    2000-01-01

    Based on the model-matching strategy, an adaptive control reconfiguration method for a class of nonlinear control systems is proposed by using the multiple-model scheme. Instead of requiring the nominal and faulty nonlinear systems to match each other directly in some proper sense, three sets...... of LTI models are employed to approximate the faulty, reconfigured and nominal nonlinear systems respectively with respect to the on-line information of the operating system, and a set of compensating modules are proposed and designed so as to make the local LTI model approximating to the reconfigured...

  11. On-line Multiple-model Based Adaptive Control Reconfiguration for a Class of Non-linear Control Systems

    DEFF Research Database (Denmark)

    Yang, Z.; Izadi-Zamanabadi, Roozbeh; Blanke, M.

    2000-01-01

    Based on the model-matching strategy, an adaptive control reconfiguration method for a class of nonlinear control systems is proposed by using the multiple-model scheme. Instead of requiring the nominal and faulty nonlinear systems to match each other directly in some proper sense, three sets of ...... corresponding to the updating of local LTI models, which validations are determined by the model approximation errors and the optimal index of local design. The test on a nonlinear ship propulsion system shows the promising potential of this method for system reconfiguration...

  12. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches.

    Science.gov (United States)

    Basant, Nikita; Gupta, Shikha; Singh, Kunwar P

    2015-11-01

    In this study, we established nonlinear quantitative-structure toxicity relationship (QSTR) models for predicting the toxicities of chemical pesticides in multiple aquatic test species following the OECD (Organization for Economic Cooperation and Development) guidelines. The decision tree forest (DTF) and decision tree boost (DTB) based QSTR models were constructed using a pesticides toxicity dataset in Selenastrum capricornutum and a set of six descriptors. Other six toxicity data sets were used for external validation of the constructed QSTRs. Global QSTR models were also constructed using the combined dataset of all the seven species. The diversity in chemical structures and nonlinearity in the data were evaluated. Model validation was performed deriving several statistical coefficients for the test data and the prediction and generalization abilities of the QSTRs were evaluated. Both the QSTR models identified WPSA1 (weighted charged partial positive surface area) as the most influential descriptor. The DTF and DTB QSTRs performed relatively better than the single decision tree (SDT) and support vector machines (SVM) models used as a benchmark here and yielded R(2) of 0.886 and 0.964 between the measured and predicted toxicity values in the complete dataset (S. capricornutum). The QSTR models applied to six other aquatic species toxicity data yielded R(2) of >0.92 (DTF) and >0.97 (DTB), respectively. The prediction accuracies of the global models were comparable with those of the S. capricornutum models. The results suggest for the appropriateness of the developed QSTR models to reliably predict the aquatic toxicity of chemicals and can be used for regulatory purpose.

  13. A Comparison of Different Versions of the Method of Multiple Scales for an Arbitrary Model of Odd Nonlinearities

    OpenAIRE

    Pakdemirli, Mehmet; Boyacı, Hakan

    1999-01-01

    A general model of cubic and fifth order nonlinearities is considered. The linear part as well as the nonlinearities are expressed in terms of arbitrary operators. Two different versions of the method of multiple scales are used in constructing the general transient and steady-state solutions of the model: Modified Rahman-Burton method and the Reconstitution method. It is found that the usual ordering of reconstitution can be used, if at higher orders of approximation, the time scale correspo...

  14. A Multiple-Model Approach for Synchronous Generator Nonlinear System Identification

    Science.gov (United States)

    Ahmadi, Seyed Salman; Karrari, Mehdi

    2012-07-01

    In this paper, a multiple model approach is proposed for the identification of synchronous generators. In the literature, the same structure often is used for all local models. Therefore, to obtain a precise model for the operating condition of the synchronous generator with severely nonlinear behavior, many local models are required. The proposed method determines the complexity of local models based on complexity of behavior of the synchronous generator at different operating conditions. There are two choices for increasing model precision at each iteration of the proposed method: (i) increasing the number of local models in one region, or (ii) increasing local model complexity in the same region. The proposed method has been tested on experimental data collected on a 3 kVA micro-machine. In the study, the field voltage is considered as the input and the active output power and the terminal voltage are considered as the outputs of the synchronous generator. The proposed method provides a more precise model with fewer parameters compared to some well known methods such as LOLIMOT and global polynomial models.

  15. State estimation of stochastic non-linear hybrid dynamic system using an interacting multiple model algorithm.

    Science.gov (United States)

    Elenchezhiyan, M; Prakash, J

    2015-09-01

    In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme.

  16. Modeling nonstationary extreme value distributions with nonlinear functions: An application using multiple precipitation projections for U.S. cities

    Science.gov (United States)

    Um, Myoung-Jin; Kim, Yeonjoo; Markus, Momcilo; Wuebbles, Donald J.

    2017-09-01

    Climate extremes, such as heavy precipitation events, have become more common in recent decades, and nonstationarity concepts have increasingly been adopted to model hydrologic extremes. Various issues are associated with applying nonstationary modeling to extremes, and in this study, we focus on assessing the need for different forms of nonlinear functions in a nonstationary generalized extreme value (GEV) model of different annual maximum precipitation (AMP) time series. Moreover, we suggest an efficient approach for selecting the nonlinear functions of a nonstationary GEV model. Based on observed and multiple projected AMP data for eight cities across the U.S., three separate tasks are proposed. First, we conduct trend and stationarity tests for the observed and projected data. Second, AMP series are fit with thirty different nonlinear functions, and the best functions among these are selected. Finally, the selected nonlinear functions are used to model the location parameter of a nonstationary GEV model and stationary and nonstationary GEV models with a linear function. Our results suggest that the simple use of nonlinear functions might prove useful with nonstationary GEV models of AMP for different locations with different types of model results.

  17. On the multiplicity of solutions of the nonlinear reactive transport model

    Directory of Open Access Journals (Sweden)

    Elyas Shivanian

    2014-06-01

    Full Text Available The generalization of the nonlinear reaction–diffusion model in porous catalysts the so called one dimensional steady state reactive transport model is revisited. This model, which originates also in fluid and solute transport in soft tissues and microvessels, has been recently given analytical solution in terms of Taylor’s series for different families of reaction terms. This article considers the mentioned model without advective transport in the case of including Michaelis–Menten reaction term and shows that it is exactly solvable and furthermore, gives analytical exact solution in the implicit form for further physical interpretation. It is also revealed that the problem may admit unique or dual or even more triple solutions in some domains for the parameters of the model.

  18. Coordinated formation control of multiple nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Wei KANG; Ning XI; Jindong TAN; Yiwen ZHAO; Yuechao WANG

    2005-01-01

    A general method of controller design is developed for the purpose of formation keeping and reconfiguration of nonlinear systems with multiple subsystems,such as the formation of multiple aircraft,ground vehicles,or robot arms.The model consists of multiple nonlinear systems.Controllers are designed to keep the subsystems in a required formation and to coordinate the subsystems in the presence of environmental changes.A step-by-step algorithm of controller design is developed.Sufficient conditions for the stability of formation tracking are proved.Simulations and experiments are conducted to demonstrate some useful coordination strategies such as movement with a leader,simultaneous movement,series connection of formations,and human-machine interaction.

  19. Multiple-model-and-neural-network-based nonlinear multivariable adaptive control

    Institute of Scientific and Technical Information of China (English)

    Yue FU; Tianyou CHAI

    2007-01-01

    A multivariable adaptive controller feasible for implementation on distributed computer systems (DCS) is presented for a class of uncertain nonlinear multivariable discrete time systems. The adaptive controller is composed of a linear adaptive controller, a neural network nonlinear adaptive controller and a switching mechanism. The linear controller can provide boundedness of the input and output signals, and the nonlinear controller can improve the performance of the system. The purpose of using the switching mechanism is to obtain the improved system performance and stability simultaneously. Theory analysis and simulation results are presented to show the effectiveness of the proposed method.

  20. STATISTICAL METHODOLOGY FOR THE SIMULTANEOUS ANALYSIS OF MULTIPLE TYPES OF OUTCOMES IN NONLINEAR THRESHOLD MODELS.

    Science.gov (United States)

    Multiple outcomes are often measured on each experimental unit in toxicology experiments. These multiple observations typically imply the existence of correlation between endpoints, and a statistical analysis that incorporates it may result in improved inference. When both disc...

  1. Estimating nonlinear models

    Science.gov (United States)

    Billings, S. A.

    1988-03-01

    Time and frequency domain identification methods for nonlinear systems are reviewed. Parametric methods, prediction error methods, structure detection, model validation, and experiment design are discussed. Identification of a liquid level system, a heat exchanger, and a turbocharge automotive diesel engine are illustrated. Rational models are introduced. Spectral analysis for nonlinear systems is treated. Recursive estimation is mentioned.

  2. MULTIPLE REFLECTION EFFECTS IN NONLINEAR MIXTURE MODEL FOR HYPERSPECTRAL IMAGE ANALYSIS

    OpenAIRE

    Liu, C. Y.; Ren, H.

    2016-01-01

    Hyperspectral spectrometers can record electromagnetic energy with hundreds or thousands of spectral channels. With such high spectral resolution, the spectral information has better capability for material identification. Because of the spatial resolution, one pixel in hyperspectral images usually covers several meters, and it may contain more than one material. Therefore, the mixture model must be considered. Linear mixture model (LMM) has been widely used for remote sensing target...

  3. Fisher information matrix for nonlinear mixed effects multiple response models: evaluation of the appropriateness of the first order linearization using a pharmacokinetic/pharmacodynamic model.

    Science.gov (United States)

    Bazzoli, Caroline; Retout, Sylvie; Mentré, France

    2009-06-30

    We focus on the Fisher information matrix used for design evaluation and optimization in nonlinear mixed effects multiple response models. We evaluate the appropriateness of its expression computed by linearization as proposed for a single response model. Using a pharmacokinetic-pharmacodynamic (PKPD) example, we first compare the computation of the Fisher information matrix with approximation to one derived from the observed matrix on a large simulation using the stochastic approximation expectation-maximization algorithm (SAEM). The expression of the Fisher information matrix for multiple responses is also evaluated by comparison with the empirical information obtained through a replicated simulation study using the first-order linearization estimation methods implemented in the NONMEM software (first-order (FO), first-order conditional estimate (FOCE)) and the SAEM algorithm in the MONOLIX software. The predicted errors given by the approximated information matrix are close to those given by the information matrix obtained without linearization using SAEM and to the empirical ones obtained with FOCE and SAEM. The simulation study also illustrates the accuracy of both FOCE and SAEM estimation algorithms when jointly modelling multiple responses and the major limitations of the FO method. This study highlights the appropriateness of the approximated Fisher information matrix for multiple responses, which is implemented in PFIM 3.0, an extension of the R function PFIM dedicated to design evaluation and optimization. It also emphasizes the use of this computing tool for designing population multiple response studies, as for instance in PKPD studies or in PK studies including the modelling of the PK of a drug and its active metabolite.

  4. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-10-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  5. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-11-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  6. NONLINEAR STABILITY FOR EADY'S MODEL

    Institute of Scientific and Technical Information of China (English)

    LIU Yong-ming; QIU Ling-cun

    2005-01-01

    Poincaré type integral inequality plays an important role in the study of nonlinear stability ( in the sense of Arnold's second theorem) for three-dimensional quasigeostophic flow. The nonlinear stability of Eady's model is one of the most important cases in the application of the method. But the best nonlinear stability criterion obtained so far and the linear stability criterion are not coincident. The two criteria coincide only when the period of the channel is infinite.additional conservation law of momentum and by rigorous estimate of integral inequality. So the new nonlinear stability criterion was obtained, which shows that for Eady 's model in the periodic channel, the linear stable implies the nonlinear stable.

  7. Nonlinear models for autoregressive conditional heteroskedasticity

    DEFF Research Database (Denmark)

    Teräsvirta, Timo

    This paper contains a brief survey of nonlinear models of autore- gressive conditional heteroskedasticity. The models in question are parametric nonlinear extensions of the original model by Engle (1982). After presenting the individual models, linearity testing and parameter estimation...... are discussed. Forecasting volatility with nonlinear models is considered. Finally, parametric nonlinear models based on multi- plicative decomposition of the variance receive attention....

  8. Multiple scales analysis and travelling wave solutions for KdV type nonlinear evolution equations

    Science.gov (United States)

    Ayhan, Burcu; Ozer, M. Naci; Bekir, Ahmet

    2017-01-01

    Nonlinear evolution equations are the mathematical models of problems that arise in many field of science. These equations has become an important field of study in applied mathematics in recent years. We apply exact solution methods and multiple scale method which is known as a perturbation method to nonlinear evolution equations. Using exact solution methods we get travelling wave solutions expressed by hyperbolic functions, trigonometric functions and rational functions. Also we derive Nonlinear Schrödinger (NLS) type equations from Korteweg-de Vries (KdV) type nonlinear evolution equations and we get approximate solutions for KdV type equations using multiple scale method. The proposed methods are direct and effective and can be used for many nonlinear evolution equations. It is shown that these methods provide a powerful mathematical tool to solve nonlinear evolution equations in mathematical physics.

  9. Nonlinear Control of Heartbeat Models

    Directory of Open Access Journals (Sweden)

    Witt Thanom

    2011-02-01

    Full Text Available This paper presents a novel application of nonlinear control theory to heartbeat models. Existing heartbeat models are investigated and modified by incorporating the control input as a pacemaker to provide the control channel. A nonlinear feedback linearization technique is applied to force the output of the systems to generate artificial electrocardiogram (ECG signal using discrete data as the reference inputs. The synthetic ECG may serve as a flexible signal source to assess the effectiveness of a diagnostic ECG signal-processing device.

  10. Model updating of nonlinear structures from measured FRFs

    Science.gov (United States)

    Canbaloğlu, Güvenç; Özgüven, H. Nevzat

    2016-12-01

    There are always certain discrepancies between modal and response data of a structure obtained from its mathematical model and experimentally measured ones. Therefore it is a general practice to update the theoretical model by using experimental measurements in order to have a more accurate model. Most of the model updating methods used in structural dynamics are for linear systems. However, in real life applications most of the structures have nonlinearities, which restrict us applying model updating techniques available for linear structures, unless they work in linear range. Well-established frequency response function (FRF) based model updating methods would easily be extended to a nonlinear system if the FRFs of the underlying linear system (linear FRFs) could be experimentally measured. When frictional type of nonlinearity co-exists with other types of nonlinearities, it is not possible to obtain linear FRFs experimentally by using low level forcing. In this study a method (named as Pseudo Receptance Difference (PRD) method) is presented to obtain linear FRFs of a nonlinear structure having multiple nonlinearities including friction type of nonlinearity. PRD method, calculates linear FRFs of a nonlinear structure by using FRFs measured at various forcing levels, and simultaneously identifies all nonlinearities in the system. Then, any model updating method can be used to update the linear part of the mathematical model. In this present work, PRD method is used to predict the linear FRFs from measured nonlinear FRFs, and the inverse eigensensitivity method is employed to update the linear finite element (FE) model of the nonlinear structure. The proposed method is validated with different case studies using nonlinear lumped single-degree of freedom system, as well as a continuous system. Finally, a real nonlinear T-beam test structure is used to show the application and the accuracy of the proposed method. The accuracy of the updated nonlinear model of the

  11. Linear and Nonlinear Thinking: A Multidimensional Model and Measure

    Science.gov (United States)

    Groves, Kevin S.; Vance, Charles M.

    2015-01-01

    Building upon previously developed and more general dual-process models, this paper provides empirical support for a multidimensional thinking style construct comprised of linear thinking and multiple dimensions of nonlinear thinking. A self-report assessment instrument (Linear/Nonlinear Thinking Style Profile; LNTSP) is presented and…

  12. Linear and Nonlinear Thinking: A Multidimensional Model and Measure

    Science.gov (United States)

    Groves, Kevin S.; Vance, Charles M.

    2015-01-01

    Building upon previously developed and more general dual-process models, this paper provides empirical support for a multidimensional thinking style construct comprised of linear thinking and multiple dimensions of nonlinear thinking. A self-report assessment instrument (Linear/Nonlinear Thinking Style Profile; LNTSP) is presented and…

  13. Nonlinear and cooperative control of multiple hovercraft with input constraints

    OpenAIRE

    Dunbar, William B.; Olfati-Saber, Reza; Richard M Murray

    2003-01-01

    In this paper, we introduce an approach for distributed nonlinear control of multiple hovercraft-type underactuated vehicles with bounded and unidirectional inputs. First, a bounded nonlinear controller is given for stabilization and tracking of a single vehicle, using a cascade backstepping method. Then, this controller is combined with a distributed gradient-based control for multi-vehicle formation stabilization using formation potential functions previously constructed. The vehicles are u...

  14. Nonlinear Multiplicative Schwarz Preconditioning in Natural Convection Cavity Flow

    KAUST Repository

    Liu, Lulu

    2017-03-17

    A natural convection cavity flow problem is solved using nonlinear multiplicative Schwarz preconditioners, as a Gauss-Seidel-like variant of additive Schwarz preconditioned inexact Newton (ASPIN). The nonlinear preconditioning extends the domain of convergence of Newton’s method to high Rayleigh numbers. Convergence performance varies widely with respect to different groupings of the fields of this multicomponent problem, and with respect to different orderings of the groupings.

  15. Nonlinear time series modelling: an introduction

    OpenAIRE

    Simon M. Potter

    1999-01-01

    Recent developments in nonlinear time series modelling are reviewed. Three main types of nonlinear models are discussed: Markov Switching, Threshold Autoregression and Smooth Transition Autoregression. Classical and Bayesian estimation techniques are described for each model. Parametric tests for nonlinearity are reviewed with examples from the three types of models. Finally, forecasting and impulse response analysis is developed.

  16. Photonic Nonlinear Transient Computing with Multiple-Delay Wavelength Dynamics

    Science.gov (United States)

    Martinenghi, Romain; Rybalko, Sergei; Jacquot, Maxime; Chembo, Yanne K.; Larger, Laurent

    2012-06-01

    We report on the experimental demonstration of a hybrid optoelectronic neuromorphic computer based on a complex nonlinear wavelength dynamics including multiple delayed feedbacks with randomly defined weights. This neuromorphic approach is based on a new paradigm of a brain-inspired computational unit, intrinsically differing from Turing machines. This recent paradigm consists in expanding the input information to be processed into a higher dimensional phase space, through the nonlinear transient response of a complex dynamics excited by the input information. The computed output is then extracted via a linear separation of the transient trajectory in the complex phase space. The hyperplane separation is derived from a learning phase consisting of the resolution of a regression problem. The processing capability originates from the nonlinear transient, resulting in nonlinear transient computing. The computational performance is successfully evaluated on a standard benchmark test, namely, a spoken digit recognition task.

  17. Utilization of multiple frequencies in 3D nonlinear microwave imaging

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob

    2012-01-01

    The use of multiple frequencies in a nonlinear microwave algorithm is considered. Using multiple frequencies allows for obtaining the improved resolution available at the higher frequencies while retaining the regularizing effects of the lower frequencies. However, a number of different challenges...... at lower frequencies are used as starting guesses for reconstructions at higher frequencies. The performance is illustrated using simulated 2-D data and data obtained with the 3-D DTU microwave imaging system....

  18. Multiple solutions to some singular nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Monica Lazzo

    2001-01-01

    Full Text Available We consider the equation $$ - h^2 Delta u + V_varepsilon(x u = |u|^{p-2} u $$ which arises in the study of standing waves of a nonlinear Schrodinger equation. We allow the potential $V_varepsilon$ to be unbounded below and prove existence and multiplicity results for positive solutions.

  19. Multiple solutions for inhomogeneous nonlinear elliptic problems arising in astrophyiscs

    Directory of Open Access Journals (Sweden)

    Marco Calahorrano

    2004-04-01

    Full Text Available Using variational methods we prove the existence and multiplicity of solutions for some nonlinear inhomogeneous elliptic problems on a bounded domain in $mathbb{R}^n$, with $ngeq 2$ and a smooth boundary, and when the domain is $mathbb{R}_+^n$

  20. Modelling Loudspeaker Non-Linearities

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2007-01-01

    This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...

  1. Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models

    Institute of Scientific and Technical Information of China (English)

    LI Chaokui; ZHU Qing; SONG Chengfang

    2003-01-01

    This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.

  2. Nonlinear rheological models for structured interfaces

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2010-01-01

    The GENERIC formalism is a formulation of nonequilibrium thermodynamics ideally suited to develop nonlinear constitutive equations for the stress–deformation behavior of complex interfaces. Here we develop a GENERIC model for multiphase systems with interfaces displaying nonlinear viscoelastic stres

  3. A Multiple Model Approach to Modeling Based on LPF Algorithm

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Input-output data fitting methods are often used for unknown-structure nonlinear system modeling. Based on model-on-demand tactics, a multiple model approach to modeling for nonlinear systems is presented. The basic idea is to find out, from vast historical system input-output data sets, some data sets matching with the current working point, then to develop a local model using Local Polynomial Fitting (LPF) algorithm. With the change of working points, multiple local models are built, which realize the exact modeling for the global system. By comparing to other methods, the simulation results show good performance for its simple, effective and reliable estimation.``

  4. Reduced Noise Effect in Nonlinear Model Estimation Using Multiscale Representation

    Directory of Open Access Journals (Sweden)

    Mohamed N. Nounou

    2010-01-01

    Full Text Available Nonlinear process models are widely used in various applications. In the absence of fundamental models, it is usually relied on empirical models, which are estimated from measurements of the process variables. Unfortunately, measured data are usually corrupted with measurement noise that degrades the accuracy of the estimated models. Multiscale wavelet-based representation of data has been shown to be a powerful data analysis and feature extraction tool. In this paper, these characteristics of multiscale representation are utilized to improve the estimation accuracy of the linear-in-the-parameters nonlinear model by developing a multiscale nonlinear (MSNL modeling algorithm. The main idea in this MSNL modeling algorithm is to decompose the data at multiple scales, construct multiple nonlinear models at multiple scales, and then select among all scales the model which best describes the process. The main advantage of the developed algorithm is that it integrates modeling and feature extraction to improve the robustness of the estimated model to the presence of measurement noise in the data. This advantage of MSNL modeling is demonstrated using a nonlinear reactor model.

  5. Adaptive regression for modeling nonlinear relationships

    CERN Document Server

    Knafl, George J

    2016-01-01

    This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...

  6. Nonlinear Mixed-Effects Models for Repairable Systems Reliability

    Institute of Scientific and Technical Information of China (English)

    TAN Fu-rong; JIANG Zhi-bin; KUO Way; Suk Joo BAE

    2007-01-01

    Mixed-effects models, also called random-effects models, are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject, but also to describe the variation among different subjects. Nonlinear mixed-effects models provide a powerful and flexible tool for handling the unbalanced count data. In this paper, nonlinear mixed-effects models are used to analyze the failure data from a repairable system with multiple copies. By using this type of models, statistical inferences about the population and all copies can be made when accounting for copy-to-copy variance. Results of fitting nonlinear mixed-effects models to nine failure-data sets show that the nonlinear mixed-effects models provide a useful tool for analyzing the failure data from multi-copy repairable systems.

  7. Multiple nonlinear parameter estimation using PI feedback control

    NARCIS (Netherlands)

    Lith, van P. F.; Witteveen, H.; Betlem, B.H.L.; Roffel, B.

    2001-01-01

    Nonlinear parameters often need to be estimated during the building of chemical process models. To accomplish this, many techniques are available. This paper discusses an alternative view to parameter estimation, where the concept of PI feedback control is used to estimate model parameters. The appr

  8. Multiple Positive Solutions for Nonlinear Semipositone Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Wen-Xue Zhou

    2012-01-01

    Full Text Available We present some new multiplicity of positive solutions results for nonlinear semipositone fractional boundary value problem D0+αu(t=p(tf(t,u(t-q(t,0

  9. Nonlinear Modelling of Low Frequency Loudspeakers

    DEFF Research Database (Denmark)

    Olsen, Erling Sandermann

    1997-01-01

    In the Danish LoDist project on distortion from dynamic low-frequency loudspeakers, a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...... for describing the nonlinearities have been developed. Different aspects of modelling loudspeaker nonlinearities are discussed, and the program is briefly described....

  10. Nonlinear Modelling of Low Frequency Loudspeakers

    DEFF Research Database (Denmark)

    Olsen, Erling Sandermann

    1997-01-01

    In the Danish LoDist project on distortion from dynamic low frequency loudspeakers a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...... for describing the nonlinearities have been developed. Different aspects of modelling loudspeaker nonlinearities are discussed and the program is briefly demonstrated....

  11. ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR NONLINEAR SYSTEM WITH MULTIPLE DELAYS

    Institute of Scientific and Technical Information of China (English)

    曹显兵

    2003-01-01

    The existence of T-periodic solutions of the nonlinear system with multiple delaysis studied. By using the topological degree method, sufficient conditions are obtained forthe existence of T-periodic solutions. As an application, the existence of positive periodicsolution for a logarithmic population model is established under some conditions.

  12. Computational Models for Nonlinear Aeroelastic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...

  13. Model Updating Nonlinear System Identification Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology (ZONA) proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology that utilizes flight data with...

  14. Mathematical modeling and applications in nonlinear dynamics

    CERN Document Server

    Merdan, Hüseyin

    2016-01-01

    The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...

  15. Complex Nonlinear Behavior in Metabolic Processes: Global Bifurcation Analysis of Escherichia coli Growth on Multiple Substrates

    Directory of Open Access Journals (Sweden)

    Hyun-Seob Song

    2013-09-01

    Full Text Available The nonlinear behavior of metabolic systems can arise from at least two different sources. One comes from the nonlinear kinetics of chemical reactions in metabolism and the other from nonlinearity associated with regulatory processes. Consequently, organisms at a constant growth rate (as experienced in a chemostat could display multiple metabolic states or display complex oscillatory behavior both with potentially serious implications to process operation. This paper explores the nonlinear behavior of a metabolic model of Escherichia coli growth on mixed substrates with sufficient detail to include regulatory features through the cybernetic postulate that metabolic regulation is the consequence of a dynamic objective function ensuring the organism’s survival. The chief source of nonlinearity arises from the optimal formulation with the metabolic state determined by a convex combination of reactions contributing to the objective function. The model for anaerobic growth of E. coli was previously examined for multiple steady states in a chemostat fed by a mixture of glucose and pyruvate substrates under very specific conditions and experimentally verified. In this article, we explore the foregoing model for nonlinear behavior over the full range of parameters, γ (the fractional concentration of glucose in the feed mixture and D (the dilution rate. The observed multiplicity is in the cybernetic variables combining elementary modes. The results show steady-state multiplicity up to seven. No Hopf bifurcation was encountered, however. Bifurcation analysis of cybernetic models is complicated by the non-differentiability of the cybernetic variables for enzyme activities. A methodology is adopted here to overcome this problem, which is applicable to more complicated metabolic networks.

  16. Nonlinear modeling of neural population dynamics for hippocampal prostheses

    OpenAIRE

    Song, Dong; Chan, Rosa H.M.; Vasilis Z Marmarelis; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.

    2009-01-01

    Developing a neural prosthesis for the damaged hippocampus requires restoring the transformation of population neural activities performed by the hippocampal circuitry. To bypass a damaged region, output spike trains need to be predicted from the input spike trains and then reinstated through stimulation. We formulate a multiple-input, multiple-output (MIMO) nonlinear dynamic model for the input–output transformation of spike trains. In this approach, a MIMO model comprises a series of physio...

  17. Optimal design for nonlinear response models

    CERN Document Server

    Fedorov, Valerii V

    2013-01-01

    Optimal Design for Nonlinear Response Models discusses the theory and applications of model-based experimental design with a strong emphasis on biopharmaceutical studies. The book draws on the authors' many years of experience in academia and the pharmaceutical industry. While the focus is on nonlinear models, the book begins with an explanation of the key ideas, using linear models as examples. Applying the linearization in the parameter space, it then covers nonlinear models and locally optimal designs as well as minimax, optimal on average, and Bayesian designs. The authors also discuss ada

  18. Nonlinear cumulative damage model for multiaxial fatigue

    Institute of Scientific and Technical Information of China (English)

    SHANG De-guang; SUN Guo-qin; DENG Jing; YAN Chu-liang

    2006-01-01

    On the basis of the continuum fatigue damage theory,a nonlinear uniaxial fatigue cumulative damage model is first proposed.In order to describe multiaxial fatigue damage characteristics,a nonlinear multiaxial fatigue cumulative damage model is developed based on the critical plane approach,The proposed model can consider the multiaxial fatigue limit,mean hydrostatic pressure and the unseparated characteristic for the damage variables and loading parameters.The recurrence formula of fatigue damage model was derived under multilevel loading,which is used to predict multiaxial fatigue life.The results showed that the proposed nonlinear multiaxial fatigue cumulative damage model is better than Miner's rule.

  19. Completely integrable models of nonlinear optics

    Indian Academy of Sciences (India)

    Andrey I Maimistov

    2001-11-01

    The models of the nonlinear optics in which solitons appeared are considered. These models are of paramount importance in studies of nonlinear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency and parametric interaction of three waves. At present there are a number of theories based on completely integrable systems of equations, which are, both, generations of the original known models and new ones. The modified Korteweg-de Vries equation, the nonlinear Schrödinger equation, the derivative nonlinear Schrödinger equation, Sine–Gordon equation, the reduced Maxwell–Bloch equation, Hirota equation, the principal chiral field equations, and the equations of massive Thirring model are some soliton equations, which are usually to be found in nonlinear optics theory.

  20. Designing Experiments for Nonlinear Models - An Introduction

    OpenAIRE

    Johnson, Rachel T.; Montgomery, Douglas C.

    2009-01-01

    The article of record as published may be found at http://dx.doi.org/10.1002/qre.1063 We illustrate the construction of Bayesian D-optimal designs for nonlinear models and compare the relative efficiency of standard designs with these designs for several models and prior distributions on the parameters. Through a relative efficiency analysis, we show that standard designs can perform well in situations where the nonlinear model is intrinsically linear. However, if the model is non...

  1. Functional uniform priors for nonlinear modeling.

    Science.gov (United States)

    Bornkamp, Björn

    2012-09-01

    This article considers the topic of finding prior distributions when a major component of the statistical model depends on a nonlinear function. Using results on how to construct uniform distributions in general metric spaces, we propose a prior distribution that is uniform in the space of functional shapes of the underlying nonlinear function and then back-transform to obtain a prior distribution for the original model parameters. The primary application considered in this article is nonlinear regression, but the idea might be of interest beyond this case. For nonlinear regression the so constructed priors have the advantage that they are parametrization invariant and do not violate the likelihood principle, as opposed to uniform distributions on the parameters or the Jeffrey's prior, respectively. The utility of the proposed priors is demonstrated in the context of design and analysis of nonlinear regression modeling in clinical dose-finding trials, through a real data example and simulation.

  2. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...... on the governing equations and methods of implementing....

  3. Nonlinear Resistivity for Magnetohydrodynamical Models

    CERN Document Server

    Lingam, Manasvi; Pfefferlé, David; Comisso, Luca; Bhattacharjee, Amitava

    2016-01-01

    A nonlinear current-dependent resistivity that accurately accounts for the collisional electron-ion momentum transfer rate is derived. It is shown that the Spitzer resistivity overestimates the resistivity in certain observationally relevant regimes. The nonlinear resistivity computed herein is a strictly decreasing function of the current, in contrast to some notable previous proposals. The relative importance of the new expression with respect to the well-established electron inertia and Hall terms is also examined. The subtle implications of this current-dependent resistivity are discussed in the context of plasma systems and phenomena such as magnetic reconnection.

  4. Designing a mixture experiment when the components are subject to a nonlinear multiple-component constraint

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Greg F.; Cooley, Scott K.; Vienna, John D.; Crum, Jarrod V.

    2015-12-14

    This article presents a case study of developing an experimental design for a constrained mixture experiment when the experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this article. The case study involves a 15-component nuclear waste glass example in which SO3 is one of the components. SO3 has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO3 would not exceed its predicted solubility limit for any of the experimental glasses. The SO3 solubility limit had previously been modeled by a partial quadratic mixture (PQM) model expressed in the relative proportions of the 14 other components. The PQM model was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This article discusses the waste glass example and how a layered design was generated to (i) account for the SCCs, linear MCCs, and nonlinear MCC and (ii) meet the goals of the study.

  5. Nonlinear modeling of thermoacoustically driven energy cascade

    Science.gov (United States)

    Gupta, Prateek; Scalo, Carlo; Lodato, Guido

    2016-11-01

    We present an investigation of nonlinear energy cascade in thermoacoustically driven high-amplitude oscillations, from the initial weakly nonlinear regime to the shock wave dominated limit cycle. We develop a first principle based quasi-1D model for nonlinear wave propagation in a canonical minimal unit thermoacoustic device inspired by the experimental setup of Biwa et al.. Retaining up to quadratic nonlinear terms in the governing equations, we develop model equations for nonlinear wave propagation in the proximity of differentially heated no-slip boundaries. Furthermore, we discard the effects of acoustic streaming in the present study and focus on nonlinear energy cascade due to high amplitude wave propagation. Our model correctly predicts the observed exponential growth of the thermoacoustically amplified second harmonic, as well as the energy transfer rate to higher harmonics causing wave steepening. Moreover, we note that nonlinear coupling of local pressure with heat transfer reduces thermoacoustic amplification gradually thus causing the system to reach limit cycle exhibiting shock waves. Throughout, we verify the results from the quasi-1D model with fully compressible Navier-Stokes simulations.

  6. Model Updating Nonlinear System Identification Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology by adopting the flight data with state-of-the-art...

  7. Comparing coefficients of nested nonlinear probability models

    DEFF Research Database (Denmark)

    Kohler, Ulrich; Karlson, Kristian Bernt; Holm, Anders

    2011-01-01

    In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general decomposi......In a series of recent articles, Karlson, Holm and Breen have developed a method for comparing the estimated coeffcients of two nested nonlinear probability models. This article describes this method and the user-written program khb that implements the method. The KHB-method is a general...... decomposition method that is unaffected by the rescaling or attenuation bias that arise in cross-model comparisons in nonlinear models. It recovers the degree to which a control variable, Z, mediates or explains the relationship between X and a latent outcome variable, Y*, underlying the nonlinear probability...

  8. On a Nonlinear Model in Adiabatic Evolutions

    Science.gov (United States)

    Sun, Jie; Lu, Song-Feng

    2016-08-01

    In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041

  9. Computational Models for Nonlinear Aeroelastic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate a new and efficient computational method of modeling nonlinear aeroelastic systems. The...

  10. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of three...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

  11. Diagnosis of multiple sclerosis from EEG signals using nonlinear methods.

    Science.gov (United States)

    Torabi, Ali; Daliri, Mohammad Reza; Sabzposhan, Seyyed Hojjat

    2017-09-08

    EEG signals have essential and important information about the brain and neural diseases. The main purpose of this study is classifying two groups of healthy volunteers and Multiple Sclerosis (MS) patients using nonlinear features of EEG signals while performing cognitive tasks. EEG signals were recorded when users were doing two different attentional tasks. One of the tasks was based on detecting a desired change in color luminance and the other task was based on detecting a desired change in direction of motion. EEG signals were analyzed in two ways: EEG signals analysis without rhythms decomposition and EEG sub-bands analysis. After recording and preprocessing, time delay embedding method was used for state space reconstruction; embedding parameters were determined for original signals and their sub-bands. Afterwards nonlinear methods were used in feature extraction phase. To reduce the feature dimension, scalar feature selections were done by using T-test and Bhattacharyya criteria. Then, the data were classified using linear support vector machines (SVM) and k-nearest neighbor (KNN) method. The best combination of the criteria and classifiers was determined for each task by comparing performances. For both tasks, the best results were achieved by using T-test criterion and SVM classifier. For the direction-based and the color-luminance-based tasks, maximum classification performances were 93.08 and 79.79% respectively which were reached by using optimal set of features. Our results show that the nonlinear dynamic features of EEG signals seem to be useful and effective in MS diseases diagnosis.

  12. Identifying nonlinear biomechanical models by multicriteria analysis

    Science.gov (United States)

    Srdjevic, Zorica; Cveticanin, Livija

    2012-02-01

    In this study, the methodology developed by Srdjevic and Cveticanin (International Journal of Industrial Ergonomics 34 (2004) 307-318) for the nonbiased (objective) parameter identification of the linear biomechanical model exposed to vertical vibrations is extended to the identification of n-degree of freedom (DOF) nonlinear biomechanical models. The dynamic performance of the n-DOF nonlinear model is described in terms of response functions in the frequency domain, such as the driving-point mechanical impedance and seat-to-head transmissibility function. For randomly generated parameters of the model, nonlinear equations of motion are solved using the Runge-Kutta method. The appropriate data transformation from the time-to-frequency domain is performed by a discrete Fourier transformation. Squared deviations of the response functions from the target values are used as the model performance evaluation criteria, thus shifting the problem into the multicriteria framework. The objective weights of criteria are obtained by applying the Shannon entropy concept. The suggested methodology is programmed in Pascal and tested on a 4-DOF nonlinear lumped parameter biomechanical model. The identification process over the 2000 generated sets of parameters lasts less than 20 s. The model response obtained with the imbedded identified parameters correlates well with the target values, therefore, justifying the use of the underlying concept and the mathematical instruments and numerical tools applied. It should be noted that the identified nonlinear model has an improved accuracy of the biomechanical response compared to the accuracy of a linear model.

  13. Nonlinear model predictive control theory and algorithms

    CERN Document Server

    Grüne, Lars

    2017-01-01

    This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...

  14. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016......)]. The first effect is the nonlinear power saturation of the plasmonic mode, and the second effect is the spectral broadening of the plasmonic mode. Both nonlinear plasmonic effects can be used for practical applications and their appropriate model will be important for further developments in communication...

  15. Supersymmetric Q-Lumps in the Grassmannian nonlinear sigma models

    CERN Document Server

    Bak, D; Lee, J; Oh, P; Bak, Dongsu; Hahn, Sang-Ok; Lee, Joohan; Oh, Phillial

    2007-01-01

    We construct the N=2 supersymmetric Grassmannian nonlinear sigma model for the massless case and extend it to massive N=2 model by adding an appropriate superpotential. We then study their BPS equations leading to supersymmetric Q-lumps carrying both topological and Noether charges. These solutions are shown to be always time dependent even sometimes involving multiple frequencies. Thus we illustrate explicitly that the time dependence is consistent with remaining supersymmetries of solitons.

  16. A multiple-scale power series method for solving nonlinear ordinary differential equations

    Directory of Open Access Journals (Sweden)

    Chein-Shan Liu

    2016-02-01

    Full Text Available The power series solution is a cheap and effective method to solve nonlinear problems, like the Duffing-van der Pol oscillator, the Volterra population model and the nonlinear boundary value problems. A novel power series method by considering the multiple scales $R_k$ in the power term $(t/R_k^k$ is developed, which are derived explicitly to reduce the ill-conditioned behavior in the data interpolation. In the method a huge value times a tiny value is avoided, such that we can decrease the numerical instability and which is the main reason to cause the failure of the conventional power series method. The multiple scales derived from an integral can be used in the power series expansion, which provide very accurate numerical solutions of the problems considered in this paper.

  17. Topological approximation of the nonlinear Anderson model

    Science.gov (United States)

    Milovanov, Alexander V.; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  18. Nonlinear modeling of an aerospace object dynamics

    Science.gov (United States)

    Davydov, I. E.; Davydov, E. I.

    2017-01-01

    Here are presented the scientific results, obtained by motion modeling of complicated technical systems of aerospace equipment with consideration of nonlinearities. Computerized panel that allows to measure mutual influence of the system's motion and stabilization device with consideration of its real characteristics has been developed. Analysis of motion stability of a system in general has been carried out and time relationships of the system's motion taking in account nonlinearities are presented.

  19. Nonlinear chaotic model for predicting storm surges

    NARCIS (Netherlands)

    Siek, M.; Solomatine, D.P.

    This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables.

  20. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.

    2009-06-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  1. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  2. Modeling of the vibrating beam accelerometer nonlinearities

    Science.gov (United States)

    Romanowski, P. A.; Knop, R. C.

    Successful modeling and processing of the output of a quartz Vibrating Beam Accelerometer (VBA), whose errors are inherently nonlinear with respect to input acceleration, are reported. The VBA output, with two signals that are frequencies of vibrating quartz beams, has inherent higher-order terms. In order to avoid vibration rectification errors, the signal output must be sampled at a rapid rate and the output must be reduced using a nonlinear model. The present model, with acceleration as a function of frequency, is derived by a least-squares process where the covariance matrix is obtained from simulated data. The system performance is found to be acceptable to strategic levels, and it is shown that a vibration rectification error of 400 micrograms/sq g can be reduced to 4 micrograms/sq g by using the processor electronics and a nonlinear model.

  3. Exploring lipids with nonlinear optical microscopy in multiple biological systems

    Science.gov (United States)

    Alfonso-Garcia, Alba

    Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by

  4. Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory

    DEFF Research Database (Denmark)

    Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav

    Contraction theory is a recently developed nonlinear analysis tool which may be useful for solving a variety of nonlinear control problems. In this paper, using Contraction theory, a nonlinear observer is designed for a general nonlinear cable/string FEM (Finite Element Method) model. The cable...

