WorldWideScience

Sample records for nonlinear mixed effect

  1. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  2. Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides

    DEFF Research Database (Denmark)

    Pu, Minhao; Chen, Yaohui; Yvind, Kresten

    2014-01-01

    Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects.......Influence of thermal effects induced by nonlinear absorption on four-wave mixing in silicon waveguides is investigated. A conversion bandwidth reduction up to 63% is observed in simulation due to the thermal effects....

  3. A multilevel nonlinear mixed-effects approach to model growth in pigs

    DEFF Research Database (Denmark)

    Strathe, Anders Bjerring; Danfær, Allan Christian; Sørensen, H.

    2010-01-01

    Growth functions have been used to predict market weight of pigs and maximize return over feed costs. This study was undertaken to compare 4 growth functions and methods of analyzing data, particularly one that considers nonlinear repeated measures. Data were collected from an experiment with 40...... pigs maintained from birth to maturity and their BW measured weekly or every 2 wk up to 1,007 d. Gompertz, logistic, Bridges, and Lopez functions were fitted to the data and compared using information criteria. For each function, a multilevel nonlinear mixed effects model was employed because....... Furthermore, studies should consider adding continuous autoregressive process when analyzing nonlinear mixed models with repeated measures....

  4. A Multiphase Non-Linear Mixed Effects Model: An Application to Spirometry after Lung Transplantation

    Science.gov (United States)

    Rajeswaran, Jeevanantham; Blackstone, Eugene H.

    2014-01-01

    In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time varying coefficients. PMID:24919830

  5. A Nonlinear Mixed Effects Model for the Prediction of Natural Gas Consumption by Individual Customers

    Czech Academy of Sciences Publication Activity Database

    Brabec, Marek; Konár, Ondřej; Pelikán, Emil; Malý, Marek

    2008-01-01

    Roč. 24, č. 4 (2008), s. 659-678 ISSN 0169-2070 R&D Projects: GA AV ČR 1ET400300513 Institutional research plan: CEZ:AV0Z10300504 Keywords : individual gas consumption * nonlinear mixed effects model * ARIMAX * ARX * generalized linear mixed model * conditional modeling Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use Impact factor: 1.685, year: 2008

  6. Assessing robustness of designs for random effects parameters for nonlinear mixed-effects models.

    Science.gov (United States)

    Duffull, Stephen B; Hooker, Andrew C

    2017-12-01

    Optimal designs for nonlinear models are dependent on the choice of parameter values. Various methods have been proposed to provide designs that are robust to uncertainty in the prior choice of parameter values. These methods are generally based on estimating the expectation of the determinant (or a transformation of the determinant) of the information matrix over the prior distribution of the parameter values. For high dimensional models this can be computationally challenging. For nonlinear mixed-effects models the question arises as to the importance of accounting for uncertainty in the prior value of the variances of the random effects parameters. In this work we explore the influence of the variance of the random effects parameters on the optimal design. We find that the method for approximating the expectation and variance of the likelihood is of potential importance for considering the influence of random effects. The most common approximation to the likelihood, based on a first-order Taylor series approximation, yields designs that are relatively insensitive to the prior value of the variance of the random effects parameters and under these conditions it appears to be sufficient to consider uncertainty on the fixed-effects parameters only.

  7. Effect of correlation on covariate selection in linear and nonlinear mixed effect models.

    Science.gov (United States)

    Bonate, Peter L

    2017-01-01

    The effect of correlation among covariates on covariate selection was examined with linear and nonlinear mixed effect models. Demographic covariates were extracted from the National Health and Nutrition Examination Survey III database. Concentration-time profiles were Monte Carlo simulated where only one covariate affected apparent oral clearance (CL/F). A series of univariate covariate population pharmacokinetic models was fit to the data and compared with the reduced model without covariate. The "best" covariate was identified using either the likelihood ratio test statistic or AIC. Weight and body surface area (calculated using Gehan and George equation, 1970) were highly correlated (r = 0.98). Body surface area was often selected as a better covariate than weight, sometimes as high as 1 in 5 times, when weight was the covariate used in the data generating mechanism. In a second simulation, parent drug concentration and three metabolites were simulated from a thorough QT study and used as covariates in a series of univariate linear mixed effects models of ddQTc interval prolongation. The covariate with the largest significant LRT statistic was deemed the "best" predictor. When the metabolite was formation-rate limited and only parent concentrations affected ddQTc intervals the metabolite was chosen as a better predictor as often as 1 in 5 times depending on the slope of the relationship between parent concentrations and ddQTc intervals. A correlated covariate can be chosen as being a better predictor than another covariate in a linear or nonlinear population analysis by sheer correlation These results explain why for the same drug different covariates may be identified in different analyses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. A multivariate nonlinear mixed effects method for analyzing energy partitioning in growing pigs

    DEFF Research Database (Denmark)

    Strathe, Anders Bjerring; Danfær, Allan Christian; Chwalibog, André

    2010-01-01

    to the multivariate nonlinear regression model because the MNLME method accounted for correlated errors associated with PD and LD measurements and could also include the random effect of animal. It is recommended that multivariate models used to quantify energy metabolism in growing pigs should account for animal......Simultaneous equations have become increasingly popular for describing the effects of nutrition on the utilization of ME for protein (PD) and lipid deposition (LD) in animals. The study developed a multivariate nonlinear mixed effects (MNLME) framework and compared it with an alternative method...... for estimating parameters in simultaneous equations that described energy metabolism in growing pigs, and then proposed new PD and LD equations. The general statistical framework was implemented in the NLMIXED procedure in SAS. Alternative PD and LD equations were also developed, which assumed...

  9. Performance of nonlinear mixed effects models in the presence of informative dropout.

    Science.gov (United States)

    Björnsson, Marcus A; Friberg, Lena E; Simonsson, Ulrika S H

    2015-01-01

    Informative dropout can lead to bias in statistical analyses if not handled appropriately. The objective of this simulation study was to investigate the performance of nonlinear mixed effects models with regard to bias and precision, with and without handling informative dropout. An efficacy variable and dropout depending on that efficacy variable were simulated and model parameters were reestimated, with or without including a dropout model. The Laplace and FOCE-I estimation methods in NONMEM 7, and the stochastic simulations and estimations (SSE) functionality in PsN, were used in the analysis. For the base scenario, bias was low, less than 5% for all fixed effects parameters, when a dropout model was used in the estimations. When a dropout model was not included, bias increased up to 8% for the Laplace method and up to 21% if the FOCE-I estimation method was applied. The bias increased with decreasing number of observations per subject, increasing placebo effect and increasing dropout rate, but was relatively unaffected by the number of subjects in the study. This study illustrates that ignoring informative dropout can lead to biased parameters in nonlinear mixed effects modeling, but even in cases with few observations or high dropout rate, the bias is relatively low and only translates into small effects on predictions of the underlying effect variable. A dropout model is, however, crucial in the presence of informative dropout in order to make realistic simulations of trial outcomes.

  10. Probability of atrial fibrillation after ablation: Using a parametric nonlinear temporal decomposition mixed effects model.

    Science.gov (United States)

    Rajeswaran, Jeevanantham; Blackstone, Eugene H; Ehrlinger, John; Li, Liang; Ishwaran, Hemant; Parides, Michael K

    2018-01-01

    Atrial fibrillation is an arrhythmic disorder where the electrical signals of the heart become irregular. The probability of atrial fibrillation (binary response) is often time varying in a structured fashion, as is the influence of associated risk factors. A generalized nonlinear mixed effects model is presented to estimate the time-related probability of atrial fibrillation using a temporal decomposition approach to reveal the pattern of the probability of atrial fibrillation and their determinants. This methodology generalizes to patient-specific analysis of longitudinal binary data with possibly time-varying effects of covariates and with different patient-specific random effects influencing different temporal phases. The motivation and application of this model is illustrated using longitudinally measured atrial fibrillation data obtained through weekly trans-telephonic monitoring from an NIH sponsored clinical trial being conducted by the Cardiothoracic Surgery Clinical Trials Network.

  11. A nonlinear mixed-effects model for simultaneous smoothing and registration of functional data

    DEFF Research Database (Denmark)

    Raket, Lars Lau; Sommer, Stefan Horst; Markussen, Bo

    2014-01-01

    We consider misaligned functional data, where data registration is necessary for proper statistical analysis. This paper proposes to treat misalignment as a nonlinear random effect, which makes simultaneous likelihood inference for horizontal and vertical effects possible. By simultaneously fitti...

  12. Nonlinear mixed effects modelling approach in investigating phenobarbital pharmacokinetic interactions in epileptic patients.

    Science.gov (United States)

    Vučićević, Katarina; Jovanović, Marija; Golubović, Bojana; Kovačević, Sandra Vezmar; Miljković, Branislava; Martinović, Žarko; Prostran, Milica

    2015-02-01

    The present study aimed to establish population pharmacokinetic model for phenobarbital (PB), examining and quantifying the magnitude of PB interactions with other antiepileptic drugs concomitantly used and to demonstrate its use for individualization of PB dosing regimen in adult epileptic patients. In total 205 PB concentrations were obtained during routine clinical monitoring of 136 adult epilepsy patients. PB steady state concentrations were measured by homogeneous enzyme immunoassay. Nonlinear mixed effects modelling (NONMEM) was applied for data analyses and evaluation of the final model. According to the final population model, significant determinant of apparent PB clearance (CL/F) was daily dose of concomitantly given valproic acid (VPA). Typical value of PB CL/F for final model was estimated at 0.314 l/h. Based on the final model, co-therapy with usual VPA dose of 1000 mg/day, resulted in PB CL/F average decrease of about 25 %, while 2000 mg/day leads to an average 50 % decrease in PB CL/F. Developed population PB model may be used in estimating individual CL/F for adult epileptic patients and could be applied for individualizing dosing regimen taking into account dose-dependent effect of concomitantly given VPA.

  13. Nonlinear mixed effects modelling for the analysis of longitudinal body core temperature data in healthy volunteers.

    Science.gov (United States)

    Seng, Kok-Yong; Chen, Ying; Wang, Ting; Ming Chai, Adam Kian; Yuen Fun, David Chiok; Teo, Ya Shi; Sze Tan, Pearl Min; Ang, Wee Hon; Wei Lee, Jason Kai

    2016-04-01

    Many longitudinal studies have collected serial body core temperature (T c) data to understand thermal work strain of workers under various environmental and operational heat stress environments. This provides the opportunity for the development of mathematical models to analyse and forecast temporal T c changes across populations of subjects. Such models can reduce the need for invasive methods that continuously measure T c. This current work sought to develop a nonlinear mixed effects modelling framework to delineate the dynamic changes of T c and its association with a set of covariates of interest (e.g. heart rate, chest skin temperature), and the structure of the variability of T c in various longitudinal studies. Data to train and evaluate the model were derived from two laboratory investigations involving male soldiers who participated in either a 12 (N  =  18) or 15 km (N  =  16) foot march with varied clothing, load and heat acclimatisation status. Model qualification was conducted using nonparametric bootstrap and cross validation procedures. For cross validation, the trajectory of a new subject's T c was simulated via Bayesian maximum a posteriori estimation when using only the baseline T c or using the baseline T c as well as measured T c at the end of every work (march) phase. The final model described T c versus time profiles using a parametric function with its main parameters modelled as a sigmoid hyperbolic function of the load and/or chest skin temperature. Overall, T c predictions corresponded well with the measured data (root mean square deviation: 0.16 °C), and compared favourably with those provided by two recently published Kalman filter models.

  14. A general method to determine sampling windows for nonlinear mixed effects models with an application to population pharmacokinetic studies.

    Science.gov (United States)

    Foo, Lee Kien; McGree, James; Duffull, Stephen

    2012-01-01

    Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models. Copyright © 2012 John Wiley & Sons, Ltd.

  15. A Comparison of Two-Stage Approaches for Fitting Nonlinear Ordinary Differential Equation Models with Mixed Effects.

    Science.gov (United States)

    Chow, Sy-Miin; Bendezú, Jason J; Cole, Pamela M; Ram, Nilam

    2016-01-01

    Several approaches exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA; Ramsay & Silverman, 2005 ), generalized local linear approximation (GLLA; Boker, Deboeck, Edler, & Peel, 2010 ), and generalized orthogonal local derivative approximation (GOLD; Deboeck, 2010 ). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo (MC) study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children's self-regulation.

  16. Effects of noninstantaneous nonlinear processes on photon-pair generation by spontaneous four-wave mixing

    DEFF Research Database (Denmark)

    Koefoed, Jacob Gade; Christensen, Jesper Bjerge; Rottwitt, Karsten

    2017-01-01

    We present a general model, based on a Hamiltonian approach, for the joint quantum state of photon pairs generated through pulsed spontaneous four-wave mixing, including nonlinear phase modulation and a finite material response time. For the case of a silica fiber, it is found that the pair......-production rate depends weakly on the waveguide temperature, due to higher-order Raman scattering events, and more strongly on pump-pair frequency detuning. From the analytical model, a numerical scheme is derived, based on the well-known split-step method. This scheme allows computation of joint states where......-dependent change in quantum-mechanical purity may be observed in silica. This shows that Raman scattering not only introduces noise, but can also drastically change the spectral correlations in photon pairs when pumped with short pulses....

  17. Multilevel nonlinear mixed-effects models for the modeling of earlywood and latewood microfibril angle

    Science.gov (United States)

    Lewis Jordon; Richard F. Daniels; Alexander Clark; Rechun He

    2005-01-01

    Earlywood and latewood microfibril angle (MFA) was determined at I-millimeter intervals from disks at 1.4 meters, then at 3-meter intervals to a height of 13.7 meters, from 18 loblolly pine (Pinus taeda L.) trees grown in southeastern Texas. A modified three-parameter logistic function with mixed effects is used for modeling earlywood and latewood...

  18. Non-linear mixed effects modeling - from methodology and software development to driving implementation in drug development science.

    Science.gov (United States)

    Pillai, Goonaseelan Colin; Mentré, France; Steimer, Jean-Louis

    2005-04-01

    Few scientific contributions have made significant impact unless there was a champion who had the vision to see the potential for its use in seemingly disparate areas-and who then drove active implementation. In this paper, we present a historical summary of the development of non-linear mixed effects (NLME) modeling up to the more recent extensions of this statistical methodology. The paper places strong emphasis on the pivotal role played by Lewis B. Sheiner (1940-2004), who used this statistical methodology to elucidate solutions to real problems identified in clinical practice and in medical research and on how he drove implementation of the proposed solutions. A succinct overview of the evolution of the NLME modeling methodology is presented as well as ideas on how its expansion helped to provide guidance for a more scientific view of (model-based) drug development that reduces empiricism in favor of critical quantitative thinking and decision making.

  19. An MCMC method for the evaluation of the Fisher information matrix for non-linear mixed effect models.

    Science.gov (United States)

    Riviere, Marie-Karelle; Ueckert, Sebastian; Mentré, France

    2016-10-01

    Non-linear mixed effect models (NLMEMs) are widely used for the analysis of longitudinal data. To design these studies, optimal design based on the expected Fisher information matrix (FIM) can be used instead of performing time-consuming clinical trial simulations. In recent years, estimation algorithms for NLMEMs have transitioned from linearization toward more exact higher-order methods. Optimal design, on the other hand, has mainly relied on first-order (FO) linearization to calculate the FIM. Although efficient in general, FO cannot be applied to complex non-linear models and with difficulty in studies with discrete data. We propose an approach to evaluate the expected FIM in NLMEMs for both discrete and continuous outcomes. We used Markov Chain Monte Carlo (MCMC) to integrate the derivatives of the log-likelihood over the random effects, and Monte Carlo to evaluate its expectation w.r.t. the observations. Our method was implemented in R using Stan, which efficiently draws MCMC samples and calculates partial derivatives of the log-likelihood. Evaluated on several examples, our approach showed good performance with relative standard errors (RSEs) close to those obtained by simulations. We studied the influence of the number of MC and MCMC samples and computed the uncertainty of the FIM evaluation. We also compared our approach to Adaptive Gaussian Quadrature, Laplace approximation, and FO. Our method is available in R-package MIXFIM and can be used to evaluate the FIM, its determinant with confidence intervals (CIs), and RSEs with CIs. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Four Wave Mixing using Intermodal Nonlinearities

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard

    The nonlinear process of four-wave mixing (FWM) enables coupling of energy between wavelengths. This is useful for both optical amplification and wavelength conversion. A crucial prerequisite for the process is phase matching. This PhD project investigates how higher order modes (HOMs) in fibers...

  1. Nonlinear mixed effects modeling of gametocyte carriage in patients with uncomplicated malaria

    Directory of Open Access Journals (Sweden)

    Little Francesca

    2010-02-01

    Full Text Available Abstract Background Gametocytes are the sexual form of the malaria parasite and the main agents of transmission. While there are several factors that influence host infectivity, the density of gametocytes appears to be the best single measure that is related to the human host's infectivity to mosquitoes. Despite the obviously important role that gametocytes play in the transmission of malaria and spread of anti-malarial resistance, it is common to estimate gametocyte carriage indirectly based on asexual parasite measurements. The objective of this research was to directly model observed gametocyte densities over time, during the primary infection. Methods Of 447 patients enrolled in sulphadoxine-pyrimethamine therapeutic efficacy studies in South Africa and Mozambique, a subset of 103 patients who had no gametocytes pre-treatment and who had at least three non-zero gametocyte densities over the 42-day follow up period were included in this analysis. Results A variety of different functions were examined. A modified version of the critical exponential function was selected for the final model given its robustness across different datasets and its flexibility in assuming a variety of different shapes. Age, site, initial asexual parasite density (logged to the base 10, and an empirical patient category were the co-variates that were found to improve the model. Conclusions A population nonlinear modeling approach seems promising and produced a flexible function whose estimates were stable across various different datasets. Surprisingly, dihydrofolate reductase and dihydropteroate synthetase mutation prevalence did not enter the model. This is probably related to a lack of power (quintuple mutations n = 12, and informative censoring; treatment failures were withdrawn from the study and given rescue treatment, usually prior to completion of follow up.

  2. Nonlinear mixed effects dose response modeling in high throughput drug screens: application to melanoma cell line analysis.

    Science.gov (United States)

    Ding, Kuan-Fu; Petricoin, Emanuel F; Finlay, Darren; Yin, Hongwei; Hendricks, William P D; Sereduk, Chris; Kiefer, Jeffrey; Sekulic, Aleksandar; LoRusso, Patricia M; Vuori, Kristiina; Trent, Jeffrey M; Schork, Nicholas J

    2018-01-12

    Cancer cell lines are often used in high throughput drug screens (HTS) to explore the relationship between cell line characteristics and responsiveness to different therapies. Many current analysis methods infer relationships by focusing on one aspect of cell line drug-specific dose-response curves (DRCs), the concentration causing 50% inhibition of a phenotypic endpoint (IC 50 ). Such methods may overlook DRC features and do not simultaneously leverage information about drug response patterns across cell lines, potentially increasing false positive and negative rates in drug response associations. We consider the application of two methods, each rooted in nonlinear mixed effects (NLME) models, that test the relationship relationships between estimated cell line DRCs and factors that might mitigate response. Both methods leverage estimation and testing techniques that consider the simultaneous analysis of different cell lines to draw inferences about any one cell line. One of the methods is designed to provide an omnibus test of the differences between cell line DRCs that is not focused on any one aspect of the DRC (such as the IC 50 value). We simulated different settings and compared the different methods on the simulated data. We also compared the proposed methods against traditional IC 50 -based methods using 40 melanoma cell lines whose transcriptomes, proteomes, and, importantly, BRAF and related mutation profiles were available. Ultimately, we find that the NLME-based methods are more robust, powerful and, for the omnibus test, more flexible, than traditional methods. Their application to the melanoma cell lines reveals insights into factors that may be clinically useful.

  3. A Nonlinear Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in Yeast.

    Directory of Open Access Journals (Sweden)

    Joachim Almquist

    Full Text Available The last decade has seen a rapid development of experimental techniques that allow data collection from individual cells. These techniques have enabled the discovery and characterization of variability within a population of genetically identical cells. Nonlinear mixed effects (NLME modeling is an established framework for studying variability between individuals in a population, frequently used in pharmacokinetics and pharmacodynamics, but its potential for studies of cell-to-cell variability in molecular cell biology is yet to be exploited. Here we take advantage of this novel application of NLME modeling to study cell-to-cell variability in the dynamic behavior of the yeast transcription repressor Mig1. In particular, we investigate a recently discovered phenomenon where Mig1 during a short and transient period exits the nucleus when cells experience a shift from high to intermediate levels of extracellular glucose. A phenomenological model based on ordinary differential equations describing the transient dynamics of nuclear Mig1 is introduced, and according to the NLME methodology the parameters of this model are in turn modeled by a multivariate probability distribution. Using time-lapse microscopy data from nearly 200 cells, we estimate this parameter distribution according to the approach of maximizing the population likelihood. Based on the estimated distribution, parameter values for individual cells are furthermore characterized and the resulting Mig1 dynamics are compared to the single cell times-series data. The proposed NLME framework is also compared to the intuitive but limited standard two-stage (STS approach. We demonstrate that the latter may overestimate variabilities by up to almost five fold. Finally, Monte Carlo simulations of the inferred population model are used to predict the distribution of key characteristics of the Mig1 transient response. We find that with decreasing levels of post-shift glucose, the transient

  4. Nonlinear Wave Mixing Technique for Nondestructive Assessment of Infrastructure Materials

    Science.gov (United States)

    Ju, Taeho

    To operate safely, structures and components need to be inspected or monitored either periodically or in real time for potential failure. For this purpose, ultrasonic nondestructive evaluation (NDE) techniques have been used extensively. Most of these ultrasonic NDE techniques utilize only the linear behavior of the ultrasound. These linear techniques are effective in detecting discontinuities in materials such as cracks, voids, interfaces, inclusions, etc. However, in many engineering materials, it is the accumulation of microdamage that leads to degradation and eventual failure of a component. Unfortunately, it is difficult for linear ultrasonic NDE techniques to characterize or quantify such damage. On the other hand, the acoustic nonlinearity parameter (ANLP) of a material is often positively correlated with such damage in a material. Thus, nonlinear ultrasonic NDE methods have been used in recently years to characterize cumulative damage such as fatigue in metallic materials, aging in polymeric materials, and degradation of cement-based materials due to chemical reactions. In this thesis, we focus on developing a suit of novel nonlinear ultrasonic NDE techniques based on the interactions of nonlinear ultrasonic waves, namely wave mixing. First, a noncollinear wave mixing technique is developed to detect localized damage in a homogeneous material by using a pair of noncollinear a longitudinal wave (L-wave) and a shear wave (S-wave). This pair of incident waves make it possible to conduct NDE from a single side of the component, a condition that is often encountered in practical applications. The proposed noncollinear wave mixing technique is verified experimentally by carrying out measurements on aluminum alloy (AA 6061) samples. Numerical simulations using the Finite Element Method (FEM) are also conducted to further demonstrate the potential of the proposed technique to detect localized damage in structural components. Second, the aforementioned nonlinear

  5. Soliton interaction in the coupled mixed derivative nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Zhang Haiqiang; Tian Bo; Lue Xing; Li He; Meng Xianghua

    2009-01-01

    The bright one- and two-soliton solutions of the coupled mixed derivative nonlinear Schroedinger equations in birefringent optical fibers are obtained by using the Hirota's bilinear method. The investigation on the collision dynamics of the bright vector solitons shows that there exists complete or partial energy switching in this coupled model. Such parametric energy exchanges can be effectively controlled and quantificationally measured by analyzing the collision dynamics of the bright vector solitons. The influence of two types of nonlinear coefficient parameters on the energy of each vector soliton, is also discussed. Based on the significant energy transfer between the two components of each vector soliton, it is feasible to exploit the future applications in the design of logical gates, fiber directional couplers and quantum information processors.

  6. Evolution of association between renal and liver functions while awaiting heart transplant: An application using a bivariate multiphase nonlinear mixed effects model.

    Science.gov (United States)

    Rajeswaran, Jeevanantham; Blackstone, Eugene H; Barnard, John

    2018-07-01

    In many longitudinal follow-up studies, we observe more than one longitudinal outcome. Impaired renal and liver functions are indicators of poor clinical outcomes for patients who are on mechanical circulatory support and awaiting heart transplant. Hence, monitoring organ functions while waiting for heart transplant is an integral part of patient management. Longitudinal measurements of bilirubin can be used as a marker for liver function and glomerular filtration rate for renal function. We derive an approximation to evolution of association between these two organ functions using a bivariate nonlinear mixed effects model for continuous longitudinal measurements, where the two submodels are linked by a common distribution of time-dependent latent variables and a common distribution of measurement errors.

  7. Forced oscillation of hyperbolic equations with mixed nonlinearities

    Directory of Open Access Journals (Sweden)

    Yutaka Shoukaku

    2012-04-01

    Full Text Available In this paper, we consider the mixed nonlinear hyperbolic equations with forcing term via Riccati inequality. Some sufficient conditions for the oscillation are derived by using Young inequality and integral averaging method.

  8. Estimate the time varying brain receptor occupancy in PET imaging experiments using non-linear fixed and mixed effect modeling approach

    International Nuclear Information System (INIS)

    Zamuner, Stefano; Gomeni, Roberto; Bye, Alan

    2002-01-01

    Positron-Emission Tomography (PET) is an imaging technology currently used in drug development as a non-invasive measure of drug distribution and interaction with biochemical target system. The level of receptor occupancy achieved by a compound can be estimated by comparing time-activity measurements in an experiment done using tracer alone with the activity measured when the tracer is given following administration of unlabelled compound. The effective use of this surrogate marker as an enabling tool for drug development requires the definition of a model linking the brain receptor occupancy with the fluctuation of plasma concentrations. However, the predictive performance of such a model is strongly related to the precision on the estimate of receptor occupancy evaluated in PET scans collected at different times following drug treatment. Several methods have been proposed for the analysis and the quantification of the ligand-receptor interactions investigated from PET data. The aim of the present study is to evaluate alternative parameter estimation strategies based on the use of non-linear mixed effect models allowing to account for intra and inter-subject variability on the time-activity and for covariates potentially explaining this variability. A comparison of the different modeling approaches is presented using real data. The results of this comparison indicates that the mixed effect approach with a primary model partitioning the variance in term of Inter-Individual Variability (IIV) and Inter-Occasion Variability (IOV) and a second stage model relating the changes on binding potential to the dose of unlabelled drug is definitely the preferred approach

  9. Quantifying the Variability of Internode Allometry within and between Trees for Pinus tabulaeformis Carr. Using a Multilevel Nonlinear Mixed-Effect Model

    Directory of Open Access Journals (Sweden)

    Jun Diao

    2014-11-01

    Full Text Available Allometric models of internodes are an important component of Functional-Structural Plant Models (FSPMs, which represent the shape of internodes in tree architecture and help our understanding of resource allocation in organisms. Constant allometry is always assumed in these models. In this paper, multilevel nonlinear mixed-effect models were used to characterize the variability of internode allometry, describing the relationship between the last internode length and biomass of Pinus tabulaeformis Carr. trees within the GreenLab framework. We demonstrated that there is significant variability in allometric relationships at the tree and different-order branch levels, and the variability decreases among levels from trees to first-order branches and, subsequently, to second-order branches. The variability was partially explained by the random effects of site characteristics, stand age, density, and topological position of the internode. Tree- and branch-level-specific allometric models are recommended because they produce unbiased and accurate internode length estimates. The model and method developed in this study are useful for understanding and describing the structure and functioning of trees.

  10. Use of non-linear mixed-effects modelling and regression analysis to predict the number of somatic coliphages by plaque enumeration after 3 hours of incubation.

    Science.gov (United States)

    Mendez, Javier; Monleon-Getino, Antonio; Jofre, Juan; Lucena, Francisco

    2017-10-01

    The present study aimed to establish the kinetics of the appearance of coliphage plaques using the double agar layer titration technique to evaluate the feasibility of using traditional coliphage plaque forming unit (PFU) enumeration as a rapid quantification method. Repeated measurements of the appearance of plaques of coliphages titrated according to ISO 10705-2 at different times were analysed using non-linear mixed-effects regression to determine the most suitable model of their appearance kinetics. Although this model is adequate, to simplify its applicability two linear models were developed to predict the numbers of coliphages reliably, using the PFU counts as determined by the ISO after only 3 hours of incubation. One linear model, when the number of plaques detected was between 4 and 26 PFU after 3 hours, had a linear fit of: (1.48 × Counts 3 h + 1.97); and the other, values >26 PFU, had a fit of (1.18 × Counts 3 h + 2.95). If the number of plaques detected was PFU after 3 hours, we recommend incubation for (18 ± 3) hours. The study indicates that the traditional coliphage plating technique has a reasonable potential to provide results in a single working day without the need to invest in additional laboratory equipment.

  11. Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems.

    Science.gov (United States)

    Capmany, José

    2009-04-13

    We provide, for the first time to our knowledge, an analysis of the influence of nonlinear photon mixing on the end to end quantum bit error rate (QBER) performance of subcarrier multiplexed quantum key distribution systems. The results show that negligible impact is to be expected for modulation indexes in the range of 2%.

  12. Applications and algorithms for mixed integer nonlinear programming

    International Nuclear Information System (INIS)

    Leyffer, Sven; Munson, Todd; Linderoth, Jeff; Luedtke, James; Miller, Andrew

    2009-01-01

    The mathematical modeling of systems often requires the use of both nonlinear and discrete components. Discrete decision variables model dichotomies, discontinuities, and general logical relationships. Nonlinear functions are required to accurately represent physical properties such as pressure, stress, temperature, and equilibrium. Problems involving both discrete variables and nonlinear constraint functions are known as mixed-integer nonlinear programs (MINLPs) and are among the most challenging computational optimization problems faced by researchers and practitioners. In this paper, we describe relevant scientific applications that are naturally modeled as MINLPs, we provide an overview of available algorithms and software, and we describe ongoing methodological advances for solving MINLPs. These algorithmic advances are making increasingly larger instances of this important family of problems tractable.

  13. A mixed finite element method for nonlinear diffusion equations

    KAUST Repository

    Burger, Martin; Carrillo, José ; Wolfram, Marie-Therese

    2010-01-01

    We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.

  14. Nonlinear Stability and Structure of Compressible Reacting Mixing Layers

    Science.gov (United States)

    Day, M. J.; Mansour, N. N.; Reynolds, W. C.

    2000-01-01

    The parabolized stability equations (PSE) are used to investigate issues of nonlinear flow development and mixing in compressible reacting shear layers. Particular interest is placed on investigating the change in flow structure that occurs when compressibility and heat release are added to the flow. These conditions allow the 'outer' instability modes- one associated with each of the fast and slow streams-to dominate over the 'central', Kelvin-Helmholtz mode that unaccompanied in incompressible nonreacting mixing layers. Analysis of scalar probability density functions in flows with dominant outer modes demonstrates the ineffective, one-sided nature of mixing that accompany these flow structures. Colayer conditions, where two modes have equal growth rate and the mixing layer is formed by two sets of vortices, offer some opportunity for mixing enhancement. Their extent, however, is found to be limited in the mixing layer's parameter space. Extensive validation of the PSE technique also provides a unique perspective on central- mode vortex pairing, further supporting the view that pairing is primarily governed perspective sheds insight on how linear stability theory is able to provide such an accurate prediction of experimentally-observed, fully nonlinear flow phenomenon.

  15. Numerical treatments for solving nonlinear mixed integral equation

    Directory of Open Access Journals (Sweden)

    M.A. Abdou

    2016-12-01

    Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.

  16. Quantum Information Processing using Nonlinear Optical Effects

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling

    This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear......-chirping the pumps. In the high-conversion regime without the effects of NPM, exact Green functions for BS are derived. In this limit, separability is possible for conversion efficiencies up to 60 %. However, the system still allows for selective frequency conversion as well as re-shaping of the output. One way...

  17. On a mixed problem for a coupled nonlinear system

    Directory of Open Access Journals (Sweden)

    Marcondes R. Clark

    1997-03-01

    Full Text Available In this article we prove the existence and uniqueness of solutions to the mixed problem associated with the nonlinear system $$ u_{tt}-M(int_Omega |abla u|^2dxDelta u+|u|^ ho u+heta =f $$ $$ heta _t -Delta heta +u_{t}=g $$ where $M$ is a positive real function, and $f$ and $g$ are known real functions.

  18. Nonlinear impact of the marketing mix on brand sales performance

    OpenAIRE

    Porto, Rafael Barreiros; Lima, Nolah Schutte da Rocha

    2016-01-01

    The pattern of the impact that marketing activities exert on sales has not been widely examined in the literature. Many studies have adopted restricted linear perspectives, disregarding the empirical evidence. We investigated the nonlinear impact of the marketing mix on the volume of sales, volume of consumers and level of purchasing by each consumer, through a longitudinal study with panel data of brands and consumers simultaneously. We analyzed 121 brands during 13 months, with 793 purchase...

  19. Relaxation and decomposition methods for mixed integer nonlinear programming

    CERN Document Server

    Nowak, Ivo; Bank, RE

    2005-01-01

    This book presents a comprehensive description of efficient methods for solving nonconvex mixed integer nonlinear programs, including several numerical and theoretical results, which are presented here for the first time. It contains many illustrations and an up-to-date bibliography. Because on the emphasis on practical methods, as well as the introduction into the basic theory, the book is accessible to a wide audience. It can be used both as a research and as a graduate text.

  20. Nonlinear wave-mixing processes in the extreme ultraviolet

    International Nuclear Information System (INIS)

    Misoguti, L.; Christov, I. P.; Backus, S.; Murnane, M. M.; Kapteyn, H. C.

    2005-01-01

    We present data from two-color high-order harmonic generation in a hollow waveguide, that suggest the presence of a nonlinear-optical frequency conversion process driven by extreme ultraviolet light. By combining the fundamental and second harmonic of an 800 nm laser in a hollow-core fiber, with varying relative polarizations, and by observing the pressure and power scaling of the various harmonic orders, we show that the data are consistent with a picture where we drive the process of high-harmonic generation, which in turn drives four-wave frequency mixing processes in the extreme EUV. This work promises a method for extending nonlinear optics into the extreme ultraviolet region of the spectrum using an approach that has not previously been considered, and has compelling implications for generating tunable light at short wavelengths

  1. A general theory of two-wave mixing in nonlinear media

    DEFF Research Database (Denmark)

    Chi, Mingjun; Huignard, Jean-Pierre; Petersen, Paul Michael

    2009-01-01

    A general theory of two-wave mixing in nonlinear media is presented. Assuming a gain (or absorption) grating and a refractive index grating are generated because of the nonlinear process in a nonlinear medium, the coupled-wave equations of two-wave mixing are derived based on the Maxwell’s wave e...

  2. Nonlinear spectral mixing theory to model multispectral signatures

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C. [Los Alamos National Lab., NM (United States). Astrophysics and Radiation Measurements Group

    1996-02-01

    Nonlinear spectral mixing occurs due to multiple reflections and transmissions between discrete surfaces, e.g. leaves or facets of a rough surface. The radiosity method is an energy conserving computational method used in thermal engineering and it models nonlinear spectral mixing realistically and accurately. In contrast to the radiative transfer method the radiosity method takes into account the discreteness of the scattering surfaces (e.g. exact location, orientation and shape) such as leaves and includes mutual shading between them. An analytic radiosity-based scattering model for vegetation was developed and used to compute vegetation indices for various configurations. The leaf reflectance and transmittance was modeled using the PROSPECT model for various amounts of water, chlorophyll and variable leaf structure. The soil background was modeled using SOILSPEC with a linear mixture of reflectances of sand, clay and peat. A neural network and a geometry based retrieval scheme were used to retrieve leaf area index and chlorophyll concentration for dense canopies. Only simulated canopy reflectances in the 6 visible through short wave IR Landsat TM channels were used. The authors used an empirical function to compute the signal-to-noise ratio of a retrieved quantity.

  3. Modeling the oxygen uptake kinetics during exercise testing of patients with chronic obstructive pulmonary diseases using nonlinear mixed models

    DEFF Research Database (Denmark)

    Baty, Florent; Ritz, Christian; van Gestel, Arnoldus

    2016-01-01

    describe functionality of the R package medrc that extends the framework of the commonly used packages drc and nlme and allows fitting nonlinear mixed effects models for automated nonlinear regression modeling. The methodology was applied to a data set including 6MWT [Formula: see text]O2 kinetics from 61...... patients with chronic obstructive pulmonary disease (disease severity stage II to IV). The mixed effects approach was compared to a traditional curve-by-curve approach. RESULTS: A six-parameter nonlinear regression model was jointly fitted to the set of [Formula: see text]O2 kinetics. Significant...

  4. Ultrafast Single-Shot Optical Oscilloscope based on Time-to-Space Conversion due to Temporal and Spatial Walk-Off Effects in Nonlinear Mixing Crystal

    Science.gov (United States)

    Takagi, Yoshihiro; Yamada, Yoshifumi; Ishikawa, Kiyoshi; Shimizu, Seiji; Sakabe, Shuji

    2005-09-01

    A simple method for single-shot sub-picosecond optical pulse diagnostics has been demonstrated by imaging the time evolution of the optical mixing onto the beam cross section of the sum-frequency wave when the interrogating pulse passes over the tested pulse in the mixing crystal as a result of the combined effect of group-velocity difference and walk-off beam propagation. A high linearity of the time-to-space projection is deduced from the process solely dependent upon the spatial uniformity of the refractive indices. A snap profile of the accidental coincidence between asynchronous pulses from separate mode-locked lasers has been detected, which demonstrates the single-shot ability.

  5. Constructing a mixed π-conjugated bridge to effectively enhance the nonlinear optical response in the Möbius cyclacene-based systems.

    Science.gov (United States)

    Chen, Liwei; Yu, Guangtao; Chen, Wei; Tu, Chunyun; Zhao, Xingang; Huang, Xuri

    2014-06-14

    Using density functional theory computations, employing the concept of a mixed π-conjugated bridge can effectively improve the first hyperpolarizability (β0) of Möbius cyclacene (MC)-based systems with a D-π-A framework. This mixed π-conjugated bridge is constructed by applying a -(CH=CH)x-NH2 or -(CH=CH)x-NO2 chain to modify [8]MC, which can lead to a considerable β0 value (e.g. [8]MC-(CH=CH)12-NO2 (9.87 × 10(5) au) with only a certain chain length), much larger than the sole [8]MC (261 au) and the corresponding NH2/NO2-modified polyethylene chain with the same π-conjugated length. It is revealed that the substituent sites and the chain length can play a crucial role in improving β0 values of these MC-chain systems, where the β0 value can monotonically increase with increasing -(CH=CH)x- length, and the substituent electron-withdrawing -(CH=CH)x-NO2 chain is superior to the parallel electron-donating -(CH=CH)x-NH2. These appealing findings can provide valuable insights into the design of novel NLO materials based on MC.

  6. Nonlinear dynamics of circularly polarized laser pulse propagating in a magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons distributions

    Energy Technology Data Exchange (ETDEWEB)

    Etemadpour, R.; Dorranian, D., E-mail: doran@srbiau.ac.ir [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sepehri Javan, N. [Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of)

    2016-05-15

    The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.

  7. Nonlinear dynamics of circularly polarized laser pulse propagating in a magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons distributions

    International Nuclear Information System (INIS)

    Etemadpour, R.; Dorranian, D.; Sepehri Javan, N.

    2016-01-01

    The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.

  8. Nonlinear effects in water waves

    International Nuclear Information System (INIS)

    Janssen, P.A.E.M.

    1989-05-01

    This set of lecture notes on nonlinear effects in water waves was written on the occasion of the first ICTP course on Ocean Waves and Tides held from 26 September until 28 October 1988 in Trieste, Italy. It presents a summary and unification of my knowledge on nonlinear effects of gravity waves on an incompressible fluid without vorticity. The starting point of the theory is the Hamiltonian for water waves. The evolution equations of both weakly nonlinear, shallow water and deep water gravity waves are derived by suitable approximation of the energy of the waves, resulting in the Korteweg-de Vries equation and the Zakharov equation, respectively. Next, interesting properties of the KdV equation (solitons) and the Zakharov equation (instability of a finite amplitude wave train) are discussed in some detail. Finally, the evolution of a homogeneous, random wave field due to resonant four wave processes is considered and the importance of this process for ocean wave prediction is pointed out. 38 refs, 21 figs

  9. Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system

    Science.gov (United States)

    Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail

    2018-05-01

    We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.

  10. The Full—Discrete Mixed Finite Element Methods for Nonlinear Hyperbolic Equations

    Institute of Scientific and Technical Information of China (English)

    YanpingCHEN; YunqingHUANG

    1998-01-01

    This article treats mixed finite element methods for second order nonlinear hyperbolic equations.A fully discrete scheme is presented and improved L2-error estimates are established.The convergence of both the function value andthe flux is demonstrated.

  11. Existence of Solutions of Abstract Nonlinear Mixed Functional Integrodifferential equation with nonlocal conditions

    Directory of Open Access Journals (Sweden)

    Dhakne Machindra B.

    2017-04-01

    Full Text Available In this paper we discuss the existence of mild and strong solutions of abstract nonlinear mixed functional integrodifferential equation with nonlocal condition by using Sadovskii’s fixed point theorem and theory of fractional power of operators.

  12. Nonlinear fiber-optic strain sensor based on four-wave mixing in microstructured optical fiber

    DEFF Research Database (Denmark)

    Gu, Bobo; Yuan, Scott Wu; Frosz, Michael H.

    2012-01-01

    We demonstrate a nonlinear fiber-optic strain sensor, which uses the shifts of four-wave mixing Stokes and anti-Stokes peaks caused by the strain-induced changes in the structure and refractive index of a microstructured optical fiber. The sensor thus uses the inherent nonlinearity of the fiber a...

  13. Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.

    Science.gov (United States)

    Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin

    2015-01-01

    The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen.

  14. Transverse effects in nonlinear optics: Toward the photon superfluid

    Science.gov (United States)

    McCormick, Colin Fraser

    Nonlinear optics displays a wealth of transverse effects. These effects are particularly rich in the presence of an optical cavity. Many considerations suggest that in a Kerr nonlinear cavity a new state of light known as a "photon superfluid" can form, with strong analogies to atomic superfluids. The conditions for the formation of the photon superfluid include requirements on the cavity, input light fields and the nonlinear medium as well as various timescales. The most favorable candidate nonlinear medium for observing the photon super-fluid is an atomic vapor. With a strong and fast Kerr effect, atomic vapors also have the advantage of a Kerr coefficient that is tunable in both magnitude and sign. A series of z-scan experiments in far-detuned atomic rubidium vapor is reported, measuring the Kerr coefficient and determining its functional dependence on detuning to be that of a Doppler-broadened two-level model with adiabatic following of the electric field by the atom pseudomoment. Saturation effects are found to be important. Z-scan measurements for detunings within the Doppler profile are shown to agree well with numerical simulations based on the Doppler-broadened model. Agreement between absorptive and refractive non-linear coefficients is evidence of the Kramers-Kronig relations at work, even in this nonlinear system. The formation of the photon superfluid is discussed and the calculation of a new process, nearly collinear four-wave mixing, is presented. This process is essentially an inverse beam filamentation that is likely to be the underlying physical mechanism for transverse cooling and condensation of photons in a nonlinear optical cavity. Nearly collinear four-wave mixing may also be related to phenomena in general nonlinear physics, including modulation instability and Fermi-Pasta-Ulam recurrence.

  15. Estimating marginal properties of quantitative real-time PCR data using nonlinear mixed models

    DEFF Research Database (Denmark)

    Gerhard, Daniel; Bremer, Melanie; Ritz, Christian

    2014-01-01

    A unified modeling framework based on a set of nonlinear mixed models is proposed for flexible modeling of gene expression in real-time PCR experiments. Focus is on estimating the marginal or population-based derived parameters: cycle thresholds and ΔΔc(t), but retaining the conditional mixed mod...

  16. Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves

    Science.gov (United States)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2018-04-01

    While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.

  17. Nonlinear phonons in high-Tc superconductors mixed crystals

    International Nuclear Information System (INIS)

    Gadzhiev, B.R.; Dzhavadov, N.A.

    1998-01-01

    The integrodifferential kinetic equation which is a generalization of the Landau-Ginzburg formalism is introduced. The peculiarities of nonlinear kinetics are investigated by entering the nonlocal function, which is a quantitative measure of time dispersion. The classification nonlocal function is made by its Hausdorff dimensionality d c . It is shown that in the case d c c =1, the relaxation equation is the equation of damping harmonic oscillator. In the case d c >1, the relaxation equation contains the time derivation arbitrary high order. After linearization of the corresponding dynamic equations near the corresponding nonlinear static equations the dispersion and then after spatial averaging, temperature and frequency dependency of corresponding dynamic susceptibility have been determined. It is shown that in the cases d c c >1 the temperature evolution system alongside with the soft mode is accompanied by the modes which depend nonlinearly on the temperature. The physical nature of quasiscattering in the incommensurate phases of layered crystals is studied. The obtained theoretical results are applied to the layered HTSC crystals. (author)

  18. A quadratic approximation-based algorithm for the solution of multiparametric mixed-integer nonlinear programming problems

    KAUST Repository

    Domí nguez, Luis F.; Pistikopoulos, Efstratios N.

    2012-01-01

    An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear

  19. Nonlinear interaction between a pair of oblique modes in a supersonic mixing layer: Long-wave limit

    Science.gov (United States)

    Balsa, Thomas F.; Gartside, James

    1995-01-01

    The nonlinear interaction between a pair of symmetric, oblique, and spatial instability modes is studied in the long-wave limit using asymptotic methods. The base flow is taken to be a supersonic mixing layer whose Mach number is such that the corresponding vortex sheet is marginally stable according to Miles' criterion. It is shown that the amplitude of the mode obeys a nonlinear integro-differential equation. Numerical solutions of this equation show that, when the obliqueness angle is less than pi/4, the effect of the nonlinearity is to enhance the growth rate of the instability. The solution terminates in a singularity at a finite streamwise location. This result is reminiscent of that obtained in the vicinity of the neutral point by other authors in several different types of flows. On the other hand, when the obliqueness angle is more than pi/4, the streamwise development of the amplitude is characterized by a series of modulations. This arises from the fact that the nonlinear term in the amplitude equation may be either stabilizing or destabilizing, depending on the value of the streamwise coordinate. However, even in this case the amplitude of the disturbance increases, though not as rapidly as in the case for which the angle is less than pi/4. Quite generally then, the nonlinear interaction between two oblique modes in a supersonic mixing layer enhances the growth of the disturbance.

  20. Cosmological effects of nonlinear electrodynamics

    International Nuclear Information System (INIS)

    Novello, M; Goulart, E; Salim, J M; Bergliaffa, S E Perez

    2007-01-01

    It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology

  1. Compressibility effects on turbulent mixing

    Science.gov (United States)

    Panickacheril John, John; Donzis, Diego

    2016-11-01

    We investigate the effect of compressibility on passive scalar mixing in isotropic turbulence with a focus on the fundamental mechanisms that are responsible for such effects using a large Direct Numerical Simulation (DNS) database. The database includes simulations with Taylor Reynolds number (Rλ) up to 100, turbulent Mach number (Mt) between 0.1 and 0.6 and Schmidt number (Sc) from 0.5 to 1.0. We present several measures of mixing efficiency on different canonical flows to robustly identify compressibility effects. We found that, like shear layers, mixing is reduced as Mach number increases. However, data also reveal a non-monotonic trend with Mt. To assess directly the effect of dilatational motions we also present results with both dilatational and soleniodal forcing. Analysis suggests that a small fraction of dilatational forcing decreases mixing time at higher Mt. Scalar spectra collapse when normalized by Batchelor variables which suggests that a compressive mechanism similar to Batchelor mixing in incompressible flows might be responsible for better mixing at high Mt and with dilatational forcing compared to pure solenoidal mixing. We also present results on scalar budgets, in particular on production and dissipation. Support from NSF is gratefully acknowledged.

  2. Stochastic effects on the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Flessas, G P; Leach, P G L; Yannacopoulos, A N

    2004-01-01

    The aim of this article is to provide a brief review of recent advances in the field of stochastic effects on the nonlinear Schroedinger equation. The article reviews rigorous and perturbative results. (review article)

  3. On some nonlinear effects in ultrasonic fields

    Science.gov (United States)

    Tjotta

    2000-03-01

    Nonlinear effects associated with intense sound fields in fluids are considered theoretically. Special attention is directed to the study of higher effects that cannot be described within the standard propagation models of nonlinear acoustics (the KZK and Burgers equations). The analysis is based on the fundamental equations of motion for a thermoviscous fluid, for which thermal equations of state exist. Model equations are derived and used to analyze nonlinear sources for generation of flow and heat, and other changes in the ambient state of the fluid. Fluctuations in the coefficients of viscosity and thermal conductivity caused by the sound field, are accounted for. Also considered are nonlinear effects induced in the fluid by flexural vibrations. The intensity and absorption of finite amplitude sound waves are calculated, and related to the sources for generation of higher order effects.

  4. Enhanced Nonlinear Effects in Metamaterials and Plasmonics

    Directory of Open Access Journals (Sweden)

    C. Argyropoulos

    2012-07-01

    Full Text Available In this paper we provide an overview of the anomalous and enhanced nonlinear effects available when optical nonlinear materials are combined inside plasmonic waveguide structures. Broad, bistable and all-optical switching responses are exhibited at the cut-off frequency of these waveguides, characterized by reduced Q-factor resonances. These phenomena are due to the large field enhancement obtained inside specific plasmonic gratings, which ensures a significant boosting of the nonlinear operation. Several exciting applications are proposed, which may potentially lead to new optical components and add to the optical nanocircuit paradigm.