  5. Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory

    DEFF Research Database (Denmark)

    Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav

    Contraction theory is a recently developed nonlinear analysis tool which may be useful for solving a variety of nonlinear control problems. In this paper, using Contraction theory, a nonlinear observer is designed for a general nonlinear cable/string FEM (Finite Element Method) model. The cable...

  6. Multiplicity of ground state solutions for discrete nonlinear Schrodinger equations with unbounded potentials

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2017-02-01

    Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. In this article, we consider a class of discrete nonlinear Schrodinger equations with unbounded potentials. We obtain some new sufficient conditions on the multiplicity results of ground state solutions for the equations by using the symmetric mountain pass lemma. Recent results in the literature are greatly improved.

  7. Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries

    Science.gov (United States)

    Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung

    2017-09-01

    Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.

  8. Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises.

    Science.gov (United States)

    Chang, Wen-Jer; Huang, Bo-Jyun

    2014-11-01

    The multi-constrained robust fuzzy control problem is investigated in this paper for perturbed continuous-time nonlinear stochastic systems. The nonlinear system considered in this paper is represented by a Takagi-Sugeno fuzzy model with perturbations and state multiplicative noises. The multiple performance constraints considered in this paper include stability, passivity and individual state variance constraints. The Lyapunov stability theory is employed to derive sufficient conditions to achieve the above performance constraints. By solving these sufficient conditions, the contribution of this paper is to develop a parallel distributed compensation based robust fuzzy control approach to satisfy multiple performance constraints for perturbed nonlinear systems with multiplicative noises. At last, a numerical example for the control of perturbed inverted pendulum system is provided to illustrate the applicability and effectiveness of the proposed multi-constrained robust fuzzy control method.

  9. A nonlinear constitutive model for magnetostrictive materials

    Institute of Scientific and Technical Information of China (English)

    Xin'en Liu; Xiaojing Zheng

    2005-01-01

    A general nonlinear constitutive model is proposed for magnetostrictive materials, based on the important physical fact that a nonlinear part of the elastic strain produced by a pre-stress is related to the magnetic domain rotation or movement and is responsible for the change of the maximum magnetostrictive strain with the pre-stress. To avoid the complicity of determining the tensor function describing the nonlinear elastic strain part, this paper proposes a simplified model by means of linearizing the nonlinear function.For the convenience of engineering applications, the expressions of the 3-D (bulk), 2-D (film) and 1-D (rod) models are, respectively, given for an isotropic material and their applicable ranges are also discussed. By comparison with the experimental data of a Terfenol-D rod, it is found that the proposed model can accurately predict the magnetostrictive strain curves in low, moderate and high magnetic field regions for various compressive pre-stress levels. The numerical simulation further illustrates that, for either magnetostrictive rods or thin films, the proposed model can effectively describe the effects of the pre-stress or residual stress on the magnetization and magnetostrictive strain curves, while none of the known models can capture all of them. Therefore, the proposed model enjoys higher precision and wider applicability than the previous models, especially in the region of the high field.

  10. A Nonlinear Model of Thermoacoustic Devices

    NARCIS (Netherlands)

    Karpov, Sergey; Prosperetti, Andrea

    2002-01-01

    This paper presents a nonlinear, time-domain model of thermoacoustic devices based on cross-sectional averaged equations. Heat transfer perpendicular to the device axis - which lies at the core of thermoacoustic effects - is modeled in a novel and more realistic way. Heat conduction in the solid sur

  11. Some Asymptotic Inference in Multinomial Nonlinear Models (a Geometric Approach)

    Institute of Scientific and Technical Information of China (English)

    WEIBOCHENG

    1996-01-01

    A geometric framework is proposed for multinomlat nonlinear modelsbased on a modified vemlon of the geometric structure presented by Bates & Watts[4]. We use this geometric framework to study some asymptotic inference in terms ofcurvtures for multlnomial nonlinear models. Our previous results [15] for ordlnary nonlinear regression models are extended to multlnomlal nonlinear models.

  12. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations betwee...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models.......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under...

  13. Groundwater transport modeling with nonlinear sorption and intraparticle diffusion

    Science.gov (United States)

    Singh, Anshuman; Allen-King, Richelle M.; Rabideau, Alan J.

    2014-08-01

    Despite recent advances in the mechanistic understanding of sorption in groundwater systems, most contaminant transport models provide limited support for nonideal sorption processes such as nonlinear isotherms and/or diffusion-limited sorption. However, recent developments in the conceptualization of "dual mode" sorption for hydrophobic organic contaminants have provided more realistic and mechanistically sound alternatives to the commonly used Langmuir and Freundlich models. To support the inclusion of both nonlinear and diffusion-limited sorption processes in groundwater transport models, this paper presents two numerical algorithms based on the split operator approach. For the nonlinear equilibrium scenario, the commonly used two-step split operator algorithm has been modified to provide a more robust treatment of complex multi-parameter isotherms such as the Polanyi-partitioning model. For diffusion-limited sorption, a flexible three step split-operator procedure is presented to simulate intraparticle diffusion in multiple spherical particles with different sizes and nonlinear isotherms. Numerical experiments confirmed the accuracy of both algorithms for several candidate isotherms. However, the primary advantages of the algorithms are: (1) flexibility to accommodate any isotherm equation including "dual mode" and similar expressions, and (2) ease of adapting existing grid-based transport models of any dimensionality to include nonlinear sorption and/or intraparticle diffusion. Comparisons are developed for one-dimensional transport scenarios with different isotherms and particle configurations. Illustrative results highlight (1) the potential influence of isotherm model selection on solute transport predictions, and (2) the combined effects of intraparticle diffusion and nonlinear sorption on the plume transport and flushing for both single-particle and multi-particle scenarios.

  14. Nonlinear acoustic propagation in bubbly liquids: Multiple scattering, softening and hardening phenomena.

    Science.gov (United States)

    Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel

    2016-04-01

    The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials.

  15. Perturbation analysis of nonlinear matrix population models

    Directory of Open Access Journals (Sweden)

    Hal Caswell

    2008-03-01

    Full Text Available Perturbation analysis examines the response of a model to changes in its parameters. It is commonly applied to population growth rates calculated from linear models, but there has been no general approach to the analysis of nonlinear models. Nonlinearities in demographic models may arise due to density-dependence, frequency-dependence (in 2-sex models, feedback through the environment or the economy, and recruitment subsidy due to immigration, or from the scaling inherent in calculations of proportional population structure. This paper uses matrix calculus to derive the sensitivity and elasticity of equilibria, cycles, ratios (e.g. dependency ratios, age averages and variances, temporal averages and variances, life expectancies, and population growth rates, for both age-classified and stage-classified models. Examples are presented, applying the results to both human and non-human populations.

  16. New Algorithm Model for Processing Generalized Dynamic Nonlinear Data Derived from Deformation Monitoring Network

    Institute of Scientific and Technical Information of China (English)

    LIN Xiangguo; LIANG Yong

    2005-01-01

    The processing of nonlinear data was one of hot topics in surveying and mapping field in recent years.As a result, many linear methods and nonlinear methods have been developed.But the methods for processing generalized nonlinear surveying and mapping data, especially for different data types and including unknown parameters with random or nonrandom, are seldom noticed.A new algorithm model is presented in this paper for processing nonlinear dynamic multiple-period and multiple-accuracy data derived from deformation monitoring network.

  17. Multiple-input multiple-output symbol rate signal digital predistorter for non-linear multi-carrier satellite channels

    OpenAIRE

    Zenteno, Efrain; Piazza, Roberto; M. R. Bhavani Shankar; Rönnow, Daniel; Ottersten, Björn

    2015-01-01

    A digital predistortion (DPD) scheme is presented for non-linear distortion mitigation in multi-carrier satellite communication channels. The proposed DPD has a multiple-input multiple-output architecture similar to data DPD schemes. However, it enhances the mitigation performance of data DPDs using a multi-rate processing algorithm to achieve spectrum broadening of non-linear operators. Compared to single carrier (single-input single-output) signal (waveform) DPD schemes, the proposed DPD ha...

  18. Nonlinear control of the Salnikov model reaction

    DEFF Research Database (Denmark)

    Recke, Bodil; Jørgensen, Sten Bay

    1999-01-01

    This paper explores different nonlinear control schemes, applied to a simple model reaction. The model is the Salnikov model, consisting of two ordinary differential equations. The control strategies investigated are I/O-linearisation, Exact linearisation, exact linearisation combined with LQR...... and Control Lyapunov Functions (CLF's). The results show that based on the lowest possible cost function and shortest settling time, the exact linearisation performs marginally better than the other methods....

  19. Nonlinear System Identification and Behavioral Modeling

    CERN Document Server

    Huq, Kazi Mohammed Saidul; Kabir, A F M Sultanul

    2010-01-01

    The problem of determining a mathematical model for an unknown system by observing its input-output data pair is generally referred to as system identification. A behavioral model reproduces the required behavior of the original analyzed system, such as there is a one-to-one correspondence between the behavior of the original system and the simulated system. This paper presents nonlinear system identification and behavioral modeling using a work assignment.

  20. Nonlinear distortion in wireless systems modeling and simulation with Matlab

    CERN Document Server

    Gharaibeh, Khaled M

    2011-01-01

    This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems

  1. Nonlinearity detection in hyperspectral images using a polynomial post-nonlinear mixing model.

    Science.gov (United States)

    Altmann, Yoann; Dobigeon, Nicolas; Tourneret, Jean-Yves

    2013-04-01

    This paper studies a nonlinear mixing model for hyperspectral image unmixing and nonlinearity detection. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated by polynomials leading to a polynomial post-nonlinear mixing model. We have shown in a previous paper that the parameters involved in the resulting model can be estimated using least squares methods. A generalized likelihood ratio test based on the estimator of the nonlinearity parameter is proposed to decide whether a pixel of the image results from the commonly used linear mixing model or from a more general nonlinear mixing model. To compute the test statistic associated with the nonlinearity detection, we propose to approximate the variance of the estimated nonlinearity parameter by its constrained Cramér-Rao bound. The performance of the detection strategy is evaluated via simulations conducted on synthetic and real data. More precisely, synthetic data have been generated according to the standard linear mixing model and three nonlinear models from the literature. The real data investigated in this study are extracted from the Cuprite image, which shows that some minerals seem to be nonlinearly mixed in this image. Finally, it is interesting to note that the estimated abundance maps obtained with the post-nonlinear mixing model are in good agreement with results obtained in previous studies.

  2. Nonlinear GARCH model and 1 / f noise

    Science.gov (United States)

    Kononovicius, A.; Ruseckas, J.

    2015-06-01

    Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.

  3. Nonlinear network coding based on multiplication and exponentiation in GF(2m)

    Institute of Scientific and Technical Information of China (English)

    JIANG An-you; ZHU Jin-kang

    2009-01-01

    This article proposes a novel nonlinear network code in the GF(2m) finite field. Different from previous linear network codes that linearly mix multiple input flows, the proposed nonlinear network code mixes input flows through both multiplication and exponentiation in the GF(2m). Three relevant rules for selecting proper parameters for the proposed nonlinear network code are discussed, and the relationship between the power parameter and the coding coefficient K is explored. Further analysis shows that the proposed nonlinear network code is equivalent to a linear network code with deterministic coefficients.

  4. Multiplicative LSTM for sequence modelling

    OpenAIRE

    Krause, Ben; Lu, Liang; Murray, Iain; Renals, Steve

    2016-01-01

    This paper introduces multiplicative LSTM, a novel hybrid recurrent neural network architecture for sequence modelling that combines the long short-term memory (LSTM) and multiplicative recurrent neural network architectures. Multiplicative LSTM is motivated by its flexibility to have very different recurrent transition functions for each possible input, which we argue helps make it more expressive in autoregressive density estimation. We show empirically that multiplicative LSTM outperforms ...

  5. Synchronous and non-synchronous responses of systems with multiple identical nonlinear vibration absorbers

    Science.gov (United States)

    Issa, Jimmy S.; Shaw, Steven W.

    2015-07-01

    In this work we investigate the nonlinear dynamic response of systems composed of a primary inertia to which multiple identical vibration absorbers are attached. This problem is motivated by observations of systems of centrifugal pendulum vibration absorbers that are designed to reduce engine order torsional vibrations in rotating systems, but the results are relevant to translational systems as well. In these systems the total absorber mass is split into multiple equal masses for purposes of distribution and/or balance, and it is generally expected that the absorbers will act in unison, corresponding to a synchronous response. In order to capture nonlinear effects of the responses of the absorbers, specifically, their amplitude-dependent frequency, we consider them to possess nonlinear stiffness. The equations of motion for the system are derived and it is shown how one can uncouple the equations for the absorbers from that for the primary inertia, resulting in a system of identical resonators that are globally coupled. These symmetric equations are scaled for weak nonlinear effects, near resonant forcing, and small damping. The method of averaging is applied, from which steady-state responses and their stability are investigated. The response of systems with two, three, and four absorbers are considered in detail, demonstrating a rich variety of bifurcations of the synchronous response, resulting in responses with various levels of symmetry in which sub-groups of absorbers are mutually synchronous. It is also shown that undamped models with more than two absorbers possess a degenerate response, which is made robust by the addition of damping to the model. Design guidelines are proposed based on the nature of the system response, with the aim of minimizing the acceleration of the primary system. It is shown that the desired absorber parameters are selected so that the system achieves a stable synchronous response which does not undergo jumps via saddle

  6. Dynamical effects of overparametrization in nonlinear models

    Science.gov (United States)

    Aguirre, Luis Antonio; Billings, S. A.

    1995-01-01

    This paper is concemed with dynamical reconstruction for nonlinear systems. The effects of the driving function and of the complexity of a given representation on the bifurcation patter are investigated. It is shown that the use of different driving functions to excite the system may yield models with different bifurcation patterns. The complexity of the reconstructions considered is quantified by the embedding dimension and the number of estimated parameters. In this respect it appears that models which reproduce the original bifurcation behaviour are of limited complexity and that excessively complex models tend to induce ghost bifurcations and spurious dynamical regimes. Moreover, some results suggest that the effects of overparametrization on the global dynamical behaviour of a nonlinear model may be more deleterious than the presence of moderate noise levels. In order to precisely quantify the complexity of the reconstructions, global polynomials are used although the results are believed to apply to a much wider class of representations including neural networks.

  7. Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor.

    Science.gov (United States)

    Prakash, J; Srinivasan, K

    2009-07-01

    In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.

  8. Research on nonlinear stochastic dynamical price model

    Energy Technology Data Exchange (ETDEWEB)

    Li Jiaorui [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); School of Statistics, Xi' an University of Finance and Economics, Xi' an 710061 (China)], E-mail: jiaoruili@mail.nwpu.edu.cn; Xu Wei; Xie Wenxian; Ren Zhengzheng [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2008-09-15

    In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies.

  9. Simplified Model of Nonlinear Landau Damping

    Energy Technology Data Exchange (ETDEWEB)

    N. A. Yampolsky and N. J. Fisch

    2009-07-16

    The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

  10. Nonlinear interpolation fractal classifier for multiple cardiac arrhythmias recognition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C.-H. [Department of Electrical Engineering, Kao-Yuan University, No. 1821, Jhongshan Rd., Lujhu Township, Kaohsiung County 821, Taiwan (China); Institute of Biomedical Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China)], E-mail: eechl53@cc.kyu.edu.tw; Du, Y.-C.; Chen Tainsong [Institute of Biomedical Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China)

    2009-11-30

    This paper proposes a method for cardiac arrhythmias recognition using the nonlinear interpolation fractal classifier. A typical electrocardiogram (ECG) consists of P-wave, QRS-complexes, and T-wave. Iterated function system (IFS) uses the nonlinear interpolation in the map and uses similarity maps to construct various data sequences including the fractal patterns of supraventricular ectopic beat, bundle branch ectopic beat, and ventricular ectopic beat. Grey relational analysis (GRA) is proposed to recognize normal heartbeat and cardiac arrhythmias. The nonlinear interpolation terms produce family functions with fractal dimension (FD), the so-called nonlinear interpolation function (NIF), and make fractal patterns more distinguishing between normal and ill subjects. The proposed QRS classifier is tested using the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database. Compared with other methods, the proposed hybrid methods demonstrate greater efficiency and higher accuracy in recognizing ECG signals.

  11. Discrete state space modeling and control of nonlinear unknown systems.

    Science.gov (United States)

    Savran, Aydogan

    2013-11-01

    A novel procedure for integrating neural networks (NNs) with conventional techniques is proposed to design industrial modeling and control systems for nonlinear unknown systems. In the proposed approach, a new recurrent NN with a special architecture is constructed to obtain discrete-time state-space representations of nonlinear dynamical systems. It is referred as the discrete state-space neural network (DSSNN). In the DSSNN, the outputs of the hidden layer neurons of the DSSNN represent the system's (pseudo) state. The inputs are fed to output neurons and the delayed outputs of the hidden layer neurons are fed to their inputs via adjustable weights. The discrete state space model of the actual system is directly obtained by training the DSSNN with the input-output data. A training procedure based on the back-propagation through time (BPTT) algorithm is developed. The Levenberg-Marquardt (LM) method with a trust region approach is used to update the DSSNN weights. Linear state space models enable to use well developed conventional analysis and design techniques. Thus, building a linear model of a system has primary importance in industrial applications. Thus, a suitable linearization procedure is proposed to derive the linear state space model from the nonlinear DSSNN representation. The controllability, observability and stability properties are examined. The state feedback controllers are designed with both the linear quadratic regulator (LQR) and the pole placement techniques. The regulator and servo control problems are both addressed. A full order observer is also designed to estimate the state variables. The performance of the proposed procedure is demonstrated by applying for both single-input single-output (SISO) and multiple-input multiple-output (MIMO) nonlinear control problems. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  12. STEW A Nonlinear Data Modeling Computer Program

    CERN Document Server

    Chen, H

    2000-01-01

    A nonlinear data modeling computer program, STEW, employing the Levenberg-Marquardt algorithm, has been developed to model the experimental sup 2 sup 3 sup 9 Pu(n,f) and sup 2 sup 3 sup 5 U(n,f) cross sections. This report presents results of the modeling of the sup 2 sup 3 sup 9 Pu(n,f) and sup 2 sup 3 sup 5 U(n,f) cross-section data. The calculation of the fission transmission coefficient is based on the double-humped-fission-barrier model of Bjornholm and Lynn. Incident neutron energies of up to 5 MeV are considered.

  13. STEW: A Nonlinear Data Modeling Computer Program

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.

    2000-03-04

    A nonlinear data modeling computer program, STEW, employing the Levenberg-Marquardt algorithm, has been developed to model the experimental {sup 239}Pu(n,f) and {sup 235}U(n,f) cross sections. This report presents results of the modeling of the {sup 239}Pu(n,f) and {sup 235}U(n,f) cross-section data. The calculation of the fission transmission coefficient is based on the double-humped-fission-barrier model of Bjornholm and Lynn. Incident neutron energies of up to 5 MeV are considered.

  14. Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses

    Science.gov (United States)

    Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin

    2016-08-01

    This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.

  15. H∞ Control for Nonlinear Stochastic Systems with Time-Delay and Multiplicative Noise

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2015-01-01

    Full Text Available This paper studies the infinite horizon H∞ control problem for a general class of nonlinear stochastic systems with time-delay and multiplicative noise. The exponential/asymptotic mean square H∞ control design of delayed nonlinear stochastic systems is presented by solving Hamilton-Jacobi inequalities. Two numerical examples are provided to show the effectiveness of the proposed design method.

  16. Simple nonlinear models suggest variable star universality

    CERN Document Server

    Lindner, John F; Kia, Behnam; Hippke, Michael; Learned, John G; Ditto, William L

    2015-01-01

    Dramatically improved data from observatories like the CoRoT and Kepler spacecraft have recently facilitated nonlinear time series analysis and phenomenological modeling of variable stars, including the search for strange (aka fractal) or chaotic dynamics. We recently argued [Lindner et al., Phys. Rev. Lett. 114 (2015) 054101] that the Kepler data includes "golden" stars, whose luminosities vary quasiperiodically with two frequencies nearly in the golden ratio, and whose secondary frequencies exhibit power-law scaling with exponent near -1.5, suggesting strange nonchaotic dynamics and singular spectra. Here we use a series of phenomenological models to make plausible the connection between golden stars and fractal spectra. We thereby suggest that at least some features of variable star dynamics reflect universal nonlinear phenomena common to even simple systems.

  17. Thermoviscous Model Equations in Nonlinear Acoustics

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne

    Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....

  18. Modified Nonlinear Model of Arcsin-Electrodynamics

    Science.gov (United States)

    Kruglov, S. I.

    2016-07-01

    A new modified model of nonlinear arcsin-electrodynamics with two parameters is proposed and analyzed. We obtain the corrections to the Coulomb law. The effect of vacuum birefringence takes place when the external constant magnetic field is present. We calculate indices of refraction for two perpendicular polarizations of electromagnetic waves and estimate bounds on the parameter γ from the BMV and PVLAS experiments. It is shown that the electric field of a point-like charge is finite at the origin. We calculate the finite static electric energy of point-like particles and demonstrate that the electron mass can have the pure electromagnetic nature. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. We show that the dilatation symmetry and dual symmetry are broken in the model suggested. We have investigated the gauge covariant quantization of the nonlinear electrodynamics fields as well as the gauge fixing approach based on Dirac's brackets.

  19. Component mode synthesis and large deflection vibration of complex structures. Volume 3: Multiple-mode nonlinear free and forced vibrations of beams using finite element method

    Science.gov (United States)

    Mei, Chuh; Shen, Mo-How

    1987-01-01

    Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.

  20. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    Energy Technology Data Exchange (ETDEWEB)

    Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)

    2014-09-25

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.

  1. MULTIPLE POSITIVE SOLUTIONS TO A SYSTEM OF NONLINEAR HAMMERSTEIN TYPE INTEGRAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Wang Feng; Zhang Fang; Liu Chunhan

    2009-01-01

    In this paper, we use cone theory and a new method of computation of fixed point index to study a system of nonlinear Hammerstein type integral equations, and the existence of multiple positive solutions to the system is discussed.

  2. Nonlinear chaotic model for predicting storm surges

    Directory of Open Access Journals (Sweden)

    M. Siek

    2010-09-01

    Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.

  3. The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim

    2011-01-01

    Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.

  4. MCRG Flow for the nonlinear Sigma Model

    CERN Document Server

    Koerner, Daniel; Wipf, Andreas

    2013-01-01

    A study of the renormalization group flow in the three-dimensional nonlinear O(N) sigma model using Monte Carlo Renormalization Group (MCRG) techniques is presented. To achieve this, we combine an improved blockspin transformation with the canonical demon method to determine the flow diagram for a number of different truncations. Systematic errors of the approach are highlighted. Results are discussed with hindsight on the fixed point structure of the model and the corresponding critical exponents. Special emphasis is drawn on the existence of a nontrivial ultraviolet fixed point as required for theories modeling the asymptotic safety scenario of quantum gravity.

  5. Forecasting with nonlinear time series models

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    and two versions of a simple artificial neural network model. Techniques for generating multi-period forecasts from nonlinear models recursively are considered, and the direct (non-recursive) method for this purpose is mentioned as well. Forecasting with com- plex dynamic systems, albeit less frequently...... applied to economic fore- casting problems, is briefly highlighted. A number of large published studies comparing macroeconomic forecasts obtained using different time series models are discussed, and the paper also contains a small simulation study comparing recursive and direct forecasts in a partic...

  6. Nonlinear Modelling of Low Frequency Loudspeakers

    DEFF Research Database (Denmark)

    Olsen, Erling Sandermann; Christensen, Knud Bank

    1996-01-01

    A central part of the Danish LoDist project has been the derivation of an extended equivalent circuit and a corresponding set of differential equations suitable for the simulation of high-fidelity woofers under large and very large (clipping) signal conditions. A model including suspension creep ...... and eddy current losses seems to be sufficient, but all the parameters of the model vary with the position of the diaphragm. The model and the associated set of nonlinear differential equations and the solution of the equations are discussed....

  7. NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    R. G. SILVA

    1999-03-01

    Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.

  8. Nonlinear Inertia Classification Model and Application

    Directory of Open Access Journals (Sweden)

    Mei Wang

    2014-01-01

    Full Text Available Classification model of support vector machine (SVM overcomes the problem of a big number of samples. But the kernel parameter and the punishment factor have great influence on the quality of SVM model. Particle swarm optimization (PSO is an evolutionary search algorithm based on the swarm intelligence, which is suitable for parameter optimization. Accordingly, a nonlinear inertia convergence classification model (NICCM is proposed after the nonlinear inertia convergence (NICPSO is developed in this paper. The velocity of NICPSO is firstly defined as the weighted velocity of the inertia PSO, and the inertia factor is selected to be a nonlinear function. NICPSO is used to optimize the kernel parameter and a punishment factor of SVM. Then, NICCM classifier is trained by using the optical punishment factor and the optical kernel parameter that comes from the optimal particle. Finally, NICCM is applied to the classification of the normal state and fault states of online power cable. It is experimentally proved that the iteration number for the proposed NICPSO to reach the optimal position decreases from 15 to 5 compared with PSO; the training duration is decreased by 0.0052 s and the recognition precision is increased by 4.12% compared with SVM.

  9. Model reduction of systems with localized nonlinearities.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph

    2006-03-01

    An LDRD funded approach to development of reduced order models for systems with local nonlinearities is presented. This method is particularly useful for problems of structural dynamics, but has potential application in other fields. The key elements of this approach are (1) employment of eigen modes of a reference linear system, (2) incorporation of basis functions with an appropriate discontinuity at the location of the nonlinearity. Galerkin solution using the above combination of basis functions appears to capture the dynamics of the system with a small basis set. For problems involving small amplitude dynamics, the addition of discontinuous (joint) modes appears to capture the nonlinear mechanics correctly while preserving the modal form of the predictions. For problems involving large amplitude dynamics of realistic joint models (macro-slip), the use of appropriate joint modes along with sufficient basis eigen modes to capture the frequencies of the system greatly enhances convergence, though the modal nature the result is lost. Also observed is that when joint modes are used in conjunction with a small number of elastic eigen modes in problems of macro-slip of realistic joint models, the resulting predictions are very similar to those of the full solution when seen through a low pass filter. This has significance both in terms of greatly reducing the number of degrees of freedom of the problem and in terms of facilitating the use of much larger time steps.

  10. Evaluation of model fit in nonlinear multilevel structural equation modeling

    Directory of Open Access Journals (Sweden)

    Karin eSchermelleh-Engel

    2014-03-01

    Full Text Available Evaluating model fit in nonlinear multilevel structural equation models (MSEM presents a challenge as no adequate test statistic is available. Nevertheless, using a product indicator approach a likelihood ratio test for linear models is provided which may also be useful for nonlinear MSEM. The main problem with nonlinear models is that product variables are nonnormally distributed. Although robust test statistics have been developed for linear SEM to ensure valid results under the condition of nonnormality, they were not yet investigated for nonlinear MSEM. In a Monte Carlo study, the performance of the robust likelihood ratio test was investigated for models with single-level latent interaction effects using the unconstrained product indicator approach. As overall model fit evaluation has a potential limitation in detecting the lack of fit at a single level even for linear models, level-specific model fit evaluation was also investigated using partially saturated models. Four population models were considered: a model with interaction effects at both levels, an interaction effect at the within-group level, an interaction effect at the between-group level, and a model with no interaction effects at both levels. For these models the number of groups, predictor correlation, and model misspecification was varied. The results indicate that the robust test statistic performed sufficiently well. Advantages of level-specific model fit evaluation for the detection of model misfit are demonstrated.

  11. Evaluation of model fit in nonlinear multilevel structural equation modeling.

    Science.gov (United States)

    Schermelleh-Engel, Karin; Kerwer, Martin; Klein, Andreas G

    2014-01-01

    Evaluating model fit in nonlinear multilevel structural equation models (MSEM) presents a challenge as no adequate test statistic is available. Nevertheless, using a product indicator approach a likelihood ratio test for linear models is provided which may also be useful for nonlinear MSEM. The main problem with nonlinear models is that product variables are non-normally distributed. Although robust test statistics have been developed for linear SEM to ensure valid results under the condition of non-normality, they have not yet been investigated for nonlinear MSEM. In a Monte Carlo study, the performance of the robust likelihood ratio test was investigated for models with single-level latent interaction effects using the unconstrained product indicator approach. As overall model fit evaluation has a potential limitation in detecting the lack of fit at a single level even for linear models, level-specific model fit evaluation was also investigated using partially saturated models. Four population models were considered: a model with interaction effects at both levels, an interaction effect at the within-group level, an interaction effect at the between-group level, and a model with no interaction effects at both levels. For these models the number of groups, predictor correlation, and model misspecification was varied. The results indicate that the robust test statistic performed sufficiently well. Advantages of level-specific model fit evaluation for the detection of model misfit are demonstrated.

  12. Nonlinear trading models through Sharpe Ratio maximization.

    Science.gov (United States)

    Choey, M; Weigend, A S

    1997-08-01

    While many trading strategies are based on price prediction, traders in financial markets are typically interested in optimizing risk-adjusted performance such as the Sharpe Ratio, rather than the price predictions themselves. This paper introduces an approach which generates a nonlinear strategy that explicitly maximizes the Sharpe Ratio. It is expressed as a neural network model whose output is the position size between a risky and a risk-free asset. The iterative parameter update rules are derived and compared to alternative approaches. The resulting trading strategy is evaluated and analyzed on both computer-generated data and real world data (DAX, the daily German equity index). Trading based on Sharpe Ratio maximization compares favorably to both profit optimization and probability matching (through cross-entropy optimization). The results show that the goal of optimizing out-of-sample risk-adjusted profit can indeed be achieved with this nonlinear approach.

  13. Nonlinear Model of non-Debye Relaxation

    CERN Document Server

    Zon, Boris A

    2010-01-01

    We present a simple nonlinear relaxation equation which contains the Debye equation as a particular case. The suggested relaxation equation results in power-law decay of fluctuations. This equation contains a parameter defining the frequency dependence of the dielectric permittivity similarly to the well-known one-parameter phenomenological equations of Cole-Cole, Davidson-Cole and Kohlrausch-Williams-Watts. Unlike these models, the obtained dielectric permittivity (i) obeys to the Kramers-Kronig relation; (ii) has proper behaviour at large frequency; (iii) its imaginary part, conductivity, shows a power-law frequency dependence \\sigma ~ \\omega^n where n1 is also observed in several experiments. The nonlinear equation proposed may be useful in various fields of relaxation theory.

  14. Uncertainty Quantification and Bifurcation Analysis of an Airfoil with Multiple Nonlinearities

    Directory of Open Access Journals (Sweden)

    Haitao Liao

    2013-01-01

    Full Text Available In order to calculate the limit cycle oscillations and bifurcations of nonlinear aeroelastic system, the problem of finding periodic solutions with maximum vibration amplitude is transformed into a nonlinear optimization problem. An algebraic system of equations obtained by the harmonic balance method and the stability condition derived from the Floquet theory are used to construct the general nonlinear equality and inequality constraints. The resulting constrained maximization problem is then solved by using the MultiStart algorithm. Finally, the proposed approach is validated, and the effects of structural parameter uncertainty on the limit cycle oscillations and bifurcations of an airfoil with multiple nonlinearities are studied. Numerical examples show that the coexistence of multiple nonlinearities may lead to low amplitude limit cycle oscillation.

  15. Residual models for nonlinear partial differential equations

    Directory of Open Access Journals (Sweden)

    Garry Pantelis

    2005-11-01

    Full Text Available Residual terms that appear in nonlinear PDEs that are constructed to generate filtered representations of the variables of the fully resolved system are examined by way of a consistency condition. It is shown that certain commonly used empirical gradient models for the residuals fail the test of consistency and therefore cannot be validated as approximations in any reliable sense. An alternate method is presented for computing the residuals. These residual models are independent of free or artificial parameters and there direct link with the functional form of the system of PDEs which describe the fully resolved system are established.

  16. Model of anisotropic nonlinearity in self-defocusing photorefractive media.

    Science.gov (United States)

    Barsi, C; Fleischer, J W

    2015-09-21

    We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.

  17. Modeling highly-dispersive transparency in planar nonlinear metamaterials

    Science.gov (United States)

    Potravkin, N. N.; Makarov, V. A.; Perezhogin, I. A.

    2017-02-01

    We consider propagation of light in planar optical metamaterial, which basic element is composed of two silver stripes, and it possesses strong dispersion in optical range. Our method of numerical modeling allows us to take into consideration the nonlinearity of the material and the effects of light self-action without considerable increase of the calculation time. It is shown that plasmonic resonances originating in such a structure result in multiple enhancement of local field and high sensitivity of the transmission coefficient to the intensity of incident monochromatic wave.

  18. Existence of Multiple Fixed Points for Nonlinear Operators and Applications

    Institute of Scientific and Technical Information of China (English)

    Jing Xian SUN; Ke Mei ZHANG

    2008-01-01

    In this paper,by the fixed point index theory,the number of fixed points for sublinear and asymptotically linear operators via two coupled parallel sub-super solutions is studied.Under suitable conditions,the existence of at least nine or seven distinct fixed points for sublinear and asymptotically linear operators is proved.Finally,the theoretical results are applied to a nonlinear system of Hammerstein integral equations.

  19. Step-response of a torsional device with multiple discontinuous non-linearities: Formulation of a vibratory experiment

    Science.gov (United States)

    Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra

    2016-03-01

    A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.

  20. From spiking neuron models to linear-nonlinear models.

    Directory of Open Access Journals (Sweden)

    Srdjan Ostojic

    Full Text Available Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF, exponential integrate-and-fire (EIF and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.

  1. Fallacies of composition in nonlinear marketing models

    Science.gov (United States)

    Bischi, Gian Italo; Cerboni Baiardi, Lorenzo

    2015-01-01

    In this paper we consider some nonlinear discrete-time dynamic models proposed in the literature to represent marketing competition, and we use these models to critically discuss the statement, often made in economic literature, that identical agents behave identically and quasi-identical ones behave in a similar way. We show, through examples and some general mathematical statements, that the one-dimensional model of a representative agent, whose dynamics summarize the common behavior of identical interacting agents, may be misleading. In order to discuss these topics some simple methods for the study of local stability and bifurcations are employed, as well as numerical examples where some results taken from the literature on chaos synchronization are applied to two-dimensional marketing models that exhibit riddling, blowout and other global phenomena related to the existence of measure-theoretic attractors.

  2. Nonlinear regime-switching state-space (RSSS) models.

    Science.gov (United States)

    Chow, Sy-Miin; Zhang, Guangjian

    2013-10-01

    Nonlinear dynamic factor analysis models extend standard linear dynamic factor analysis models by allowing time series processes to be nonlinear at the latent level (e.g., involving interaction between two latent processes). In practice, it is often of interest to identify the phases--namely, latent "regimes" or classes--during which a system is characterized by distinctly different dynamics. We propose a new class of models, termed nonlinear regime-switching state-space (RSSS) models, which subsumes regime-switching nonlinear dynamic factor analysis models as a special case. In nonlinear RSSS models, the change processes within regimes, represented using a state-space model, are allowed to be nonlinear. An estimation procedure obtained by combining the extended Kalman filter and the Kim filter is proposed as a way to estimate nonlinear RSSS models. We illustrate the utility of nonlinear RSSS models by fitting a nonlinear dynamic factor analysis model with regime-specific cross-regression parameters to a set of experience sampling affect data. The parallels between nonlinear RSSS models and other well-known discrete change models in the literature are discussed briefly.

  3. Modeling the toxicity of aromatic compounds to tetrahymena pyriformis: the response surface methodology with nonlinear methods.

    Science.gov (United States)

    Ren, Shijin

    2003-01-01

    Response surface models based on multiple linear regression had previously been developed for the toxicity of aromatic chemicals to Tetrahymena pyriformis. However, a nonlinear relationship between toxicity and one of the molecular descriptors in the response surface model was observed. In this study, response surface models were established using six nonlinear modeling methods to handle the nonlinearity exhibited in the aromatic chemicals data set. All models were validated using the method of cross-validation, and prediction accuracy was tested on an external data set. Results showed that response surface models based on locally weighted regression scatter plot smoothing (LOESS), multivariate adaptive regression splines (MARS), neural networks (NN), and projection pursuit regression (PPR) provided satisfactory power of model fitting and prediction and had similar applicabilities. The response surface models based on nonlinear methods were difficult to interpret and conservative in discriminating toxicity mechanisms.

  4. Model Reduction of Nonlinear Fire Dynamics Models

    OpenAIRE

    Lattimer, Alan Martin

    2016-01-01

    Due to the complexity, multi-scale, and multi-physics nature of the mathematical models for fires, current numerical models require too much computational effort to be useful in design and real-time decision making, especially when dealing with fires over large domains. To reduce the computational time while retaining the complexity of the domain and physics, our research has focused on several reduced-order modeling techniques. Our contributions are improving wildland fire reduced-order mod...

  5. Modeling of unusual nonlinear behaviors in superconducting microstrip transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Javadzadeh, S. Mohammad Hassan, E-mail: smh_javadzadeh@ee.sharif.edu [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of); Farzaneh, Forouhar; Fardmanesh, Mehdi [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of)

    2013-03-15

    Highlights: ► Avoiding of considering just quadratic or modulus nonlinearity. ► Proposing a nonlinear model to predict unusual nonlinear behaviors at low temperatures. ► Description of temperature dependency of nonlinear behaviors in superconducting lines. ► Analytical formulation for each parameter in our proposed model. ► Obtaining very good results which shows this model can predict unusual nonlinear behavior. -- Abstract: There are unusual nonlinear behaviors in superconducting materials, especially at low temperatures. This paper describes the procedure to reliably predict this nonlinearity in superconducting microstrip transmission lines (SMTLs). An accurate nonlinear distributed circuit model, based on simultaneously considering of both quadratic and modulus nonlinearity dependences, is proposed. All parameters of the equivalent circuit can be calculated analytically using proposed closed-form expressions. A numerical method based on Harmonic Balance approach is used to predict nonlinear phenomena like intermodulation distortions and third harmonic generations. Nonlinear analyses of the SMTLs at the different temperatures and the input powers have been presented. This proposed model can describe the unusual behaviors of the nonlinearity at low temperatures, which are frequently observed in the SMTLs.

  6. Modeling the oxygen uptake kinetics during exercise testing of patients with chronic obstructive pulmonary diseases using nonlinear mixed models

    DEFF Research Database (Denmark)

    Baty, Florent; Ritz, Christian; van Gestel, Arnoldus

    2016-01-01

    regression. Simultaneous modeling of multiple kinetics requires nonlinear mixed models methodology. To the best of our knowledge, no such curve-fitting approach has been used to analyze multiple [Formula: see text]O2 kinetics in both research and clinical practice so far. METHODS: In the present study, we...... describe functionality of the R package medrc that extends the framework of the commonly used packages drc and nlme and allows fitting nonlinear mixed effects models for automated nonlinear regression modeling. The methodology was applied to a data set including 6MWT [Formula: see text]O2 kinetics from 61...... patients with chronic obstructive pulmonary disease (disease severity stage II to IV). The mixed effects approach was compared to a traditional curve-by-curve approach. RESULTS: A six-parameter nonlinear regression model was jointly fitted to the set of [Formula: see text]O2 kinetics. Significant...

  7. Modeling the oxygen uptake kinetics during exercise testing of patients with chronic obstructive pulmonary diseases using nonlinear mixed models

    DEFF Research Database (Denmark)

    Baty, Florent; Ritz, Christian; van Gestel, Arnoldus;

    2016-01-01

    regression. Simultaneous modeling of multiple kinetics requires nonlinear mixed models methodology. To the best of our knowledge, no such curve-fitting approach has been used to analyze multiple [Formula: see text]O2 kinetics in both research and clinical practice so far. METHODS: In the present study, we...... describe functionality of the R package medrc that extends the framework of the commonly used packages drc and nlme and allows fitting nonlinear mixed effects models for automated nonlinear regression modeling. The methodology was applied to a data set including 6MWT [Formula: see text]O2 kinetics from 61...... patients with chronic obstructive pulmonary disease (disease severity stage II to IV). The mixed effects approach was compared to a traditional curve-by-curve approach. RESULTS: A six-parameter nonlinear regression model was jointly fitted to the set of [Formula: see text]O2 kinetics. Significant...

  8. Model Reduction for Nonlinear Systems by Incremental Balanced Truncation

    NARCIS (Netherlands)

    Besselink, Bart; van de Wouw, Nathan; Scherpen, Jacquelien M. A.; Nijmeijer, Henk

    2014-01-01

    In this paper, the method of incremental balanced truncation is introduced as a tool for model reduction of nonlinear systems. Incremental balanced truncation provides an extension of balanced truncation for linear systems towards the nonlinear case and differs from existing nonlinear balancing tech

  9. Model Reduction for Nonlinear Systems by Incremental Balanced Truncation

    NARCIS (Netherlands)

    Besselink, Bart; van de Wouw, Nathan; Scherpen, Jacquelien M. A.; Nijmeijer, Henk

    2014-01-01

    In this paper, the method of incremental balanced truncation is introduced as a tool for model reduction of nonlinear systems. Incremental balanced truncation provides an extension of balanced truncation for linear systems towards the nonlinear case and differs from existing nonlinear balancing tech

  10. A single predator multiple prey model with prey mutation

    Science.gov (United States)

    Mullan, Rory; Abernethy, Gavin M.; Glass, David H.; McCartney, Mark

    2016-11-01

    A multiple species predator-prey model is expanded with the introduction of a coupled map lattice for the prey, allowing the prey to mutate discretely into other prey species. The model is examined in its single predator, multiple mutating prey form. Two unimodal maps are used for the underlying dynamics of the prey species, with different predation strategies being used. Conclusions are drawn on how varying the control parameters of the model governs the overall behaviour and survival of the species. It is observed that in such a complex system, with multiple mutating prey, a large range of non-linear dynamics is possible.

  11. A nonlinear RDF model for waves propagating in shallow water

    Institute of Scientific and Technical Information of China (English)

    王厚杰; 杨作升; 李瑞杰; 张军

    2001-01-01

    In this paper, a composite explicit nonlinear dispersion relation is presented with reference to Stokes 2nd order dispersion relation and the empirical relation of Hedges. The explicit dispersion relation has such advantages that it can smoothly match the Stokes relation in deep and intermediate water and Hedgs’s relation in shallow water. As an explicit formula, it separates the nonlinear term from the linear dispersion relation. Therefore it is convenient to obtain the numerical solution of nonlinear dispersion relation. The present formula is combined with the modified mild-slope equation including nonlinear effect to make a Refraction-Diffraction (RDF) model for wave propagating in shallow water. This nonlinear model is verified over a complicated topography with two submerged elliptical shoals resting on a slope beach. The computation results compared with those obtained from linear model show that at present the nonlinear RDF model can predict the nonlinear characteristics and the combined refracti

  12. Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models

    Institute of Scientific and Technical Information of China (English)

    Jochen Aβfalg; Frank Allg(o)wer

    2007-01-01

    This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.

  13. Multiplicity description by gluon model

    CERN Document Server

    Kokoulina, E S

    2015-01-01

    Study of high multiplicity events in proton-proton interactions is carried out at the U-70 accelerator (IHEP, Protvino). These events are extremely rare. Usually, Monte Carlo codes underestimate topological cross sections in this region. The gluon dominance model (GDM) was offered to describe them. It is based on QCD and a phenomenological scheme of a hadronization stage. This model indicates a recombination mechanism of hadronization and a gluon fission. Future program of the SVD Collaboration is aimed at studying a long-standing puzzle of excess soft photon yield and its connection with high multiplicity at the U-70 and Nuclotron facility at JINR, Dubna.

  14. Stability analysis of nonlinear systems by multiple time scaling. [using perturbation methods

    Science.gov (United States)

    Morino, L.

    1974-01-01

    The asymptotic solution for the transient analysis of a general nonlinear system in the neighborhood of the stability boundary was obtained by using the multiple-time-scaling asymptotic-expansion method. The nonlinearities are assumed to be of algebraic nature. Terms of order epsilon to the 3rd power (where epsilon is the order of amplitude of the unknown) are included in the solution. The solution indicates that there is always a limit cycle which is stable (unstable) and exists above (below) the stability boundary if the nonlinear terms are stabilizing (destabilizing). Extension of the solution to include fifth order nonlinear terms is also presented. Comparisons with harmonic balance and with multiple-time-scaling solution of panel flutter equations are also included.

  15. EXACT LINEARIZATION BASED MULTIPLE-SUBSPACE ITERATIVE RESOLUTION TO AFFINE NONLINEAR CONTROL SYSTEM

    Institute of Scientific and Technical Information of China (English)

    XU Zi-xiang; ZHOU De-yun; DENG Zi-chen

    2006-01-01

    To the optimal control problem of affine nonlinear system, based on differential geometry theory, feedback precise linearization was used. Then starting from the simulative relationship between computational structural mechanics and optimal control,multiple-substructure method was inducted to solve the optimal control problem which was linearized. And finally the solution to the original nonlinear system was found. Compared with the classical linearizational method of Taylor expansion, this one diminishes the abuse of error expansion with the enlargement of used region.

  16. Nonlinear structural finite element model updating and uncertainty quantification

    Science.gov (United States)

    Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.

    2015-04-01

    This paper presents a framework for nonlinear finite element (FE) model updating, in which state-of-the-art nonlinear structural FE modeling and analysis techniques are combined with the maximum likelihood estimation method (MLE) to estimate time-invariant parameters governing the nonlinear hysteretic material constitutive models used in the FE model of the structure. The estimation uncertainties are evaluated based on the Cramer-Rao lower bound (CRLB) theorem. A proof-of-concept example, consisting of a cantilever steel column representing a bridge pier, is provided to verify the proposed nonlinear FE model updating framework.

  17. Nonlinear system modeling based on experimental data

    Energy Technology Data Exchange (ETDEWEB)

    PAEZ,THOMAS L.; HUNTER,NORMAN F.

    2000-02-02

    The canonical variate analysis technique is used in this investigation, along with a data transformation algorithm, to identify a system in a transform space. The transformation algorithm involves the preprocessing of measured excitation/response data with a zero-memory-nonlinear transform, specifically, the Rosenblatt transform. This transform approximately maps the measured excitation and response data from its own space into the space of uncorrelated, standard normal random variates. Following this transform, it is appropriate to model the excitation/response relation as linear since Gaussian inputs excite Gaussian responses in linear structures. The linear model is identified in the transform space using the canonical variate analysis approach, and system responses in the original space are predicted using inverse Rosenblatt transformation. An example is presented.

  18. Modified nonlinear model of arcsin-electrodynamics

    CERN Document Server

    Kruglov, S I

    2015-01-01

    A new modified model of nonlinear arcsin-electrodynamics with two parameters is proposed and analyzed. We obtain the corrections to the Coulomb law. The effect of vacuum birefringence takes place when the external constant magnetic field is present. We calculate indices of refraction for two perpendicular polarizations of electromagnetic waves and estimate bounds on the parameter $\\gamma$ from the BMV and PVLAS experiments. It is shown that the electric field of a point-like charge is finite at the origin. We calculate the finite static electric energy of point-like particles and demonstrate that the electron mass can have the pure electromagnetic nature. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. We show that the dilatation symmetry and dual symmetry are broken in the model suggested.

  19. A non-linear model of information seeking behaviour

    Directory of Open Access Journals (Sweden)

    Allen E. Foster

    2005-01-01

    Full Text Available The results of a qualitative, naturalistic, study of information seeking behaviour are reported in this paper. The study applied the methods recommended by Lincoln and Guba for maximising credibility, transferability, dependability, and confirmability in data collection and analysis. Sampling combined purposive and snowball methods, and led to a final sample of 45 inter-disciplinary researchers from the University of Sheffield. In-depth semi-structured interviews were used to elicit detailed examples of information seeking. Coding of interview transcripts took place in multiple iterations over time and used Atlas-ti software to support the process. The results of the study are represented in a non-linear Model of Information Seeking Behaviour. The model describes three core processes (Opening, Orientation, and Consolidation and three levels of contextual interaction (Internal Context, External Context, and Cognitive Approach, each composed of several individual activities and attributes. The interactivity and shifts described by the model show information seeking to be non-linear, dynamic, holistic, and flowing. The paper concludes by describing the whole model of behaviours as analogous to an artist's palette, in which activities remain available throughout information seeking. A summary of key implications of the model and directions for further research are included.

  20. Nonlinear time reversal of classical waves: experiment and model.

    Science.gov (United States)

    Frazier, Matthew; Taddese, Biniyam; Xiao, Bo; Antonsen, Thomas; Ott, Edward; Anlage, Steven M

    2013-12-01

    We consider time reversal of electromagnetic waves in a closed, wave-chaotic system containing a discrete, passive, harmonic-generating nonlinearity. An experimental system is constructed as a time-reversal mirror, in which excitations generated by the nonlinearity are gathered, time-reversed, transmitted, and directed exclusively to the location of the nonlinearity. Here we show that such nonlinear objects can be purely passive (as opposed to the active nonlinearities used in previous work), and we develop a higher data rate exclusive communication system based on nonlinear time reversal. A model of the experimental system is developed, using a star-graph network of transmission lines, with one of the lines terminated by a model diode. The model simulates time reversal of linear and nonlinear signals, demonstrates features seen in the experimental system, and supports our interpretation of the experimental results.

  1. Nonlinear dynamical model of an automotive dual mass flywheel

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2015-06-01

    Full Text Available The hysteresis, stick–slip, and rotational speed-dependent characteristics in a basic dual mass flywheel are obtained from a static and a dynamic experiments. Based on the experimental results, a nonlinear model of the transferred torque in this dual mass flywheel is developed, with the overlying form of nonlinear elastic torque and frictional torque. The nonlinearities of stiffness are investigated, deriving a nonlinear model to describe the rotational speed-dependent stiffness. In addition, Bouc–Wen model is used to model the hysteretic frictional torque. Thus, the nonlinear 2-degree-of-freedom system of this dual mass flywheel is set up. Then, the Levenberg–Marquardt method is adopted for the parameter estimation of the frictional torque. Finally, taking the nonlinear stiffness in this model into account, the parameters of Bouc–Wen model are estimated based on the dynamic test data.

  2. Recovering map static nonlinearities from chaotic data using dynamical models

    Science.gov (United States)

    Aguirre, Luis Antonio

    1997-02-01

    This paper is concerned with the estimation from chaotic data of maps with static nonlinearities. A number of issues concerning model construction such as structure selection, over-parametrization and model validation are discussed in the light of the shape of the static non-linearities reproduced by the estimated maps. A new interpretation of term clusters and cluster coefficients of polynomial models is provided based on this approach. The paper discusses model limitations and some useful principles to select the structure of nonlinear maps. Some of the ideas have been tested using several nonlinear systems including a boost voltage regulator map and a set of real data from a chaotic circuit.

  3. On the nonlinear models of the vibrating string

    Science.gov (United States)

    Watzky, Alexandre

    2005-09-01

    Vibrations of strings (threads, wires, cables...) are of great interest because of their various domains of application. In musical acoustics, phenomena which could have been neglected elsewhere take a particular importance since perception, which is very sensitive to nonlinear effects, is involved. Some phenomena can also be emphasized when a string is coupled to a sound-radiating structure. Reliable physical models are thus necessary to account for these phenomena, and to understand the true behavior of a vibrating string. Despite the fact that the first nonlinear models were published more than one century ago, and that accurate equations of motion can be naturally achieved within a finite displacement continuum mechanics framework, general models never received the attention they deserved, most authors focusing on particular phenomena and often settling on approximate models. This can be explained by the awkward multiplicity of the involved phenomena. The aim of this presentation is to discuss the consequences of some common assumptions and the true nature of some observed couplings. Particular attention will be paid to the preponderance of the spatial shape of the modes, which are usually underestimated with respect to their temporal form.

  4. Existence and multiplicity of solutions for nonlinear discrete inclusions

    Directory of Open Access Journals (Sweden)

    Nicu Marcu

    2012-11-01

    Full Text Available A non-smooth abstract result is used for proving the existence of at least one nontrivial solution of an algebraic discrete inclusion. Successively, a multiplicity theorem for the same class of discrete problems is also established by using a locally Lipschitz continuous version of the famous Brezis-Nirenberg theoretical result in presence of splitting. Some applications to tridiagonal, fourth-order and partial difference inclusions are pointed out.

  5. Variational modelling of nonlinear water waves

    Science.gov (United States)

    Kalogirou, Anna; Bokhove, Onno

    2015-11-01

    Mathematical modelling of water waves is demonstrated by investigating variational methods. A potential flow water wave model is derived using variational techniques and extented to include explicit time-dependence, leading to non-autonomous dynamics. As a first example, we consider the problem of a soliton splash in a long wave channel with a contraction at its end, resulting after a sluice gate is removed at a finite time. The removal of the sluice gate is included in the variational principle through a time-dependent gravitational potential. A second example involving non-autonomous dynamics concerns the motion of a free surface in a vertical Hele-Shaw cell. Explicit time-dependence now enters the model through a linear damping term due to the effect of wall friction and a term representing the motion of an artificially driven wave pump. In both cases, the model is solved numerically using a Galerkin FEM and the numerical results are compared to wave structures observed in experiments. The water wave model is also adapted to accommodate nonlinear ship dynamics. The novelty is this case is the coupling between the water wave dynamics, the ship dynamics and water line dynamics on the ship. For simplicity, we consider a simple ship structure consisting of V-shaped cross-sections.

  6. Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan;

    2013-01-01

    The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...

  7. A simple numerical model of a geometrically nonlinear Timoshenko beam

    NARCIS (Netherlands)

    Keijdener, C.; Metrikine, A.

    2015-01-01

    In the original problem for which this model was developed, onedimensional flexible objects interact through a non-linear contact model. Due to the non-linear nature of the contact model, a numerical time-domain approach was adopted. One of the goals was to see if the coupling between axial and tran

  8. State-shared model for multiple-input multiple-output systems

    Institute of Scientific and Technical Information of China (English)

    Zhenhua TIAN; Karlene A. HOO

    2005-01-01

    This work proposes a method to construct a state-shared model for multiple-input multiple-output (MIMO)systems. A state-shared model is defined as a linear time invariant state-space structure that is driven by measurement signals-the plant outputs and the manipulated variables, but shared by different multiple input/output models. The genesis of the state-shared model is based on a particular reduced non-minimal realization. Any such realization necessarily fulfills the requirement that the output of the state-shared model is an asymptotically correct estimate of the output of the plant, if the process model is selected appropriately. The approach is demonstrated on a nonlinear MIMO system- a physiological model of calcium fluxes that controls muscle contraction and relaxation in human cardiac myocytes.

  9. Multiple Model Approaches to Modelling and Control,

    DEFF Research Database (Denmark)

    Why Multiple Models?This book presents a variety of approaches which produce complex models or controllers by piecing together a number of simpler subsystems. Thisdivide-and-conquer strategy is a long-standing and general way of copingwith complexity in engineering systems, nature and human probl...

  10. Non-Linear Sigma Model on Conifolds

    CERN Document Server

    Parthasarathy, R

    2002-01-01

    Explicit solutions to the conifold equations with complex dimension $n=3,4$ in terms of {\\it{complex coordinates (fields)}} are employed to construct the Ricci-flat K\\"{a}hler metrics on these manifolds. The K\\"{a}hler 2-forms are found to be closed. The complex realization of these conifold metrics are used in the construction of 2-dimensional non-linear sigma model with the conifolds as target spaces. The action for the sigma model is shown to be bounded from below. By a suitable choice of the 'integration constants', arising in the solution of Ricci flatness requirement, the metric and the equations of motion are found to be {\\it{non-singular}}. As the target space is Ricci flat, the perturbative 1-loop counter terms being absent, the model becomes topological. The inherent U(1) fibre over the base of the conifolds is shown to correspond to a gauge connection in the sigma model. The same procedure is employed to construct the metric for the resolved conifold, in terms of complex coordinates and the action ...

  11. Multiple nested basin boundaries in nonlinear driven oscillators☆

    Science.gov (United States)

    Zhang, Yongxiang; Xie, Xiangpeng; Luo, Guanwei

    2017-03-01

    A special type of basins of attraction for high-period coexisting attractors is investigated, which basin boundaries possess multiple nested structures in a driven oscillator. We analyze the global organization of basins and discuss the mechanism for the appearance of layered structures. The unstable periodic orbits and unstable limit cycle are also detected in the oscillator. The basin organization is governed by the ordering of regular saddles and the regular saddle connections are the interrupted by the unstable limit cycle. Wada basin boundary with different Wada number is discovered. Wada basin boundaries for the hidden and rare attractors are also verified.

  12. Nonlinear control of multiple spacecraft formation flying using the constraint forces in Lagrangian systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Getting inspiration from the constraint forces in the classical mechanics, we presented the nonlinear control method of multiple spacecraft formation flying to accurately keep the desired formation arrays. Considering nonlinearity and perturbation, we changed the question of the formation array control to the Lagrange equations with the holonomic constraints and the differential algebraic equations (DAE), and developed the nonlinear control for design of the follower spacecraft tracking control laws by solving the DAE. Because of using the idea of the constraint forces, this approach can adequately utilize the characteristic of the dynamic equations, i.e., the space natural forces, and accurately keep the arbitrary formation array. Simulation results of the circular formation keeping with the linear and nonlinear dynamical equations were included to illuminate the control performance.

  13. Nonlinear control for global stabilization of multiple-integrator system by bounded controls

    Institute of Scientific and Technical Information of China (English)

    Bin ZHOU; Guangren DUAN; Liu ZHANG

    2008-01-01

    The global stabilization problem of the multiple-integrator system by bounded controls is considered.A nonlinear feedback law consisting of nested saturation functions is proposed.This type of nonlinear feedback law that is a modification and generalization of the result given in[1] needs only[(n+1)/2](n is the dimensions of the system)saturation elements,which is fewer than that which the other nonlinear laws need.Funhermore.the poles of the closedloop system Can be placed on any location on the left real axis when none of the saturafion elements in the control laws is saturated.This type of nonlinear control law exhibits a simpler structure and call significantly improve the transient performances of the closed-loop system,and is very superior to the other existing methods.Simulation on a fourth-order system is used to validate the proposed method.

  14. Explicit Nonlinear Model Predictive Control Theory and Applications

    CERN Document Server

    Grancharova, Alexandra

    2012-01-01

    Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø  Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...

  15. Highly Nonlinear Ising Model and Social Segregation

    CERN Document Server

    Sumour, M A; Shabat, M M

    2011-01-01

    The usual interaction energy of the random field Ising model in statistical physics is modified by complementing the random field by added to the energy of the usual Ising model a nonlinear term S^n were S is the sum of the neighbor spins, and n=0,1,3,5,7,9,11. Within the Schelling model of urban segregation, this modification corresponds to housing prices depending on the immediate neighborhood. Simulations at different temperatures, lattice size, magnetic field, number of neighbors and different time intervals showed that results for all n are similar, expect for n=3 in violation of the universality principle and the law of corresponding states. In order to find the critical temperatures, for large n we no longer start with all spins parallel but instead with a random configuration, in order to facilitate spin flips. However, in all cases we have a Curie temperature with phase separation or long-range segregation only below this Curie temperature, and it is approximated by a simple formula: Tc is proportion...

  16. Multiple time scale based reduction scheme for nonlinear chemical dynamics

    Science.gov (United States)

    Das, D.; Ray, D. S.

    2013-07-01

    A chemical reaction is often characterized by multiple time scales governing the kinetics of reactants, products and intermediates. We eliminate the fast relaxing intermediates in autocatalytic reaction by transforming the original system into a new one in which the linearized part is diagonal. This allows us to reduce the dynamical system by identifying the associated time scales and subsequent adiabatic elimination of the fast modes. It has been shown that the reduced system sustains the robust qualitative signatures of the original system and at times the generic form of the return map for the chaotic system from which complex dynamics stems out in the original system can be identified. We illustrate the scheme for a three-variable cubic autocatalytic reaction and four-variable peroxidase-oxidase reaction.

  17. Asymmetric and common absorption of shocks in nonlinear autoregressive models

    OpenAIRE

    Dijk, Dick van; Franses, Philip Hans; Boswijk, Peter

    2000-01-01

    textabstractA key feature of many nonlinear time series models is that they allow for the possibility that the model structure experiences changes, depending on for example the state of the economy or of the financial market. A common property of these models is that it generally is not possible to fully understand the structure of the model by considering the estimated values of the model parameters only. Put differently, it often is difficult to interpret a specific nonlinear model. To shed...

  18. Computing effective properties of nonlinear structures exposed to strong high-frequency loading at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2006-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  19. Multiple periodic solutions for a class of second-order nonlinear neutral delay equations

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available By means of a variational structure and Z 2 -group index theory, we obtain multiple periodic solutions to a class of second-order nonlinear neutral delay equations of the form0, au>0$"> x ″ ( t − τ + λ ( t f ( t , x ( t , x ( t − τ , x ( t − 2 τ = x ( t , λ ( t > 0 , τ > 0 .

  20. Multiple four-wave mixing and Kerr combs in a bichromatically pumped nonlinear fiber ring cavity.

    Science.gov (United States)

    Ceoldo, D; Bendahmane, A; Fatome, J; Millot, G; Hansson, T; Modotto, D; Wabnitz, S; Kibler, B

    2016-12-01

    We report numerical and experimental studies of multiple four-wave mixing processes emerging from dual-frequency pumping of a passive nonlinear fiber ring cavity. We observe the formation of a periodic train of nearly background-free soliton pulses associated with Kerr frequency combs. The generation of resonant dispersive waves is also reported.

  1. Multiple Positive Solutions of Boundary Value Problems for Systems of Nonlinear Third-Order Differential Equations

    Institute of Scientific and Technical Information of China (English)

    Yaohong LI; Xiaoyan ZHANG

    2013-01-01

    In this paper,we consider boundary value problems for systems of nonlinear thirdorder differential equations.By applying the fixed point theorems of cone expansion and compression of norm type and Leggett-Williams fixed point theorem,the existence of multiple positive solutions is obtained.As application,we give some examples to demonstrate our results.

  2. Fuzzy Modeling for Uncertainty Nonlinear Systems with Fuzzy Equations

    Directory of Open Access Journals (Sweden)

    Raheleh Jafari

    2017-01-01

    Full Text Available The uncertain nonlinear systems can be modeled with fuzzy equations by incorporating the fuzzy set theory. In this paper, the fuzzy equations are applied as the models for the uncertain nonlinear systems. The nonlinear modeling process is to find the coefficients of the fuzzy equations. We use the neural networks to approximate the coefficients of the fuzzy equations. The approximation theory for crisp models is extended into the fuzzy equation model. The upper bounds of the modeling errors are estimated. Numerical experiments along with comparisons demonstrate the excellent behavior of the proposed method.

  3. A NEW SOLUTION MODEL OF NONLINEAR DYNAMIC LEAST SQUARE ADJUSTMENT

    Institute of Scientific and Technical Information of China (English)

    陶华学; 郭金运

    2000-01-01

    The nonlinear least square adjustment is a head object studied in technology fields. The paper studies on the non-derivative solution to the nonlinear dynamic least square adjustment and puts forward a new algorithm model and its solution model. The method has little calculation load and is simple. This opens up a theoretical method to solve the linear dynamic least square adjustment.

  4. On optimal performance of nonlinear energy sinks in multiple-degree-of-freedom systems

    Science.gov (United States)

    Tripathi, Astitva; Grover, Piyush; Kalmár-Nagy, Tamás

    2017-02-01

    We study the problem of optimizing the performance of a nonlinear spring-mass-damper attached to a class of multiple-degree-of-freedom systems. We aim to maximize the rate of one-way energy transfer from primary system to the attachment, and focus on impulsive excitation of a two-degree-of-freedom primary system with an essentially nonlinear attachment. The nonlinear attachment is shown to be able to perform as a 'nonlinear energy sink' (NES) by taking away energy from the primary system irreversibly for some types of impulsive excitations. Using perturbation analysis and exploiting separation of time scales, we perform dimensionality reduction of this strongly nonlinear system. Our analysis shows that efficient energy transfer to nonlinear attachment in this system occurs for initial conditions close to homoclinic orbit of the slow time-scale undamped system, a phenomenon that has been previously observed for the case of single-degree-of-freedom primary systems. Analytical formulae for optimal parameters for given impulsive excitation input are derived. Generalization of this framework to systems with arbitrary number of degrees-of-freedom of the primary system is also discussed. The performance of both linear and nonlinear optimally tuned attachments is compared. While NES performance is sensitive to magnitude of the initial impulse, our results show that NES performance is more robust than linear tuned mass damper to several parametric perturbations. Hence, our work provides evidence that homoclinic orbits of the underlying Hamiltonian system play a crucial role in efficient nonlinear energy transfers, even in high dimensional systems, and gives new insight into robustness of systems with essential nonlinearity.

  5. Lattice Boltzmann model for nonlinear convection-diffusion equations.

    Science.gov (United States)

    Shi, Baochang; Guo, Zhaoli

    2009-01-01

    A lattice Boltzmann model for convection-diffusion equation with nonlinear convection and isotropic-diffusion terms is proposed through selecting equilibrium distribution function properly. The model can be applied to the common real and complex-valued nonlinear evolutionary equations, such as the nonlinear Schrödinger equation, complex Ginzburg-Landau equation, Burgers-Fisher equation, nonlinear heat conduction equation, and sine-Gordon equation, by using a real and complex-valued distribution function and relaxation time. Detailed simulations of these equations are performed, and it is found that the numerical results agree well with the analytical solutions and the numerical solutions reported in previous studies.

  6. Nonlinear lower hybrid modeling in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, F.; Schettini, G. [Università Roma Tre, Dipartimento di Ingegneria, Roma (Italy); Castaldo, C.; Cesario, R. [Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati (Italy)

    2014-02-12

    We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.

  7. A Modal Model to Simulate Typical Structural Dynamic Nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Pacini, Benjamin Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayes, Randall L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roettgen, Daniel R [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-01

    Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.

  8. Multiple Positive Solutions for Some Neutral Integral Equatious Modeling Infectious Disease

    Institute of Scientific and Technical Information of China (English)

    ZHAOHua-xiang; SUNXing-wang

    2003-01-01

    By using fixed point index theory of cone mapping and extension method,this paper discusses the existence of multiple positive solution of nonlinear neutral integral equatious modeling infectious dis-ease.

  9. ASYMPTOTIC EFFICIENT ESTIMATION IN SEMIPARAMETRIC NONLINEAR REGRESSION MODELS

    Institute of Scientific and Technical Information of China (English)

    ZhuZhongyi; WeiBocheng

    1999-01-01

    In this paper, the estimation method based on the “generalized profile likelihood” for the conditionally parametric models in the paper given by Severini and Wong (1992) is extendedto fixed design semiparametrie nonlinear regression models. For these semiparametrie nonlinear regression models,the resulting estimator of parametric component of the model is shown to beasymptotically efficient and the strong convergence rate of nonparametric component is investigated. Many results (for example Chen (1988) ,Gao & Zhao (1993), Rice (1986) et al. ) are extended to fixed design semiparametric nonlinear regression models.

  10. TESTING FOR VARYING DISPERSION IN DISCRETE EXPONENTIAL FAMILY NONLINEAR MODELS

    Institute of Scientific and Technical Information of China (English)

    LinJinguan; WeiBocheng; ZhangNansong

    2003-01-01

    It is necessary to test for varying dispersion in generalized nonlinear models. Wei ,et al(1998) developed a likelihood ratio test,a score test and their adjustments to test for varying dispersion in continuous exponential family nonlinear models. This type of problem in the framework of general discrete exponential family nonlinear models is discussed. Two types of varying dispersion, which are random coefficients model and random effects model, are proposed,and corresponding score test statistics are constructed and expressed in simple ,easy to use ,matrix formulas.

  11. Nonlinear flow model for well production in an underground formation

    Directory of Open Access Journals (Sweden)

    J. C. Guo

    2013-05-01

    Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.

  12. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima

    2017-07-10

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order nonlinear system with similar disturbance-output properties to the original plant. The proposed model reduction strategy preserves the nonlinearity and the input disturbance nature of the model. It guarantees a sufficiently small error between the outputs of the original and the reduced-order systems, and also maintains the properties of input-to-state stability. The matrices of the reduced order system are given in terms of a set of linear matrix inequalities (LMIs). The paper concludes with a demonstration of the proposed approach on model reduction of a nonlinear electronic circuit with additive disturbances.

  13. Nonlinear and Non Normal Regression Models in Physiological Research

    OpenAIRE

    1984-01-01

    Applications of nonlinear and non normal regression models are in increasing order for appropriate interpretation of complex phenomenon of biomedical sciences. This paper reviews critically some applications of these models physiological research.

  14. Nonlinear Dynamic Model Explains The Solar Dynamic

    Science.gov (United States)

    Kuman, Maria

    Nonlinear mathematical model in torus representation describes the solar dynamic. Its graphic presentation shows that without perturbing force the orbits of the planets would be circles; only perturbing force could elongate the circular orbits into ellipses. Since the Hubble telescope found that the planetary orbits of other stars in the Milky Way are also ellipses, powerful perturbing force must be present in our galaxy. Such perturbing force is the Sagittarius Dwarf Galaxy with its heavy Black Hole and leftover stars, which we see orbiting around the center of our galaxy. Since observations of NASA's SDO found that magnetic fields rule the solar activity, we can expect when the planets align and their magnetic moments sum up, the already perturbed stars to reverse their magnetic parity (represented graphically as periodic looping through the hole of the torus). We predict that planets aligned on both sides of the Sun, when their magnetic moments sum-up, would induce more flares in the turbulent equatorial zone, which would bulge. When planets align only on one side of the Sun, the strong magnetic gradient of their asymmetric pull would flip the magnetic poles of the Sun. The Sun would elongate pole-to-pole, emit some energy through the poles, and the solar activity would cease. Similar reshaping and emission was observed in stars called magnetars and experimentally observed in super-liquid fast-spinning Helium nanodroplets. We are certain that NASA's SDO will confirm our predictions.

  15. Smooth solutions of non-linear stochastic partial differential equations driven by multiplicative noises

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, we study the regularity of solutions of nonlinear stochastic partial differential equations (SPDEs) with multiplicative noises in the framework of Hilbert scales. Then we apply our abstract result to several typical nonlinear SPDEs such as stochastic Burgers and Ginzburg-Landau equations on the real line, stochastic 2D Navier-Stokes equations (SNSEs) in the whole space and a stochastic tamed 3D Navier-Stokes equation in the whole space, and obtain the existence of their smooth solutions respectively. In particular, we also get the existence of local smooth solutions for 3D SNSEs.

  16. Nonlinear State Space Modeling and System Identification for Electrohydraulic Control

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2013-01-01

    Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.

  17. Modelling and Estimation of Hammerstein System with Preload Nonlinearity

    Directory of Open Access Journals (Sweden)

    Khaled ELLEUCH

    2010-12-01

    Full Text Available This paper deals with modelling and parameter identification of nonlinear systems described by Hammerstein model having asymmetric static nonlinearities known as preload nonlinearity characteristic. The simultaneous use of both an easy decomposition technique and the generalized orthonormal bases leads to a particular form of Hammerstein model containing a minimal parameters number. The employ of orthonormal bases for the description of the linear dynamic block conducts to a linear regressor model, so that least squares techniques can be used for the parameter estimation. Singular Values Decomposition (SVD technique has been applied to separate the coupled parameters. To demonstrate the feasibility of the identification method, an illustrative example is included.

  18. Applications of Nonlinear Dynamics Model and Design of Complex Systems

    CERN Document Server

    In, Visarath; Palacios, Antonio

    2009-01-01

    This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.

  19. Extended models of nonlinear waves in liquid with gas bubbles

    CERN Document Server

    Kudryashov, Nikolay A

    2016-01-01

    In this work we generalize the models for nonlinear waves in a gas--liquid mixture taking into account an interphase heat transfer, a surface tension and a weak liquid compressibility simultaneously at the derivation of the equations for nonlinear waves. We also take into consideration high order terms with respect to the small parameter. Two new nonlinear differential equations are derived for long weakly nonlinear waves in a liquid with gas bubbles by the reductive perturbation method considering both high order terms with respect to the small parameter and the above mentioned physical properties. One of these equations is the perturbation of the Burgers equation and corresponds to main influence of dissipation on nonlinear waves propagation. The other equation is the perturbation of the Burgers--Korteweg--de Vries equation and corresponds to main influence of dispersion on nonlinear waves propagation.

  20. A Boussinesq model with alleviated nonlinearity and dispersion

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dian-xin; TAO Jian-hua

    2008-01-01

    The classical Boussinesq equation is a weakly nonlinear and weakly dispersive equation, which has been widely applied to simulate wave propagation in off-coast shallow waters. A new form of the Boussinesq model for an uneven bottoms is derived in this paper. In the new model, nonlinearity is reduced without increasing the order of the highest derivative in the differential equations. Dispersion relationship of the model is improved to the order of Pade (2,2) by adjusting a parameter in the model based on the long wave approximation. Analysis of the linear dispersion, linear shoaling and nonlinearity of the present model shows that the performances in terms of nonlinearity, dispersion and shoaling of this model are improved. Numerical results obtained with the present model are in agreement with experimental data.

  1. Employment of CB models for non-linear dynamic analysis

    Science.gov (United States)

    Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.

    1990-01-01

    The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.

  2. Combined forecasts from linear and nonlinear time series models

    NARCIS (Netherlands)

    N. Terui (Nobuhiko); H.K. van Dijk (Herman)

    1999-01-01

    textabstractCombined forecasts from a linear and a nonlinear model are investigated for time series with possibly nonlinear characteristics. The forecasts are combined by a constant coefficient regression method as well as a time varying method. The time varying method allows for a locally (non)line

  3. Temperature effects in a nonlinear model of monolayer Scheibe aggregates

    DEFF Research Database (Denmark)

    Bang, Ole; Christiansen, Peter Leth; If, F.

    1994-01-01

    A nonlinear dynamical model of molecular monolayers arranged in Scheibe aggregates is derived from a proper Hamiltonian. Thermal fluctuations of the phonons are included. The resulting equation for the excitons is the two dimensional nonlinear Schrodinger equation with noise. Two limits...

  4. Quasi-Maximum Likelihood Estimation of Structural Equation Models with Multiple Interaction and Quadratic Effects

    Science.gov (United States)

    Klein, Andreas G.; Muthen, Bengt O.

    2007-01-01

    In this article, a nonlinear structural equation model is introduced and a quasi-maximum likelihood method for simultaneous estimation and testing of multiple nonlinear effects is developed. The focus of the new methodology lies on efficiency, robustness, and computational practicability. Monte-Carlo studies indicate that the method is highly…

  5. Experimental study of a multiplicative model of multiple ionospheric reflections

    Science.gov (United States)

    Mirkotan, S. F.; Zhuravlev, S. V.; Kosovtsov, Iu. N.

    1983-04-01

    An important parameter of a partially scattered ionospheric signal is the signal-noise energy parameter beta. A new method for determining beta sub n (where n is the multiplicity of reflection) has been proposed on the basis of the statistical multiplicative model of Mirkotan et al. (1981, 1982). This paper describes an experimental verification of the proposed method; data on beta sub n obtained by the traditional method and by the new method are compared. In addition, the validity of the multiplicative model is evaluated, and features of the mechanism responsible for the multiple scattering of an ionospheric signal are examined.

  6. Analysis of search-extension method for finding multiple solutions of nonlinear problem

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    For numerical computations of multiple solutions of the nonlinear elliptic problemΔu+ f(u)=0 inΩ, u=0 onΓ, a search-extension method (SEM) was proposed and systematically studied by the authors. This paper shall complete its theoretical analysis. It is assumed that the nonlinearity is non-convex and its solution is isolated, under some conditions the corresponding linearized problem has a unique solution. By use of the compactness of the solution family and the contradiction argument, in general conditions, the high order regularity of the solution u∈H1+α,α>0 is proved. Assume that some initial value searched by suitably many eigenbases is already fallen into the neighborhood of the isolated solution, then the optimal error estimates of its nonlinear finite element approximation are shown by the duality argument and continuation method.

  7. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models

    DEFF Research Database (Denmark)

    Fournier, David A.; Skaug, Hans J.; Ancheta, Johnoel

    2011-01-01

    Many criteria for statistical parameter estimation, such as maximum likelihood, are formulated as a nonlinear optimization problem.Automatic Differentiation Model Builder (ADMB) is a programming framework based on automatic differentiation, aimed at highly nonlinear models with a large number...

  8. Nonlinear Economic Model Predictive Control Strategy for Active Smart Buildings

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.

    2016-01-01

    Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm...... for solving the nonconvex optimization problem is proposed in this paper. A simulation using the nonlinear model-based controller to control the temperature levels of an intelligent office building (PowerFlexHouse) is addressed. Its performance is compared with a linear model-based controller. The nonlinear...

  9. Local Influence Analysis for Semiparametric Reproductive Dispersion Nonlinear Models

    Institute of Scientific and Technical Information of China (English)

    Xue-dong CHEN; Nian-sheng TANG; Xue-ren WANG

    2012-01-01

    The present paper proposes a semiparametric reproductive dispersion nonlinear model (SRDNM)which is an extension of the nonlinear reproductive dispersion models and the semiparameter regression models.Maximum penalized likelihood estimates (MPLEs) of unknown parameters and nonparametric functions in SRDNM are presented.Assessment of local influence for various perturbation schemes are investigated.Some local influence diagnostics are given.A simulation study and a real example are used to illustrate the proposed methodologies.

  10. General expression for linear and nonlinear time series models

    Institute of Scientific and Technical Information of China (English)

    Ren HUANG; Feiyun XU; Ruwen CHEN

    2009-01-01

    The typical time series models such as ARMA, AR, and MA are founded on the normality and stationarity of a system and expressed by a linear difference equation; therefore, they are strictly limited to the linear system. However, some nonlinear factors are within the practical system; thus, it is difficult to fit the model for real systems with the above models. This paper proposes a general expression for linear and nonlinear auto-regressive time series models (GNAR). With the gradient optimization method and modified AIC information criteria integrated with the prediction error, the parameter estimation and order determination are achieved. The model simulation and experiments show that the GNAR model can accurately approximate to the dynamic characteristics of the most nonlinear models applied in academics and engineering. The modeling and prediction accuracy of the GNAR model is superior to the classical time series models. The proposed GNAR model is flexible and effective.

  11. Extended nonlinear feedback model for describing episodes of high inflation

    Science.gov (United States)

    Szybisz, Martín A.; Szybisz, Leszek

    2017-01-01

    An extension of the nonlinear feedback (NLF) formalism to describe regimes of hyper- and high-inflation in economy is proposed in the present work. In the NLF model the consumer price index (CPI) exhibits a finite time singularity of the type 1 /(tc - t) (1 - β) / β, with β > 0, predicting a blow up of the economy at a critical time tc. However, this model fails in determining tc in the case of weak hyperinflation regimes like, e.g., that occurred in Israel. To overcome this trouble, the NLF model is extended by introducing a parameter γ, which multiplies all terms with past growth rate index (GRI). In this novel approach the solution for CPI is also analytic being proportional to the Gaussian hypergeometric function 2F1(1 / β , 1 / β , 1 + 1 / β ; z) , where z is a function of β, γ, and tc. For z → 1 this hypergeometric function diverges leading to a finite time singularity, from which a value of tc can be determined. This singularity is also present in GRI. It is shown that the interplay between parameters β and γ may produce phenomena of multiple equilibria. An analysis of the severe hyperinflation occurred in Hungary proves that the novel model is robust. When this model is used for examining data of Israel a reasonable tc is got. High-inflation regimes in Mexico and Iceland, which exhibit weaker inflations than that of Israel, are also successfully described.

  12. Bayesian model comparison in nonlinear BOLD fMRI hemodynamics

    DEFF Research Database (Denmark)

    Jacobsen, Danjal Jakup; Hansen, Lars Kai; Madsen, Kristoffer Hougaard

    2008-01-01

    Nonlinear hemodynamic models express the BOLD (blood oxygenation level dependent) signal as a nonlinear, parametric functional of the temporal sequence of local neural activity. Several models have been proposed for both the neural activity and the hemodynamics. We compare two such combined models......: the original balloon model with a square-pulse neural model (Friston, Mechelli, Turner, & Price, 2000) and an extended balloon model with a more sophisticated neural model (Buxton, Uludag, Dubowitz, & Liu, 2004). We learn the parameters of both models using a Bayesian approach, where the distribution...

  13. Numerical method of studying nonlinear interactions between long waves and multiple short waves

    Institute of Scientific and Technical Information of China (English)

    Xie Tao; Kuang Hai-Lan; William Perrie; Zou Guang-Hui; Nan Cheng-Feng; He Chao; Shen Tao; Chen Wei

    2009-01-01

    Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically,the solution is less tractable in more general cases involving multiple short waves.In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water.Specifically,this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves.Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train.From simulation results,we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train(expressed as wave train 2)leads to the energy focusing of the other short wave train(expressed as wave train 31.This mechanism Occurs on wave components with a narrow frequency bandwidth,whose frequencies are near that of wave train 3.

  14. Coupled Oscillator Model for Nonlinear Gravitational Perturbations

    CERN Document Server

    Yang, Huan; Green, Stephen R; Lehner, Luis

    2015-01-01

    Motivated by the gravity/fluid correspondence, we introduce a new method for characterizing nonlinear gravitational interactions. Namely we map the nonlinear perturbative form of the Einstein equation to the equations of motion of a collection of nonlinearly-coupled harmonic oscillators. These oscillators correspond to the quasinormal or normal modes of the background spacetime. We demonstrate the mechanics and the utility of this formalism within the context of perturbed asymptotically anti-de Sitter black brane spacetimes. We confirm in this case that the boundary fluid dynamics are equivalent to those of the hydrodynamic quasinormal modes of the bulk spacetime. We expect this formalism to remain valid in more general spacetimes, including those without a fluid dual. In other words, although borne out of the gravity/fluid correspondence, the formalism is fully independent and it has a much wider range of applicability. In particular, as this formalism inspires an especially transparent physical intuition, w...

  15. Exact stationary solutions independent of energy for strongly nonlinear stochastic systems of multiple degrees of freedom

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new procedure is proposed to construct strongly nonlinear systems of multiple degrees of freedom subjected to parametric and/or external Gaussian white noises, whose exact stationary solutions are independent of energy. Firstly, the equivalent Fokker-Planck-Kolmogorov (FPK) equations are derived by using exterior differentiation. The main difference between the equivalent FPK equation and the original FPK equation lies in the additional arbitrary antisymmetric diffusion matrix. Then the exact stationary solutions and the structures of the original systems can be obtained by using the coefficients of antisymmetric diffusion matrix. The obtained exact stationary solutions, which are generally independent of energy, are for the most general class of strongly nonlinear stochastic systems multiple degrees of freedom (MDOF) so far, and some classes of the known ones dependent on energy belong to the special cases of them.