  5. Effects of the ρ - ω mixing interaction in relativistic models

    International Nuclear Information System (INIS)

    Menezes, D.P.; Providencia, C.

    2003-01-01

    The effects of the ρ-ω mixing term in infinite nuclear matter and in finite nuclei are investigated with the non-linear Walecka model in a Thomas-Fermi approximation. For infinite nuclear matter the influence of the mixing term in the binding energy calculated with the NL3 and TM1 parametrizations can be neglected. Its influence on the symmetry energy is only felt for the TM1 with a unrealistically large value for the mixing term strength. For finite nuclei the contribution of the isospin mixing term is very large as compared with the expected value to solve the Nolen-Schiffer anomaly

  6. Existence of solutions for nonlinear mixed type integrodifferential equation of second order

    Directory of Open Access Journals (Sweden)

    Haribhau Laxman Tidke

    2010-04-01

    Full Text Available In this paper, we investigate the existence of solutions for nonlinear mixed Volterra-Fredholm integrodifferential equation of second order with nonlocal conditions in Banach spaces. Our analysis is based on Leray-Schauder alternative, rely on a priori bounds of solutions and the inequality established by B. G. Pachpatte.

  7. The Superconvergence of Mixed Finite Element Methods for Nonlinear Hyperbolic Equations

    Institute of Scientific and Technical Information of China (English)

    YanpingCHEN; YunqingHUANG

    1998-01-01

    Imprioved L2-error estimates are computed for mixed finte element methods for second order nonlinear hyperbolic equations.Superconvergence results,L∞ in time and discrete L2 in space,are derived for both the solution and gradients on the rectangular domain.Results are given for the continuous-time case.

  8. The mixed BVP for second order nonlinear ordinary differential equation at resonance

    Czech Academy of Sciences Publication Activity Database

    Mukhigulashvili, Sulkhan

    2017-01-01

    Roč. 290, 2-3 (2017), s. 393-400 ISSN 0025-584X Institutional support: RVO:67985840 Keywords : mixed problem at resonance * nonlinear ordinary differencial equation Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 0.742, year: 2016

  9. Optical mixing of microwave signals in a nonlinear semiconductor laser amplifier modulator.

    Science.gov (United States)

    Capmany, José; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz

    2002-02-11

    In this paper we propose and evaluate the optical mixing of RF signals by means of exploiting the nonlinearity of a SLA modulator. The results show the potential for devices with low conversion losses (and even gain) and polarization insensitivity and reduced insertion losses.

  10. Superradiance Effects in the Linear and Nonlinear Optical Response of Quantum Dot Molecules

    Science.gov (United States)

    Sitek, A.; Machnikowski, P.

    2008-11-01

    We calculate the linear optical response from a single quantum dot molecule and the nonlinear, four-wave-mixing response from an inhomogeneously broadened ensemble of such molecules. We show that both optical signals are affected by the coupling-dependent superradiance effect and by optical interference between the two polarizations. As a result, the linear and nonlinear responses are not identical.

  11. Multi-disease analysis of maternal antibody decay using non-linear mixed models accounting for censoring.

    Science.gov (United States)

    Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel

    2015-09-10

    Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Kriging with mixed effects models

    Directory of Open Access Journals (Sweden)

    Alessio Pollice

    2007-10-01

    Full Text Available In this paper the effectiveness of the use of mixed effects models for estimation and prediction purposes in spatial statistics for continuous data is reviewed in the classical and Bayesian frameworks. A case study on agricultural data is also provided.

  13. Non-linear mixed-effects modeling for photosynhetic response of Rosa hybrida L. under elevated CO2 in greenhouses - short communication

    DEFF Research Database (Denmark)

    Ozturk, I.; Ottosen, C.O.; Ritz, Christian

    2011-01-01

    conditions. Leaf gas exchanges were measured at 11 light intensities from 0 to 1,400 µmol/m2s, at 800 ppm CO2, 25°C, and 65 ± 5% relative humidity. In order to describe the data corresponding to diff erent measurement dates, the non-linear mixed-eff ects regression analysis was used. Th e model successfully...... effi ciency. Th e results suggested acclimation response, as carbon assimilation rates and stomatal conductance at each measurement date were higher for Escimo than Mercedes. Diff erences in photosynthesis rates were attributed to the adaptive capacity of the cultivars to light conditions at a specifi......Photosynthetic response to light was measured on the leaves of two cultivars of Rosa hybrida L. (Escimo and Mercedes) in the greenhouse to obtain light-response curves and their parameters. Th e aim was to use a model to simulate leaf photosynthetic carbon gain with respect to environmental...

  14. Exact solutions for oscillators with quadratic damping and mixed-parity nonlinearity

    International Nuclear Information System (INIS)

    Lai, S K; Chow, K W

    2012-01-01

    Exact vibration modes of a nonlinear oscillator, which contains both quadratic friction and a mixed-parity restoring force, are derived analytically. Two families of exact solutions are obtained in terms of rational expressions for classical Jacobi elliptic functions. The present solutions allow the investigation of the dynamical behaviour of the system in response to changes in physical parameters that concern nonlinearity. The physical significance of the signs (i.e. attractive or repulsive nature) of the linear, quadratic and cubic restoring forces is discussed. A qualitative analysis is also conducted to provide valuable physical insight into the nature of the system. (paper)

  15. Energy mix and employment effects

    International Nuclear Information System (INIS)

    Wodopia, F.J.

    2005-01-01

    ''Energy Mix and Employment Effects'' is a subject not to be reduced to the so-called ''job argument''. It also involves the question whether it will be possible to achieve consensus again about the composition of a balanced sustainable energy mix. This term must not be interpreted in a static sense; after all, the framework conditions of energy policy are changing. However, this must not render energy policy unsteady. This requirement should be imposed on economic policy in general, i.e. political interventions, it they are really unavoidable, must be predictable on a long term. This contribution also examines the meaning of the term ''energy mix.'' Aspects of the debate about the climate, especially potential factors influencing the climate, are discussed against the backdrop of scientific validity. Other key points covered are the description and analysis of the energy policy framework. One major aspect under study are all kinds of ''subsidies'' of energy resources and the consequences to the whole economy arising from these financial support mechanisms. The findings are projected onto the employment effects. Finally, the question is raised how to design an energy mix sustainable for the future, and how to achieve it politically and in society. (orig.)

  16. Systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces

    Directory of Open Access Journals (Sweden)

    Cho Yeol

    2011-01-01

    Full Text Available Abstract In this paper, the existing theorems and methods for finding solutions of systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces are studied. To overcome the difficulties, due to the presence of a proper convex lower semi-continuous function, φ and a mapping g, which appeared in the considered problem, we have used some applications of the resolvent operator technique. We would like to point out that although many authors have proved results for finding solutions of the systems of nonlinear set-valued (mixed variational inequalities problems, it is clear that it cannot be directly applied to the problems that we have considered in this paper because of φ and g. 2000 AMS Subject Classification: 47H05; 47H09; 47J25; 65J15.

  17. Detailed characterization of CW- and pulsed-pump four-wave mixing in highly nonlinear fibers

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Galili, Michael; Grüner-Nielsen, L.

    2016-01-01

    We present a quantitative comparison of continuouswave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW and pulsed FWM bandwidths are limited in practice. The CWand pulsed-pump parametric gain is charac......We present a quantitative comparison of continuouswave- (CW) and pulsed-pump four-wave mixing (FWM) in commercially available highly nonlinear fibers (HNLFs), and suggest properties for which the CW and pulsed FWM bandwidths are limited in practice. The CWand pulsed-pump parametric gain...... bandwidth. However, an inverse scaling of the TOD with the dispersion fluctuations, leads to different CW-optimized fibers, which depend only on the even dispersion-orders....

  18. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

    DEFF Research Database (Denmark)

    Neumeyer, Stefan; Sorokin, Vladislav; Thomsen, Jon Juel

    2016-01-01

    We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing–Mathieu equation with appended quadratic nonlinearity is considered as the model system......, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic...... nonlinearities may generate additional amplitude–frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi...

  19. A Fast GPU-accelerated Mixed-precision Strategy for Fully NonlinearWater Wave Computations

    DEFF Research Database (Denmark)

    Glimberg, Stefan Lemvig; Engsig-Karup, Allan Peter; Madsen, Morten G.

    2011-01-01

    We present performance results of a mixed-precision strategy developed to improve a recently developed massively parallel GPU-accelerated tool for fast and scalable simulation of unsteady fully nonlinear free surface water waves over uneven depths (Engsig-Karup et.al. 2011). The underlying wave......-preconditioned defect correction method. The improved strategy improves the performance by exploiting architectural features of modern GPUs for mixed precision computations and is tested in a recently developed generic library for fast prototyping of PDE solvers. The new wave tool is applicable to solve and analyze...

  20. On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation

    Directory of Open Access Journals (Sweden)

    Mesloub Said

    2008-01-01

    Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.

  1. Genetic Algorithm for Mixed Integer Nonlinear Bilevel Programming and Applications in Product Family Design

    OpenAIRE

    Chenlu Miao; Gang Du; Yi Xia; Danping Wang

    2016-01-01

    Many leader-follower relationships exist in product family design engineering problems. We use bilevel programming (BLP) to reflect the leader-follower relationship and describe such problems. Product family design problems have unique characteristics; thus, mixed integer nonlinear BLP (MINLBLP), which has both continuous and discrete variables and multiple independent lower-level problems, is widely used in product family optimization. However, BLP is difficult in theory and is an NP-hard pr...

  2. The Geometric Nonlinear Generalized Brazier Effect

    DEFF Research Database (Denmark)

    Nikolajsen, Jan Ánike; Lauridsen, Peter Riddersholm; Damkilde, Lars

    2016-01-01

    that the generalized Brazier effect is a local effect not influencing the overall mechanical behavior of the structure significantly. The offset is a nonlinear geometric beam-type Finite Element calculation, which takes into account the large displacements and rotations. The beam-type model defines the stresses which...... mainly are in the direction of the beam axis. The generalized Brazier effect is calculated as a linear load case based on these stresses....

  3. Nonlinear effects in modulated quantum optomechanics

    Science.gov (United States)

    Yin, Tai-Shuang; Lü, Xin-You; Zheng, Li-Li; Wang, Mei; Li, Sha; Wu, Ying

    2017-05-01

    The nonlinear quantum regime is crucial for implementing interesting quantum effects, which have wide applications in modern quantum science. Here we propose an effective method to reach the nonlinear quantum regime in a modulated optomechanical system (OMS), which is originally in the weak-coupling regime. The mechanical spring constant and optomechanical interaction are modulated periodically. This leads to the result that the resonant optomechanical interaction can be effectively enhanced into the single-photon strong-coupling regime by the modulation-induced mechanical parametric amplification. Moreover, the amplified phonon noise can be suppressed completely by introducing a squeezed vacuum reservoir, which ultimately leads to the realization of photon blockade in a weakly coupled OMS. The reached nonlinear quantum regime also allows us to engineer the nonclassical states (e.g., Schrödinger cat states) of the cavity field, which are robust against the phonon noise. This work offers an alternative approach to enhance the quantum nonlinearity of an OMS, which should expand the applications of cavity optomechanics in the quantum realm.

  4. Genetic Algorithm for Mixed Integer Nonlinear Bilevel Programming and Applications in Product Family Design

    Directory of Open Access Journals (Sweden)

    Chenlu Miao

    2016-01-01

    Full Text Available Many leader-follower relationships exist in product family design engineering problems. We use bilevel programming (BLP to reflect the leader-follower relationship and describe such problems. Product family design problems have unique characteristics; thus, mixed integer nonlinear BLP (MINLBLP, which has both continuous and discrete variables and multiple independent lower-level problems, is widely used in product family optimization. However, BLP is difficult in theory and is an NP-hard problem. Consequently, using traditional methods to solve such problems is difficult. Genetic algorithms (GAs have great value in solving BLP problems, and many studies have designed GAs to solve BLP problems; however, such GAs are typically designed for special cases that do not involve MINLBLP with one or multiple followers. Therefore, we propose a bilevel GA to solve these particular MINLBLP problems, which are widely used in product family problems. We give numerical examples to demonstrate the effectiveness of the proposed algorithm. In addition, a reducer family case study is examined to demonstrate practical applications of the proposed BLGA.

  5. Robust outer synchronization between two nonlinear complex networks with parametric disturbances and mixed time-varying delays

    Science.gov (United States)

    Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng

    2018-03-01

    In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.

  6. Non-linear Isotope Effects

    DEFF Research Database (Denmark)

    Schmidt, Johan Albrecht

    ’s stratosphere is nearly mass dependent, and only a small fraction of the observed anomalous oxygen-17 excess can be attributed to N2O photolysis. In contrast, stratospheric photolysis produces a significant inverse clumped isotope effect.(ii) Stratospheric OCS photolysis significantly enrich the remaining OCS...

  7. Enhancing Thermoelectric Performance Using Nonlinear Transport Effects

    Science.gov (United States)

    Jiang, Jian-Hua; Imry, Yoseph

    2017-06-01

    We study nonlinear transport effects on the maximum efficiency and power for both inelastic and elastic thermoelectric generators. The former device refers to phonon-assisted hopping in double quantum dots, while the latter device is represented by elastic tunneling through a single quantum dot. We find that nonlinear thermoelectric transport can lead to enhanced efficiency and power for both types of devices. A comprehensive survey of various quantum-dot energy, temperature, and parasitic heat conduction reveals that the nonlinear transport-induced improvements of the maximum efficiency and power are overall much more significant for inelastic devices than for elastic devices, even for temperature biases as small as Th=1.2 Tc (Th and Tc are the temperatures of the hot and cold reservoirs, respectively). The underlying mechanism is revealed as due to the fact that, unlike the Fermi distribution, the Bose distribution is not bounded when the temperature bias increases. A large flux density of absorbed phonons leads to a great enhancement of the electrical current, output power, and energy efficiency, dominating over the concurrent increase of the parasitic heat current. Our study reveals that nonlinear transport effects can be a useful tool for improving thermoelectric performance.

  8. Optical Frequency Mixing in Periodically-Patterned and in Quasi-Periodically-Patterned Nonlinear media

    International Nuclear Information System (INIS)

    Arie, A.

    1999-01-01

    Nonlinear frequency mixing processes, e.g. second harmonic generation, sum and difference frequency generation, etc., require matching of the phases of the interacting waves. The traditional method to achieve it is by selecting a specific angle of propagation in a birefringent nonlinear crystal. The main limitation of the birefringent phase matching method stems from the fact that for many interesting interactions, the phase matching condition cannot be satisfied in a specific crystal. This obstacle can be removed by the technique of quasi-phase-matching (QPM), where the nonlinear coefficient of the material is modulated at a fixed spatial frequency that equals the wave-vector phase mismatch between the interacting waves. An important development in recent years is the ability to periodically reverse the sign of the nonlinear coefficient in ferroelectric crystals by applying a high electric field through a periodic electrode. Some recent QPM interactions in periodically-poled KTP that were recently achieved at Tel-Aviv University include continuous-wave optical parametric oscillations, as well as generation of tunable mid-infrared radiation by difference frequency generation. Periodic patterning of the nonlinear coefficient enables to phase match only a single interaction. It would be advantageous to further extend the applications of this technique in order to simultaneously satisfy several interactions on a single crystal. This cannot be usually achieved in a periodic pattern, however more sophisticated quasi-periodic structures can be designed in this case. An interesting analogy can be drawn between artificially-made quasi-periodically-patterned nonlinear crystals and quasi-crystals found in nature, in rapidly-cooled metallic alloys

  9. Nonlinear Talbot Effect and Its Applications

    Science.gov (United States)

    Yang, Zhening

    2018-03-01

    Talbot effect, a lenless self-imaging phenomenon, was first discovered in 1836 by H.F. Talbot. The conventional Talbott effect has been studied for over a hundred years. Recently, the rapid development of optical superlattices has brought a great breakthrough in Talbot effect research. A nonlinear self-imaging phenomenon was found in the periodically poled LiTaO3 (PPLT) crystals. [1][2][3] This nonlinear Talbot effect has applications not only in optics but also in many other fields. For example, the phenomenon is realized by frequency-doubled beams, which offers people a new way to enhance the spatial resolution of the self-images of periodic objects. And by observing the self-image of the second harmonic (SH) field on the sample surface, people can detect the domain structure in the crystal without damaging the sample. Throughout this review paper, an overview of nonlinear Talbot effect and two applications of this phenomenon is presented. Breakthroughs like achieving a super-focused spot and realizing an acousto-optic tunable SH Talbot illuminator will be introduced as well.

  10. Modified Taylor series method for solving nonlinear differential equations with mixed boundary conditions defined on finite intervals.

    Science.gov (United States)

    Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel Antonio; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Marin-Hernandez, Antonio; Herrera-May, Agustin Leobardo; Diaz-Sanchez, Alejandro; Huerta-Chua, Jesus

    2014-01-01

    In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity. The result shows that the MTSM method is capable to generate easily computable and highly accurate approximations for nonlinear equations. 34L30.

  11. Nonlinear effects in varactor-tuned resonators.

    Science.gov (United States)

    Everard, Jeremy; Zhou, Liang

    2006-05-01

    This paper describes the effects of RF power level on the performance of varactor-tuned resonator circuits. A variety of topologies are considered, including series and parallel resonators operating in both unbalanced and balanced modes. As these resonators were designed to produce oscillators with minimum phase noise, the initial small signal insertion loss was set to 6 dB and, hence, QL/Q0 = 1/2. To enable accurate analysis and simulation, S parameter and PSPICE models for the varactors were optimized and developed. It is shown that these resonators start to demonstrate nonlinear operation at very low power levels demonstrating saturation and lowering of the resonant frequency. On occasion squegging is observed for modified bias conditions. The nonlinear effects are dependent on the unloaded Q (Q0), the ratio of loaded to unloaded Q (QL/Q0), the bias voltage, and circuit configurations with typical nonlinear effects occurring at -8 dBm in a circuit with a loaded Q of 63 and a varactor bias voltage of 3 V. Analysis, simulation, and measurements that show close correlation are presented.

  12. Non-linear thermal engineering, chaotic advection and mixing; Thermique non-lineaire, melange et advection chaotique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    This conference day was jointly organized by the `university group of thermal engineering (GUT)` and the French association of thermal engineers. This book of proceedings contains 7 papers entitled: `energy spectra of a passive scalar undergoing advection by a chaotic flow`; `analysis of chaotic behaviours: from topological characterization to modeling`; `temperature homogeneity by Lagrangian chaos in a direct current flow heat exchanger: numerical approach`; ` thermal instabilities in a mixed convection phenomenon: nonlinear dynamics`; `experimental characterization study of the 3-D Lagrangian chaos by thermal analogy`; `influence of coherent structures on the mixing of a passive scalar`; `evaluation of the performance index of a chaotic advection effect heat exchanger for a wide range of Reynolds numbers`. (J.S.)

  13. Mixed Models and Reduction Techniques for Large-Rotation, Nonlinear Analysis of Shells of Revolution with Application to Tires

    Science.gov (United States)

    Noor, A. K.; Andersen, C. M.; Tanner, J. A.

    1984-01-01

    An effective computational strategy is presented for the large-rotation, nonlinear axisymmetric analysis of shells of revolution. The three key elements of the computational strategy are: (1) use of mixed finite-element models with discontinuous stress resultants at the element interfaces; (2) substantial reduction in the total number of degrees of freedom through the use of a multiple-parameter reduction technique; and (3) reduction in the size of the analysis model through the decomposition of asymmetric loads into symmetric and antisymmetric components coupled with the use of the multiple-parameter reduction technique. The potential of the proposed computational strategy is discussed. Numerical results are presented to demonstrate the high accuracy of the mixed models developed and to show the potential of using the proposed computational strategy for the analysis of tires.

  14. Non-linear thermal engineering, chaotic advection and mixing; Thermique non-lineaire, melange et advection chaotique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was jointly organized by the `university group of thermal engineering (GUT)` and the French association of thermal engineers. This book of proceedings contains 7 papers entitled: `energy spectra of a passive scalar undergoing advection by a chaotic flow`; `analysis of chaotic behaviours: from topological characterization to modeling`; `temperature homogeneity by Lagrangian chaos in a direct current flow heat exchanger: numerical approach`; ` thermal instabilities in a mixed convection phenomenon: nonlinear dynamics`; `experimental characterization study of the 3-D Lagrangian chaos by thermal analogy`; `influence of coherent structures on the mixing of a passive scalar`; `evaluation of the performance index of a chaotic advection effect heat exchanger for a wide range of Reynolds numbers`. (J.S.)

  15. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    Science.gov (United States)

    Varenyk, O. V.; Silibin, M. V.; Kiselev, D. A.; Eliseev, E. A.; Kalinin, S. V.; Morozovska, A. N.

    2015-08-01

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. The obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers, which are of potential interest for flexible and high-density non-volatile memory devices.

  16. Self-consistent modelling of electrochemical strain microscopy in mixed ionic-electronic conductors: Nonlinear and dynamic regimes

    Energy Technology Data Exchange (ETDEWEB)

    Varenyk, O. V.; Morozovska, A. N., E-mail: sergei2@ornl.gov, E-mail: anna.n.morozovska@gmail.com [Institute of Physics, National Academy of Sciences of Ukraine, 46, pr. Nauky, 03028 Kyiv (Ukraine); Silibin, M. V. [National Research University of Electronic Technology “MIET,” 124498 Moscow (Russian Federation); Kiselev, D. A. [National University of Science and Technology “MISiS,” 119049 Moscow, Leninskiy pr. 4 (Russian Federation); Eliseev, E. A. [Institute for Problems of Materials Science, NAS of Ukraine, Krjijanovskogo 3, 03142 Kyiv (Ukraine); Kalinin, S. V., E-mail: sergei2@ornl.gov, E-mail: anna.n.morozovska@gmail.com [The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-08-21

    The frequency dependent Electrochemical Strain Microscopy (ESM) response of mixed ionic-electronic conductors is analyzed within the framework of Fermi-Dirac statistics and the Vegard law, accounting for steric effects from mobile donors. The emergence of dynamic charge waves and nonlinear deformation of the surface in response to bias applied to the tip-surface junction is numerically explored. The 2D maps of the strain and concentration distributions across the mixed ionic-electronic conductor and bias-induced surface displacements are calculated. The obtained numerical results can be applied to quantify the ESM response of Li-based solid electrolytes, materials with resistive switching, and electroactive ferroelectric polymers, which are of potential interest for flexible and high-density non-volatile memory devices.

  17. Mixed-integer nonlinear approach for the optimal scheduling of a head-dependent hydro chain

    Energy Technology Data Exchange (ETDEWEB)

    Catalao, J.P.S.; Pousinho, H.M.I. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)

    2010-08-15

    This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning a head-dependent hydro chain. We propose a novel mixed-integer nonlinear programming (MINLP) approach, considering hydroelectric power generation as a nonlinear function of water discharge and of the head. As a new contribution to earlier studies, we model the on-off behavior of the hydro plants using integer variables, in order to avoid water discharges at forbidden areas. Thus, an enhanced STHS is provided due to the more realistic modeling presented in this paper. Our approach has been applied successfully to solve a test case based on one of the Portuguese cascaded hydro systems with a negligible computational time requirement. (author)

  18. Optimal design of geometrically nonlinear shells of revolution with using the mixed finite element method

    Science.gov (United States)

    Stupishin, L. U.; Nikitin, K. E.; Kolesnikov, A. G.

    2018-02-01

    The article is concerned with a methodology of optimal design of geometrically nonlinear (flexible) shells of revolution of minimum weight with strength, stability and strain constraints. The problem of optimal design with constraints is reduced to the problem of unconstrained minimization using the penalty functions method. Stress-strain state of shell is determined within the geometrically nonlinear deformation theory. A special feature of the methodology is the use of a mixed finite-element formulation based on the Galerkin method. Test problems for determining the optimal form and thickness distribution of a shell of minimum weight are considered. The validity of the results obtained using the developed methodology is analyzed, and the efficiency of various optimization algorithms is compared to solve the set problem. The developed methodology has demonstrated the possibility and accuracy of finding the optimal solution.

  19. A Nonlinear Model of Mix Coil Spring – Rubber for Vertical Suspension of Railway Vehicle

    Directory of Open Access Journals (Sweden)

    Dumitriu Mădălina

    2016-03-01

    Full Text Available The paper focuses on a nonlinear model to represent the mechanical behaviour of a mix coil spring - rubber used in the secondary suspension of passenger rail vehicles. The principle of the model relies on overlapping of the forces corresponding to three components - the elastic component, the viscous component and the dry friction component. The model has two sources on non-linearity, in the elastic force and the friction force, respectively. The main attributes of the model are made visible by its response to an imposed displacement-type harmonic excitation. The results thus obtained from the applications of numerical simulation show a series of basic properties of the model, namely the dependence on amplitude and the excitation frequency of the model response, as well as of its stiffness and damping.

  20. Compatible-strain mixed finite element methods for incompressible nonlinear elasticity

    Science.gov (United States)

    Faghih Shojaei, Mostafa; Yavari, Arash

    2018-05-01

    We introduce a new family of mixed finite elements for incompressible nonlinear elasticity - compatible-strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent unknown fields. In particular, we define the displacement in H1, the displacement gradient in H (curl), the stress in H (div), and the pressure field in L2. The test spaces of the mixed formulations are chosen to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields. This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard compatibility condition and the continuity of traction at the discrete level independently of the refinement level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.

  1. Genome association study through nonlinear mixed models revealed new candidate genes for pig growth curves

    Directory of Open Access Journals (Sweden)

    Fabyano Fonseca e Silva

    Full Text Available ABSTRACT: Genome association analyses have been successful in identifying quantitative trait loci (QTLs for pig body weights measured at a single age. However, when considering the whole weight trajectories over time in the context of genome association analyses, it is important to look at the markers that affect growth curve parameters. The easiest way to consider them is via the two-step method, in which the growth curve parameters and marker effects are estimated separately, thereby resulting in a reduction of the statistical power and the precision of estimates. One efficient solution is to adopt nonlinear mixed models (NMM, which enables a joint modeling of the individual growth curves and marker effects. Our aim was to propose a genome association analysis for growth curves in pigs based on NMM as well as to compare it with the traditional two-step method. In addition, we also aimed to identify the nearest candidate genes related to significant SNP (single nucleotide polymorphism markers. The NMM presented a higher number of significant SNPs for adult weight (A and maturity rate (K, and provided a direct way to test SNP significance simultaneously for both the A and K parameters. Furthermore, all significant SNPs from the two-step method were also reported in the NMM analysis. The ontology of the three candidate genes (SH3BGRL2, MAPK14, and MYL9 derived from significant SNPs (simultaneously affecting A and K allows us to make inferences with regards to their contribution to the pig growth process in the population studied.

  2. A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates

    Science.gov (United States)

    Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.

    2012-01-01

    A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…

  3. Ranking scientific publications: the effect of nonlinearity

    Science.gov (United States)

    Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; di, Zengru

    2014-10-01

    Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected.

  4. Ranking scientific publications: the effect of nonlinearity.

    Science.gov (United States)

    Yao, Liyang; Wei, Tian; Zeng, An; Fan, Ying; Di, Zengru

    2014-10-17

    Ranking the significance of scientific publications is a long-standing challenge. The network-based analysis is a natural and common approach for evaluating the scientific credit of papers. Although the number of citations has been widely used as a metric to rank papers, recently some iterative processes such as the well-known PageRank algorithm have been applied to the citation networks to address this problem. In this paper, we introduce nonlinearity to the PageRank algorithm when aggregating resources from different nodes to further enhance the effect of important papers. The validation of our method is performed on the data of American Physical Society (APS) journals. The results indicate that the nonlinearity improves the performance of the PageRank algorithm in terms of ranking effectiveness, as well as robustness against malicious manipulations. Although the nonlinearity analysis is based on the PageRank algorithm, it can be easily extended to other iterative ranking algorithms and similar improvements are expected.

  5. Linear and Weakly Nonlinear Instability of Shallow Mixing Layers with Variable Friction

    Directory of Open Access Journals (Sweden)

    Irina Eglite

    2018-01-01

    Full Text Available Linear and weakly nonlinear instability of shallow mixing layers is analysed in the present paper. It is assumed that the resistance force varies in the transverse direction. Linear stability problem is solved numerically using collocation method. It is shown that the increase in the ratio of the friction coefficients in the main channel to that in the floodplain has a stabilizing influence on the flow. The amplitude evolution equation for the most unstable mode (the complex Ginzburg–Landau equation is derived from the shallow water equations under the rigid-lid assumption. Results of numerical calculations are presented.

  6. A Kind of Nonlinear Programming Problem Based on Mixed Fuzzy Relation Equations Constraints

    Science.gov (United States)

    Li, Jinquan; Feng, Shuang; Mi, Honghai

    In this work, a kind of nonlinear programming problem with non-differential objective function and under the constraints expressed by a system of mixed fuzzy relation equations is investigated. First, some properties of this kind of optimization problem are obtained. Then, a polynomial-time algorithm for this kind of optimization problem is proposed based on these properties. Furthermore, we show that this algorithm is optimal for the considered optimization problem in this paper. Finally, numerical examples are provided to illustrate our algorithms.

  7. Bryan's effect and anisotropic nonlinear damping

    Science.gov (United States)

    Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.

    2018-03-01

    In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.

  8. All-Optical Control of Linear and Nonlinear Energy Transfer via the Zeno Effect

    Science.gov (United States)

    Guo, Xiang; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.

    2018-05-01

    Microresonator-based nonlinear processes are fundamental to applications including microcomb generation, parametric frequency conversion, and harmonics generation. While nonlinear processes involving either second- (χ(2 )) or third- (χ(3 )) order nonlinearity have been extensively studied, the interaction between these two basic nonlinear processes has seldom been reported. In this paper we demonstrate a coherent interplay between second- and third- order nonlinear processes. The parametric (χ(2 ) ) coupling to a lossy ancillary mode shortens the lifetime of the target photonic mode and suppresses its density of states, preventing the photon emissions into the target photonic mode via the Zeno effect. Such an effect is then used to control the stimulated four-wave mixing process and realize a suppression ratio of 34.5.

  9. Analysis of a nonlinear mixed Cournot game with boundedly rational players

    International Nuclear Information System (INIS)

    Zhu, Xiaolong; Zhu, Weidong; Yu, Lei

    2014-01-01

    Highlights: • A dynamic nonlinear mixed Cournot game with a semipublic firm and a private firm is developed. • The stability of the Nash equilibrium and complex dynamic features are discussed. • The production adjustment costs are proved to inhibit the stability of the Nash equilibrium sometimes. -- Abstract: In this paper, we consider a creative case where one semipublic firm endeavors to maximize the weighted average on social welfare and its own profit while the other private firm only intends to maximize its own profit, so we bring in a dynamic nonlinear mixed Cournot model with bounded rationality. The locally asymptotical stability of the unique Nash equilibrium is also investigated and complex dynamic features including period doubling bifurcations, strange attractors and chaotic phenomena are also discussed. Furthermore, by introducing production adjustment costs into the model, we will show that sometimes they violate the locally asymptotical stability of the Nash equilibrium, compared to the well-known results under the best response dynamic when these costs act as a stabilizing factor

  10. Nonlinear effects on mode-converted lower-hybrid waves

    International Nuclear Information System (INIS)

    Kuehl, H.H.

    1976-01-01

    Nonlinear ponderomotive force effects on mode-converted lower-hybrid waves are considered. The nonlinear distortion of these waves is shown to be governed by the cubic nonlinear Schroedinger equation. The threshold condition for self-focusing and filamentation is derived

  11. Phase mixing of transverse oscillations in the linear and nonlinear regimes for IFR relativistic electron beam propagation

    International Nuclear Information System (INIS)

    Shokair, I.R.

    1991-01-01

    Phase mixing of transverse oscillations changes the nature of the ion hose instability from an absolute to a convective instability. The stronger the phase mixing, the faster an electron beam reaches equilibrium with the guiding ion channel. This is important for long distance propagation of relativistic electron beams where it is desired that transverse oscillations phase mix within a few betatron wavelengths of injection and subsequently an equilibrium is reached with no further beam emittance growth. In the linear regime phase mixing is well understood and results in asymptotic decay of transverse oscillations as 1/Z 2 for a Gaussian beam and channel system, Z being the axial distance measured in betatron wavelengths. In the nonlinear regime (which is likely mode of propagation for long pulse beams) results of the spread mass model indicate that phase mixing is considerably weaker than in the regime. In this paper we consider this problem of phase mixing in the nonlinear regime. Results of the spread mass model will be shown along with a simple analysis of phase mixing for multiple oscillator models. Particle simulations also indicate that phase mixing is weaker in nonlinear regime than in the linear regime. These results will also be shown. 3 refs., 4 figs

  12. Sensitive detection of malachite green and crystal violet by nonlinear laser wave mixing and capillary electrophoresis.

    Science.gov (United States)

    Maxwell, Eric J; Tong, William G

    2016-05-01

    An ultrasensitive label-free antibody-free detection method for malachite green and crystal violet is presented using nonlinear laser wave-mixing spectroscopy and capillary zone electrophoresis. Wave-mixing spectroscopy provides a sensitive absorption-based detection method for trace analytes. This is accomplished by forming dynamic gratings within a sample cell, which diffracts light to create a coherent laser-like signal beam with high optical efficiency and high signal-to-noise ratio. A cubic dependence on laser power and square dependence on analyte concentration make wave mixing sensitive enough to detect molecules in their native form without the use of fluorescent labels for signal enhancement. A 532 nm laser and a 635 nm laser were used for malachite green and crystal violet sample excitation. The use of two lasers of different wavelengths allows the method to simultaneously detect both analytes. Selectivity is obtained through the capillary zone electrophoresis separation, which results in characteristic migration times. Measurement in capillary zone electrophoresis resulted in a limit of detection of 6.9 × 10(-10)M (2.5 × 10(-19) mol) for crystal violet and 8.3 × 10(-11)M (3.0 × 10(-20) mol) for malachite green at S/N of 2. Copyright © 2016. Published by Elsevier B.V.

  13. The effect of excitation intensity variation and silver nanoparticle codoping on nonlinear optical properties of mixed tellurite and zinc oxide glass doped with Nd2O3 studied through ultrafast z-scan spectroscopy

    Science.gov (United States)

    Moreira, L.; Falci, R. F.; Darabian, H.; Anjos, V.; Bell, M. J. V.; Kassab, L. R. P.; Bordon, C. D. S.; Doualan, J. L.; Camy, P.; Moncorgé, R.

    2018-05-01

    The research on Nd3+ doped new solid-state laser hosts with specific thermo-mechanical and optical properties is very active. Nd3+ doped tellurite glasses are suitable for these applications. They have high linear and nonlinear refraction index, wide transmittance range. The TeO2-ZnO (TZO) glass considered in the present work combines all those features and the nonlinear optical properties can be used for the development of Kerr-lens mode-locked sub picosecond lasers. Recently the laser performance of Nd3+ doped TZO glass and was reported and laser slope efficiency of 21% was observed. We investigate how the intensity variation and the silver nanoparticles codoping affects the nonlinear optical properties of Nd3+ doped TZO glasses. Intensity dependent nonlinear refraction indices coefficients at 750, 800 and 850 nm were observed. The nonlinear optical features were obtained through ultrafast single beam z-scan technique with excitations at 750, 800 and 850 nm and are up to two orders of magnitude higher than those reported in the literature.

  14. Nonlinear ion-mixing-mode particle transport in the dissipative trapped electron regime

    International Nuclear Information System (INIS)

    Ware, A.S.; Terry, P.W.

    1993-09-01

    The nonlinear particle transport arising from the convection of nonadiabatic electron density by ion temperature gradient driven turbulence is examined for trapped electron collisionality regimes. The renormalized dissipative nonadiabatic trapped electron phase space density response is derived and used to calculate the nonlinear particle flux along with an ansatz for the turbulently broadened frequency spectrum. In the lower temperature end of this regime, trapped electrons are collisional and all components of the quasilinear particle flux are outward (i.e., in the direction of the gradients). Nonlinear effects can alter the phase between the nonadiabatic trapped electron phase space density and the electrostatic potential, producing inward components in the particle flux. Specifically, both turbulent shifting of the peak of the frequency spectrum and nonlinear source terms in the trapped electron response can give rise to inward components. However, in the dissipative regime these terms are small and the trapped electron response remains dominantly laminar. When the trapped electrons are collisionless, there is a temperature threshold above which the electron temperature gradient driven component of the quasilinear particle flux changes sign and becomes inward. For finite amplitude turbulence, however, turbulent broadening of both the electron collisional resonance and the frequency spectrum removes tills threshold., and the temperature gradient driven component remains outward

  15. Interval Oscillation Criteria of Second Order Mixed Nonlinear Impulsive Differential Equations with Delay

    Directory of Open Access Journals (Sweden)

    Zhonghai Guo

    2012-01-01

    Full Text Available We study the following second order mixed nonlinear impulsive differential equations with delay (r(tΦα(x′(t′+p0(tΦα(x(t+∑i=1npi(tΦβi(x(t-σ=e(t, t≥t0, t≠τk,x(τk+=akx(τk, x'(τk+=bkx'(τk, k=1,2,…, where Φ*(u=|u|*-1u, σ is a nonnegative constant, {τk} denotes the impulsive moments sequence, and τk+1-τk>σ. Some sufficient conditions for the interval oscillation criteria of the equations are obtained. The results obtained generalize and improve earlier ones. Two examples are considered to illustrate the main results.

  16. Spatiotemporal chaos in mixed linear-nonlinear two-dimensional coupled logistic map lattice

    Science.gov (United States)

    Zhang, Ying-Qian; He, Yi; Wang, Xing-Yuan

    2018-01-01

    We investigate a new spatiotemporal dynamics with mixing degrees of nonlinear chaotic maps for spatial coupling connections based on 2DCML. Here, the coupling methods are including with linear neighborhood coupling and the nonlinear chaotic map coupling of lattices, and the former 2DCML system is only a special case in the proposed system. In this paper the criteria such Kolmogorov-Sinai entropy density and universality, bifurcation diagrams, space-amplitude and snapshot pattern diagrams are provided in order to investigate the chaotic behaviors of the proposed system. Furthermore, we also investigate the parameter ranges of the proposed system which holds those features in comparisons with those of the 2DCML system and the MLNCML system. Theoretical analysis and computer simulation indicate that the proposed system contains features such as the higher percentage of lattices in chaotic behaviors for most of parameters, less periodic windows in bifurcation diagrams and the larger range of parameters for chaotic behaviors, which is more suitable for cryptography.

  17. Exponential L2-L∞ Filtering for a Class of Stochastic System with Mixed Delays and Nonlinear Perturbations

    Directory of Open Access Journals (Sweden)

    Zhaohui Chen

    2013-01-01

    Full Text Available The delay-dependent exponential L2-L∞ performance analysis and filter design are investigated for stochastic systems with mixed delays and nonlinear perturbations. Based on the delay partitioning and integral partitioning technique, an improved delay-dependent sufficient condition for the existence of the L2-L∞ filter is established, by choosing an appropriate Lyapunov-Krasovskii functional and constructing a new integral inequality. The full-order filter design approaches are obtained in terms of linear matrix inequalities (LMIs. By solving the LMIs and using matrix decomposition, the desired filter gains can be obtained, which ensure that the filter error system is exponentially stable with a prescribed L2-L∞ performance γ. Numerical examples are provided to illustrate the effectiveness and significant improvement of the proposed method.

  18. Improved effective potential by nonlinear canonical transformations

    International Nuclear Information System (INIS)

    Ritschel, U.

    1990-01-01

    We generalize the familiar gaussian-effective-potential formalism to a class of non-gaussian trial states. With the help of exact nonlinear canonical transformations, expectation values can be calculated analytically and in closed form. A detailed description of our method, particularly for quadratic and cubic transformations, and of the related renormalization procedure is given. Applications to φ 4 -models in various dimensionalities are treated. We find the expected critical behaviour in two space-time dimensions. In three and four dimensions we observe instabilities which go back the incompleteness of the gaussian-based renormalization. In the appendices it is shown that the quadratic transformation leads to a coherent state in a certain limiting case, and the generalization to systems at finite temperature is performed. (orig.)

  19. Mixing in thermally stratified nonlinear spin-up with uniform boundary fluxes

    International Nuclear Information System (INIS)

    Baghdasarian, Meline; Pacheco-Vega, Arturo; Pacheco, J. Rafael; Verzicco, Roberto

    2014-01-01

    Studies of stratified spin-up experiments in enclosed cylinders have reported the presence of small pockets of well-mixed fluids but quantitative measurements of the mixedness of the fluid has been lacking. Previous numerical simulations have not addressed these measurements. Here we present numerical simulations that explain how the combined effect of spin-up and thermal boundary conditions enhances or hinders mixing of a fluid in a cylinder. The energy of the system is characterized by splitting the potential energy into diabatic and adiabatic components, and measurements of efficiency of mixing are based on both, the ratio of dissipation of available potential energy to forcing and variance of temperature. The numerical simulations of the Navier–Stokes equations for the problem with different sets of thermal boundary conditions at the horizontal walls helped shed some light on the physical mechanisms of mixing, for which a clear explanation was absent

  20. Mixing in thermally stratified nonlinear spin-up with uniform boundary fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Baghdasarian, Meline; Pacheco-Vega, Arturo [Department of Mechanical Engineering, California State University, Los Angeles, Los Angeles, California 90032 (United States); Pacheco, J. Rafael, E-mail: rpacheco@asu.edu [SAP Americas Inc., Scottsdale, Arizona 85251 (United States); School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona 85287 (United States); Environmental Fluid Dynamics Laboratories, Department of Civil Engineering and Geological Sciences, The University of Notre Dame, South Bend, Indiana 46556 (United States); Verzicco, Roberto [Dipartimento di Ingegneria Meccanica, Universita di Roma “Tor Vergata”, Via del Politecnico 1, 00133, Roma (Italy); PoF, University of Twente, 7500 AE Enschede (Netherlands)

    2014-09-15

    Studies of stratified spin-up experiments in enclosed cylinders have reported the presence of small pockets of well-mixed fluids but quantitative measurements of the mixedness of the fluid has been lacking. Previous numerical simulations have not addressed these measurements. Here we present numerical simulations that explain how the combined effect of spin-up and thermal boundary conditions enhances or hinders mixing of a fluid in a cylinder. The energy of the system is characterized by splitting the potential energy into diabatic and adiabatic components, and measurements of efficiency of mixing are based on both, the ratio of dissipation of available potential energy to forcing and variance of temperature. The numerical simulations of the Navier–Stokes equations for the problem with different sets of thermal boundary conditions at the horizontal walls helped shed some light on the physical mechanisms of mixing, for which a clear explanation was absent.

  1. Nonlinear space charge effect of bunched beam in linac

    International Nuclear Information System (INIS)

    Chen Yinbao

    1992-02-01

    The nonlinear space charge effect due to the nonuniform particle density distribution in bunched beam of a linac is discussed. The formulae of nonlinear space charge effect and nonlinear focusing forces were derived for the bunched beam with Kapchinskij-Vladimirskij (K-V) distribution, waterbag (WB) distribution, parabolic (PA) distribution, and Gauss (GA) distribution in both of the space charge disk model and space charge cylinder model in the waveguide of a linac

  2. Nonlinear effects on bremsstrahlung emission in dusty plasmas

    International Nuclear Information System (INIS)

    Kim, Young-Woo; Jung, Young-Dae

    2004-01-01

    Nonlinear effects on the bremsstrahlung process due to ion-dust grain collisions are investigated in dusty plasmas. The nonlinear screened interaction potential is applied to obtain the Fourier coefficients of the force acting on the dust grain. The classical trajectory analysis is applied to obtain the differential bremsstrahlung radiation cross section as a function of the scaled impact parameter, projectile energy, photon energy, and Debye length. The result shows that the nonlinear effects suppress the bremsstrahlung radiation cross section due to collisions of ions with positively charged dust grains. These nonlinear effects decrease with increasing Debye length and temperature, and increase with increasing radiation photon energy

  3. Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load

    International Nuclear Information System (INIS)

    Esfandiar, Habib; KoraYem, Moharam Habibnejad

    2015-01-01

    In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.

  4. Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load

    Energy Technology Data Exchange (ETDEWEB)

    Esfandiar, Habib; KoraYem, Moharam Habibnejad [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-09-15

    In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.

  5. A mixed-order nonlinear diffusion compressed sensing MR image reconstruction.

    Science.gov (United States)

    Joy, Ajin; Paul, Joseph Suresh

    2018-03-07

    Avoid formation of staircase artifacts in nonlinear diffusion-based MR image reconstruction without compromising computational speed. Whereas second-order diffusion encourages the evolution of pixel neighborhood with uniform intensities, fourth-order diffusion considers smooth region to be not necessarily a uniform intensity region but also a planar region. Therefore, a controlled application of fourth-order diffusivity function is used to encourage second-order diffusion to reconstruct the smooth regions of the image as a plane rather than a group of blocks, while not being strong enough to introduce the undesirable speckle effect. Proposed method is compared with second- and fourth-order nonlinear diffusion reconstruction, total variation (TV), total generalized variation, and higher degree TV using in vivo data sets for different undersampling levels with application to dictionary learning-based reconstruction. It is observed that the proposed technique preserves sharp boundaries in the image while preventing the formation of staircase artifacts in the regions of smoothly varying pixel intensities. It also shows reduced error measures compared with second-order nonlinear diffusion reconstruction or TV and converges faster than TV-based methods. Because nonlinear diffusion is known to be an effective alternative to TV for edge-preserving reconstruction, the crucial aspect of staircase artifact removal is addressed. Reconstruction is found to be stable for the experimentally determined range of fourth-order regularization parameter, and therefore not does not introduce a parameter search. Hence, the computational simplicity of second-order diffusion is retained. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Use of nonlinear dose-effect models to predict consequences

    International Nuclear Information System (INIS)

    Seiler, F.A.; Alvarez, J.L.

    1996-01-01

    The linear dose-effect relationship was introduced as a model for the induction of cancer from exposure to nuclear radiation. Subsequently, it has been used by analogy to assess the risk of chemical carcinogens also. Recently, however, the model for radiation carcinogenesis has come increasingly under attack because its calculations contradict the epidemiological data, such as cancer in atomic bomb survivors. Even so, its proponents vigorously defend it, often using arguments that are not so much scientific as a mix of scientific, societal, and often political arguments. At least in part, the resilience of the linear model is due to two convenient properties that are exclusive to linearity: First, the risk of an event is determined solely by the event dose; second, the total risk of a population group depends only on the total population dose. In reality, the linear model has been conclusively falsified; i.e., it has been shown to make wrong predictions, and once this fact is generally realized, the scientific method calls for a new paradigm model. As all alternative models are by necessity nonlinear, all the convenient properties of the linear model are invalid, and calculational procedures have to be used that are appropriate for nonlinear models

  7. Development of a shortleaf pine individual-tree growth equation using non-linear mixed modeling techniques

    Science.gov (United States)

    Chakra B. Budhathoki; Thomas B. Lynch; James M. Guldin

    2010-01-01

    Nonlinear mixed-modeling methods were used to estimate parameters in an individual-tree basal area growth model for shortleaf pine (Pinus echinata Mill.). Shortleaf pine individual-tree growth data were available from over 200 permanently established 0.2-acre fixed-radius plots located in naturally-occurring even-aged shortleaf pine forests on the...

  8. Characterization of Spectral Magnification based on Four-Wave Mixing in Nonlinear Fibre for Advanced Modulation Formats

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Corcoran, B.; Galili, Michael

    2017-01-01

    We characterize the performance of 4× spectral magnification based on four-wave mixing in optimized nonlinear fibres, for 4/8/16-QAM formats, and report >19-nm operational bandwidth. Predominantly OSNR penalties of ~1 dB per bit/QAM-symbol from aberrations non-intrinsic to time lenses are observed....

  9. Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps

    Directory of Open Access Journals (Sweden)

    Katarzyna Krupa

    2012-01-01

    Full Text Available We experimentally study four-wave mixing in highly nonlinear fibers using two independent and partially coherent laser pumps and a third coherent signal. We focus our attention on the Bragg-scattering frequency conversion. The two pumps were obtained by amplifying two Intracavity frequency-shifted feedback lasers working in a continuous wave regime.

  10. Rapid assessment of nonlinear optical propagation effects in dielectrics

    Science.gov (United States)

    Hoyo, J. Del; de La Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.

    2015-01-01

    Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.