  16. Exact stationary solutions independent of energy for strongly nonlinear stochastic systems of multiple degrees of freedom

    Institute of Scientific and Technical Information of China (English)

    HUANG ZhiLong; JIN XiaoLing

    2009-01-01

    A new procedure is proposed to construct strongly nonlinear systems of multiple degrees of freedom subjected to parametric and/or external Gaussian white noises,whose exact stationary solutions are independent of energy.Firstly,the equivalent Fokker-Planck-Kolmogorov(FPK)equations are derived by using exterior differentiation.The main difference between the equivalent FPK equation and the original FPK equation lies in the additional arbitrary antisymmetric diffusion matrix.Then the exact stationary solutions and the structures of the original systems can be obtained by using the coefficients of antisymmetric diffusion matrix.The obtained exact stationary solutions,which are generally independent of energy,are for the most general class of strongly nonlinear stochastic systems multiple degrees of freedom(MDOF)so far,and some classes of the known ones dependent on energy belong to the special cases of them.

  17. Multiple solutions for a class of nonlinear elliptic equations on the Sierpi(n)ski gasket

    Institute of Scientific and Technical Information of China (English)

    HU; Jiaxin

    2004-01-01

    This paper investigates a class of nonlinear elliptic equations on a fractal domain. We establish a strong Sobolev-type inequality which leads to the existence of multiple non-trivial solutions of △u + c(x)u = f(x, u), with zero Dirichlet boundary conditions on the Sierpinski gasket. Our existence results do not require any growth conditions of f(x, t)in t, in contrast to the classical theory of elliptic equations on smooth domains.

  18. Multiple positive solutions for Kirchhoff type problems involving concave and convex nonlinearities in R^3

    Directory of Open Access Journals (Sweden)

    Xiaofei Cao

    2016-11-01

    Full Text Available In this article, we consider the multiplicity of positive solutions for a class of Kirchhoff type problems with concave and convex nonlinearities. Under appropriate assumptions, we prove that the problem has at least two positive solutions, moreover, one of which is a positive ground state solution. Our approach is mainly based on the Nehari manifold, Ekeland variational principle and the theory of Lagrange multipliers.

  19. The contributions of interlocking loops and extensive nonlinearity to the properties of circadian clock models.

    Directory of Open Access Journals (Sweden)

    Treenut Saithong

    Full Text Available BACKGROUND: Sensitivity and robustness are essential properties of circadian clock systems, enabling them to respond to the environment but resist noisy variations. These properties should be recapitulated in computational models of the circadian clock. Highly nonlinear kinetics and multiple loops are often incorporated into models to match experimental time-series data, but these also impact on model properties for clock models. METHODOLOGY/PRINCIPAL FINDINGS: Here, we study the consequences of complicated structure and nonlinearity using simple Goodwin-type oscillators and the complex Arabidopsis circadian clock models. Sensitivity analysis of the simple oscillators implies that an interlocked multi-loop structure reinforces sensitivity/robustness properties, enhancing the response to external and internal variations. Furthermore, we found that reducing the degree of nonlinearity could sometimes enhance the robustness of models, implying that ad hoc incorporation of nonlinearity could be detrimental to a model's perceived credibility. CONCLUSION: The correct multi-loop structure and degree of nonlinearity are therefore critical in contributing to the desired properties of a model as well as its capacity to match experimental data.

  20. Blind channel identication of nonlinear folding mixing model

    Institute of Scientific and Technical Information of China (English)

    Su Yong; Xu Shangzhi; Ye Zhongfu

    2006-01-01

    Signals from multi-sensor systems are often mixtures of (statistically) independent sources by unknown mixing method. Blind source separation(BSS) and independent component analysis(ICA) are the methods to identify/recover the channels and the sources. BSS/ICA of nonlinear mixing models are difficult problems. For instance, the post-nonlinear model has been studied by several authors. It is noticed that in most cases, the proposed models are always with an invertible mixing. According to this fact there is an interesting question: how about the situation of the non-invertible non-linear mixing in BSS or ICA? A new simple non-linear mixing model is proposed with a kind of non-invertible mixing, the folding mixing, and method to identify its channel, blindly.

  1. Review of Nonlinear Methods and Modelling

    CERN Document Server

    Borg, F G

    2005-01-01

    The first part of this Review describes a few of the main methods that have been employed in non-linear time series analysis with special reference to biological applications (biomechanics). The second part treats the physical basis of posturogram data (human balance) and EMG (electromyography, a measure of muscle activity).

  2. Exact travelling wave solutions for some important nonlinear physical models

    Indian Academy of Sciences (India)

    Jonu Lee; Rathinasamy Sakthivel

    2013-05-01

    The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and numerical studies. In this paper, the Kudryashov method is used to seek exact travelling wave solutions of such physical models. Further, three-dimensional plots of some of the solutions are also given to visualize the dynamics of the equations. The results reveal that the method is a very effective and powerful tool for solving nonlinear partial differential equations arising in mathematical physics.

  3. Multiple positive solutions for singular semipositone nonlinear integral boundary-value problems on infinite intervals

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2015-03-01

    Full Text Available In this article, we study the existence of multiple positive solutions for singular semipositone boundary-value problem (BVP with integral boundary conditions on infinite intervals. By using the properties of the Green's function and the Guo-Krasnosel'skii fixed point theorem, we obtain the existence of multiple positive solutions under conditions concerning the nonlinear functions. The method in this article can be used for a large number of problems. We illustrate the validity of our results with an example in the last section.

  4. A reduced order model for nonlinear vibroacoustic problems

    Directory of Open Access Journals (Sweden)

    Ouisse Morvan

    2012-07-01

    Full Text Available This work is related to geometrical nonlinearities applied to thin plates coupled with fluid-filled domain. Model reduction is performed to reduce the computation time. Reduced order model (ROM is issued from the uncoupled linear problem and enriched with residues to describe the nonlinear behavior and coupling effects. To show the efficiency of the proposed method, numerical simulations in the case of an elastic plate closing an acoustic cavity are presented.

  5. A Comment on the Renormalization of the Nonlinear Sigma Model

    CERN Document Server

    Bettinelli, D; Quadri, A; Bettinelli, Daniele; Ferrari, Ruggero; Quadri, Andrea

    2007-01-01

    We consider the recently proposed renormalization procedure for the nonlinear sigma model, consisting in the recursive subtraction of the divergences in a symmetric fashion. We compare this subtraction with the conventional procedure in power counting renormalizable (PCR) theories. We argue that symmetric subtraction in the nonlinear sigma model does not follow the lore by which nonrenormalizable theories require an infinite number of parameter fixings. Our conclusion is that only two parameters can be consistently used as physical constants.

  6. Modeling and Decentralized Control for the Multiple UAVs Formation based on Lyapunov design and redesign

    OpenAIRE

    Hou, Zhicheng; Fantoni, Isabelle; Zavala-Río, Arturo

    2013-01-01

    International audience; This paper concerns the leader-follower multiple agent formation with nonlinear and coupled individual dynamics. We address the problem of multi-agent formation control by proposing a decentralized control strategy. The agents in the formation are quad-rotors UAVs. By attributing the high-order nonlinear and unmodelled dynamics as uncertainties, we propose a switching singular system model to represent the formation of the multiple UAVs system with switching topology. ...

  7. Robust Designs for Three Commonly Used Nonlinear Models

    Science.gov (United States)

    Xu, Xiaojian; Chen, Arnold

    2011-11-01

    In this paper, we study the robust designs for a few nonlinear models, including an exponential model with an intercept, a compartmental model, and a Michaelis-Menten model, when these models are possibly misspecified. The minimax robust designs we considered in this paper are under consideration of not only minimizing the variances but also reducing the possible biases in estimation. Both prediction and extrapolation cases are discussed. The robust designs are found incorporating the approximation of these models with several situations such as homoscedasticity, and heteroscedasticity. Both ordinary and weighted nonlinear least squares methods are utilized.

  8. RECENT PROGRESS IN NONLINEAR EDDY-VISCOSITY TURBULENCE MODELING

    Institute of Scientific and Technical Information of China (English)

    符松; 郭阳; 钱炜祺; 王辰

    2003-01-01

    This article presents recent progresses in turbulence modeling in the Unit for Turbulence Simulation in the Department of Engineering Mechanics at Tsinghua University. The main contents include: compact Non-Linear Eddy-Viscosity Model (NLEVM) based on the second-moment closure, near-wall low-Re non-linear eddy-viscosity model and curvature sensitive turbulence model.The models have been validated in a wide range of complex flow test cases and the calculated results show that the present models exhibited overall good performance.

  9. Modeling of nonlinear responses for reciprocal transducers involving polarization switching

    DEFF Research Database (Denmark)

    Willatzen, Morten; Wang, Linxiang

    2007-01-01

    Nonlinearities and hysteresis effects in a reciprocal PZT transducer are examined by use of a dynamical mathematical model on the basis of phase-transition theory. In particular, we consider the perovskite piezoelectric ceramic in which the polarization process in the material can be modeled....... We present numerical results for the reciprocal-transducer system and identify the influence of nonlinearities on the system dynamics at high and low frequency as well as electrical impedance effects due to tuning by a series inductance. It is found that nonlinear effects are not important at high...... by Landau theory for the first-order phase transformation, in which each polarization state is associated with a minimum of the Landau free-energy function. Nonlinear constitutive laws are obtained by using thermodynamical equilibrium conditions, and hysteretic behavior of the material can be modeled...

  10. Nonlinear unmixing of hyperspectral images: models and algorithms

    CERN Document Server

    Dobigeon, Nicolas; Richard, Cédric; Bermudez, José C M; McLaughlin, Stephen; Hero, Alfred O

    2013-01-01

    When considering the problem of unmixing hyperspectral images, most of the literature in the geoscience and image processing areas rely on the widely acknowledged linear mixing model (LMM). However, in specific but common contexts, the LMM may be not valid and other nonlinear models should be invoked. Consequently, over the last few years, several significant contributions have been proposed to overcome the limitations inherent in the LMM. In this paper, we present an overview of recent advances that deal with the nonlinear unmixing problem. The main nonlinear models are introduced and their validity discussed. Then, we describe the main classes of unmixing strategies designed to solve the problem in supervised and unsupervised frameworks. Finally, the problem of detecting nonlinear mixtures in hyperspectral images is addressed.

  11. A Study of Thermal Contact using Nonlinear System Identification Models

    Directory of Open Access Journals (Sweden)

    M. H. Shojaeefard

    2008-01-01

    Full Text Available One interesting application of system identification method is to identify and control the heat transfer from the exhaust valve to the seat to keep away the valve from being damaged. In this study, two co-axial cylindrical specimens are used as exhaust valve and its seat. Using the measured temperatures at different locations of the specimens and with a semi-analytical method, the temperature distribution of the specimens is calculated and consequently, the thermal contact conductance is calculated. By applying the system identification method and having the temperatures at both sides of the contact surface, the temperature transfer function is calculated. With regard to the fact that the thermal contact has nonlinear behavior, two nonlinear black-box models called nonlinear ARX and NLN Hammerstein-Wiener models are taken for accurate estimation. Results show that the NLN Hammerstein-Wiener models with wavelet network nonlinear estimator is the best.

  12. Modified Hyperspheres Algorithm to Trace Homotopy Curves of Nonlinear Circuits Composed by Piecewise Linear Modelled Devices

    Directory of Open Access Journals (Sweden)

    H. Vazquez-Leal

    2014-01-01

    Full Text Available We present a homotopy continuation method (HCM for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points. The results show that HCM can find multiple solutions within a single homotopy trajectory. Furthermore, we take advantage of the fact that homotopy trajectories are PWL curves meant to replace the multidimensional interpolation and fine tuning stages of the path tracking algorithm with a simple and highly accurate procedure based on the parametric straight line equation.

  13. A Simple Holographic Model of Nonlinear Conductivity

    CERN Document Server

    Horowitz, Gary T; Santos, Jorge E

    2013-01-01

    We present a simple analytic gravitational solution which describes the holographic dual of a 2+1-dimensional conductor which goes beyond the usual linear response. In particular it includes Joule heating. We find that the nonlinear frequency-dependent conductivity is a constant. Surprisingly, the pressure remains isotropic. We also apply an electric field to a holographic insulator and show that there is a maximum electric field below which it can remain an insulator. Above this critical value, we argue that it becomes a conductor due to pair creation of charged particles. Finally, we study 1+1 and 3+1 dimensional conductors at the nonlinear level; here exact solutions are not available and a perturbative analysis shows that the current becomes time dependent, but in a way that is captured by a time-dependent effective temperature.

  14. Nonlinear dynamics new directions models and applications

    CERN Document Server

    Ugalde, Edgardo

    2015-01-01

    This book, along with its companion volume, Nonlinear Dynamics New Directions: Theoretical Aspects, covers topics ranging from fractal analysis to very specific applications of the theory of dynamical systems to biology. This second volume contains mostly new applications of the theory of dynamical systems to both engineering and biology. The first volume is devoted to fundamental aspects and includes a number of important new contributions as well as some review articles that emphasize new development prospects. The topics addressed in the two volumes include a rigorous treatment of fluctuations in dynamical systems, topics in fractal analysis, studies of the transient dynamics in biological networks, synchronization in lasers, and control of chaotic systems, among others. This book also: ·         Develops applications of nonlinear dynamics on a diversity of topics such as patterns of synchrony in neuronal networks, laser synchronization, control of chaotic systems, and the study of transient dynam...

  15. Modeling of nonlinear propagation in fiber tapers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2012-01-01

    A full-vectorial nonlinear propagation equation for short pulses in tapered optical fibers is developed. Specific emphasis is placed on the importance of the field normalization convention for the structure of the equations, and the interpretation of the resulting field amplitudes. Different...... numerical schemes for interpolation of fiber parameters along the taper are discussed and tested in numerical simulations on soliton propagation and generation of continuum radiation in short photonic-crystal fiber tapers....

  16. Practical Soil-Shallow Foundation Model for Nonlinear Structural Analysis

    Directory of Open Access Journals (Sweden)

    Moussa Leblouba

    2016-01-01

    Full Text Available Soil-shallow foundation interaction models that are incorporated into most structural analysis programs generally lack accuracy and efficiency or neglect some aspects of foundation behavior. For instance, soil-shallow foundation systems have been observed to show both small and large loops under increasing amplitude load reversals. This paper presents a practical macroelement model for soil-shallow foundation system and its stability under simultaneous horizontal and vertical loads. The model comprises three spring elements: nonlinear horizontal, nonlinear rotational, and linear vertical springs. The proposed macroelement model was verified using experimental test results from large-scale model foundations subjected to small and large cyclic loading cases.

  17. Non-linear affine embedding of the Dirac field from the multiplicity-free SL(4,R) unirreps

    CERN Document Server

    López-Pinto, A; Tresguerres, R

    1995-01-01

    The correspondence between the linear multiplicity-free unirreps of SL(4, R) studied by Ne'eman and {\\~{S}}ija{\\~{c}}ki and the non-linear realizations of the affine group is worked out. The results obtained clarify the inclusion of spinorial fields in a non-linear affine gauge theory of gravitation.

  18. Geometrically nonlinear creeping mathematic models of shells with variable thickness

    Directory of Open Access Journals (Sweden)

    V.M. Zhgoutov

    2012-08-01

    Full Text Available Calculations of strength, stability and vibration of shell structures play an important role in the design of modern devices machines and structures. However, the behavior of thin-walled structures of variable thickness during which geometric nonlinearity, lateral shifts, viscoelasticity (creep of the material, the variability of the profile take place and thermal deformation starts up is not studied enough.In this paper the mathematical deformation models of variable thickness shells (smoothly variable and ribbed shells, experiencing either mechanical load or permanent temperature field and taking into account the geometrical nonlinearity, creeping and transverse shear, were developed. The refined geometrical proportions for geometrically nonlinear and steadiness problems are given.

  19. Haar basis and nonlinear modeling of complex systems

    Science.gov (United States)

    García, P.; Merlitti, A.

    2007-04-01

    In this work we introduce a technique to perform nonlinear modeling of chaotic time series using the kernel method. The basic idea behind this method is to map the data into a high dimensional space via nonlinear mapping and do a linear regression in this space. Here we use a Haar wavelet-like kernel to achieve the task. This strategy, in contrast to Support Vector Machines technique, shows the conceptual simplicity of least mean square algoritm for linear regression but allows local nonlinear aproximation of the system evolution, with low computational cost.

  20. Physical mechanisms of nonlinear conductivity: A model analysis

    Science.gov (United States)

    Heuer, Andreas; Lühning, Lars

    2014-03-01

    Nonlinear effects are omnipresent in thin films of ion conducting materials showing up as a significant increase of the conductivity. For a disordered hopping model general physical mechanisms are identified giving rise to the occurrence of positive or negative nonlinear effects, respectively. Analytical results are obtained in the limit of high but finite dimensions. They are compared with the numerical results for 3D up to 6D systems. A very good agreement can be found, in particular for higher dimensions. The results can also be used to rationalize previous numerical simulations. The implications for the interpretation of nonlinear conductivity experiments on inorganic ion conductors are discussed.

  1. Nonlinear analysis of lipid tubules by nonlocal beam model.

    Science.gov (United States)

    Shen, Hui-Shen

    2011-05-07

    Postbuckling, nonlinear bending and nonlinear vibration analyses are presented for lipid tubules. The lipid tubule is modeled as a nonlocal micro/nano-beam which contains small scale effect. The material properties are assumed to be size-dependent. The governing equation is solved by a two-step perturbation technique. The numerical results reveal that the small scale parameter e₀a reduces the postbuckling equilibrium paths, the static large deflections and natural frequencies of lipid tubules. In contrast, it increases the nonlinear to linear frequency ratios slightly for the lipid tubule with immovable end conditions.

  2. Non-linear dynamics of a geared rotor-bearing system with multiple clearances

    Science.gov (United States)

    Kahraman, A.; Singh, R.

    1991-02-01

    Non-linear frequency response characteristics of a geared rotor-bearing system are examined in this paper. A three-degree-of-freedom dynamic model is developed which includes non-linearities associated with radial clearances in the radial rolling element bearings and backlash between a spur gear pair; linear time-invariant gear meshing stiffness is assumed. The corresponding linear system problem is also solved, and predicted natural frequencies and modes match with finite element method results. The bearing non-linear stiffness function is approximated for the sake of convenience by a simple model which is identical to that used for the gear mesh. This approximate bearing model has been verified by comparing steady state frequency spectra. Applicability of both analytical and numerical solution techniques to the multi-degree-of-freedom non-linear problem is investigated. Satisfactory agreement has been found between our theory and available experimental data. Several key issues such as non-linear modal interactions and differences between internal static transmission error excitation and external torque excitation are discussed. Additionally, parametric studies are performed to understand the effect of system parameters such as bearing stiffness to gear mesh stiffness ratio, alternating to mean force ratio and radial bearing preload to mean force ratio on the non-linear dynamic behavior. A criterion used to classify the steady state solutions is presented, and the conditions for chaotic, quasi-periodic and subharmonic steady state solutions are determined. Two typical routes to chaos observed in this geared system are also identified.

  3. Nonlinear Structured Growth Mixture Models in Mplus and OpenMx

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam; Estabrook, Ryne

    2014-01-01

    Growth mixture models (GMMs; Muthén & Muthén, 2000; Muthén & Shedden, 1999) are a combination of latent curve models (LCMs) and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. GMMs are often fit with linear, latent basis, multiphase, or polynomial change models because of their common use, flexibility in modeling many types of change patterns, the availability of statistical programs to fit such models, and the ease of programming. In this paper, we present additional ways of modeling nonlinear change patterns with GMMs. Specifically, we show how LCMs that follow specific nonlinear functions can be extended to examine the presence of multiple latent classes using the Mplus and OpenMx computer programs. These models are fit to longitudinal reading data from the Early Childhood Longitudinal Study-Kindergarten Cohort to illustrate their use. PMID:25419006

  4. Nonlinear Structured Growth Mixture Models in Mplus and OpenMx.

    Science.gov (United States)

    Grimm, Kevin J; Ram, Nilam; Estabrook, Ryne

    2010-01-01

    Growth mixture models (GMMs; Muthén & Muthén, 2000; Muthén & Shedden, 1999) are a combination of latent curve models (LCMs) and finite mixture models to examine the existence of latent classes that follow distinct developmental patterns. GMMs are often fit with linear, latent basis, multiphase, or polynomial change models because of their common use, flexibility in modeling many types of change patterns, the availability of statistical programs to fit such models, and the ease of programming. In this paper, we present additional ways of modeling nonlinear change patterns with GMMs. Specifically, we show how LCMs that follow specific nonlinear functions can be extended to examine the presence of multiple latent classes using the Mplus and OpenMx computer programs. These models are fit to longitudinal reading data from the Early Childhood Longitudinal Study-Kindergarten Cohort to illustrate their use.

  5. Numerical modelling of nonlinear full-wave acoustic propagation

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  6. Residual Minimizing Model Reduction for Parameterized Nonlinear Dynamical Systems

    CERN Document Server

    Constantine, Paul G

    2010-01-01

    We present a method for approximating the solution of a parameterized, nonlinear dynamical (or static) system using an affine combination of solutions computed at other points in the input parameter space. The coefficients of the affine combination are computed with a nonlinear least squares procedure that minimizes the residual of the dynamical system. The approximation properties of this residual minimizing scheme are comparable to existing reduced basis and POD-Galerkin model reduction methods, but its implementation requires only independent evaluations of the nonlinear forcing function. We prove some interesting characteristics of the scheme including uniqueness and an interpolatory property, and we present heuristics for mitigating the effects of the ill-conditioning and reducing the overall cost of the method. We apply the method to representative numerical examples from kinetics - a three state system with one parameter controlling the stiffness - and groundwater modeling - a nonlinear parabolic PDE w...

  7. Physics, Nonlinear Time Series Analysis, Data Assimilation and Hyperfast Modeling of Nonlinear Ocean Waves

    Science.gov (United States)

    2010-09-30

    Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING

  8. A model selection method for nonlinear system identification based FMRI effective connectivity analysis.

    Science.gov (United States)

    Li, Xingfeng; Coyle, Damien; Maguire, Liam; McGinnity, Thomas M; Benali, Habib

    2011-07-01

    In this paper a model selection algorithm for a nonlinear system identification method is proposed to study functional magnetic resonance imaging (fMRI) effective connectivity. Unlike most other methods, this method does not need a pre-defined structure/model for effective connectivity analysis. Instead, it relies on selecting significant nonlinear or linear covariates for the differential equations to describe the mapping relationship between brain output (fMRI response) and input (experiment design). These covariates, as well as their coefficients, are estimated based on a least angle regression (LARS) method. In the implementation of the LARS method, Akaike's information criterion corrected (AICc) algorithm and the leave-one-out (LOO) cross-validation method were employed and compared for model selection. Simulation comparison between the dynamic causal model (DCM), nonlinear identification method, and model selection method for modelling the single-input-single-output (SISO) and multiple-input multiple-output (MIMO) systems were conducted. Results show that the LARS model selection method is faster than DCM and achieves a compact and economic nonlinear model simultaneously. To verify the efficacy of the proposed approach, an analysis of the dorsal and ventral visual pathway networks was carried out based on three real datasets. The results show that LARS can be used for model selection in an fMRI effective connectivity study with phase-encoded, standard block, and random block designs. It is also shown that the LOO cross-validation method for nonlinear model selection has less residual sum squares than the AICc algorithm for the study.

  9. Application of nonlinear color matching model to four-color ink-jet printing

    Institute of Scientific and Technical Information of China (English)

    苏小红; 张田文; 郭茂祖; 王亚东

    2002-01-01

    Through discussing the color-matching technology and its application in printing industry the conven-tional approaches commonly used in color-matching, and the difficulties in color-matching, a nonlinear colormatching model based on two-step learning is established by finding a linear model by learning pure-color datafirst and then a nonlinear modification model by learning mixed-color data. Nonlinear multiple-regression isused to fit the parameters of the modification model. Nonlinear modification function is discovered by BACONsystem by learning mixture data. Experiment results indicate that nonlinear color conversion by two-step learningcan further improve the accuracy when it is used for straightforward conversion from RGB to CMYK. An im-proved separation model based on GCR concept is proposed to solve the problem of gray balance and it can beused for three-to four-color conversion as well. The method proposed has better learning ability and faster print-ing speed than other historical approaches when it is applied to four-color ink-jet printing.

  10. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... symmetric non-linear error correction are considered. A simulation study shows that the finite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....

  11. Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control

    KAUST Repository

    Domínguez, Luis F.

    2011-01-19

    In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.

  12. Inference of a nonlinear stochastic model of the cardiorespiratory interaction

    CERN Document Server

    Smelyanskiy, V N; Stefanovska, A; McClintock, P V E

    2005-01-01

    A new technique is introduced to reconstruct a nonlinear stochastic model of the cardiorespiratory interaction. Its inferential framework uses a set of polynomial basis functions representing the nonlinear force governing the system oscillations. The strength and direction of coupling, and the noise intensity are simultaneously inferred from a univariate blood pressure signal, monitored in a clinical environment. The technique does not require extensive global optimization and it is applicable to a wide range of complex dynamical systems subject to noise.

  13. A Robust Recursive Filter for Nonlinear Systems with Correlated Noises, Packet Losses, and Multiplicative Noises

    Directory of Open Access Journals (Sweden)

    Hua-Ming Qian

    2014-01-01

    Full Text Available A robust filtering problem is formulated and investigated for a class of nonlinear systems with correlated noises, packet losses, and multiplicative noises. The packet losses are assumed to be independent Bernoulli random variables. The multiplicative noises are described as random variables with bounded variance. Different from the traditional robust filter based on the assumption that the process noises are uncorrelated with the measurement noises, the objective of the addressed robust filtering problem is to design a recursive filter such that, for packet losses and multiplicative noises, the state prediction and filtering covariance matrices have the optimized upper bounds in the case that there are correlated process and measurement noises. Two examples are used to illustrate the effectiveness of the proposed filter.

  14. Asymmetric and common absorption of shocks in nonlinear autoregressive models

    NARCIS (Netherlands)

    D.J.C. van Dijk (Dick); Ph.H.B.F. Franses (Philip Hans); H.P. Boswijk (Peter)

    2000-01-01

    textabstractA key feature of many nonlinear time series models is that they allow for the possibility that the model structure experiences changes, depending on for example the state of the economy or of the financial market. A common property of these models is that it generally is not possible to

  15. Asymmetric and common absorption of shocks in nonlinear autoregressive models

    NARCIS (Netherlands)

    D.J.C. van Dijk (Dick); Ph.H.B.F. Franses (Philip Hans); H.P. Boswijk (Peter)

    2000-01-01

    textabstractA key feature of many nonlinear time series models is that they allow for the possibility that the model structure experiences changes, depending on for example the state of the economy or of the financial market. A common property of these models is that it generally is not possible to

  16. Modeling and nonlinear heading control for sailing yachts

    DEFF Research Database (Denmark)

    Xiao, Lin; Jouffroy, Jerome

    2011-01-01

    This paper presents a study on the development and testing of a model-based heading controller for a sailing yacht. Using Fossen's compact notation for marine vehicles, we first describe a nonlinear 4-DOF dynamic model for a sailing yacht, including roll. Starting from this model, we then design ...

  17. Modeling and nonlinear heading control for sailing yachts

    DEFF Research Database (Denmark)

    Xiao, Lin; Jouffroy, Jerome

    2014-01-01

    This paper presents a study on the development and testing of a model-based heading controller for a sailing yacht. Using Fossen’s compact notation for marine vehicles, we first describe a nonlinear four-degree-of-freedom (DOF) dynamic model for a sailing yacht, including roll. Our model also inc...

  18. Multiple (′/)-expansion method and its applications to nonlinear evolution equations in mathematical physics

    Indian Academy of Sciences (India)

    Junchao Chen; Biao Li

    2012-03-01

    In this paper, an extended multiple (′/)-expansion method is proposed to seek exact solutions of nonlinear evolution equations. The validity and advantages of the proposed method is illustrated by its applications to the Sharma–Tasso–Olver equation, the sixth-order Ramani equation, the generalized shallow water wave equation, the Caudrey–Dodd–Gibbon–Sawada–Kotera equation, the sixth-order Boussinesq equation and the Hirota–Satsuma equations. As a result, various complexiton solutions consisting of hyperbolic functions, trigonometric functions, rational functions and their mixture with parameters are obtained. When some parameters are taken as special values, the known double solitary-like wave solutions are derived from the double hyperbolic function solution. In addition, this method can also be used to deal with some high-dimensional and variable coefficients’ nonlinear evolution equations.

  19. Measurement of nonlinear refractive index based on multiple configuration of FBG in generating multi wavelength

    Science.gov (United States)

    Abdullah, Mohd Nizam; Shaari, Sahbudin; Ehsan, Abang Annuar; Menon, Susthitha; Zakaria, Osman

    2015-06-01

    A reliable method for measurement of the nonlinear refractive index through application of multi wavelength phenomenon. Multi wavelength realisation based on Erbium doped fibre laser (EDFL) is proposed and experimentally demonstrated. A combination of 15 m high efficiency Erbium doped fibre (EDF) and a 20 m Photonic Crystal Fibre (PCF) as main catalyst to suppress the homogenous broadening of EDF and to obtain highly stability of multi wavelength through insertion of a set of fibre Bragg gratings (FBGs) in the cavity. This PCF has zero dispersion of 1040 nm which mismatch from transmission window of 1550 nm. A reliable repeatability of multi wavelength based on multiple configuration of FBGs less than 0.2% obtained. This consistent results influence in determination of nonlinear refractive index by relation of four wave mixing (FWM).

  20. Distributed consensus tracking for multiple uncertain nonlinear strict-feedback systems under a directed graph.

    Science.gov (United States)

    Yoo, Sung Jin

    2013-04-01

    In this brief, we study the distributed consensus tracking control problem for multiple strict-feedback systems with unknown nonlinearities under a directed graph topology. It is assumed that the leader's output is time-varying and has been accessed by only a small fraction of followers in a group. The distributed dynamic surface design approach is proposed to design local consensus controllers in order to guarantee the consensus tracking between the followers and the leader. The function approximation technique using neural networks is employed to compensate unknown nonlinear terms induced from the controller design procedure. From the Lyapunov stability theorem, it is shown that the consensus errors are cooperatively semiglobally uniformly ultimately bounded and converge to an adjustable neighborhood of the origin.

  1. Modeling of Nonlinear Signal Distortion in Fiber-Optical Networks

    CERN Document Server

    Johannisson, Pontus

    2013-01-01

    A low-complexity model for signal quality prediction in a nonlinear fiber-optical network is developed. The model, which builds on the Gaussian noise model, takes into account the signal degradation caused by a combination of chromatic dispersion, nonlinear signal distortion, and amplifier noise. The center frequencies, bandwidths, and transmit powers can be chosen independently for each channel, which makes the model suitable for analysis and optimization of resource allocation, routing, and scheduling in large-scale optical networks applying flexible-grid wavelength-division multiplexing.

  2. An Improved Nonlinear Five-Point Model for Photovoltaic Modules

    Directory of Open Access Journals (Sweden)

    Sakaros Bogning Dongue

    2013-01-01

    Full Text Available This paper presents an improved nonlinear five-point model capable of analytically describing the electrical behaviors of a photovoltaic module for each generic operating condition of temperature and solar irradiance. The models used to replicate the electrical behaviors of operating PV modules are usually based on some simplified assumptions which provide convenient mathematical model which can be used in conventional simulation tools. Unfortunately, these assumptions cause some inaccuracies, and hence unrealistic economic returns are predicted. As an alternative, we used the advantages of a nonlinear analytical five-point model to take into account the nonideal diode effects and nonlinear effects generally ignored, which PV modules operation depends on. To verify the capability of our method to fit PV panel characteristics, the procedure was tested on three different panels. Results were compared with the data issued by manufacturers and with the results obtained using the five-parameter model proposed by other authors.

  3. Non-linear Growth Models in Mplus and SAS.

    Science.gov (United States)

    Grimm, Kevin J; Ram, Nilam

    2009-10-01

    Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included.

  4. Earthquake analysis of structures using nonlinear models

    OpenAIRE

    Cemalovic, Miran

    2015-01-01

    Throughout the governing design codes, several different methods are presented for the evaluation of seismic problems. This thesis assesses the non-linear static and dynamic procedures presented in EN 1998-1 through the structural response of a RC wall-frame building. The structure is designed in detail according to the guidelines for high ductility (DCH) in EN 1998-1. The applied procedures are meticulously evaluated and the requirements in EN 1998-1 are reviewed. In addition, the finite ele...

  5. Similarity transformation approach to identifiability analysis of nonlinear compartmental models.

    Science.gov (United States)

    Vajda, S; Godfrey, K R; Rabitz, H

    1989-04-01

    Through use of the local state isomorphism theorem instead of the algebraic equivalence theorem of linear systems theory, the similarity transformation approach is extended to nonlinear models, resulting in finitely verifiable sufficient and necessary conditions for global and local identifiability. The approach requires testing of certain controllability and observability conditions, but in many practical examples these conditions prove very easy to verify. In principle the method also involves nonlinear state variable transformations, but in all of the examples presented in the paper the transformations turn out to be linear. The method is applied to an unidentifiable nonlinear model and a locally identifiable nonlinear model, and these are the first nonlinear models other than bilinear models where the reason for lack of global identifiability is nontrivial. The method is also applied to two models with Michaelis-Menten elimination kinetics, both of considerable importance in pharmacokinetics, and for both of which the complicated nature of the algebraic equations arising from the Taylor series approach has hitherto defeated attempts to establish identifiability results for specific input functions.

  6. Multiple scattering Model in GEANT4

    CERN Document Server

    Urbàn, L

    2002-01-01

    We present a new multiple scattering (MSC) model to simulate the multiple scattering of charged particles in matter. This model does not use the Moliere formalism, it is based on the more complete Lewis theory. The model simulates the scattering of the particle after a given step, computes the path length correction and the lateral displacement as well.

  7. Analysis and Application of Multiple-Precision Computation and Round-off Error for Nonlinear Dynamical Systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demonstrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression.

  8. Bayesian parameter estimation for nonlinear modelling of biological pathways

    Directory of Open Access Journals (Sweden)

    Ghasemi Omid

    2011-12-01

    Full Text Available Abstract Background The availability of temporal measurements on biological experiments has significantly promoted research areas in systems biology. To gain insight into the interaction and regulation of biological systems, mathematical frameworks such as ordinary differential equations have been widely applied to model biological pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive parameter estimation algorithms developed for linear parameterized differential equations cannot be applied. Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to estimate parameters in nonlinear mathematical models for biological pathways using time series data. Results We used the Runge-Kutta method to transform differential equations to difference equations assuming a known structure of the differential equations. This transformation allowed us to generate predictions dependent on previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC method. We applied this approach to the biological pathways involved in the left ventricle (LV response to myocardial infarction (MI and verified our algorithm by estimating two parameters in a Hill equation embedded in the nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly

  9. Variable structure control of nonlinear systems through simplified uncertain models

    Science.gov (United States)

    Sira-Ramirez, Hebertt

    1986-01-01

    A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.

  10. A Simple Model for Nonlinear Confocal Ultrasonic Beams

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dong; ZHOU Lin; SI Li-Sheng; GONG Xiu-Fen

    2007-01-01

    @@ A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented.Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

  11. Nonlinear dispersion effects in elastic plates: numerical modelling and validation

    Science.gov (United States)

    Kijanka, Piotr; Radecki, Rafal; Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.

    2017-04-01

    Nonlinear features of elastic wave propagation have attracted significant attention recently. The particular interest herein relates to complex wave-structure interactions, which provide potential new opportunities for feature discovery and identification in a variety of applications. Due to significant complexity associated with wave propagation in nonlinear media, numerical modeling and simulations are employed to facilitate design and development of new measurement, monitoring and characterization systems. However, since very high spatio- temporal accuracy of numerical models is required, it is critical to evaluate their spectral properties and tune discretization parameters for compromise between accuracy and calculation time. Moreover, nonlinearities in structures give rise to various effects that are not present in linear systems, e.g. wave-wave interactions, higher harmonics generation, synchronism and | recently reported | shifts to dispersion characteristics. This paper discusses local computational model based on a new HYBRID approach for wave propagation in nonlinear media. The proposed approach combines advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE). The methods are investigated in the context of their accuracy for predicting nonlinear wavefields, in particular shifts to dispersion characteristics for finite amplitude waves and secondary wavefields. The results are validated against Finite Element (FE) calculations for guided waves in copper plate. Critical modes i.e., modes determining accuracy of a model at given excitation frequency - are identified and guidelines for numerical model parameters are proposed.

  12. Notes on holographic superconductor models with the nonlinear electrodynamics

    CERN Document Server

    Zhao, Zixu; Chen, Songbai; Jing, Jiliang

    2013-01-01

    We investigate systematically the effect of the nonlinear correction to the usual Maxwell electrodynamics on the holographic dual models in the backgrounds of AdS black hole and AdS soliton. Considering three types of typical nonlinear electrodynamics, we observe that in the black hole background the higher nonlinear electrodynamics correction makes the condensation harder to form and changes the expected relation in the gap frequency, which is similar to that caused by the curvature correction. However, in strong contrast to the influence of the curvature correction, we find that in the AdS soliton background the nonlinear electrodynamics correction will not affect the properties of the holographic superconductor and insulator phase transitions, which may be a quite general feature for the s-wave holographic superconductor/insulator system.

  13. The fractional-nonlinear robotic manipulator: Modeling and dynamic simulations

    Science.gov (United States)

    David, S. A.; Balthazar, J. M.; Julio, B. H. S.; Oliveira, C.

    2012-11-01

    In this paper, we applied the Riemann-Liouville approach and the fractional Euler-Lagrange equations in order to obtain the fractional-order nonlinear dynamics equations of a two link robotic manipulator. The aformentioned equations have been simulated for several cases involving: integer and non-integer order analysis, with and without external forcing acting and some different initial conditions. The fractional nonlinear governing equations of motion are coupled and the time evolution of the angular positions and the phase diagrams have been plotted to visualize the effect of fractional order approach. The new contribution of this work arises from the fact that the dynamics equations of a two link robotic manipulator have been modeled with the fractional Euler-Lagrange dynamics approach. The results reveal that the fractional-nonlinear robotic manipulator can exhibit different and curious behavior from those obtained with the standard dynamical system and can be useful for a better understanding and control of such nonlinear systems.

  14. Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity

    Directory of Open Access Journals (Sweden)

    Isao Ishida

    2015-01-01

    Full Text Available We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor’s 500 (S&P 500 and several other indices, we obtained good performance using these models in an out-of-sample forecasting exercise compared with the forecasts obtained based on the usual linear heterogeneous autoregressive and other models of realized volatility.

  15. A propagation model of computer virus with nonlinear vaccination probability

    Science.gov (United States)

    Gan, Chenquan; Yang, Xiaofan; Liu, Wanping; Zhu, Qingyi

    2014-01-01

    This paper is intended to examine the effect of vaccination on the spread of computer viruses. For that purpose, a novel computer virus propagation model, which incorporates a nonlinear vaccination probability, is proposed. A qualitative analysis of this model reveals that, depending on the value of the basic reproduction number, either the virus-free equilibrium or the viral equilibrium is globally asymptotically stable. The results of simulation experiments not only demonstrate the validity of our model, but also show the effectiveness of nonlinear vaccination strategies. Through parameter analysis, some effective strategies for eradicating viruses are suggested.

  16. Solutions and Multiple Solutions for p(x)-Laplacian Equations with Nonlinear Boundary Condition

    Institute of Scientific and Technical Information of China (English)

    Zifei SHEN; Chenyin QIAN

    2009-01-01

    The authors study the p(x)-Laplacian equations with nonlinear boundary condition.By using the variational method,under appropriate assumptions on the perturbation terms f1(x,u),f2(x,u) and h1(x),h2(x),such that the associated functional satisfies the "mountain pass lemma" and "fountain theorem" respectively,the existence and multiplicity of solutions are obtained.The discussion is based on the theory of variable exponent Lebesgue and Sobolev spaces.

  17. An all-optical matrix multiplication scheme with non-linear material based switching system

    Institute of Scientific and Technical Information of China (English)

    Archan Kumar Das; Sourangshu Mukhopadhyay

    2005-01-01

    Optics is a potential candidate in information, data, and image processing. In all-optical data and information processing, optics has been used as information carrying signal because of its inherent advantages of parallelism. Several optical methods are proposed in support of the above processing. In many algebraic,arithmetic, and image processing schemes fundamental logic and memory operations are conducted exploring all-optical devices. In this communication we report an all-optical matrix multiplication operation with non-linear material based switching circuit.

  18. Modeling Multiple Causes of Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T D

    1999-01-24

    An array of epidemiological results and databases on test animal indicate that risk of cancer and atherosclerosis can be up- or down-regulated by diet through a range of 200%. Other factors contribute incrementally and include the natural terrestrial environment and various human activities that jointly produce complex exposures to endotoxin-producing microorganisms, ionizing radiations, and chemicals. Ordinary personal habits and simple physical irritants have been demonstrated to affect the immune response and risk of disease. There tends to be poor statistical correlation of long-term risk with single agent exposures incurred throughout working careers. However, Agency recommendations for control of hazardous exposures to humans has been substance-specific instead of contextually realistic even though there is consistent evidence for common mechanisms of toxicological and carcinogenic action. That behavior seems to be best explained by molecular stresses from cellular oxygen metabolism and phagocytosis of antigenic invasion as well as breakdown of normal metabolic compounds associated with homeostatic- and injury-related renewal of cells. There is continually mounting evidence that marrow stroma, comprised largely of monocyte-macrophages and fibroblasts, is important to phagocytic and cytokinetic response, but the complex action of the immune process is difficult to infer from first-principle logic or biomarkers of toxic injury. The many diverse database studies all seem to implicate two important processes, i.e., the univalent reduction of molecular oxygen and breakdown of aginuine, an amino acid, by hydrolysis or digestion of protein which is attendant to normal antigen-antibody action. This behavior indicates that protection guidelines and risk coefficients should be context dependent to include reference considerations of the composite action of parameters that mediate oxygen metabolism. A logic of this type permits the realistic common-scale modeling of

  19. Nonlinear model predictive control of a packed distillation column

    Energy Technology Data Exchange (ETDEWEB)

    Patwardhan, A.A.; Edgar, T.F. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)

    1993-10-01

    A rigorous dynamic model based on fundamental chemical engineering principles was formulated for a packed distillation column separating a mixture of cyclohexane and n-heptane. This model was simplified to a form suitable for use in on-line model predictive control calculations. A packed distillation column was operated at several operating conditions to estimate two unknown model parameters in the rigorous and simplified models. The actual column response to step changes in the feed rate, distillate rate, and reboiler duty agreed well with dynamic model predictions. One unusual characteristic observed was that the packed column exhibited gain-sign changes, which are very difficult to treat using conventional linear feedback control. Nonlinear model predictive control was used to control the distillation column at an operating condition where the process gain changed sign. An on-line, nonlinear model-based scheme was used to estimate unknown/time-varying model parameters.

  20. Finite element model calibration of a nonlinear perforated plate

    Science.gov (United States)

    Ehrhardt, David A.; Allen, Matthew S.; Beberniss, Timothy J.; Neild, Simon A.

    2017-03-01

    This paper presents a case study in which the finite element model for a curved circular plate is calibrated to reproduce both the linear and nonlinear dynamic response measured from two nominally identical samples. The linear dynamic response is described with the linear natural frequencies and mode shapes identified with a roving hammer test. Due to the uncertainty in the stiffness characteristics from the manufactured perforations, the linear natural frequencies are used to update the effective modulus of elasticity of the full order finite element model (FEM). The nonlinear dynamic response is described with nonlinear normal modes (NNMs) measured using force appropriation and high speed 3D digital image correlation (3D-DIC). The measured NNMs are used to update the boundary conditions of the full order FEM through comparison with NNMs calculated from a nonlinear reduced order model (NLROM). This comparison revealed that the nonlinear behavior could not be captured without accounting for the small curvature of the plate from manufacturing as confirmed in literature. So, 3D-DIC was also used to identify the initial static curvature of each plate and the resulting curvature was included in the full order FEM. The updated models are then used to understand how the stress distribution changes at large response amplitudes providing a possible explanation of failures observed during testing.

  1. Nonlinear effects in a conceptual multilayer cloud model

    Directory of Open Access Journals (Sweden)

    U. Wacker

    2006-01-01

    Full Text Available As conceptual model for a cloud a system is considered which is open for condensate mass transport and subject to internal processes such as cloud microphysical transformation and vertical condensate transport. The effects of microphysical processes are represented in parameterized form and the system is divided into two layers to account for the vertical structure. The evolution is mathematically described in terms of four coupled nonlinear ODEs; the prognostic variables are the mass concentrations of cloud water as well as precipitation condensate in each of the layers. In the absence of vertical velocity the evolution in the lower layer is triggered by the evolution in the upper layer. In the presence of an upwind, the dynamics in both layers is mutually coupled. Depending on the chosen parameter values up to four steady states are found. When varying the parameter upwind velocity, three regimes are distinguished: For week upwind the long-term evolution is steered by the external sources; for stronger upwind the cloud condensate is blown out of the cloud in the final state and does not contribute to formation of precipitation; for intermediate upwind multiple steady state solution branches arise which characterize the transition between those two regimes.

  2. Geometry of exponential family nonlinear models and some asymptotic inference

    Institute of Scientific and Technical Information of China (English)

    韦博成

    1995-01-01

    A differential geometric framework in Euclidean space for exponential family nonlinear models is presented. Based on this framework, some asymptotic inference related to statistical curvatures and Fisher information are studied. This geometric framework can also be extended to more genera) dass of models and used to study some other problems.

  3. A Novel Nonlinear Programming Model for Distribution Protection Optimization

    NARCIS (Netherlands)

    Zambon, Eduardo; Bossois, Débora Z.; Garcia, Berilhes B.; Azeredo, Elias F.

    2009-01-01

    This paper presents a novel nonlinear binary programming model designed to improve the reliability indices of a distribution network. This model identifies the type and location of protection devices that should be installed in a distribution feeder and is a generalization of the classical optimizat

  4. STABILITY OF INNOVATION DIFFUSION MODEL WITH NONLINEAR ACCEPTANCE

    Institute of Scientific and Technical Information of China (English)

    Yu Yumei; Wang Wendi

    2007-01-01

    In this article, an innovation diffusion model with the nonlinear acceptance is proposed to describe the dynamics of three competing products in a market. It is proved that the model admits a unique positive equilibrium, which is globally stable by excluding the existence of periodic solutions and by using the theory of three dimensional competition systems.

  5. Modeling of Nonlinear Marine Cooling Systems with Closed Circuit Flow

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    of container ships. The purpose of the model is to describe the important dynamics of the system, such as nonlinearities, transport delays and closed circuit flow dynamics to enable the model to be used for control design and simulation. The control challenge is related to the highly non-standard type of step...

  6. A toolkit for analyzing nonlinear dynamic stochastic models easily

    NARCIS (Netherlands)

    Uhlig, H.F.H.V.S.

    1995-01-01

    Often, researchers wish to analyze nonlinear dynamic discrete-time stochastic models. This paper provides a toolkit for solving such models easily, building on log-linearizing the necessary equations characterizing the equilibrium and solving for the recursive equilibrium law of motion with the meth

  7. A toolkit for analyzing nonlinear dynamic stochastic models easily

    NARCIS (Netherlands)

    Uhlig, H.F.H.V.S.

    1995-01-01

    Often, researchers wish to analyze nonlinear dynamic discrete-time stochastic models. This paper provides a toolkit for solving such models easily, building on log-linearizing the necessary equations characterizing the equilibrium and solving for the recursive equilibrium law of motion with the meth

  8. Locally supersymmetric D=3 non-linear sigma models

    NARCIS (Netherlands)

    Wit, B. de; Tollsten, A. K.; Nicolai, H.

    1992-01-01

    We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is Riemannian or Kahler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it general

  9. Structure and Asymptotic theory for Nonlinear Models with GARCH Errors

    NARCIS (Netherlands)

    F. Chan (Felix); M.J. McAleer (Michael); M.C. Medeiros (Marcelo)

    2011-01-01

    textabstractNonlinear time series models, especially those with regime-switching and conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with li

  10. An Alternative Approach for Nonlinear Latent Variable Models

    Science.gov (United States)

    Mooijaart, Ab; Bentler, Peter M.

    2010-01-01

    In the last decades there has been an increasing interest in nonlinear latent variable models. Since the seminal paper of Kenny and Judd, several methods have been proposed for dealing with these kinds of models. This article introduces an alternative approach. The methodology involves fitting some third-order moments in addition to the means and…

  11. A Multilevel Nonlinear Profile Analysis Model for Dichotomous Data

    Science.gov (United States)

    Culpepper, Steven Andrew

    2009-01-01

    This study linked nonlinear profile analysis (NPA) of dichotomous responses with an existing family of item response theory models and generalized latent variable models (GLVM). The NPA method offers several benefits over previous internal profile analysis methods: (a) NPA is estimated with maximum likelihood in a GLVM framework rather than…

  12. Reducing force transmissibility in multiple degrees of freedom structures through anti-symmetric nonlinear viscous damping

    Institute of Scientific and Technical Information of China (English)

    Z.-K.Peng; Z.-Q.Lang; G.Meng; S.A.Billings

    2012-01-01

    In the present study,the Volterra series theory is adopted to theoretically investigate the force transmissibility of multiple degrees of freedom (MDOF) structures,in which an isolator with nonlinear anti-symmetric viscous damping is assembled.The results reveal that the anti-symmetric nonlinear viscous damping can significantly reduce the force transmissibility over all resonance regions for MDOF structures with little effect on the transmissibility over non-resonant and isolation regions.The results indicate that the vibration isolators with an anti-symmetric damping characteristic have great potential to solve the dilemma occurring in the design of linear viscously damped vibration isolators where an increase of the damping level reduces the force transmissibility over resonant frequencies but increases the transmissibility over non-resonant frequency regions.This work is an extension of a previous study in which MDOF structures installed on the mount through an isolator with cubic nonlinear damping are considered.The theoretical analysis results are also verified by simulation studies.

  13. Nonlinear Kalman Filtering in Affine Term Structure Models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris;

    When the relationship between security prices and state variables in dynamic term structure models is nonlinear, existing studies usually linearize this relationship because nonlinear fi…ltering is computationally demanding. We conduct an extensive investigation of this linearization and analyze...... Monte Carlo experiment demonstrates that the unscented Kalman fi…lter is much more accurate than its extended counterpart in fi…ltering the states and forecasting swap rates and caps. Our fi…ndings suggest that the unscented Kalman fi…lter may prove to be a good approach for a number of other problems...... in fi…xed income pricing with nonlinear relationships between the state vector and the observations, such as the estimation of term structure models using coupon bonds and the estimation of quadratic term structure models....

  14. Interval standard neural network models for nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design approach employs a neural network, whose activation functions satisfy the sector conditions, to approximate the nonlinear system. To improve the approximation performance and to account for the parameter perturbations during operation, a novel neural network model termed standard neural network model (SNNM) is proposed. If the uncertainty is bounded, the SNNM is called an interval SNNM (ISNNM). A state-feedback control law is designed for the nonlinear system modelled by an ISNNM such that the closed-loop system is globally, robustly, and asymptotically stable. The control design equations are shown to be a set of linear matrix inequalities (LMIs) that can be easily solved by available convex optimization algorithms. An example is given to illustrate the control design procedure, and the performance of the proposed approach is compared with that of a related method reported in literature.

  15. Adaptive modeling of shallow fully nonlinear gravity waves

    CERN Document Server

    Dutykh, Denys; Mitsotakis, Dimitrios

    2014-01-01

    This paper presents an extended version of the celebrated Serre-Green-Naghdi (SGN) system. This extension is based on the well-known Bona-Smith-Nwogu trick which aims to improve the linear dispersion properties. We show that in the fully nonlinear setting it results in modifying the vertical acceleration. Even if this technique is well-known, the effect of this modification on the nonlinear properties of the model is not clear. The first goal of this study is to shed some light on the properties of solitary waves, as the most important class of nonlinear permanent solutions. Then, we propose a simple adaptive strategy to choose the optimal value of the free parameter at every instance of time. This strategy is validated by comparing the model prediction with the reference solutions of the full Euler equations and its classical counterpart. Numerical simulations show that the new adaptive model provides a much better accuracy for the same computational complexity.

  16. Multiple Imputation Strategies for Multiple Group Structural Equation Models

    Science.gov (United States)

    Enders, Craig K.; Gottschall, Amanda C.

    2011-01-01

    Although structural equation modeling software packages use maximum likelihood estimation by default, there are situations where one might prefer to use multiple imputation to handle missing data rather than maximum likelihood estimation (e.g., when incorporating auxiliary variables). The selection of variables is one of the nuances associated…

  17. Dynamical modelling of coordinated multiple robot systems

    Science.gov (United States)

    Hayati, Samad

    1987-01-01

    The state of the art in the modeling of the dynamics of coordinated multiple robot manipulators is summarized and various problems related to this subject are discussed. It is recognized that dynamics modeling is a component used in the design of controllers for multiple cooperating robots. As such, the discussion addresses some problems related to the control of multiple robots. The techniques used to date in the modeling of closed kinematic chains are summarized. Various efforts made to date for the control of coordinated multiple manipulators is summarized.

  18. Nonlinear Modeling and Neuro-Fuzzy Control of PEMFC

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The proton exchange membrane generation technology is highly efficient, and clean and is considered as the most hopeful "green" power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model and control online.This paper analyzed the characters of the PEMFC; and used the approach and self-study ability of artificial neural networks to build the model of nonlinear system, and adopted the adaptive neural-networks fuzzy infer system to build the temperature model of PEMFC which is used as the reference model of the control system, and adjusted the model parameters to control online. The model and control were implemented in SIMULINK environment.The results of simulation show the test data and model have a good agreement. The model is useful for the optimal and real time control of PEMFC system.

  19. Testing effect of a drug using multiple nested models for the dose–response

    DEFF Research Database (Denmark)

    Baayen, C.; Hougaard, P.; Pipper, C. B.

    2015-01-01

    of the assumed dose–response model. Bretz et al. (2005, Biometrics 61, 738–748) suggested a combined approach, which selects one or more suitable models from a set of candidate models using a multiple comparison procedure. The method initially requires a priori estimates of any non-linear parameters...

  20. Nonlinear Dynamic Modeling of Langevin-Type Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Nicolás Peréz Alvarez

    2015-11-01

    Full Text Available Langevin transducers are employed in several applications, such as power ultrasound systems, naval hydrophones, and high-displacement actuators. Nonlinear effects can influence their performance, especially at high vibration amplitude levels. These nonlinear effects produce variations in the resonant frequency, harmonics of the excitation frequency, in addition to loss of symmetry in the frequency response and “frequency domain hysteresis”. In this context, this paper presents a simplified nonlinear dynamic model of power ultrasound transducers requiring only two parameters for simulating the most relevant nonlinear effects. One parameter reproduces the changes in the resonance frequency and the other introduces the dependence of the frequency response on the history of the system. The piezoelectric constitutive equations are extended by a linear dependence of the elastic constant on the mechanical displacement amplitude. For introducing the frequency hysteresis, the elastic constant is computed by combining the current value of the mechanical amplitude with the previous state amplitude. The model developed in this work is applied for predicting the dynamic responses of a 26 kHz ultrasonic transducer. The comparison of theoretical and experimental responses, obtained at several input voltages around the tuned frequency, shows a good agreement, indicating that the model can accurately describe the transducer nonlinear behavior.

  1. Parallel Evolutionary Modeling for Nonlinear Ordinary Differential Equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We introduce a new parallel evolutionary algorithm in modeling dynamic systems by nonlinear higher-order ordinary differential equations (NHODEs). The NHODEs models are much more universal than the traditional linear models. In order to accelerate the modeling process, we propose and realize a parallel evolutionary algorithm using distributed CORBA object on the heterogeneous networking. Some numerical experiments show that the new algorithm is feasible and efficient.

  2. Likelihood-Based Inference in Nonlinear Error-Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    We consider a class of vector nonlinear error correction models where the transfer function (or loadings) of the stationary relation- ships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long- run cointegration parameters, and the short-run parameters. Asymp- totic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normaity can be found. A simulation study...

  3. Modeling and stability analysis of the nonlinear reactive sputtering process

    Directory of Open Access Journals (Sweden)

    György Katalin

    2011-12-01

    Full Text Available The model of the reactive sputtering process has been determined from the dynamic equilibrium of the reactive gas inside the chamber and the dynamic equilibrium of the sputtered metal atoms which form the compound with the reactive gas atoms on the surface of the substrate. The analytically obtained dynamical model is a system of nonlinear differential equations which can result in a histeresis-type input/output nonlinearity. The reactive sputtering process has been simulated by integrating these differential equations. Linearization has been applied for classical analysis of the sputtering process and control system design.

  4. Modeling and equalization of nonlinear bandlimited satellite channels

    Science.gov (United States)

    Konstantinides, K.; Yao, K.

    1986-01-01

    The problem of modeling and equalization of a nonlinear satellite channel is considered. The channel is assumed to be bandlimited and exhibits both amplitude and phase nonlinearities. A discrete time satellite link is modeled under both uplink and downlink white Gaussian noise. Under conditions of practical interest, a simple and computationally efficient design technique for the minimum mean square error linear equalizer is presented. The bit error probability and some numerical results for a binary phase shift keyed (BPSK) system demonstrate that the proposed equalization technique outperforms standard linear receiver structures.

  5. Multiple-octave spanning mid-IR supercontinuum generation in bulk quadratic nonlinear crystals

    CERN Document Server

    Zhou, Binbin

    2016-01-01

    Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystal like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal pumped in the mid-IR gives multiple-octave spanning supercontinua. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed (covering 1.6-$7.0~\\mu$m). The results were recorded in a commercially available crystal LiInS$_2$ pumped in the 3-$4~\\mu$m range, but other mid-IR crystals ...

  6. A Nonlinear Vortex Induced Vibration Model of Marine Risers

    Institute of Scientific and Technical Information of China (English)

    LIU Juan; HUANG Weiping

    2013-01-01

    With the exploitation of oil and gas in deep water,the traditional vortex induced vibration (VIV) theory is challenged by the unprecedented flexibility of risers.A nonlinear time-dependent VIV model is developed in this paper based on a VIV lift force model and the Morison equation.Both the inline vibration induced by the flow due to vortex shedding and the fluid-structure interaction in the transverse direction are included in the model.One of the characteristics of the model is the response-dependent lift force with nonlinear damping,which is different from other VIV models.The calculations show that the model can well describe the VIV of deepwater risers with the results agreeing with those calculated by other models.

  7. A Stochastic Nonlinear Water Wave Model for Efficient Uncertainty Quantification

    CERN Document Server

    Bigoni, Daniele; Eskilsson, Claes

    2014-01-01

    A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a stochastic formulation of a fully nonlinear and dispersive potential flow water wave model for the probabilistic description of the evolution waves. This model is discretized using the Stochastic Collocation Method (SCM), which provides an approximate surrogate of the model. This can be used to accurately and efficiently estimate the probability distribution of the unknown time dependent stochastic solution after the forward propagation of uncertainties. We revisit experimental benchmarks often used for validation of deterministic water wave models. We do this using a fully nonlinear and dispersive model and show how uncertainty in the model input can influence the model output. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in compa...

  8. Testing linearity against nonlinear moving average models

    NARCIS (Netherlands)

    de Gooijer, J.G.; Brännäs, K.; Teräsvirta, T.

    1998-01-01

    Lagrange multiplier (LM) test statistics are derived for testing a linear moving average model against an additive smooth transition moving average model. The latter model is introduced in the paper. The small sample performance of the proposed tests are evaluated in a Monte Carlo study and compared

  9. Mathematical models for suspension bridges nonlinear structural instability

    CERN Document Server

    Gazzola, Filippo

    2015-01-01

    This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.

  10. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... for linearity is of particular interest as parameters of non-linear components vanish under the null. To solve the latter type of testing, we use the so-called sup tests, which here requires development of new (uniform) weak convergence results. These results are potentially useful in general for analysis...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...

  11. Stochastic analysis of neural network modeling and identification of nonlinear memoryless MIMO systems

    Science.gov (United States)

    Ibnkahla, Mohamed

    2012-12-01

    Neural network (NN) approaches have been widely applied for modeling and identification of nonlinear multiple-input multiple-output (MIMO) systems. This paper proposes a stochastic analysis of a class of these NN algorithms. The class of MIMO systems considered in this paper is composed of a set of single-input nonlinearities followed by a linear combiner. The NN model consists of a set of single-input memoryless NN blocks followed by a linear combiner. A gradient descent algorithm is used for the learning process. Here we give analytical expressions for the mean squared error (MSE), explore the stationary points of the algorithm, evaluate the misadjustment error due to weight fluctuations, and derive recursions for the mean weight transient behavior during the learning process. The paper shows that in the case of independent inputs, the adaptive linear combiner identifies the linear combining matrix of the MIMO system (to within a scaling diagonal matrix) and that each NN block identifies the corresponding unknown nonlinearity to within a scale factor. The paper also investigates the particular case of linear identification of the nonlinear MIMO system. It is shown in this case that, for independent inputs, the adaptive linear combiner identifies a scaled version of the unknown linear combining matrix. The paper is supported with computer simulations which confirm the theoretical results.

  12. Non-linear calibration models for near infrared spectroscopy.

    Science.gov (United States)

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-02-27

    Different calibration techniques are available for spectroscopic applications that show nonlinear behavior. This comprehensive comparative study presents a comparison of different nonlinear calibration techniques: kernel PLS (KPLS), support vector machines (SVM), least-squares SVM (LS-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS-SVM is also attractive due to its good predictive performance for both linear and nonlinear calibrations.

  13. Modeling and non-linear responses of MEMS capacitive accelerometer

    Directory of Open Access Journals (Sweden)

    Sri Harsha C.

    2014-01-01

    Full Text Available A theoretical investigation of an electrically actuated beam has been illustrated when the electrostatic-ally actuated micro-cantilever beam is separated from the electrode by a moderately large gap for two distinct types of geometric configurations of MEMS accelerometer. Higher order nonlinear terms have been taken into account for studying the pull in voltage analysis. A nonlinear model of gas film squeezing damping, another source of nonlinearity in MEMS devices is included in obtaining the dynamic responses. Moreover, in the present work, the possible source of nonlinearities while formulating the mathematical model of a MEMS accelerometer and their influences on the dynamic responses have been investigated. The theoretical results obtained by using MATLAB has been verified with the results obtained in FE software and has been found in good agreement. Criterion towards stable micro size accelerometer for each configuration has been investigated. This investigation clearly provides an understanding of nonlinear static and dynamics characteristics of electrostatically micro cantilever based device in MEMS.

  14. Nonlinear Pressure Wave Analysis by Concentrated Mass Model

    Science.gov (United States)

    Ishikawa, Satoshi; Kondou, Takahiro; Matsuzaki, Kenichiro

    A pressure wave propagating in a tube often changes to a shock wave because of the nonlinear effect of fluid. Analyzing this phenomenon by the finite difference method requires high computational cost. To lessen the computational cost, a concentrated mass model is proposed. This model consists of masses, connecting nonlinear springs, connecting dampers, and base support dampers. The characteristic of a connecting nonlinear spring is derived from the adiabatic change of fluid, and the equivalent mass and equivalent damping coefficient of the base support damper are derived from the equation of motion of fluid in a cylindrical tube. Pressure waves generated in a hydraulic oil tube, a sound tube and a plane-wave tube are analyzed numerically by the proposed model to confirm the validity of the model. All numerical computational results agree very well with the experimental results carried out by Okamura, Saenger and Kamakura. Especially, the numerical analysis reproduces the phenomena that a pressure wave with large amplitude propagating in a sound tube or in a plane tube changes to a shock wave. Therefore, it is concluded that the proposed model is valid for the numerical analysis of nonlinear pressure wave problem.

  15. Asymptotics for the multiple pole solutions of the nonlinear Schrödinger equation

    Science.gov (United States)

    Schiebold, Cornelia

    2017-07-01

    Multiple pole solutions consist of groups of weakly bound solitons. For the (focusing) nonlinear Schrödinger equation the double pole solution was constructed by Zakharov and Shabat. In the sequel particular cases have been discussed in the literature, but it has remained an open problem to understand multiple pole solutions in their full complexity. In the present work this problem is solved, in the sense that a rigorous and complete asymptotic description of the multiple pole solutions is given. More precisely, the asymptotic paths of the solitons are determined and their position- and phase-shifts are computed explicitly. As a corollary we generalize the conservation law known for the N-solitons. In the special case of one wave packet, our result confirms a conjecture of Olmedilla. Our method stems from an operator theoretic approach to integrable systems. To facilitate comparison with the literature, we also establish the link to the construction of multiple pole solutions via the inverse scattering method. The work is rounded off by many examples and Mathematica plots and a detailed discussion of the transition to the next level of degeneracy.

  16. Nonlinear Dynamic Model-Based Adaptive Control of a Solenoid-Valve System

    Directory of Open Access Journals (Sweden)

    DongBin Lee

    2012-01-01

    Full Text Available In this paper, a nonlinear model-based adaptive control approach is proposed for a solenoid-valve system. The challenge is that solenoids and butterfly valves have uncertainties in multiple parameters in the nonlinear model; various kinds of physical appearance such as size and stroke, dynamic parameters including inertia, damping, and torque coefficients, and operational parameters especially, pipe diameters and flow velocities. These uncertainties are making the system not only difficult to adjust to the environment, but also further complicated to develop the appropriate control approach for meeting the system objectives. The main contribution of this research is the application of adaptive control theory and Lyapunov-type stability approach to design a controller for a dynamic model of the solenoid-valve system in the presence of those uncertainties. The control objectives such as set-point regulation, parameter compensation, and stability are supposed to be simultaneously accomplished. The error signals are first formulated based on the nonlinear dynamic models and then the control input is developed using the Lyapunov stability-type analysis to obtain the error bounded while overcoming the uncertainties. The parameter groups are updated by adaptation laws using a projection algorithm. Numerical simulation results are shown to demonstrate good performance of the proposed nonlinear model-based adaptive approach and to compare the performance of the same solenoid-valve system with a non-adaptive method as well.

  17. Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials

    CERN Document Server

    Fang, Ming; Sha, Wei E I; Xiong, Xiaoyan Y Z; Wu, Xianliang

    2016-01-01

    Applications of metallic metamaterials have generated significant interest in recent years. Electromagnetic behavior of metamaterials in the optical range is usually characterized by a local-linear response. In this article, we develop a finite-difference time-domain (FDTD) solution of the hydrodynamic model that describes a free electron gas in metals. Extending beyond the local-linear response, the hydrodynamic model enables numerical investigation of nonlocal and nonlinear interactions between electromagnetic waves and metallic metamaterials. By explicitly imposing the current continuity constraint, the proposed model is solved in a self-consistent manner. Charge, energy and angular momentum conservation laws of high-order harmonic generation have been demonstrated for the first time by the Maxwell-hydrodynamic FDTD model. The model yields nonlinear optical responses for complex metallic metamaterials irradiated by a variety of waveforms. Consequently, the multiphysics model opens up unique opportunities f...

  18. Estimating Nonlinear Structural Models: EMM and the Kenny-Judd Model

    Science.gov (United States)

    Lyhagen, Johan

    2007-01-01

    The estimation of nonlinear structural models is not trivial. One reason for this is that a closed form solution of the likelihood may not be feasible or does not exist. We propose to estimate nonlinear structural models using the efficient method of moments, as generating data according to the models is often very easy. A simulation study of the…

  19. Soft sensor modeling based on variable partition ensemble method for nonlinear batch processes

    Science.gov (United States)

    Wang, Li; Chen, Xiangguang; Yang, Kai; Jin, Huaiping

    2017-01-01

    Batch processes are always characterized by nonlinear and system uncertain properties, therefore, the conventional single model may be ill-suited. A local learning strategy soft sensor based on variable partition ensemble method is developed for the quality prediction of nonlinear and non-Gaussian batch processes. A set of input variable sets are obtained by bootstrapping and PMI criterion. Then, multiple local GPR models are developed based on each local input variable set. When a new test data is coming, the posterior probability of each best performance local model is estimated based on Bayesian inference and used to combine these local GPR models to get the final prediction result. The proposed soft sensor is demonstrated by applying to an industrial fed-batch chlortetracycline fermentation process.

  20. Reduced-size kernel models for nonlinear hybrid system identification.

    Science.gov (United States)

    Le, Van Luong; Bloch, Grard; Lauer, Fabien

    2011-12-01

    This brief paper focuses on the identification of nonlinear hybrid dynamical systems, i.e., systems switching between multiple nonlinear dynamical behaviors. Thus the aim is to learn an ensemble of submodels from a single set of input-output data in a regression setting with no prior knowledge on the grouping of the data points into similar behaviors. To be able to approximate arbitrary nonlinearities, kernel submodels are considered. However, in order to maintain efficiency when applying the method to large data sets, a preprocessing step is required in order to fix the submodel sizes and limit the number of optimization variables. This brief paper proposes four approaches, respectively inspired by the fixed-size least-squares support vector machines, the feature vector selection method, the kernel principal component regression and a modification of the latter, in order to deal with this issue and build sparse kernel submodels. These are compared in numerical experiments, which show that the proposed approach achieves the simultaneous classification of data points and approximation of the nonlinear behaviors in an efficient and accurate manner.

  1. The Nonlinear Sigma Model With Distributed Adaptive Mesh Refinement

    CERN Document Server

    Liebling, S L

    2004-01-01

    An adaptive mesh refinement (AMR) scheme is implemented in a distributed environment using Message Passing Interface (MPI) to find solutions to the nonlinear sigma model. Previous work studied behavior similar to black hole critical phenomena at the threshold for singularity formation in this flat space model. This work is a follow-up describing extensions to distribute the grid hierarchy and presenting tests showing the correctness of the model.

  2. INFLUENCE ANALYSIS ON EXPONENTIAL NONLINEAR MODELS WITH RANDOM EFFECTS

    Institute of Scientific and Technical Information of China (English)

    宗序平; 赵俊; 王海斌; 韦博成

    2003-01-01

    This paper presents a unified diagnostic method for exponential nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991.The authors show that the case deletion model is equivalent to mean shift outlier model.From this point of view,several diagnostic measures,such as Cook distance,score statistics are derived.The local influence measure of Cook is also presented.Numerical example illustrates that our method is available.

  3. INFLUENCE ANALYSIS IN NONLINEAR MODELS WITH RANDOM EFFECTS

    Institute of Scientific and Technical Information of China (English)

    WeiBocheng; ZhongXuping

    2001-01-01

    Abstract. In this paper,a unified diagnostic method for the nonlinear models with random ef-fects based upon the joint likelihood given by Robinson in 1991 is presented. It is shown that thecase deletion model is equivalent to the mean shift outlier model. From this point of view ,sever-al diagnostic measures, such as Cook distance, score statistics are derived. The local influencemeasure of Cook is also presented. A numerical example illustrates that the method is avail-able

  4. Analyzing the Dynamics of Nonlinear Multivariate Time Series Models

    Institute of Scientific and Technical Information of China (English)

    DenghuaZhong; ZhengfengZhang; DonghaiLiu; StefanMittnik

    2004-01-01

    This paper analyzes the dynamics of nonlinear multivariate time series models that is represented by generalized impulse response functions and asymmetric functions. We illustrate the measures of shock persistences and asymmetric effects of shocks derived from the generalized impulse response functions and asymmetric function in bivariate smooth transition regression models. The empirical work investigates a bivariate smooth transition model of US GDP and the unemployment rate.

  5. Nonlinear diffusion model for Rayleigh-Taylor mixing.

    Science.gov (United States)

    Boffetta, G; De Lillo, F; Musacchio, S

    2010-01-22

    The complex evolution of turbulent mixing in Rayleigh-Taylor convection is studied in terms of eddy diffusivity models for the mean temperature profile. It is found that a nonlinear model, derived within the general framework of Prandtl mixing theory, reproduces accurately the evolution of turbulent profiles obtained from numerical simulations. Our model allows us to give very precise predictions for the turbulent heat flux and for the Nusselt number in the ultimate state regime of thermal convection.

  6. Nonlinear diffusion model for Rayleigh-Taylor mixing

    CERN Document Server

    Boffetta, G; Musacchio, S

    2010-01-01

    The complex evolution of turbulent mixing in Rayleigh-Taylor convection is studied in terms of eddy diffusiviy models for the mean temperature profile. It is found that a non-linear model, derived within the general framework of Prandtl mixing theory, reproduces accurately the evolution of turbulent profiles obtained from numerical simulations. Our model allows to give very precise predictions for the turbulent heat flux and for the Nusselt number in the ultimate state regime of thermal convection.

  7. Hybrid nonlinear model of the angular vestibulo-ocular reflex.

    Science.gov (United States)

    Ranjbaran, Mina; Galiana, Henrietta L

    2013-01-01

    A hybrid nonlinear bilateral model for the horizontal angular vestibulo-ocular reflex (AVOR) is presented in this paper. The model relies on known interconnections between saccadic burst circuits in the brainstem and ocular premotor areas in the vestibular nuclei during slow and fast phase intervals. A viable switching strategy for the timing of nystagmus events is proposed. Simulations show that this hybrid model replicates AVOR nystagmus patterns that are observed in experimentally recorded data.

  8. Multiple flux difference effect in the lattice hydrodynamic model

    Institute of Scientific and Technical Information of China (English)

    Wang Tao; Gao Zi-You; Zhao Xiao-Mei

    2012-01-01

    Considering the effect of multiple flux difference,an extended lattice model is proposed to improve the stability of traffic flow.The stability condition of the new model is obtained by using linear stability theory.The theoretical analysis result shows that considering the flux difference effect ahead can stabilize traffic flow.The nonlinear analysis is also conducted by using a reductive perturbation method.The modified KdV (mKdV) equation near the critical point is derived and the kink-antikink solution is obtained from the mKdV equation.Numerical simulation results show that the multiple flux difference effect can suppress the traffic jam considerably,which is in line with the analytical result.

  9. Nonlinear stochastic inflation modelling using SEASETARs

    NARCIS (Netherlands)

    de Gooijer, J.G.; Vidiella-i-Anguera, A.

    2003-01-01

    The development of stochastic inflation models for actuarial and investment applications has become an important topic to actuaries since Wilkie [Transactions of the Faculty of Actuaries 39 (1986) 341] introduced his first investment model. Two empirical features of monthly inflation rates are dynam

  10. Construction of a single/multiple wavelength RZ optical pulse source at 40 GHz by use of wavelength conversion in a high-nonlinearity DSF-NOLM

    DEFF Research Database (Denmark)

    Yu, Jianjun; Yujun, Qian; Jeppesen, Palle;

    2001-01-01

    A single or multiple wavelength RZ optical pulse source at 40 GHz is successfully obtained by using wavelength conversion in a nonlinear optical loop mirror consisting of high nonlinearity-dispersion shifted fiber.......A single or multiple wavelength RZ optical pulse source at 40 GHz is successfully obtained by using wavelength conversion in a nonlinear optical loop mirror consisting of high nonlinearity-dispersion shifted fiber....

  11. Prediction of peptide bonding affinity: kernel methods for nonlinear modeling

    CERN Document Server

    Bergeron, Charles; Sundling, C Matthew; Krein, Michael; Katt, Bill; Sukumar, Nagamani; Breneman, Curt M; Bennett, Kristin P

    2011-01-01

    This paper presents regression models obtained from a process of blind prediction of peptide binding affinity from provided descriptors for several distinct datasets as part of the 2006 Comparative Evaluation of Prediction Algorithms (COEPRA) contest. This paper finds that kernel partial least squares, a nonlinear partial least squares (PLS) algorithm, outperforms PLS, and that the incorporation of transferable atom equivalent features improves predictive capability.

  12. Nonlinear dynamics of incommensurately contacting surfaces : a model study

    NARCIS (Netherlands)

    Consoli, Luca

    2002-01-01

    This PhD thesis is about the nonlinear dynamics of contacting surfaces. More specifically, it deals with the problem of modelling at the microscopic level some of the contributions that lead to the macroscopic effect of dry sliding friction. In chapter 1, we try to give an overview of the physical q

  13. RF Circuit linearity optimization using a general weak nonlinearity model

    NARCIS (Netherlands)

    Cheng, W.; Oude Alink, M.S.; Annema, Anne J.; Croon, Jeroen A.; Nauta, Bram

    2012-01-01

    This paper focuses on optimizing the linearity in known RF circuits, by exploring the circuit design space that is usually available in today’s deep submicron CMOS technologies. Instead of using brute force numerical optimizers we apply a generalized weak nonlinearity model that only involves AC

  14. UAV Formation Flight Based on Nonlinear Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Zhou Chao

    2012-01-01

    Full Text Available We designed a distributed collision-free formation flight control law in the framework of nonlinear model predictive control. Formation configuration is determined in the virtual reference point coordinate system. Obstacle avoidance is guaranteed by cost penalty, and intervehicle collision avoidance is guaranteed by cost penalty combined with a new priority strategy.

  15. Dynamics of breathers in discrete nonlinear Schrodinger models

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Johansson, Magnus; Aubry, Serge

    1998-01-01

    We review some recent results concerning the existence and stability of spatially localized and temporally quasiperiodic (non-stationary) excitations in discrete nonlinear Schrodinger (DNLS) models. In two dimensions, we show the existence of linearly stable, stationary and non-stationary localized...

  16. Control mechanisms for a nonlinear model of international relations

    Energy Technology Data Exchange (ETDEWEB)

    Pentek, A.; Kadtke, J. [Univ. of California, San Diego, La Jolla, CA (United States). Inst. for Pure and Applied Physical Sciences; Lenhart, S. [Univ. of Tennessee, Knoxville, TN (United States). Mathematics Dept.; Protopopescu, V. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.

    1997-07-15

    Some issues of control in complex dynamical systems are considered. The authors discuss two control mechanisms, namely: a short range, reactive control based on the chaos control idea and a long-term strategic control based on an optimal control algorithm. They apply these control ideas to simple examples in a discrete nonlinear model of a multi-nation arms race.

  17. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  18. Maximum Likelihood Estimation of Nonlinear Structural Equation Models.

    Science.gov (United States)

    Lee, Sik-Yum; Zhu, Hong-Tu

    2002-01-01

    Developed an EM type algorithm for maximum likelihood estimation of a general nonlinear structural equation model in which the E-step is completed by a Metropolis-Hastings algorithm. Illustrated the methodology with results from a simulation study and two real examples using data from previous studies. (SLD)

  19. Case-Deletion Diagnostics for Nonlinear Structural Equation Models

    Science.gov (United States)

    Lee, Sik-Yum; Lu, Bin

    2003-01-01

    In this article, a case-deletion procedure is proposed to detect influential observations in a nonlinear structural equation model. The key idea is to develop the diagnostic measures based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm. An one-step pseudo approximation is proposed to reduce the…

  20. Local Influence Analysis of Nonlinear Structural Equation Models

    Science.gov (United States)

    Lee, Sik-Yum; Tang, Nian-Sheng

    2004-01-01

    By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…

  1. Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele

    2016-01-01

    ). In the present paper we use a single layer of quadratic (in 2D) and prismatic (in 3D) elements. The model has been stabilized through a combination of over-integration of the Galerkin projections and a mild modal filter. We present numerical tests of nonlinear waves serving as a proof-of-concept validation...

  2. S-AMP for non-linear observation models

    DEFF Research Database (Denmark)

    Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

    2015-01-01

    Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...

  3. A nonlinear regression model-based predictive control algorithm.

    Science.gov (United States)

    Dubay, R; Abu-Ayyad, M; Hernandez, J M

    2009-04-01

    This paper presents a unique approach for designing a nonlinear regression model-based predictive controller (NRPC) for single-input-single-output (SISO) and multi-input-multi-output (MIMO) processes that are common in industrial applications. The innovation of this strategy is that the controller structure allows nonlinear open-loop modeling to be conducted while closed-loop control is executed every sampling instant. Consequently, the system matrix is regenerated every sampling instant using a continuous function providing a more accurate prediction of the plant. Computer simulations are carried out on nonlinear plants, demonstrating that the new approach is easily implemented and provides tight control. Also, the proposed algorithm is implemented on two real time SISO applications; a DC motor, a plastic injection molding machine and a nonlinear MIMO thermal system comprising three temperature zones to be controlled with interacting effects. The experimental closed-loop responses of the proposed algorithm were compared to a multi-model dynamic matrix controller (MPC) with improved results for various set point trajectories. Good disturbance rejection was attained, resulting in improved tracking of multi-set point profiles in comparison to multi-model MPC.

  4. Nonlinear Hyperbolic-Parabolic System Modeling Some Biological Phenomena

    Institute of Scientific and Technical Information of China (English)

    WU Shaohua; CHEN Hua

    2011-01-01

    In this paper, we study a nonlinear hyperbolic-parabolic system modeling some biological phenomena. By semigroup theory and Leray-Schauder fixed point argument, the local existence and uniqueness of the weak solutions for this system are proved. For the spatial dimension N = 1, the global existence of the weak solution will be established by the bootstrap argument.

  5. Visualization of nonlinear kernel models in neuroimaging by sensitivity maps

    DEFF Research Database (Denmark)

    Rasmussen, Peter Mondrup; Madsen, Kristoffer Hougaard; Lund, Torben Ellegaard

    2011-01-01

    There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g., support vector machines (SVM) are frequently adopted to learn statistical relations between patterns of brain activation and experimental conditions. In this paper we focus......, and conclude that the sensitivity map is a versatile and computationally efficient tool for visualization of nonlinear kernel models in neuroimaging....

  6. An Adaptive Neural Network Model for Nonlinear Programming Problems

    Institute of Scientific and Technical Information of China (English)

    Xiang-sun Zhang; Xin-jian Zhuo; Zhu-jun Jing

    2002-01-01

    In this paper a canonical neural network with adaptively changing synaptic weights and activation function parameters is presented to solve general nonlinear programming problems. The basic part of the model is a sub-network used to find a solution of quadratic programming problems with simple upper and lower bounds. By sequentially activating the sub-network under the control of an external computer or a special analog or digital processor that adjusts the weights and parameters, one then solves general nonlinear programming problems. Convergence proof and numerical results are given.