  11. Analytical evaluation of nonlinear distortion effects on multicarrier signals

    CERN Document Server

    Araújo, Theresa

    2015-01-01

    Due to their ability to support reliable high quality of service as well as spectral and power efficiency, multicarrier modulation systems have found increasing use in modern communications services. However, one of the main drawbacks of these systems is their vulnerability to nonlinear distortion effects. Analytical Evaluation of Nonlinear Distortion Effects on Multicarrier Signals details a unified approach to well-known analytical results on memoryless nonlinearities that takes advantage of the Gaussian behavior of multicarrier signals.Sharing new insights into the behavior of nonlinearly d

  12. Vibrational mechanics nonlinear dynamic effects, general approach, applications

    CERN Document Server

    Blekhman, Iliya I

    2000-01-01

    This important book deals with vibrational mechanics - the new, intensively developing section of nonlinear dynamics and the theory of nonlinear oscillations. It offers a general approach to the study of the effect of vibration on nonlinear mechanical systems.The book presents the mathematical apparatus of vibrational mechanics which is used to describe such nonlinear effects as the disappearance and appearance under vibration of stable positions of equilibrium and motions (i.e. attractors), the change of the rheological properties of the media, self-synchronization, self-balancing, the vibrat

  13. Effects of high light intensities on the optical Kerr nonlinearity of semiconducting polymers

    International Nuclear Information System (INIS)

    Charra, Fabrice

    1990-01-01

    Experimental investigations, in the picosecond time scale, of the Kerr type optical nonlinearity (or pump and probe) are presented. The nonlinear molecules semiconducting polymers of the type poly-diacetylene. The degenerate case (pump and probe at the same frequency) has been studied by four wave mixing at 1064 nm, in the configuration of phase conjugation. It is shown that the response is dominated by high orders of nonlinearity. The results are analysed in terms of two photon resonance. The non-degenerate case is studied by two wave mixing or in the optical Kerr gate experiment. The optical Stark effect and the differential spectra of photoinduced species are analysed. Two photon excitations at 1064 nm and one photon excitations at 532 nm are compared. A consequence of the mechanism of the nonlinearity is the possibility of generating phase conjugate waves at double frequency. The theoretical analysis and the experimental demonstration of this process are presented. The experiment is only sensitive to nonlinearities of the fifth order or more and thus allows to clarify its origins and dynamics. Finally, quantum modelling and calculations of the nonlinear optical responses, developed for the interpretations of the above experiments, are presented. (author) [fr

  14. Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity

    International Nuclear Information System (INIS)

    Granovsky, Alexander B.; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru

    2003-01-01

    We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D i =ε i (0) E i +χ i (3) |E i | 2 E i . We assume that linear ε i (0) and cubic nonlinear χ i (3) dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function χ eff (3) can be significantly greater (up to 10 3 times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity

  15. Effective-medium theory for nonlinear magneto-optics in magnetic granular alloys: cubic nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, Alexander B. E-mail: granov@magn.ru; Kuzmichov, Michail V.; Clerc, J.-P.; Inoue, Mitsuteru

    2003-03-01

    We propose a simple effective-medium approach for calculating the effective dielectric function of a magnetic metal-insulator granular alloy in which there is a weakly nonlinear relation between electric displacement D and electric field E for both constituent materials of the form D{sub i}={epsilon}{sub i}{sup (0)}E{sub i} +{chi}{sub i}{sup (3)}|E{sub i}|{sup 2}E{sub i}. We assume that linear {epsilon}{sub i}{sup (0)} and cubic nonlinear {chi}{sub i}{sup (3)} dielectric functions are diagonal and linear with magnetization non-diagonal components. For such metal-insulator composite magneto-optical effects depend on a light intensity and the effective cubic dielectric function {chi}{sub eff}{sup (3)} can be significantly greater (up to 10{sup 3} times) than that for constituent materials. The calculation scheme is based on the Bergman and Stroud-Hui theory of nonlinear optical properties of granular matter. The giant cubic magneto-optical nonlinearity is found for composites with metallic volume fraction close to the percolation threshold and at a resonance of optical conductivity. It is shown that a composite may exhibit nonlinear magneto-optics even when both constituent materials have no cubic magneto-optical nonlinearity.

  16. Mixed linear-nonlinear fault slip inversion: Bayesian inference of model, weighting, and smoothing parameters

    Science.gov (United States)

    Fukuda, J.; Johnson, K. M.

    2009-12-01

    Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress

  17. Exact modelling of the optical bistability in ferroelectics via two-wave mixing: A system with full nonlinearity

    Science.gov (United States)

    Khushaini, Muhammad Asif A.; Ibrahim, Abdel-Baset M. A.; Choudhury, P. K.

    2018-05-01

    In this paper, we provide a complete mathematical model of the phenomenon of optical bistability (OB) resulting from the degenerate two-wave mixing (TWM) process of laser beams interacting with a single nonlinear layer of ferroelectric material. Starting with the electromagnetic wave equation for optical wave propagating in nonlinear media, a nonlinear coupled wave (CW) system with both self-phase modulation (SPM) and cross-phase modulation (XPM) sources of nonlinearity are derived. The complete CW system with full nonlinearity is solved numerically and a comparison between both the cases of with and without SPM at various combinations of design parameters is given. Furthermore, to provide a reliable theoretical model for the OB via TWM process, the results obtained theoretically are compared with the available experimental data. We found that the nonlinear system without SPM fails to predict the bistable response at lower combinations of the input parameters. However, at relatively higher values, the solution without SPM shows a reduction in the switching contrast and period in the OB response. A comparison with the experimental results shows better agreement with the system with full nonlinearity.

  18. Effect of mixing on properties of SCC

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Ekstrand, John Peter; Hansen, Rune

    2007-01-01

    agglomerates will remain. The paper focuses on the effect of mixing schedule on self-compacting concrete properties. Workability and micro structure of a typical Danish self-compacting concrete mixed at varying intensity and with addition of superplasticizer in either one or two batches are described....... The observations indicate that the most homogeneous concrete does not necessarily exhibit the lowest rheological properties....

  19. Performance of Different OCDMA Codes with FWM and XPM Nonlinear Effects

    Science.gov (United States)

    Rana, Shivani; Gupta, Amit

    2017-08-01

    In this paper, 1 Gb/s non-linear optical code division multiple access system have been simulated and modeled. To reduce multiple user interference multi-diagonal (MD) code which possesses the property of having zero cross-correlation have been deployed. The MD code shows better results than Walsh-Hadamard and multi-weight code under the nonlinear effect of four-wave mixing (FWM) and cross-phase modulation (XPM). The simulation results reveal that effect of FWM reduces when MD codes are employed as compared to other codes.

  20. Visualizing Statistical Mix Effects and Simpson's Paradox.

    Science.gov (United States)

    Armstrong, Zan; Wattenberg, Martin

    2014-12-01

    We discuss how "mix effects" can surprise users of visualizations and potentially lead them to incorrect conclusions. This statistical issue (also known as "omitted variable bias" or, in extreme cases, as "Simpson's paradox") is widespread and can affect any visualization in which the quantity of interest is an aggregated value such as a weighted sum or average. Our first contribution is to document how mix effects can be a serious issue for visualizations, and we analyze how mix effects can cause problems in a variety of popular visualization techniques, from bar charts to treemaps. Our second contribution is a new technique, the "comet chart," that is meant to ameliorate some of these issues.

  1. Research on nonlinearity effect of secondary electron multiplier

    International Nuclear Information System (INIS)

    Wei Xingjian; Liao Junsheng; Deng Dachao; Yu Chunrong; Yuan Li

    2007-01-01

    The nonlinearity of secondary electron multiplier (SEM) of a thermal ionization mass spectrometer has been researched by using UTB-500 uranium isotope reference material and multi-collecting technique. The results show that the nonlinearity effect of SEM exists in the whole ion counting range, and there is an extreme point of the nonlinearity when the ion counting rate is about 20000 cps. The deviation between measured value of the extreme point and the reference value of the reference sample can be up to 3%, and the nonlinearity obeys logarithm linearity law on both sides of extreme point. A kind of mathematics model of nonlinearity calibration has been put forward. Using this model, the nonlinearity of SEM of TIMS can be calibrated. (authors)

  2. Mixed mobile ion effect in fluorozincate glasses

    International Nuclear Information System (INIS)

    Ghosh, S; Ghosh, A

    2005-01-01

    The mixed mobile ion effect has been investigated for the first time in zinc fluoride glasses where in addition to alkali cations fluorine anions also participate in the diffusion process, unlike mixed alkali oxide glasses. The minimum in the conductivity, conductivity relaxation frequency, crossover frequency and decoupling index indicates the existence of the mixed mobile ion effect in these fluoride glasses. It has been observed that the non-exponential parameter and the frequency exponent are independent of temperature. It has been established that alkali ions and fluorine anions exhibit lower dimensionality of the conduction pathways in mixed alkali zinc fluoride glasses than that in the single alkali lithium based zinc fluoride glasses while they are migrating. From the scaling of the conductivity spectra, it has been established that the relaxation dynamics in mixed alkali zinc fluoride glasses is independent of temperature and composition

  3. Nonlinear Ion Harmonics in the Paul Trap with Added Octopole Field: Theoretical Characterization and New Insight into Nonlinear Resonance Effect.

    Science.gov (United States)

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu

    2016-02-01

    The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.

  4. Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming

    Science.gov (United States)

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398

  5. Strong coupling between coherent gratings due to nonlinear spatial frequency mixing in Bi12SiO20

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Buchhave, P.; Petersen, Paul Michael

    1996-01-01

    Nonlinear interactions between multiple coherent photorefractive gratings in Bi12SiO20 are investigated. It is demonstrated that the nonlinear mixing, or cross talk, is strongly influenced by the intensity ration kappa between the two object beams. The diffraction efficiency of a specific grating...... may be increased or strongly decreased depending on kappa. In the limit of a weak reference beam intensity compared to the sum of the object beam intencities, we derive an analytical expression for the cross talk valid for all kappa. Furthermore, we find the value of kappa yielding zero cross talk. We...

  6. Modelling lactation curve for milk fat to protein ratio in Iranian buffaloes (Bubalus bubalis) using non-linear mixed models.

    Science.gov (United States)

    Hossein-Zadeh, Navid Ghavi

    2016-08-01

    The aim of this study was to compare seven non-linear mathematical models (Brody, Wood, Dhanoa, Sikka, Nelder, Rook and Dijkstra) to examine their efficiency in describing the lactation curves for milk fat to protein ratio (FPR) in Iranian buffaloes. Data were 43 818 test-day records for FPR from the first three lactations of Iranian buffaloes which were collected on 523 dairy herds in the period from 1996 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly FPR records of buffaloes using the non-linear mixed model procedure (PROC NLMIXED) in SAS and the parameters were estimated. The models were tested for goodness of fit using Akaike's information criterion (AIC), Bayesian information criterion (BIC) and log maximum likelihood (-2 Log L). The Nelder and Sikka mixed models provided the best fit of lactation curve for FPR in the first and second lactations of Iranian buffaloes, respectively. However, Wood, Dhanoa and Sikka mixed models provided the best fit of lactation curve for FPR in the third parity buffaloes. Evaluation of first, second and third lactation features showed that all models, except for Dijkstra model in the third lactation, under-predicted test time at which daily FPR was minimum. On the other hand, minimum FPR was over-predicted by all equations. Evaluation of the different models used in this study indicated that non-linear mixed models were sufficient for fitting test-day FPR records of Iranian buffaloes.

  7. Three-Field Modelling of Nonlinear Nonsmooth Boundary Value Problems and Stability of Differential Mixed Variational Inequalities

    Directory of Open Access Journals (Sweden)

    J. Gwinner

    2013-01-01

    Full Text Available The purpose of this paper is twofold. Firstly we consider nonlinear nonsmooth elliptic boundary value problems, and also related parabolic initial boundary value problems that model in a simplified way steady-state unilateral contact with Tresca friction in solid mechanics, respectively, stem from nonlinear transient heat conduction with unilateral boundary conditions. Here a recent duality approach, that augments the classical Babuška-Brezzi saddle point formulation for mixed variational problems to twofold saddle point formulations, is extended to the nonsmooth problems under consideration. This approach leads to variational inequalities of mixed form for three coupled fields as unknowns and to related differential mixed variational inequalities in the time-dependent case. Secondly we are concerned with the stability of the solution set of a general class of differential mixed variational inequalities. Here we present a novel upper set convergence result with respect to perturbations in the data, including perturbations of the associated nonlinear maps, the nonsmooth convex functionals, and the convex constraint set. We employ epiconvergence for the convergence of the functionals and Mosco convergence for set convergence. We impose weak convergence assumptions on the perturbed maps using the monotonicity method of Browder and Minty.

  8. Inverse Higgs effect in nonlinear realizations

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Ogievetskij, V.I.

    1975-01-01

    In theories with nonlinearly realized symmetry it is possible in a number of cases to eliminate some initial Goldstone and gauge fields by means of putting appropriate Cartan forms equal to zero. This is called the inverse Higgs phenomenon. We give a general treatment of the inverse Higgs phenomenon for gauge and space-time symmetries and consider four instructive examples which are the elimination of unessential gauge fields in chiral symmetry and in non-linearly realized supersymmetry and also the elimination of unessential Goldstone fields in the spontaneously broken conformal and projective symmetries

  9. Effect of gain nonlinearity in semiconductor lasers

    DEFF Research Database (Denmark)

    Jensen, Niels H.; Christiansen, Peter Leth; Skovgaard, Ove

    1988-01-01

    Semiconductor lasers are modeled by single-mode rate equations with Langevin noise terms and the influence of nonlinear gain is investigated. For cw operation the probability distribution for the carrier number and the photon number in the laser cavity is obtained. The corresponding (2+1)-dimensi......Semiconductor lasers are modeled by single-mode rate equations with Langevin noise terms and the influence of nonlinear gain is investigated. For cw operation the probability distribution for the carrier number and the photon number in the laser cavity is obtained. The corresponding (2...

  10. Theory of plasmonic effects in nonlinear optics: the case of graphene

    Science.gov (United States)

    Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco; Mikhail I. Katsnelson Collaboration; Habib Rostami; Marco Polini Collaboration

    The nonlinear optical properties of two-dimensional electronic systems are beginning to attract considerable interest both in the theoretical and experimental sectors. Recent experiments on the nonlinear optical properties of graphene reveal considerably strong third harmonic generation and four-wave mixing of this single-atomic-layer electronic system. We develop a large-N theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved. This work was supported by Fondazione Istituto Italiano di Tecnologia, the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore, and the ERC Advanced Grant 338957 FEMTO/NANO (M.I.K.).

  11. Mixed-Integer Nonlinear Programming for Aircraft Conflict Avoidance by Sequentially Applying Velocity and Heading Angle Changes

    OpenAIRE

    Cafieri , Sonia; Omheni , Riadh

    2016-01-01

    International audience; We consider the problem of aircraft conflict avoidance in Air Traffic Management systems. Given an initial configuration of a number of aircraft sharing the same airspace, the main goal of conflict avoidance is to guarantee that a minimum safety distance between each pair of aircraft is always respected during their flights. We consider aircraft separation achieved by heading angle deviations, and propose a mixed 0-1 nonlinear optimization model, that is then combined ...

  12. A quadratic approximation-based algorithm for the solution of multiparametric mixed-integer nonlinear programming problems

    KAUST Repository

    Domínguez, Luis F.

    2012-06-25

    An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear programming subproblem and a mixed-integer nonlinear programming subproblem to provide a series of parametric upper and lower bounds. The primal subproblem is formulated by fixing the integer variables and solved through a series of multiparametric quadratic programming (mp-QP) problems based on quadratic approximations of the objective function, while the deterministic master subproblem is formulated so as to provide feasible integer solutions for the next primal subproblem. To reduce the computational effort when infeasibilities are encountered at the vertices of the critical regions (CRs) generated by the primal subproblem, a simplicial approximation approach is used to obtain CRs that are feasible at each of their vertices. The algorithm terminates when there does not exist an integer solution that is better than the one previously used by the primal problem. Through a series of examples, the proposed algorithm is compared with a multiparametric mixed-integer outer approximation (mp-MIOA) algorithm to demonstrate its computational advantages. © 2012 American Institute of Chemical Engineers (AIChE).

  13. Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion.

    Science.gov (United States)

    Zhang, Xiao-Liang; Liu, Zhi-Bo; Li, Xiao-Chun; Ma, Qiang; Chen, Xu-Dong; Tian, Jian-Guo; Xu, Yan-Fei; Chen, Yong-Sheng

    2013-03-25

    The nonlinear refraction (NLR) properties of graphene oxide (GO) in N, N-Dimethylformamide (DMF) was studied in nanosecond, picosecond and femtosecond time regimes by Z-scan technique. Results show that the dispersion of GO in DMF exhibits negative NLR properties in nanosecond time regime, which is mainly attributed to transient thermal effect in the dispersion. The dispersion also exhibits negative NLR in picosecond and femtosecond time regimes, which are arising from sp(2)- hybridized carbon domains and sp(3)- hybridized matrix in GO sheets. To illustrate the relations between NLR and nonlinear absorption (NLA), NLA properties of the dispersion were also studied in nanosecond, picosecond and femtosecond time regimes.

  14. Effect of Mixing Process on Polypropylene Modified Bituminous Concrete Mix Properties

    OpenAIRE

    Noor Zainab Habib; Ibrahim Kamaruddin; Madzalan Napiah; Isa Mohd Tan

    2011-01-01

    This paper presents a research conducted to investigate the effect of mixing process on polypropylene (PP) modified bitumen mixed with well graded aggregate to form modified bituminous concrete mix. Two mode of mixing, namely dry and wet with different concentration of polymer polypropylene was used with 80/100 pen bitumen, to evaluate the bituminous concrete mix properties. Three percentages of polymer varying from 1-3% by the weight of bitumen was used in this study. Three mixes namely cont...

  15. Mixed-effects regression models in linguistics

    CERN Document Server

    Heylen, Kris; Geeraerts, Dirk

    2018-01-01

    When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-specific random effects are called mixed-effects regression models, or simply mixed models. Mixed models are a versatile tool that can handle both balanced and unbalanced datasets and that can also be applied when several layers of grouping are present in the data; these layers can either be nested or crossed.  In linguistics, as in many other fields, the use of mixed models has gained ground rapidly over the last decade. This methodological evolution enables us to build more sophisticated and arguably more realistic models, but, due to its technical complexity, also introduces new challenges. This volume brings together a number of promising new evolutions in the use of mixed models in linguistics, but also addres...

  16. Effects of nonlinear phase modulation on Bragg scattering in the low-conversion regime

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Cargill, D. S.; McKinstrie, C. J.

    2012-01-01

    In this paper, we consider the effects of nonlinear phase modulation on frequency conversion by four-wave mixing (Bragg scattering) in the low-conversion regime. We derive the Green functions for this process using the time-domain collision method, for partial collisions, in which the four fields...... interact at the beginning or the end of the fiber, and complete collisions, in which the four fields interact at the midpoint of the fiber. If the Green function is separable, there is only one output Schmidt mode, which is free from temporal entanglement. We find that nonlinear phase modulation always...... chirps the input and output Schmidt modes and renders the Green function formally nonseparable. However, by pre-chirping the pumps, one can reduce the chirps of the Schmidt modes and enable approximate separability. Thus, even in the presence of nonlinear phase modulation, frequency conversion...

  17. Non-Linear Effects in Knowledge Production

    Science.gov (United States)

    Purica, Ionut

    2007-04-01

    The generation of technological knowledge is paramount to our present development; the production of technological knowledge is governed by the same Cobb Douglas type model, with the means of research and the intelligence level replacing capital, respectively labor. We are exploring the basic behavior of present days' economies that are producing technological knowledge, along with the `usual' industrial production and determine a basic behavior that turns out to be a `Henon attractor'. Measures are introduced for the gain of technological knowledge and for the information of technological sequences that are based respectively on the underlying multi-valued modal logic of the technological research and on nonlinear thermodynamic considerations.

  18. New Delay-Dependent Robust Exponential Stability Criteria of LPD Neutral Systems with Mixed Time-Varying Delays and Nonlinear Perturbations

    Directory of Open Access Journals (Sweden)

    Sirada Pinjai

    2013-01-01

    Full Text Available This paper is concerned with the problem of robust exponential stability for linear parameter-dependent (LPD neutral systems with mixed time-varying delays and nonlinear perturbations. Based on a new parameter-dependent Lyapunov-Krasovskii functional, Leibniz-Newton formula, decomposition technique of coefficient matrix, free-weighting matrices, Cauchy’s inequality, modified version of Jensen’s inequality, model transformation, and linear matrix inequality technique, new delay-dependent robust exponential stability criteria are established in terms of linear matrix inequalities (LMIs. Numerical examples are given to show the effectiveness and less conservativeness of the proposed methods.

  19. QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Dalgaard, Kjeld; Lei, Lei

    2013-01-01

    A phase-sensitive four-wave mixing (FWM) scheme enabling the simultaneous conversion of the two orthogonal quadratures of an optical signal to different wavelengths is demonstrated for the first time under dynamic operation using a highly nonlinear optical fiber (HNLF) as the nonlinear medium...

  20. THEORETICAL EVALUATION OF NONLINEAR EFFECTS ON OPTICAL WDM NETWORKS WITH VARIOUS FIBER TYPES

    Directory of Open Access Journals (Sweden)

    YASIN M. KARFAA

    2010-09-01

    Full Text Available A theoretical study is carried out to evaluate the performance of an opticalwavelength division multiplexing (WDM network transmission system in the presenceof crosstalk due to optical fiber nonlinearities. The most significant nonlinear effects inthe optical fiber which are Cross-Phase Modulation (XPM, Four-Wave Mixing (FWM,and Stimulated Raman Scattering (SRS are investigated. Four types of optical fiber areincluded in the analysis; these are: single-mode fiber (SMF, dispersion compensationfiber (DCF, non-zero dispersion fiber (NZDF, and non-zero dispersion shifted fiber(NZDSF. The results represent the standard deviation of nonlinearity induced crosstalknoise power due to FWM and SRS, XPM power penalty for SMF, DCF, NZDF, andNZDSF types of fiber, besides the Bit Error Rate (BER for the three nonlinear effectsusing standard fiber type (SMF. It is concluded that three significant fiber nonlinearitiesare making huge limitations against increasing the launched power which is desired,otherwise, lower values of launched power limit network expansion including length,distance, covered areas, and number of users accessing the WDM network, unlesssuitable precautions are taken to neutralize the nonlinear effects. Besides, various fibertypes are not behaving similarly towards network parameters.

  1. Two-dimensional effects in nonlinear Kronig-Penney models

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Christiansen, Peter Leth; Rasmussen, Kim

    1997-01-01

    An analysis of two-dimensional (2D) effects in the nonlinear Kronig-Penney model is presented. We establish an effective one-dimensional description of the 2D effects, resulting in a set of pseudodifferential equations. The stationary states of the 2D system and their stability is studied...

  2. Pump depletion effects in thermal degenerate four-wave mixing

    International Nuclear Information System (INIS)

    Guha, S.; Chen, W.

    1987-01-01

    Characteristics such as a large magnitude of nonlinearity, fast response, broadband operation, and easy availability make absorbing liquids attractive candidates for performing phase conjugation of optical beams by degenerate four-wave mixing. The coupled-wave equations describing the interaction of four optical fields in an absorbing medium have been solved previously for the case of no pump depletion and no self-action of any of the beams. When studying phase conjugation oscillation, however, the effect of depletion of the pump beams on the phase conjugate reflectivity must be considered. Moreover, in absorbing media the self-action effects are always present. The coupled-wave equations, including the self-action terms for all four waves involved, are derived here for the first time to the authors' knowledge. For the case of small absorption, these equations are solved analytically, and the effect of pump depletion on phase conjugate reflectivity R is determined. In the absence of the pump depletion, R is proportional to tan 2 (Ql), where Ql is a dimensionless gain parameter characterizing the nonlinear medium and the input pump power. When pump depletion and self-action are included, R does not go to infinity when Ql equals odd multiples of π2. Instead R takes on values dependent on the probe ratio q 1 , which is the ratio of the input probe irradiance to the input pump irradiance. The authors find that the maximum value for R is 1q 1 . They also find that for Ql close to odd multiples of π2, the reflectivity is significantly reduced from the value obtained by ignoring pump depletion, even for probe ratios as small as one-tenth of 1%. Experimental confirmation of this theory, using an argon-ion laser as the pump and carbon tetrachloride mixed with a dye as the absorbing medium, is in progress and is reported

  3. Nonextensive GES instability with nonlinear pressure effects

    Directory of Open Access Journals (Sweden)

    Munmi Gohain

    2018-03-01

    Full Text Available We herein analyze the instability dynamics associated with the nonextensive nonthermal gravito-electrostatic sheath (GES model for the perturbed solar plasma portraiture. The usual neutral gas approximation is herewith judiciously relaxed and the laboratory plasma-wall interaction physics is procedurally incorporated amid barotropic nonlinearity. The main motivation here stems from the true nature of the solar plasma system as a set of concentric nonlocal nonthermal sub-layers as evidenced from different multi-space satellite probes and missions. The formalism couples the solar interior plasma (SIP, bounded and solar wind plasma (SWP, unbounded via the diffused solar surface boundary (SSB formed due to an exact long-range gravito-electrostatic force-equilibration. A linear normal mode ansatz reveals both dispersive and non-dispersive features of the modified GES collective wave excitations. It is seen that the thermostatistical GES stability depends solely on the electron-to-ion temperature ratio. The damping behavior on both the scales is more pronounced in the acoustic domain, K→∞, than the gravitational domain, K→0; where, K is the Jeans-normalized angular wave number. It offers a unique quasi-linear coupling of the gravitational and acoustic fluctuations amid the GES force action. The results may be useful to see the excitation dynamics of natural normal modes in bounded nonextensive astero-environs from a new viewpoint of the plasma-wall coupling mechanism.

  4. Nonextensive GES instability with nonlinear pressure effects

    Science.gov (United States)

    Gohain, Munmi; Karmakar, Pralay Kumar

    2018-03-01

    We herein analyze the instability dynamics associated with the nonextensive nonthermal gravito-electrostatic sheath (GES) model for the perturbed solar plasma portraiture. The usual neutral gas approximation is herewith judiciously relaxed and the laboratory plasma-wall interaction physics is procedurally incorporated amid barotropic nonlinearity. The main motivation here stems from the true nature of the solar plasma system as a set of concentric nonlocal nonthermal sub-layers as evidenced from different multi-space satellite probes and missions. The formalism couples the solar interior plasma (SIP, bounded) and solar wind plasma (SWP, unbounded) via the diffused solar surface boundary (SSB) formed due to an exact long-range gravito-electrostatic force-equilibration. A linear normal mode ansatz reveals both dispersive and non-dispersive features of the modified GES collective wave excitations. It is seen that the thermostatistical GES stability depends solely on the electron-to-ion temperature ratio. The damping behavior on both the scales is more pronounced in the acoustic domain, K → ∞ , than the gravitational domain, K → 0 ; where, K is the Jeans-normalized angular wave number. It offers a unique quasi-linear coupling of the gravitational and acoustic fluctuations amid the GES force action. The results may be useful to see the excitation dynamics of natural normal modes in bounded nonextensive astero-environs from a new viewpoint of the plasma-wall coupling mechanism.

  5. Comparison of simulated and measured response of load rejection on A hydro power plant model with mixed mode nonlinear controller

    Energy Technology Data Exchange (ETDEWEB)

    Babunski, Darko; Tuneski, Atanasko; Zaev, Emil [Faculty of Mechanical Engineering, ' Ss. Cyril and Methodius' University, Skopje (Macedonia, The Former Yugoslav Republic of)

    2014-07-01

    Revised Hydro Power Plant model of the IEEE working group recommended converted to state space model is used for simulation of transient response of hydro turbine, and verification was made using measurements of transients from real Hydro Power Plant (HPP). Nonlinear mixed model controller was designed and implemented into complete HPP simulation model and compared with PID with real parameters used in HPP, and with adjusted PID parameters with consideration of smallest frequency error. Verification of performance of the model was made comparing model response with measured load rejection, which is worst case of HPP operation. (Author)

  6. Bright, dark, and mixed vector soliton solutions of the general coupled nonlinear Schrödinger equations.

    Science.gov (United States)

    Agalarov, Agalar; Zhulego, Vladimir; Gadzhimuradov, Telman

    2015-04-01

    The reduction procedure for the general coupled nonlinear Schrödinger (GCNLS) equations with four-wave mixing terms is proposed. It is shown that the GCNLS system is equivalent to the well known integrable families of the Manakov and Makhankov U(n,m)-vector models. This equivalence allows us to construct bright-bright and dark-dark solitons and a quasibreather-dark solution with unconventional dynamics: the density of the first component oscillates in space and time, whereas the density of the second component does not. The collision properties of solitons are also studied.

  7. Effect of Integral Non-Linearity on Energy Calibration of ...

    African Journals Online (AJOL)

    The integral non-linearity (INL) of four spectroscopy systems, two integrated (A1 and A2) and two classical (B1 and B2) systems was determined using pulses from a random pulse generator. The effect of INL on the system's energy calibration was also determined. The effect is minimal in the classical system at high ...

  8. Zeno effect and switching of solitons in nonlinear couplers

    DEFF Research Database (Denmark)

    Abdullaev, F Kh; Konotop, V V; Ögren, Magnus

    2011-01-01

    The Zeno effect is investigated for soliton type pulses in a nonlinear directional coupler with dissipation. The effect consists in increase of the coupler transparency with increase of the dissipative losses in one of the arms. It is shown that localized dissipation can lead to switching...

  9. Nonlinear beam clean-up using resonantly enhanced sum-frequency mixing

    DEFF Research Database (Denmark)

    Karamehmedovic, Emir; Pedersen, Christian; Jensen, Ole Bjarlin

    2009-01-01

    We investigate the possibility of improving the beam quality and obtaining high conversion efficiency in nonlinear sum-frequency generation. A 765 nm beam from an external cavity tapered diode laser is single-passed through a nonlinear crystal situated in the high intracavity field of a 1342 nm N......:YVO4 laser, generating a SFG beam at 488 nm. The ECDL have MH^2=1.9 and MV^2=2.4 and the solid-state laser has M^2...

  10. On the origin of the mixed alkali effect on indentation in silicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, J. C.

    2014-01-01

    The compositional scaling of Vickers hardness (Hv) in mixed alkali oxide glasses manifests itself as a positive deviation from linearity as a function of the network modifier/modifier ratio, with a maximum deviation at the ratio of 1:1. In this work, we investigate the link between the indentation...... deformation processes (elastic deformation, plastic deformation, and densification) and Hv in two mixed sodium–potassium silicate glass series. We show that the mixed alkali effect in Hv originates from the nonlinear scaling of the resistance to plastic deformation. We thus confirm a direct relation between...... the resistance to plastic flow and Hv in mixed modifier glasses. Furthermore, we find that the mixed alkali effect also manifests itself as a positive deviation from linearity in the compositional scaling of density for glasses with high alumina content. This trend could be linked to a compaction of the network...

  11. Nonlinear Dynamics of Silicon Nanowire Resonator Considering Nonlocal Effect.

    Science.gov (United States)

    Jin, Leisheng; Li, Lijie

    2017-12-01

    In this work, nonlinear dynamics of silicon nanowire resonator considering nonlocal effect has been investigated. For the first time, dynamical parameters (e.g., resonant frequency, Duffing coefficient, and the damping ratio) that directly influence the nonlinear dynamics of the nanostructure have been derived. Subsequently, by calculating their response with the varied nonlocal coefficient, it is unveiled that the nonlocal effect makes more obvious impacts at the starting range (from zero to a small value), while the impact of nonlocal effect becomes weaker when the nonlocal term reaches to a certain threshold value. Furthermore, to characterize the role played by nonlocal effect in exerting influence on nonlinear behaviors such as bifurcation and chaos (typical phenomena in nonlinear dynamics of nanoscale devices), we have calculated the Lyapunov exponents and bifurcation diagram with and without nonlocal effect, and results shows the nonlocal effect causes the most significant effect as the device is at resonance. This work advances the development of nanowire resonators that are working beyond linear regime.

  12. Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis

    Directory of Open Access Journals (Sweden)

    D. Béal

    2010-02-01

    Full Text Available In biogeochemical models coupled to ocean circulation models, vertical mixing is an important physical process which governs the nutrient supply and the plankton residence in the euphotic layer. However, vertical mixing is often poorly represented in numerical simulations because of approximate parameterizations of sub-grid scale turbulence, wind forcing errors and other mis-represented processes such as restratification by mesoscale eddies. Getting a sufficient knowledge of the nature and structure of these errors is necessary to implement appropriate data assimilation methods and to evaluate if they can be controlled by a given observation system.

    In this paper, Monte Carlo simulations are conducted to study mixing errors induced by approximate wind forcings in a three-dimensional coupled physical-biogeochemical model of the North Atlantic with a 1/4° horizontal resolution. An ensemble forecast involving 200 members is performed during the 1998 spring bloom, by prescribing perturbations of the wind forcing to generate mixing errors. The biogeochemical response is shown to be rather complex because of nonlinearities and threshold effects in the coupled model. The response of the surface phytoplankton depends on the region of interest and is particularly sensitive to the local stratification. In addition, the statistical relationships computed between the various physical and biogeochemical variables reflect the signature of the non-Gaussian behaviour of the system. It is shown that significant information on the ecosystem can be retrieved from observations of chlorophyll concentration or sea surface temperature if a simple nonlinear change of variables (anamorphosis is performed by mapping separately and locally the ensemble percentiles of the distributions of each state variable on the Gaussian percentiles. The results of idealized observational updates (performed with perfect observations and neglecting horizontal correlations

  13. Three wave mixing test of hyperelasticity in highly nonlinear solids: sedimentary rocks.

    Science.gov (United States)

    D'Angelo, R M; Winkler, K W; Johnson, D L

    2008-02-01

    Measurements of three-wave mixing amplitudes on solids whose third order elastic constants have also been measured by means of the elasto-acoustic effect are reported. Because attenuation and diffraction are important aspects of the measurement technique results are analyzed using a frequency domain version of the KZK equation, modified to accommodate an arbitrary frequency dependence to the attenuation. It is found that the value of beta so deduced for poly(methylmethacrylate) (PMMA) agrees quite well with that predicted from the stress-dependent sound speed measurements, establishing that PMMA may be considered a hyperelastic solid, in this context. The beta values of sedimentary rocks, though they are typically two orders of magnitude larger than, e.g., PMMA's, are still a factor of 3-10 less than those predicted from the elasto-acoustic effect. Moreover, these samples exhibit significant heterogeneity on a centimeter scale, which heterogeneity is not apparent from a measurement of the position dependent sound speed.

  14. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    Science.gov (United States)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  15. Parameterization of Mixed Layer and Deep-Ocean Mesoscales Including Nonlinearity

    Science.gov (United States)

    Canuto, V. M.; Cheng, Y.; Dubovikov, M. S.; Howard, A. M.; Leboissetier, A.

    2018-01-01

    In 2011, Chelton et al. carried out a comprehensive census of mesoscales using altimetry data and reached the following conclusions: "essentially all of the observed mesoscale features are nonlinear" and "mesoscales do not move with the mean velocity but with their own drift velocity," which is "the most germane of all the nonlinear metrics."� Accounting for these results in a mesoscale parameterization presents conceptual and practical challenges since linear analysis is no longer usable and one needs a model of nonlinearity. A mesoscale parameterization is presented that has the following features: 1) it is based on the solutions of the nonlinear mesoscale dynamical equations, 2) it describes arbitrary tracers, 3) it includes adiabatic (A) and diabatic (D) regimes, 4) the eddy-induced velocity is the sum of a Gent and McWilliams (GM) term plus a new term representing the difference between drift and mean velocities, 5) the new term lowers the transfer of mean potential energy to mesoscales, 6) the isopycnal slopes are not as flat as in the GM case, 7) deep-ocean stratification is enhanced compared to previous parameterizations where being more weakly stratified allowed a large heat uptake that is not observed, 8) the strength of the Deacon cell is reduced. The numerical results are from a stand-alone ocean code with Coordinated Ocean-Ice Reference Experiment I (CORE-I) normal-year forcing.

  16. Wavelength conversion, time demultiplexing and multicasting based on cross-phase modulation and four-wave mixing in dispersion-flattened highly nonlinear photonic crystal fiber

    International Nuclear Information System (INIS)

    Hui, Zhan-Qiang; Zhang, Jian-Guo

    2012-01-01

    We propose the use of cross-phase modulation (XPM) and four-wave mixing (FWM) in dispersion-flattened highly nonlinear photonic crystal fibers (HNL-PCFs) to implement the functionalities of wavelength conversion, simultaneous time demultiplexing and wavelength multicasting in optical time-division multiplexing (OTDM) systems. The experiments on wavelength conversion at 80 Gbit s −1 and OTDM demultiplexing from 80 to 10 Gbit s −1 with wavelength multicasting of two channels are successfully demonstrated to validate the proposed scheme, which are carried out by using two segments of dispersion-flattened HNL-PCFs with lengths of 100 and 50 m, respectively. Moreover, the bit error rate (BER) performance is also measured. The results show that our designed system can achieve a power penalty of less than 4.6 dB for two multicasting channels with a 24 nm wavelength span at the BER of 10 −9 when compared with the 10 Gbit/s back-to-back measurement. The proposed system is transparent to bit rate since only an ultrafast third-order nonlinear effect is used. The resulting configuration is compact, robust and reliable, benefiting from the use of dispersion-flattened HNL-PCFs with short lengths. This also makes the proposed system more flexible in the operational wavelengths than those based on dispersion-shifted fibers and traditional highly nonlinear fibers. (paper)

  17. On Mixed Data and Event Driven Design for Adaptive-Critic-Based Nonlinear $H_{\\infty}$ Control.

    Science.gov (United States)

    Wang, Ding; Mu, Chaoxu; Liu, Derong; Ma, Hongwen

    2018-04-01

    In this paper, based on the adaptive critic learning technique, the control for a class of unknown nonlinear dynamic systems is investigated by adopting a mixed data and event driven design approach. The nonlinear control problem is formulated as a two-player zero-sum differential game and the adaptive critic method is employed to cope with the data-based optimization. The novelty lies in that the data driven learning identifier is combined with the event driven design formulation, in order to develop the adaptive critic controller, thereby accomplishing the nonlinear control. The event driven optimal control law and the time driven worst case disturbance law are approximated by constructing and tuning a critic neural network. Applying the event driven feedback control, the closed-loop system is built with stability analysis. Simulation studies are conducted to verify the theoretical results and illustrate the control performance. It is significant to observe that the present research provides a new avenue of integrating data-based control and event-triggering mechanism into establishing advanced adaptive critic systems.

  18. A mixed-integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system

    International Nuclear Information System (INIS)

    Zhang, Jianyun; Liu, Pei; Zhou, Zhe; Ma, Linwei; Li, Zheng; Ni, Weidou

    2014-01-01

    Highlights: • Integration of heat streams with HRSG in a polygeneration system is studied. • A mixed-integer nonlinear programming model is proposed to optimize heat network. • Operating parameters and heat network configuration are optimized simultaneously. • The optimized heat network highly depends on the HRSG type and model specification. - Abstract: A large number of heat flows at various temperature and pressure levels exist in a polygeneration plant which co-produces electricity and chemical products. Integration of these external heat flows in a heat recovery steam generator (HRSG) has great potential to further enhance energy efficiency of such a plant; however, it is a challenging problem arising from the large design space of heat exchanger network. In this paper, a mixed-integer nonlinear programming model is developed for the design optimization of a HRSG with consideration of all alternative matches between the HRSG and external heat flows. This model is applied to four polygeneration cases with different HRSG types, and results indicate that the optimized heat network mainly depends on the HRSG type and the model specification

  19. Nonlinear optical effects in pure and N-doped semiconductors

    International Nuclear Information System (INIS)

    Donlagic, N.S.

    2000-01-01

    Over the last decades, the nonlinear optical properties of condensed matter systems have been an attractive and fruitful field of research. While the linear response functions of solids provide information about the elementary excitations of the systems, nonlinear optical experiments give insight into the dynamics of the fundamental many-body processes which are initiated by the external excitations. Stimulated by the experimental results, new theoretical concepts and methods have been developed in order to relate the observed phenomena to the microscopic properties of the investigated materials. The present work deals with the study of the nonlinear dynamics of the optical interband polarization in pure and n-doped semiconductors.In the first part of the thesis, the relaxation behavior of optically excited electron-hole pairs in a one-dimensional semiconductor, which are coupled to longitudinal optical phonons with an initial lattice temperature T>0, is studied with the help of quantum kinetic equations. Apart from Hartree-Fock-like Coulomb contributions, these equations contain additional Coulomb terms, the so-called vertex corrections, by which the influence of the electron-electron interaction on the electron-phonon scattering processes is taken into account. The numerical studies indicate that the vertex corrections are essential for a correct description of the excitonic dynamics.In the second part of the thesis, the attention is shifted to the characteristics of the optical response of a one-dimensional n-doped two-band semiconductor whose conduction band has been linearized with respect to the two Fermi points. Due to the linearization it is possible to calculate the linear and nonlinear response functions of the interacting electron system exactly. These response functions are then used in order to determine the linear absorption spectrum and the time-integrated signal of a degenerated four-wave-mixing experiment. It is shown that the well-known features

  20. Granular boycott effect: How to mix granulates

    Science.gov (United States)

    Duran, J.; Mazozi, T.

    1999-11-01

    Granular material can display the basic features of the Boycott effect in sedimentation. A simple experiment shows that granular material falls faster in an inclined tube than in a vertical tube, in analogy with the Boycott effect. As long as the inclination of the tube is above the avalanche threshold, descent of granular material in the tube causes internal convection which in turn results in an efficient mixture of the granular components. By contrast, as in analogous experiments in two dimensions, a vertical fall of granular material occurs via successive block fragmentation, resulting in poor mixing.

  1. Linearity and Non-linearity of Photorefractive effect in Materials ...

    African Journals Online (AJOL)

    Linearity and Non-linearity of Photorefractive effect in Materials using the Band transport ... For low light beam intensities the change in the refractive index is ... field is spatially phase shifted by /2 relative to the interference fringe pattern, which ...

  2. Lossy effects in a nonlinear nematic optical fiber

    Science.gov (United States)

    Rodríguez, R. F.; Reyes, J. A.

    2001-09-01

    We use the multiple scales method to derive a generalized nonlinear Schrödinger equation that takes into account the dissipative effects in the reorientation of a nematic confined in a cylindrical waveguide. This equation has soliton-like solutions and predicts a decrease in the penetration length of the optical solitons for each propagating mode with respect to the dissipationless case.

  3. Linearity and Non-linearity of Photorefractive effect in Materials ...

    African Journals Online (AJOL)

    In this paper we have studied the Linearity and Non-linearity of Photorefractive effect in materials using the band transport model. For low light beam intensities the change in the refractive index is proportional to the electric field for linear optics while for non- linear optics the change in refractive index is directly proportional ...

  4. Determining influence of four-wave mixing effect on quantum key distribution

    International Nuclear Information System (INIS)

    Vavulin, D N; Egorov, V I; Gleim, A V; Chivilikhin, S A

    2014-01-01

    We consider the possibility of multiplexing the classical and quantum signals in a quantum cryptography system with optical fiber used as a transmission medium. If the quantum signal is located at a frequency close to the frequency of classical signals, a set of nonlinear effects such as FWM (four-wave mixing) and Raman scattering is observed. The impact of four-wave mixing (FWM) effect on error level is described and analyzed in this work in case of large frequency diversity between classical and quantum signals. It is shown that the influence of FWM is negligible for convenient quantum key distribution

  5. Role of viscosity in nonlinear effects

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, G V; Peshkin, M A; Polyakov, Ye Ye

    1980-01-01

    Data are presented on laboratory experiments for filtering of gases of liquids in clay, slightly permeable core samples. A method is proposed for processing the results of experiments which makes it possible to isolate the effect of viscosity of the fluid on the defined quantity of maximum pressure differential.

  6. Game Theory of Tumor–Stroma Interactions in Multiple Myeloma: Effect of Nonlinear Benefits

    Directory of Open Access Journals (Sweden)

    Javad Salimi Sartakhti

    2018-05-01

    Full Text Available Cancer cells and stromal cells often exchange growth factors with paracrine effects that promote cell growth: a form of cooperation that can be studied by evolutionary game theory. Previous models have assumed that interactions between cells are pairwise or that the benefit of a growth factor is a linear function of its concentration. Diffusible factors, however, affect multiple cells and generally have nonlinear effects, and these differences are known to have important consequences for evolutionary dynamics. Here, we study tumor–stroma paracrine signaling using a model with multiplayer collective interactions in which growth factors have nonlinear effects. We use multiple myeloma as an example, modelling interactions between malignant plasma cells, osteoblasts, and osteoclasts. Nonlinear benefits can lead to results not observed in linear models, including internal mixed stable equilibria and cyclical dynamics. Models with linear effects, therefore, do not lead to a meaningful characterization of the dynamics of tumor–stroma interactions. To understand the dynamics and the effect of therapies it is necessary to estimate the shape of the benefit functions experimentally and parametrize models based on these functions.

  7. Nonlinear charge reduction effect in strongly coupled plasmas

    International Nuclear Information System (INIS)

    Sarmah, D; Tessarotto, M; Salimullah, M

    2006-01-01

    The charge reduction effect, produced by the nonlinear Debye screening of high-Z charges occurring in strongly coupled plasmas, is investigated. An analytic asymptotic expression is obtained for the charge reduction factor (f c ) which determines the Debye-Hueckel potential generated by a charged test particle. Its relevant parametric dependencies are analysed and shown to predict a strong charge reduction effect in strongly coupled plasmas

  8. Macroscopic quantum effects in nonlinear optical patterns

    International Nuclear Information System (INIS)

    Gatti, A.; Lugiato, L.A.; Oppo, G.L.; Barnett, S.M.; Marzoli, I.

    1998-01-01

    We display the results of the numerical simulations of a set of Langevin equations, which describe the dynamics of a degenerate optical parametric oscillator in the Wigner representation. The scan of the threshold region shows the gradual transformation of a quantum image into a classical roll pattern. Thus the quantum image behaves as a precursor of the roll pattern which appear above threshold. In the fax field, suitable spatial correlation functions of intensity and field quadratures show unambiguously the quantum nature of fluctuations that generate the image, leading to effects of quantum noise reduction below the shot noise level and to the formulation of an EPR paradox. (author)

  9. Dispersion-Flattened Composite Highly Nonlinear Fibre Optimised for Broadband Pulsed Four-Wave Mixing

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Galili, Michael; Oxenløwe, Leif Katsuo

    2016-01-01

    We present a segmented composite HNLF optimised for mitigation of dispersion-fluctuation impairments for broadband pulsed four-wave mixing. The HNLF-segmentation allows for pulsed FWMprocessing of a 13-nm wide input WDM-signal with -4.6-dB conversion efficiency...

  10. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities

    DEFF Research Database (Denmark)

    Birkedal, Dan; Vadim, Lyssenko; Hvam, Jørn Märcher

    1996-01-01

    We present an experimental and theoretical investigation of ultrafast transient four-wave mixing of GaAs/AlxGa1-xAs quantum wells for coherent excitation of exciton and continuum states. The signal appears at the exciton resonance and is shown to consist of two contributions: an intense spectrall...

  11. Semiparametric mixed-effects analysis of PK/PD models using differential equations.

    Science.gov (United States)

    Wang, Yi; Eskridge, Kent M; Zhang, Shunpu

    2008-08-01

    Motivated by the use of semiparametric nonlinear mixed-effects modeling on longitudinal data, we develop a new semiparametric modeling approach to address potential structural model misspecification for population pharmacokinetic/pharmacodynamic (PK/PD) analysis. Specifically, we use a set of ordinary differential equations (ODEs) with form dx/dt = A(t)x + B(t) where B(t) is a nonparametric function that is estimated using penalized splines. The inclusion of a nonparametric function in the ODEs makes identification of structural model misspecification feasible by quantifying the model uncertainty and provides flexibility for accommodating possible structural model deficiencies. The resulting model will be implemented in a nonlinear mixed-effects modeling setup for population analysis. We illustrate the method with an application to cefamandole data and evaluate its performance through simulations.

  12. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  13. Nonlinear effects of high temperature on buckling of structural elements

    International Nuclear Information System (INIS)

    Iyengar, N.G.R.

    1975-01-01

    Structural elements used in nuclear reactors are subjected to high temperatures. Since with increase in temperature there is a gradual fall in the elastic modulus and the stress-strain relationship is nonlinear at these operating load levels, a realistic estimate of the buckling load should include this nonlinearity. In this paper the buckling loads for uniform columns with circular and rectangular cross-sections and different boundary conditions under high temperature environment are estimated. The stress-strain relationship for the material has been assumed to follow inverse Ramberg-Osgood law. In view of the fact that no closed form solutions are possible, approximate methods like perturbation and Galerkin techniques are used. Further, the solution for general value for 'm' is quite involved. Results have been obtained with values for 'm' as 3 and 5. Studies reveal that the influence of material nonlinearity on the buckling load is of the softening type, and it increases with increase in the value of 'm'. The nonlinear effects are more for clamped boundaries than for simply supported boundaries. For the first mode analysis both the methods are powerful. It is, however, felt that for higher modes the Galerkin method might be better in view of its simplicity. This investigation may be considered as a step towards a more general solution

  14. Nonlinear effects in Pulsations of Compact Stars and Gravitational Waves

    International Nuclear Information System (INIS)

    Passamonti, A

    2007-01-01

    Nonlinear stellar oscillations can be studied by using a multiparameter perturbative approach, which is appropriate for investigating the low and mild nonlinear dynamical regimes. We present the main properties of our perturbative framework for describing, in the time domain, the nonlinear coupling between the radial and nonradial perturbations of spherically symmetric and perfect fluid compact stars. This particular coupling can be described by gauge invariant quantities that obeys a system of partial differential equations with source terms, which are made up of product of first order radial and nonradial perturbations. We report the results of numerical simulations for both the axial and polar coupling perturbations, that exhibit in the stellar dynamics and in the associated gravitational wave signal some interesting nonlinear effects, such as combination harmonics and resonances. In particular, we concentrate on the axial case, where the linear axial perturbations describe a harmonic component of a differentially rotating neutron star. The gravitational wave signal of this stellar configuration mirrors at second perturbative order the spectral features of the linear radial normal modes. In addition, a signal amplification appears when one of the radial frequencies is close to the axial w-mode frequencies of the star

  15. Nonlinear Resonance Islands and Modulational Effects in a Proton Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Satogata, Todd Jeffrey [Northwestern Univ., Evanston, IL (United States)

    1993-01-01

    We examine both one-dimensional and two-dimensional nonlinear resonance islands created in the transverse phase space of a proton synchrotron by nonlinear magnets. We also examine application of the theoretical framework constructed to the phenomenon of modulational diffusion in a collider model of the Fermilab Tevatron. For the one-dimensional resonance island system, we examine the effects of two types of modulational perturbations on the stability of these resonance islands: tune modulation and beta function modulation. Hamiltonian models are presented which predict stability boundaries that depend on only three paramders: the strength and frequency of the modulation and the frequency of small oscillations inside the resonance island. These. models are compared to particle tracking with excellent agreement. The tune modulation model is also successfully tested in experiment, where frequency domain analysis coupled with tune modulation is demonstrated to be useful in measuring the strength of a nonlinear resonance. Nonlinear resonance islands are also examined in two transverse dimensions in the presence of coupling and linearly independent crossing resonances. We present a first-order Hamiltonian model which predicts fixed point locations, but does not reproduce small oscillation frequencies seen in tracking; therefore in this circumstance such a model is inadequate. Particle tracking is presented which shows evidence of two-dimensional persistent signals, and we make suggestions on methods for observing such signals in future experiment.