  7. NONLINEAR MICRO-MECHANICAL MODEL FOR PLAIN WOVEN FABRIC

    Institute of Scientific and Technical Information of China (English)

    ZhangYitong; XieYuxin

    2003-01-01

    The warp yarns and weft yarns of plain woven fabric which, being the principal axes of material of fabric, are orthogonal in the original configuration, but are obliquely crossed in the deformed configuration in general. The orthotropic constitutive model is unsuitable for fabric. In the oblique principal axes system the relations between loaded stress vectors and stress tensor are investigated, the stress fields of micro-weaving structures of fabric due to pure shear are carefully studied and, finally, a nonlinear micro-mechanical model for plain woven fabric is proposed. This model can accurately describe the nonlinear mechanical behavior of fabric observed in experiments. Under the assumption of small deformation and linearity of mechanical properties of fabric the model will degenerate into the existing linear model.

  8. Nonlinear Model Identification from Operating Records.

    Science.gov (United States)

    1980-11-01

    34, Submitted July 1979 to Proc. IEEE. [13] Wellstead , P., "Model Order Identification Using an Auxillary System," Proc. IEEE, vol. 123, No. 12, December...C and Systems, Nov. 1979 . I I ~I lt( -~ I -l.. .... .. . ... . .. . . , _. . - -"

  9. Population mixture model for nonlinear telomere dynamics

    Science.gov (United States)

    Itzkovitz, Shalev; Shlush, Liran I.; Gluck, Dan; Skorecki, Karl

    2008-12-01

    Telomeres are DNA repeats protecting chromosomal ends which shorten with each cell division, eventually leading to cessation of cell growth. We present a population mixture model that predicts an exponential decrease in telomere length with time. We analytically solve the dynamics of the telomere length distribution. The model provides an excellent fit to available telomere data and accounts for the previously unexplained observation of telomere elongation following stress and bone marrow transplantation, thereby providing insight into the nature of the telomere clock.

  10. Validating a quasi-linear transport model versus nonlinear simulations

    Science.gov (United States)

    Casati, A.; Bourdelle, C.; Garbet, X.; Imbeaux, F.; Candy, J.; Clairet, F.; Dif-Pradalier, G.; Falchetto, G.; Gerbaud, T.; Grandgirard, V.; Gürcan, Ö. D.; Hennequin, P.; Kinsey, J.; Ottaviani, M.; Sabot, R.; Sarazin, Y.; Vermare, L.; Waltz, R. E.

    2009-08-01

    In order to gain reliable predictions on turbulent fluxes in tokamak plasmas, physics based transport models are required. Nonlinear gyrokinetic electromagnetic simulations for all species are still too costly in terms of computing time. On the other hand, interestingly, the quasi-linear approximation seems to retain the relevant physics for fairly reproducing both experimental results and nonlinear gyrokinetic simulations. Quasi-linear fluxes are made of two parts: (1) the quasi-linear response of the transported quantities and (2) the saturated fluctuating electrostatic potential. The first one is shown to follow well nonlinear numerical predictions; the second one is based on both nonlinear simulations and turbulence measurements. The resulting quasi-linear fluxes computed by QuaLiKiz (Bourdelle et al 2007 Phys. Plasmas 14 112501) are shown to agree with the nonlinear predictions when varying various dimensionless parameters, such as the temperature gradients, the ion to electron temperature ratio, the dimensionless collisionality, the effective charge and ranging from ion temperature gradient to trapped electron modes turbulence.

  11. Model Reduction of Nonlinear Aeroelastic Systems Experiencing Hopf Bifurcation

    KAUST Repository

    Abdelkefi, Abdessattar

    2013-06-18

    In this paper, we employ the normal form to derive a reduced - order model that reproduces nonlinear dynamical behavior of aeroelastic systems that undergo Hopf bifurcation. As an example, we consider a rigid two - dimensional airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. We apply the center manifold theorem on the governing equations to derive its normal form that constitutes a simplified representation of the aeroelastic sys tem near flutter onset (manifestation of Hopf bifurcation). Then, we use the normal form to identify a self - excited oscillator governed by a time - delay ordinary differential equation that approximates the dynamical behavior while reducing the dimension of the original system. Results obtained from this oscillator show a great capability to predict properly limit cycle oscillations that take place beyond and above flutter as compared with the original aeroelastic system.

  12. Nonlinear analysis of traffic jams in an anisotropic continuum model

    Institute of Scientific and Technical Information of China (English)

    Arvind Kumar Gupta; Sapna Sharma

    2010-01-01

    This paper presents our study of the nonlinear stability of a new anisotropic continuum traffic flow model in which the dimensionless parameter or anisotropic factor controls the non-isotropic character and diffusive influence. In order to establish traffic flow stability criterion or to know the critical parameters that lead, on one hand, to a stable response to perturbations or disturbances or, on the other hand, to an unstable response and therefore to a possible congestion, a nonlinear stability criterion is derived by using a wavefront expansion technique. The stability criterion is illustrated by numerical results using the finite difference method for two different values of anisotropic parameter. It is also been observed that the newly derived stability results are consistent with previously reported results obtained using approximate linearisation methods. Moreover, the stability criterion derived in this paper can provide more refined information from the perspective of the capability to reproduce nonlinear traffic flow behaviors observed in real traffic than previously established methodologies.

  13. Nonlinear Dynamical Modeling and Forecast of ENSO Variability

    Science.gov (United States)

    Feigin, Alexander; Mukhin, Dmitry; Gavrilov, Andrey; Seleznev, Aleksey; Loskutov, Evgeny

    2017-04-01

    New methodology of empirical modeling and forecast of nonlinear dynamical system variability [1] is applied to study of ENSO climate system. The methodology is based on two approaches: (i) nonlinear decomposition of data [2], that provides low-dimensional embedding for further modeling, and (ii) construction of empirical model in the form of low dimensional random dynamical ("stochastic") system [3]. Three monthly data sets are used for ENSO modeling and forecast: global sea surface temperature anomalies, troposphere zonal wind speed, and thermocline depth; all data sets are limited by 30 S, 30 N and have horizontal resolution 10x10 . We compare results of optimal data decomposition as well as prognostic skill of the constructed models for different combinations of involved data sets. We also present comparative analysis of ENSO indices forecasts fulfilled by our models and by IRI/CPC ENSO Predictions Plume. [1] A. Gavrilov, D. Mukhin, E. Loskutov, A. Feigin, 2016: Construction of Optimally Reduced Empirical Model by Spatially Distributed Climate Data. 2016 AGU Fall Meeting, Abstract NG31A-1824. [2] D. Mukhin, A. Gavrilov, E. Loskutov , A.Feigin, J.Kurths, 2015: Principal nonlinear dynamical modes of climate variability, Scientific Reports, rep. 5, 15510; doi: 10.1038/srep15510. [3] Ya. Molkov, D. Mukhin, E. Loskutov, A. Feigin, 2012: Random dynamical models from time series. Phys. Rev. E, Vol. 85, n.3.

  14. Modeling the oxygen uptake kinetics during exercise testing of patients with chronic obstructive pulmonary diseases using nonlinear mixed models

    Directory of Open Access Journals (Sweden)

    Florent Baty

    2016-06-01

    Full Text Available Abstract Background The six-minute walk test (6MWT is commonly used to quantify exercise capacity in patients with several cardio-pulmonary diseases. Oxygen uptake ( V ̇ $\\dot {\\mathrm {V}}$ O2 kinetics during 6MWT typically follow 3 distinct phases (rest, exercise, recovery that can be modeled by nonlinear regression. Simultaneous modeling of multiple kinetics requires nonlinear mixed models methodology. To the best of our knowledge, no such curve-fitting approach has been used to analyze multiple V ̇ $\\dot {\\mathrm {V}}$ O2 kinetics in both research and clinical practice so far. Methods In the present study, we describe functionality of the R package medrc that extends the framework of the commonly used packages drc and nlme and allows fitting nonlinear mixed effects models for automated nonlinear regression modeling. The methodology was applied to a data set including 6MWT V ̇ $\\dot {\\mathrm {V}}$ O2 kinetics from 61 patients with chronic obstructive pulmonary disease (disease severity stage II to IV. The mixed effects approach was compared to a traditional curve-by-curve approach. Results A six-parameter nonlinear regression model was jointly fitted to the set of V ̇ $\\dot {\\mathrm {V}}$ O2 kinetics. Significant differences between disease stages were found regarding steady state V ̇ $\\dot {\\mathrm {V}}$ O2 during exercise, V ̇ $\\dot {\\mathrm {V}}$ O2 level after recovery and V ̇ $\\dot {\\mathrm {V}}$ O2 inflection point in the recovery phase. Estimates obtained by the mixed effects approach showed standard errors that were consistently lower as compared to the curve-by-curve approach. Conclusions Hereby we demonstrate the novelty and usefulness of this methodology in the context of physiological exercise testing.

  15. Adaptive Predistortion Using Cubic Spline Nonlinearity Based Hammerstein Modeling

    Science.gov (United States)

    Wu, Xiaofang; Shi, Jianghong

    In this paper, a new Hammerstein predistorter modeling for power amplifier (PA) linearization is proposed. The key feature of the model is that the cubic splines, instead of conventional high-order polynomials, are utilized as the static nonlinearities due to the fact that the splines are able to represent hard nonlinearities accurately and circumvent the numerical instability problem simultaneously. Furthermore, according to the amplifier's AM/AM and AM/PM characteristics, real-valued cubic spline functions are utilized to compensate the nonlinear distortion of the amplifier and the following finite impulse response (FIR) filters are utilized to eliminate the memory effects of the amplifier. In addition, the identification algorithm of the Hammerstein predistorter is discussed. The predistorter is implemented on the indirect learning architecture, and the separable nonlinear least squares (SNLS) Levenberg-Marquardt algorithm is adopted for the sake that the separation method reduces the dimension of the nonlinear search space and thus greatly simplifies the identification procedure. However, the convergence performance of the iterative SNLS algorithm is sensitive to the initial estimation. Therefore an effective normalization strategy is presented to solve this problem. Simulation experiments were carried out on a single-carrier WCDMA signal. Results show that compared to the conventional polynomial predistorters, the proposed Hammerstein predistorter has a higher linearization performance when the PA is near saturation and has a comparable linearization performance when the PA is mildly nonlinear. Furthermore, the proposed predistorter is numerically more stable in all input back-off cases. The results also demonstrate the validity of the convergence scheme.

  16. Nonclassical measurements errors in nonlinear models

    DEFF Research Database (Denmark)

    Madsen, Edith; Mulalic, Ismir

    Discrete choice models and in particular logit type models play an important role in understanding and quantifying individual or household behavior in relation to transport demand. An example is the choice of travel mode for a given trip under the budget and time restrictions that the individuals...... estimates of the income effect it is of interest to investigate the magnitude of the estimation bias and if possible use estimation techniques that take the measurement error problem into account. We use data from the Danish National Travel Survey (NTS) and merge it with administrative register data...... of a households face. In this case an important policy parameter is the effect of income (reflecting the household budget) on the choice of travel mode. This paper deals with the consequences of measurement error in income (an explanatory variable) in discrete choice models. Since it is likely to give misleading...

  17. Nonlinear dynamic phenomena in the beer model

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Laugesen, Jakob Lund

    2007-01-01

    The production-distribution system or "beer game" is one of the most well-known system dynamics models. Notorious for the complex dynamics it produces, the beer game has been used for nearly five decades to illustrate how structure generates behavior and to explore human decision making. Here we...

  18. Economic Optimization of Spray Dryer Operation using Nonlinear Model Predictive Control with State Estimation

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Jørgensen, John Bagterp; Rawlings, James B.

    2015-01-01

    In this paper, we develop an economically optimizing Nonlinear Model Predictive Controller (E-NMPC) for a complete spray drying plant with multiple stages. In the E-NMPC the initial state is estimated by an extended Kalman Filter (EKF) with noise covariances estimated by an autocovariance least...... squares method (ALS). We present a model for the spray drying plant and use this model for simulation as well as for prediction in the E-NMPC. The open-loop optimal control problem in the E-NMPC is solved using the single-shooting method combined with a quasi-Newton Sequential Quadratic programming (SQP...

  19. A Simple Nonlinear Dynamic Model for Unemployment: Explaining the Spanish Case

    Directory of Open Access Journals (Sweden)

    João Ricardo Faria

    2008-01-01

    Full Text Available Spanish unemployment is characterized by three distinct regimes of low, medium, and high unemployment and by a fast transition between them. This paper presents a simple nonlinear dynamic model that is able to explain this behavior with multiple equilibria and jumps describing the transition between equilibria. The model has only a small number of parameters capturing the fundamentals of labor markets and macroeconomic and institutional factors. The model is capable of generating unemployment dynamics that encompass the “unique” natural rate hypothesis, the structuralist hypothesis, and the hysteresis hypothesis.

  20. Magnetic field modelling of machine and multiple machine systems using dynamic reluctance mesh modelling

    OpenAIRE

    Yao, Li

    2006-01-01

    This thesis concerns the modified and improved, time-stepping, dynamic reluctance mesh (DRM) modelling technique for machines and its application to multiple machine systems with their control algorithms. Improvements are suggested which enable the stable solution of the resulting complex non-linear equations. The concept of finite element (FE) derived, overlap-curves has been introduced to facilitate the evaluation of the air-gap reluctances linking the teeth on the rotor to those on the sta...

  1. Defects in the discrete non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Doikou, Anastasia, E-mail: adoikou@upatras.gr [University of Patras, Department of Engineering Sciences, Physics Division, GR-26500 Patras (Greece)

    2012-01-01

    The discrete non-linear Schroedinger (NLS) model in the presence of an integrable defect is examined. The problem is viewed from a purely algebraic point of view, starting from the fundamental algebraic relations that rule the model. The first charges in involution are explicitly constructed, as well as the corresponding Lax pairs. These lead to sets of difference equations, which include particular terms corresponding to the impurity point. A first glimpse regarding the corresponding continuum limit is also provided.

  2. Non-linear models: coal combustion efficiency and emissions control

    Energy Technology Data Exchange (ETDEWEB)

    Bulsari, A.; Wemberg, A.; Anttila, A.; Multas, A. [Nonlinear Solutions Oy, Turku (Finland)

    2009-04-15

    Today's power plants feel the pressure to limit their NOx emissions and improve their production economics. The article describes how nonlinear models are effective for process guidance of various kinds of processes, including coal fired boilers. These models were developed for the Naantati 2 boiler at the electricity and heat generating coal-fired plant in Naantali, near Turku, Finland. 4 refs., 6 figs.

  3. Geometric Properties of AR(q) Nonlinear Regression Models

    Institute of Scientific and Technical Information of China (English)

    LIUYing-ar; WEIBo-cheng

    2004-01-01

    This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on the weighted inner product by fisher information matrix. Several geometric properties related to statistical curvatures are given for the models. The results of this paper extended the work of Bates & Watts(1980,1988)[1.2] and Seber & Wild (1989)[3].

  4. Solutions to a nonlinear drift-diffusion model for semiconductors

    Directory of Open Access Journals (Sweden)

    Weifu Fang

    1999-05-01

    Full Text Available A nonlinear drift-diffusion model for semiconductors is analyzed to show the existence of non-vacuum global solutions and stationary solutions. The long time behavior of the solutions is studied by establishing the existence of an absorbing set and a compact attractor of the dynamical system. Parallel results on vacuum solutions are also obtained under weaker conditions on model parameters.

  5. CONSERVATIVE ESTIMATING FUNCTIONIN THE NONLINEAR REGRESSION MODEL WITHAGGREGATED DATA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The purpose of this paper is to study the theory of conservative estimating functions in nonlinear regression model with aggregated data. In this model, a quasi-score function with aggregated data is defined. When this function happens to be conservative, it is projection of the true score function onto a class of estimation functions. By constructing, the potential function for the projected score with aggregated data is obtained, which have some properties of log-likelihood function.

  6. Nonlinear Dynamic Model of PMBLDC Motor Considering Core Losses

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech

    2017-01-01

    The phase variable model is used commonly when simulating a motor drive system with a three-phase permanent magnet brushless DC (PMBLDC) motor. The phase variable model neglects core losses and this affects its accuracy when modelling fractional-slot machines. The inaccuracy of phase variable model...... on the detailed analysis of the flux path and the variation of flux in different components of the machine. A prototype of fractional slot axial flux PMBLDC in-wheel motor is used to assess the proposed nonlinear dynamic model....

  7. Multiplicity Control in Structural Equation Modeling

    Science.gov (United States)

    Cribbie, Robert A.

    2007-01-01

    Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…

  8. Accurate determination of electronic transport properties of silicon wafers by nonlinear photocarrier radiometry with multiple pump beam sizes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qian [Institute of Optics and Electronics, Chinese Academy of Sciences, P. O. Box 350, Shuangliu, Chengdu 610209 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Bincheng, E-mail: bcli@uestc.ac.cn [Institute of Optics and Electronics, Chinese Academy of Sciences, P. O. Box 350, Shuangliu, Chengdu 610209 (China); School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-12-07

    In this paper, photocarrier radiometry (PCR) technique with multiple pump beam sizes is employed to determine simultaneously the electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) of silicon wafers. By employing the multiple pump beam sizes, the influence of instrumental frequency response on the multi-parameter estimation is totally eliminated. A nonlinear PCR model is developed to interpret the PCR signal. Theoretical simulations are performed to investigate the uncertainties of the estimated parameter values by investigating the dependence of a mean square variance on the corresponding transport parameters and compared to that obtained by the conventional frequency-scan method, in which only the frequency dependences of the PCR amplitude and phase are recorded at single pump beam size. Simulation results show that the proposed multiple-pump-beam-size method can improve significantly the accuracy of the determination of the electronic transport parameters. Comparative experiments with a p-type silicon wafer with resistivity 0.1–0.2 Ω·cm are performed, and the electronic transport properties are determined simultaneously. The estimated uncertainties of the carrier lifetime, diffusion coefficient, and front surface recombination velocity are approximately ±10.7%, ±8.6%, and ±35.4% by the proposed multiple-pump-beam-size method, which is much improved than ±15.9%, ±29.1%, and >±50% by the conventional frequency-scan method. The transport parameters determined by the proposed multiple-pump-beam-size PCR method are in good agreement with that obtained by a steady-state PCR imaging technique.

  9. A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.

  10. Exacting predictions by cybernetic model confirmed experimentally: steady state multiplicity in the chemostat.

    Science.gov (United States)

    Kim, Jin Il; Song, Hyun-Seob; Sunkara, Sunil R; Lali, Arvind; Ramkrishna, Doraiswami

    2012-01-01

    We demonstrate strong experimental support for the cybernetic model based on maximizing carbon uptake rate in describing the microorganism's regulatory behavior by verifying exacting predictions of steady state multiplicity in a chemostat. Experiments with a feed mixture of glucose and pyruvate show multiple steady state behavior as predicted by the cybernetic model. When multiplicity occurs at a dilution (growth) rate, it results in hysteretic behavior following switches in dilution rate from above and below. This phenomenon is caused by transient paths leading to different steady states through dynamic maximization of the carbon uptake rate. Thus steady state multiplicity is a manifestation of the nonlinearity arising from cybernetic mechanisms rather than of the nonlinear kinetics. The predicted metabolic multiplicity would extend to intracellular states such as enzyme levels and fluxes to be verified in future experiments.

  11. Robust nonlinear system identification using neural-network models.

    Science.gov (United States)

    Lu, S; Basar, T

    1998-01-01

    We study the problem of identification for nonlinear systems in the presence of unknown driving noise, using both feedforward multilayer neural network and radial basis function network models. Our objective is to resolve the difficulty associated with the persistency of excitation condition inherent to the standard schemes in the neural identification literature. This difficulty is circumvented here by a novel formulation and by using a new class of identification algorithms recently obtained by Didinsky et al. We show how these algorithms can be exploited to successfully identify the nonlinearity in the system using neural-network models. By embedding the original problem in one with noise-perturbed state measurements, we present a class of identifiers (under L1 and L2 cost criteria) which secure a good approximant for the system nonlinearity provided that some global optimization technique is used. In this respect, many available learning algorithms in the current neural-network literature, e.g., the backpropagation scheme and the genetic algorithms-based scheme, with slight modifications, can ensure the identification of the system nonlinearity. Subsequently, we address the same problem under a third, worst case L(infinity) criterion for an RBF modeling. We present a neural-network version of an H(infinity)-based identification algorithm from Didinsky et al and show how, along with an appropriate choice of control input to enhance excitation, under both full-state-derivative information (FSDI) and noise-perturbed full-state-information (NPFSI), it leads to satisfaction of a relevant persistency of excitation condition, and thereby to robust identification of the nonlinearity. Results from several simulation studies have been included to demonstrate the effectiveness of these algorithms.

  12. Reduced Complexity Volterra Models for Nonlinear System Identification

    Directory of Open Access Journals (Sweden)

    Hacıoğlu Rıfat

    2001-01-01

    Full Text Available A broad class of nonlinear systems and filters can be modeled by the Volterra series representation. However, its practical use in nonlinear system identification is sometimes limited due to the large number of parameters associated with the Volterra filter′s structure. The parametric complexity also complicates design procedures based upon such a model. This limitation for system identification is addressed in this paper using a Fixed Pole Expansion Technique (FPET within the Volterra model structure. The FPET approach employs orthonormal basis functions derived from fixed (real or complex pole locations to expand the Volterra kernels and reduce the number of estimated parameters. That the performance of FPET can considerably reduce the number of estimated parameters is demonstrated by a digital satellite channel example in which we use the proposed method to identify the channel dynamics. Furthermore, a gradient-descent procedure that adaptively selects the pole locations in the FPET structure is developed in the paper.

  13. Structure and asymptotic theory for nonlinear models with GARCH errors

    Directory of Open Access Journals (Sweden)

    Felix Chan

    2015-01-01

    Full Text Available Nonlinear time series models, especially those with regime-switching and/or conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with little theoretical or statistical analysis associated with the structure of the processes or the associated asymptotic theory. In this paper, we derive sufficient conditions for strict stationarity and ergodicity of three different specifications of the first-order smooth transition autoregressions with heteroskedastic errors. This is essential, among other reasons, to establish the conditions under which the traditional LM linearity tests based on Taylor expansions are valid. We also provide sufficient conditions for consistency and asymptotic normality of the Quasi-Maximum Likelihood Estimator for a general nonlinear conditional mean model with first-order GARCH errors.

  14. Modeling and study of nonlinear effects in electrodynamic shakers

    Science.gov (United States)

    Saraswat, Abhishek; Tiwari, Nachiketa

    2017-02-01

    An electrodynamic shaker is inherently a nonlinear electro-mechanical system. In this work, we have developed a lumped parameter model for the entire electromechanical system, developed an approach to non-destructively determine these parameters, and predict the nonlinear response of the shaker. This predicted response has been validated using experimental data. Through such an approach, we have been able to accurately predict the resulting distortions in the response of the shaker and other nonlinear effects like DC offset in the displacement response. Our approach offers a key advantage vis-à-vis other approaches which rely on techniques involving Volterra Series expansions or techniques based on blackbox models like neural networks, which is that in our approach, apart from predicting the response of the shaker, the model parameters obtained have a physical significance and changes in the parameters can be directly mapped to modification in key design parameters of the shaker. The proposed approach is also advantageous in one more way: it requires measurement of only four parameters, voltage, current, displacement and acceleration for estimating shaker model parameters non-destructively. The proposed model can be used for the design of linearization controllers, prototype testing and simulation of new shaker designs as well as for performance prediction of shakers under testing conditions.

  15. A data driven nonlinear stochastic model for blood glucose dynamics.

    Science.gov (United States)

    Zhang, Yan; Holt, Tim A; Khovanova, Natalia

    2016-03-01

    The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles.

  16. Large-N Analysis of Three Dimensional Nonlinear Sigma Models

    CERN Document Server

    Higashijima, K; Tsuzuki, M; Higashijima, Kiyoshi; Itou, Etsuko; Tsuzuki, Makoto

    2005-01-01

    Non-perturbative renormalization group approach suggests that a large class of nonlinear sigma models are renormalizable in three dimensional space-time, while they are non-renormalizable in perturbation theory. ${\\cal N}=2$ supersymmetric nonlinear sigma models whose target spaces are Einstein-K\\"{a}hler manifolds with positive scalar curvature belongs to this class. hermitian symmetric spaces, being homogeneous, are specially simple examples of these manifolds. To find an independent evidence of the nonperturbative renormalizability of these models, the large N method, another nonperturbative method, is applied to 3-dimensional ${\\cal N}=2$ supersymmetric nonlinear sigma models on the target spaces $CP^{N-1}=SU(N)/[SU(N-1)\\times U(1)]$ and $Q^{N-2}=SO(N)/[SO(N-2)\\times SO(2)]$, two typical examples of hermitian symmetric spaces. We find that $\\beta$ functions in these models agree with the results of the nonperturbative renormalization group approach in the next-to-leading order of 1/N expansion, and have n...

  17. Reduction of the curvature of a class of nonlinear regression models

    Institute of Scientific and Technical Information of China (English)

    吴翊; 易东云

    2000-01-01

    It is proved that the curvature of nonlinear model can be reduced to zero by increasing measured data for a class of nonlinear regression models. The result is important to actual problem and has obtained satisfying effect on data fusing.

  18. Estimation of Nonlinear DC-Motor Models Using a Sensitivity Approach

    DEFF Research Database (Denmark)

    Knudsen, Morten; Jensen, J.G.

    1995-01-01

    A nonlinear model structure for a permanent magnet DC-motor, appropriate for simulation and controller design, is developed.......A nonlinear model structure for a permanent magnet DC-motor, appropriate for simulation and controller design, is developed....

  19. Enhanced Model of Nonlinear Spiral High Voltage Divider

    Directory of Open Access Journals (Sweden)

    V. Panko

    2015-04-01

    Full Text Available This paper deals with the enhanced accurate DC and RF model of nonlinear spiral polysilicon voltage divider. The high resistance polysilicon divider is a sensing part of the high voltage start-up MOSFET transistor that can operate up to 700 V. This paper presents the structure of a proposed model, implemented voltage, frequency and temperature dependency, and scalability. A special attention is paid to the ability of the created model to cover the mismatch and influence of a variation of process parameters on the device characteristics. Finally, the comparison of measured data vs. simulation is presented in order to confirm the model validity and a typical application is demonstrated.

  20. Spatio-temporal modeling of nonlinear distributed parameter systems

    CERN Document Server

    Li, Han-Xiong

    2011-01-01

    The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s

  1. Nonlinear Reynolds stress models and the renormalization group

    Science.gov (United States)

    Rubinstein, Robert; Barton, J. Michael

    1990-01-01

    The renormalization group is applied to derive a nonlinear algebraic Reynolds stress model of anisotropic turbulence in which the Reynolds stresses are quadratic functions of the mean velocity gradients. The model results from a perturbation expansion that is truncated systematically at second order with subsequent terms contributing no further information. The resulting turbulence model applied to both low and high Reynolds number flows without requiring wall functions or ad hoc modifications of the equations. All constants are derived from the renormalization group procedure; no adjustable constants arise. The model permits inequality of the Reynolds normal stresses, a necessary condition for calculating turbulence-driven secondary flows in noncircular ducts.

  2. Nonlinear dynamics of plasma oscillations modeled by a forced modified Van der Pol-Duffing oscillator

    CERN Document Server

    Miwadinou, C H; Monwanou, A V; Orou, J B Chabi

    2013-01-01

    This paper considers nonlinear dynamics of plasma oscillations modeled by a forced modified Van der Pol-Duffing oscillator. These plasma oscillations are described by a nonlinear differential equation of the form $ \\ddot{x}+ \\epsilon (1 +{x}^{2}){\\dot{x}} + x+ \\alpha \\epsilon{x}{\\dot{x}} + {\\beta}x^{2}+\\gamma x^{3}= F\\cos{\\Omega t}.$ The amplitudes of the forced harmonic, superharmonic and subharmonic oscillatory states are obtained using the harmonic balance technique and the multiple time scales methods. Bifurcation sequences displayed by the model for each type of oscillatory states are performed numerically through the fourth order Runge- Kutta scheme. The influences of the differents parameters and of amplitude of external forced have been found.

  3. Applying nonlinear MODM model to supply chain management with quantity discount policy under complex fuzzy environment

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    2014-06-01

    Full Text Available Purpose: The aim of this paper is to deal with the supply chain management (SCM with quantity discount policy under the complex fuzzy environment, which is characterized as the bi-fuzzy variables. By taking into account the strategy and the process of decision making, a bi-fuzzy nonlinear multiple objective decision making (MODM model is presented to solve the proposed problem.Design/methodology/approach: The bi-fuzzy variables in the MODM model are transformed into the trapezoidal fuzzy variables by the DMs's degree of optimism ?1 and ?2, which are de-fuzzified by the expected value index subsequently. For solving the complex nonlinear model, a multi-objective adaptive particle swarm optimization algorithm (MO-APSO is designed as the solution method.Findings: The proposed model and algorithm are applied to a typical example of SCM problem to illustrate the effectiveness. Based on the sensitivity analysis of the results, the bi-fuzzy nonlinear MODM SCM model is proved to be sensitive to the possibility level ?1.Practical implications: The study focuses on the SCM under complex fuzzy environment in SCM, which has a great practical significance. Therefore, the bi-fuzzy MODM model and MO-APSO can be further applied in SCM problem with quantity discount policy.Originality/value: The bi-fuzzy variable is employed in the nonlinear MODM model of SCM to characterize the hybrid uncertain environment, and this work is original. In addition, the hybrid crisp approach is proposed to transferred to model to an equivalent crisp one by the DMs's degree of optimism and the expected value index. Since the MODM model consider the bi-fuzzy environment and quantity discount policy, so this paper has a great practical significance.

  4. NONLINEAR EXTENSION OF ASYMMETRIC GARCH MODEL WITHIN NEURAL NETWORK FRAMEWORK

    Directory of Open Access Journals (Sweden)

    Josip Arnerić

    2016-05-01

    Full Text Available The importance of volatility for all market participants has led to the development and application of various econometric models. The most popular models in modelling volatility are GARCH type models because they can account excess kurtosis and asymmetric effects of financial time series. Since standard GARCH(1,1 model usually indicate high persistence in the conditional variance, the empirical researches turned to GJR-GARCH model and reveal its superiority in fitting the asymmetric heteroscedasticity in the data. In order to capture both asymmetry and nonlinearity in data, the goal of this paper is to develop a parsimonious NN model as an extension to GJR-GARCH model and to determine if GJR-GARCH-NN outperforms the GJR-GARCH model.

  5. Nonlinear Mathematical Modeling in Pneumatic Servo Position Applications

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Valdiero

    2011-01-01

    Full Text Available This paper addresses a new methodology for servo pneumatic actuators mathematical modeling and selection from the dynamic behavior study in engineering applications. The pneumatic actuator is very common in industrial application because it has the following advantages: its maintenance is easy and simple, with relatively low cost, self-cooling properties, good power density (power/dimension rate, fast acting with high accelerations, and installation flexibility. The proposed fifth-order nonlinear mathematical model represents the main characteristics of this nonlinear dynamic system, as servo valve dead zone, air flow-pressure relationship through valve orifice, air compressibility, and friction effects between contact surfaces in actuator seals. Simulation results show the dynamic performance for different pneumatic cylinders in order to see which features contribute to a better behavior of the system. The knowledge of this behavior allows an appropriate choice of pneumatic actuator, mainly contributing to the success of their precise control in several applications.

  6. NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS

    Directory of Open Access Journals (Sweden)

    Hasan YILDIZ

    2004-03-01

    Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.

  7. A Linearization Approach for Rational Nonlinear Models in Mathematical Physics

    Institute of Scientific and Technical Information of China (English)

    Robert A. Van Gorder

    2012-01-01

    In this paper, a novel method for linearization of rational second order nonlinear models is discussed. In particular, we discuss an application of the 5 expansion method (created to deal with problems in Quantum Field Theory) which will enable both the linearization and perturbation expansion of such equations. Such a method allows for one to quickly obtain the order zero perturbation theory in terms of certain special functions which are governed by linear equations. Higher order perturbation theories can then be obtained in terms of such special functions. One benefit to such a method is that it may be applied even to models without small physical parameters, as the perturbation is given in terms of the degree of nonlinearity, rather than any physical parameter. As an application, we discuss a method of linearizing the six Painlev~ equations by an application of the method. In addition to highlighting the benefits of the method, we discuss certain shortcomings of the method.

  8. A non-linear model of economic production processes

    Science.gov (United States)

    Ponzi, A.; Yasutomi, A.; Kaneko, K.

    2003-06-01

    We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.

  9. Off-shell BCJ Relation in Nonlinear Sigma Model

    CERN Document Server

    Chen, Gang; Liu, Hanqing

    2016-01-01

    We investigate relations among tree-level off-shell currents in nonlinear sigma model. Under Cayley parametrization, we propose and prove a general revised BCJ relation for even-point currents. Unlike the on-shell BCJ relation, the off-shell one behaves quite differently from Yang-Mills theory although the algebraic structure is the same. After performing the permutation summation in the revised BCJ relation, the sum is non-vanishing, instead, it equals to the sum of sub-current products with the BCJ coefficients under a specific ordering, which is presented by an explicit formula. Taking on-shell limit, this identity is reduced to the on-shell BCJ relation, and thus provides the full off-shell correspondence of tree-level BCJ relation in nonlinear sigma model.

  10. Likelihood-Based Inference in Nonlinear Error-Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    We consider a class of vector nonlinear error correction models where the transfer function (or loadings) of the stationary relation- ships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... of the process in terms of stochastic and deter- ministic trends as well as stationary components. In particular, the behaviour of the cointegrating relations is described in terms of geo- metric ergodicity. Despite the fact that no deterministic terms are included, the process will have both stochastic trends...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long- run cointegration parameters, and the short-run parameters. Asymp- totic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normaity can be found. A simulation study...

  11. SIVS EPIDEMIC MODELS WITH INFECTION AGE AND NONLINEAR VACCINATION RATE

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Vaccination is a very important strategy for the elimination of infectious diseaVaccination is a very important strategy for the elimination of infectious diseases. A SIVS epidemic model with infection age and nonlinear vaccination has been formulated in this paper. Using the theory of differential and integral equation, we show the local asymptotic stability of the infection-free equilibrium and the endemic equilibrium under some assumptions.

  12. Nonlinear dynamics mathematical models for rigid bodies with a liquid

    CERN Document Server

    Lukovsky, Ivan A

    2015-01-01

    This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities partly filled by liquid. It combines several methods and compares the results with experimental data. It is useful for experienced and early-stage readers interested in analytical approaches to fluid-structure interaction problems, the fundamental mathematical background and modeling the dynamics of such complex mechanical systems.

  13. Multiple Model Approaches to Modelling and Control,

    DEFF Research Database (Denmark)

    on the ease with which prior knowledge can be incorporated. It is interesting to note that researchers in Control Theory, Neural Networks,Statistics, Artificial Intelligence and Fuzzy Logic have more or less independently developed very similar modelling methods, calling them Local ModelNetworks, Operating...... of introduction of existing knowledge, as well as the ease of model interpretation. This book attempts to outlinemuch of the common ground between the various approaches, encouraging the transfer of ideas.Recent progress in algorithms and analysis is presented, with constructive algorithms for automated model...

  14. COMPUTER COMPUTATION OF THE METHOD OF MULTIPLE SCALES-DIRICHLET PROBLEM FOR A CLASS OF SYSTEM OF NONLINEAR DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    谢腊兵; 江福汝

    2003-01-01

    The method of boundary layer with multiple scales and computer algebra were applied to study the asymptotic behavior of solution of boundary value problems for a class of system of nonlinear differential equations. The asymptotic expansions of solution were constructed. The remainders were estimated. And an example was analysed. It provides a new foreground for the application of the method of boundary layer with multiple scales.

  15. The study of hybrid model identification,computation analysis and fault location for nonlinear dynamic circuits and systems

    Institute of Scientific and Technical Information of China (English)

    XIE Hong; HE Yi-gang; ZENG Guan-da

    2006-01-01

    This paper presents the hybrid model identification for a class of nonlinear circuits and systems via a combination of the block-pulse function transform with the Volterra series.After discussing the method to establish the hybrid model and introducing the hybrid model identification,a set of relative formulas are derived for calculating the hybrid model and computing the Volterra series solution of nonlinear dynamic circuits and systems.In order to significantly reduce the computation cost for fault location,the paper presents a new fault diagnosis method based on multiple preset models that can be realized online.An example of identification simulation and fault diagnosis are given.Results show that the method has high accuracy and efficiency for fault location of nonlinear dynamic circuits and systems.

  16. A Nonlinear Viscous Model for Sn-Whisker Growth

    Science.gov (United States)

    Yang, Fuqian

    2016-12-01

    Based on the mechanism of the grain boundary fluid flow, a nonlinear viscous model for the growth of Sn-whiskers is proposed. This model consists of two units, one with a stress exponent of one and one with a stress exponent of n -1. By letting one of the constants be zero in the model, the constitutive relationship reduces to a linear flow relation or a power-law relation, representing the flow behavior of various metals. Closed-form solutions for the growth behavior of a whisker are derived, which can be used to predict the whisker growth and the stress evolution.

  17. A nonlinear poroelastic model for the periodontal ligament

    Science.gov (United States)

    Favino, Marco; Bourauel, Christoph; Krause, Rolf

    2016-05-01

    A coupled elastic-poroelastic model for the simulation of the PDL and the adjacent tooth is presented. A poroelastic constitutive material model for the periodontal ligament (PDL) is derived. The solid phase is modeled by means of a Fung material law, accounting for large displacements and strains. Numerical solutions are performed by means of a multigrid Newton method to solve the arising large nonlinear system. Finally, by means of numerical experiments, the biomechanical response of the PDL is studied. In particular, the effect of the hydraulic conductivity and of the mechanical parameters of a Fung potential is investigated in two realistic applications.

  18. Linear and nonlinear viscoelastic arterial wall models: application on animals

    CERN Document Server

    Ghigo, Arthur; Armentano, Ricardo; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-01-01

    This work deals with the viscoelasticity of the arterial wall and its influence on the pulse waves. We describe the viscoelasticity by a non-linear Kelvin-Voigt model in which the coefficients are fitted using experimental time series of pressure and radius measured on a sheep's arterial network. We obtained a good agreement between the results of the nonlinear Kelvin-Voigt model and the experimental measurements. We found that the viscoelastic relaxation time-defined by the ratio between the viscoelastic coefficient and the Young's modulus-is nearly constant throughout the network. Therefore, as it is well known that smaller arteries are stiffer, the viscoelastic coefficient rises when approaching the peripheral sites to compensate the rise of the Young's modulus, resulting in a higher damping effect. We incorporated the fitted viscoelastic coefficients in a nonlinear 1D fluid model to compute the pulse waves in the network. The damping effect of viscoelasticity on the high frequency waves is clear especiall...

  19. Mapping vulnerability of multiple aquifers using multiple models and fuzzy logic to objectively derive model structures.

    Science.gov (United States)

    Nadiri, Ata Allah; Sedghi, Zahra; Khatibi, Rahman; Gharekhani, Maryam

    2017-09-01

    Driven by contamination risks, mapping Vulnerability Indices (VI) of multiple aquifers (both unconfined and confined) is investigated by integrating the basic DRASTIC framework with multiple models overarched by Artificial Neural Networks (ANN). The DRASTIC framework is a proactive tool to assess VI values using the data from the hydrosphere, lithosphere and anthroposphere. However, a research case arises for the application of multiple models on the ground of poor determination coefficients between the VI values and non-point anthropogenic contaminants. The paper formulates SCFL models, which are derived from the multiple model philosophy of Supervised Committee (SC) machines and Fuzzy Logic (FL) and hence SCFL as their integration. The Fuzzy Logic-based (FL) models include: Sugeno Fuzzy Logic (SFL), Mamdani Fuzzy Logic (MFL), Larsen Fuzzy Logic (LFL) models. The basic DRASTIC framework uses prescribed rating and weighting values based on expert judgment but the four FL-based models (SFL, MFL, LFL and SCFL) derive their values as per internal strategy within these models. The paper reports that FL and multiple models improve considerably on the correlation between the modeled vulnerability indices and observed nitrate-N values and as such it provides evidence that the SCFL multiple models can be an alternative to the basic framework even for multiple aquifers. The study area with multiple aquifers is in Varzeqan plain, East Azerbaijan, northwest Iran. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cable dynamics under non-ideal support excitations: Nonlinear dynamic interactions and asymptotic modelling

    Science.gov (United States)

    Guo, Tieding; Kang, Houjun; Wang, Lianhua; Zhao, Yueyu

    2016-12-01

    Cable dynamics under ideal longitudinal support motions/excitations assumes that the support's mass, stiffness and mechanical energy are infinite. However, for many long/slender support structures, their finite mass and stiffness should be taken into account and the cable-support dynamic interactions should be modelled and evaluated. These moving supports are non-ideal support excitations, deserving a proper coupling analysis. For systems with a large support/cable mass ratio, using the multiple scale method and asymptotic approximations, a cable-support coupled reduced model, with both cable's geometric nonlinearity and cable-support coupling nonlinearity included, is established asymptotically and validated numerically in this paper. Based upon the reduced model, cable's nonlinear responses under non-ideal support excitations(and also the coupled responses) are found, with stability and bifurcation characteristics determined. By finding the modifications caused by the support/cable mass ratio, boundary damping, and internal detuning, full investigations into coupling-induced dynamic effects on the cable are conducted. Finally, the approximate analytical results based on the reduced model are verified by numerical results from the original full model.

  1. Multiple positive solutions for quasilinear elliptic equations of p(x-Laplacian type with sign-changing nonlinearity

    Directory of Open Access Journals (Sweden)

    Ky Ho

    2014-11-01

    Full Text Available We establish sufficient conditions for the existence of multiple positive solutions to nonautonomous quasilinear elliptic equations with p(x-Laplacian and sign-changing nonlinearity. For solving the Dirichlet boundary-value problem we use variational and topological methods. The nonexistence of positive solutions is also studied.

  2. A numerical model for pipelaying on nonlinear soil stiffness seabed

    Institute of Scientific and Technical Information of China (English)

    昝英飞; 韩端锋; 袁利毫; 李志刚

    2016-01-01

    The J-lay method is regarded as one of the most feasible methods to lay a pipeline in deep water and ultra-deep water. A numerical model that accounts for the nonlinear soil stiffness is developed in this study to evaluate a J-lay pipeline. The pipeline considered in this model is divided into two parts: the part one is suspended in water, and the part two is laid on the seabed. In addition to the boundary conditions at the two end points of the pipeline, a special set of the boundary conditions is required at the touchdown point that connects the two parts of the pipeline. The two parts of the pipeline are solved by a numerical iterative method and the finite difference method, respectively. The proposed numerical model is validated for a special case using a catenary model and a numerical model with linear soil stiffness. A good agreement in the pipeline configuration, the tension force and the bending moment is obtained among these three models. Furthermore, the present model is used to study the importance of the nonlinear soil stiffness. Finally, the parametric study is performed to study the effect of the mudline shear strength, the gradient of the soil shear strength, and the outer diameter of the pipeline on the pipelaying solution.

  3. Nonlinear and stochastic modelling of energy transfer in Scheibe aggregates

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Rasmussen, Kim; Gaididei, Yu. B.

    1996-01-01

    The oxacyanine Scheibe aggregate is modelled by a two-dimensional cubicnonlinear Schrödinger equation with multiplicative noise, accounting forthermal fluctuations. For a possible choise of the physical parameterscollapse of the initial state...

  4. Research and application of multiple model predictive control in Ultra-supercritical boiler-turbine system

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hengfeng; Yan, Weiwu; Wang, Guoliang; Hu, Yong; Li, Nan [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Automation; Ministry of Education of China, Shanghai (China). Key Lab. of System Control and Information Processing; Chen, Shihe; Zhang, Xi [Guangdong Electric Power Research Institute, Guangzhou (China)

    2013-07-01

    Based on analyzing the characteristics of Ultra-supercritical unit, this paper introduced a multiple model MCPC (Multivariable Constrained Predictive Control) structure with three inputs and three outputs for coordination control of Ultra-supercritical unit. In the structure, double-layer structure of optimization was used to obtain good steady and dynamic performance, and piecewise linear models at the different operating points of Ultra-supercritical unit were used to deal with nonlinearity. In the real-time simulation, nonlinear model of 1000MW Ultra-supercritical unit in was considered. Finally, the result of real-time simulation was given in the paper.

  5. Bayesian framework for modeling diffusion processes with nonlinear drift based on nonlinear and incomplete observations.

    Science.gov (United States)

    Wu, Hao; Noé, Frank

    2011-03-01

    Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process, (2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.

  6. Application of nonlinear forecasting techniques for meteorological modeling

    Directory of Open Access Journals (Sweden)

    V. Pérez-Muñuzuri

    Full Text Available A nonlinear forecasting method was used to predict the behavior of a cloud coverage time series several hours in advance. The method is based on the reconstruction of a chaotic strange attractor using four years of cloud absorption data obtained from half-hourly Meteosat infrared images from Northwestern Spain. An exhaustive nonlinear analysis of the time series was carried out to reconstruct the phase space of the underlying chaotic attractor. The forecast values are used by a non-hydrostatic meteorological model ARPS for daily weather prediction and their results compared with surface temperature measurements from a meteorological station and a vertical sounding. The effect of noise in the time series is analyzed in terms of the prediction results.

    Key words: Meterology and atmospheric dynamics (mesoscale meteorology; general – General (new fields

  7. The inherent complexity in nonlinear business cycle model in resonance

    Energy Technology Data Exchange (ETDEWEB)

    Ma Junhai [School of Management, Tianjin University, Tianjin 300072 (China) and Tianjin University of Finance and Economics, Tianjin 300222 (China)], E-mail: lzqsly@126.com; Sun Tao; Liu Lixia [School of Management, Tianjin University, Tianjin 300072 (China)

    2008-08-15

    Based on Abraham C.-L. Chian's research, we applied nonlinear dynamic system theory to study the first-order and second-order approximate solutions to one category of the nonlinear business cycle model in resonance condition. We have also analyzed the relation between amplitude and phase of second-order approximate solutions as well as the relation between outer excitements' amplitude, frequency approximate solutions, and system bifurcation parameters. Then we studied the system quasi-periodical solutions, annulus periodical solutions and the path leading to system bifurcation and chaotic state with different parameter combinations. Finally, we conducted some numerical simulations for various complicated circumstances. Therefore this research will lay solid foundation for detecting the complexity of business cycles and systems in the future.

  8. Vainshtein mechanism in massive gravity nonlinear sigma models

    CERN Document Server

    Aoki, Katsuki

    2016-01-01

    We study the stability of the Vainshtein screening solution of the massive/bi-gravity based on the massive nonlinear sigma model as the effective action inside the Vainshtein radius. The effective action is obtained by taking the $\\Lambda_2$ decoupling limit around a curved spacetime. First we derive a general consequence that any Ricci flat Vainshtein screening solution is unstable when we take into account the excitation of the scalar graviton only. This instability suggests that the nonlinear excitation of the scalar graviton is not sufficient to obtain a successful Vainshtein screening in massive/bi-gravity. Then to see the role of the excitation of the vector graviton, we study perturbations around the static and spherically symmetric solution obtained in bigravity explicitly. As a result, we find that linear excitations of the vector graviton cannot be helpful and the solution still suffers from a ghost and/or a gradient instability for any parameters of the theory for this background.

  9. Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.

    Science.gov (United States)

    Hammi, Oualid

    2014-01-01

    A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.

  10. Augmented Twin-Nonlinear Two-Box Behavioral Models for Multicarrier LTE Power Amplifiers

    Directory of Open Access Journals (Sweden)

    Oualid Hammi

    2014-01-01

    Full Text Available A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.

  11. Nonlinear mathematical modeling and sensitivity analysis of hydraulic drive unit

    Science.gov (United States)

    Kong, Xiangdong; Yu, Bin; Quan, Lingxiao; Ba, Kaixian; Wu, Liujie

    2015-09-01

    The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity

  12. Estimation methods for nonlinear state-space models in ecology

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro

    2011-01-01

    The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... logistic model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare the estimation performance of three alternative methods using simulated data. The first approach is to partition the state-space into a finite number of states and formulate the problem as a hidden...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...

  13. Probability bounds analysis for nonlinear population ecology models.

    Science.gov (United States)

    Enszer, Joshua A; Andrei Măceș, D; Stadtherr, Mark A

    2015-09-01

    Mathematical models in population ecology often involve parameters that are empirically determined and inherently uncertain, with probability distributions for the uncertainties not known precisely. Propagating such imprecise uncertainties rigorously through a model to determine their effect on model outputs can be a challenging problem. We illustrate here a method for the direct propagation of uncertainties represented by probability bounds though nonlinear, continuous-time, dynamic models in population ecology. This makes it possible to determine rigorous bounds on the probability that some specified outcome for a population is achieved, which can be a core problem in ecosystem modeling for risk assessment and management. Results can be obtained at a computational cost that is considerably less than that required by statistical sampling methods such as Monte Carlo analysis. The method is demonstrated using three example systems, with focus on a model of an experimental aquatic food web subject to the effects of contamination by ionic liquids, a new class of potentially important industrial chemicals.

  14. Nonlinear modeling of PEMFC based on neural networks identification

    Institute of Scientific and Technical Information of China (English)

    SUN Tao; CAO Guang-yi; ZHU Xin-jian

    2005-01-01

    The proton exchange membrane generation technology is highly efficient and clean, and is considered as the most hopeful "green" power technology. The operating principles of proton exchange membrane fuel cell (PEMFC) system involve thermodynamics, electrochemistry, hydrodynamics and mass transfer theory, which comprise a complex nonlinear system, for which it is difficult to establish a mathematical model. This paper first simply analyzes the necessity of the PEMFC generation technology, then introduces the generating principle from four aspects: electrode, single cell, stack, system; and then uses the approach and self-study ability of artificial neural network to build the model of nonlinear system, and adapts the Levenberg-Marquardt BP (LMBP) to build the electric characteristic model of PEMFC. The model uses experimental data as training specimens, on the condition the system is provided enough hydrogen. Considering the flow velocity of air (or oxygen) and the cell operational temperature as inputs, the cell voltage and current density as the outputs and establishing the electric characteristic model of PEMFC according to the different cell temperatures. The voltage-current output curves of model has some guidance effect for improving the cell performance, and provide basic data for optimizing cell performance that have practical significance.

  15. Nonlinear Time Series Model for Shape Classification Using Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A complex nonlinear exponential autoregressive (CNEAR) model for invariant feature extraction is developed for recognizing arbitrary shapes on a plane. A neural network is used to calculate the CNEAR coefficients. The coefficients, which constitute the feature set, are proven to be invariant to boundary transformations such as translation, rotation, scale and choice of starting point in tracing the boundary. The feature set is then used as the input to a complex multilayer perceptron (C-MLP) network for learning and classification. Experimental results show that complicated shapes can be accurately recognized even with the low-order model and that the classification method has good fault tolerance when noise is present.

  16. Stability Analysis of Some Nonlinear Anaerobic Digestion Models

    Directory of Open Access Journals (Sweden)

    Ivan Simeonov

    2010-04-01

    Full Text Available Abstract: The paper deals with local asymptotic stability analysis of some mass balance dynamic models (based on one and on two-stage reaction schemes of the anaerobic digestion (AD in CSTR. The equilibrium states for models based on one (with Monod, Contois and Haldane shapes for the specific growth rate and on two-stage (only with Monod shapes for both the specific growth rate of acidogenic and methanogenic bacterial populations reaction schemes have been determined solving sets of nonlinear algebraic equations using Maples. Their stability has been analyzed systematically, which provides insight and guidance for AD bioreactors design, operation and control.

  17. Linear and non-linear perturbations in dark energy models

    CERN Document Server

    Escamilla-Rivera, Celia; Fabris, Julio C; Alcaniz, Jailson S

    2016-01-01

    In this work we discuss observational aspects of three time-dependent parameterisations of the dark energy equation of state $w(z)$. In order to determine the dynamics associated with these models, we calculate their background evolution and perturbations in a scalar field representation. After performing a complete treatment of linear perturbations, we also show that the non-linear contribution of the selected $w(z)$ parameterisations to the matter power spectra is almost the same for all scales, with no significant difference from the predictions of the standard $\\Lambda$CDM model.

  18. Elimination of Nonlinear Deviations in Thermal Lattice BGK Models

    CERN Document Server

    Chen, Y; Hongo, T; Chen, Yu; Ohashi, Hirotada; Akiyam, Mamoru

    1993-01-01

    Abstracet: We present a new thermal lattice BGK model in D-dimensional space for the numerical calculation of fluid dynamics. This model uses a higher order expansion of equilibrium distribution in Maxwellian type. In the mean time the lattice symmetry is upgraded to ensure the isotropy of 6th order tensor. These manipulations lead to macroscopic equations free from nonlinear deviations. We demonstrate the improvements by conducting classical Chapman-Enskog analysis and by numerical simulation of shear wave flow. The transport coefficients are measured numerically, too.

  19. Extended nonlinear feedback model for describing episodes of high inflation

    OpenAIRE

    Szybisz, M A; Szybisz, L.

    2016-01-01

    An extension of the nonlinear feedback (NLF) formalism to describe regimes of hyper- and high-inflation in economy is proposed in the present work. In the NLF model the consumer price index (CPI) exhibits a finite time singularity of the type $1/(t_c -t)^{(1- \\beta)/\\beta}$, with $\\beta>0$, predicting a blow up of the economy at a critical time $t_c$. However, this model fails in determining $t_c$ in the case of weak hyperinflation regimes like, e.g., that occurred in Israel. To overcome this...

  20. The Precession Index and a Nonlinear Energy Balance Climate Model

    Science.gov (United States)

    Rubincam, David

    2004-01-01

    A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold

  1. Filtering nonlinear dynamical systems with linear stochastic models

    Science.gov (United States)

    Harlim, J.; Majda, A. J.

    2008-06-01

    An important emerging scientific issue is the real time filtering through observations of noisy signals for nonlinear dynamical systems as well as the statistical accuracy of spatio-temporal discretizations for filtering such systems. From the practical standpoint, the demand for operationally practical filtering methods escalates as the model resolution is significantly increased. For example, in numerical weather forecasting the current generation of global circulation models with resolution of 35 km has a total of billions of state variables. Numerous ensemble based Kalman filters (Evensen 2003 Ocean Dyn. 53 343-67 Bishop et al 2001 Mon. Weather Rev. 129 420-36 Anderson 2001 Mon. Weather Rev. 129 2884-903 Szunyogh et al 2005 Tellus A 57 528-45 Hunt et al 2007 Physica D 230 112-26) show promising results in addressing this issue; however, all these methods are very sensitive to model resolution, observation frequency, and the nature of the turbulent signals when a practical limited ensemble size (typically less than 100) is used. In this paper, we implement a radical filtering approach to a relatively low (40) dimensional toy model, the L-96 model (Lorenz 1996 Proc. on Predictability (ECMWF, 4-8 September 1995) pp 1-18) in various chaotic regimes in order to address the 'curse of ensemble size' for complex nonlinear systems. Practically, our approach has several desirable features such as extremely high computational efficiency, filter robustness towards variations of ensemble size (we found that the filter is reasonably stable even with a single realization) which makes it feasible for high dimensional problems, and it is independent of any tunable parameters such as the variance inflation coefficient in an ensemble Kalman filter. This radical filtering strategy decouples the problem of filtering a spatially extended nonlinear deterministic system to filtering a Fourier diagonal system of parametrized linear stochastic differential equations (Majda and Grote

  2. The Nonlinear cosmological matter power spectrum with massive neutrinos. 1. The Halo model

    Energy Technology Data Exchange (ETDEWEB)

    Abazajian, Kevork; /Los Alamos; Switzer, Eric R.; /Princeton U.; Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr.; Heitmann, Katrin; Habib, Salman; /Los

    2004-11-01

    Measurements of the linear power spectrum of galaxies have placed tight constraints on neutrino masses. We extend the framework of the halo model of cosmological nonlinear matter clustering to include the effect of massive neutrino infall into cold dark matter (CDM) halos. The magnitude of the effect of neutrino clustering for three degenerate mass neutrinos with m{sub v{sub 1}} = 0.9 eV is of order {approx}1%, within the potential sensitivity of upcoming weak lensing surveys. In order to use these measurements to further constrain--or eventually detect--neutrino masses, accurate theoretical predictions of the nonlinear power spectrum in the presence of massive neutrinos will be needed, likely only possible through high-resolution multiple particle (neutrino, CDM and baryon) simulations.

  3. An Asymptotic Solvable Multiple "Look-Ahead" Model with Multi-weight

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A type of multiple "look-ahead" car-following models is studied by nonlinear analysis. The mKdV equation to describe density wave of traffic jamming is derived. The result indicates that the behavior of multiple "look-ahead" is in favor of stability enhancement of traffic flow. Furthermore, the traffic flow can reach the most stable case via adjustment of the parameter of weight functions m = 3.

  4. An Asymptotic Solvable Multiple ``Look-Ahead" Model with Multi-weight

    Science.gov (United States)

    Shi, Wei; Chen, Ning-Guo; Xue, Yu

    2007-12-01

    A type of multiple ``look-ahead" car-following models is studied by nonlinear analysis. The mKdV equation to describe density wave of traffic jamming is derived. The result indicates that the behavior of multiple ``look-ahead" is in favor of stability enhancement of traffic flow. Furthermore, the traffic flow can reach the most stable case via adjustment of the parameter of weight functions m = 3.

  5. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    Science.gov (United States)

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  6. Demonstration of leapfrogging for implementing nonlinear model predictive control on a heat exchanger.

    Science.gov (United States)

    Sridhar, Upasana Manimegalai; Govindarajan, Anand; Rhinehart, R Russell

    2016-01-01

    This work reveals the applicability of a relatively new optimization technique, Leapfrogging, for both nonlinear regression modeling and a methodology for nonlinear model-predictive control. Both are relatively simple, yet effective. The application on a nonlinear, pilot-scale, shell-and-tube heat exchanger reveals practicability of the techniques.

  7. Nonlinear stochastic modeling of river dissolved-oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Tabios, G.Q. III.

    1984-01-01

    An important aspect of water quality modeling is forecasting water quality variables for real-time management and control applications to enhance, maintain and sustain desirable water qualities. The major objective of this research is to develop daily time series models for forecasting river dissolved-oxygen (DO). The modeling approach adopted herein combines deterministic and stochastic concepts for determining properties of the DO process based on time series data and dynamic mechanisms governing the said process. This is accomplished by deriving a general DO stochastic model structure based on a modified Streeter-Phelps DO-BOD dynamic model. Then some types of nonlinear models namely, self-exciting threshold autoregressive-moving average (SETARMA), amplitude-dependent autoregressive (ADAR) and bilinear (BL) models, and the class of linear autoregressive-moving average (ARMA) models are adopted for model identification and parameter estimation. Six stream-water quality gaging stations located in the eastern portion of the continental U.S.A. are utilized in this study. Various orders of ARMA, SETARMA, ADAR and BL models are fitted to the data. Results obtained indicated that ADAR and BL models are superior for one-step ahead forecasts, while SETARMA models are better for forecasts of longer lead times. In general, the SETARMA, ADAR and BL models show promise as alternative models for river DO time series modeling and forecasting with unique advantages in each.

  8. Recent advances in estimating nonlinear models with applications in economics and finance

    CERN Document Server

    Ma, Jun

    2013-01-01

    Featuring current research in economics, finance and management, this book surveys nonlinear estimation techniques and offers new methods and insights into nonlinear time series analysis. Covers Markov Switching Models for analyzing economics series and more.

  9. Adaptive Fuzzy Bounded Control for Consensus of Multiple Strict-Feedback Nonlinear Systems.

    Science.gov (United States)

    Wang, Wei; Tong, Shaocheng

    2017-01-10

    This paper studies the adaptive fuzzy bounded control problem for leader-follower multiagent systems, where each follower is modeled by the uncertain nonlinear strict-feedback system. Combining the fuzzy approximation with the dynamic surface control, an adaptive fuzzy control scheme is developed to guarantee the output consensus of all agents under directed communication topologies. Different from the existing results, the bounds of the control inputs are known as a priori, and they can be determined by the feedback control gains. To realize smooth and fast learning, a predictor is introduced to estimate each error surface, and the corresponding predictor error is employed to learn the optimal fuzzy parameter vector. It is proved that the developed adaptive fuzzy control scheme guarantees the uniformly ultimate boundedness of the closed-loop systems, and the tracking error converges to a small neighborhood of the origin. The simulation results and comparisons are provided to show the validity of the control strategy presented in this paper.

  10. Finite Element Modeling and Analysis of Nonlinear Impact and Frictional Motion Responses Including Fluid—Structure Coupling Effects

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    1997-01-01

    Full Text Available A nonlinear three dimensional (3D single rack model and a nonlinear 3D whole pool multi-rack model are developed for the spent fuel storage racks of a nuclear power plant (NPP to determine impacts and frictional motion responses when subjected to 3D excitations from the supporting building floor. The submerged free standing rack system and surrounding water are coupled due to hydrodynamic fluid-structure interaction (FSI using potential theory. The models developed have features that allow consideration of geometric and material nonlinearities including (1 the impacts of fuel assemblies to rack cells, a rack to adjacent racks or pool walls, and rack support legs to the pool floor; (2 the hydrodynamic coupling of fuel assemblies with their storing racks, and of a rack with adjacent racks, pool walls, and the pool floor; and (3 the dynamic motion behavior of rocking, twisting, and frictional sliding of rack modules. Using these models 3D nonlinear time history dynamic analyses are performed per the U.S. Nuclear Regulatory Commission (USNRC criteria. Since few such modeling, analyses, and results using both the 3D single and whole pool multiple rack models are available in the literature, this paper emphasizes description of modeling and analysis techniques using the SOLVIA general purpose nonlinear finite element code. Typical response results with different Coulomb friction coefficients are presented and discussed.

  11. Distributed Containment Control for Multiple Unknown Second-Order Nonlinear Systems With Application to Networked Lagrangian Systems.

    Science.gov (United States)

    Mei, Jie; Ren, Wei; Li, Bing; Ma, Guangfu

    2015-09-01

    In this paper, we consider the distributed containment control problem for multiagent systems with unknown nonlinear dynamics. More specifically, we focus on multiple second-order nonlinear systems and networked Lagrangian systems. We first study the distributed containment control problem for multiple second-order nonlinear systems with multiple dynamic leaders in the presence of unknown nonlinearities and external disturbances under a general directed graph that characterizes the interaction among the leaders and the followers. A distributed adaptive control algorithm with an adaptive gain design based on the approximation capability of neural networks is proposed. We present a necessary and sufficient condition on the directed graph such that the containment error can be reduced as small as desired. As a byproduct, the leaderless consensus problem is solved with asymptotical convergence. Because relative velocity measurements between neighbors are generally more difficult to obtain than relative position measurements, we then propose a distributed containment control algorithm without using neighbors' velocity information. A two-step Lyapunov-based method is used to study the convergence of the closed-loop system. Next, we apply the ideas to deal with the containment control problem for networked unknown Lagrangian systems under a general directed graph. All the proposed algorithms are distributed and can be implemented using only local measurements in the absence of communication. Finally, simulation examples are provided to show the effectiveness of the proposed control algorithms.

  12. Nonlinear optical responses of multiply ionized noble gases: Dispersion and spin multiplicity effects

    Science.gov (United States)

    Tarazkar, M.; Romanov, D. A.; Levis, R. J.

    2016-07-01

    Dynamic second-order hyperpolarizabilities of atomic noble gases and their multiply ionized ions are computed using ab initio multiconfigurational self-consistent field cubic response theory. For each species, the calculations are performed at wavelengths ranging from the static regime to those about 100 nm above the first multiphoton resonance. The second-order hyperpolarizability coefficients progressively decrease as the electrons are removed from the system, in qualitative agreement with phenomenological calculations. In higher ionization states, the resulting nonlinear refractive index becomes less dispersive as a function of wavelength. At each ionization stage, the sign of the optical response depends on the number of electrons in the system and, if multiple state symmetries are possible, on the spin of the particular quantum state. Thus, for N e3 + and N e4 + , the hyperpolarizability coefficients in the low-spin states (P2u, and S1g, respectively) are positive, while in the high-spin states (S4u, and P3g) they are negative. However, for doubly, triply, and quadruply charged Ar and Kr these coefficients do not undergo a sign change.

  13. Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals

    CERN Document Server

    Okano, Masayuki; Tanaka, Akira; Subashchandran, Shanthi; Takeuchi, Shigeki; 10.1364/OE.20.013977

    2012-01-01

    We propose a novel method for generating broadband spontaneous parametric fluorescence by using a set of bulk nonlinear crystals (NLCs). We also demonstrate this scheme experimentally. Our method employs a superposition of spontaneous parametric fluorescence spectra generated using multiple bulk NLCs. A typical bandwidth of 160 nm (73 THz) with a degenerate wavelength of 808 nm was achieved using two beta-barium-borate (BBO) crystals, whereas a typical bandwidth of 75 nm (34 THz) was realized using a single BBO crystal. We also observed coincidence counts of generated photon pairs in a non-collinear configuration. The bandwidth could be further broadened by increasing the number of NLCs. Our demonstration suggests that a set of four BBO crystals could realize a bandwidth of approximately 215 nm (100 THz).We also discuss the stability of Hong-Ou-Mandel two-photon interference between the parametric fluorescence generated by this scheme. Our simple scheme is easy to implement with conventional NLCs and does not...

  14. Generation of broadband spontaneous parametric fluorescence using multiple bulk nonlinear crystals.

    Science.gov (United States)

    Okano, Masayuki; Okamoto, Ryo; Tanaka, Akira; Subashchandran, Shanthi; Takeuchi, Shigeki

    2012-06-18

    We propose a novel method for generating broadband spontaneous parametric fluorescence by using a set of bulk nonlinear crystals (NLCs). We also demonstrate this scheme experimentally. Our method employs a superposition of spontaneous parametric fluorescence spectra generated using multiple bulk NLCs. A typical bandwidth of 160 nm (73 THz) with a degenerate wavelength of 808 nm was achieved using two β-barium-borate (BBO) crystals, whereas a typical bandwidth of 75 nm (34 THz) was realized using a single BBO crystal. We also observed coincidence counts of generated photon pairs in a non-collinear configuration. The bandwidth could be further broadened by increasing the number of NLCs. Our demonstration suggests that a set of four BBO crystals could realize a bandwidth of approximately 215 nm (100 THz). We also discuss the stability of Hong-Ou-Mandel two-photon interference between the parametric fluorescence generated by this scheme. Our simple scheme is easy to implement with conventional NLCs and does not require special devices.

  15. Multiplicative earthquake likelihood models incorporating strain rates

    Science.gov (United States)

    Rhoades, D. A.; Christophersen, A.; Gerstenberger, M. C.

    2017-01-01

    SUMMARYWe examine the potential for strain-rate variables to improve long-term earthquake likelihood models. We derive a set of multiplicative hybrid earthquake likelihood models in which cell rates in a spatially uniform baseline model are scaled using combinations of covariates derived from earthquake catalogue data, fault data, and strain-rates for the New Zealand region. Three components of the strain rate estimated from GPS data over the period 1991-2011 are considered: the shear, rotational and dilatational strain rates. The hybrid model parameters are optimised for earthquakes of M 5 and greater over the period 1987-2006 and tested on earthquakes from the period 2012-2015, which is independent of the strain rate estimates. The shear strain rate is overall the most informative individual covariate, as indicated by Molchan error diagrams as well as multiplicative modelling. Most models including strain rates are significantly more informative than the best models excluding strain rates in both the fitting and testing period. A hybrid that combines the shear and dilatational strain rates with a smoothed seismicity covariate is the most informative model in the fitting period, and a simpler model without the dilatational strain rate is the most informative in the testing period. These results have implications for probabilistic seismic hazard analysis and can be used to improve the background model component of medium-term and short-term earthquake forecasting models.

  16. On Models of Nonlinear Evolution Paths in Adiabatic Quantum Algorithms

    Institute of Scientific and Technical Information of China (English)

    SUN Jie; LU Song-Feng; Samuel L.Braunstein

    2013-01-01

    In this paper,we study two different nonlinear interpolating paths in adiabatic evolution algorithms for solving a particular class of quantum search problems where both the initial and final Hamiltonian are one-dimensional projector Hamiltonians on the corresponding ground state.If the overlap between the initial state and final state of the quantum system is not equal to zero,both of these models can provide a constant time speedup over the usual adiabatic algorithms by increasing some another corresponding "complexity".But when the initial state has a zero overlap with the solution state in the problem,the second model leads to an infinite time complexity of the algorithm for whatever interpolating functions being applied while the first one can still provide a constant running time.However,inspired by a related reference,a variant of the first model can be constructed which also fails for the problem when the overlap is exactly equal to zero if we want to make up the "intrinsic" fault of the second model — an increase in energy.Two concrete theorems are given to serve as explanations why neither of these two models can improve the usual adiabatic evolution algorithms for the phenomenon above.These just tell us what should be noted when using certain nonlinear evolution paths in adiabatic quantum algorithms for some special kind of problems.

  17. A nonlinear inversion for the velocity background and perturbation models

    KAUST Repository

    Wu, Zedong

    2015-08-19

    Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI) by inverting for the single scattered wavefield obtained using an image. However, current RWI methods usually neglect diving waves, which is an important source of information for extracting the long wavelength components of the velocity model. Thus, we propose a new optimization problem through breaking the velocity model into the background and the perturbation in the wave equation directly. In this case, the perturbed model is no longer the single scattering model, but includes all scattering. We optimize both components simultaneously, and thus, the objective function is nonlinear with respect to both the background and perturbation. The new introduced w can absorb the non-smooth update of background naturally. Application to the Marmousi model with frequencies that start at 5 Hz shows that this method can converge to the accurate velocity starting from a linearly increasing initial velocity. Application to the SEG2014 demonstrates the versatility of the approach.

  18. Method of Multiple Scales and Travelling Wave Solutions for (2+1)-Dimensional KdV Type Nonlinear Evolution Equations

    Science.gov (United States)

    Ayhan, Burcu; Özer, M. Naci; Bekir, Ahmet

    2016-08-01

    In this article, we applied the method of multiple scales for Korteweg-de Vries (KdV) type equations and we derived nonlinear Schrödinger (NLS) type equations. So we get a relation between KdV type equations and NLS type equations. In addition, exact solutions were found for KdV type equations. The ( G'} over G )-expansion methods and the ( {G'} over G, {1 over G}} )-expansion methods were proposed to establish new exact solutions for KdV type differential equations. We obtained periodic and hyperbolic function solutions for these equations. These methods are very effective for getting travelling wave solutions of nonlinear evolution equations (NEEs).

  19. A nonlinear model of gold production in Malaysia

    Science.gov (United States)

    Ramli, Norashikin; Muda, Nora; Umor, Mohd Rozi

    2014-06-01

    Malaysia is a country which is rich in natural resources and one of it is a gold. Gold has already become an important national commodity. This study is conducted to determine a model that can be well fitted with the gold production in Malaysia from the year 1995-2010. Five nonlinear models are presented in this study which are Logistic model, Gompertz, Richard, Weibull and Chapman-Richard model. These model are used to fit the cumulative gold production in Malaysia. The best model is then selected based on the model performance. The performance of the fitted model is measured by sum squares error, root mean squares error, coefficient of determination, mean relative error, mean absolute error and mean absolute percentage error. This study has found that a Weibull model is shown to have significantly outperform compare to the other models. To confirm that Weibull is the best model, the latest data are fitted to the model. Once again, Weibull model gives the lowest readings at all types of measurement error. We can concluded that the future gold production in Malaysia can be predicted according to the Weibull model and this could be important findings for Malaysia to plan their economic activities.

  20. Validation of a Hertzian contact model with nonlinear damping

    Science.gov (United States)

    Sierakowski, Adam

    2015-11-01

    Due to limited spatial resolution, most disperse particle simulation methods rely on simplified models for incorporating short-range particle interactions. In this presentation, we introduce a contact model that combines the Hertz elastic restoring force with a nonlinear damping force, requiring only material properties and no tunable parameters. We have implemented the model in a resolved-particle flow solver that implements the Physalis method, which accurately captures hydrodynamic interactions by analytically enforcing the no-slip condition on the particle surface. We summarize the results of a few numerical studies that suggest the validity of the contact model over a range of particle interaction intensities (i.e., collision Stokes numbers) when compared with experimental data. This work was supported by the National Science Foundation under Grant Number CBET1335965 and the Johns Hopkins University Modeling Complex Systems IGERT program.

  1. Nonlinear oscillations in a muscle pacemaker cell model

    Science.gov (United States)

    González-Miranda, J. M.

    2017-02-01

    This article presents a numerical simulation study of the nonlinear oscillations displayed by the Morris-Lecar model [Biophys. J. 35 (1981) 193] for the oscillations experimentally observed in the transmembrane potential of a muscle fiber subject to an external electrical stimulus. We consider the model in the case when there is no external stimulation, aiming to establish the ability of the model to display biophysically reasonable pacemaker dynamics. We obtain 2D bifurcation diagrams showing that indeed the model presents oscillatory dynamics, displaying the two main types of action potentials that are observed in muscle fibers. The results obtained are shown to be structurally stable; that is, robust against changes in the values of system parameters. Moreover, it is demonstrated how the model is appropriate to analyze the action potentials observed in terms of the transmembrane currents creating them.

  2. Discrete choice models with multiplicative error terms

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Bierlaire, Michel

    2009-01-01

    differences. We develop some properties of this type of model and show that in several cases the change from an additive to a multiplicative formulation, maintaining a specification of V, may lead to a large improvement in fit, sometimes larger than that gained from introducing random coefficients in V....

  3. Digital simulation and modeling of nonlinear stochastic systems

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J M; Rowland, J R

    1981-04-01

    Digitally generated solutions of nonlinear stochastic systems are not unique but depend critically on the numerical integration algorithm used. Some theoretical and practical implications of this dependence are examined. The Ito-Stratonovich controversy concerning the solution of nonlinear stochastic systems is shown to be more than a theoretical debate on maintaining Markov properties as opposed to utilizing the computational rules of ordinary calculus. The theoretical arguments give rise to practical considerations in the formation and solution of discrete models from continuous stochastic systems. Well-known numerical integration algorithms are shown not only to provide different solutions for the same stochastic system but also to correspond to different stochastic integral definitions. These correspondences are proved by considering first and second moments of solutions that result from different integration algorithms and then comparing the moments to those arising from various stochastic integral definitions. This algorithm-dependence of solutions is in sharp contrast to the deterministic and linear stochastic cases in which unique solutions are determined by any convergent numerical algorithm. Consequences of the relationship between stochastic system solutions and simulation procedures are presented for a nonlinear filtering example. Monte Carlo simulations and statistical tests are applied to the example to illustrate the determining role which computational procedures play in generating solutions.

  4. Digital simulation and modeling of nonlinear stochastic systems

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J M; Rowland, J R

    1980-01-01

    Digitally generated solutions of nonlinear stochastic systems are not unique, but depend critically on the numerical integration algorithm used. Some theoretical and practical implications of this dependence are examined. The Ito-Stratonovich controversy concerning the solution of nonlinear stochastic systems is shown to be more than a theoretical debate on maintaining Markov properties as opposed to utilizing the computational rules of ordinary calculus. The theoretical arguments give rise to practical considerations in the formation and solution of discrete models from continuous stochastic systems. Well-known numerical integration algorithms are shown not only to provide different solutions for the same stochastic system, but also to correspond to different stochastic integral definitions. These correspondences are proved by considering first and second moments of solutions resulting from different integration algorithms and comparing the moments to those arising from various stochastic integral definitions. Monte Carlo simulations and statistical tests are applied to illustrate the determining role that computational procedures play in generating solutions. This algorithm dependence of solutions is in sharp contrast to the deterministic and linear stochastic cases, in which unique solutions are determined by any convergent numerical algorithm. Consequences of this relationship between stochastic system solutions and simulation procedures are presented for a nonlinear filtering example. 2 figures.

  5. Multivariate t nonlinear mixed-effects models for multi-outcome longitudinal data with missing values.

    Science.gov (United States)

    Wang, Wan-Lun; Lin, Tsung-I

    2014-07-30

    The multivariate nonlinear mixed-effects model (MNLMM) has emerged as an effective tool for modeling multi-outcome longitudinal data following nonlinear growth patterns. In the framework of MNLMM, the random effects and within-subject errors are assumed to be normally distributed for mathematical tractability and computational simplicity. However, a serious departure from normality may cause lack of robustness and subsequently make invalid inference. This paper presents a robust extension of the MNLMM by considering a joint multivariate t distribution for the random effects and within-subject errors, called the multivariate t nonlinear mixed-effects model. Moreover, a damped exponential correlation structure is employed to capture the extra serial correlation among irregularly observed multiple repeated measures. An efficient expectation conditional maximization algorithm coupled with the first-order Taylor approximation is developed for maximizing the complete pseudo-data likelihood function. The techniques for the estimation of random effects, imputation of missing responses and identification of potential outliers are also investigated. The methodology is motivated by a real data example on 161 pregnant women coming from a study in a private fertilization obstetrics clinic in Santiago, Chile and used to analyze these data.

  6. Proximate analysis based multiple regression models for higher heating value estimation of low rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Akkaya, Ali Volkan [Department of Mechanical Engineering, Yildiz Technical University, 34349 Besiktas, Istanbul (Turkey)

    2009-02-15

    In this paper, multiple nonlinear regression models for estimation of higher heating value of coals are developed using proximate analysis data obtained generally from the low rank coal samples as-received basis. In this modeling study, three main model structures depended on the number of proximate analysis parameters, which are named the independent variables, such as moisture, ash, volatile matter and fixed carbon, are firstly categorized. Secondly, sub-model structures with different arrangements of the independent variables are considered. Each sub-model structure is analyzed with a number of model equations in order to find the best fitting model using multiple nonlinear regression method. Based on the results of nonlinear regression analysis, the best model for each sub-structure is determined. Among them, the models giving highest correlation for three main structures are selected. Although the selected all three models predicts HHV rather accurately, the model involving four independent variables provides the most accurate estimation of HHV. Additionally, when the chosen model with four independent variables and a literature model are tested with extra proximate analysis data, it is seen that that the developed model in this study can give more accurate prediction of HHV of coals. It can be concluded that the developed model is effective tool for HHV estimation of low rank coals. (author)

  7. Computational models of signalling networks for non-linear control.

    Science.gov (United States)

    Fuente, Luis A; Lones, Michael A; Turner, Alexander P; Stepney, Susan; Caves, Leo S; Tyrrell, Andy M

    2013-05-01

    Artificial signalling networks (ASNs) are a computational approach inspired by the signalling processes inside cells that decode outside environmental information. Using evolutionary algorithms to induce complex behaviours, we show how chaotic dynamics in a conservative dynamical system can be controlled. Such dynamics are of particular interest as they mimic the inherent complexity of non-linear physical systems in the real world. Considering the main biological interpretations of cellular signalling, in which complex behaviours and robust cellular responses emerge from the interaction of multiple pathways, we introduce two ASN representations: a stand-alone ASN and a coupled ASN. In particular we note how sophisticated cellular communication mechanisms can lead to effective controllers, where complicated problems can be divided into smaller and independent tasks.

  8. Reduced nonlinear prognostic model construction from high-dimensional data

    Science.gov (United States)

    Gavrilov, Andrey; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander

    2017-04-01

    Construction of a data-driven model of evolution operator using universal approximating functions can only be statistically justified when the dimension of its phase space is small enough, especially in the case of short time series. At the same time in many applications real-measured data is high-dimensional, e.g. it is space-distributed and multivariate in climate science. Therefore it is necessary to use efficient dimensionality reduction methods which are also able to capture key dynamical properties of the system from observed data. To address this problem we present a Bayesian approach to an evolution operator construction which incorporates two key reduction steps. First, the data is decomposed into a set of certain empirical modes, such as standard empirical orthogonal functions or recently suggested nonlinear dynamical modes (NDMs) [1], and the reduced space of corresponding principal components (PCs) is obtained. Then, the model of evolution operator for PCs is constructed which maps a number of states in the past to the current state. The second step is to reduce this time-extended space in the past using appropriate decomposition methods. Such a reduction allows us to capture only the most significant spatio-temporal couplings. The functional form of the evolution operator includes separately linear, nonlinear (based on artificial neural networks) and stochastic terms. Explicit separation of the linear term from the nonlinear one allows us to more easily interpret degree of nonlinearity as well as to deal better with smooth PCs which can naturally occur in the decompositions like NDM, as they provide a time scale separation. Results of application of the proposed method to climate data are demonstrated and discussed. The study is supported by Government of Russian Federation (agreement #14.Z50.31.0033 with the Institute of Applied Physics of RAS). 1. Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical

  9. Nonlinear structure formation in the Cubic Galileon gravity model

    CERN Document Server

    Barreira, Alexandre; Hellwing, Wojciech A; Baugh, Carlton M; Pascoli, Silvia

    2013-01-01

    We model the linear and nonlinear growth of large scale structure in the Cubic Galileon gravity model, by running a suite of N-body cosmological simulations using the {\\tt ECOSMOG} code. Our simulations include the Vainshtein screening effect, which reconciles the Cubic Galileon model with local tests of gravity. In the linear regime, the amplitude of the matter power spectrum increases by $\\sim 25%$ with respect to the standard $\\Lambda$CDM model today. The modified expansion rate accounts for $\\sim 20%$ of this enhancement, while the fifth force is responsible for only $\\sim 5%$. This is because the effective unscreened gravitational strength deviates from standard gravity only at late times, even though it can be twice as large today. In the nonlinear regime ($k \\gtrsim 0.1 h\\rm{Mpc}^{-1}$), the fifth force leads to only a modest increase ($\\lesssim 8%$) in the clustering power on all scales due to the very efficient operation of the Vainshtein mechanism. Such a strong effect is typically not seen in other...

  10. On the Identifiability of the Post-Nonlinear Causal Model

    CERN Document Server

    Zhang, Kun

    2012-01-01

    By taking into account the nonlinear effect of the cause, the inner noise effect, and the measurement distortion effect in the observed variables, the post-nonlinear (PNL) causal model has demonstrated its excellent performance in distinguishing the cause from effect. However, its identifiability has not been properly addressed, and how to apply it in the case of more than two variables is also a problem. In this paper, we conduct a systematic investigation on its identifiability in the two-variable case. We show that this model is identifiable in most cases; by enumerating all possible situations in which the model is not identifiable, we provide sufficient conditions for its identifiability. Simulations are given to support the theoretical results. Moreover, in the case of more than two variables, we show that the whole causal structure can be found by applying the PNL causal model to each structure in the Markov equivalent class and testing if the disturbance is independent of the direct causes for each va...