  16. New Delay-Dependent Stability Criteria for Uncertain Neutral Systems with Mixed Time-Varying Delays and Nonlinear Perturbations

    Directory of Open Access Journals (Sweden)

    Hamid Reza Karimi

    2009-01-01

    Full Text Available The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range-dependent, and distributed-delay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method.

  17. A solution procedure for mixed-integer nonlinear programming formulation of supply chain planning with quantity discounts under demand uncertainty

    Science.gov (United States)

    Yin, Sisi; Nishi, Tatsushi

    2014-11-01

    Quantity discount policy is decision-making for trade-off prices between suppliers and manufacturers while production is changeable due to demand fluctuations in a real market. In this paper, quantity discount models which consider selection of contract suppliers, production quantity and inventory simultaneously are addressed. The supply chain planning problem with quantity discounts under demand uncertainty is formulated as a mixed-integer nonlinear programming problem (MINLP) with integral terms. We apply an outer-approximation method to solve MINLP problems. In order to improve the efficiency of the proposed method, the problem is reformulated as a stochastic model replacing the integral terms by using a normalisation technique. We present numerical examples to demonstrate the efficiency of the proposed method.

  18. Non-linear mixing in coupled photonic crystal nanobeam cavities due to cross-coupling opto-mechanical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Daniel, E-mail: daniel.ramos@csic.es; Frank, Ian W.; Deotare, Parag B.; Bulu, Irfan; Lončar, Marko [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-11-03

    We investigate the coupling between mechanical and optical modes supported by coupled, freestanding, photonic crystal nanobeam cavities. We show that localized cavity modes for a given gap between the nanobeams provide weak optomechanical coupling with out-of-plane mechanical modes. However, we show that the coupling can be significantly increased, more than an order of magnitude for the symmetric mechanical mode, due to optical resonances that arise from the interaction of the localized cavity modes with standing waves formed by the reflection from thesubstrate. Finally, amplification of motion for the symmetric mode has been observed and attributed to the strong optomechanical interaction of our hybrid system. The amplitude of these self-sustained oscillations is large enough to put the system into a non-linear oscillation regime where a mixing between the mechanical modes is experimentally observed and theoretically explained.

  19. Nonlinear Equalization in 40/112/224 Gbit/s Mixed Line Rate 15-Channel DP-QPSK and DP-16QAM Contiguous Spectrum Based Networks

    DEFF Research Database (Denmark)

    Asif, Rameez

    2014-01-01

    We evaluated that in-line non-linear compensation schemes decrease the com- plexity of digital back-propagation and enhance the perfor mance of 40/112/224Gbit/s mixed line rate network. Both grouped and un-grouped spectral all ocation schemes are investigated.......We evaluated that in-line non-linear compensation schemes decrease the com- plexity of digital back-propagation and enhance the perfor mance of 40/112/224Gbit/s mixed line rate network. Both grouped and un-grouped spectral all ocation schemes are investigated....

  20. Analytical treatment of the nonlinear electron cloud effect and the combined effects with beam-beam and space charge nonlinear forces in storage rings

    International Nuclear Information System (INIS)

    Gao Jie

    2009-01-01

    In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC II. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations. (author)

  1. Multi-atom Jaynes-Cummings model with nonlinear effects

    International Nuclear Information System (INIS)

    Aleixo, Armando Nazareno Faria; Balantekin, Akif Baha; Ribeiro, Marco Antonio Candido

    2001-01-01

    The standard Jaynes-Cummings (JC) model and its extensions, normally used in quantum optics, idealizes the interaction of matter with electromagnetic radiation by a simple Hamiltonian of a two-level atom coupled to a single bosonic mode. This Hamiltonian has a fundamental importance to the field of quantum optics and it is a central ingredient in the quantized description of any optical system involving the interaction between light and atoms. The JC Hamiltonian defines a molecule, a composite system formed from the coupling of a two-state system and a quantized harmonic oscillator. For this Hamiltonian, mostly the single-particle situation has been studied. This model can also be extended for the situation where one has N two-level systems, which interact only with the electromagnetic radiation. In this case the effects of the spatial distribution of the particles it is not taken into account and the spin angular momentum S-circumflex i of each particle contributes to form a total angular momentum J-circumflex of the system. When one considers the effects due to the spatial variation in the field intensity in a nonlinear medium it is necessary to further add a Kerr term to the standard JC Hamiltonian. This kind of nonlinear JC Hamiltonian is used in the study of micro masers. Another nonlinear variant of the JC model takes the coupling between matter and the radiation to depend on the intensity of the electromagnetic field. This model is interesting since this kind of interaction means that effectively the coupling is proportional to the amplitude of the field representing a very simple case of a nonlinear interaction corresponding to a more realistic physical situation. In this work we solve exactly the problem of the interaction of a N two-level atoms with an electromagnetic radiation when nonlinear effects due to the spatial variation in the field intensity in a nonlinear Kerr medium and the dependence on the intensity of the electromagnetic field on the matter

  2. Nonlinear free vibration of piezoelectric nanobeams incorporating surface effects

    International Nuclear Information System (INIS)

    Hosseini-Hashemi, Shahrokh; Nahas, Iman; Fakher, Mahmood; Nazemnezhad, Reza

    2014-01-01

    In this study, the nonlinear free vibration of piezoelectric nanobeams incorporating surface effects (surface elasticity, surface tension, and surface density) is studied. The governing equation of the piezoelectric nanobeam is derived within the framework of Euler–Bernoulli beam theory with the von Kármán geometric nonlinearity. In order to satisfy the balance conditions between the nanobeam bulk and its surfaces, the component of the bulk stress, σ zz , is assumed to vary linearly through the nanobeam thickness. An exact solution is obtained for the natural frequencies of a simply supported piezoelectric nanobeam in terms of the Jacobi elliptic functions using the free vibration mode shape of the corresponding linear problem. Then, the influences of the surface effects and the piezoelectric field on the nonlinear free vibration of nanobeams made of aluminum and silicon with positive and negative surface elasticity, respectively, have been studied for various properties of the piezoelectric field, various nanobeam sizes and amplitude ratios. It is observed that if the Young’s modulus of a nanobeam is lower, the effect of the piezoelectric field on the frequency ratios (FRs) of the nanobeam will be greater. In addition, it is seen that by increasing the nanobeam length so that the nanobeam cross section is set to be constant, the surface effects and the piezoelectric field with negative voltage values increases the FRs, whereas it is the other way around when the nanobeam cross section is assumed to be dependent on the length of the nanobeam. (paper)

  3. Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...

  4. Nonlinear resonance islands and modulational effects in a proton synchrotron

    International Nuclear Information System (INIS)

    Satogata, T.J.

    1993-01-01

    The authors examine one-dimensional and two-dimensional nonlinear resonance islands created in the transverse phase space of a proton synchrotron by nonlinear magnets. The authors examine application of the theoretical framework constructed to the phenomenon of modulational diffusion in a collider model of the Fermilab Tevatron. For the one-dimensional resonance island system, the authors examine the effects of two types of modulational perturbations on the stability of these resonance islands: Tune modulation and beta function modulation. Hamiltonian models are presented which predict stability boundaries that depend on only three parameters: The strength and frequency of the modulation and the frequency of small oscillations inside the resonance island. The tune modulation model is successfully tested in experiment, where frequency domain analysis coupled with tune modulation is demonstrated to be useful in measuring the strength of a nonlinear resonance. Nonlinear resonance islands are examined in two transverse dimensions in the presence of coupling and linearly independent crossing resonances. The authors present a first-order Hamiltonian model which predicts fixed point locations, but does not reproduce small oscillation frequencies seen in tracking. Particle tracking is presented which shows evidence of two-dimensional persistent signals, and the authors make suggestions on methods for observing such signals in future experiment. The authors apply the tune modulation stability diagram to the explicitly two-dimensional phenomenon of modulational diffusion in the Fermilab Tevatron with beam-beam kicks as the source of nonlinearity. The amplitude growth created by this mechanism in simulation is exponential rather than root-time as predicted by modulational diffusion models. The authors comment upon the luminosity and lifetime limitations such a mechanism implies in a proton storage ring

  5. Simulated mixed absorbers and effective atomic numbers for γ ...

    Indian Academy of Sciences (India)

    Keywords. γ-rays; γ attenuation; simulated mixed absorbers; effective atomic ... We have tried to simulate composite (mixed) absorbers ... Experimental method .... puter, Program manual, Centre for Radiation Research, National Bureau of ...

  6. Band mixing effects in mean field theories

    International Nuclear Information System (INIS)

    Kuyucak, S.; Morrison, I.

    1989-01-01

    The 1/N expansion method, which is an angular momentum projected mean field theory, is used to investigate the nature of electromagnetic transitions in the interacting boson model (IBM). Conversely, comparison with the exact IBM results sheds light on the range of validity of the mean field theory. It is shown that the projected mean field results for the E2 transitions among the ground, β and γ bands are incomplete for the spin dependent terms and it is essential to include band mixing effect for a correct (Mikhailov) analysis of E2 data. The algebraic expressions derived are general and will be useful in the analysis of experimental data in terms of both the sd and sdg boson models. 17 refs., 7 figs., 8 tabs

  7. Effect of Mixed Systems on Crop Productivity

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  8. Dark matter as a non-linear effect of gravitation

    International Nuclear Information System (INIS)

    Maia, M.D.; Capistrano, A.J.S.

    2006-01-01

    The rotation curves of stars in disk galaxies are calculated with the Newtonian law of motion applied to a scalar potential derived from the geodesic equation, only, under the slow motion condition, the so-called Nearly Newtonian Gravity (NNG). A nearly Newtonian gravitational potential, Φ NN = -1/2 c 2 (1+g 44 ), is obtained, characterized by an exact solution of Einsteins equations, with the non-linear effects present in the component g 44 . This gravitational field lies somewhere between General Relativity and Newtonian Gravity. Therefore, Einsteins equations and the equivalence principle are preserved, but the general covariance is broken. The resulting curves are remarkably close to the observed rotation curves in spiral galaxies, suggesting that a substantial component of dark matter may be explained by the non-linearity of Einsteins equations. (author)

  9. Preliminary Evaluation of Nonlinear Effects on TCA Flutter

    Science.gov (United States)

    Arslan, Alan E.; Hartwich, Peter M.; Baker, Myles L.

    1998-01-01

    The objective of this study is to investigate the effect of nonlinear aerodynamics, especially at high angles-of-attack with leading-edge separation, on the TCA flutter properties at transonic speeds. In order to achieve that objective, flutter simulations with Navier-Stokes CFD must be performed. To this end, time-marching Navier-Stokes solutions are computed for the TCA wing/body configuration at high angles-of-attack in transonic flight regimes. The approach is to perform non-linear flutter calculations on the TCA at two angles-of-attack, the first one being a case with attached flow (a=2.8 degrees) and the second one being a high angle-of-attack case with a wing leading edge vortex (a=12.11 degrees). Comparisons of the resulting histories and frequency damping information for both angles-of-attack will evaluate the impact of high-alpha aerodynamics on flutter.

  10. Heterogeneous Effects of a Nonlinear Price Schedule for Outpatient Care.

    Science.gov (United States)

    Farbmacher, Helmut; Ihle, Peter; Schubert, Ingrid; Winter, Joachim; Wuppermann, Amelie

    2017-10-01

    Nonlinear price schedules generally have heterogeneous effects on health-care demand. We develop and apply a finite mixture bivariate probit model to analyze whether there are heterogeneous reactions to the introduction of a nonlinear price schedule in the German statutory health insurance system. In administrative insurance claims data from the largest German health insurance plan, we find that some individuals strongly react to the new price schedule while a second group of individuals does not react. Post-estimation analyses reveal that the group of the individuals who do not react to the reform includes the relatively sick. These results are in line with forward-looking behavior: Individuals who are already sick expect that they will hit the kink in the price schedule and thus are less sensitive to the co-payment. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Effective potentials in nonlinear polycrystals and quadrature formulae

    Science.gov (United States)

    Michel, Jean-Claude; Suquet, Pierre

    2017-08-01

    This study presents a family of estimates for effective potentials in nonlinear polycrystals. Noting that these potentials are given as averages, several quadrature formulae are investigated to express these integrals of nonlinear functions of local fields in terms of the moments of these fields. Two of these quadrature formulae reduce to known schemes, including a recent proposition (Ponte Castañeda 2015 Proc. R. Soc. A 471, 20150665 (doi:10.1098/rspa.2015.0665)) obtained by completely different means. Other formulae are also reviewed that make use of statistical information on the fields beyond their first and second moments. These quadrature formulae are applied to the estimation of effective potentials in polycrystals governed by two potentials, by means of a reduced-order model proposed by the authors (non-uniform transformation field analysis). It is shown how the quadrature formulae improve on the tangent second-order approximation in porous crystals at high stress triaxiality. It is found that, in order to retrieve a satisfactory accuracy for highly nonlinear porous crystals under high stress triaxiality, a quadrature formula of higher order is required.

  12. Nonlinear Kirchhoff-Carrier wave equation in a unit membrane with mixed homogeneous boundary conditions

    Directory of Open Access Journals (Sweden)

    Nguyen Thanh Long

    2005-12-01

    Full Text Available In this paper we consider the nonlinear wave equation problem $$displaylines{ u_{tt}-Big(|u|_0^2,|u_{r}|_0^2ig(u_{rr}+frac{1}{r}u_{r} =f(r,t,u,u_{r},quad 0less than r less than 1,; 0 less than t less than T, ig|lim_{ro 0^+}sqrt{r}u_{r}(r,tig| less than infty, u_{r}(1,t+hu(1,t=0, u(r,0=widetilde{u}_0(r, u_{t}(r,0=widetilde{u}_1(r. }$$ To this problem, we associate a linear recursive scheme for which the existence of a local and unique weak solution is proved, in weighted Sobolev using standard compactness arguments. In the latter part, we give sufficient conditions for quadratic convergence to the solution of the original problem, for an autonomous right-hand side independent on $u_{r}$ and a coefficient function $B$ of the form $B=B(|u|_0^2=b_0+|u|_0^2$ with $b_0$ greater than 0.

  13. Nonlinear diffraction from a virtual beam

    DEFF Research Database (Denmark)

    Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw

    2010-01-01

    We observe experimentally a novel type of nonlinear diffraction in the process of two-wave mixing on a nonlinear quadratic grating.We demonstrate that when the nonlinear grating is illuminated simultaneously by two noncollinear beams, a second-harmonic diffraction pattern is generated by a virtual...... beam propagating along the bisector of the two pump beams. The observed iffraction phenomena is a purely nonlinear effect that has no analogue in linear diffraction...

  14. The mixing effects for real gases and their mixtures

    Science.gov (United States)

    Gong, M. Q.; Luo, E. C.; Wu, J. F.

    2004-10-01

    The definitions of the adiabatic and isothermal mixing effects in the mixing processes of real gases were presented in this paper. Eight substances with boiling-point temperatures from cryogenic temperature to the ambient temperature were selected from the interest of low temperature refrigeration to study their binary and multicomponent mixing effects. Detailed analyses were made on the parameters of the mixing process to know their influences on mixing effects. Those parameters include the temperatures, pressures, and mole fraction ratios of pure substances before mixing. The results show that the maximum temperature variation occurs at the saturation state of each component in the mixing process. Those components with higher boiling-point temperatures have higher isothermal mixing effects. The maximum temperature variation which is defined as the adiabatic mixing effect can even reach up to 50 K, and the isothermal mixing effect can reach about 20 kJ/mol. The possible applications of the mixing cooling effect in both open cycle and closed cycle refrigeration systems were also discussed.

  15. effects of mixed of mixed of mixed alkaline earth oxides in potash

    African Journals Online (AJOL)

    eobe

    Si, P) are network formers, and that materials whose. Nigerian ... made by mixing sand (SiO2), potassium carbonates. (K2Co3) .... The edges of the glass were grounded using ..... surface energies of minerals; theoritical estimate for oxides ...

  16. Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Malureanu, Radu

    2016-01-01

    cladding. The optical characterization was performed using a high power picosecond laser at 1064 nm. The experiments reveal two nonlinear optical effects: nonlinear power transmission and spectral broadening of the LRSPP mode in the waveguides. Both nonlinear optical effects depend on the gold layer...

  17. Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Belli, E. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Hammett, G. W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dorland, W. [Univ. of Maryland, College Park, MD (United States)

    2008-08-01

    The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ~ κ-1.5 or κ-2.0, depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows.

  18. Effects of Plasma Shaping on Nonlinear Gyrokinetic Turbulence

    International Nuclear Information System (INIS)

    E.A. Belli, G.W. Hammett and W. Dorland

    2008-01-01

    The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the GS2 code [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995); W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. Studies of the scaling of nonlinear turbulence with shaping parameters are performed using analytic equilibria based on interpolations of representative shapes of the Joint European Torus (JET) [P.H. Rebut and B.E. Keen, Fusion Technol. 11, 13 (1987)]. High shaping is found to be a stabilizing influence on both the linear ion-temperature-gradient (ITG) instability and the nonlinear ITG turbulence. For the parameter regime studied here, a scaling of the heat flux with elongation of χ ∼ κ -1.5 or κ -2.0 , depending on the triangularity, is observed at fixed average temperature gradient. While this is not as strong as empirical elongation scalings, it is also found that high shaping results in a larger Dimits upshift of the nonlinear critical temperature gradient due to an enhancement of the Rosenbluth-Hinton residual zonal flows

  19. Nonlinear optical effects of opening a gap in graphene

    Science.gov (United States)

    Carvalho, David N.; Biancalana, Fabio; Marini, Andrea

    2018-05-01

    Graphene possesses remarkable electronic, optical, and mechanical properties that have taken the research of two-dimensional relativistic condensed matter systems to prolific levels. However, the understanding of how its nonlinear optical properties are affected by relativisticlike effects has been broadly uncharted. It has been recently shown that highly nontrivial currents can be generated in free-standing samples, notably leading to the generation of even harmonics. Since graphene monolayers are centrosymmetric media, for which such harmonic generation at normal incidence is deemed inaccessible, this light-driven phenomenon is both startling and promising. More realistically, graphene samples are often deposited on a dielectric substrate, leading to additional intricate interactions. Here, we present a treatment to study this instance by gapping the spectrum and we show this leads to the appearance of a Berry phase in the carrier dynamics. We analyze the role of such a phase in the generated nonlinear current and conclude that it suppresses odd-harmonic generation. The pump energy can be tuned to the energy gap to yield interference among odd harmonics mediated by interband transitions, allowing even harmonics to be generated. Our results and general methodology pave the way for understanding the role of gap opening in the nonlinear optics of two-dimensional lattices.

  20. Nonlinear polarization effects in a birefringent single mode optical fiber

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.; Mensah, S.Y.; Brown, C.S.

    2001-04-01

    The nonlinear polarization effects in a birefringent single mode optical fiber is studied using Jacobi elliptic functions. We find that the polarization state of the propagating beam depends on the initial polarization as well as the intensity of the input light in a complicated way. The Stokes polarization parameters are either periodic or aperiodic depending on the value of the Jacobian modulus. Our calculations suggest that the effective beat length of the fiber can become infinite at a higher critical value of the input power when polarization dependent losses are considered. (author)

  1. Non-linear effective Lagrangian treatment of 'Penguin' interaction

    International Nuclear Information System (INIS)

    Pham, T.N.

    1984-01-01

    Using the non-linear effective lagrangian technique, we show explicitly that only derivative coupling is allowed for the K - π, K -> 2 π and K -> 3 π transitions induced by the ΔS = 1 Penguin operator of SVZ in agreement with chiral symmetry requirements. From a derivative coupling (3, anti 3) mass term and the SU(3) breaking effect for fsub(K)/fsub(π), we estimate the strength of the Penguin interactions and find it too small to account for the ΔI = 1/2 amplitude. (orig.)

  2. Dispersion of the linear and nonlinear optical susceptibilities of the CuAl(S1−xSex)2 mixed chaclcopyrite compounds

    International Nuclear Information System (INIS)

    Reshak, A. H.; Brik, M. G.; Auluck, S.

    2014-01-01

    Based on the electronic band structure, we have calculated the dispersion of the linear and nonlinear optical susceptibilities for the mixed CuAl(S 1−x Se x ) 2 chaclcopyrite compounds with x = 0.0, 0.25, 0.5, 0.75, and 1.0. Calculations are performed within the Perdew-Becke-Ernzerhof general gradient approximation. The investigated compounds possess a direct band gap of about 2.2 eV (CuAlS 2 ), 1.9 eV (CuAl(S 0.75 Se 0.25 ) 2 ), 1.7 eV (CuAl(S 0.5 Se 0.5 ) 2 ), 1.5 eV (CuAl(S 0.25 Se 0.75 ) 2 ), and 1.4 eV (CuAlSe 2 ) which tuned to make them optically active for the optoelectronics and photovoltaic applications. These results confirm that substituting S by Se causes significant band gaps' reduction. The optical function's dispersion ε 2 xx (ω) and ε 2 zz (ω)/ε 2 xx (ω), ε 2 yy (ω), and ε 2 zz (ω) was calculated and discussed in detail. To demonstrate the effect of substituting S by Se on the complex second-order nonlinear optical susceptibility tensors, we performed detailed calculations for the complex second-order nonlinear optical susceptibility tensors, which show that the neat parents compounds CuAlS 2 and CuAlSe 2 exhibit | χ 123 (2) (−2ω;ω;ω) | as the dominant component, while the mixed alloys exhibit | χ 111 (2) (−2ω;ω;ω) | as the dominant component. The features of | χ 123 (2) (−2ω;ω;ω) | and | χ 111 (2) (−2ω;ω;ω) | spectra were analyzed on the basis of the absorptive part of the corresponding dielectric function ε 2 (ω) as a function of both ω/2 and ω.

  3. Non-linear effects in the Boltzmann equation

    International Nuclear Information System (INIS)

    Barrachina, R.O.

    1985-01-01

    The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es

  4. Tune-shift with amplitude due to nonlinear kinematic effect

    CERN Document Server

    Wan, W

    1999-01-01

    Tracking studies of the Muon Collider 50 on 50 GeV collider ring show that the on-momentum dynamic aperture is limited to around 10 sigma even with the chromaticity sextupoles turned off. Numerical results from the normal form algorithm show that the tune-shift with amplitude is surprisingly large. Both analytical and numerical results are presented to show that nonlinear kinematic effect originated from the large angles of particles in the interaction region is responsible for the large tune-shift which in turn limits the dynamic aperture. A comparative study of the LHC collider ring is also presented to demonstrate the difference between the two machines. (14 refs).

  5. Nonlinear and turbulent processes in physics. Volume 2. Nonlinear effects in various areas of science

    Energy Technology Data Exchange (ETDEWEB)

    Sagdeev, R Z

    1984-01-01

    The results of theoretical and experimental investigations of nonlinear and turbulent phenomena from a wide range of fields in physics are presented in reviews and reports. Topics examined include localized vortex formations in an ideal fluid, phase transitions in crystals, spatially nonuniform structures in condensed matter, solitons in molecular systems, the migration of quasi-particles in easily deformed crystals, bifurcations and dissipative structures in distributed kinetic systems, and structures in a nonlinear burning medium. Consideration is given to macroscopic motion generation in nonequilibrium media, the interaction of bulk and surface wave trains, near-threshold instabilities in hydrodynamics, solitons in nonlinear elastic rods with variable characteristics, the generation of solitons and vortices from chaos, and nonlinear electromagnetic-wave dissipation in an electron system.

  6. A novel nonlinear damage resonance intermodulation effect for structural health monitoring

    Science.gov (United States)

    Ciampa, Francesco; Scarselli, Gennaro; Meo, Michele

    2017-04-01

    This paper is aimed at developing a theoretical model able to predict the generation of nonlinear elastic effects associated to the interaction of ultrasonic waves with the steady-state nonlinear response of local defect resonance (LDR). The LDR effect is used in nonlinear elastic wave spectroscopy to enhance the excitation of the material damage at its local resonance, thus to dramatically increase the vibrational amplitude of material nonlinear phenomena. The main result of this work is to prove both analytically and experimentally the generation of novel nonlinear elastic wave effects, here named as nonlinear damage resonance intermodulation, which correspond to a nonlinear intermodulation between the driving frequency and the LDR one. Beside this intermodulation effect, other nonlinear elastic wave phenomena such as higher harmonics of the input frequency and superharmonics of LDR frequency were found. The analytical model relies on solving the nonlinear equation of motion governing bending displacement under the assumption of both quadratic and cubic nonlinear defect approximation. Experimental tests on a damaged composite laminate confirmed and validated these predictions and showed that using continuous periodic excitation, the nonlinear structural phenomena associated to LDR could also be featured at locations different from the damage resonance. These findings will provide new opportunities for material damage detection using nonlinear ultrasounds.

  7. Mixed alkaline earth effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    2013-01-01

    While the mixed alkali effect has received significant attention in the glass literature, the mixed alkaline earth effect has not been thoroughly studied. Here, we investigate the latter effect by partial substitution of magnesium for calcium in sodium aluminosilicate glasses. We use Raman and NMR...

  8. Mixed-effects and fMRI studies

    DEFF Research Database (Denmark)

    Friston, K.J; Stephan, K.E; Ellegaard Lund, Torben

    2005-01-01

    This note concerns mixed-effect (MFX) analyses in multisession functional magnetic resonance imaging (fMRI) studies. It clarifies the relationship between mixed-effect analyses and the two-stage 'summary statistics' procedure (Holmes, A.P., Friston, K.J., 1998. Generalisability, random effects...

  9. Nonlinear cosmological consistency relations and effective matter stresses

    International Nuclear Information System (INIS)

    Ballesteros, Guillermo; Hollenstein, Lukas; Jain, Rajeev Kumar; Kunz, Martin

    2012-01-01

    We propose a fully nonlinear framework to construct consistency relations for testing generic cosmological scenarios using the evolution of large scale structure. It is based on the covariant approach in combination with a frame that is purely given by the metric, the normal frame. As an example, we apply this framework to the ΛCDM model, by extending the usual first order conditions on the metric potentials to second order, where the two potentials start to differ from each other. We argue that working in the normal frame is not only a practical choice but also helps with the physical interpretation of nonlinear dynamics. In this frame, effective pressures and anisotropic stresses appear at second order in perturbation theory, even for ''pressureless'' dust. We quantify their effect and compare them, for illustration, to the pressure of a generic clustering dark energy fluid and the anisotropic stress in the DGP model. Besides, we also discuss the effect of a mismatch of the potentials on the determination of galaxy bias

  10. Effects of Analog-to-Digital Converter Nonlinearities on Radar Range-Doppler Maps

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dubbert, Dale F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tise, Bertice L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-07-01

    Radar operation, particularly Ground Moving Target Indicator (GMTI) radar modes, are very sensitive to anomalous effects of system nonlinearities. These throw off harmonic spurs that are sometimes detected as false alarms. One significant source of nonlinear behavior is the Analog to Digital Converter (ADC). One measure of its undesired nonlinearity is its Integral Nonlinearity (INL) specification. We examine in this report the relationship of INL to GMTI performance.

  11. Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints

    International Nuclear Information System (INIS)

    Khan, Mohd Shariq; Lee, Moonyong

    2013-01-01

    The particle swarm paradigm is employed to optimize single mixed refrigerant natural gas liquefaction process. Liquefaction design involves multivariable problem solving and non-optimal execution of these variables can waste energy and contribute to process irreversibilities. Design optimization requires these variables to be optimized simultaneously; minimizing the compression energy requirement is selected as the optimization objective. Liquefaction is modeled using Honeywell UniSim Design ™ and the resulting rigorous model is connected with the particle swarm paradigm coded in MATLAB. Design constraints are folded into the objective function using the penalty function method. Optimization successfully improved efficiency by reducing the compression energy requirement by ca. 10% compared with the base case. -- Highlights: ► The particle swarm paradigm (PSP) is employed for design optimization of SMR NG liquefaction process. ► Rigorous SMR process model based on UniSim is connected with PSP coded in MATLAB. ► Stochastic features of PSP give more confidence in the optimality of complex nonlinear problems. ► Optimization with PSP notably improves energy efficiency of the SMR process.

  12. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities: A numerical study

    Science.gov (United States)

    El Sayed, K.; Birkedal, D.; Lyssenko, V. G.; Hvam, J. M.

    1997-01-01

    We present a theoretical investigation of ultrafast transient four-wave mixing (FWM) of GaAs quantum wells for coherent excitation of excitons and a large number of continuum states. It is shown that in this case the line shape of the FWM signal is drastically altered due to an interaction-induced coupling of the exciton to all the excited continuum states. The signal is dominantly emitted at the spectral position of the exciton and decays, as a function of delay, on a time scale set by the duration of the laser pulse rather than by the intrinsic dephasing time. Nevertheless, the spectral width of the exciton line in the FWM spectrum and in the decay of the time-resolved FWM signal in real time are governed by the intrinsic excitonic dephasing rate. It is shown that for pulse durations of ~ 100 fs (for GaAs quantum wells) this behavior can be explained as the influence of the Coulomb exchange interaction, while for even shorter pulses this behavior is dominantly caused by nonlinear polarization decay.

  13. An Estimation of a Nonlinear Dynamic Process Using Latent Class Extended Mixed Models: Affect Profiles After Terrorist Attacks.

    Science.gov (United States)

    Burro, Roberto; Raccanello, Daniela; Pasini, Margherita; Brondino, Margherita

    2018-01-01

    Conceptualizing affect as a complex nonlinear dynamic process, we used latent class extended mixed models (LCMM) to understand whether there were unobserved groupings in a dataset including longitudinal measures. Our aim was to identify affect profiles over time in people vicariously exposed to terrorism, studying their relations with personality traits. The participants were 193 university students who completed online measures of affect during the seven days following two terrorist attacks (Paris, November 13, 2015; Brussels, March 22, 2016); Big Five personality traits; and antecedents of affect. After selecting students whose negative affect was influenced by the two attacks (33%), we analysed the data with the LCMM package of R. We identified two affect profiles, characterized by different trends over time: The first profile comprised students with lower positive affect and higher negative affect compared to the second profile. Concerning personality traits, conscientious-ness was lower for the first profile compared to the second profile, and vice versa for neuroticism. Findings are discussed for both their theoretical and applied relevance.

  14. Marketing mix effects on private labels brand equity

    OpenAIRE

    Abril, Carmen; Rodriguez-Cánovas, Belén

    2017-01-01

    The present study explores some marketing mix effects on private labels brand equity creation. The research aims to study the effect of some elements under retailer's direct control such as in-store communications, in-store promotions and distribution intensity as well as other general marketing mix levers such as advertising, perceived price, and monetary promotions. The results indicate that the most efficient marketing mix tools for private label brand equity creation are private labels in...

  15. Effect of initial strain and material nonlinearity on the nonlinear static and dynamic response of graphene sheets

    Science.gov (United States)

    Singh, Sandeep; Patel, B. P.

    2018-06-01

    Computationally efficient multiscale modelling based on Cauchy-Born rule in conjunction with finite element method is employed to study static and dynamic characteristics of graphene sheets, with/without considering initial strain, involving Green-Lagrange geometric and material nonlinearities. The strain energy density function at continuum level is established by coupling the deformation at continuum level to that at atomic level through Cauchy-Born rule. The atomic interactions between carbon atoms are modelled through Tersoff-Brenner potential. The governing equation of motion obtained using Hamilton's principle is solved through standard Newton-Raphson method for nonlinear static response and Newmark's time integration technique to obtain nonlinear transient response characteristics. Effect of initial strain on the linear free vibration frequencies, nonlinear static and dynamic response characteristics is investigated in detail. The present multiscale modelling based results are found to be in good agreement with those obtained through molecular mechanics simulation. Two different types of boundary constraints generally used in MM simulation are explored in detail and few interesting findings are brought out. The effect of initial strain is found to be greater in linear response when compared to that in nonlinear response.

  16. Global non-linear effect of temperature on economic production.

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  17. Global non-linear effect of temperature on economic production

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward

    2015-11-01

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  18. Review of radio-frequency, nonlinear effects on the ionosphere

    International Nuclear Information System (INIS)

    Gordon, W.E.; Duncan, L.M.

    1983-01-01

    Modification of the ionosphere by high power radio waves in the megahertz band has been intensively investigated over the past two decades. This research has yielded advances in aeronomy, geophysics, and plasma physics with applications to radio communication and has provided a fruitful interaction of radio theorists and experimentalists. There being almost no linear effects of powerful radio waves on the ionosphere, we concentrate on the nonlinear effects. To put the subject in perspective we trace its history beginning in the early 1930s and highlight the important events up to the late 1960s. We then shift to a phenomenological approach and deal in order with ohmic heating, parametric instabilities, self-focusing and kilometer-scale irregularities, meter-scale irregularities, and a collection of recently discovered effects. We conclude with the observation that stronger international cooperation would benefit this research, and describe a list of promising, difficult challenges

  19. Effect of mixing method on the mixing degree during the preparation of triturations.

    Science.gov (United States)

    Nakamura, Hitoshi; Yanagihara, Yoshitsugu; Sekiguchi, Hiroko; Komada, Fusao; Kawabata, Haruno; Ohtani, Michiteru; Saitoh, Yukiya; Kariya, Satoru; Suzuki, Hiroshi; Uchino, Katsuyoshi; Iga, Tatsuji

    2004-03-01

    By using lactose colored with erythrocin, we investigated the effects of mixing methods on mixing degree during the preparation of trituration with a mortar and pestle. The extent of powder dilution was set to 4 to 64 fold in the experiments. We compared the results obtained by using two methods: (1) one-step mixing of powders after addition of diluents and (2) gradual mixing of powders after addition of diluents. As diluents, we used crystallized lactose and powdered lactose for the preparation of trituration. In the preparation of 64-fold trituration, an excellent degree of mixing was obtained, with CV values of less than 6.08%, for both preparation methods and for the two kinds of diluents. The mixing of two kinds of powders whose distributions of particle sizes were similar resulted in much better degree of mixing, with CV values of less than 3.0%. However, the concentration of principal agents in 64-fold trituration was reduced by 20% due to the adsorption of dye to the apparatus. Under conditions in which a much higher dilution rate and/or much better degree of dilution was required, it must be necessary to dilute powders with considering their physicality and to determine the concentrations of principal agents after the mixing.

  20. Study of the mixed alkali effect in lithium and sodium metaphosphate glass-forming liquids by photon correlation spectroscopy

    International Nuclear Information System (INIS)

    Changstrom, J R; Sidebottom, D L

    2008-01-01

    We report results of an extensive study of the structural relaxation occurring in mixed alkali metaphosphate liquids obtained by photon correlation spectroscopy. Values for the glass transition temperature, the fragility index, and the heterogeneity parameter (also known as the Kohlrausch exponent) are extracted from the measurements and are all shown to exhibit a mixed alkali effect wherein nonlinear variations with mixing occur. The depression in the glass transition temperature is shown to be the direct result of mechanical relaxations, present in the solid, which prematurely loosen the glass structure. A minimum in the fragility index is believed to be an artifact of the resulting depression of the glass transition temperature

  1. A simple predistortion technique for suppression of nonlinear effects in periodic signals generated by nonlinear transducers

    Science.gov (United States)

    Novak, A.; Simon, L.; Lotton, P.

    2018-04-01

    Mechanical transducers, such as shakers, loudspeakers and compression drivers that are used as excitation devices to excite acoustical or mechanical nonlinear systems under test are imperfect. Due to their nonlinear behaviour, unwanted contributions appear at their output besides the wanted part of the signal. Since these devices are used to study nonlinear systems, it should be required to measure properly the systems under test by overcoming the influence of the nonlinear excitation device. In this paper, a simple method that corrects distorted output signal of the excitation device by means of predistortion of its input signal is presented. A periodic signal is applied to the input of the excitation device and, from analysing the output signal of the device, the input signal is modified in such a way that the undesirable spectral components in the output of the excitation device are cancelled out after few iterations of real-time processing. The experimental results provided on an electrodynamic shaker show that the spectral purity of the generated acceleration output approaches 100 dB after few iterations (1 s). This output signal, applied to the system under test, is thus cleaned from the undesirable components produced by the excitation device; this is an important condition to ensure a correct measurement of the nonlinear system under test.

  2. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  3. Synthesis and solution aggregation studies of a suite of mixed neutral and zwitterionic chromophores for second-order nonlinear optics.

    Science.gov (United States)

    Peddie, Victoria; Anderson, Jack; Harvey, Joanne E; Smith, Gerald J; Kay, Andrew

    2014-11-07

    We report details of the synthesis of a series of bi- and trichromophores. These compounds contain mixtures of chromophores that have zwitterionic (ZWI) and neutral ground state (NGS) components covalently attached to each other. The neutral ground state moieties are based on dyes with aniline donors--such as Disperse Red 1--whereas the zwitterionic components are derived from chromophores with pro-aromatic donors such as 1,4-dihydropyridinylidene. By combining both ZWI and NGS components, we aim to develop novel compounds for nonlinear optics in which there is an enhancement of the overall hyperpolarizability coupled with a decrease in the net dipole moment. Thus, this approach should eliminate the electrostatic effects that result when only one type of chromophore is used, and so reduce the likelihood of undesirable aggregation occurring. This, in turn, should enable us to realize organic materials with large macroscopic optical nonlinearities. An analysis of the UV-vis results suggests that there is a strong dependence on solvent polarity that determines whether the embedded constituents should be treated as discrete elements; in low polarity solvents, there appear to be strong intramolecular interactions occurring, particularly when a 1,4-quinolinylidene-based donor is used in the ZWI component.

  4. Effect of mix parameters on longevity of bituminous mixtures

    Science.gov (United States)

    Reichle, Clayton Matthew

    This study was performed to evaluate the effects of varying aggregate sources, aggregate gradations on the stripping and rutting potential of bituminous based plant mixes specified by the Missouri Department of Transportation. The different aggregate combinations included two different aggregate sources (Potosi Dolomite and Jefferson City Dolomite) including two variations for the Jefferson City Dolomite mix to simulate a marginally in-specification mix and an out-of-specification but in-field tolerance mix. The "field" mix simulated the marginal mix where field tolerance of high dust and low binder content were maximized. All three mixes were evaluated for stripping susceptibility using the Tensile Strength Ratio (TSR) test and the Hamburg Wheel Tracking Device (HWTD). The mix characteristics (unit weight, effective binder content, and air voids) were used for a Level 3 analysis in the Mechanistic-Empirical Pavement Design Guide (MEPDG) to determine long term pavement distress conditions such as fatigue cracking, rutting, and IRI (smoothness). The Potosi mix exhibited the best resistance to rutting and stripping during both the TSR testing as well as the Hamburg testing. The Jefferson City In-Spec and Out-of-Spec mixes showed less resistance to rutting and stripping in order, respectively. This was expected for the Jefferson City mixes where the aggregate was of lower quality (higher Los Angeles Abrasion, Micro Deval loss, absorption, and deleterious materials). Also, in the case of the Jefferson City Out-of-Spec mix, the binder content was lower. Upon evaluating the mixes using the MEPDG software, it was shown that mix characteristics such as air voids, VMA, and VFA influenced the fatigue cracking, rutting, and IRI predictions to a minor degree.

  5. Full-vectorial propagation model and modified effective mode area of four-wave mixing in straight waveguides

    DEFF Research Database (Denmark)

    Guo, Kai; Friis, Søren Michael Mørk; Christensen, Jesper Bjerge

    2017-01-01

    We derive from Maxwell's equations full-vectorial nonlinear propagation equations of four-wave mixing valid in straight semiconductor-on-insulator waveguides. Special attention is given to the resulting effective mode area, which takes a convenient form known from studies in photonic crystal fibers......, but has not been introduced in the context of integrated waveguides. We show that the difference between our full-vectorial effective mode area and the scalar equivalent often referred to in the literature may lead to mistakes when evaluating the nonlinear refractive index and optimizing designs of new...

  6. Study of nonlinear effects in photonic crystals doped with nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 Ontario (Canada)

    2008-07-14

    A theory of nonlinear phenomena has been developed for a photonic crystal in the presence of a pump and a coupling laser field. The crystal is doped with an ensemble of four-level nanoparticle impurities. It is considered that the impurity particles are not only interacting with the photonic crystal but also with each other via dipole-dipole interaction. An expression for the susceptibility has been obtained using the density matrix method. The nonlinear effects due to the coupling and the pump fields have been included in the formulation. The absorption spectrum has been calculated in the presence of the strong coupling and pump fields for an isotropic photonic crystal made from dielectric spheres. The photonic crystal has a gap to midgap ratio of about 21%. It is predicted that the absorption spectrum in the photonic crystal can have zero, one, two or three absorptionless states by tuning one of the transition energies within the bands. This is an interesting phenomenon which can be used to make photonic switching devices. We have also calculated the absorption spectrum in the presence of the dipole-dipole interaction. It is found that a symmetric absorption spectrum changes to an asymmetric one due to this interaction. It is also found that there is a large enhancement in the absorption and the dispersion simultaneously for certain values of the detuning and concentration.

  7. Nonlinear effect of pion production in collisions of atomic nuclei

    International Nuclear Information System (INIS)

    Grin', Yu.T.

    1982-01-01

    The phenomenon of pion production in relativistic nucleon-nucleus and nucleus-nucleus interactions is investigated. The present experimental data are analyzed. It is shown that average multiplicity of pions in the (p, C), (C, C) collision reactions with the momentum p=4.2 GeV/cA and (p, Ar), (Ar, KCl) with the momentum p=2.3 GeV/cA non-linearly depends on the nucleon number. The calculated values of average multiplicity of negative pions per one nucleon of nucleus-pro ectile, probability of pion production and number of nucleon interactions for the investigated reactions are presented as a table. A comparative analysis of average multiplicities of pions per nucleon-participant in the nucleon-nucleus and nucleus-nucleus reactions at the p=2.3 GeV/cA momentum for argon and at the p=4.2 GeV/cA for carbon reveals that decrease of multiplicity by 30-35% is observed in nucleus-nucleus collision. Non-linearity is associated with decrease of effective interaction of each incident nucleon in the collision of nuclei as compared with the number of nucleon interactions in the ''elementary'' nucleon-nucleus reaction. Knock-out of nucleons from the colliding nuclei is the most probable reason for the decrease of the number of interactions

  8. Study of nonlinear effects in photonic crystals doped with nanoparticles

    International Nuclear Information System (INIS)

    Singh, Mahi R

    2008-01-01

    A theory of nonlinear phenomena has been developed for a photonic crystal in the presence of a pump and a coupling laser field. The crystal is doped with an ensemble of four-level nanoparticle impurities. It is considered that the impurity particles are not only interacting with the photonic crystal but also with each other via dipole-dipole interaction. An expression for the susceptibility has been obtained using the density matrix method. The nonlinear effects due to the coupling and the pump fields have been included in the formulation. The absorption spectrum has been calculated in the presence of the strong coupling and pump fields for an isotropic photonic crystal made from dielectric spheres. The photonic crystal has a gap to midgap ratio of about 21%. It is predicted that the absorption spectrum in the photonic crystal can have zero, one, two or three absorptionless states by tuning one of the transition energies within the bands. This is an interesting phenomenon which can be used to make photonic switching devices. We have also calculated the absorption spectrum in the presence of the dipole-dipole interaction. It is found that a symmetric absorption spectrum changes to an asymmetric one due to this interaction. It is also found that there is a large enhancement in the absorption and the dispersion simultaneously for certain values of the detuning and concentration

  9. ρ - ω Mixing Effects in Relativistic Heavy-Ion Collisions

    International Nuclear Information System (INIS)

    Broniowski, W.; Florkowski, W.

    1999-01-01

    Full text: We have shown that even moderate excess of neutrons over protons in nuclear matter, such as in 208 Pb, can lead to large ρ - ω mixing at densities of the order of twice the nuclear saturation density and higher. The typical mixing angle is of the order of 10 o . The mixing may result in noticeable shifts of the positions and widths of resonances. We also analyze temperature effects and find that temperatures up to 50 MeV have practically no effect on the mixing. The results have relevance for the explanation of dilepton production in relativistic heavy-ion collisions. (author)

  10. Estimation of Nonlinear Dynamic Panel Data Models with Individual Effects

    Directory of Open Access Journals (Sweden)

    Yi Hu

    2014-01-01

    Full Text Available This paper suggests a generalized method of moments (GMM based estimation for dynamic panel data models with individual specific fixed effects and threshold effects simultaneously. We extend Hansen’s (Hansen, 1999 original setup to models including endogenous regressors, specifically, lagged dependent variables. To address the problem of endogeneity of these nonlinear dynamic panel data models, we prove that the orthogonality conditions proposed by Arellano and Bond (1991 are valid. The threshold and slope parameters are estimated by GMM, and asymptotic distribution of the slope parameters is derived. Finite sample performance of the estimation is investigated through Monte Carlo simulations. It shows that the threshold and slope parameter can be estimated accurately and also the finite sample distribution of slope parameters is well approximated by the asymptotic distribution.

  11. Nonlinear QED effects in X-ray emission of pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Shakeri, Soroush [Department of Physics, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Haghighat, Mansour [Department of Physics, Shiraz University, Shiraz 71946-84795 (Iran, Islamic Republic of); Xue, She-Sheng, E-mail: Soroush.Shakeri@ph.iut.ac.ir, E-mail: m.haghighat@shirazu.ac.ir, E-mail: xue@icra.it [ICRANet, Piazzale della Repubblica 10, 65122, Pescara (Italy)

    2017-10-01

    In the presence of strong magnetic fields near pulsars, the QED vacuum becomes a birefringent medium due to nonlinear QED interactions. Here, we explore the impact of the effective photon-photon interaction on the polarization evolution of photons propagating through the magnetized QED vacuum of a pulsar. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian to find the evolution of the Stokes parameters. We find that linearly polarized X-ray photons propagating outward in the magnetosphere of a rotating neutron star can acquire high values for the circular polarization parameter. Meanwhile, it is shown that the polarization characteristics of photons besides photon energy depend strongly on parameters of the pulsars such as magnetic field strength, inclination angle and rotational period. Our results are clear predictions of QED vacuum polarization effects in the near vicinity of magnetic stars which can be tested with the upcoming X-ray polarimetric observations.

  12. Attenuation, dispersion and nonlinearity effects in graphene-based waveguides

    Directory of Open Access Journals (Sweden)

    Almir Wirth Lima Jr.

    2015-05-01

    Full Text Available We simulated and analyzed in detail the behavior of ultrashort optical pulses, which are typically used in telecommunications, propagating through graphene-based nanoribbon waveguides. In this work, we showed the changes that occur in the Gaussian and hyperbolic secant input pulses due to the attenuation, high-order dispersive effects and nonlinear effects. We concluded that it is possible to control the shape of the output pulses with the value of the input signal power and the chemical potential of the graphene nanoribbon. We believe that the obtained results will be highly relevant since they can be applied to other nanophotonic devices, for example, filters, modulators, antennas, switches and other devices.

  13. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model

    Energy Technology Data Exchange (ETDEWEB)

    Koa, A.S.; Chang, N.B. [University of Central Florida, Orlando, FL (United States). Dept. for Civil & Environmental Engineering

    2008-07-15

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO{sub 2}) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To case the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.

  14. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model.

    Science.gov (United States)

    Ko, Andi Setiady; Chang, Ni-Bin

    2008-07-01

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.

  15. Nonlinear effects in dynamic analysis and design of nuclear power plant components: research status and needs

    Energy Technology Data Exchange (ETDEWEB)

    Stoykovich, M [Burns and Roe, Inc., New York (USA)

    1978-10-01

    This paper encompasses nonlinear effects in dynamic analysis and design of nuclear power plant facilities. The history of plasticity as a science is briefly discussed, and nonlinear cases of special interest are described. Approaches to some of the nonlinear problems are presented. These include the nonlinearity due to foundation-structure interaction associated with the base slab uplift during seismic disturbances, the nonlinear base-isolation system for the reduction of earthquake-generated forces and deformations of superstructures, nonlinear systems having restoring-force functions in case of gaps and liift-off conditions, and nonlinearity of viscoelastic systems due to inelastic deformations. Available computer programs information for the solution of various types of nonlinear problems are provided. Advantages and disadvantages of some of the nonlinear and linear analyses are discussed. Comparison of some nonlinear and linear results of analyses are presented. Conclusions are reached with regard to research status and recommendations for further studies and for performing non-linear analyses associated with the problems of nonlinearity are presented.

  16. Nonlinear effects in dynamic analysis and design of nuclear power plant components: research status and needs

    International Nuclear Information System (INIS)

    Stoykovich, M.

    1978-01-01

    This paper encompasses nonlinear effects in dynamic analysis and design of nuclear power plant facilities. The history of plasticity as a science is briefly discussed, and nonlinear cases of special interest are described. Approaches to some of the nonlinear problems are presented. These include the nonlinearity due to foundation-structure interaction associated with the base slab uplift during seismic disturbances, the nonlinear base-isolation system for the reduction of earthquake-generated forces and deformations of superstructures, nonlinear systems having restoring-force functions in case of gaps and liift-off conditions, and nonlinearity of viscoelastic systems due to inelastic deformations. Available computer programs information for the solution of various types of nonlinear problems are provided. Advantages and disadvantages of some of the nonlinear and linear analyses are discussed. Comparison of some nonlinear and linear results of analyses are presented. Conclusions are reached with regard to research status and recommendations for further studies and for performing non-linear analyses associated with the problems of nonlinearity are presented. (Auth.)

  17. Translational mixed-effects PKPD modelling of recombinant human growth hormone - from hypophysectomized rat to patients

    DEFF Research Database (Denmark)

    Thorsted, A; Thygesen, P; Agersø, H

    2016-01-01

    BACKGROUND AND PURPOSE: We aimed to develop a mechanistic mixed-effects pharmacokinetic (PK)-pharmacodynamic (PD) (PKPD) model for recombinant human growth hormone (rhGH) in hypophysectomized rats and to predict the human PKPD relationship. EXPERIMENTAL APPROACH: A non-linear mixed-effects model...... was developed from experimental PKPD studies of rhGH and effects of long-term treatment as measured by insulin-like growth factor 1 (IGF-1) and bodyweight gain in rats. Modelled parameter values were scaled to human values using the allometric approach with fixed exponents for PKs and unscaled for PDs...... s.c. administration was over predicted. After correction of the human s.c. absorption model, the induction model for IGF-1 well described the human PKPD data. CONCLUSIONS: A translational mechanistic PKPD model for rhGH was successfully developed from experimental rat data. The model links...

  18. Nonlinear throughflow and internal heating effects on vibrating porous medium

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2016-06-01

    Full Text Available The effect of vertical throughflow and internal heating effects on fluid saturated porous medium under gravity modulation is investigated. The amplitude of modulation is considered to be very small and the disturbances are expanded in terms of power series of amplitude of convection. A weakly nonlinear stability analysis is proposed to study stationary convection. The Nusselt number is obtained numerically to present the results of heat transfer while using Ginzburg–Landau equation. The vertical throughflow has dual effect either to destabilize or to stabilize the system for downward or upward directions. The effect of internal heat source (Ri>0 enhances or sink (Ri<0 diminishes heat transfer in the system. The amplitude and frequency of modulation have the effects of increasing or diminishing heat transport. For linear model Venezian approach suggested that throughflow and internal heating have both destabilizing and stabilizing effects for suitable ranges of Ω. Further, the study establishes that heat transport can be controlled effectively by a mechanism that is external to the system throughflow and gravity modulation.

  19. Spatial nonlinearities: Cascading effects in the earth system

    Science.gov (United States)

    Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, K. M.; Canadell, Josep G.; Pataki, Diane E.; Pitelka, Louis F.

    2006-01-01

    Nonlinear behavior is prevalent in all aspects of the Earth System, including ecological responses to global change (Gallagher and Appenzeller 1999; Steffen et al. 2004). Nonlinear behavior refers to a large, discontinuous change in response to a small change in a driving variable (Rial et al. 2004). In contrast to linear systems where responses are smooth, well-behaved, continuous functions, nonlinear systems often undergo sharp or discontinuous transitions resulting from the crossing of thresholds. These nonlinear responses can result in surprising behavior that makes forecasting difficult (Kaplan and Glass 1995). Given that many system dynamics are nonlinear, it is imperative that conceptual and quantitative tools be developed to increase our understanding of the processes leading to nonlinear behavior in order to determine if forecasting can be improved under future environmental changes (Clark et al. 2001).

  20. Mixed

    Directory of Open Access Journals (Sweden)

    Pau Baya

    2011-05-01

    Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.

  1. Geometrical Effects on Nonlinear Electrodiffusion in Cell Physiology

    Science.gov (United States)

    Cartailler, J.; Schuss, Z.; Holcman, D.

    2017-12-01

    We report here new electrical laws, derived from nonlinear electrodiffusion theory, about the effect of the local geometrical structure, such as curvature, on the electrical properties of a cell. We adopt the Poisson-Nernst-Planck equations for charge concentration and electric potential as a model of electrodiffusion. In the case at hand, the entire boundary is impermeable to ions and the electric field satisfies the compatibility condition of Poisson's equation. We construct an asymptotic approximation for certain singular limits to the steady-state solution in a ball with an attached cusp-shaped funnel on its surface. As the number of charge increases, they concentrate at the end of cusp-shaped funnel. These results can be used in the design of nanopipettes and help to understand the local voltage changes inside dendrites and axons with heterogeneous local geometry.

  2. Modelling non-linear effects of dark energy

    Science.gov (United States)

    Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis

    2018-04-01

    We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.

  3. Dispersion and nonlinear effects in OFDM-RoF system

    Science.gov (United States)

    Alhasson, Bader H.; Bloul, Albe M.; Matin, M.

    2010-08-01

    The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.

  4. Modeling Dynamic Effects of the Marketing Mix on Market Shares

    NARCIS (Netherlands)

    D. Fok (Dennis); R. Paap (Richard); Ph.H.B.F. Franses (Philip Hans)

    2003-01-01

    textabstractTo comprehend the competitive structure of a market, it is important to understand the short-run and long-run effects of the marketing mix on market shares. A useful model to link market shares with marketing-mix variables, like price and promotion, is the market share attraction model.

  5. Optical rectification, circular photogalvanic effect, and five-wave mixing in optically active liquids

    Science.gov (United States)

    Koroteev, Nikolai I.

    1996-05-01

    A phenomenological analysis is carried out of novel nonlinear optical processes taking place in macroscopically noncentrosymmetric isotropic solutions of chiral (lift-ring mirror asymmetric) macromolecules, which are the primary elements of living organisms and their metabolic products. Among the most interesting and potentially useful for spectroscopic purposes are: optical rectification/photogalvanic effects consisting in electrostatic field/direct electrical current generation in such liquids under irradiation with the intense circularly polarized laser beam and the five-wave mixing phase-matched process of BioCARS to selectively record, background-free, vibrational spectra of chiral molecules.

  6. Non-Darcy Mixed Convection in a Doubly Stratified Porous Medium with Soret-Dufour Effects

    Directory of Open Access Journals (Sweden)

    D. Srinivasacharya

    2014-01-01

    Full Text Available This paper presents the nonsimilarity solutions for mixed convection heat and mass transfer along a semi-infinite vertical plate embedded in a doubly stratified fluid saturated porous medium in the presence of Soret and Dufour effects. The flow in the porous medium is described by employing the Darcy-Forchheimer based model. The nonlinear governing equations and their associated boundary conditions are initially cast into dimensionless forms and then solved numerically. The influence of pertinent parameters on dimensionless velocity, temperature, concentration, heat, and mass transfer in terms of the local Nusselt and Sherwood numbers is discussed and presented graphically.

  7. No Mikheyev-Smirnov-Wolfenstein Effect in Maximal Mixing

    OpenAIRE

    Harrison, P. F.; Perkins, D. H.; Scott, W. G.

    1996-01-01

    We investigate the possible influence of the MSW effect on the expectations for the solar neutrino experiments in the maximal mixing scenario suggested by the atmospheric neutrino data. A direct numerical calculation of matter induced effects in the Sun shows that the naive vacuum predictions are left completely undisturbed in the particular case of maximal mixing, so that the MSW effect turns out to be unobservable. We give a qualitative explanation of this result.

  8. Introduction to nonlinear acoustics

    Science.gov (United States)

    Bjørnø, Leif

    2010-01-01

    A brief review of the basic principles of fluid mechanics needed for development of linear and nonlinear ultrasonic concepts will be given. The fundamental equations of nonlinear ultrasonics will be derived and their physical properties explained. It will be shown how an originally monochromatic finite-amplitude ultrasonic wave, due to nonlinear effects, will distort during its propagation in time and space to form higher harmonics to its fundamental frequency. The concepts of shock formation will be presented. The material nonlinearity, described by the nonlinearity parameter B/A of the material, and the convective nonlinearity, described by the ultrasonic Mach Number, will be explained. Two procedures for determination of B/A will briefly be described and some B/A-values characterizing biological materials will be presented. Shock formation, described by use of the Goldberg Number,and Ultrasonic Saturation will be discussed.. An introduction to focused ultrasonic fields will be given and it will be shown how the ultrasonic intensity will vary axially and laterally in and near the focal region and how the field parameters of interest to biomedical applications may be described by use of the KZK-Model. Finally, an introduction will be given to the parametric acoustic array formed by mixing and interaction of two monochromatic, finite-amplitude ultrasonic waves in a liquid and the potentials of this mixing process in biomedical ultrasound will briefly be mentioned.

  9. Nonlinear effect of the structured light profilometry in the phase-shifting method and error correction

    International Nuclear Information System (INIS)

    Zhang Wan-Zhen; Chen Zhe-Bo; Xia Bin-Feng; Lin Bin; Cao Xiang-Qun

    2014-01-01

    Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector–camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Nonlinear effects in interactions of swift ions with solids

    International Nuclear Information System (INIS)

    Crawford, O.H.; Dorado, J.J.; Flores, F.

    1994-01-01

    The passage of a swift charged particle through a solid gives rise to a wake of induced electron density behind the particle. It is calculated for a proton penetrating an electron gas having the density of the valence electrons in gold, assuming linear response of the medium. The induced potential associated with the wake is responsible for the energy loss of the particle, and for many effects that have captured recent interest. These include, among others, vicinage effects on swift ion clusters, emission of electrons from bombarded solids, forces on swift ions near a surface, and energy shifts in electronic states of channeled ions. Furthermore, the wake has a determining influence on the spatial distribution, and character, of energy deposition in the medium. Previous theoretical studies of these phenomena have employed a linear wake, i.e., one that is proportional to the charge of the projectile, eZ. However, in most experiments that measure these effects, the conditions are such that the wake must include higher-order terms in Z. The purpose of this study is to analyze the nonlinear wake, to understand how the linear results must be revised

  11. Interaction-induced effects in the nonlinear coherent response of quantum-well excitons

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Schätz, A.; Langbein, Wolfgang Werner

    1999-01-01

    Interaction-induced processes are studied using the third-order nonlinear polarization created in polarization-dependent four-wave-mixing experiments (FWM) on a ZnSe single quantum well. We discuss their influence by a comparison of the experimental FWM with calculations based on extended optical...

  12. A large mixing effect on eta,eta' and iota

    International Nuclear Information System (INIS)

    Kawai, E.

    1983-01-01

    We quantitatively investigate a possible large mixing effect on eta(549), eta'(958) and iota(1440) in a phenomenological way, taking both SU(3) symmetry breaking and gluon intervention into due account. (orig.)

  13. The nonlinear effects on the characteristics of gravity wave packets: dispersion and polarization relations

    Directory of Open Access Journals (Sweden)

    S.-D. Zhang

    2000-10-01

    Full Text Available By analyzing the results of the numerical simulations of nonlinear propagation of three Gaussian gravity-wave packets in isothermal atmosphere individually, the nonlinear effects on the characteristics of gravity waves are studied quantitatively. The analyses show that during the nonlinear propagation of gravity wave packets the mean flows are accelerated and the vertical wavelengths show clear reduction due to nonlinearity. On the other hand, though nonlinear effects exist, the time variations of the frequencies of gravity wave packets are close to those derived from the dispersion relation and the amplitude and phase relations of wave-associated disturbance components are consistent with the predictions of the polarization relation of gravity waves. This indicates that the dispersion and polarization relations based on the linear gravity wave theory can be applied extensively in the nonlinear region.Key words: Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  14. Effects of intermode nonlinearity and intramode nonlinearity on modulation instability in randomly birefringent two-mode optical fibers

    Science.gov (United States)

    Li, Jin Hua; Xu, Hui; Sun, Ting Ting; Pei, Shi Xin; Ren, Hai Dong

    2018-05-01

    We analyze in detail the effects of the intermode nonlinearity (IEMN) and intramode nonlinearity (IRMN) on modulation instability (MI) in randomly birefringent two-mode optical fibers (RB-TMFs). In the anomalous dispersion regime, the MI gain enhances significantly as the IEMN and IRMN coefficients increases. In the normal dispersion regime, MI can be generated without the differential mode group delay (DMGD) effect, as long as the IEMN coefficient between two distinct modes is above a critical value, or the IRMN coefficient inside a mode is below a critical value. This critical IEMN (IRMN) coefficient depends strongly on the given IRMN (IEMN) coefficient and DMGD for a given nonlinear RB-TMF structure, and is independent on the input total power, the power ratio distribution and the group velocity dispersion (GVD) ratio between the two modes. On the other hand, in contrast to the MI band arising from the pure effect of DMGD in the normal dispersion regime, where MI vanishes after a critical total power, the generated MI band under the combined effects of IEMN and IRMN without DMGD exists for any total power and enhances with the total power. The MI analysis is verified numerically by launching perturbed continuous waves (CWs) with wave propagation method.

  15. Explanation of the Inverse Doppler Effect Observed in Nonlinear Transmission Lines

    International Nuclear Information System (INIS)

    Kozyrev, Alexander B.; Weide, Daniel W. van der

    2005-01-01

    The theory of the inverse Doppler effect recently observed in magnetic nonlinear transmission lines is developed. We explain the crucial role of the backward spatial harmonic in the occurrence of an inverse Doppler effect and draw analogies of the magnetic nonlinear transmission line to the backward wave oscillator

  16. Effects of error feedback on a nonlinear bistable system with stochastic resonance

    International Nuclear Information System (INIS)

    Li Jian-Long; Zhou Hui

    2012-01-01

    In this paper, we discuss the effects of error feedback on the output of a nonlinear bistable system with stochastic resonance. The bit error rate is employed to quantify the performance of the system. The theoretical analysis and the numerical simulation are presented. By investigating the performances of the nonlinear systems with different strengths of error feedback, we argue that the presented system may provide guidance for practical nonlinear signal processing

  17. Cutoff effects in O(N) nonlinear sigma models

    International Nuclear Information System (INIS)

    Knechtli, Francesco; Leder, Bjoern; Wolff, Ulli

    2005-01-01

    In the nonlinear O(N) sigma model at N=3 unexpected cutoff effects have been found before with standard discretizations and lattice spacings. Here the situation is analyzed further employing additional data for the step scaling function of the finite volume mass gap at N=3,4,8 and a large N-study of the leading as well as next-to-leading terms in 1/N. The latter exact results are demonstrated to follow Symanzik's form of the asymptotic cutoff dependence. At the same time, when fuzzed with artificial statistical errors and then fitted like the Monte Carlo results, a picture similar to N=3 emerges. We hence cannot conclude a truly anomalous cutoff dependence but only relatively large cutoff effects, where the logarithmic component is important. Their size shrinks at larger N, but the structure remains similar. The large N results are particularly interesting as we here have exact nonperturbative control over an asymptotically free model both in the continuum limit and on the lattice

  18. Cutoff effects in O(N) nonlinear sigma models

    International Nuclear Information System (INIS)

    Knechtli, F.; Wolff, U.; Leder, B.

    2005-06-01

    In the nonlinear O(N) sigma model at N=3 unexpected cutoff effects have been found before with standard discretizations and lattice spacings. Here the situation is analyzed further employing additional data for the step scaling function of the finite volume mass gap at N=3,4,8 and a large N-study of the leading as well as next-to-leading terms in 1/N. The latter exact results are demonstrated to follow Symanzik's form of the asymptotic cutoff dependence. At the same time, when fuzzed with artificial statistical errors and then fitted like the Monte Carlo results, a picture similar to N=3 emerges. We hence cannot conclude a truly anomalous cutoff dependence but only relatively large cutoff effects, where the logarithmic component is important. Their size shrinks at larger N, but the structure remains similar. The large N results are particularly interesting as we here have exact nonperturbative control over an asymptotically free model both in the continuum limit and on the lattice. (orig.)

  19. The salinity effect in a mixed layer ocean model

    Science.gov (United States)

    Miller, J. R.

    1976-01-01

    A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.

  20. Twice random, once mixed: applying mixed models to simultaneously analyze random effects of language and participants.

    Science.gov (United States)

    Janssen, Dirk P

    2012-03-01

    Psychologists, psycholinguists, and other researchers using language stimuli have been struggling for more than 30 years with the problem of how to analyze experimental data that contain two crossed random effects (items and participants). The classical analysis of variance does not apply; alternatives have been proposed but have failed to catch on, and a statistically unsatisfactory procedure of using two approximations (known as F(1) and F(2)) has become the standard. A simple and elegant solution using mixed model analysis has been available for 15 years, and recent improvements in statistical software have made mixed models analysis widely available. The aim of this article is to increase the use of mixed models by giving a concise practical introduction and by giving clear directions for undertaking the analysis in the most popular statistical packages. The article also introduces the DJMIXED: add-on package for SPSS, which makes entering the models and reporting their results as straightforward as possible.

  1. Nonlinear response time-dependent density functional theory combined with the effective fragment potential method

    Energy Technology Data Exchange (ETDEWEB)

    Zahariev, Federico; Gordon, Mark S., E-mail: mark@si.msg.chem.iastate.edu [Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States)

    2014-05-14

    This work presents an extension of the linear response TDDFT/EFP method to the nonlinear-response regime together with the implementation of nonlinear-response TDDFT/EFP in the quantum-chemistry computer package GAMESS. Included in the new method is the ability to calculate the two-photon absorption cross section and to incorporate solvent effects via the EFP method. The nonlinear-response TDDFT/EFP method is able to make correct qualitative predictions for both gas phase values and aqueous solvent shifts of several important nonlinear properties.

  2. The effect of nonlinear ionospheric conductivity enhancement on magnetospheric substorms

    Directory of Open Access Journals (Sweden)

    E. Spencer

    2013-06-01

    Full Text Available We introduce the effect of enhanced ionospheric conductivity into a low-order, physics-based nonlinear model of the nightside magnetosphere called WINDMI. The model uses solar wind and interplanetary magnetic field (IMF parameters from the ACE satellite located at the L1 point to predict substorm growth, onset, expansion and recovery measured by the AL index roughly 50–60 min in advance. The dynamics introduced by the conductivity enhancement into the model behavior is described, and illustrated through using synthetically constructed solar wind parameters as input. We use the new model to analyze two well-documented isolated substorms: one that occurred on 31 July 1997 from Aksnes et al. (2002, and another on 13 April 2000 from Huang et al. (2004. These two substorms have a common feature in that the solar wind driver sharply decreases in the early part of the recovery phase, and that neither of them are triggered by northward turning of the IMF Bz. By controlling the model parameters such that the onset time of the substorm is closely adhered to, the westward auroral electrojet peaks during substorm expansion are qualitatively reproduced. Furthermore, the electrojet recovers more slowly with enhanced conductivity playing a role, which explains the data more accurately.

  3. Interference effects in the nonlinear charge density wave dynamics

    International Nuclear Information System (INIS)

    Jelcic, D.; Batistic, I.; Bjelis, A.

    1987-12-01

    The main features of the nonlinear charge density wave transport in the external dc-ac field are shown to be the natural consequences of resonant phase slip diffusion. This process is treated numerically within the time dependent Landau-Ginzburg model, developed by Gor'kov. The resonances in the ac field are manifested as Shapiro steps in I-V characteristics, present at all rational ratios of internal frequency of current oscillations and external ac frequency. The origin of Shapiro steps, as well as their forms and heights, are cosidered in detail. In particular, it is shown that close to resonances the phase slip voltage acquires a highly nonsinusoidal modulation which leads to the appearance of low frequency and satellite peaks in the Fourier spectrum. Taking into account the interference of adjacent phase slips and the segment or domain structure of physical samples, we interpret the finite width of steps, side wings, synchronization, incomplete and complete mode locking and some other effects observed in numerous experiments on NbSe 3 and other CDW materials. (author). 36 refs, 12 figs

  4. The effects of mixing on age of air

    OpenAIRE

    Garny, H.; Birner, T.; Bönisch, H.; Bunzel, F.

    2014-01-01

    Mean age of air (AoA) measures the mean transit time of air parcels along the Brewer-Dobson circulation (BDC) starting from their entry into the stratosphere. AoA is determined both by transport along the residual circulation and by two-way mass exchange (mixing). The relative roles of residual circulation transport and two-way mixing for AoA, and for projected AoA changes are not well understood. Here effects of mixing on AoA are quantified by contrasting AoA with the transit time of hypothe...

  5. Reynolds number effects on mixing due to topological chaos.

    Science.gov (United States)

    Smith, Spencer A; Warrier, Sangeeta

    2016-03-01

    Topological chaos has emerged as a powerful tool to investigate fluid mixing. While this theory can guarantee a lower bound on the stretching rate of certain material lines, it does not indicate what fraction of the fluid actually participates in this minimally mandated mixing. Indeed, the area in which effective mixing takes place depends on physical parameters such as the Reynolds number. To help clarify this dependency, we numerically simulate the effects of a batch stirring device on a 2D incompressible Newtonian fluid in the laminar regime. In particular, we calculate the finite time Lyapunov exponent (FTLE) field for three different stirring protocols, one topologically complex (pseudo-Anosov) and two simple (finite-order), over a range of viscosities. After extracting appropriate measures indicative of both the amount of mixing and the area of effective mixing from the FTLE field, we see a clearly defined Reynolds number range in which the relative efficacy of the pseudo-Anosov protocol over the finite-order protocols justifies the application of topological chaos. More unexpectedly, we see that while the measures of effective mixing area increase with increasing Reynolds number for the finite-order protocols, they actually exhibit non-monotonic behavior for the pseudo-Anosov protocol.

  6. Effect of particle size on mixing degree in dispensation.

    Science.gov (United States)

    Nakamura, Hitoshi; Yanagihara, Yoshitsugu; Sekiguchi, Hiroko; Ohtani, Michiteru; Kariya, Satoru; Uchino, Katsuyoshi; Suzuki, Hiroshi; Iga, Tatsuji

    2004-03-01

    By using lactose colored with erythrocin, we examined the effect of particle size on mixing degree during the preparation of triturations with a mortar and pestle. We used powders with different distributions of particle sizes, i.e., powder that passed through 32-mesh but was trapped on a 42-mesh sieve (32/42-mesh powder), powder that passed through a 42-mesh sieve but was trapped on a 60-mesh sieve (42/60-mesh powder), powder that passed through a 60-mesh sieve but was trapped on a 100-mesh sieve (60/100-mesh powder), and powder that passes through a 100-mesh sieve (> 100-mesh powder). The mixing degree of colored powder and non-colored powder whose distribution of particle sizes was the same as that of the colored powder was excellent. The coefficient of variation (CV) value of the mixing degree was 6.08% after 40 rotations when colored powder was mixed with non-colored powder that both passed through a 100-mesh sieve. The CV value of the mixing degree was low in the case of mixing of colored and non-colored powders with different particle size distributions. After mixing, about 50% of 42/60-mesh powder had become smaller particles, whereas the distribution of particle sizes was not influenced by the mixing of 60/100-mesh powder. It was suggested that the mixing degree is affected by distribution of particle sizes. It may be important to determine the mixing degrees for drugs with narrow therapeutic ranges.

  7. Mixed integer nonlinear programming model of wireless pricing scheme with QoS attribute of bandwidth and end-to-end delay

    Science.gov (United States)

    Irmeilyana, Puspita, Fitri Maya; Indrawati

    2016-02-01

    The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.

  8. Bilinear Mixed Effects Models for Dyadic Data

    National Research Council Canada - National Science Library

    Hoff, Peter D

    2003-01-01

    This article discusses the use of a symmetric multiplicative interaction effect to capture certain types of third-order dependence patterns often present in social networks and other dyadic datasets...

  9. Applications and Optimization of Optical Time Lenses based on Four-Wave Mixing in Highly Nonlinear Fibre

    DEFF Research Database (Denmark)

    Lillieholm, Mads

    2017-01-01

    Optical Fourier transformations enabled by the versatile time lens (quadratic phase modulator), have been demonstrated for numerous optical signal processing applications. Applications include ultrafast optical oscilloscopes, high resolution spectralanalysers, and the processing of ultrahigh......-speed communication signals, to enable e.g. such varied applications as phase regeneration for wavelength-division multiplexing (WDM) signals, conversion between spectrally efficient formats and receivers with reduced complexity for advanced optical multiplexing formats. Four-wave mixing (FWM) is showing promise...... of HNLF for different applications, and to a novel generic method based on only two tunable CW lasers, which allows for accurate prediction of the FWM performance in HNLF with chirped pump pulses.Then, a composite dispersion-flattened HNLF (DF-HNLF) is proposed and assembled to mitigate the effects...

  10. Functional Mixed Effects Model for Small Area Estimation.

    Science.gov (United States)

    Maiti, Tapabrata; Sinha, Samiran; Zhong, Ping-Shou

    2016-09-01

    Functional data analysis has become an important area of research due to its ability of handling high dimensional and complex data structures. However, the development is limited in the context of linear mixed effect models, and in particular, for small area estimation. The linear mixed effect models are the backbone of small area estimation. In this article, we consider area level data, and fit a varying coefficient linear mixed effect model where the varying coefficients are semi-parametrically modeled via B-splines. We propose a method of estimating the fixed effect parameters and consider prediction of random effects that can be implemented using a standard software. For measuring prediction uncertainties, we derive an analytical expression for the mean squared errors, and propose a method of estimating the mean squared errors. The procedure is illustrated via a real data example, and operating characteristics of the method are judged using finite sample simulation studies.

  11. Effects of weak nonlinearity on dispersion relations and frequency band-gaps of periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    2015-01-01

    of these for nonlinear problems is impossible or cumbersome, since Floquet theory is applicable for linear systems only. Thus the nonlinear effects for periodic structures are not yet fully uncovered, while at the same time applica-tions may demand effects of nonlinearity on structural response to be accounted for....... The present work deals with analytically predicting dynamic responses for nonlinear continuous elastic periodic structures. Specifically, the effects of weak nonlinearity on the dispersion re-lation and frequency band-gaps of a periodic Bernoulli-Euler beam performing bending os-cillations are analyzed......The analysis of the behaviour of linear periodic structures can be traced back over 300 years, to Sir Isaac Newton, and still attracts much attention. An essential feature of periodic struc-tures is the presence of frequency band-gaps, i.e. frequency ranges in which waves cannot propagate...

  12. Localized Effects in the Nonlinear Behavior of Sandwich Panels with a Transversely Flexible Core

    DEFF Research Database (Denmark)

    Frostig, Y.; Thomsen, Ole Thybo

    2005-01-01

    This paper presents the results of an investigation of the role of localized effects within the geometrically nonlinear domain on structural sandwich panels with a "compliant" core. Special emphasis is focused on the nonlinear response near concentrated loads and stiffened core regions. The adopted...... nonlinear analysis approach incorporates the effects of the vertical flexibility of the core, and it is based on the approach of the High-order Sandwich Panel Theory (HSAPT). The results demonstrate that the effects of localized loads, when taken into the geometrically nonlinear domain, change the response...... of the panel from a strength problem controlled by stress constraints into a stability problem with unstable limit point behavior when force-controlled loads are applied. The stability problem emerge as the nonlinear response develops with the formation of a small number of buckling waves in the compressed...

  13. On the effects of nonlinearities in room impulse response measurements with exponential sweeps

    DEFF Research Database (Denmark)

    Ciric, Dejan; Markovic, Milos; Mijic, Miomir

    2013-01-01

    In room impulse response measurements, there are some common disturbances that affect the measured results. These disturbances include nonlinearity, noise and time variance. In this paper, the effects of nonlinearities in the measurements with exponential sweep-sine signals are analyzed from diff...

  14. Effect of Magnetic Twist on Nonlinear Transverse Kink Oscillations of Line-tied Magnetic Flux Tubes

    Science.gov (United States)

    Terradas, J.; Magyar, N.; Van Doorsselaere, T.

    2018-01-01

    Magnetic twist is thought to play an important role in many structures of the solar atmosphere. One of the effects of twist is to modify the properties of the eigenmodes of magnetic tubes. In the linear regime standing kink solutions are characterized by a change in polarization of the transverse displacement along the twisted tube. In the nonlinear regime, magnetic twist affects the development of shear instabilities that appear at the tube boundary when it is oscillating laterally. These Kelvin–Helmholtz instabilities (KHI) are produced either by the jump in the azimuthal component of the velocity at the edge of the sharp boundary between the internal and external part of the tube or by the continuous small length scales produced by phase mixing when there is a smooth inhomogeneous layer. In this work the effect of twist is consistently investigated by solving the time-dependent problem including the process of energy transfer to the inhomogeneous layer. It is found that twist always delays the appearance of the shear instability, but for tubes with thin inhomogeneous layers the effect is relatively small for moderate values of twist. On the contrary, for tubes with thick layers, the effect of twist is much stronger. This can have some important implications regarding observations of transverse kink modes and the KHI itself.

  15. Energy dependence of the Cronin effect from nonlinear QCD evolution

    International Nuclear Information System (INIS)

    Albacete, Javier L.; Armesto, Nestor; Salgado, Carlos A.; Wiedemann, Urs Achim; Kovner, Alex

    2004-01-01

    The nonlinear evolution of dense partonic systems has been suggested as a novel physics mechanism relevant for the dynamics of p-A and A-A collisions at collider energies. Here we study to what extent the description of Cronin enhancement in the framework of this nonlinear evolution is consistent with the recent observation in √(s)=200 GeV d-Au collisions at the Relativistic Heavy Ion Collider. We solve the Balitsky-Kovchegov evolution equation numerically for several initial conditions encoding Cronin enhancement. We find that the properly normalized nuclear gluon distribution is suppressed at all momenta relative to that of a single nucleon. For the resulting spectrum of produced gluons in p-A and A-A collisions, the nonlinear QCD evolution is unable to generate a Cronin-type enhancement, and it quickly erases any such enhancement which may be present at lower energies

  16. Problems in nonlinear acoustics: Pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams, and parametric receiving arrays

    Science.gov (United States)

    Hamilton, Mark F.

    1990-12-01

    This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.

  17. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren

    2006-01-01

    Bacterial biofilms, often composed of multiple species and genetically distinct strains, develop under complex influences of cell-cell interactions. Although detailed knowledge about the mechanisms underlying formation of single-species laboratory biofilms has emerged, little is known about...... the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...... the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n = 56) exhibiting...

  18. Nonlinear realizations and effective Lagrangian densities for nonlinear σ-models

    International Nuclear Information System (INIS)

    Hamilton-Charlton, Jason Dominic

    2003-01-01

    Nonlinear realizations of the groups SU(N), SO(m) and SO(t,s) are analysed, described by the coset spaces SU(N) / SU(N-1) x U(1), SO(m) / SO(m-1), SO(1,m-1) / SO(1,m-2) and SO(m) / SO(m-2 x SO(2). The analysis consists of determining the transformation properties of the Goldstone Bosons, constructing the most general possible Lagrangian for the realizations, and as a result identifying the coset space metric. We view the λ matrices of SU(N) as being the basis of an (N 2 - 1) dimensional real vector space, and from this we learn how to construct the basis of a Cartan Subspace associated with a vector. This results in a mathematical structure which allows us to find expressions for coset representative elements used in the analysis. This structure is not only relevant to SU(N) breaking models, but may also be used to find results in SO(m) and SO(1,m - 1) breaking models. (author)

  19. Mixed-mode fatigue fracture of adhesive joints in harsh environments and nonlinear viscoelastic modeling of the adhesive

    Science.gov (United States)

    Arzoumanidis, Alexis Gerasimos

    A four point bend, mixed-mode, reinforced, cracked lap shear specimen experimentally simulated adhesive joints between load bearing composite parts in automotive components. The experiments accounted for fatigue, solvent and temperature effects on a swirled glass fiber composite adherend/urethane adhesive system. Crack length measurements based on compliance facilitated determination of da/dN curves. A digital image processing technique was also utilized to monitor crack growth from in situ images of the side of the specimen. Linear elastic fracture mechanics and finite elements were used to determine energy release rate and mode-mix as a function of crack length for this specimen. Experiments were conducted in air and in a salt water bath at 10, 26 and 90°C. Joints tested in the solvent were fully saturated. In air, both increasing and decreasing temperature relative to 26°C accelerated crack growth rates. In salt water, crack growth rates increased with increasing temperature. Threshold energy release rate is shown to be the most appropriate design criteria for joints of this system. In addition, path of the crack is discussed and fracture surfaces are examined on three length scales. Three linear viscoelastic properties were measured for the neat urethane adhesive. Dynamic tensile compliance (D*) was found using a novel extensometer and results were considerably more accurate and precise than standard DMTA testing. Dynamic shear compliance (J*) was determined using an Arcan specimen. Dynamic Poisson's ratio (nu*) was extracted from strain gage data analyzed to include gage reinforcement. Experiments spanned three frequency decades and isothermal data was shifted by time-temperature superposition to create master curves spanning thirty decades. Master curves were fit to time domain Prony series. Shear compliance inferred from D* and nu* compared well with measured J*, forming a basis for finding the complete time dependent material property matrix for this

  20. Testing effects in mixed- versus pure-list designs.

    Science.gov (United States)

    Rowland, Christopher A; Littrell-Baez, Megan K; Sensenig, Amanda E; DeLosh, Edward L

    2014-08-01

    In the present study, we investigated the role of list composition in the testing effect. Across three experiments, participants learned items through study and initial testing or study and restudy. List composition was manipulated, such that tested and restudied items appeared either intermixed in the same lists (mixed lists) or in separate lists (pure lists). In Experiment 1, half of the participants received mixed lists and half received pure lists. In Experiment 2, all participants were given both mixed and pure lists. Experiment 3 followed Erlebacher's (Psychological Bulletin, 84, 212-219, 1977) method, such that mixed lists, pure tested lists, and pure restudied lists were given to independent groups. Across all three experiments, the final recall results revealed significant testing effects for both mixed and pure lists, with no reliable difference in the magnitude of the testing advantage across list designs. This finding suggests that the testing effect is not subject to a key boundary condition-list design-that impacts other memory phenomena, including the generation effect.

  1. An update on modeling dose-response relationships: Accounting for correlated data structure and heterogeneous error variance in linear and nonlinear mixed models.

    Science.gov (United States)

    Gonçalves, M A D; Bello, N M; Dritz, S S; Tokach, M D; DeRouchey, J M; Woodworth, J C; Goodband, R D

    2016-05-01

    Advanced methods for dose-response assessments are used to estimate the minimum concentrations of a nutrient that maximizes a given outcome of interest, thereby determining nutritional requirements for optimal performance. Contrary to standard modeling assumptions, experimental data often present a design structure that includes correlations between observations (i.e., blocking, nesting, etc.) as well as heterogeneity of error variances; either can mislead inference if disregarded. Our objective is to demonstrate practical implementation of linear and nonlinear mixed models for dose-response relationships accounting for correlated data structure and heterogeneous error variances. To illustrate, we modeled data from a randomized complete block design study to evaluate the standardized ileal digestible (SID) Trp:Lys ratio dose-response on G:F of nursery pigs. A base linear mixed model was fitted to explore the functional form of G:F relative to Trp:Lys ratios and assess model assumptions. Next, we fitted 3 competing dose-response mixed models to G:F, namely a quadratic polynomial (QP) model, a broken-line linear (BLL) ascending model, and a broken-line quadratic (BLQ) ascending model, all of which included heteroskedastic specifications, as dictated by the base model. The GLIMMIX procedure of SAS (version 9.4) was used to fit the base and QP models and the NLMIXED procedure was used to fit the BLL and BLQ models. We further illustrated the use of a grid search of initial parameter values to facilitate convergence and parameter estimation in nonlinear mixed models. Fit between competing dose-response models was compared using a maximum likelihood-based Bayesian information criterion (BIC). The QP, BLL, and BLQ models fitted on G:F of nursery pigs yielded BIC values of 353.7, 343.4, and 345.2, respectively, thus indicating a better fit of the BLL model. The BLL breakpoint estimate of the SID Trp:Lys ratio was 16.5% (95% confidence interval [16.1, 17.0]). Problems with

  2. Nonlinear optical and G-Quadruplex DNA stabilization properties of novel mixed ligand copper(II) complexes and coordination polymers: Synthesis, structural characterization and computational studies

    Science.gov (United States)

    Rajasekhar, Bathula; Bodavarapu, Navya; Sridevi, M.; Thamizhselvi, G.; RizhaNazar, K.; Padmanaban, R.; Swu, Toka

    2018-03-01

    The present study reports the synthesis and evaluation of nonlinear optical property and G-Quadruplex DNA Stabilization of five novel copper(II) mixed ligand complexes. They were synthesized from copper(II) salt, 2,5- and 2,3- pyridinedicarboxylic acid, diethylenetriamine and amide based ligand (AL). The crystal structure of these complexes were determined through X-ray diffraction and supported by ESI-MAS, NMR, UV-Vis and FT-IR spectroscopic methods. Their nonlinear optical property was studied using Gaussian09 computer program. For structural optimization and nonlinear optical property, density functional theory (DFT) based B3LYP method was used with LANL2DZ basis set for metal ion and 6-31G∗ for C,H,N,O and Cl atoms. The present work reveals that pre-polarized Complex-2 showed higher β value (29.59 × 10-30e.s.u) as compared to that of neutral complex-1 (β = 0.276 × 10-30e.s.u.) which may be due to greater advantage of polarizability. Complex-2 is expected to be a potential material for optoelectronic and photonic technologies. Docking studies using AutodockVina revealed that complex-2 has higher binding energy for both G-Quadruplex DNA (-8.7 kcal/mol) and duplex DNA (-10.1 kcal/mol). It was also observed that structure plays an important role in binding efficiency.

  3. Cumulative effect of structural nonlinearities: chaotic dynamics of cantilever beam system with impacts

    International Nuclear Information System (INIS)

    Emans, Joseph; Wiercigroch, Marian; Krivtsov, Anton M.

    2005-01-01

    The nonlinear analysis of a common beam system was performed, and the method for such, outlined and presented. Nonlinear terms for the governing dynamic equations were extracted and the behaviour of the system was investigated. The analysis was carried out with and without physically realistic parameters, to show the characteristics of the system, and the physically realistic responses. Also, the response as part of a more complex system was considered, in order to investigate the cumulative effects of nonlinearities. Chaos, as well as periodic motion was found readily for the physically unrealistic parameters. In addition, nonlinear behaviour such as co-existence of attractors was found even at modest oscillation levels during investigations with realistic parameters. When considered as part of a more complex system with further nonlinearities, comparisons with linear beam theory show the classical approach to be lacking in accuracy of qualitative predictions, even at weak oscillations

  4. Efficient non-linear two-photon effects from the Cesium 6D manifold

    Science.gov (United States)

    Haluska, Nathan D.; Perram, Glen P.; Rice, Christopher A.

    2018-02-01

    We report several non-linear process that occur when two-photon pumping the cesium 6D states. Cesium vapor possess some of the largest two-photon pump cross sections in nature. Pumping these cross sections leads to strong amplified spontaneous emission that we observe on over 17 lasing lines. These new fields are strong enough to couple with the pump to create additional tunable lines. We use a heat pipe with cesium densities of 1014 to 1016 cm-3 and 0 to 5 Torr of helium buffer gas. The cesium 6D States are interrogated by both high energy pulses and low power CW sources. We observe four-wave mixing, six-wave mixing, potential two-photon lasing, other unknown nonlinear processes, and the persistence of some processes at low thresholds. This system is also uniquely qualified to support two-photon lasing under the proper conditions.

  5. Non-linear effects in the Snoek relaxation of Nb-O

    International Nuclear Information System (INIS)

    Hermida, E.B.; Povolo, F.

    1996-01-01

    Internal friction peaks measured as a function of temperature or frequency have been associated to non-linear processes only after studying how the amplitude of the applied stress affects the relaxation process. Here it is demonstrated that the partial derivative of the internal friction with respect to the frequency at constant temperature is a useful tool to determine that non-linear effects are involved. This analysis applied to actual data of the Snoek relaxation in Nb-O, reveals that at high interstitial contents non-linear effects appear. (orig.)

  6. Effect of precession on the mixing of a jet

    Energy Technology Data Exchange (ETDEWEB)

    Nobes, D.S. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering; Nathan, G.J. [Adelaide Univ., Adelaide (Australia). Dept. of Mechanical Engineering

    2007-07-01

    The mixing of fuel and oxidant are fundamentally linked to the performance characteristics of a diffusion flame, including radiant emissions, flame stability, pollutant emissions and overall dimensions such as flame length and width. Modification of these characteristics through the mixing field can be achieved by appropriate nozzle design. One method is to precess the nozzle fluid which can be gained by fluidic or mechanical means. This paper described the effect of precession on the mixing field from a mechanical nozzle using a two-dimensional imaging technique based on Mie scattering. The paper discussed the experimental technique as well as the results and discussion. The effect of precessing the jet was to create a large scale helix in the near field that contained two counter-rotating vortices within it. This flow supplied high concentration fluid to a region above the nozzle exit that had low momentum and low shear. The resulting flow field had scale mixing larger than the local length scales of the flow in a region close to the nozzle exit. It was found that the flow field beyond this region had low rate of mixing similar to the far field of a jet. 11 refs., 5 figs.

  7. Using nonlinearity and spatiotemporal property modulation to control effective structural properties: dynamic rods

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Blekhman, Iliya I.

    2007-01-01

    What are the effective properties of a generally nonlinear material or structure, whose local properties are modulated in both space and time? It has been suggested to use spatiotemporal modulation of structural properties to create materials and structures with adjustable effective properties......, and to call these dynamic materials or spatiotemporal composites. Also, according to theoretical predictions, structural nonlinearity enhances the possibilities of achieving specific effective properties. For example, with an elastic rod having cubical elastic nonlinearities, it seems possible to control......, and exemplified. Then simple approximate analytical expressions are derived for the effective wave speed and natural frequencies for one-dimensional wave propagation in a nonlinear elastic rod, where the spatiotemporal modulation is imposed as a high-frequency standing wave, supposed to be given. Finally the more...

  8. Diffraction corrections for second harmonic beam fields and effects on the nonlinearity parameter evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    The nonlinearity parameter is frequently measured as a sensitive indicator in damaged material characterization or tissue harmonic imaging. Several previous studies have employed the plane wave solution, and ignored the effects of beam diffraction when measuring the non-linearity parameter β. This paper presents a multi-Gaussian beam approach to explicitly derive diffraction corrections for fundamental and second harmonics under quasilinear and paraxial approximation. Their effects on the nonlinearity parameter estimation demonstrate complicated dependence of β on the transmitter-receiver geometries, frequency, and propagation distance. The diffraction effects on the non-linearity parameter estimation are important even in the nearfield region. Experiments are performed to show that improved β values can be obtained by considering the diffraction effects.

  9. Nonlinear Effects at the Fermilab Recycler e-Cloud Instability

    Energy Technology Data Exchange (ETDEWEB)

    Balbekov, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-06-10

    Theoretical analysis of e-cloud instability in the Fermilab Recycler is represented in the paper. The e-cloud in strong magnetic field is treated as a set of immovable snakes each being initiated by some proton bunch. It is shown that the instability arises because of injection errors of the bunches which increase in time and from bunch to bunch along the batch being amplified by the e-cloud electric field. The particular attention is given to nonlinear additions to the cloud field. It is shown that the nonlinearity is the main factor which restricts growth of the bunch amplitude. Possible role of the field free parts of the Recycler id discussed as well. Results of calculations are compared with experimental data demonstrating good correlation.

  10. Effective response of nonlinear cylindrical coated composites under external AC and DC electric field

    International Nuclear Information System (INIS)

    Yu-Yan, Shen; Xiao-Gang, Chen; Wei, Cui; Yan-Hua, Hao; Qian-Qian, Li

    2009-01-01

    This paper uses the perturbation method to study effective response of nonlinear cylindrical coated composites. Under the external AC and DC electric field E a (1 + sin ωt), the local potentials of composites at all harmonic frequencies are induced. An effective nonlinear response to composite is given for the cylindrical coated inclusions in the dilute limit. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Nonlinear effects of energetic particle driven instabilities in tokamaks

    International Nuclear Information System (INIS)

    Bruedgam, Michael

    2010-01-01

    In a tokamak plasma, a population of superthermal particles generated by heating methods can lead to a destabilization of various MHD modes. Due to nonlinear wave-particle interactions, a consequential fast particle redistribution reduces the plasma heating and can cause severe damages to the wall of the fusion device. In order to describe the wave-particle interaction, the drift-kinetic perturbative HAGIS code is applied which evolves the particle trajectories and the waves nonlinearly. For a simulation speed-up, the 6-d particle phase-space is reduced by the guiding centre approach to a 5-d description. The eigenfunction of the wave is assumed to be invariant, but its amplitude and phase is altered in time. A sophisticated δ/f-method is employed to model the change in the fast particle distribution so that numerical noise and the excessive number of simulated Monte-Carlo points are reduced significantly. The original code can only calculate the particle redistribution inside the plasma region. Therefore, a code extension has been developed during this thesis which enlarges the simulation region up to the vessel wall. By means of numerical simulations, this thesis addresses the problem of nonlinear waveparticle interactions in the presence of multiple MHD modes with significantly different eigenfrequencies and the corresponding fast particle transport inside the plasma. In this context, a new coupling mechanism between resonant particles and waves has been identified that leads to enhanced mode amplitudes and fast particle losses. The extension of the code provides for the first time the possibility of a quantitative and qualitative comparison between simulation results and recent measurements in the experiment. The findings of the comparison serve as a validation of both the theoretical model and the interpretation of the experimental results. Thus, a powerful interface tool has been developed for a deeper insight of nonlinear wave-particle interaction. (orig.)

  12. Nonlinear effects of energetic particle driven instabilities in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Bruedgam, Michael

    2010-03-25

    In a tokamak plasma, a population of superthermal particles generated by heating methods can lead to a destabilization of various MHD modes. Due to nonlinear wave-particle interactions, a consequential fast particle redistribution reduces the plasma heating and can cause severe damages to the wall of the fusion device. In order to describe the wave-particle interaction, the drift-kinetic perturbative HAGIS code is applied which evolves the particle trajectories and the waves nonlinearly. For a simulation speed-up, the 6-d particle phase-space is reduced by the guiding centre approach to a 5-d description. The eigenfunction of the wave is assumed to be invariant, but its amplitude and phase is altered in time. A sophisticated {delta}/f-method is employed to model the change in the fast particle distribution so that numerical noise and the excessive number of simulated Monte-Carlo points are reduced significantly. The original code can only calculate the particle redistribution inside the plasma region. Therefore, a code extension has been developed during this thesis which enlarges the simulation region up to the vessel wall. By means of numerical simulations, this thesis addresses the problem of nonlinear waveparticle interactions in the presence of multiple MHD modes with significantly different eigenfrequencies and the corresponding fast particle transport inside the plasma. In this context, a new coupling mechanism between resonant particles and waves has been identified that leads to enhanced mode amplitudes and fast particle losses. The extension of the code provides for the first time the possibility of a quantitative and qualitative comparison between simulation results and recent measurements in the experiment. The findings of the comparison serve as a validation of both the theoretical model and the interpretation of the experimental results. Thus, a powerful interface tool has been developed for a deeper insight of nonlinear wave-particle interaction

  13. Longitudinal mixed-effects models for latent cognitive function

    NARCIS (Netherlands)

    van den Hout, Ardo; Fox, Gerardus J.A.; Muniz-Terrera, Graciela

    2015-01-01

    A mixed-effects regression model with a bent-cable change-point predictor is formulated to describe potential decline of cognitive function over time in the older population. For the individual trajectories, cognitive function is considered to be a latent variable measured through an item response

  14. Simulated mixed absorbers and effective atomic numbers for γ ...

    Indian Academy of Sciences (India)

    The total -ray interaction crosss-sections on mixed absorbers were determined at 662 keV with a view to study the effective atomic numbers for -ray absorption under narrow beam good geometry set-up. The measurements were taken for the combination of metallic absorbers like aluminium, copper, lead and mercury ...

  15. Effects of mixed substrates on growth and vitamin production by ...

    African Journals Online (AJOL)

    The effects of mixed carbon sources on growth and production of vitamins E and A by Euglena gracilis cells were investigated in batch culture. The cells were grown mixotrophically in glucose (G), ethanol (E) and a mixture of glucose and ethanol (EG). Cell growth was measured by counting the cell number with microscope, ...

  16. The Effect of Mixed-Age Classes in Sweden

    Science.gov (United States)

    Lindstrom, Elly-Ann; Lindahl, Erica

    2011-01-01

    Mixed-aged (MA) classes are a common phenomenon around the world. In Sweden, these types of classes increased rapidly during the 1980s and 1990s, despite the fact that existing empirical support for MA classes is weak. In this paper, the effect of attending an MA class during grades 4-6 on students' cognitive skills is estimated. Using a unique…

  17. Growth effects on mixed culture of Dunaliella salina and ...

    African Journals Online (AJOL)

    Dunaliella salina and Phaeodactylum tricornutum are two important marine microalgae rich in bioactive substances and other high-value constituents. In this study, growth effects on mixed culture of these two microalgae were studied under different inoculation proportions (10:0, 7:3, 5:5, 3:7, 0:10) and low, medium and high ...

  18. Effects of Mixed Alkaline Earth Oxides in Potash Silicate Glass ...

    African Journals Online (AJOL)

    The aim of this work is to investigate the effects of mixed alkaline earth oxide in potash silicate glasses with regards to their physical properties. More recently; there has been an increase in the demand for light weight glasses which retains their physical and chemical properties for both domestic and industrial applications.

  19. Mixed noble gas effect on cut green peppers

    Science.gov (United States)

    Raymond, L. V.; Zhang, M.; Karangwa, E.; Chesereka, M. J.