  11. Chaotic Inflation from Nonlinear Sigma Models in Supergravity

    CERN Document Server

    Hellerman, Simeon; Yanagida, Tsutomu T

    2014-01-01

    We present a common solution to the puzzles of the light Higgs or quark masses and the need for a shift symmetry and large field values in high scale chaotic inflation. One way to protect, for example, the Higgs from a large supersymmetric mass term is if it is the Nambu-Goldstone boson (NGB) of a nonlinear sigma model. However, it is well known that nonlinear sigma models (NLSMs) with nontrivial K\\"ahler transformations are problematic to couple to supergravity. An additional field is necessary to make the K\\"ahler potential of the NLSM invariant in supergravity. This field must have a shift symmetry --- making it a candidate for the inflaton (or axion). We give an explicit example of such a model for the coset space $SU(3)/SU(2) \\times U(1)$, with the Higgs as the NGB, including breaking the inflaton's shift symmetry and producing a chaotic inflation potential. This construction can also be applied to other models, such as one based on $E_7/SO(10) \\times U(1) \\times U(1)$ which incorporates the first two ge...

  12. Models of the delayed nonlinear Raman response in diatomic gases

    Science.gov (United States)

    Palastro, J. P.; Antonsen, T. M., Jr.; Pearson, A.

    2011-07-01

    We examine the delayed response of a diatomic gas to a polarizing laser field with the goal of obtaining computationally efficient methods for use with laser pulse propagation simulations. We demonstrate that for broadband pulses, heavy molecules such as O2 and N2, and typical atmospheric temperatures, the initial delayed response requires only classical physics. The linear kinetic Green's function is derived from the Boltzmann equation and shown to be in excellent agreement with full density-matrix calculations. A straightforward perturbation approach for the fully nonlinear, kinetic impulse response is also presented. With the kinetic theory a reduced fluid model of the diatomic gas’ orientation is derived. Transport coefficients are introduced to model the kinetic phase mixing of the delayed response. In addition to computational rapidity, the fluid model provides intuition through the use of familiar macroscopic quantities. Both the kinetic and the fluid descriptions predict a nonlinear steady-state alignment after passage of the laser pulse, which in the fluid model is interpreted as an anisotropic temperature of the diatomic fluid with respect to motion about the polarization axis.

  13. Multiple models adaptive feedforward decoupling controller

    Institute of Scientific and Technical Information of China (English)

    Wang Xin; Li Shaoyuan; Wang Zhongjie

    2005-01-01

    When the parameters of the system change abruptly, a new multivariable adaptive feedforward decoupling controller using multiple models is presented to improve the transient response. The system models are composed of multiple fixed models, one free-running adaptive model and one re-initialized adaptive model. The fixed models are used to provide initial control to the process. The re-initialized adaptive model can be reinitialized as the selected model to improve the adaptation speed. The free-running adaptive controller is added to guarantee the overall system stability. At each instant, the best system model is selected according to the switching index and the corresponding controller is designed. During the controller design, the interaction is viewed as the measurable disturbance and eliminated by the choice of the weighting polynomial matrix. It not only eliminates the steady-state error but also decouples the system dynamically. The global convergence is obtained and several simulation examples are presented to illustrate the effectiveness of the proposed controller.

  14. Nonlinear Sigma Models with Compact Hyperbolic Target Spaces

    CERN Document Server

    Gubser, Steven; Schoenholz, Samuel S; Stoica, Bogdan; Stokes, James

    2015-01-01

    We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the $O(2)$ model. Unlike in the $O(2)$ case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggest...

  15. Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites

    Science.gov (United States)

    Turner, Travis L.

    2004-01-01

    A constitutive mathematical model has been developed that predicts the nonlinear thermomechanical behaviors of shape-memory-alloys (SMAs) and of shape-memory-alloy hybrid composite (SMAHC) structures, which are composite-material structures that contain embedded SMA actuators. SMAHC structures have been investigated for their potential utility in a variety of applications in which there are requirements for static or dynamic control of the shapes of structures, control of the thermoelastic responses of structures, or control of noise and vibrations. The present model overcomes deficiencies of prior, overly simplistic or qualitative models that have proven ineffective or intractable for engineering of SMAHC structures. The model is sophisticated enough to capture the essential features of the mechanics of SMAHC structures yet simple enough to accommodate input from fundamental engineering measurements and is in a form that is amenable to implementation in general-purpose structural analysis environments.

  16. Modelling of nonlinear shoaling based on stochastic evolution equations

    DEFF Research Database (Denmark)

    Kofoed-Hansen, Henrik; Rasmussen, Jørgen Hvenekær

    1998-01-01

    A one-dimensional stochastic model is derived to simulate the transformation of wave spectra in shallow water including generation of bound sub- and super-harmonics, near-resonant triad wave interaction and wave breaking. Boussinesq type equations with improved linear dispersion characteristics...... are recast into evolution equations for the complex amplitudes, and serve as the underlying deterministic model. Next, a set of evolution equations for the cumulants is derived. By formally introducing the well-known Gaussian closure hypothesis, nonlinear evolution equations for the power spectrum...... and bispectrum are derived. A simple description of depth-induced wave breaking is incorporated in the model equations, assuming that the total rate of dissipation may be distributed in proportion to the spectral energy density on each discrete frequency. The proposed phase-averaged model is compared...

  17. Improved Methodology for Parameter Inference in Nonlinear, Hydrologic Regression Models

    Science.gov (United States)

    Bates, Bryson C.

    1992-01-01

    A new method is developed for the construction of reliable marginal confidence intervals and joint confidence regions for the parameters of nonlinear, hydrologic regression models. A parameter power transformation is combined with measures of the asymptotic bias and asymptotic skewness of maximum likelihood estimators to determine the transformation constants which cause the bias or skewness to vanish. These optimized constants are used to construct confidence intervals and regions for the transformed model parameters using linear regression theory. The resulting confidence intervals and regions can be easily mapped into the original parameter space to give close approximations to likelihood method confidence intervals and regions for the model parameters. Unlike many other approaches to parameter transformation, the procedure does not use a grid search to find the optimal transformation constants. An example involving the fitting of the Michaelis-Menten model to velocity-discharge data from an Australian gauging station is used to illustrate the usefulness of the methodology.

  18. Nonlinear elastic model for compacted clay concrete interface

    Institute of Scientific and Technical Information of China (English)

    R. R. SHAKIR; Jungao ZHU

    2009-01-01

    In this paper, a nonlinear elastic model was developed to simulate the behavior of compacted clay concrete interface (CCCI) based on the principle of transition mechanism failure (TMF). A number of simple shear tests were conducted on CCCI to demonstrate different failure mechanisms; i.e., sliding failure and deformation failure. The clay soil used in the test was collected from the "Shuang Jang Kou" earth rockfill dam project. It was found that the behavior of the interface depends on the critical water contents by which two failure mechanisms can be recognized. Mathematical relations were proposed between the shear at failure and water content in addition to the transition mechanism indicator.The mathematical relations were then incorporated into the interface model. The performance of the model is verified with the experimental results. The verification shows that the proposed model is capable of predicting the interface shear stress versus the total shear displacement very well.

  19. Realistic face modeling based on multiple deformations

    Institute of Scientific and Technical Information of China (English)

    GONG Xun; WANG Guo-yin

    2007-01-01

    On the basis of the assumption that the human face belongs to a linear class, a multiple-deformation model is proposed to recover face shape from a few points on a single 2D image. Compared to the conventional methods, this study has the following advantages. First, the proposed modified 3D sparse deforming model is a noniterative approach that can compute global translation efficiently and accurately. Subsequently, the overfitting problem can be alleviated based on the proposed multiple deformation model. Finally, by keeping the main features, the texture generated is realistic. The comparison results show that this novel method outperforms the existing methods by using ground truth data and that realistic 3D faces can be recovered efficiently from a single photograph.

  20. Non-linear DSGE Models and The Optimized Particle Filter

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper improves the accuracy and speed of particle filtering for non-linear DSGE models with potentially non-normal shocks. This is done by introducing a new proposal distribution which i) incorporates information from new observables and ii) has a small optimization step that minimizes...... the distance to the optimal proposal distribution. A particle filter with this proposal distribution is shown to deliver a high level of accuracy even with relatively few particles, and this filter is therefore much more efficient than the standard particle filter....

  1. Dynamics in a nonlinear Keynesian good market model

    Energy Technology Data Exchange (ETDEWEB)

    Naimzada, Ahmad, E-mail: ahmad.naimzada@unimib.it [Department of Economics, Quantitative Methods and Management, University of Milano-Bicocca, U7 Building, Via Bicocca degli Arcimboldi 8, 20126 Milano (Italy); Pireddu, Marina, E-mail: marina.pireddu@unimib.it [Department of Mathematics and Applications, University of Milano-Bicocca, U5 Building, Via Cozzi 55, 20125 Milano (Italy)

    2014-03-15

    In this paper, we show how a rich variety of dynamical behaviors can emerge in the standard Keynesian income-expenditure model when a nonlinearity is introduced, both in the cases with and without endogenous government spending. A specific sigmoidal functional form is used for the adjustment mechanism of income with respect to the excess demand, in order to bound the income variation. With the aid of analytical and numerical tools, we investigate the stability conditions, bifurcations, as well as periodic and chaotic dynamics. Globally, we study multistability phenomena, i.e., the coexistence of different kinds of attractors.

  2. Nonzero solutions of nonlinear integral equations modeling infectious disease

    Energy Technology Data Exchange (ETDEWEB)

    Williams, L.R. (Indiana Univ., South Bend); Leggett, R.W.

    1982-01-01

    Sufficient conditions to insure the existence of periodic solutions to the nonlinear integral equation, x(t) = ..integral../sup t//sub t-tau/f(s,x(s))ds, are given in terms of simple product and product integral inequalities. The equation can be interpreted as a model for the spread of infectious diseases (e.g., gonorrhea or any of the rhinovirus viruses) if x(t) is the proportion of infectives at time t and f(t,x(t)) is the proportion of new infectives per unit time.

  3. A Nonlinear k-ε Turbulence Model Applicable to High Pressure Gradient and Large Curvature Flow

    Directory of Open Access Journals (Sweden)

    Xiyao Gu

    2014-01-01

    Full Text Available Most of the RANS turbulence models solve the Reynolds stress by linear hypothesis with isotropic model. They can not capture all kinds of vortexes in the turbomachineries. In this paper, an improved nonlinear k-ε turbulence model is proposed, which is modified from the RNG k-ε turbulence model and Wilcox's k-ω turbulence model. The Reynolds stresses are solved by nonlinear methods. The nonlinear k-ε turbulence model can calculate the near wall region without the use of wall functions. The improved nonlinear k-ε turbulence model is used to simulate the flow field in a curved rectangular duct. The results based on the improved nonlinear k-ε turbulence model agree well with the experimental results. The calculation results prove that the nonlinear k-ε turbulence model is available for high pressure gradient flows and large curvature flows, and it can be used to capture complex vortexes in a turbomachinery.

  4. Model for Dynamic Multiple of CPPI Strategy

    Directory of Open Access Journals (Sweden)

    Guangyuan Xing

    2014-01-01

    Full Text Available Focusing on the parameter “Multiple” of CPPI strategy, this study proposes a dynamic setting model of multiple for gap risk management purpose. First, CPPI gap risk is measured as the probability that the value loss of active asset exceeds its allowed maximum drop determined by a given multiple setting. Moreover, according to the statistical estimation using SV-EVT approach, a dynamic choice of multiple is detailed as a function of time-varying asset volatility, expected loss, and the possibility of occurrence of extreme events in the active asset returns illustrated empirically on Shanghai composite index data. This study not only enriches the literature of dynamic proportion portfolio insurance, but also provides a practical reference for CPPI investors to choose a moderate risky exposure achieving gap risk management, which promotes CPPI’s application in emerging capital market.

  5. PRINCIPAL COMPONENT DECOMPOSITION BASED FINITE ELEMENT MODEL UPDATING FOR STRAIN-RATE-DEPENDENCE NONLINEAR DYNAMIC PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    GUO Qintao; ZHANG Lingmi; TAO Zheng

    2008-01-01

    Thin wall component is utilized to absorb impact energy of a structure. However, the dynamic behavior of such thin-walled structure is highly non-linear with material, geometry and boundary non-linearity. A model updating and validation procedure is proposed to build accurate finite element model of a frame structure with a non-linear thin-walled component for dynamic analysis. Design of experiments (DOE) and principal component decomposition (PCD) approach are applied to extract dynamic feature from nonlinear impact response for correlation of impact test result and FE model of the non-linear structure. A strain-rate-dependent non-linear model updating method is then developed to build accurate FE model of the structure. Computer simulation and a real frame structure with a highly non-linear thin-walled component are employed to demonstrate the feasibility and effectiveness of the proposed approach.

  6. Empirical intrinsic geometry for nonlinear modeling and time series filtering.

    Science.gov (United States)

    Talmon, Ronen; Coifman, Ronald R

    2013-07-30

    In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.

  7. On concurvity in nonlinear and nonparametric regression models

    Directory of Open Access Journals (Sweden)

    Sonia Amodio

    2014-12-01

    Full Text Available When data are affected by multicollinearity in the linear regression framework, then concurvity will be present in fitting a generalized additive model (GAM. The term concurvity describes nonlinear dependencies among the predictor variables. As collinearity results in inflated variance of the estimated regression coefficients in the linear regression model, the result of the presence of concurvity leads to instability of the estimated coefficients in GAMs. Even if the backfitting algorithm will always converge to a solution, in case of concurvity the final solution of the backfitting procedure in fitting a GAM is influenced by the starting functions. While exact concurvity is highly unlikely, approximate concurvity, the analogue of multicollinearity, is of practical concern as it can lead to upwardly biased estimates of the parameters and to underestimation of their standard errors, increasing the risk of committing type I error. We compare the existing approaches to detect concurvity, pointing out their advantages and drawbacks, using simulated and real data sets. As a result, this paper will provide a general criterion to detect concurvity in nonlinear and non parametric regression models.

  8. 2-D Composite Model for Numerical Simulations of Nonlinear Waves

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    - A composite model, which is the combination of Boussinesq equations and Volume of Fluid (VOF) method, has been developed for 2-D time-domain computations of nonlinear waves in a large region. The whole computational region Ω is divided into two subregions. In the near-field around a structure, Ω2, the flow is governed by 2-D Reynolds Averaged Navier-Stokes equations with a turbulence closure model of k-ε equations and numerically solved by the improved VOF method; whereas in the subregion Ω1 (Ω1 = Ω - Ω2) the flow is governed by one-D Boussinesq equations and numerically solved with the predictor-corrector algorithm. The velocity and the wave surface elevation are matched on the common boundary of the two subregions. Numerical tests have been conducted for the case of wave propagation and interaction with a wave barrier. It is shown that the composite model can help perform efficient computation of nonlinear waves in a large region with the complicated flow fields near structures taken into account.

  9. Non-linear Model Predictive Control for cooling strings of superconducting magnets using superfluid helium

    CERN Document Server

    AUTHOR|(SzGeCERN)673023; Blanco Viñuela, Enrique

    In each of eight arcs of the 27 km circumference Large Hadron Collider (LHC), 2.5 km long strings of super-conducting magnets are cooled with superfluid Helium II at 1.9 K. The temperature stabilisation is a challenging control problem due to complex non-linear dynamics of the magnets temperature and presence of multiple operational constraints. Strong nonlinearities and variable dead-times of the dynamics originate at strongly heat-flux dependent effective heat conductivity of superfluid that varies three orders of magnitude over the range of possible operational conditions. In order to improve the temperature stabilisation, a proof of concept on-line economic output-feedback Non-linear Model Predictive Controller (NMPC) is presented in this thesis. The controller is based on a novel complex first-principles distributed parameters numerical model of the temperature dynamics over a 214 m long sub-sector of the LHC that is characterized by very low computational cost of simulation needed in real-time optimizat...

  10. Multiple-μJ mid-IR supercontinuum generation in quadratic nonlinear crystals

    DEFF Research Database (Denmark)

    Bache, Morten; Zhou, Binbin; Ashihara, S.

    2016-01-01

    Pumping a quadratic nonlinear crystal in the mid-IR we observe octave-spanning mid-IR supercontinua. A self-acting cascaded process leads to the formation of a self-defocusing nonlinearity, allowing formation of filament-free octave-spanning supercontinua in the 2.0–7.0 μm range with 10s of μ...

  11. Study of optical non-linear properties of a constant total effective length multiple quantum wells system

    Energy Technology Data Exchange (ETDEWEB)

    Solaimani, M.; Morteza, Izadifard [Faculty of Physics, Shahrood University of technology, Shahrood (Iran, Islamic Republic of); Arabshahi, H., E-mail: arabshahi@um.ac.ir [Department of Physics, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Physics Department, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of); Reza, Sarkardehi Mohammad [Physics Department, Al-Zahra University, Vanak, Tehran (Iran, Islamic Republic of)

    2013-02-15

    In this work, we have studied the effect of the number of the wells, in a multiple quantum wells structure with constant total effective length, on the optical properties of multiple quantum wells like the absorption coefficient and the refractive index by means of compact density matrix approach. GaAs/Al{sub x}Ga{sub (1-x)}As multiple quantum wells systems was selected as an example. Besides, the effect of varying number of wells on the subband energies, wave functions, number of bound states, and the Fermi energy have been also investigated. Our calculation revealed that the number of wells in a multiple quantum well is a criterion with which we can control the amount of nonlinearity. This study showed that for the third order refractive index change there is two regimes of variations and the critical well number was six. In our calculations, we have used the same wells and barrier thicknesses to construct the multiple quantum wells system. - Highlights: Black-Right-Pointing-Pointer OptiOptical Non-Linear. Black-Right-Pointing-Pointer Total Effective Length. Black-Right-Pointing-Pointer Multiple Quantum Wells System - genetic algorithm Black-Right-Pointing-Pointer Schroedinger equation solution. Black-Right-Pointing-Pointer Nanostructure.

  12. Nonlinear turbulence models for predicting strong curvature effects

    Institute of Scientific and Technical Information of China (English)

    XU Jing-lei; MA Hui-yang; HUANG Yu-ning

    2008-01-01

    Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applicatious and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent U- duct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these inodels may be employed to simulate the turbulent curved flows in engineering applications.

  13. Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media

    DEFF Research Database (Denmark)

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin

    2013-01-01

    We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...

  14. New holographic dark energy model with non-linear interaction

    CERN Document Server

    Oliveros, A

    2014-01-01

    In this paper the cosmological evolution of a holographic dark energy model with a non-linear interaction between the dark energy and dark matter components in a FRW type flat universe is analysed. In this context, the deceleration parameter $q$ and the equation state $w_{\\Lambda}$ are obtained. We found that, as the square of the speed of sound remains positive, the model is stable under perturbations since early times; it also shows that the evolution of the matter and dark energy densities are of the same order for a long period of time, avoiding the so--called coincidence problem. We have also made the correspondence of the model with the dark energy densities and pressures for the quintessence and tachyon fields. From this correspondence we have reconstructed the potential of scalar fields and their dynamics.

  15. Nonlinear sensor fault diagnosis using mixture of probabilistic PCA models

    Science.gov (United States)

    Sharifi, Reza; Langari, Reza

    2017-02-01

    This paper presents a methodology for sensor fault diagnosis in nonlinear systems using a Mixture of Probabilistic Principal Component Analysis (MPPCA) models. This methodology separates the measurement space into several locally linear regions, each of which is associated with a Probabilistic PCA (PPCA) model. Using the transformation associated with each PPCA model, a parity relation scheme is used to construct a residual vector. Bayesian analysis of the residuals forms the basis for detection and isolation of sensor faults across the entire range of operation of the system. The resulting method is demonstrated in its application to sensor fault diagnosis of a fully instrumented HVAC system. The results show accurate detection of sensor faults under the assumption that a single sensor is faulty.

  16. Sensor Fault Tolerant Generic Model Control for Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A modified Strong Tracking Filter (STF) is used to develop a new approach to sensor fault tolerant control. Generic Model Control (GMC) is used to control the nonlinear process while the process runs normally because of its robust control performance. If a fault occurs in the sensor, a sensor bias vector is then introduced to the output equation of the process model. The sensor bias vector is estimated on-line during every control period using the STF. The estimated sensor bias vector is used to develop a fault detection mechanism to supervise the sensors. When a sensor fault occurs, the conventional GMC is switched to a fault tolerant control scheme, which is, in essence, a state estimation and output prediction based GMC. The laboratory experimental results on a three-tank system demonstrate the effectiveness of the proposed Sensor Fault Tolerant Generic Model Control (SFTGMC) approach.

  17. Nonlinear model accounting for minor hysteresis of embedded SMA actuators

    Institute of Scientific and Technical Information of China (English)

    YANG Kai; GU Chenglin

    2007-01-01

    A quantitative index martensite fraction was used to describe the phase transformation degree of shape memory alloy (SMA).On the basis of the martensite fraction,a nonlinear analysis model for major and minor hysteresis loops was developed.The model adopted two exponential equations to calculate the martensite fractions for cooling and heating,respectively.The martensite fractions were derived as the relative parameters were adjusted timely according to continuous,common initial and common limit constraints.By use of the linear relationship between the curvature of embedded SMA actuator and SMA's martensite fraction,the curvature was determined.The results of the simulations and experiments prove the validity and veracity of the model.

  18. A NONLINEAR MATHEMATICAL MODEL FOR ASTHMA: EFFECT OF ENVIRONMENTAL POLLUTION

    Directory of Open Access Journals (Sweden)

    NARESHA RAM

    2009-04-01

    Full Text Available In this paper, we explore a nonlinear mathematical model to study the spread of asthma due to inhaled pollutants from industry as well as tobacco smoke from smokers in a variable size population. The model is analyzed using stability theory of differential equations and computer simulation. It is shown that with an increase in the level of air pollutants concentration, the asthmatic (diseased population increases. It is also shown that along with pollutants present in the environment, smoking (active or passive also helps in the spread of asthma. Moreover, with the increase in the rate of interaction between susceptibles and smokers, the persistence of the spread of asthma is higher. A numerical study of the model is also performed to see the role of certain key parameters on the spread of asthma and to support the analytical results.

  19. Similar Constructive Method for Solving a nonlinearly Spherical Percolation Model

    Directory of Open Access Journals (Sweden)

    WANG Yong

    2013-01-01

    Full Text Available In the view of nonlinear spherical percolation problem of dual porosity reservoir, a mathematical model considering three types of outer boundary conditions: closed, constant pressure, infinity was established in this paper. The mathematical model was linearized by substitution of variable and became a boundary value problem of ordinary differential equation in Laplace space by Laplace transformation. It was verified that such boundary value problem with one type of outer boundary had a similar structure of solution. And a new method: Similar Constructive Method was obtained for solving such boundary value problem. By this method, solutions with similar structure in other two outer boundary conditions were obtained. The Similar Constructive Method raises efficiency of solving such percolation model.

  20. Nonlinear dynamic modeling of multicomponent batch distillation: a case study

    Directory of Open Access Journals (Sweden)

    Jiménez L.

    2002-01-01

    Full Text Available The aim of this work is to compare several of the commercial dynamic models for batch distillation available worldwide. In this context, BATCHFRAC(TM, CHEMCAD(TM BATCH, and HYSYS.Plant® software performances are compared to experimental data. The software can be used as soft sensors, playing the roll of ad-hoc observers or estimators for control objectives. Rigorous models were used as an alternative to predict the concentration profile and to specify the optimal switching time from products to slop cuts. The performance of a nonlinear model obtained using a novel identification algorithm was also studied. In addition, the strategy for continuous separation was revised with residue curve map analysis using Aspen SPLIT(TM.

  1. Estimation of Nonlinear Dynamic Panel Data Models with Individual Effects

    Directory of Open Access Journals (Sweden)

    Yi Hu

    2014-01-01

    Full Text Available This paper suggests a generalized method of moments (GMM based estimation for dynamic panel data models with individual specific fixed effects and threshold effects simultaneously. We extend Hansen’s (Hansen, 1999 original setup to models including endogenous regressors, specifically, lagged dependent variables. To address the problem of endogeneity of these nonlinear dynamic panel data models, we prove that the orthogonality conditions proposed by Arellano and Bond (1991 are valid. The threshold and slope parameters are estimated by GMM, and asymptotic distribution of the slope parameters is derived. Finite sample performance of the estimation is investigated through Monte Carlo simulations. It shows that the threshold and slope parameter can be estimated accurately and also the finite sample distribution of slope parameters is well approximated by the asymptotic distribution.

  2. Design Intelligent Model base Online Tuning Methodology for Nonlinear System

    Directory of Open Access Journals (Sweden)

    Ali Roshanzamir

    2014-04-01

    Full Text Available In various dynamic parameters systems that need to be training on-line adaptive control methodology is used. In this paper fuzzy model-base adaptive methodology is used to tune the linear Proportional Integral Derivative (PID controller. The main objectives in any systems are; stability, robust and reliability. However PID controller is used in many applications but it has many challenges to control of continuum robot. To solve these problems nonlinear adaptive methodology based on model base fuzzy logic is used. This research is used to reduce or eliminate the PID controller problems based on model reference fuzzy logic theory to control of flexible robot manipulator system and testing of the quality of process control in the simulation environment of MATLAB/SIMULINK Simulator.

  3. Modelling of an ASR countercurrent pyrolysis reactor with nonlinear kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chiarioni, A.; Reverberi, A.P.; Dovi, V.G. [Universita degli Studi di Genova (Italy). Dipartimento di Ingegneria Chimica e di Processo ' G.B. Bonino' ; El-Shaarawi, A.H. [National Water Research Institute, Burlington, Ont. (Canada)

    2003-10-01

    The main objective of this work is focused on the modelling of a steady-state reactor where an automotive shredder residue (ASR) is subject to pyrolysis. The gas and solid temperature inside the reactor and the relevant density profiles of both phases are simulated for fixed values of the geometry of the apparatus and a lumped kinetic model is adopted to take into account the high heterogeneity of the ASR material. The key elements for the simulation are the inlet solid temperature and the outlet gas temperature. The problem is modelled by a system of first-order boundary-value ordinary differential equations and it is solved by means of a relaxation technique owing to the nonlinearities contained in the chemical kinetic expression. (author)

  4. A note on nonlinear σ-models in noncommutative geometry

    Science.gov (United States)

    Lee, Hyun Ho

    2016-03-01

    We study nonlinear σ-models defined on a noncommutative torus as a two-dimensional string worldsheet. We consider (i) a two-point space, (ii) a circle, (iii) a noncommutative torus, (iv) a classical group SU(2, ℂ) as examples of space-time. Based on established results, the trivial harmonic unitaries of the noncommutative chiral model known as local minima are shown not to be global minima by comparing them to the symmetric unitaries derived from instanton solutions of the noncommutative Ising model corresponding to a two-point space. In addition, a ℤ2-action on field maps is introduced to a noncommutative torus, and its action on solutions of various Euler-Lagrange equations is described.

  5. Oscillations and multiple steady states in active membrane transport models.

    Science.gov (United States)

    Vieira, F M; Bisch, P M

    1994-01-01

    The dynamic behavior of some non-linear extensions of the six-state alternating access model for active membrane transport is investigated. We use stoichio-metric network analysis to study the stability of steady states. The bifurcation analysis has been done through standard numerical methods. For the usual six-state model we have proved that there is only one steady state, which is globally asymptotically stable. When we added an autocatalytic step we found self-oscillations. For the competition between a monomer cycle and a dimer cycle, with steps of dimer formation, we have also found self-oscillations. We have also studied models involving the formation of a complex with other molecules. The addition of two steps for formation of a complex of the monomer with another molecule does not alter either the number or the stability of steady states of the basic six-state model. The model which combines the formation of a complex with an autocatalytic step shows both self-oscillations and multiple steady states. The results lead us to conclude that oscillations could be produced by active membrane transport systems if the transport cycle contains a sufficiently large number of steps (six in the present case) and is coupled to at least one autocatalytic reaction,. Oscillations are also predicted when the monomer cycle is coupled to a dimer cycle. In fact, the autocatalytic reaction can be seen as a simplification of the model involving competition between monomer and dimer cycles, which seems to be a more realistic description of biological systems. A self-regulation mechanism of the pumps, related to the multiple stationary states, is expected only for a combined effect of autocatalysis and formation of complexes with other molecules. Within the six-state model this model also leads to oscillation.

  6. Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process

    Directory of Open Access Journals (Sweden)

    Dazi Li

    2015-01-01

    Full Text Available A new strategy for internal model control (IMC is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM. Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS, while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.

  7. Optical multiple-image encryption in diffractive-imaging-based scheme using spectral fusion and nonlinear operation.

    Science.gov (United States)

    Qin, Yi; Gong, Qiong; Wang, Zhipeng; Wang, Hongjuan

    2016-11-14

    We report a new method for multiple-image encryption in diffractive-imaging-based encryption (DIBE) scheme. The discrete cosine transformation (DCT) spectra of the primary images are extracted, compacted and then nonlinear-transformed before being sent to the DIBE, where they are encoded into a single intensity pattern. With the help of a suggested phase retrieval algorithm, the original images can be recovered with high quality. Furthermore, due to the introduction of the nonlinear operation, the proposal is demonstrated to be robust to the currently available cryptographic attacks. The proposal probes a new way for multiple-image encryption in DIBE, and its effectiveness and feasibility have been supported by numerical simulations.

  8. Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm

    KAUST Repository

    Dreano, D.

    2017-04-05

    Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation-maximisation (EM) algorithm to estimate the model error covariances using classical extended and ensemble versions of the Kalman smoother. We show that, for additive model errors, the estimate of the error covariance converges. We also investigate other forms of model error, such as parametric or multiplicative errors. We show that additive Gaussian model error is able to compensate for non additive sources of error in the algorithms we propose. We also demonstrate the limitations of the extended version of the algorithm and recommend the use of the more robust and flexible ensemble version. This article is a proof of concept of the methodology with the Lorenz-63 attractor. We developed an open-source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models.

  9. Modeling the cardiovascular system using a nonlinear additive autoregressive model with exogenous input

    Science.gov (United States)

    Riedl, M.; Suhrbier, A.; Malberg, H.; Penzel, T.; Bretthauer, G.; Kurths, J.; Wessel, N.

    2008-07-01

    The parameters of heart rate variability and blood pressure variability have proved to be useful analytical tools in cardiovascular physics and medicine. Model-based analysis of these variabilities additionally leads to new prognostic information about mechanisms behind regulations in the cardiovascular system. In this paper, we analyze the complex interaction between heart rate, systolic blood pressure, and respiration by nonparametric fitted nonlinear additive autoregressive models with external inputs. Therefore, we consider measurements of healthy persons and patients suffering from obstructive sleep apnea syndrome (OSAS), with and without hypertension. It is shown that the proposed nonlinear models are capable of describing short-term fluctuations in heart rate as well as systolic blood pressure significantly better than similar linear ones, which confirms the assumption of nonlinear controlled heart rate and blood pressure. Furthermore, the comparison of the nonlinear and linear approaches reveals that the heart rate and blood pressure variability in healthy subjects is caused by a higher level of noise as well as nonlinearity than in patients suffering from OSAS. The residue analysis points at a further source of heart rate and blood pressure variability in healthy subjects, in addition to heart rate, systolic blood pressure, and respiration. Comparison of the nonlinear models within and among the different groups of subjects suggests the ability to discriminate the cohorts that could lead to a stratification of hypertension risk in OSAS patients.

  10. Model reduction of cavity nonlinear optics for photonic logic: a quasi-principal components approach

    Science.gov (United States)

    Shi, Zhan; Nurdin, Hendra I.

    2016-11-01

    Kerr nonlinear cavities displaying optical thresholding have been proposed for the realization of ultra-low power photonic logic gates. In the ultra-low photon number regime, corresponding to energy levels in the attojoule scale, quantum input-output models become important to study the effect of unavoidable quantum fluctuations on the performance of such logic gates. However, being a quantum anharmonic oscillator, a Kerr-cavity has an infinite dimensional Hilbert space spanned by the Fock states of the oscillator. This poses a challenge to simulate and analyze photonic logic gates and circuits composed of multiple Kerr nonlinearities. For simulation, the Hilbert of the oscillator is typically truncated to the span of only a finite number of Fock states. This paper develops a quasi-principal components approach to identify important subspaces of a Kerr-cavity Hilbert space and exploits it to construct an approximate reduced model of the Kerr-cavity on a smaller Hilbert space. Using this approach, we find a reduced dimension model with a Hilbert space dimension of 15 that can closely match the magnitudes of the mean transmitted and reflected output fields of a conventional truncated Fock state model of dimension 75, when driven by an input coherent field that switches between two levels. For the same input, the reduced model also closely matches the magnitudes of the mean output fields of Kerr-cavity-based AND and NOT gates and a NAND latch obtained from simulation of the full 75 dimension model.

  11. Identification of a Class of Non-linear State Space Models using RPE Techniques

    DEFF Research Database (Denmark)

    Zhou, Wei-Wu; Blanke, Mogens

    1989-01-01

    The RPE (recursive prediction error) method in state-space form is developed in the nonlinear systems and extended to include the exact form of a nonlinearity, thus enabling structure preservation for certain classes of nonlinear systems. Both the discrete and the continuous-discrete versions...... of the algorithm in an innovations model are investigated, and a nonlinear simulation example shows a quite convincing performance of the filter as combined parameter and state estimator...

  12. Output tracking and regulation of nonlinear system based on Takagi-Sugeno fuzzy model.

    Science.gov (United States)

    Ma, X J; Sun, Z Q

    2000-01-01

    On the basis of the Takagi-Sugeno (TS) fuzzy model, this paper discusses in detail the following three problems: (1) output tracking of the nonlinear system; (2) output regulation of the nonlinear system via a state feedback; (3) output regulation of the nonlinear system via a error feedback. Numerical simulations are given to illustrate the soundness of these results and the effectiveness of the new methodology solving the output tracking and regulation problem of the nonlinear system.

  13. Study of Super-Twisting sliding mode control for U model based nonlinear system

    OpenAIRE

    Zhang, Jianhua; Li, Yang; Xueli WU; Jianan HUO; Shenyang ZHUANG

    2016-01-01

    The Super-Twisting control algorithm is adopted to analyze the U model based nonlinear control system in order to solve the controller design problems of non-affine nonlinear systems. The non-affine nonlinear systems are studied, the neural network approximation of the nonlinear function is performed, and the Super-Twisting control algorithm is used to control. The convergence of the Super-Twisting algorithm is proved by selecting an appropriate Lyapunov function. The Matlab simulation is car...

  14. Multiple omnidirectional defect modes and nonlinear magnetic-field effects in metamaterial photonic superlattices with a polaritonic defect

    Science.gov (United States)

    Robles-Uriza, A. X.; Reyes Gómez, F.; Mejía-Salazar, J. R.

    2016-09-01

    We report the existence of multiple omnidirectional defect modes in the zero-nbar gap of photonic stacks, made of alternate layers of conventional dielectric and double-negative metamaterial, with a polaritonic defect layer. In the case of nonlinear magnetic metamaterials, the optical bistability phenomenon leads to switching from negligible to perfect transmission around these defect modes. We hope these findings have potential applications in the design and development of multichannel optical filters, power limiters, optical-diodes and optical-transistors.

  15. A new approach to sparse decomposition of nonstationary signals with multiple scale structures using self-consistent nonlinear waves

    Science.gov (United States)

    Young, Hsu-Wen Vincent; Hsu, Ke-Hsin; Pham, Van-Truong; Tran, Thi-Thao; Lo, Men-Tzung

    2017-09-01

    A new method for signal decomposition is proposed and tested. Based on self-consistent nonlinear wave equations with self-sustaining physical mechanisms in mind, the new method is adaptive and particularly effective for dealing with synthetic signals consisting of components of multiple time scales. By formulating the method into an optimization problem and developing the corresponding algorithm and tool, we have proved its usefulness not only for analyzing simulated signals, but, more importantly, also for real clinical data.

  16. In vivo models of multiple myeloma (MM).

    Science.gov (United States)

    Sanchez, Eric; Chen, Haiming; Berenson, James R

    2014-06-01

    The development of the plasma cell tumor (PCT) model was the first widely accepted in vivo model of multiple myeloma (MM). Potter and colleagues used this chemically induced PCT model to study the pathophysiology of malignant plasma cells and also used it to screen anti-MM agents. Two decades later the C57BL/KaLwRij mouse strain was found to spontaneously develop MM. Testing of pamidronate using this endogenously arising MM model revealed significant reductions in MM-associated bone disease, which was subsequently confirmed in human trials in MM patients. Transgenic models have also been developed in which the MM is localized in the bone marrow causing lytic bone lesions. Experiments in a transgenic model showed that a new oral proteasome inhibitor was effective at reducing MM burden. A clinical trial later confirmed this observation and validated the model. The xenograft model has been used to grow human MM in immunocompromised mice. The xenograft models of MM have been very useful in optimizing drug schedules and doses, which have helped in the treatments given to MM patients. However, in vivo models have been criticized for having a low clinical predictive power of new chemical entities (NCEs). Despite this, the knowledge gained from in vivo models of MM has without a doubt benefited MM patients.

  17. Harmonic amplitude dependent dynamic stiffness of hydraulic bushings: Alternate nonlinear models and experimental validation

    Science.gov (United States)

    Fredette, Luke; Dreyer, Jason T.; Rook, Todd E.; Singh, Rajendra

    2016-06-01

    The dynamic stiffness properties of automotive hydraulic bushings exhibit significant amplitude sensitivity which cannot be captured by linear time-invariant models. Quasi-linear and nonlinear models are therefore proposed with focus on the amplitude sensitivity in magnitude and loss angle spectra (up to 50 Hz). Since production bushing model parameters are unknown, dynamic stiffness tests and laboratory experiments are utilized to extract model parameters. Nonlinear compliance and resistance elements are incorporated, including their interactions in order to improve amplitude sensitive predictions. New solution approximations for the new nonlinear system equations refine the multi-term harmonic balance term method. Quasi-linear models yield excellent accuracy but cannot predict trends in amplitude sensitivity since they rely on available dynamic stiffness measurements. Nonlinear models containing both nonlinear resistance and compliance elements yield superior predictions to those of prior models (with a single nonlinearity) while also providing more physical insight. Suggestion for further work is briefly mentioned.

  18. Chaotic inflation from nonlinear sigma models in supergravity

    Directory of Open Access Journals (Sweden)

    Simeon Hellerman

    2015-03-01

    Full Text Available We present a common solution to the puzzles of the light Higgs or quark masses and the need for a shift symmetry and large field values in high scale chaotic inflation. One way to protect, for example, the Higgs from a large supersymmetric mass term is if it is the Nambu–Goldstone boson (NGB of a nonlinear sigma model. However, it is well known that nonlinear sigma models (NLSMs with nontrivial Kähler transformations are problematic to couple to supergravity. An additional field is necessary to make the Kähler potential of the NLSM invariant in supergravity. This field must have a shift symmetry — making it a candidate for the inflaton (or axion. We give an explicit example of such a model for the coset space SU(3/SU(2×U(1, with the Higgs as the NGB, including breaking the inflaton's shift symmetry and producing a chaotic inflation potential. This construction can also be applied to other models, such as one based on E7/SO(10×U(1×U(1 which incorporates the first two generations of (light quarks as the Nambu–Goldstone multiplets, and has an axion in addition to the inflaton. Along the way we clarify and connect previous work on understanding NLSMs in supergravity and the origin of the extra field (which is the inflaton here, including a connection to Witten–Bagger quantization. This framework has wide applications to model building; a light particle from a NLSM requires, in supergravity, exactly the structure for chaotic inflaton or an axion.

  19. Chaotic inflation from nonlinear sigma models in supergravity

    Science.gov (United States)

    Hellerman, Simeon; Kehayias, John; Yanagida, Tsutomu T.

    2015-03-01

    We present a common solution to the puzzles of the light Higgs or quark masses and the need for a shift symmetry and large field values in high scale chaotic inflation. One way to protect, for example, the Higgs from a large supersymmetric mass term is if it is the Nambu-Goldstone boson (NGB) of a nonlinear sigma model. However, it is well known that nonlinear sigma models (NLSMs) with nontrivial Kähler transformations are problematic to couple to supergravity. An additional field is necessary to make the Kähler potential of the NLSM invariant in supergravity. This field must have a shift symmetry - making it a candidate for the inflaton (or axion). We give an explicit example of such a model for the coset space SU (3) / SU (2) × U (1), with the Higgs as the NGB, including breaking the inflaton's shift symmetry and producing a chaotic inflation potential. This construction can also be applied to other models, such as one based on E7 / SO (10) × U (1) × U (1) which incorporates the first two generations of (light) quarks as the Nambu-Goldstone multiplets, and has an axion in addition to the inflaton. Along the way we clarify and connect previous work on understanding NLSMs in supergravity and the origin of the extra field (which is the inflaton here), including a connection to Witten-Bagger quantization. This framework has wide applications to model building; a light particle from a NLSM requires, in supergravity, exactly the structure for chaotic inflaton or an axion.

  20. Non-linear calibration models for near infrared spectroscopy

    DEFF Research Database (Denmark)

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-01-01

    Different calibration techniques are available for spectroscopic applications that show nonlinear behavior. This comprehensive comparative study presents a comparison of different nonlinear calibration techniques: kernel PLS (KPLS), support vector machines (SVM), least-squares SVM (LS-SVM), relev...