    2013-01-01

    Increasing attempts at using gas which leads to hydrate formation as a preservative tool in fresh-cut fruits and vegetables have been reported. In this study, changes in some physical and biochemical properties of fresh-cut green peppers under compressed noble gas treatments were examined. Mixed argonkrypton and argon treatments were performed before cold storage at 5°C for 15 days. Mass loss and cell membrane permeability were found to be the lowest in mixed argon-krypton samples. Besides, a lower CO2 concentration and vitamin C loss were detected in gastreated samples compared to untreated samples (control). While the total phenol degradation was moderately reduced, the effect of the treatment on polyphenoloxidase activity was better at the beginning of the storage period. The minimum changes in quality observed in cut peppers resulted from both mixed and gas treatment alone.

  20. Effect of Hand Mixing on the Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    James Isiwu AGUWA

    2010-12-01

    Full Text Available This paper presents the effect of hand mixing on the compressive strength of concrete. Before designing the concrete mix, sieve analysis of sharp sand and chippings was carried out and their fineness moduli were determined. Also the dry weight of chippings and the specific gravities of both sand and chippings were determined. A designed concrete mix of 1:2:4 was used and the number of turnings of the mixture over from one end to another by hand mixing was varying from one time up to and including seven times. The strengths were measured at the curing ages of 7, 14, 21 and 28 days respectively using 150mm concrete cubes cast, cured and crushed. The results revealed that the compressive strengths of concrete cubes appreciably increased with increase in number of turnings from one to four times but remained almost constant beyond four times of turning for all the ages tested. For example, at 1, 2, and 3 times turning; the compressive strengths at 28 days were 4.67, 13.37 and 20.28N/mm2 respectively while at 4, 5 and 6 times turning; the compressive strengths at 28 days were 21.15, 21.34 and 21.69N/mm2. From the data, adequate strengths were not developed at turnings below three times of hand mixing, concluding that a minimum of three times turning is required to produce concrete with satisfactory strength.

  1. Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges

    Science.gov (United States)

    Fu, Yangyang; Parsey, Guy M.; Verboncoeur, John P.; Christlieb, Andrew J.

    2017-11-01

    In this paper, the effect of nonlinear processes (such as three-body collisions and stepwise ionizations) on the similarity law in high-pressure argon discharges has been studied by the use of the Kinetic Global Model framework. In the discharge model, the ground state argon atoms (Ar), electrons (e), atom ions (Ar+), molecular ions (Ar2+), and fourteen argon excited levels Ar*(4s and 4p) are considered. The steady-state electron and ion densities are obtained with nonlinear processes included and excluded in the designed models, respectively. It is found that in similar gas gaps, keeping the product of gas pressure and linear dimension unchanged, with the nonlinear processes included, the normalized density relations deviate from the similarity relations gradually as the scale-up factor decreases. Without the nonlinear processes, the parameter relations are in good agreement with the similarity law predictions. Furthermore, the pressure and the dimension effects are also investigated separately with and without the nonlinear processes. It is shown that the gas pressure effect on the results is less obvious than the dimension effect. Without the nonlinear processes, the pressure and the dimension effects could be estimated from one to the other based on the similarity relations.

  2. Unexpected Nonlinear Effects in Superconducting Transition-Edge Sensors

    Science.gov (United States)

    Sadleir, John

    2016-01-01

    When a normal metal transitions into the superconducting state the DC resistance drops from a finite value to zero over some finite transition width in temperature, current, and magnetic field. Superconducting transition-edge sensors (TESs) operate within this transition region and uses resistive changes to measure deposited thermal energy. This resistive transition is not perfectly smooth and a wide range of TES designs and materials show sub-structure in the resistive transition (as seen in smooth nonmonotonic behavior, jump discontinuities, and hysteresis in the devices current-voltage relation and derivatives of the resistance with respect to temperature, bias current, and magnetic field). TES technology has advanced to the point where for many applications this structure is the limiting factor in performance and optimization consists of finding operating points away from these structures. For example, operating at or near this structure can lead to nonlinearity in the detectors response and gain scale, limit the spectral range of the detector by limiting the usable resistive range, and degrade energy resolution. The origin of much of this substructure is unknown. This presentation investigates a number of possible sources in turn. First we model the TES as a superconducting weak-link and solve for the characteristic differential equations current and voltage time dependence. We find:(1) measured DC biased current-voltage relationship is the time-average of a much higher frequency limit cycle solution.(2) We calculate the fundamental frequency and estimate the power radiated from the TES treating the bias leads as an antennae.(3) The solution for a set of circuit parameters becomes multivalued leading to current transitions between levels.(4)The circuit parameters can change the measure resistance and mask the true critical current. As a consequence the TES resistance surface is not just a function of temperature, current, and magnetic field but is also a

  3. Noise-induced transitions and resonant effects in nonlinear systems

    Science.gov (United States)

    Zaikin, Alexei

    2003-02-01

    Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences. Unsere alltägliche Erfahrung ist mit verschiedenen akustischen Einfluessen wie Lärm, aber auch Musik verbunden. Jeder weiss, wie Lärm stören kann und Kommunikation behindert oder gar unterbindet. Ähnliche optische Effekte sind bekannt: starkes Schneetreiben oder Regengüsse verschlechtern die Sicht und lassen uns Umrisse nur noch schemenhaft erkennen. Jedoch koennen ähnliche Stimuli auch sehr positive Auswirkungen haben: Autofahrer fahren bei leiser Musik konzentrierter -- die Behauptung von Schulkindern, nur bei dröhnenden Bässen die Mathehausaufgaben richtig rechnen zu können, ist allerdings nicht wissenschaftlich

  4. Weakly nonlinear dispersion and stop-band effects for periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    of frequency band-gaps, i.e. frequency ranges in which elastic waves cannot propagate. Most existing analytical methods in the field are based on Floquet theory [1]; e.g. this holds for the classical Hill’s method of infinite determinants [1,2], and themethod of space-harmonics [3]. However, application...... of these methods for studying nonlinear problems isimpossible or cumbersome, since Floquet theory is applicable only for linear systems. Thus the nonlinear effects for periodic structures are not yet fully uncovered, while at the same time applications may demand effects of nonlinearity on structural response...... to be accounted for.The paper deals with analytically predicting dynamic response for nonlinear elastic structures with a continuous periodic variation in structural properties. Specifically, for a Bernoulli-Euler beam with aspatially continuous modulation of structural properties in the axial direction...

  5. Nonlinear surface impedance of YBCO thin films: Measurements, modeling, and effects in devices

    International Nuclear Information System (INIS)

    Oates, D.E.; Koren, G.; Polturak, E.

    1995-01-01

    High-T c thin films continue to be of interest for passive device applications at microwave frequencies, but nonlinear effects may limit the performance. To understand these effects we have measured the nonlinear effects may limit the performance. To understand these effects we have measured the nonlinear surface impedance Z s in a number of YBa 2 Cu 3 O 7-x thin films as a function of frequency from 1 to 18 GHz, rf surface magnetic field H rf to 1500 Oe, and temperature from 4 K to T c . The results at low H rf are shown to agree quantitatively with a modified coupled-grain model and at high H rf with hysteresis-loss calculations using the Bean critical-state model applied to a thin strip. The loss mechanisms are extrinsic properties resulting from defects in the films. We also report preliminary measurements of the nonlinear impedance of Josephson junctions, and the results are related to the models of nonlinear Z s . The implications of nonlinear Z s for devices are discussed using the example of a five-pole bandpass filter

  6. Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect.

    Science.gov (United States)

    Xu, Tianhua; Karanov, Boris; Shevchenko, Nikita A; Lavery, Domaniç; Liga, Gabriele; Killey, Robert I; Bayvel, Polina

    2017-10-11

    Nyquist-spaced transmission and digital signal processing have proved effective in maximising the spectral efficiency and reach of optical communication systems. In these systems, Kerr nonlinearity determines the performance limits, and leads to spectral broadening of the signals propagating in the fibre. Although digital nonlinearity compensation was validated to be promising for mitigating Kerr nonlinearities, the impact of spectral broadening on nonlinearity compensation has never been quantified. In this paper, the performance of multi-channel digital back-propagation (MC-DBP) for compensating fibre nonlinearities in Nyquist-spaced optical communication systems is investigated, when the effect of signal spectral broadening is considered. It is found that accounting for the spectral broadening effect is crucial for achieving the best performance of DBP in both single-channel and multi-channel communication systems, independent of modulation formats used. For multi-channel systems, the degradation of DBP performance due to neglecting the spectral broadening effect in the compensation is more significant for outer channels. Our work also quantified the minimum bandwidths of optical receivers and signal processing devices to ensure the optimal compensation of deterministic nonlinear distortions.

  7. Social mix policies in Paris: discourses, policies and social effects.

    Science.gov (United States)

    Bacqué, Marie-Hélène; Fijalkow, Yankel; Launay, Lydie; Vermeersch, Stéphanie

    2011-01-01

    Since the 1980s, the issue of social mix has become a public policy category in France. Enshrined in legislation, yet remaining controversial, it represents a major premise on which housing policies have been reconfigured. The concept of social mix is essentially based on who lives where, but it is also evoked in the context of urban renewal schemes for social housing estates, as well as in relation to new-build developments. A study of the bases of social mix policies conducted in Paris since 2001 in the context of the embourgeoisement of the capital shows the fundamental role of social housing stock. The City Council has become involved in policy decisions about both the location and the allocation of social housing. Particular attention has been paid to the middle classes in the name of the principle of ‘balancing the population’. In order to measure the effects of the policy, this article relies on an analysis of two City of Paris schemes that have the stated intent of creating social mix. One of these schemes consists of redeveloping a working-class neighbourhood, Goutte d'Or, while the other involves the new acquisition of social housing in various more affluent neighbourhoods in the capital. This comparative study of the population shows that, whether in a neighbourhood poised for gentrification or in a more affluent neighbourhood, this policy has major effects on forms of local social cohesion, setting in motion individual trajectories and reshaping social and/or ethnic identities.

  8. Two-dimensional linear and nonlinear Talbot effect from rogue waves.

    Science.gov (United States)

    Zhang, Yiqi; Belić, Milivoj R; Petrović, Milan S; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Lu, Keqing; Zhang, Yanpeng

    2015-03-01

    We introduce two-dimensional (2D) linear and nonlinear Talbot effects. They are produced by propagating periodic 2D diffraction patterns and can be visualized as 3D stacks of Talbot carpets. The nonlinear Talbot effect originates from 2D rogue waves and forms in a bulk 3D nonlinear medium. The recurrences of an input rogue wave are observed at the Talbot length and at the half-Talbot length, with a π phase shift; no other recurrences are observed. Differing from the nonlinear Talbot effect, the linear effect displays the usual fractional Talbot images as well. We also find that the smaller the period of incident rogue waves, the shorter the Talbot length. Increasing the beam intensity increases the Talbot length, but above a threshold this leads to a catastrophic self-focusing phenomenon which destroys the effect. We also find that the Talbot recurrence can be viewed as a self-Fourier transform of the initial periodic beam that is automatically performed during propagation. In particular, linear Talbot effect can be viewed as a fractional self-Fourier transform, whereas the nonlinear Talbot effect can be viewed as the regular self-Fourier transform. Numerical simulations demonstrate that the rogue-wave initial condition is sufficient but not necessary for the observation of the effect. It may also be observed from other periodic inputs, provided they are set on a finite background. The 2D effect may find utility in the production of 3D photonic crystals.

  9. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    Science.gov (United States)

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  10. Dynamical Casimir effect on a cavity with mixed boundary conditions

    International Nuclear Information System (INIS)

    Alves, Danilo T.; Farina, Carlos; Maia Neto, Paulo Americo

    2002-01-01

    The most well-known mechanical effect related to the quantum vacuum is the Casimir force between two mirrors at rest. A new effect appears when the mirrors are set to move. In this case, the vacuum field may exert a dissipative force, damping the motion. As a consequence of energy conservation, there will be creation of real particles. If the motion is non-relativistic and has a small amplitude, the dynamical Casimir force can be found via a perturbative method proposed by Ford and Vilenkin. Using their technique, the electromagnetic dynamical Casimir problem, considered when the oscillating cavity is formed by two parallel plates of the same nature (perfectly conducting or perfectly permeable), can be divided into two separated boundary condition problems, namely: one involving Dirichlet BC, related to the transverse electric polarization and the other involving a Neumann BC, related to the transverse magnetic mode. The case of conducting plates can be found in the literature. However, another interesting case, the mixed oscillating cavity where the plates are of different nature, namely, a perfectly conducting plate and a perfectly permeable one (Boyer plates), has not been studied yet. We show that,for this case, the transverse electric models will be related to mixed boundary conditions: Dirichlet-like BC at the conducting plate and Neumann-like BC at the permeable plate. Analogously, the magnetic modes are related to a Neumann BC at the conducting plate and to a Dirichlet BC at the permeable one. As a first step before attacking the three-dimensional electromagnetic problem with mixed BC, we present here a simpler model: a one-dimensional cavity, where a massless scalar field is submitted to mixed (Dirichlet-Neumann) BC. For simplicity, we consider a non-relativistic motion for the conducting wall (Dirichlet BC) and suppose that the perfectly permeable wall (Neumann BC) is at rest. From this model we can extract insights about the dynamical Casimir

  11. Biological vs. physical mixing effects on benthic food web dynamics.

    Directory of Open Access Journals (Sweden)

    Ulrike Braeckman

    Full Text Available Biological particle mixing (bioturbation and solute transfer (bio-irrigation contribute extensively to ecosystem functioning in sediments where physical mixing is low. Macrobenthos transports oxygen and organic matter deeper into the sediment, thereby likely providing favourable niches to lower trophic levels (i.e., smaller benthic animals such as meiofauna and bacteria and thus stimulating mineralisation. Whether this biological transport facilitates fresh organic matter assimilation by the metazoan lower part of the food web through niche establishment (i.e., ecosystem engineering or rather deprives them from food sources, is so far unclear. We investigated the effects of the ecosystem engineers Lanice conchilega (bio-irrigator and Abra alba (bioturbator compared to abiotic physical mixing events on survival and food uptake of nematodes after a simulated phytoplankton bloom. The (13C labelled diatom Skeletonema costatum was added to 4 treatments: (1 microcosms containing the bioturbator, (2 microcosms containing the bio-irrigator, (3 control microcosms and (4 microcosms with abiotic manual surface mixing. Nematode survival and subsurface peaks in nematode density profiles were most pronounced in the bio-irrigator treatment. However, nematode specific uptake (Δδ(13C of the added diatoms was highest in the physical mixing treatment, where macrobenthos was absent and the diatom (13C was homogenised. Overall, nematodes fed preferentially on bulk sedimentary organic material rather than the added diatoms. The total C budget (µg C m(-2, which included TO(13C remaining in the sediment, respiration, nematode and macrobenthic uptake, highlighted the limited assimilation by the metazoan benthos and the major role of bacterial respiration. In summary, bioturbation and especially bio-irrigation facilitated the lower trophic levels mainly over the long-term through niche establishment. Since the freshly added diatoms represented only a limited food

  12. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities: A numerical study

    DEFF Research Database (Denmark)

    Sayed, Karim El; Birkedal, Dan; Vadim, Lyssenko

    1997-01-01

    We present a theoretical investigation of ultrafast transient four-wave mixing (FWM) of GaAs quantum wells for coherent excitation of excitons and a large number of continuum states. It is shown that in this case the line shape of the FWM signal is drastically altered due to an interaction-induce...

  13. Non-linear effects and plasma heating by lower-hybrid waves in the Petula tokamak

    International Nuclear Information System (INIS)

    Briand, P.; Dupas, L.; Golovato, S.N.; Singh, C.M.; Melin, G.; Grelot, P.; Legardeur, R.; Zymanski, S.

    1979-01-01

    Lower hybrid waves were excited by a two-waveguide 'grill' (nsub(parallel) approximately 1-10, Esub(grill) approximately 3kVcm -1 , Psub(grill) approximately 5kWcm -2 ) at 1.25GHz, 3ms, 600kW. Plasma heating was observed separately as due to non-linear effects alone as well as to a combination of linear and non-linear mechanisms. (author)

  14. Structure-Property Relationships and the Mixed Network Former Effect in Boroaluminosilicate Glasses

    DEFF Research Database (Denmark)

    Zheng, Qiuju; Potuzak, Marcel; Mauro, John C.

    compositions by substituting Al2O3 for SiO2. We also investigate the various roles of sodium in the glasses including charge compensation of tetrahedral aluminum and boron atoms and formation of non-bridging oxygen. We find that mechanical properties (density, elastic moduli, and hardness), glass transition......Boroaluminosilicate glasses are important materials for various applications, e.g., liquid crystal display substrates, glass fibers for reinforcement, and thermal shock-resistant glass containers. The complicated structural speciation in these glasses leads to a mixed network former effect yielding...... nonlinear variation in many macroscopic properties. It is therefore crucial to investigate and understand structure-property correlations in boroaluminosilicate glasses. Here we study the structure-property relationships of a range of sodium boroaluminosilicate glasses from peralkaline to peraluminous...

  15. Development of nonperturbative nonlinear optics models including effects of high order nonlinearities and of free electron plasma: Maxwell–Schrödinger equations coupled with evolution equations for polarization effects, and the SFA-like nonlinear optics model

    International Nuclear Information System (INIS)

    Lorin, E; Bandrauk, A D; Lytova, M; Memarian, A

    2015-01-01

    This paper is dedicated to the exploration of non-conventional nonlinear optics models for intense and short electromagnetic fields propagating in a gas. When an intense field interacts with a gas, usual nonlinear optics models, such as cubic nonlinear Maxwell, wave and Schrödinger equations, derived by perturbation theory may become inaccurate or even irrelevant. As a consequence, and to include in particular the effect of free electrons generated by laser–molecule interaction, several heuristic models, such as UPPE, HOKE models, etc, coupled with Drude-like models [1, 2], were derived. The goal of this paper is to present alternative approaches based on non-heuristic principles. This work is in particular motivated by the on-going debate in the filamentation community, about the effect of high order nonlinearities versus plasma effects due to free electrons, in pulse defocusing occurring in laser filaments [3–9]. The motivation of our work goes beyond filamentation modeling, and is more generally related to the interaction of any external intense and (short) pulse with a gas. In this paper, two different strategies are developed. The first one is based on the derivation of an evolution equation on the polarization, in order to determine the response of the medium (polarization) subject to a short and intense electromagnetic field. Then, we derive a combined semi-heuristic model, based on Lewenstein’s strong field approximation model and the usual perturbative modeling in nonlinear optics. The proposed model allows for inclusion of high order nonlinearities as well as free electron plasma effects. (paper)

  16. The effect of nonlinearity in CO2 heating rates on the attribution of stratospheric ozone and temperature changes

    Directory of Open Access Journals (Sweden)

    T. G. Shepherd

    2009-11-01

    Full Text Available An analysis of the attribution of past and future changes in stratospheric ozone and temperature to anthropogenic forcings is presented. The analysis is an extension of the study of Shepherd and Jonsson (2008 who analyzed chemistry-climate simulations from the Canadian Middle Atmosphere Model (CMAM and attributed both past and future changes to changes in the external forcings, i.e. the abundances of ozone-depleting substances (ODS and well-mixed greenhouse gases. The current study is based on a new CMAM dataset and includes two important changes. First, we account for the nonlinear radiative response to changes in CO2. It is shown that over centennial time scales the radiative response in the upper stratosphere to CO2 changes is significantly nonlinear and that failure to account for this effect leads to a significant error in the attribution. To our knowledge this nonlinearity has not been considered before in attribution analysis, including multiple linear regression studies. For the regression analysis presented here the nonlinearity was taken into account by using CO2 heating rate, rather than CO2 abundance, as the explanatory variable. This approach yields considerable corrections to the results of the previous study and can be recommended to other researchers. Second, an error in the way the CO2 forcing changes are implemented in the CMAM was corrected, which significantly affects the results for the recent past. As the radiation scheme, based on Fomichev et al. (1998, is used in several other models we provide some description of the problem and how it was fixed.

  17. Influence assessment in censored mixed-effects models using the multivariate Student’s-t distribution

    Science.gov (United States)

    Matos, Larissa A.; Bandyopadhyay, Dipankar; Castro, Luis M.; Lachos, Victor H.

    2015-01-01

    In biomedical studies on HIV RNA dynamics, viral loads generate repeated measures that are often subjected to upper and lower detection limits, and hence these responses are either left- or right-censored. Linear and non-linear mixed-effects censored (LMEC/NLMEC) models are routinely used to analyse these longitudinal data, with normality assumptions for the random effects and residual errors. However, the derived inference may not be robust when these underlying normality assumptions are questionable, especially the presence of outliers and thick-tails. Motivated by this, Matos et al. (2013b) recently proposed an exact EM-type algorithm for LMEC/NLMEC models using a multivariate Student’s-t distribution, with closed-form expressions at the E-step. In this paper, we develop influence diagnostics for LMEC/NLMEC models using the multivariate Student’s-t density, based on the conditional expectation of the complete data log-likelihood. This partially eliminates the complexity associated with the approach of Cook (1977, 1986) for censored mixed-effects models. The new methodology is illustrated via an application to a longitudinal HIV dataset. In addition, a simulation study explores the accuracy of the proposed measures in detecting possible influential observations for heavy-tailed censored data under different perturbation and censoring schemes. PMID:26190871

  18. Nonlinear refractive index measurements and self-action effects in Roselle-Hibiscus Sabdariffa solutions

    Science.gov (United States)

    Henari, F. Z.; Al-Saie, A.

    2006-12-01

    We report the observation of self-action phenomena, such as self-focusing, self-defocusing, self-phase modulation and beam fanning in Roselle-Hibiscus Sabdariffa solutions. This material is found to be a new type of natural nonlinear media, and the nonlinear reflective index coefficient has been determined using a Z-scan technique and by measuring the critical power for the self-trapping effect. Z-scan measurements show that this material has a large negative nonlinear refractive index, n 2 = 1 × 10-4 esu. A comparison between the experimental n 2 values and the calculated thermal value for n 2 suggests that the major contribution to nonlinear response is of thermal origin.

  19. Threshold effect under nonlinear limitation of the intensity of high-power light

    International Nuclear Information System (INIS)

    Tereshchenko, S A; Podgaetskii, V M; Gerasimenko, A Yu; Savel'ev, M S

    2015-01-01

    A model is proposed to describe the properties of limiters of high-power laser radiation, which takes into account the threshold character of nonlinear interaction of radiation with the working medium of the limiter. The generally accepted non-threshold model is a particular case of the threshold model if the threshold radiation intensity is zero. Experimental z-scan data are used to determine the nonlinear optical characteristics of media with carbon nanotubes, polymethine and pyran dyes, zinc selenide, porphyrin-graphene and fullerene-graphene. A threshold effect of nonlinear interaction between laser radiation and some of investigated working media of limiters is revealed. It is shown that the threshold model more adequately describes experimental z-scan data. (nonlinear optical phenomena)

  20. Relativistic effects on large amplitude nonlinear Langmuir waves in a two-fluid plasma

    International Nuclear Information System (INIS)

    Nejoh, Yasunori

    1994-07-01

    Large amplitude relativistic nonlinear Langmuir waves are analyzed by the pseudo-potential method. The existence conditions for nonlinear Langmuir waves are confirmed by considering relativistic high-speed electrons in a two-fluid plasma. The significant feature of this investigation is that the propagation of nonlinear Langmuir waves depends on the ratio of the electron streaming velocity to the velocity of light, the normalized potential and the ion mass to electron mass ratio. The constant energy is determined by the specific range of the relativistic effect. In the non-relativistic limit, large amplitude relativistic Langmuir waves do not exist. The present investigation predicts new findings of large amplitude nonlinear Langmuir waves in space plasma phenomena in which relativistic electrons are important. (author)

  1. Multiple periodic solutions to a class of second-order nonlinear mixed-type functional differential equations

    Directory of Open Access Journals (Sweden)

    Xiao-Bao Shu

    2005-01-01

    Full Text Available By means of variational structure and Z2 group index theory, we obtain multiple periodic solutions to a class of second-order mixed-type differential equations x''(t−τ+f(t,x(t,x(t−τ,x(t−2τ=0 and x''(t−τ+λ(tf1(t,x(t,x(t−τ,x(t−2τ=x(t−τ.

  2. Vibrometer based on a self-mixing effect interferometer

    International Nuclear Information System (INIS)

    Marti-Lopez, Luis; Gonzalez-Penna, R.; Martinez-Celorio, R. A.

    2009-01-01

    We outline the basic principles of the self-mixing effect and present the design and construction of an interferometer based on this phenomenon. It differs from the previously reported in the literature by the use of two photodetectors, located at different arms of the interferometer. This feature allows widening the arsenal of strategies for the digital processing of the signal. The interferometer is used as vibrometer for the characterization of professional loudspeakers. Experimental results are presented as an illustration. (Author)

  3. Estimation and Inference for Very Large Linear Mixed Effects Models

    OpenAIRE

    Gao, K.; Owen, A. B.

    2016-01-01

    Linear mixed models with large imbalanced crossed random effects structures pose severe computational problems for maximum likelihood estimation and for Bayesian analysis. The costs can grow as fast as $N^{3/2}$ when there are N observations. Such problems arise in any setting where the underlying factors satisfy a many to many relationship (instead of a nested one) and in electronic commerce applications, the N can be quite large. Methods that do not account for the correlation structure can...

  4. The Effects of Marketing Mix Elements on Brand Equity

    OpenAIRE

    Rajh, Edo

    2006-01-01

    The structural model of the effects of marketing mix elements on brand equity is defined in line with the existing theoretical findings. Research hypotheses are defined according to the identified structural model. In order to test the defined structural model and research hypotheses empirical research was conducted on the sample of undergraduate students of the Faculty of Economics and Business in Zagreb. Research results indicate that the structural model has an acceptable level of fit to t...

  5. Third-order-accurate numerical methods for efficient, large time-step solutions of mixed linear and nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, J.W.

    1995-02-01

    There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.

  6. Nonlinear effects in the radiation force generated by amplitude-modulated focused beams

    Science.gov (United States)

    González, Nuria; Jiménez, Noé; Redondo, Javier; Roig, Bernardino; Picó, Rubén; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.; Camarena, Francisco

    2012-10-01

    Harmonic Motion Imaging (HMI) uses an amplitude-modulated (AM) beam to induce an oscillatory radiation force before, during and after ablation. In this paper, the findings from a numerical analysis of the effects related with the nonlinear propagation of AM focused ultrasonic beams in water on the radiation force and the location of its maxima will be presented. The numerical modeling is performed using the KZK nonlinear parabolic equation. The radiation force is generated by a focused transducer with a gain of 18, a carrier frequency of 1 MHz and a modulation frequency of 25 kHz. The modulated excitation generates a spatially-invariant force proportional to the intensity. Regarding the nonlinear wave propagation, the force is no longer proportional to the intensity, reaching a factor of eight between the nonlinear and linear estimations. Also, a 9 mm shift in the on-axis force peak occurs when the initial pressure increased from 1 to 300 kPa. This spatial shift, due to the nonlinear effects, becomes dynamic in AM focused beams, as the different signal periods have different amplitudes. This study shows that both the value and the spatial position of the force peak are affected by the nonlinear propagation of the ultrasonic waves.

  7. A NONLINEAR MATHEMATICAL MODEL FOR ASTHMA: EFFECT OF ENVIRONMENTAL POLLUTION

    Directory of Open Access Journals (Sweden)

    NARESHA RAM

    2009-04-01

    Full Text Available In this paper, we explore a nonlinear mathematical model to study the spread of asthma due to inhaled pollutants from industry as well as tobacco smoke from smokers in a variable size population. The model is analyzed using stability theory of differential equations and computer simulation. It is shown that with an increase in the level of air pollutants concentration, the asthmatic (diseased population increases. It is also shown that along with pollutants present in the environment, smoking (active or passive also helps in the spread of asthma. Moreover, with the increase in the rate of interaction between susceptibles and smokers, the persistence of the spread of asthma is higher. A numerical study of the model is also performed to see the role of certain key parameters on the spread of asthma and to support the analytical results.

  8. Nonlinear effects in the damping of third-sound pulses

    International Nuclear Information System (INIS)

    Browne, D.A.

    1984-01-01

    We show that nonlinearities in the equations of motion for a third-sound pulse in a thick superfluid film lead to the production of short-wavelength solitons. The soliton damping arises from viscous stresses in the film, rather than from coupling to thermal currents in the vapor and the substrate as in the hydrodynamic regime. These solitons are more strongly damped than a long-wavelength third-sound wave and lead to a larger attenuation of the pulse. We show that this mechanism can account for the discrepancy between attenuation calculated theoretically for the long-wavelength limit and the experimentally observed attenuation of low-amplitude third-sound pulses

  9. Nanoscale nonlinear effects in Erbium-implanted Yttrium Orthosilicate

    Energy Technology Data Exchange (ETDEWEB)

    Kukharchyk, Nadezhda, E-mail: nadezhda.kukharchyk@physik.uni-saarland.de [Experimentalphysik, Universität des Saarlandes, D-66123 Saarbrücken (Germany); Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Shvarkov, Stepan [Optoelektronische Materialien und Bauelemente, Universität Paderborn, D-33098 Padeborn (Germany); Probst, Sebastian [Quantronics group, Service de Physique de l' Etat Condense, DSM/IRAMIS/SPEC, CNRS UMR 3680, CEA-Saclay, 91191 Gif-sur-Yvette cedex (France); Xia, Kangwei [3. Physikalisches Institut, Universität Stuttgart, D-70569 Stuttgart (Germany); Becker, Hans-Werner [RUBION, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Pal, Shovon [Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); AG THz Spectroscopie und Technologie, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Markmann, Sergej [AG THz Spectroscopie und Technologie, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Kolesov, Roman; Siyushev, Petr; Wrachtrup, Jörg [3. Physikalisches Institut, Universität Stuttgart, D-70569 Stuttgart (Germany); Ludwig, Arne [Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Ustinov, Alexey V. [Physikalisches Institut, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany); Wieck, Andreas D. [Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); and others

    2016-09-15

    Doping of substrates at desired locations is a key technology for spin-based quantum memory devices. Focused ion beam implantation is well-suited for this task due to its high spacial resolution. In this work, we investigate ion-beam implanted Erbium ensembles in Yttrium Orthosilicate crystals by means of confocal photoluminescence spectroscopy. The sample temperature and the post-implantation annealing step strongly reverberate in the properties of the implanted ions. We find that hot implantation leads to a higher activation rate of the ions. At high enough fluences, the relation between the fluence and final concentration of ions becomes non-linear. Two models are developed explaining the observed behavior.

  10. Nonlinear and hysteretic twisting effects in ocean cable laying

    International Nuclear Information System (INIS)

    Shashaty, A.J.

    1983-01-01

    Armored ocean cable unlays under the action of installation tensions and restraining moments applied by the ocean bottom and the ship's bow sheave. The process of elongation and twist is nonlinear and hysteretic. This process has often been assumed linear and reversible. The equations describing the moment which is developed in laying cable on the ocean bottom are worked out, without assuming linearity and reversibility. These equations are applied to some cases likely to arise. For a typical armored coaxial cable laid in 3700m (2,000 fathoms) depth without bottom tension, a steady-state laying-up moment of 134Nm (99 lbs. ft.) is developed. For the reversible case, no moment is developed. If the bottom tension is increased from zero to 33,375N (7500 lbs.) and then returned to zero, a peak moment of 198Nm (146 lbs. ft.) is developed

  11. Nonlinear effects of dark energy clustering beyond the acoustic scales

    International Nuclear Information System (INIS)

    Anselmi, Stefano; Nacir, Diana López; Sefusatti, Emiliano

    2014-01-01

    We extend the resummation method of Anselmi and Pietroni (2012) to compute the total density power spectrum in models of quintessence characterized by a vanishing speed of sound. For standard ΛCDM cosmologies, this resummation scheme allows predictions with an accuracy at the few percent level beyond the range of scales where acoustic oscillations are present, therefore comparable to other, common numerical tools. In addition, our theoretical approach indicates an approximate but valuable and simple relation between the power spectra for standard quintessence models and models where scalar field perturbations appear at all scales. This, in turn, provides an educated guess for the prediction of nonlinear growth in models with generic speed of sound, particularly valuable since no numerical results are yet available

  12. Nonlinear effects of dark energy clustering beyond the acoustic scales

    Energy Technology Data Exchange (ETDEWEB)

    Anselmi, Stefano [Department of Physics/CERCA/ISO, Case Western Reserve University, Cleveland, OH 44106-7079 (United States); Nacir, Diana López [The Abdus Salam International Center for Theoretical Physics, Strada costiera 11, I-34151 Trieste (Italy); Sefusatti, Emiliano, E-mail: stefano.anselmi@case.edu, E-mail: dlopez_n@ictp.it, E-mail: emiliano.sefusatti@brera.inaf.it [INAF - Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Saint Lucia) (Italy)

    2014-07-01

    We extend the resummation method of Anselmi and Pietroni (2012) to compute the total density power spectrum in models of quintessence characterized by a vanishing speed of sound. For standard ΛCDM cosmologies, this resummation scheme allows predictions with an accuracy at the few percent level beyond the range of scales where acoustic oscillations are present, therefore comparable to other, common numerical tools. In addition, our theoretical approach indicates an approximate but valuable and simple relation between the power spectra for standard quintessence models and models where scalar field perturbations appear at all scales. This, in turn, provides an educated guess for the prediction of nonlinear growth in models with generic speed of sound, particularly valuable since no numerical results are yet available.

  13. Effects of mixing on methane production during thermophilic anaerobic digestion of manure

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Buendia, Inmaculada M.; Ellegaard, Lars

    2008-01-01

    The effect of mixing on anaerobic digestion of manure was evaluated in lab-scale and pilot-scale experiments at 55 °C. The effect of continuous (control), minimal (mixing for 10 min prior to extraction/feeding) and intermittent mixing (withholding mixing for 2 h prior to extraction/feeding) on me...

  14. Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells with applied electric fields

    International Nuclear Information System (INIS)

    Wu, Jinghe; Guo, Kangxian; Liu, Guanghui

    2014-01-01

    Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells are studied by the effective mass approximation and the perturbation theory. The numerical results show that nonlinear optical rectification coefficients are strongly dependent on the barrier hight V 0 of the Gaussian potential quantum wells, the range L of the confinement potential and the electric field F. Besides, the numerical results show that no matter how V 0 , L and F change, taking into consideration polaron effects, the optical rectification coefficients χ 0 (2) get greatly enhanced.

  15. Imprint of non-linear effects on HI intensity mapping on large scales

    Energy Technology Data Exchange (ETDEWEB)

    Umeh, Obinna, E-mail: umeobinna@gmail.com [Department of Physics and Astronomy, University of the Western Cape, Cape Town 7535 (South Africa)

    2017-06-01

    Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.

  16. On the Effect of Thermoelastic Damping in Nonlinear Micro Electro Mechanical Resonators using Differential Quadrature Method

    Directory of Open Access Journals (Sweden)

    A. Karami Mohammadi

    2015-07-01

    Full Text Available : In this paper, a nonlinear model of clamped-clamped microbeam actuated by electrostatic load with stretching and thermoelastic effects is presented. Free vibration frequency is calculated by discretization based on DQ method. Frequency is a complex value due to the thermoelastic effect that dissipates the energy. By separating the real and imaginary parts of frequency, quality factor of thermoelastic damping is calculated. Both stretching and thermoelastic effects are validated against the results of the reference papers. The variations of thermoelastic damping versus elasticity modulus, coefficient of thermal expansion and geometrical parameters such as thickness, gap distance, and length are investigated and these results are compared in the linear and nonlinear models for high values of voltage. Also, this paper shows that since for high values of electrostatic voltage the linear model reveals a large error for calculating the thermoelastic damping, the nonlinear model should be used for this purpose.

  17. Self-transparency effects in heterogeneous nonlinear scattering media and their possible use in lasers

    International Nuclear Information System (INIS)

    Al'tshuler, G.B.; Ermolaev, V.S.; Krylov, K.I.; Manenkov, A.A.; Prokhorov, A.M.

    1986-01-01

    Transmission of intense laser beams through heterogeneous scattering media is considered. Effects of intensity limitation, self-recovery of the wave front of a transmitted beam, and bistable reflection associated with the laser-induced self-transparency (suppression of scattering) of such media are predicted because of the compensation of the linear refractive-index difference Δn/sub L/ of the heterocomponents of a medium by nonlinear change Δn/sub N//sub L/ for different mechanisms of nonlinearity. Applications of these effects in lasers for Q switching and mode locking are discussed. The observation of self-transparency effects in several heterogeneous media (glass particles in toluene and nitrobenzene, and lead molybdenite powder) for cw Ar- and pulsed Nd- and CO 2 -laser radiation is reported. Q switching and mode locking have also been demonstrated with a YAG:Nd laser using nonlinear scattering in a heterogeneous cell as a control element in a laser resonator

  18. Estimation of non-linear effective permeability of magnetic materials with fine structure

    International Nuclear Information System (INIS)

    Waki, H.; Igarashi, H.; Honma, T.

    2006-01-01

    This paper describes a homogenization method for magnetic materials with fine structure. In this method, the structures of the magnetic materials are assumed to be periodic, and the unit cell is defined. The effective permeability is determined on the basis of magnetic energy balance in the unit cell. This method can be applied not only for linear problems but also for non-linear ones. In this paper, estimation of the effective permeability of non-linear magnetic materials by using the homogenization method is described in detail, and then the validity for the non-liner problems is tested for two-dimensional problems. It is shown that this homogenization method gives accurate non-linear effective permeability

  19. The effect of cochlear nonlinearities on binaural masking level differences

    DEFF Research Database (Denmark)

    Le Goff, Nicolas; Kohlrausch, Armin

    Background The binaural masking level difference (BMLD) has been shown to be constant (10−15dB) for masker spectrum levels from 70dB/Hz down to 30−40dB/Hz and to gradually decrease with lower levels (McFadden, 1968; Hall and Harvey, 1984). The decrease at low levels was larger in an asymmetric...... on the BMLD was investigated using an equalization−cancelation (EC) based binaural model framework. Methods The BMLD was measured for 500−Hz target tones presented in 3−kHz−wide maskers. BMLDs were obtained as a function of masker level in one symmetric and two asymmetric masker conditions: (i) No...... of 20dB/Hz in the non−attenuated ear. An EC based binaural model with a frontend including nonlinear peripheral processing (Jepsen et al., 2011) was used to predict these results. Results The BMLD obtained in the No′Sπ′50 condition was smaller than that obtained in the NoSπ condition at all masker...

  20. The Effect of Adaptive Nonlinear Frequency Compression on Phoneme Perception.

    Science.gov (United States)

    Glista, Danielle; Hawkins, Marianne; Bohnert, Andrea; Rehmann, Julia; Wolfe, Jace; Scollie, Susan

    2017-12-12

    This study implemented a fitting method, developed for use with frequency lowering hearing aids, across multiple testing sites, participants, and hearing aid conditions to evaluate speech perception with a novel type of frequency lowering. A total of 8 participants, including children and young adults, participated in real-world hearing aid trials. A blinded crossover design, including posttrial withdrawal testing, was used to assess aided phoneme perception. The hearing aid conditions included adaptive nonlinear frequency compression (NFC), static NFC, and conventional processing. Enabling either adaptive NFC or static NFC improved group-level detection and recognition results for some high-frequency phonemes, when compared with conventional processing. Mean results for the distinction component of the Phoneme Perception Test (Schmitt, Winkler, Boretzki, & Holube, 2016) were similar to those obtained with conventional processing. Findings suggest that both types of NFC tested in this study provided a similar amount of speech perception benefit, when compared with group-level performance with conventional hearing aid technology. Individual-level results are presented with discussion around patterns of results that differ from the group average.

  1. Thermal effects, creep and nonlinear responde of concrete reactor vessels

    International Nuclear Information System (INIS)

    Bazant, Z.P.

    1978-01-01

    A new mathematical model for prediction of pore pressure and moisture transfer in concrete heated well beyond 100 0 C is outlined. The salient features of the model are:(1) the hypothesis taht the pore space available to capillary water grows with increasing temperature as well as increasing pressure in excess of saturation pressure, and (2) the hypothesis that moisture permeability increases by two orders of magnitude when passing 100 0 C. Permaability below 100 0 C is controlled by migration of adsorbed water through gel-pore sized necks on passages through the material; these necks are lost above 100 0 C and viscosity then governs. The driving force of moisture transfer may be considered as the gradient of pore pressure, which is defined as pressure of vapor rather than liquid water if concrete is not saturated. Thermodynamic properties of water may be used to determine sorption isotherms in saturated concrete. The theory is the necessary first step in rationally predicting thermal stresses and deformations, and assessing the danger of explosive spalling. However, analysis of creep and nonlinear triaxial behavior is also needed for this purpose. A brief review of recent achievements in these subjects is also given. (Author)

  2. Study of dispersive and nonlinear effects of coastal wave dynamics with a fully nonlinear potential flow model

    Science.gov (United States)

    Benoit, Michel; Yates, Marissa L.; Raoult, Cécile

    2017-04-01

    Efficient and accurate numerical models simulating wave propagation are required for a variety of engineering projects including the evaluation of coastal risks, the design of protective coastal structures, and the estimation of the potential for marine renewable energy devices. Nonlinear and dispersive effects are particularly significant in the coastal zone where waves interact with the bottom, the shoreline, and coastal structures. The main challenge in developing a numerical models is finding a compromise between computational efficiency and the required accuracy of the simulated wave field. Here, a potential approach is selected and the (fully nonlinear) water wave problem is formulated using the Euler-Zakharov equations (Zakharov, 1968) describing the temporal evolution of the free surface elevation and velocity potential. The proposed model (Yates and Benoit, 2015) uses a spectral approach in the vertical (i.e. the vertical variation of the potential is approximated by a linear combination of the first NT+1 Chebyshev polynomials, following the work of Tian and Sato (2008)). The Zakharov equations are integrated in time using a fourth-order Runge-Kutta scheme with a constant time step. At each sub-timestep, the Laplace Boundary Value Problem (BVP) is solved to estimate the free surface vertical velocity using the spectral approach, with typical values of NT between 5 to 8 for practical applications. The 1DH version of the code is validated with comparisons to the experimental data set of Becq-Girard et al. (1999), which studied the propagation of irregular waves over a beach profile with a submerged bar. The nonlinear and dispersive capacities of the model are verified with the correct representation of wave-wave interactions, in particular the transfer of energy between different harmonic components during wave propagation (analysis of the transformation of the variance spectrum along the channel). Evolution of wave skewness, asymmetry and kurtosis along the

  3. Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime

    Science.gov (United States)

    Zhou, H. Y.; Xiao, C. Z.; Zou, D. B.; Li, X. Z.; Yin, Y.; Shao, F. Q.; Zhuo, H. B.

    2018-06-01

    Nonlinear behaviors of stimulated Raman scattering driven by finite bandwidth pumps are studied by one dimensional particle-in-cell simulations. The broad spectral feature of plasma waves and backscattered light reveals the different coupling and growth mechanisms, which lead to the suppression effect before the deep nonlinear stage. It causes nonperiodic plasma wave packets and reduces packet and etching velocities. Based on the negative frequency shift and electron energy distribution, the long-time evolution of instability can be divided into two stages by the relaxation time. It is a critical time after which the alleviation effects of nonlinear frequency shift and hot electrons are replaced by enhancement. Thus, the broadband pump suppresses instability at early time. However, it aggravates in the deep nonlinear stage by lifting the saturation level due to the coupling of the incident pump with each frequency shifted plasma wave. Our simulation results show that the nonlinear effects are valid in a bandwidth range from 2.25% to 3.0%, and the physics are similar within a nearby parameter space.

  4. Non-linear effects in transition edge sensors for X-ray detection

    International Nuclear Information System (INIS)

    Bandler, S.R.; Figueroa-Feliciano, E.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; Murphy, K.D.; Porter, F.S.; Saab, T.; Sadleir, J.

    2006-01-01

    In a microcalorimeter that uses a transition-edge sensor to detect energy depositions, the small signal energy resolution improves with decreasing heat capacity. This improvement remains true up to the point where non-linear and saturation effects become significant. This happens when the energy deposition causes a significant change in the sensor resistance. Not only does the signal size become a non-linear function of the energy deposited, but also the noise becomes non-stationary over the duration of the pulse. Algorithms have been developed that can calculate the optimal performance given this non-linear behavior that typically requires significant processing and calibration work-both of which are impractical for space missions. We have investigated the relative importance of the various non-linear effects, with the hope that a computationally simple transformation can overcome the largest of the non-linear and non-stationary effects, producing a highly linear 'gain' for pulse-height versus energy, and close to the best energy resolution at all energies when using a Wiener filter

  5. Flavor Oscillations in the Supernova Hot Bubble Region: Nonlinear Effects of Neutrino Background

    Science.gov (United States)

    Pastor, Sergio; Raffelt, Georg

    2002-10-01

    The neutrino flux close to a supernova core contributes substantially to neutrino refraction so that flavor oscillations become a nonlinear phenomenon. One unexpected consequence is efficient flavor transformation for antineutrinos in a region where only neutrinos encounter a Mikheyev-Smirnov-Wolfenstein resonance or vice versa. Contrary to previous studies we find that in the neutrino-driven wind the electron fraction Ye always stays below 0.5, corresponding to a neutron-rich environment as required by r-process nucleosynthesis. The relevant range of masses and mixing angles includes the region indicated by LSND, but not the atmospheric or solar oscillation parameters.

  6. Measuring of nonlinearity of dye doped liquid crystals using of self phase modulation effect

    International Nuclear Information System (INIS)

    Abedi, M.; Jafari, A.; Tajalli, H.

    2007-01-01

    Self phase modulation in dye doped liquid crystals has investigated and the nonlinearity of dye doped liquid crystals is measured by this effect. The Self phase modulation effect can be used for producing optical micro rings that have many applications in photonics and laser industries.

  7. Using strong nonlinearity and high-frequency vibrations to control effective properties of discrete elastic waveguides

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri

    2008-01-01

    The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear s...

  8. Effects of structural nonlinearity and foundation sliding on probabilistic response of a nuclear structure

    International Nuclear Information System (INIS)

    Hashemi, Alidad; Elkhoraibi, Tarek; Ostadan, Farhang

    2015-01-01

    Highlights: • Probabilistic SSI analysis including structural nonlinearity and sliding are shown. • Analysis is done for a soil and a rock site and probabilistic demands are obtained. • Structural drift ratios and In-structure response spectra are evaluated. • Structural nonlinearity significantly impacts local demands in the structure. • Sliding generally reduces seismic demands and can be accommodated in design. - Abstract: This paper examines the effects of structural nonlinearity and foundation sliding on the results of probabilistic structural analysis of a typical nuclear structure where structural nonlinearity, foundation sliding and soil-structure interaction (SSI) are explicitly included. The evaluation is carried out for a soil and a rock site at 10"4, 10"5, and 10"6 year return periods (1E − 4, 1E − 5, and 1E − 6 hazard levels, respectively). The input motions at each considered hazard level are deaggregated into low frequency (LF) and high frequency (HF) motions and a sample size of 30 is used for uncertainty propagation. The statistical distribution of structural responses including story drifts, and in-structure response spectra (ISRS) as well as foundation sliding displacements are examined. The probabilistic implementation of explicit structural nonlinearity and foundation sliding in combination with the SSI effects are demonstrated using nonlinear response history analysis (RHA) of the structure with the foundation motions obtained from elastic SSI analyses, which are applied as input to fixed-base inelastic analyses. This approach quantifies the expected structural nonlinearity and sliding for the particular structural configuration and provides a robust analytical basis for the estimation of the probabilistic distribution of selected demands parameters both at the design level and beyond design level seismic input. For the subject structure, the inclusion of foundation sliding in the analysis is found to have reduced both

  9. The effect of nonlinear forces on coherently oscillating space-charge-dominated beams

    International Nuclear Information System (INIS)

    Celata, C.M.

    1987-03-01

    A particle-in-cell computer simulation code has been used to study the transverse dynamics of nonrelativistic misaligned space-charge-dominated coasting beams in an alternating gradient focusing channel. In the presence of nonlinear forces due to dodecapole or octupole imperfections of the focusing fields or to image forces, the transverse rms emittance grows in a beat pattern. Analysis indicates that this emittance dilution is due to the driving of coherent modes of the beam near their resonant frequencies by the nonlinear force. The effects of the dodecapole and images forces can be made to effectively cancel for some boundary conditions, but the mechanism is not understood at this time

  10. Nonlinear damage effect in graphene synthesis by C-cluster ion implantation

    International Nuclear Information System (INIS)

    Zhang Rui; Zhang Zaodi; Wang Zesong; Wang Shixu; Wang Wei; Fu Dejun; Liu Jiarui

    2012-01-01

    We present few-layer graphene synthesis by negative carbon cluster ion implantation with C 1 , C 2 , and C 4 at energies below 20 keV. The small C-clusters were produced by a source of negative ion by cesium sputtering with medium beam current. We show that the nonlinear effect in cluster-induced damage is favorable for graphene precipitation compared with monomer carbon ions. The nonlinear damage effect in cluster ion implantation shows positive impact on disorder reduction, film uniformity, and the surface smoothness in graphene synthesis.

  11. 10-GHz return-to-zero pulse source tunable in wavelength with a single- or multiwavelength output based on four-wave mixing in a newly developed highly nonlinear fiber

    DEFF Research Database (Denmark)

    Clausen, A. T.; Oxenlowe, L.; Peucheret, Christophe

    2001-01-01

    In this letter, a novel scheme for a wavelength-tunable pulse source (WTPS) is proposed and characterized. It is based on four-wave mixing (FWM) in a newly developed highly nonlinear fiber between a return-to-zero (RZ) pulsed signal at a fixed wavelength and a continuous wave probe tunable...

  12. Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats.

    Science.gov (United States)

    Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats

    2015-05-01

    Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.

  13. Single nano-hole as a new effective nonlinear element for third-harmonic generation

    International Nuclear Information System (INIS)

    Melentiev, P N; Konstantinova, T V; Afanasiev, A E; Balykin, V I; Kuzin, A A; Baturin, A S; Tausenev, A V; Konyaschenko, A V

    2013-01-01

    In this letter, we report on a particularly strong optical nonlinearity at the nanometer scale in aluminum. A strong optical nonlinearity of the third order was demonstrated on a single nanoslit. Single nanoslits of different aspect ratio were excited by a laser pulse (120 fs) at the wavelength 1.5 μm, leading predominantly to third-harmonic generation (THG). It has been shown that strong surface plasmon resonance in a nanoslit allows the realization of an effective nanolocalized source of third-harmonic radiation. We show also that a nanoslit in a metal film has a significant advantage in nonlinear processes over its Babinet complementary nanostructure (nanorod): the effective abstraction of heat in a film with a slit makes it possible to use much higher laser radiation intensities. (letter)

  14. Single nano-hole as a new effective nonlinear element for third-harmonic generation

    Science.gov (United States)

    Melentiev, P. N.; Konstantinova, T. V.; Afanasiev, A. E.; Kuzin, A. A.; Baturin, A. S.; Tausenev, A. V.; Konyaschenko, A. V.; Balykin, V. I.

    2013-07-01

    In this letter, we report on a particularly strong optical nonlinearity at the nanometer scale in aluminum. A strong optical nonlinearity of the third order was demonstrated on a single nanoslit. Single nanoslits of different aspect ratio were excited by a laser pulse (120 fs) at the wavelength 1.5 μm, leading predominantly to third-harmonic generation (THG). It has been shown that strong surface plasmon resonance in a nanoslit allows the realization of an effective nanolocalized source of third-harmonic radiation. We show also that a nanoslit in a metal film has a significant advantage in nonlinear processes over its Babinet complementary nanostructure (nanorod): the effective abstraction of heat in a film with a slit makes it possible to use much higher laser radiation intensities.

  15. Nonlinear Delta-f Particle Simulations of Collective Effects in High-Intensity Bunched Beams

    CERN Document Server

    Qin, Hong; Hudson, Stuart R; Startsev, Edward

    2005-01-01

    The collective effects in high-intensity 3D bunched beams are described self-consistently by the nonlinear Vlasov-Maxwell equations.* The nonlinear delta-f method,** a particle simulation method for solving the nonlinear Vlasov-Maxwell equations, is being used to study the collective effects in high-intensity 3D bunched beams. The delta-f method, as a nonlinear perturbative scheme, splits the distribution function into equilibrium and perturbed parts. The perturbed distribution function is represented as a weighted summation over discrete particles, where the particle orbits are advanced by equations of motion in the focusing field and self-consistent fields, and the particle weights are advanced by the coupling between the perturbed fields and the zero-order distribution function. The nonlinear delta-f method exhibits minimal noise and accuracy problems in comparison with standard particle-in-cell simulations. A self-consistent 3D kinetic equilibrium is first established for high intensity bunched beams. The...

  16. Joint nonlinearity effects in the design of a flexible truss structure control system

    Science.gov (United States)

    Mercadal, Mathieu

    1986-01-01

    Nonlinear effects are introduced in the dynamics of large space truss structures by the connecting joints which are designed with rather important tolerances to facilitate the assembly of the structures in space. The purpose was to develop means to investigate the nonlinear dynamics of the structures, particularly the limit cycles that might occur when active control is applied to the structures. An analytical method was sought and derived to predict the occurrence of limit cycles and to determine their stability. This method is mainly based on the quasi-linearization of every joint using describing functions. This approach was proven successful when simple dynamical systems were tested. Its applicability to larger systems depends on the amount of computations it requires, and estimates of the computational task tend to indicate that the number of individual sources of nonlinearity should be limited. Alternate analytical approaches, which do not account for every single nonlinearity, or the simulation of a simplified model of the dynamical system should, therefore, be investigated to determine a more effective way to predict limit cycles in large dynamical systems with an important number of distributed nonlinearities.

  17. lmerTest Package: Tests in Linear Mixed Effects Models

    DEFF Research Database (Denmark)

    Kuznetsova, Alexandra; Brockhoff, Per B.; Christensen, Rune Haubo Bojesen

    2017-01-01

    One of the frequent questions by users of the mixed model function lmer of the lme4 package has been: How can I get p values for the F and t tests for objects returned by lmer? The lmerTest package extends the 'lmerMod' class of the lme4 package, by overloading the anova and summary functions...... by providing p values for tests for fixed effects. We have implemented the Satterthwaite's method for approximating degrees of freedom for the t and F tests. We have also implemented the construction of Type I - III ANOVA tables. Furthermore, one may also obtain the summary as well as the anova table using...

  18. A Linear Mixed-Effects Model of Wireless Spectrum Occupancy

    Directory of Open Access Journals (Sweden)

    Pagadarai Srikanth

    2010-01-01

    Full Text Available We provide regression analysis-based statistical models to explain the usage of wireless spectrum across four mid-size US cities in four frequency bands. Specifically, the variations in spectrum occupancy across space, time, and frequency are investigated and compared between different sites within the city as well as with other cities. By applying the mixed-effects models, several conclusions are drawn that give the occupancy percentage and the ON time duration of the licensed signal transmission as a function of several predictor variables.

  19. Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay

    Directory of Open Access Journals (Sweden)

    Su Young Yu

    2015-03-01

    Full Text Available In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear para- meters of soil models was investigated by Dynamic Embedment Factor (DEF concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.

  20. Effects of non-linearity of material properties on the coupled mechanical-hydraulic-thermal behavior in rock mass

    International Nuclear Information System (INIS)

    Kobayashi, Akira; Ohnishi, Yuzo

    1986-01-01

    The nonlinearity of material properties used in the coupled mechanical-hydraulic-thermal analysis is investigated from the past literatures. Some nonlinearity that is respectively effective for the system is introduced into our computer code for analysis such a coupling problem by using finite element method. And the effects of nonlinearity of each material property on the coupled behavior in rock mass are examined for simple model and Stripa project model with the computer code. (author)

  1. Nonlinear vibration behaviors of suspended cables under two-frequency excitation with temperature effects

    Science.gov (United States)

    Zhao, Yaobing; Huang, Chaohui; Chen, Lincong; Peng, Jian

    2018-03-01

    The aim of this paper is to investigate temperature effects on the nonlinear vibration behaviors of suspended cables under two-frequency excitation. For this purpose, two combination and simultaneous resonances are chosen and studied in detail. First of all, based on the assumptions of the temperature effects, the partial differential equations of the in-plane and out-of-plane motions with thermal effects under multi-frequency excitations are obtained. The Galerkin method is adopted to discretize the nonlinear dynamic equations, and the single-mode planar discretization is considered. Then, in the absence of the primary and internal resonances, the frequency response equations are obtained by using the multiple scales method. The stability analyses are conducted via investigating the nature of the singular points of equations. After that, temperature effects on nonlinear vibration characteristics of the first symmetric mode are studied. Parametric investigations of temperature effects on corresponding non-dimensional factors and coefficients of linear and nonlinear terms are performed. Numerical results are presented to show the temperature effects via the frequency-response curves and detuning-phase curves of four different sag-to-span ratios. It is found out that effects of temperature variations would lead to significant quantitative and/or qualitative changes of the nonlinear vibration properties, and these effects are closely related to the sag-to-span ratio and the degree of the temperature variation. Specifically, the softening/hardening-type spring behaviors, the response amplitude, the range of the resonance, the intersection and number of branches, the number and phase of the steady-state solutions are all affected by the temperature changes.

  2. Performance evaluation of coherent WDM PS-QPSK (HEXA) accounting for non-linear fiber propagation effects.

    Science.gov (United States)

    Poggiolini, P; Bosco, G; Carena, A; Curri, V; Forghieri, F

    2010-05-24

    Coherent-detection (CoD) permits to fully exploit the four-dimensional (4D) signal space consisting of the in-phase and quadrature components of the two fiber polarizations. A well-known and successful format exploiting such 4D space is Polarization-multiplexed QPSK (PM-QPSK). Recently, new signal constellations specifically designed and optimized in 4D space have been proposed, among which polarization-switched QPSK (PS-QPSK), consisting of a 8-point constellation at the vertices of a 4D polychoron called hexadecachoron. We call it HEXA because of its geometrical features and to avoid acronym mix-up with PM-QPSK, as well as with other similar acronyms. In this paper we investigate the performance of HEXA in direct comparison with PM-QPSK, addressing non-linear propagation over realistic links made up of 20 spans of either standard single mode fiber (SSMF) or non-zero dispersion-shifted fiber (NZDSF). We show that HEXA not only confirms its theoretical sensitivity advantage over PM-QPSK in back-to-back, but also shows a greater resilience to non-linear effects, allowing for substantially increased span loss margins. As a consequence, HEXA appears as an interesting option for dual-format transceivers capable to switch on-the-fly between PM-QPSK and HEXA when channel propagation degrades. It also appears as a possible direct competitor of PM-QPSK, especially over NZDSF fiber and uncompensated links.

  3. Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities

    International Nuclear Information System (INIS)

    But, D. B.; Drexler, C.; Ganichev, S. D.; Sakhno, M. V.; Sizov, F. F.; Dyakonova, N.; Drachenko, O.; Gutin, A.; Knap, W.

    2014-01-01

    Terahertz power dependence of the photoresponse of field effect transistors, operating at frequencies from 0.1 to 3 THz for incident radiation power density up to 100 kW/cm 2 was studied for Si metal–oxide–semiconductor field-effect transistors and InGaAs high electron mobility transistors. The photoresponse increased linearly with increasing radiation intensity up to the kW/cm 2 range. Nonlinearity followed by saturation of the photoresponse was observed for all investigated field effect transistors for intensities above several kW/cm 2 . The observed photoresponse nonlinearity is explained by nonlinearity and saturation of the transistor channel current. A theoretical model of terahertz field effect transistor photoresponse at high intensity was developed. The model explains quantitative experimental data both in linear and nonlinear regions. Our results show that dynamic range of field effect transistors is very high and can extend over more than six orders of magnitudes of power densities (from ∼0.5 mW/cm 2 to ∼5 kW/cm 2 )

  4. A technique for determining the optimum mix of logistics service providers of a make-to-order supply chain by formulating and solving a constrained nonlinear cost optimization problem

    Directory of Open Access Journals (Sweden)

    Mrityunjoy Roy

    2013-04-01

    Full Text Available In this paper, a technique has been developed to determine the optimum mix of logistic service providers of a make-to-order (MTO supply chain. A serial MTO supply chain with different stages/ processes has been considered. For each stage different logistic service providers with different mean processing lead times, but same lead time variances are available. A realistic assumption that for each stage, the logistic service provider who charges more for his service consumes less processing lead time and vice-versa has been made in our study. Thus for each stage, for each service provider, a combination of cost and mean processing lead time is available. Using these combinations, for each stage, a polynomial curve, expressing cost of that stage as a function of mean processing lead time is fit. Cumulating all such expressions of cost for the different stages along with incorporation of suitable constraints arising out of timely delivery, results in the formulation of a constrained nonlinear cost optimization problem. On solving the problem using mathematica, optimum processing lead time for each stage is obtained. Using these optimum processing lead times and by employing a simple technique the optimum logistic service provider mix of the supply chain along with the corresponding total cost of processing is determined. Finally to examine the effect of changes in different parameters on the optimum total processing cost of the supply chain, sensitivity analysis has been carried out graphically.

  5. Size effects in non-linear heat conduction with flux-limited behaviors

    Science.gov (United States)

    Li, Shu-Nan; Cao, Bing-Yang

    2017-11-01

    Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.

  6. Nonlinear waves in reaction-diffusion systems: The effect of transport memory

    International Nuclear Information System (INIS)

    Manne, K. K.; Hurd, A. J.; Kenkre, V. M.

    2000-01-01

    Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity. (c) 2000 The American Physical Society

  7. Nonlinear waves in reaction-diffusion systems: The effect of transport memory

    Science.gov (United States)

    Manne, K. K.; Hurd, A. J.; Kenkre, V. M.

    2000-04-01

    Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.

  8. Effect of weak nonlinearities on the plane waves in a plasma stream

    International Nuclear Information System (INIS)

    Seshadri, S.R.

    1976-01-01

    The effect of weak nonlinearities on the monochromatic plane waves in a cold infinite plasma stream is investigated for the case in which the waves are progressing parallel to the drift velocity. The fast and the slow space-charge waves undergo amplitude-dependent frequency and wave number shifts. There is a long time slow modulation of the amplitude of the electromagnetic mode which becomes unstable to this nonlinear wave modulation. The importance of using the relativistically correct equation of motion for predicting correctly the modulational stability of the electromagnetic mode is pointed out. (author)

  9. Simulation of creep effects in framework of a geometrically nonlinear endochronic theory of inelasticity

    Science.gov (United States)

    Zabavnikova, T. A.; Kadashevich, Yu. I.; Pomytkin, S. P.

    2018-05-01

    A geometric non-linear endochronic theory of inelasticity in tensor parametric form is considered. In the framework of this theory, the creep strains are modelled. The effect of various schemes of applying stresses and changing of material properties on the development of creep strains is studied. The constitutive equations of the model are represented by non-linear systems of ordinary differential equations which are solved in MATLAB environment by implicit difference method. Presented results demonstrate a good qualitative agreement of theoretical data and experimental observations including the description of the tertiary creep and pre-fracture of materials.

  10. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    Science.gov (United States)

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19

  11. Probing Anderson localization of light by weak non-linear effects

    International Nuclear Information System (INIS)

    Sperling, T; Bührer, W; Maret, G; Ackermann, M; Aegerter, C M

    2014-01-01

    Breakdown of wave transport due to strong disorder is a universal phenomenon known as Anderson localization (AL). It occurs because of the macroscopic population of reciprocal multiple scattering paths, which in three dimensional systems happens at a critical scattering strength. Intensities on these random loops should thus be highly increased relative to those of a diffusive sample. In order to highlight localized modes of light, we exploit the optical nonlinearities of TiO 2 . Power dependent and spectrally resolved time of flight distribution measurements in transmission through slabs of TiO 2 powders at various turbidities reveal that mostly long loops are affected by nonlinearities and that the deviations from diffusive transport observed at long times are due to these localized modes. Our data are a first step in the experimental investigation of the interplay between nonlinear effects and AL in 3D. (fast track communication)

  12. Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets.

    Science.gov (United States)

    Cesca, T; Calvelli, P; Battaglin, G; Mazzoldi, P; Mattei, G

    2012-02-13

    We report on the nonlinear optical properties of Au-Ag nanoplanets produced by ion implantation and irradiation in silica, experimentally investigated by means of the single beam z-scan technique. The measurements provided experimental evidence of the intense local-field enhancement effect theoretically demonstrated for these plasmonic nanosystems. In particular, this has a dramatic impact on their nonlinear absorption behavior and results in a tunable changeover from reverse saturable absorption to saturable absorption by slightly varying the pump intensity and in the possibility to activate and observe nonlinear phenomena of the electron dynamics otherwise unaccessible in the intensity range that can be employed to study these materials. Finally, for the nanoplanet configuration we found a dramatic decrease of the intensity-dependent absorption coefficient, which could be very promising for obtaining optical gain materials.

  13. Viscous Flow over Nonlinearly Stretching Sheet with Effects of Viscous Dissipation

    Directory of Open Access Journals (Sweden)

    Javad Alinejad

    2012-01-01

    Full Text Available The flow and heat transfer characteristics of incompressible viscous flow over a nonlinearly stretching sheet with the presence of viscous dissipation is investigated numerically. The similarity transformation reduces the time-independent boundary layer equations for momentum and thermal energy into a set of coupled ordinary differential equations. The obtained equations, including nonlinear equation for the velocity field and differential equation by variable coefficient for the temperature field , are solved numerically by using the fourth order of Runge-Kutta integration scheme accompanied by shooting technique with Newton-Raphson iteration method. The effect of various values of Prandtl number, Eckert number and nonlinear stretching parameter are studied. The results presented graphically show some behaviors such as decrease in dimensionless temperature due to increase in Pr number, and curve relocations are observed when heat dissipation is considered.

  14. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films

    Science.gov (United States)

    Zhao, Yong-chuang; Nie, Zhong-quan; Zhai, Ai-ping; Tian, Yan-ting; Liu, Chao; Shi, Chang-kun; Jia, Bao-hua

    2018-01-01

    In this work, we focus on the optical super-resolution effect induced by strong nonlinear saturation absorption (NSA) of graphene oxide (GO) membranes. The third-order optical nonlinearities are characterized by the canonical Z-scan technique under femtosecond laser (wavelength: 800 nm, pulse width: 100 fs) excitation. Through controlling the applied femtosecond laser energy, NSA of the GO films can be tuned continuously. The GO film is placed at the focal plane as a unique amplitude filter to improve the resolution of the focused field. A multi-layer system model is proposed to present the generation of a deep sub-wavelength spot associated with the nonlinearity of GO films. Moreover, the parameter conditions to achieve the best resolution (˜λ/6) are determined entirely. The demonstrated results here are useful for high density optical recoding and storage, nanolithography, and super-resolution optical imaging.

  15. Effects of Exponential Nonlinear Electrodynamics and External Magnetic Field on Holographic Superconductors

    Science.gov (United States)

    Sheykhi, A.; Abdollahzadeh, Z.

    2018-03-01

    We investigate the effects of an external magnetic field as well as exponential nonlinear electrodynamics on the properties of s-wave holographic superconductors. Our strategy for this study is the matching method, which is based on the match of the solutions near the horizon and on the boundary at some intermediate point. When the magnetic field is turned off, we obtain the critical temperature as well as the condensation operator and show that the critical exponent is still 1/2, which is the universal value in the mean field theory. Then, we turn on the magnetic field and obtain the critical magnetic field, B c , in order to study its behavior in terms of the temperature. Interestingly enough, we find that in the presence of exponential nonlinear electrodynamics, the critical temperature decreases, while the critical magnetic field increases compared to the Maxwell case. We also observe that the critical magnetic field increases with increasing the nonlinear parameter b.

  16. Destruction of Anderson localization by nonlinearity in kicked rotator at different effective dimensions

    International Nuclear Information System (INIS)

    Ermann, L; Shepelyansky, D L

    2014-01-01

    We study numerically the frequency modulated kicked nonlinear rotator with effective dimension d=1,2,3,4. We follow the time evolution of the model up to 10 9 kicks and determine the exponent α of subdiffusive spreading which changes from 0.35 to 0.5 when the dimension changes from d = 1 to 4. All results are obtained in a regime of relatively strong Anderson localization well below the Anderson transition point existing for d = 3, 4. We explain that this variation of the exponent is different from the usual d− dimensional Anderson models with local nonlinearity where α drops with increasing d. We also argue that the renormalization arguments proposed by Cherroret N et al (arXiv:1401.1038) are not valid for this model and the Anderson model with local nonlinearity in d = 3. (paper)

  17. Nonlinear dynamic effects in a two-wave CO2 laser

    International Nuclear Information System (INIS)

    Gorobets, V A; Kozlov, K V; Kuntsevich, B F; Petukhov, V O

    1999-01-01

    Theoretical and experimental investigations were made of nonlinear dynamic regimes of the operation of a two-wave CO 2 laser with cw excitation in an electric discharge and loss modulation in one of the channels. Nonlinear amplitude - frequency characteristics of each of the laser channels have two low-frequency resonance spikes, associated with forced linear oscillations of two coupled oscillators, and high-frequency spikes, corresponding to doubling of the period of the output radiation oscillations. At low loss-modulation frequencies the intensity oscillations of the output radiation in the coupled channels are in antiphase, whereas at high modulation frequencies the dynamics is cophasal. Nonlinear dynamic effects, such as doubling of the period and of the repetition frequency of the pulses and chaotic oscillations of the output radiation intensity, are observed for certain system parameters. (control of laser radiation parameters)

  18. Effects of heat exchange and nonlinearity on acoustic streaming in a vibrating cylindrical cavity.

    Science.gov (United States)

    Gubaidullin, Amir A; Yakovenko, Anna V

    2015-06-01

    Acoustic streaming in a gas filled cylindrical cavity subjected to the vibration effect is investigated numerically. Both thermally insulated walls and constant temperature walls are considered. The range of vibration frequencies from low frequencies, at which the process can be described by an approximate analytical solution, to high frequencies giving rise to strong nonlinear effects is studied. Frequencies lower than the resonant one are chosen, and nonlinearity is achieved due to the large amplitude. The problem is solved in an axisymmetric statement. The dependence of acoustic streaming in narrow channels at vibration frequencies lower than the resonant one on the type of thermal boundary conditions is shown. The streaming vortices' directions of rotation in the case of constant temperature walls are found to be opposite to those in the case of thermally insulated walls. Different nonlinear effects, which increase with the frequency of vibration, are obtained. Nonlinear effects manifesting as the nonuniformity of average temperature, pressure, and density are in turn found to be influencing the streaming velocity and streaming structure.

  19. Effect of P T symmetry on nonlinear waves for three-wave interaction models in the quadratic nonlinear media

    Science.gov (United States)

    Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao

    2018-04-01

    We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.

  20. The effects of relativistic and non-local non-linearities on modulational instabilities in non-uniform plasma

    International Nuclear Information System (INIS)

    Mohamed, B.F.; El-Shorbagy, Kh.H.

    2000-01-01

    A general detailed analysis for the nonlinear generation of localized fields due to the existence of a strong pump field inside the non-uniform plasma has been considered. We have taken into account the effects of relativistic and non-local nonlinearities on the structure of plasma resonance region. The nonlinear Schrodinger equation described the localized fields are investigated. Besides, the generalized dispersion relation is obtained to study the modulational instabilities in different cases. Keywords: Wave-plasma interaction, Nonlinear effects, Modulation instabilities

  1. Nonlinear Electromagnetic Stabilization of Plasma Microturbulence

    Science.gov (United States)

    Whelan, G. G.; Pueschel, M. J.; Terry, P. W.

    2018-04-01

    The physical causes for the strong stabilizing effect of finite plasma β on ion-temperature-gradient-driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear gyrokinetic simulations. The primary contribution stems from a resonance of frequencies in the dominant nonlinear interaction between the unstable mode, the stable mode, and zonal flows, which maximizes the triplet correlation time and therefore the energy transfer efficiency. A modification to mixing-length transport estimates is constructed, which reproduces nonlinear heat fluxes throughout the examined β range.

  2. Comparison of the effect of annular and solid electron beams on linear and nonlinear traveling wave tube

    Directory of Open Access Journals (Sweden)

    F. Sheykhe

    Full Text Available The present paper, compares the effect of the annular and solid electron beam on the efficiency of linear and nonlinear TWTs. To do this, first we introduce four different geometric structure of the beam-helix. Then, we calculate the output power of each structure, in linear and nonlinear modes, at different frequencies using the numerical solution of the mathematical equations of the multi-frequency Eulerian model. Now, plot the output power in terms of distance for each structure at different frequencies and compare them. In a linear tube, the effect of annular beams on the output power is better than the solid beam, while this affects the frequency in nonlinear tubes. It is shown that in linear regime the power increase linearly with frequency but for nonlinear regimes is nonlinear. Keywords: Annular beam, Solid beam, Circuit power, Nonlinear, Traveling wave tube, Helix

  3. The Effect of Friction on the Nonlinear Vibration of the Cracked One-Stage Power Transmission

    Directory of Open Access Journals (Sweden)

    M. Rezaee

    2016-01-01

    Full Text Available : The gear systems are widely used in industry to transmit the power or change the direction of the torque. Due to the extensive usage of the gears, the detailed designing and the subsequent maintenance of these systems are more and more evident. System recognition can be achieved through modeling the system, investigating the system behavior, and comparing the results obtained through the model with the actual system behavior. Up to now, the effect of dry friction has not been taken into account in nonlinear vibration analysis and modeling of a cracked one-stage gear power transmission system. In this paper, the nonlinear vibration of a pair of cracked spur-gear system in presence of dry friction, static transmission error, clearance and time-variant mesh stiffness is investigated. To this end, the time-variant mesh stiffness of an intact tooth is calculated analytically. Then, the tooth root crack is modeled as a cracked cantilever beam. The governing nonlinear equation of motion is extracted accordingly, and in order to consider the effect of dry friction, the governing equation solved by Rung- Kutta method in three separate time spans. Finally, the frequency response and bifurcation diagrams are used to study the effect of the friction and tooth root crack on the nonlinear vibration behavior of the system.

  4. Isotropic damage model and serial/parallel mix theory applied to nonlinear analysis of ferrocement thin walls. Experimental and numerical analysis

    Directory of Open Access Journals (Sweden)

    Jairo A. Paredes

    2016-01-01

    Full Text Available Ferrocement thin walls are the structural elements that comprise the earthquake resistant system of dwellings built with this material. This article presents the results drawn from an experimental campaign carried out over full-scale precast ferrocement thin walls that were assessed under lateral static loading conditions. The tests allowed the identification of structural parameters and the evaluation of the performance of the walls under static loading conditions. Additionally, an isotropic damage model for modelling the mortar was applied, as well as the classic elasto-plastic theory for modelling the meshes and reinforcing bars. The ferrocement is considered as a composite material, thus the serial/parallel mix theory is used for modelling its mechanical behavior. In this work a methodology for the numerical analysis that allows modeling the nonlinear behavior exhibited by ferrocement walls under static loading conditions, as well as their potential use in earthquake resistant design, is proposed.

  5. MORE: mixed optimization for reverse engineering--an application to modeling biological networks response via sparse systems of nonlinear differential equations.

    Science.gov (United States)

    Sambo, Francesco; de Oca, Marco A Montes; Di Camillo, Barbara; Toffolo, Gianna; Stützle, Thomas

    2012-01-01

    Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE is competitive with the state of the art in terms of accuracy of the inferred networks.

  6. Effect of prolonged mixing time on concrete properties

    International Nuclear Information System (INIS)

    Mohd Noorul Ikhsan Mohamed; Sidek, H.A.A.; Wahab, Z.A.

    2009-01-01

    The correlation between workability, compressive strength and mixing time of fresh concrete has been studied. The concrete samples used in the study are normal concrete of grade 30. The mix design of the concrete samples was estimated using software called Calcrete. Three concrete cubes of 150 mm size were cast immediately after mixing. The same grade of concrete was prepared with the mixing time of 30 minutes to 5 hours. All of the concrete samples were cured for 28 days under room temperature before they were compressed using a compression machine. Result shows that the compressive strength of concrete decreases when mixing time is increased. (author)

  7. Isotope effects in ion-exchange equilibria in aqueous and mixed solvent systems

    International Nuclear Information System (INIS)

    Gupta, A.R.

    1979-01-01

    Isotope effects in ion-exchange equilibria in aqueous and mixed solvents are analyzed in terms of the general features of ion-exchange equilibria and of isotope effects in chemical equilibria. The special role of solvent fractionation effects in ion-exchange equilibria in mixed solvents is pointed out. The various situations arising in isotope fractionation in ion exchange in mixed solvents due to solvent fractionation effects are theoretically discussed. The experimental data on lithium isotope effects in ion-exchange equilibria in mixed solvents are shown to conform to the above situations. The limitations of ion-exchange equilibria in mixed solvents for isotope fractionation are pointed out. 3 tables

  8. Problems in nonlinear acoustics: Scattering of sound by sound, parametric receiving arrays, nonlinear effects in asymmetric sound beams and pulsed finite amplitude sound beams

    Science.gov (United States)

    Hamilton, Mark F.

    1989-08-01

    Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.

  9. Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants.

    Science.gov (United States)

    Dong, Dan; Du, Enzai; Sun, Zhengzhong; Zeng, Xuetong; de Vries, Wim

    2017-12-01

    Anthropogenic emissions of acid precursors have enhanced global occurrence of acid rain, especially in East Asia. Acid rain directly suppresses leaf function by eroding surface waxes and cuticle and leaching base cations from mesophyll cells, while the simultaneous foliar uptake of nitrates in rainwater may directly benefit leaf photosynthesis and plant growth, suggesting a non-linear direct effect of acid rain. By synthesizing data from literature on acid rain exposure experiments, we assessed the direct effects of acid rain on leaf photosynthesis across 49 terrestrial plants in China. Our results show a non-linear direct effect of acid rain on leaf photosynthetic rate, including a neutral to positive effect above pH 5.0 and a negative effect below that pH level. The acid rain sensitivity of leaf photosynthesis showed no significant difference between herbs and woody species below pH 5.0, but the impacts above that pH level were strongly different, resulting in a significant increase in leaf photosynthetic rate of woody species and an insignificant effect on herbs. Our analysis also indicates a positive effect of the molar ratio of nitric versus sulfuric acid in the acid solution on leaf photosynthetic rate. These findings imply that rainwater acidity and the composition of acids both affect the response of leaf photosynthesis and therefore result in a non-linear direct effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Nonlinear singular elliptic equations

    International Nuclear Information System (INIS)

    Dong Minh Duc.

    1988-09-01

    We improve the Poincare inequality, the Sobolev imbedding theorem and the Trudinger imbedding theorem and prove a Mountain pass theorem. Applying these results we study a nonlinear singular mixed boundary problem. (author). 22 refs

  11. Nonlinear Optical Terahertz Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — We develop a new approach to generation of THz radiation. Our method relies on mixing two optical frequency beams in a nonlinear crystalline Whispering Gallery Mode...

  12. Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects

    Directory of Open Access Journals (Sweden)

    Jie-Yu Chen

    2009-05-01

    Full Text Available In Atomic force microscope (AFM examination of a vibrating microcantilever, the nonlinear tip-sample interaction would greatly influence the dynamics of the cantilever. In this paper, the nonlinear dynamics and chaos of a tip-sample dynamic system being run in the tapping mode (TM were investigated by considering the effects of hydrodynamic loading and squeeze film damping. The microcantilever was modeled as a spring-mass-damping system and the interaction between the tip and the sample was described by the Lennard-Jones (LJ potential. The fundamental frequency and quality factor were calculated from the transient oscillations of the microcantilever vibrating in air. Numerical simulations were carried out to study the coupled nonlinear dynamic system using the bifurcation diagram, Poincaré maps, largest Lyapunov exponent, phase portraits and time histories. Results indicated the occurrence of periodic and chaotic motions and provided a comprehensive understanding of the hydrodynamic loading of microcantilevers. It was demonstrated that the coupled dynamic system will experience complex nonlinear oscillation as the system parameters change and the effect of squeeze film damping is not negligible on the micro-scale.

  13. Seasonality Effects on Nonlinear Properties of Hydrometeorological Records: A New Method of Data Analysis

    Science.gov (United States)

    Livina, V. N.; Ashkenazy, Y.; Bunde, A.; Havlin, S.

    2007-12-01

    Climatic time series in general, and hydrological time series in particular, exhibit pronounced annual periodicity. This periodicity and its corresponding harmonics affect the nonlinear properties of the relevant time series (i.e., the long-range volatility correlations and width of multifractal spectrum) and thus have to be filtered out before studying fractal and volatility properties. We compare several filtering techniques (one of them proposed here) and find that in order to eliminate the periodicity effect on the nonlinear properties of the time series (i.e., the volatility and multifractal properties) it is necessary to filter out the seasonal standard deviation in addition to the filtering of the seasonal mean. The obtained results indicate weak volatility correlations (weak nonlinearity) in the river data, and this can be seen using different filterings approaches. [1] Livina~V.~N., Y.~Ashkenazy, A.~Bunde, and S.~Havlin, Seasonality effects on nonlinear properties of hydrometeorological records, in Extremes, Trends, and Correlations in Hydrology and Climate (ed. by J.P.Kropp & H.-J.Schellnhuber), Springer, Berlin, submitted.

  14. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    International Nuclear Information System (INIS)

    Torres-Torres, C.; García-Cruz, M.L.; Castañeda, L.; Rangel Rojo, R.; Tamayo-Rivera, L.; Maldonado, A.; Avendaño-Alejo, M.

    2012-01-01

    Chromium doped zinc oxide thin solid films were deposited on soda–lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol–gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: ► Enhancement in photoluminescence for chromium doped zinc oxide films is presented. ► A strong and ultrafast optical Kerr effect seems to result from quantum confinement. ► Photoconductive properties for optical and optoelectronic functions were observed.

  15. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C., E-mail: crstorres@yahoo.com.mx [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF 07738 (Mexico); Garcia-Cruz, M.L. [Centro de Investigacion en Dispositivos Semiconductores, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Castaneda, L., E-mail: luisca@sirio.ifuap.buap.mx [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Rangel Rojo, R. [CICESE/Depto. de Optica, A. P. 360, Ensenada, BC 22860 (Mexico); Tamayo-Rivera, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, DF 01000 (Mexico); Maldonado, A. [Depto. de Ing. Electrica, CINVESTAV IPN-SEES, A. P. 14740, Mexico DF 07000 (Mexico); Avendano-Alejo, M., E-mail: imax_aa@yahoo.com.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, A. P. 70-186, 04510, DF (Mexico); and others

    2012-04-15

    Chromium doped zinc oxide thin solid films were deposited on soda-lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol-gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: Black-Right-Pointing-Pointer Enhancement in photoluminescence for chromium doped zinc oxide films is presented. Black-Right-Pointing-Pointer A strong and ultrafast optical Kerr effect seems to result from quantum confinement. Black-Right-Pointing-Pointer Photoconductive properties for optical and optoelectronic functions were observed.

  16. Quantum Effects in Nanoantennas and Their Applications in Tunability, Mixing, and Rectification

    KAUST Repository

    Chen, Pai-Yen

    2015-08-04

    It has been recently shown that optical nanoantennas made of single or paired metallic nanoparticles can efficiently couple the propagating light into and from deeply subwavelength volumes. The strong light-matter interaction mediated by surface plasmons in metallic nanostructures allows for localizing optical fields to a subdiffraction-limited region, thereby enhancing emission of nanoemitters and offering the flexible control of nanofocused radiation. Here we theoretically study the nanodipole antennas with submicroscopic gaps, i.e. a few nanometers, for which there exists linear and high-order nonlinear quantum conductivities due to the photon-assisted tunneling effect. Noticeably, these quantum conductivities induced at the nanogap are enhanced by several orders of magnitude, due to the strongly localized optical fields associated with the plasmonic resonance.In this talk, we will show that by tailoring the geometry of nanoantennas and the quantum well structure, a quantum nanodipole antenna with a gap size of few nanometers can induce linear, high-order quantum conductivities that are considerably enhanced by the surface plasmon resonance. We envisage here a number of intriguing nanophotonic applications of these quantum nanoantennas, including (i) modulatable and switchable radiators and metamaterials, with electronic and all-optical tuning (which is related to the two photon absorption), (ii) optical rectification for detection and energy harvesting of infrared and visible light, which are related to the relevant second-order quantum conductivity, (iii) harmonic sensing for the work function and the optical index of nanoparticle, e.g. DNA and molecules, loaded inside the nanogap, and (iv) high harmonic generation and wave mixing with nonlinear quantum conductivities.

  17. EFFECTS OF THE NEUTRINO MASS SPLITTING ON THE NONLINEAR MATTER POWER SPECTRUM

    International Nuclear Information System (INIS)

    Wagner, Christian; Verde, Licia; Jimenez, Raul

    2012-01-01

    We have performed cosmological N-body simulations which include the effect of the masses of the individual neutrino species. The simulations were aimed at studying the effect of different neutrino hierarchies on the matter power spectrum. Compared to the linear theory predictions, we find that nonlinearities enhance the effect of hierarchy on the matter power spectrum at mildly nonlinear scales. The maximum difference between the different hierarchies is about 0.5% for a sum of neutrino masses of 0.1 eV. Albeit this is a small effect, it is potentially measurable from upcoming surveys. In combination with neutrinoless double-β decay experiments, this opens up the possibility of using the sky to determine if neutrinos are Majorana or Dirac fermions.

  18. Latent Fundamentals Arbitrage with a Mixed Effects Factor Model

    Directory of Open Access Journals (Sweden)

    Andrei Salem Gonçalves

    2012-09-01

    Full Text Available We propose a single-factor mixed effects panel data model to create an arbitrage portfolio that identifies differences in firm-level latent fundamentals. Furthermore, we show that even though the characteristics that affect returns are unknown variables, it is possible to identify the strength of the combination of these latent fundamentals for each stock by following a simple approach using historical data. As a result, a trading strategy that bought the stocks with the best fundamentals (strong fundamentals portfolio and sold the stocks with the worst ones (weak fundamentals portfolio realized significant risk-adjusted returns in the U.S. market for the period between July 1986 and June 2008. To ensure robustness, we performed sub period and seasonal analyses and adjusted for trading costs and we found further empirical evidence that using a simple investment rule, that identified these latent fundamentals from the structure of past returns, can lead to profit.

  19. Rheologic properties of fresh cement mixes for repository sealing applications: effects of superplasticizers, mixing procedures, and time

    International Nuclear Information System (INIS)

    Roy, D.M.; Asaga, K.

    1982-09-01

    As part of the design of optimally durable, hardened cementitious plugging materials for repository borheole plugging, shaft and tunnel sealing, detailed studies of rheological properties have been made. The effects of mixing procedures upon measured rheological properties of fresh cement mixes with and without superplasticizing admixtures condensates of sulfonated naphthalene- and melamine-formaldehyde have been investigated. Coaxial cylindrical viscometer measurements were made, recording shear stress-shear rate relationships and defining yield stress and plastic viscosity. In the absence of admixture, yield stress and plastic viscosity decreased substantially with increasing intensity of mixing, which caused a breakdown of particulate aggregates. However, with admixture present, the rheological properties of already well-dispersed mixes did not change significantly with increasingly intense mixing. The changes of the viscometric functions with time were investigated, and were related to admixture type and concentration, cement type, and volume concentration of cement. The mechanisms of action of the superplasticizers and their use in generating reliable workable low water/cement ratio mixes are discussed. 36 figures, 3 tables

  20. Mixed parents, mixed results : Testing the effects of cross-nativity partnership on children's educational attainment

    NARCIS (Netherlands)

    Emonds, Viktor; van Tubergen, F.A.

    2015-01-01

    In this article, we have used panel data from the Children of Immigrants Longitudinal Survey (N = 3,337) to test several mechanisms (English proficiency, friends with native parents, parental socioeconomic status [SES], educational attitudes, bilingualism, and family stability) by which mixed

  1. Model for predicting non-linear crack growth considering load sequence effects (LOSEQ)

    International Nuclear Information System (INIS)

    Fuehring, H.

    1982-01-01

    A new analytical model for predicting non-linear crack growth is presented which takes into account the retardation as well as the acceleration effects due to irregular loading. It considers not only the maximum peak of a load sequence to effect crack growth but also all other loads of the history according to a generalised memory criterion. Comparisons between crack growth predicted by using the LOSEQ-programme and experimentally observed data are presented. (orig.) [de

  2. The hair-trigger effect for a class of nonlocal nonlinear equations

    Science.gov (United States)

    Finkelshtein, Dmitri; Tkachov, Pasha

    2018-06-01

    We prove the hair-trigger effect for a class of nonlocal nonlinear evolution equations on which have only two constant stationary solutions, 0 and . The effect consists in that the solution with an initial condition non identical to zero converges (when time goes to ) to θ locally uniformly in . We also find sufficient conditions for existence, uniqueness and comparison principle in the considered equations.

  3. Developmental lead exposure has mixed effects on butterfly cognitive processes.

    Science.gov (United States)

    Philips, Kinsey H; Kobiela, Megan E; Snell-Rood, Emilie C

    2017-01-01

    While the effects of lead pollution have been well studied in vertebrates, it is unclear to what extent lead may negatively affect insect cognition. Lead pollution in soils can elevate lead in plant tissues, suggesting it could negatively affect neural development of insect herbivores. We used the cabbage white butterfly (Pieris rapae) as a model system to study the effect of lead pollution on insect cognitive processes, which play an important role in how insects locate and handle resources. Cabbage white butterfly larvae were reared on a 4-ppm lead diet, a concentration representative of vegetation in polluted sites; we measured eye size and performance on a foraging assay in adults. Relative to controls, lead-reared butterflies did not differ in time or ability to search for a food reward associated with a less preferred color. Indeed, lead-treated butterflies were more likely to participate in the behavioral assay itself. Lead exposure did not negatively affect survival or body size, and it actually sped up development time. The effects of lead on relative eye size varied with sex: lead tended to reduce eye size in males, but increase eye size in females. These results suggest that low levels of lead pollution may have mixed effects on butterfly vision, but only minimal impacts on performance in foraging tasks, although follow-up work is needed to test whether this result is specific to cabbage whites, which are often associated with disturbed areas.

  4. Nonlinear simulations of particle source effects on edge localized mode

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, Chengdu 610065 (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Wang, Z. H. [Southwestern Institute of Physics, Chengdu 610041 (China)

    2015-12-15

    The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.

  5. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions.

    Science.gov (United States)

    Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas

    2016-01-01

    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.

  6. Optical authentication based on moiré effect of nonlinear gratings in phase space

    International Nuclear Information System (INIS)

    Liao, Meihua; He, Wenqi; Wu, Jiachen; Lu, Dajiang; Liu, Xiaoli; Peng, Xiang

    2015-01-01

    An optical authentication scheme based on the moiré effect of nonlinear gratings in phase space is proposed. According to the phase function relationship of the moiré effect in phase space, an arbitrary authentication image can be encoded into two nonlinear gratings which serve as the authentication lock (AL) and the authentication key (AK). The AL is stored in the authentication system while the AK is assigned to the authorized user. The authentication procedure can be performed using an optoelectronic approach, while the design process is accomplished by a digital approach. Furthermore, this optical authentication scheme can be extended for multiple users with different security levels. The proposed scheme can not only verify the legality of a user identity, but can also discriminate and control the security levels of legal users. Theoretical analysis and simulation experiments are provided to verify the feasibility and effectiveness of the proposed scheme. (paper)

  7. Nonlinear delta f Simulations of Collective Effects in Intense Charged Particle Beams

    CERN Document Server

    Hong Qi

    2003-01-01

    A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, ...

  8. The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber

    Directory of Open Access Journals (Sweden)

    Feng-Tao He

    2013-01-01

    Full Text Available We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton’s dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1 if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton’s width increases, while its amplitude and wave velocity reduce. (2 If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton’s width increases, while its amplitude and the wave velocity reduce.

  9. Effects of Thermobaricity on Coupled Ice-Mixed Layer Thermodynamics

    National Research Council Canada - National Science Library

    Roth, Mathias

    2003-01-01

    .... This density structure often leads to entrainment and affects both the mixed layer depth and the ice thickness, Thermobaricity, the combined dependence of seawater thermal expansion on temperature...

  10. Antibiofilm Effect of DNase against Single and Mixed Species Biofilm

    Science.gov (United States)

    Sharma, Komal

    2018-01-01

    Biofilms are aggregates of microorganisms that coexist in socially coordinated micro-niche in a self-produced polymeric matrix on pre-conditioned surfaces. The biofilm matrix reduces the efficacy of antibiofilm strategies. DNase degrades the extracellular DNA (e-DNA) present in the matrix, rendering the matrix weak and susceptible to antimicrobials. In the current study, the effect of DNase I was evaluated during biofilm formation (pre-treatment), on preformed biofilms (post-treatment) and both (dual treatment). The DNase I pre-treatment was optimized for P. aeruginosa PAO1 (model biofilm organism) at 10 µg/mL and post-treatment at 10 µg/mL with 15 min of contact duration. Inclusion of Mg2+ alongside DNase I post-treatment resulted in 90% reduction in biofilm within only 5 min of contact time (irrespective of age of biofilm). On extension of these findings, DNase I was found to be less effective against mixed species biofilm than individual biofilms. DNase I can be used as potent antibiofilm agent and with further optimization can be effectively used for biofilm prevention and reduction in situ. PMID:29562719

  11. The effects of severe mixed environmental pollution on human chromosomes.

    Science.gov (United States)

    Katsantoni, A; Nakou, S; Antoniadou-Koumatou, I; Côté, G B

    1986-01-01

    Cytogenetic studies were conducted on healthy young mothers, shortly after child birth, in two residential areas each with an approximate population of 20,000, situated about 25 km from Athens, Greece. One of the areas, Elefsis, is subject to severe mixed industrial pollution, and the other, Koropi, is relatively free of pollution. Chromosomal aberrations were investigated in 16 women from each area in 72 hour lymphocyte cultures treated with gentian violet to enhance any chromosomal instability induced by the pollution. The women were of a comparable socioeconomic level, aged between 20 and 31 years, and with no history of factors associated with mutagenesis. Venous blood samples were taken from the two groups and processed concurrently. The slides were coded and examined independently by two observers, who were unaware of the source of the samples. A total of 100 cells was examined on each sample. The two observers obtained highly comparable results. Women from Elefsis had an average of 0.42 anomalies per cell and those from Koropi had 0.39. The absence of a statistically significant difference between the two groups clearly shows that the severe mixed environmental pollution of Elefsis has no significant visible effect on human chromosomes in most residents. However, two Elefsis women had abnormal results and could be at risk. Their presence is not sufficient to raise significantly their group's average, but the induction by pollution of an increased rate of chromosomal anomalies in only a few people at risk could account for the known association between urban residence and cancer mortality. PMID:3783622

  12. Combined effects of traveling seismic waves and soil nonlinearity on nuclear power plant response

    International Nuclear Information System (INIS)

    Lee, T.H.; Charman, C.M.

    1981-01-01

    The effects of ground motion nonuniformity on the seismic input have been actively studied in recent years by considering the passage of traveling seismic waves. These studies gave rise to a new class of soil-structure interaction problems in which the seismic input is modified as a result of the spatial variations of ground motion. The phenomena were usually studied by using the elastic half-space simulation or discrete spring-models for modeling the soil medium. Finite element methods were also used recently on a limited scope. Results obtained from these investigations are often manifested by an attenuation of translational excitation along with an addition of rotational ground motion input. The decrease in structural response resulting from the input loss in the translational component was often insignificant since the response reduction tends to be offset by the effects from rotational input. The traveling wave effects have, so far, been investigated within the framework of linear theory with soil nonlinearity ignored. Conversely, the incorporation of soil nonlinearity in soil-structure interaction analyses has been done without including wave effect. Seismic analyses considering the hysteretic behavior of soil have been performed using highly idealized models for steady-state solution. More elaborate nonlinear seismic models deal with only the strain-dependent soil modulus rather than the transient unloading-reloading type of hysteretic characteristics of soil under a time-function input of earthquake trace. Apparently, the traveling wave effect and soil nonlinearity have been separately treated in the past. The purpose of this paper is to demonstrate that these two major effects can be combined in one model such that the influence of wave passage is reflected through the hysteretic behavior of soil particles, and thereby achieving significant reduction in seismic loads. (orig./RW)

  13. Boundary induced nonlinearities at small Reynolds numbers

    NARCIS (Netherlands)

    Sbragaglia, M.; Sugiyama, K.

    2007-01-01

    We investigate the importance of boundary slip at finite Reynolds numbers for mixed boundary conditions. Nonlinear effects are induced by the non-homogeneity of the boundary condition and change the symmetry properties of the flow with an overall mean flow reduction. To explain the observed drag

  14. Microergodicity effects on ebullition of methane modelled by Mixed Poisson process with Pareto mixing variable

    Czech Academy of Sciences Publication Activity Database

    Jordanova, P.; Dušek, Jiří; Stehlík, M.

    2013-01-01

    Roč. 128, OCT 15 (2013), s. 124-134 ISSN 0169-7439 R&D Projects: GA ČR(CZ) GAP504/11/1151; GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : environmental chemistry * ebullition of methane * mixed poisson processes * renewal process * pareto distribution * moving average process * robust statistics * sedge–grass marsh Subject RIV: EH - Ecology, Behaviour Impact factor: 2.381, year: 2013

  15. Narrow-linewidth Si/III-V lasers: A study of laser dynamics and nonlinear effects

    Science.gov (United States)

    Vilenchik, Yaakov Yasha

    Narrow-linewidth lasers play an important role in a wide variety of applications, from sensing and spectroscopy to optical communication and on-chip clocks. Current narrow-linewidth systems are usually implemented in doped fibers and are big, expensive, and power-hungry. Semiconductor lasers compete favorably in size, cost, and power consumption, but their linewidth is historically limited to the sub-MHz regime. However, it has been recently demonstrated that a new design paradigm, in which the optical energy is stored away from the active region in a composite high-Q resonator, has the potential to dramatically improve the coherence of the laser. This work explores this design paradigm, as applied on the hybrid Si/III-V platform. It demonstrates a record sub-KHz white-noise-floor linewidth. It further shows, both theoretically and experimentally, that this strategy practically eliminates Henry's linewidth enhancement by positioning a damped relaxation resonance at frequencies as low as 70 MHz, yielding truly quantum limited devices at frequencies of interest. In addition to this empirical contribution, this work explores the limits of performance of this platform. Here, the effect of two-photon-absorption and free-carrier-absorption are analyzed, using modified rate equations and Langevin force approach. The analysis predicts that as the intra-cavity field intensity builds up in the high-Q resonator, non-linear effects cause a new domain of performance-limiting factors. Steady-state behavior, laser dynamics, and frequency noise performance are examined in the context of this unique platform, pointing at the importance of nonlinear effects. This work offers a theoretical model predicting laser performance in light of nonlinear effects, obtaining a good agreement with experimental results from fabricated high-Q Si/III-V lasers. In addition to demonstrating unprecedented semiconductor laser performance, this work establishes a first attempt to predict and demonstrate

  16. Linear stability analysis and nonlinear simulation of the channeling effect on viscous fingering instability in miscible displacement

    Science.gov (United States)

    Shahnazari, M. R.; Maleka Ashtiani, I.; Saberi, A.

    2018-03-01

    In this paper, the effect of channeling on viscous fingering instability of miscible displacement in porous media is studied. In fact, channeling is introduced as a solution to stabilize the viscous fingering instability. In this solution, narrow channels were placed next to the walls, and by considering an exponential function to model the channeling effect, a heterogeneous media is assumed. In linear stability analysis, the governing equations are transferred to Fourier space, and by introducing a novel numerical method, the transferred equations are analyzed. The growth rate based on the wave number diagram has been drawn up in three sections of the medium. It is found that the flow becomes more stable at the center and unstable along the walls when the permeability ratio is increased. Also when the permeability ratio is approximately equal to one, the channeling has no significant effect. In nonlinear simulations, by using stream function and vortices, new equations have been rewritten and it is shown that channeling has a profound effect on the growth of the fingers and mechanisms. In addition to the superposition of velocity vectors and concentration contours, the development of instability is investigated using the mixing length and sweep efficiency diagram. The results show that although channeling reduces instability, it increases the displacement process time.

  17. Nonlinear Local Deformations of Red Blood Cell Membranes: Effects of Toxins and Pharmaceuticals (Part 2

    Directory of Open Access Journals (Sweden)

    Alexander M. Chernysh

    2018-01-01

    Full Text Available Modifiers of membranes cause local defects on the cell surface. Measurement of the rigidity at the sites of local defects can provide further information about the structure of defects and mechanical properties of altered membranes.The purpose of the study: a step-by-step study of the process of a nonlinear deformation of red blood cells membranes under the effect of modifiers of different physico-chemical nature.Materials and methods. The membrane deformation of a viscoelastic composite erythrocyte construction inside a cell was studied by the atomic force spectroscopy. Nonlinear deformations formed under the effect of hemin, Zn2+ ions, and verapamil were studied.Results. The process of elastic deformation of the membrane with the indentation of a probe at the sites of local defects caused by modifiers was demonstrated. The probe was inserted during the same step of the piezo scanner z displacement; the probe indentation occured at the different discrete values of h, which are the functions of the membrane structure. At the sites of domains, under the effect of the hemin, tension areas and plasticity areas appeared. A mathematical model of probe indentation at the site of membrane defects is presented.Conclusion. The molecular mechanisms of various types of nonlinear deformations occurring under the effect of toxins are discussed. The results of the study may be of interest both for fundamental researchers of the blood cell properties and for practical reanimatology and rehabilitology. 

  18. Nonlinear acoustic properties of ex vivo bovine liver and the effects of temperature and denaturation

    International Nuclear Information System (INIS)

    Jackson, E J; Coussios, C-C; Cleveland, R O

    2014-01-01

    Thermal ablation by high intensity focused ultrasound (HIFU) has a great potential for the non-invasive treatment of solid tumours. Due to the high pressure amplitudes involved, nonlinear acoustic effects must be understood and the relevant medium property is the parameter of nonlinearity B/A. Here, B/A was measured in ex vivo bovine liver, over a heating/cooling cycle replicating temperatures reached during HIFU ablation, adapting a finite amplitude insertion technique, which also allowed for measurement of sound-speed and attenuation. The method measures the nonlinear progression of a plane wave through liver and B/A was chosen so that numerical simulations matched the measured waveforms. To create plane-wave conditions, sinusoidal bursts were transmitted by a 100 mm diameter 1.125 MHz unfocused transducer and measured using a 15 mm diameter 2.25 MHz broadband transducer in the near field. Attenuation and sound-speed were calculated using a reflected pulse from the smaller transducer using the larger transducer as the reflecting interface. Results showed that attenuation initially decreased with heating then increased after denaturation, the sound-speed initially increased with temperature and then decreased, and B/A showed an increase with temperature but no significant post-heating change. The B/A data disagree with other reports that show a significant change and we suggest that any nonlinear enhancement in the received ultrasound signal post-treatment is likely due to acoustic cavitation rather than changes in tissue nonlinearity. (paper)

  19. Evaluating significance in linear mixed-effects models in R.

    Science.gov (United States)

    Luke, Steven G

    2017-08-01

    Mixed-effects models are being used ever more frequently in the analysis of experimental data. However, in the lme4 package in R the standards for evaluating significance of fixed effects in these models (i.e., obtaining p-values) are somewhat vague. There are good reasons for this, but as researchers who are using these models are required in many cases to report p-values, some method for evaluating the significance of the model output is needed. This paper reports the results of simulations showing that the two most common methods for evaluating significance, using likelihood ratio tests and applying the z distribution to the Wald t values from the model output (t-as-z), are somewhat anti-conservative, especially for smaller sample sizes. Other methods for evaluating significance, including parametric bootstrapping and the Kenward-Roger and Satterthwaite approximations for degrees of freedom, were also evaluated. The results of these simulations suggest that Type 1 error rates are closest to .05 when models are fitted using REML and p-values are derived using the Kenward-Roger or Satterthwaite approximations, as these approximations both produced acceptable Type 1 error rates even for smaller samples.

  20. Selective antibacterial effects of mixed ZnMgO nanoparticles

    International Nuclear Information System (INIS)

    Vidic, Jasmina; Stankic, Slavica; Haque, Francia; Ciric, Danica; Le Goffic, Ronan; Vidy, Aurore; Jupille, Jacques; Delmas, Bernard

    2013-01-01

    Antibiotic resistance has impelled the research for new agents that can inhibit bacterial growth without showing cytotoxic effects on humans and other species. We describe the synthesis and physicochemical characterization of nanostructured ZnMgO whose antibacterial activity was compared to its pure nano-ZnO and nano-MgO counterparts. Among the three oxides, ZnO nanocrystals—with the length of tetrapod legs about 100 nm and the diameter about 10 nm—were found to be the most effective antibacterial agents since both Gram-positive (B. subtilis) and Gram-negative (E. coli) bacteria were completely eradicated at concentration of 1 mg/mL. MgO nanocubes (the mean cube size ∼50 nm) only partially inhibited bacterial growth, whereas ZnMgO nanoparticles (sizes corresponding to pure particles) revealed high specific antibacterial activity to Gram-positive bacteria at this concentration. Transmission electron microscopy analysis showed that B. subtilis cells were damaged after contact with nano-ZnMgO, causing cell contents to leak out. Our preliminary toxicological study pointed out that nano-ZnO is toxic when applied to human HeLa cells, while nano-MgO and the mixed oxide did not induce any cell damage. Overall, our results suggested that nanostructured ZnMgO, may reconcile efficient antibacterial efficiency while being a safe new therapeutic for bacterial infections.

  1. Selective antibacterial effects of mixed ZnMgO nanoparticles

    Science.gov (United States)

    Vidic, Jasmina; Stankic, Slavica; Haque, Francia; Ciric, Danica; Le Goffic, Ronan; Vidy, Aurore; Jupille, Jacques; Delmas, Bernard

    2013-05-01

    Antibiotic resistance has impelled the research for new agents that can inhibit bacterial growth without showing cytotoxic effects on humans and other species. We describe the synthesis and physicochemical characterization of nanostructured ZnMgO whose antibacterial activity was compared to its pure nano-ZnO and nano-MgO counterparts. Among the three oxides, ZnO nanocrystals—with the length of tetrapod legs about 100 nm and the diameter about 10 nm—were found to be the most effective antibacterial agents since both Gram-positive ( B. subtilis) and Gram-negative ( E. coli) bacteria were completely eradicated at concentration of 1 mg/mL. MgO nanocubes (the mean cube size 50 nm) only partially inhibited bacterial growth, whereas ZnMgO nanoparticles (sizes corresponding to pure particles) revealed high specific antibacterial activity to Gram-positive bacteria at this concentration. Transmission electron microscopy analysis showed that B. subtilis cells were damaged after contact with nano-ZnMgO, causing cell contents to leak out. Our preliminary toxicological study pointed out that nano-ZnO is toxic when applied to human HeLa cells, while nano-MgO and the mixed oxide did not induce any cell damage. Overall, our results suggested that nanostructured ZnMgO, may reconcile efficient antibacterial efficiency while being a safe new therapeutic for bacterial infections.

  2. Selective antibacterial effects of mixed ZnMgO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Vidic, Jasmina, E-mail: jasmina.vidic@jouy.inra.fr [VIM, Institut de la Recherche Agronomique (France); Stankic, Slavica, E-mail: slavica.stankic@insp.jussieu.fr; Haque, Francia [CNRS, Institut des Nanosciences de Paris, UMR 7588 (France); Ciric, Danica; Le Goffic, Ronan; Vidy, Aurore [VIM, Institut de la Recherche Agronomique (France); Jupille, Jacques [CNRS, Institut des Nanosciences de Paris, UMR 7588 (France); Delmas, Bernard [VIM, Institut de la Recherche Agronomique (France)

    2013-05-15

    Antibiotic resistance has impelled the research for new agents that can inhibit bacterial growth without showing cytotoxic effects on humans and other species. We describe the synthesis and physicochemical characterization of nanostructured ZnMgO whose antibacterial activity was compared to its pure nano-ZnO and nano-MgO counterparts. Among the three oxides, ZnO nanocrystals-with the length of tetrapod legs about 100 nm and the diameter about 10 nm-were found to be the most effective antibacterial agents since both Gram-positive (B. subtilis) and Gram-negative (E. coli) bacteria were completely eradicated at concentration of 1 mg/mL. MgO nanocubes (the mean cube size {approx}50 nm) only partially inhibited bacterial growth, whereas ZnMgO nanoparticles (sizes corresponding to pure particles) revealed high specific antibacterial activity to Gram-positive bacteria at this concentration. Transmission electron microscopy analysis showed that B. subtilis cells were damaged after contact with nano-ZnMgO, causing cell contents to leak out. Our preliminary toxicological study pointed out that nano-ZnO is toxic when applied to human HeLa cells, while nano-MgO and the mixed oxide did not induce any cell damage. Overall, our results suggested that nanostructured ZnMgO, may reconcile efficient antibacterial efficiency while being a safe new therapeutic for bacterial infections.

  3. Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Hsien, E-mail: chli@nknucc.nknu.edu.tw [Department of Mathematics, National Kaohsiung Normal University, Yanchao District, Kaohsiung City 82444, Taiwan (China); Yang, Suh-Yuh, E-mail: syyang@math.ncu.edu.tw [Department of Mathematics, National Central University, Jhongli District, Taoyuan City 32001, Taiwan (China)

    2015-10-23

    This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability.

  4. Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons

    International Nuclear Information System (INIS)

    Li, Chun-Hsien; Yang, Suh-Yuh

    2015-01-01

    This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability

  5. Nonlinear Modeling and Simulation of Thermal Effects in Microcantilever Resonators Dynamic

    International Nuclear Information System (INIS)

    Tadayon, M A; Sayyaadi, H; Jazar, G Nakhaie

    2006-01-01

    Thermal dependency of material characteristics in micro electromechanical systems strongly affects their performance, design, and control. Hence, it is essential to understand and model that in MEMS devices to optimize their designs. A thermal phenomenon introduces two main effects: damping due to internal friction, and softening due to Young modulus temperature relation. Based on some reported theoretical and experimental results, we model the thermal phenomena and use two Lorentzian functions to describe the restoring and damping forces caused by thermal phenomena. In order to emphasize the thermal effects, a nonlinear model of the MEMS, by considering capacitor nonlinearity, have been used. The response of the system is developed by employing multiple time scales perturbation method on nondimensionalized form of equations. Frequency response, resonant frequency and peak amplitude are examined for variation of dynamic parameters involved

  6. Effects produced by oscillations applied to nonlinear dynamic systems: a general approach and examples

    DEFF Research Database (Denmark)

    Blekhman, I. I.; Sorokin, V. S.

    2016-01-01

    A general approach to study effects produced by oscillations applied to nonlinear dynamic systems is developed. It implies a transition from initial governing equations of motion to much more simple equations describing only the main slow component of motions (the vibro-transformed dynamics.......g., the requirement for the involved nonlinearities to be weak. The approach is illustrated by several relevant examples from various fields of science, e.g., mechanics, physics, chemistry and biophysics....... equations). The approach is named as the oscillatory strobodynamics, since motions are perceived as under a stroboscopic light. The vibro-transformed dynamics equations comprise terms that capture the averaged effect of oscillations. The method of direct separation of motions appears to be an efficient...

  7. Geometry effect on energy transfer rate in a coupled-quantum-well structure: nonlinear regime

    International Nuclear Information System (INIS)

    Salavati-fard, T; Vazifehshenas, T

    2014-01-01

    We study theoretically the effect of geometry on the energy transfer rate at nonlinear regime in a coupled-quantum-well system using the balance equation approach. To investigate comparatively the effect of both symmetric and asymmetric geometry, different structures are considered. The random phase approximation dynamic dielectric function is employed to include the contributions from both quasiparticle and plasmon excitations. Also, the short-range exchange interaction is taken into account through the Hubbard approximation. Our numerical results show that the energy transfer rate increases by increasing the well thicknesses in symmetric structures. Furthermore, by increasing spatial asymmetry, the energy transfer rate decreases for the electron temperature range of interest. From numerical calculations, it is obtained that the nonlinear energy transfer rate is proportional to the square of electron drift velocity in all structures and also, found that the influence of Hubbard local field correction on the energy transfer rate gets weaker by increasing the strength of applied electric field. (paper)

  8. The effect of high intensity mixing on the enzymatic hydrolysis of concentrated cellulose fiber suspensions

    Science.gov (United States)

    Joseph R. Samaniuk; C. Tim Scott; Thatcher W. Root; Daniel J. Klingenberg

    2011-01-01

    Enzymatic hydrolysis of lignocellulosic biomass in a high shear environment was examined. The conversion of cellulose to glucose in samples mixed in a torque rheometer producing shear flows similar to those found in twin screw extruders was greater than that of unmixed samples. In addition, there is a synergistic effect of mixing and enzymatic hydrolysis; mixing...

  9. Nonlinear Effects in Transformation Optics-Based Metamaterial Shields for Counter Directed Energy Weapon Defense

    Science.gov (United States)

    2016-06-01

    employs the in- variance of the Maxwell equations under coordinate transformations to convert the free- space wave solutions in a coordinate... ENERGY WEAPON DEFENSE by Jacob D. Thompson June 2016 Thesis Co-Advisors: James Luscombe Brett Borden Approved for public release; distribution is...2014 to 06-17-2016 4. TITLE AND SUBTITLE NONLINEAR EFFECTS IN TRANSFORMATION OPTICS-BASED METAMATE- RIAL SHIELDS FOR COUNTER DIRECTED ENERGY WEAPON

  10. Effects of Nonlinear Absorption in BK7 and Color Glasses at 355 nm

    International Nuclear Information System (INIS)

    Adams, J J; McCarville, T; Bruere, J; McElroy, J; Peterson, J

    2003-01-01

    We have demonstrated a simple experimental technique that can be used to measure the nonlinear absorption coefficients in glasses. We determine BK7, UG1, and UG11 glasses to have linear absorption coefficients of 0.0217 ± 10% cm -1 , 1.7 ± 10% cm -1 , and 0.82 ± 10% cm -1 , respectively, two-photon absorption cross-sections of 0.025 ± 20% cm/GW, 0.035 ± 20% cm/GW, and 0.047 ± 20% cm/GW, respectively, excited-state absorption cross-sections of 8.0 x 10 -18 ± 20% cm 2 , 2.8 x 10 -16 ± 20% cm 2 , and 5 x 10 -17 ± 20% cm 2 , respectively, and solarization coefficients of 8.5 x 10 -20 ± 20% cm 2 , 2.5 x 10 -18 ± 20% cm 2 , and 1.3 x 10 -19 ± 20% cm 2 , respectively. For our application, nonlinear effects in 10-cm of BK7 are small ((le) 2%) for 355-nm fluences 2 for flat-top pulses. However, nonlinear effects are noticeable for 355-nm fluences at 0.8 J/cm 2 . In particular, we determine a 20% increase in the instantaneous absorption from linear, a solarization rate of 4% per 100 shots, and a 10% temporal droop introduced in the pulse, for 355-nm flat-top pulses at a fluence of 0.8 J/cm 2 . For 0.5-cm of UG1 absorbing glass the non-linear absorption has a similar effect as that from 10-cm of BK7 on the pulse shape; however, the effects in UG11 are much smaller

  11. Toroidal effects on the non-linearly saturated m = 1 island in tokamaks

    International Nuclear Information System (INIS)

    Avinash, K.; Haas, F.A.; Thyagaraja, A.

    1990-01-01

    This paper investigates the influence of toroidal effects (due to the coupling of various poloidal harmonics) on the non-linear saturation of the m=1 island. Bounds are obtained relating the aspect ratio, the shear at the q=1 surface and the saturated island width. Provided these bounds are satisfied, then we find that the cylindrical m=1 island theory is valid for toroidal geometry. (author)

  12. Testing nonlinear electrodynamics in waveguides: the effect of magnetostatic fields on the transmitted power

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Rafael, E-mail: ferraro@iafe.uba.a [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)

    2010-05-14

    In Born-Infeld theory and other nonlinear electrodynamics, the presence of a magnetostatic field modifies the dispersion relation and the energy velocity of waves propagating in a hollow waveguide. As a consequence, the transmitted power along a waveguide suffers slight changes when a magnetostatic field is switched on and off. This tiny effect could be better tested by operating the waveguide at a frequency close to the cutoff frequency.

  13. Testing nonlinear electrodynamics in waveguides: the effect of magnetostatic fields on the transmitted power

    International Nuclear Information System (INIS)

    Ferraro, Rafael

    2010-01-01

    In Born-Infeld theory and other nonlinear electrodynamics, the presence of a magnetostatic field modifies the dispersion relation and the energy velocity of waves propagating in a hollow waveguide. As a consequence, the transmitted power along a waveguide suffers slight changes when a magnetostatic field is switched on and off. This tiny effect could be better tested by operating the waveguide at a frequency close to the cutoff frequency.

  14. Influence of nonlinear effects on the development of Rayleigh-Taylor instability of F layer

    International Nuclear Information System (INIS)

    Kolesnikov, A.F.; Krivorutskij, Eh.N.

    1989-01-01

    Within the framework of weak turbulence in the approximation of accidental phases the influence of different nonlinear effects on the level and anisotropy of the F layer inhomogeneities is considered. To describe the F layer plasma, approximation of two-liquid hydrodynamics is used. The inertia of electrons and ions, as well as temperature inhomogeneity are neglected. The considered processes are assumed to be isothermal

  15. Approximate effective nonlinear coefficient of second-harmonic generation in KTiOPO(4).

    Science.gov (United States)

    Asaumi, K

    1993-10-20

    A simplified approximate expression for the effective nonlinear coefficient of type-II second-harmonicgeneration in KTiOPO(4) was obtained by observing that the difference between the refractive indices n(x) and n(y) is 1 order of magnitude smaller than the difference between n(z) and n(y) (or n(x)). The agreement of this approximate equation with the true definition is good, with a maximum discrepancy of 4%.

  16. Mixed Convection Flow of Magnetic Viscoelastic Polymer from a Nonisothermal Wedge with Biot Number Effects

    Directory of Open Access Journals (Sweden)

    S. Abdul Gaffar

    2015-01-01

    Full Text Available Magnetic polymers are finding increasing applications in diverse fields of chemical and mechanical engineering. In this paper, we investigate the nonlinear steady boundary layer flow and heat transfer of such fluids from a nonisothermal wedge. The incompressible Eyring-Powell non-Newtonian fluid model is employed and a magnetohydrodynamic body force is included in the simulation. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging nondimensional parameters, namely, the Eyring-Powell rheological fluid parameter (ε, local non-Newtonian parameter based on length scale (δ, Prandtl number (Pr, Biot number (γ, pressure gradient parameter (m, magnetic parameter (M, mixed convection parameter (λ, and dimensionless tangential coordinate (ξ, on velocity and temperature evolution in the boundary layer regime is examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated.

  17. An effective description of dark matter and dark energy in the mildly non-linear regime

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Matthew; Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94306 (United States); Maleknejad, Azadeh, E-mail: matthew.lewandowski@cea.fr, E-mail: azade@ipm.ir, E-mail: senatore@stanford.edu [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. Code. 19538-33511, Tehran (Iran, Islamic Republic of)

    2017-05-01

    In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the information resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. The Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.

  18. Vacuum nonlinear electrodynamic polarization effects in hard emission of pulsars and magnetars

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, V.I.; Sokolov, V.A.; Svertilov, S.I., E-mail: vid.msu@yandex.ru, E-mail: sokolov.sev@inbox.ru, E-mail: sis@coronas.ru [Physics Department, Moscow State University, Moscow (Russian Federation)

    2017-09-01

    The nonlinear electrodynamics influence of pulsar magnetic field on the electromagnetic pulse polarization is discussed from the point of observation interpretation. The calculations of pulsar magnetic field impact on the electromagnetic pulse polarization are made in such a way to make it easier to interpret these effects in space experiments. The law of hard emission pulse propagation in the pulsar magnetic field according to the vacuum (nonlinear electrodynamics is obtained. It has been shown, that due to the birefringence in the vacuum the front part of any hard emission pulse coming from a pulsar should be linearly polarized and the rest of pulse can have arbitrary polarization. The observational possibilities of vacuum birefringence are discussed. In this paper we give the estimations of detector parameters such as effective area, exposure time and necessity of polarization measurements with high accuracy. The combination of large area and extremely long exposure time gives the good opportunity to search the fine polarization effects like vacuum nonlinear electrodynamics birefringence.

  19. Nonlinear hybrid simulation of internal kink with beam ion effects in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wei; Sheng, Zheng-Mao [Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Fu, G. Y.; Tobias, Benjamin [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Zeeland, Michael Van [General Atomics, San Diego, California 92186-5608 (United States); Wang, Feng [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-04-15

    In DIII-D sawteething plasmas, long-lived (1,1) kink modes are often observed between sawtooth crashes. The saturated kink modes have two distinct frequencies. The mode with higher frequency transits to a fishbone-like mode with sufficient on-axis neutral beam power. In this work, hybrid simulations with the global kinetic-magnetohydrodynamic (MHD) hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of the n = 1 mode with effects of energetic beam ions for a typical DIII-D discharge where both saturated kink mode and fishbone were observed. Linear simulation results show that the n = 1 internal kink mode is unstable in MHD limit. However, with kinetic effects of beam ions, a fishbone-like mode is excited with mode frequency about a few kHz depending on beam pressure profile. The mode frequency is higher at higher beam power and/or narrower radial profile consistent with the experimental observation. Nonlinear simulations have been performed to investigate mode saturation as well as energetic particle transport. The nonlinear MHD simulations show that the unstable kink mode becomes a saturated kink mode after a sawtooth crash. With beam ion effects, the fishbone-like mode can also transit to a saturated kink mode with a small but finite mode frequency. These results are consistent with the experimental observation of saturated kink mode between sawtooth crashes.

  20. Rehearsal Strategies Can Enlarge or Diminish the Spacing Effect: Pure versus Mixed Lists and Encoding Strategy

    Science.gov (United States)

    Delaney, Peter F.; Verkoeijen, Peter P. J. L.

    2009-01-01

    Using 5 experiments, the authors explored the dependency of spacing effects on rehearsal patterns. Encouraging rehearsal borrowing produced opposing effects on mixed lists (containing both spaced and massed repetitions) and pure lists (containing only one or the other), magnifying spacing effects on mixed lists but diminishing spacing effects on…

  1. Effect of mixing during fermentation in yogurt manufacturing.

    Science.gov (United States)

    Aguirre-Ezkauriatza, E J; Galarza-González, M G; Uribe-Bujanda, A I; Ríos-Licea, M; López-Pacheco, F; Hernández-Brenes, C M; Alvarez, M M

    2008-12-01

    In traditional yogurt manufacturing, the yogurt is not agitated during fermentation. However, stirring could be beneficial, particularly for improving heat and mass transport across the fermentation tank. In this contribution, we studied the effect of low-speed agitation during fermentation on process time, acidity profile, and microbial dynamics during yogurt fermentation in 2 laboratory-scale fermenters (3 and 5 L) with different heat-transfer characteristics. Lactobacillus bulgaricus and Streptococcus thermophilus were used as fermenting bacteria. Curves of pH, lactic acid concentration, lactose concentration, and bacterial population profiles during fermentation are presented for static and low-agitation conditions during fermentation. At low-inoculum conditions, agitation reduced the processing time by shortening the lag phase. However, mixing did not modify the duration or the shape of the pH profiles during the exponential phase. In fermentors with poor heat-transfer characteristics, important differences in microbial dynamics were observed between the agitated and nonagitated fermentation experiments; that is, agitation significantly increased the observable specific growth rate and the final microbial count of L. bulgaricus.

  2. Nonlinear side effects of fs pulses inside corneal tissue during photodisruption

    Science.gov (United States)

    Heisterkamp, A.; Ripken, T.; Mamom, T.; Drommer, W.; Welling, H.; Ertmer, W.; Lubatschowski, H.

    In order to evaluate the potential for refractive surgery, fs laser pulses of 150-fs pulse duration were used to process corneal tissue of dead and living animal eyes. By focusing the laser radiation down to spot sizes of several microns, very precise cuts could be achieved inside the treated cornea, accompanied with minimum collateral damage to the tissue by thermal or mechanical effects. During histo-pathological analysis by light and transmission electron microscopy considerable side effects of fs photodisruption were found. Due to the high intensities at the focal region several nonlinear effects occurred. Self-focusing, photodissociation, UV-light production were observed, leading to streak formation inside the cornea.

  3. Transverse Field Dispersion in the Generalized Nonlinear Schrödinger Equation: Four Wave Mixing in a Higher Order Mode Fiber

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Cheng, Ji; Xu, Chris

    2013-01-01

    An improved version of the generalized nonlinear Schrödinger equation is derived, which takes into account the correct dispersion of the transverse field distribution. The new improved version of the generalized nonlinear Schrödinger equation is verified to give the same results as the standard...

  4. The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings

    Science.gov (United States)

    Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat

    2018-06-01

    In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.

  5. Effect of Friction-Induced Nonlinearity on OMA-Identified Dynamic Characteristics of Offshore Platform Models

    DEFF Research Database (Denmark)

    Friis, Tobias; Orfanos, Antonios; Katsanos, Evangelos

    The identification of the modal characteristics of engineering systems under operational conditions is commonly conducted with the use of the Operational Modal Analysis (OMA), being a class of useful tools employed within various fields of structural, mechanical as well as marine and naval...... engineering. The current OMA methods have been advanced on the basis of two fundamental, though, restrictive assumptions: (i) linearity and (ii) stationarity. Nevertheless, there are several applications that are inherently related to various nonlinear mechanisms, which, in turn, violate the two cornerstones...... of OMA and hence, question its robustness and efficiency. Along these lines, the current study addresses the effect of friction-induced nonlinearity on OMA-identified dynamic characteristics of an experimental set up consisting of a pair of reduced scale offshore platform models that are connected...

  6. New hybrid non-linear transformations of divergent perturbation series for quadratic Zeeman effects

    International Nuclear Information System (INIS)

    Belkic, D.

    1989-01-01

    The problem of hydrogen atoms in an external uniform magnetic field (quadratic Zeeman effect) is studied by means of perturbation theory. The power series for the ground-state energy in terms of magnetic-field strength B is divergent. Nevertheless, it is possible to induce convergence of this divergent series by applying various non-linear transformations. These transformations of originally divergent perturbation series yield new sequences, which then converge. The induced convergence is, however, quite slow. A new hybrid Shanks-Levin non-linear transform is devised here for accelerating these slowly converging series and sequences. Significant improvement in the convergence rate is obtained. Agreement with the exact results is excellent. (author)

  7. Pulse carving using nanocavity-enhanced nonlinear effects in photonic crystal Fano structures

    DEFF Research Database (Denmark)

    Bekele, Dagmawi Alemayehu; Yu, Yi; Hu, Hao

    2018-01-01

    We experimentally demonstrate the use of a photonic crystal Fano resonance for carving-out short pulses from long-duration input pulses. This is achieved by exploiting an asymmetric Fano resonance combined with carrier-induced nonlinear effects in a photonic crystal membrane structure. The use...... of a nanocavity concentrates the input field to a very small volume leading to an efficient nonlinear resonance shift that carves a short pulse out of the input pulse. Here, we demonstrate shortening of ∼500  ps and ∼100  ps long pulses to ∼30  ps and ∼20  ps pulses, respectively. Furthermore, we demonstrate...

  8. Nonlinear interplay of TEM and ITG turbulence and its effect on transport

    Science.gov (United States)

    Merz, F.; Jenko, F.

    2010-05-01

    The dominant source of anomalous transport in fusion plasmas on ion scales is turbulence driven by trapped electron modes (TEMs) and ion temperature gradient (ITG) modes. While the individual properties of each of these two instabilities and the corresponding microturbulence have been examined in detail in the past, the effects of a coexistence of the two modes and the phenomena of transitions between the TEM and ITG dominated regimes are not well studied. In many experimental situations, the temperature and density gradients support both microinstabilities simultaneously, so that transitional regimes are important for a detailed understanding of fusion plasmas. In this paper, this issue is addressed, using the gyrokinetic code GENE for a detailed investigation of the dominant and subdominant linear instabilities and the corresponding nonlinear system. A simple quasilinear model based on eigenvalue computations is presented which is shown to reproduce important features of the nonlinear TEM-ITG transition.

  9. A nonlinear effective thermal conductivity model for carbon nanotube and nanofiber suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Koo, J; Kang, Y [Department of Mechanical Engineering Kyung Hee University, 1, Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Kleinstreuer, C [Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, 3211 Broughton Hall, Raleigh, NC 27695-7910 (United States)], E-mail: jmkoo@khu.ac.kr

    2008-09-17

    It has been experimentally demonstrated that suspensions of carbon nanotubes (CNTs) and nanofibers (CNFs) significantly increase the thermal conductivity of nanofluids; however, a physically sound theory of the underlying phenomenon is still missing. In this study, the nonlinear nature of the effective thermal conductivity enhancement with the particle concentration of CNT and CNF nanofluids is explained physically using the excluded volume concept. Specifically, the number of contacting CNTs and CNFs could be calculated by using the excluded volume concept, where the distance for heat to travel in a cylinder between the contacting cylinders in the thermal network of percolating CNTs and CNFs increased with the excluded volume. In contrast to the effective thermal conductivity model of Sastry et al (2008 Nanotechnology 19 055704) the present revised model could reproduce the nonlinear increase of the thermal conductivity with particle concentration, as well as the dependence on the diameter and aspect ratio of the CNTs and CNFs. It was found that the alignment of CNTs and CNFs due to the long range repulsion force decreases the excluded volume, leading to both the convex and concave nonlinear as well as linear increase of the thermal conductivity with particle concentration. The difference between various carrier fluids of the suspensions could be explained as the result of the change in the excluded volume in different base fluids.

  10. The Non-Linear Effect of Corporate Taxes on Economic Growth

    Directory of Open Access Journals (Sweden)

    Huňady Ján

    2015-03-01

    Full Text Available The paper deals with the problem of taxation and its potential impact on economic growth and presents some new empirical insights into this topic. The main aim of the paper is to verify an assumed nonlinear impact of corporate tax rates on economic growth. Based on the theory of public finance and taxation, we hypothesize that at relatively low tax rates it is possible that the impact of taxation on economic growth become slightly positive. On the other hand when the tax rates are higher a negative impact of taxation on economic growth could be expected. Despite the fact that the most of the existing studies find a negative linear relationship between these variables, we can also find strong support for a non-linear relationship from several theoretical models as well as some empirical studies. Based on panel data fixed-effects econometric models, we, as well, find empirical evidence for a non-linear relationship between nominal and effective corporate tax rates and economic growth. Our data consists of annual observations for the period 1999 to 2011 for EU Member States. Based on the results, we also estimated the optimal level of the corporate tax rate in terms of maximizing economic growth in the average of the EU countries.

  11. Growth effects on mixed culture of Dunaliella salina and ...

    African Journals Online (AJOL)

    AJL

    2011-10-10

    Oct 10, 2011 ... compounds of nutritional supplements or food additives. (Wikfors and Ohno ... mixed cultures of marine microalgae and most of the work has been ..... This work was supported by the National Natural Science. Foundation of ...

  12. Effects of mixed substrates on growth and vitamin production by ...

    African Journals Online (AJOL)

    SERVER

    2007-10-16

    Oct 16, 2007 ... The cells were grown mixotrophically in glucose (G), ethanol ... Key words: mixed substrate culture, Euglena gracilis, cell growth, vitamin production. ..... Biological elimination of nitric oxide from fuel gas by marine micro-.

  13. Characterizing the Effective Bandwidth of Nonlinear Vibratory Energy Harvesters Possessing Multiple Stable Equilibria

    Science.gov (United States)

    Panyam Mohan Ram, Meghashyam

    In the last few years, advances in micro-fabrication technologies have lead to the development of low-power electronic devices spanning critical fields related to sensing, data transmission, and medical implants. Unfortunately, effective utilization of these devices is currently hindered by their reliance on batteries. In many of these applications, batteries may not be a viable choice as they have a fixed storage capacity and need to be constantly replaced or recharged. In light of such challenges, several novel concepts for micro-power generation have been recently introduced to harness, otherwise, wasted ambient energy from the environment and maintain these low-power devices. Vibratory energy harvesting is one such concept which has received significant attention in recent years. While linear vibratory energy harvesters have been well studied in the literature and their performance metrics have been established, recent research has focused on deliberate introduction of stiffness nonlinearities into the design of these devices. It has been shown that, nonlinear energy harvesters have a wider steady-state frequency bandwidth as compared to their linear counterparts, leading to the premise that they can used to improve performance, and decrease sensitivity to variations in the design and excitation parameters. This dissertation aims to investigate this premise by developing an analytical framework to study the influence of stiffness nonlinearities on the performance and effective bandwidth of nonlinear vibratory energy harvesters. To achieve this goal, the dissertation is divided into three parts. The first part investigates the performance of bi-stable energy harvesters possessing a symmetric quartic potential energy function under harmonic excitations and carries out a detailed analysis to define their effective frequency bandwidth. The second part investigates the relative performance of mono- and bi-stable energy harvesters under optimal electric loading

  14. Nonlinear magnetoelectric effect and magnetostriction in piezoelectric CsCuCl{sub 3} in paramagnetic and antiferromagnetic states

    Energy Technology Data Exchange (ETDEWEB)

    Kharkovskiy, A. I., E-mail: akharkovskiy@inbox.ru [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland); L.F. Vereshchagin Institute for High Pressure Physics RAS, 142190 Troitsk, Moscow (Russian Federation); Shaldin, Yu. V. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland); Institute for Crystallography RAS, Lenin' s Avenue 59, 119333 Moscow (Russian Federation); Nizhankovskii, V. I. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław (Poland)

    2016-01-07

    The direct nonlinear magnetoelectric (ME) effect and the magnetostriction of piezoelectric CsCuCl{sub 3} single crystals were comprehensively studied over a wide temperature range in stationary magnetic fields of up to 14 T. The direct nonlinear ME effect measurements were also performed in pulsed magnetic fields up to 31 T, at liquid helium temperature in the antiferromagnetic (AF) state for the crystallographic direction in which effect has the maximum value. The nonlinear ME effect was quadratic in the paramagnetic state for the whole range of magnetic fields. In the AF state the phase transition between different configurations of spins manifested itself as plateau-like peculiarity on the nonlinear ME effect. The nonlinear ME effect was saturated by the phase transition to the spin-saturated paramagnetic state. Two contributions to the nonlinear ME effects in CsCuCl{sub 3} were extracted from the experimental data: the intrinsic ME effect originated from the magnetoelectric interactions, and the extrinsic one, which resulted from a magnetostriction-induced piezoelectric effect.

  15. Linear mixed-effects modeling approach to FMRI group analysis.

    Science.gov (United States)

    Chen, Gang; Saad, Ziad S; Britton, Jennifer C; Pine, Daniel S; Cox, Robert W

    2013-06-01

    Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity

  16. Chaos and the quantum: how nonlinear effects can explain certain quantum paradoxes

    Energy Technology Data Exchange (ETDEWEB)

    McHarris, Wm C, E-mail: mcharris@chemistry.msu.edu [Departments of Chemistry and Physics/Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2011-07-08

    In recent years we have suggested that many of the so-called paradoxes resulting from the Copenhagen interpretation of quantum mechanics could well have more logical parallels based in nonlinear dynamics and chaos theory. Perhaps quantum mechanics might not be strictly linear as has been commonly postulated, and indeed, during the past year experimentalists have discovered signatures of chaos in a definitely quantum system. As an illustration of what can go wrong when quantum effects are forced into a linear interpretation, I examine Bell-type inequalities. In conventional derivations of such inequalities, classical systems are found to impose upper limits on the statistical correlations between, say, the properties of a pair of separated but entangled particles, whereas quantum systems allow greater correlations. Numerous experiments have upheld the quantum predictions (greater statistical correlations than allowed classically), which has led to inferences such as the instantaneous transmission of information between effectively infinitely separated particles - Einstein's 'spooky action-at-a-distance', incompatible with relativity. I argue that there is nothing wrong with the quantum mechanical side of such derivations (the usual point of attack by those attempting to debunk Bell-type arguments), but implicit in the derivations on the classical side is the assumption of independent, uncorrelated particles. As a result, one is comparing uncorrelated probabilities versus conditional probabilities rather than comparing classical versus quantum mechanics, making moot the experimental inferences. Further, nonlinear classical systems are known to exhibit correlations that can easily be as great as and overlap with quantum correlations - so-called nonextensive thermodynamics with its nonadditive entropy has verified this with numerous examples. Perhaps quantum mechanics does contain fundamental nonlinear elements. Nonlinear dynamics and chaos theory could

  17. Chaos and the quantum: how nonlinear effects can explain certain quantum paradoxes

    International Nuclear Information System (INIS)

    McHarris, Wm C

    2011-01-01

    In recent years we have suggested that many of the so-called paradoxes resulting from the Copenhagen interpretation of quantum mechanics could well have more logical parallels based in nonlinear dynamics and chaos theory. Perhaps quantum mechanics might not be strictly linear as has been commonly postulated, and indeed, during the past year experimentalists have discovered signatures of chaos in a definitely quantum system. As an illustration of what can go wrong when quantum effects are forced into a linear interpretation, I examine Bell-type inequalities. In conventional derivations of such inequalities, classical systems are found to impose upper limits on the statistical correlations between, say, the properties of a pair of separated but entangled particles, whereas quantum systems allow greater correlations. Numerous experiments have upheld the quantum predictions (greater statistical correlations than allowed classically), which has led to inferences such as the instantaneous transmission of information between effectively infinitely separated particles - Einstein's 'spooky action-at-a-distance', incompatible with relativity. I argue that there is nothing wrong with the quantum mechanical side of such derivations (the usual point of attack by those attempting to debunk Bell-type arguments), but implicit in the derivations on the classical side is the assumption of independent, uncorrelated particles. As a result, one is comparing uncorrelated probabilities versus conditional probabilities rather than comparing classical versus quantum mechanics, making moot the experimental inferences. Further, nonlinear classical systems are known to exhibit correlations that can easily be as great as and overlap with quantum correlations - so-called nonextensive thermodynamics with its nonadditive entropy has verified this with numerous examples. Perhaps quantum mechanics does contain fundamental nonlinear elements. Nonlinear dynamics and chaos theory could well provide a

  18. Interface width effect on the classical Rayleigh-Taylor instability in the weakly nonlinear regime

    International Nuclear Information System (INIS)

    Wang, L. F.; Ye, W. H.; Li, Y. J.

    2010-01-01

    In this paper, the interface width effects (i.e., the density gradient effects or the density transition layer effects) on the Rayleigh-Taylor instability (RTI) in the weakly nonlinear (WN) regime are investigated by numerical simulation (NS). It is found that the interface width effects dramatically influence the linear growth rate in the linear growth regime and the mode coupling process in the WN growth regime. First, the interface width effects decrease the linear growth rate of the RTI, particularly for the short perturbation wavelengths. Second, the interface width effects suppress (reduce) the third-order feedback to the fundamental mode, which induces the nonlinear saturation amplitude (NSA) to exceed the classical prediction, 0.1λ. The wider the density transition layer is, the larger the NSA is. The NSA in our NS can reach a half of its perturbation wavelength. Finally, the interface width effects suppress the generation and the growth of the second and the third harmonics. The ability to suppress the harmonics' growth increases with the interface width but decreases with the perturbation wavelength. On the whole, in the WN regime, the interface width effects stabilize the RTI, except for an enhancement of the NSA, which is expected to improve the understanding of the formation mechanism for the astrophysical jets, and for the jetlike long spikes in the high energy density physics.

  19. On the effect of mixing on property development of cement pastes

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Bøhm, Anja; Kjeldsen, Ane Mette

    2006-01-01

    by hand and in a high-speed mixer. Chemical shrinkage was measured to illustrate the effect of mixing on development of hydration. Chloride migration was measured on 28 days old pastes to illustrate the effect of mixing on the hydrated pastes. The present investigation of pastes of white Portland cement...... showed an effect of mixing on the development of chemical shrinkage, i.e. hydration, of pastes with superplasticizer, but without silica fume. Silica fume agglomerates were observed in thin sections of pastes with silica fume and mixed by hand; however no effect on the development of hydration...

  20. Integrability and soliton in a classical one dimensional site dependent biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity

    International Nuclear Information System (INIS)

    Kavitha, L.; Daniel, M.

    2002-07-01

    The integrability of one dimensional classical continuum inhomogeneous biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity on the soliton of an underlying completely integrable spin model are studied. The dynamics of the spin system is expressed in terms of a higher order generalized nonlinear Schroedinger equation through a differential geometric approach which becomes integrable for a particular choice of the biquadratic exchange interaction and for linear inhomogeneity. The effect of nonlinear inhomogeneity on the spin soliton is studied by carrying out a multiple scale perturbation analysis. (author)

  1. Preheating ablation effects on the Rayleigh-Taylor instability in the weakly nonlinear regime

    International Nuclear Information System (INIS)

    Wang, L. F.; Ye, W. H.; He, X. T.; Sheng, Z. M.; Don, Wai-Sun; Li, Y. J.

    2010-01-01

    The two-dimensional Rayleigh-Taylor instability (RTI) with and without thermal conduction is investigated by numerical simulation in the weakly nonlinear regime. A preheat model κ(T)=κ SH [1+f(T)] is introduced for the thermal conduction [W. H. Ye, W. Y. Zhang, and X. T. He, Phys. Rev. E 65, 057401 (2002)], where κ SH is the Spitzer-Haerm electron thermal conductivity coefficient and f(T) models the preheating tongue effect in the cold plasma ahead of the ablation front. The preheating ablation effects on the RTI are studied by comparing the RTI with and without thermal conduction with identical density profile relevant to inertial confinement fusion experiments. It is found that the ablation effects strongly influence the mode coupling process, especially with short perturbation wavelength. Overall, the ablation effects stabilize the RTI. First, the linear growth rate is reduced, especially for short perturbation wavelengths and a cutoff wavelength is observed in simulations. Second, the second harmonic generation is reduced for short perturbation wavelengths. Third, the third-order negative feedback to the fundamental mode is strengthened, which plays a stabilization role. Finally, on the contrary, the ablation effects increase the generation of the third harmonic when the perturbation wavelengths are long. Our simulation results indicate that, in the weakly nonlinear regime, the ablation effects are weakened as the perturbation wavelength is increased. Numerical results obtained are in general agreement with the recent weakly nonlinear theories as proposed in [J. Sanz, J. Ramirez, R. Ramis et al., Phys. Rev. Lett. 89, 195002 (2002); J. Garnier, P.-A. Raviart, C. Cherfils-Clerouin et al., Phys. Rev. Lett. 90, 185003 (2003)].

  2. The effect of misclassification errors on case mix measurement.

    Science.gov (United States)

    Sutherland, Jason M; Botz, Chas K

    2006-12-01

    Case mix systems have been implemented for hospital reimbursement and performance measurement across Europe and North America. Case mix categorizes patients into discrete groups based on clinical information obtained from patient charts in an attempt to identify clinical or cost difference amongst these groups. The diagnosis related group (DRG) case mix system is the most common methodology, with variants adopted in many countries. External validation studies of coding quality have confirmed that widespread variability exists between originally recorded diagnoses and re-abstracted clinical information. DRG assignment errors in hospitals that share patient level cost data for the purpose of establishing cost weights affects cost weight accuracy. The purpose of this study is to estimate bias in cost weights due to measurement error of reported clinical information. DRG assignment error rates are simulated based on recent clinical re-abstraction study results. Our simulation study estimates that 47% of cost weights representing the least severe cases are over weight by 10%, while 32% of cost weights representing the most severe cases are under weight by 10%. Applying the simulated weights to a cross-section of hospitals, we find that teaching hospitals tend to be under weight. Since inaccurate cost weights challenges the ability of case mix systems to accurately reflect patient mix and may lead to potential distortions in hospital funding, bias in hospital case mix measurement highlights the role clinical data quality plays in hospital funding in countries that use DRG-type case mix systems. Quality of clinical information should be carefully considered from hospitals that contribute financial data for establishing cost weights.

  3. Geometric nonlinear effects on the planar dynamics of a pivoted flexible beam encountering a point-surface impact

    International Nuclear Information System (INIS)

    Li Qing; Wang Tianshu; Ma Xingrui

    2009-01-01

    Flexible-body modeling with geometric nonlinearities remains a hot topic of research by applications in multibody system dynamics undergoing large overall motions. However, the geometric nonlinear effects on the impact dynamics of flexible multibody systems have attracted significantly less attention. In this paper, a point-surface impact problem between a rigid ball and a pivoted flexible beam is investigated. The Hertzian contact law is used to describe the impact process, and the dynamic equations are formulated in the floating frame of reference using the assumed mode method. The two important geometric nonlinear effects of the flexible beam are taken into account, i.e., the longitudinal foreshortening effect due to the transverse deformation, and the stress stiffness effect due to the axial force. The simulation results show that good consistency can be obtained with the nonlinear finite element program ABAQUS/Explicit if proper geometric nonlinearities are included in the floating frame formulation. Specifically, only the foreshortening effect should be considered in a pure transverse impact for efficiency, while the stress stiffness effect should be further considered in an oblique case with much more computational effort. It also implies that the geometric nonlinear effects should be considered properly in the impact dynamic analysis of more general flexible multibody systems

  4. Effects of combined linear and nonlinear periodic training on physical fitness and competition times in finswimmers.

    Science.gov (United States)

    Yu, Kyung-Hun; Suk, Min-Hwa; Kang, Shin-Woo; Shin, Yun-A

    2014-10-01

    The purpose of this study was to investigate the effect of combined linear and nonlinear periodic training on physical fitness and competition times in finswimmers. The linear resistance training model (6 days/week) and nonlinear underwater training (4 days/week) were applied to 12 finswimmers (age, 16.08± 1.44 yr; career, 3.78± 1.90 yr) for 12 weeks. Body composition measures included weight, body mass index (BMI), percent fat, and fat-free mass. Physical fitness measures included trunk flexion forward, trunk extension backward, sargent jump, 1-repetition-maximum (1 RM) squat, 1 RM dead lift, knee extension, knee flexion, trunk extension, trunk flexion, and competition times. Body composition and physical fitness were improved after the 12-week periodic training program. Weight, BMI, and percent fat were significantly decreased, and trunk flexion forward, trunk extension backward, sargent jump, 1 RM squat, 1 RM dead lift, and knee extension (right) were significantly increased. The 50- and 100-m times significantly decreased in all 12 athletes. After 12 weeks of training, all finswimmers who participated in this study improved their times in a public competition. These data indicate that combined linear and nonlinear periodic training enhanced the physical fitness and competition times in finswimmers.

  5. Nonlinear electrostatic ion-acoustic "oscilliton" waves driven by charge non-neutrality effects

    Directory of Open Access Journals (Sweden)

    J. Z. G. Ma

    2011-01-01

    Full Text Available Nonlinear "oscilliton" structures features a low-frequency (LF solitary envelope, the amplitude of which is modulated violently by superimposed high-frequency (HF oscillations. We have studied the charge non-neutrality effects on the excitation of electrostatic ion-acoustic (IA oscillitons. A two-fluid, warm plasma model is employed, and a set of nonlinear self-similar equations is solved in a cylindrical geometry. Under charge-neutrality conditions, three conventional IA structures (namely, sinusoidal, sawtooth, and spicky/bipolar are obtained. By contrast, under charge non-neutrality conditions, oscilliton structures are excited, where the LF envelope is in the sound-wave (SW mode, while the HF ingredients include the IA mode and the ion-Langmiur (IL mode. The amplitudes of the SW wave are violently modulated by the IA oscillations, whereas the upward sides of the IA amplitudes are modulated by the IL oscillations of smaller amplitudes, and the downward sides are modulated by hybrid IA/IL oscillations. The nonlinear oscillitons are found to be dependent not only upon the input parameters (e.g., the Mach number, the Debye length, and the initial temperature of particles, but on initial conditions as well.

  6. Fitness Effects of Network Non-Linearity Induced by Gene Expression Noise

    Science.gov (United States)

    Ray, Christian; Cooper, Tim; Balazsi, Gabor

    2012-02-01

    In the non-equilibrium dynamics of growing microbial cells, metabolic enzymes can create non-linearities in metabolite concentration because of non-linear degradation (utilization): an enzyme can saturate in the process of metabolite utilization. Increasing metabolite production past the saturation point then results in an ultrasensitive metabolite response. If the production rate of a metabolite depends on a second enzyme or other protein-mediated process, uncorrelated gene expression noise can thus cause transient metabolite concentration bursts. Such bursts are physiologically unnecessary and may represent a source of selection against the ultrasensitive switch, especially if the fluctuating metabolic intermediate is toxic. Selection may therefore favor correlated gene expression fluctuations for enzymes in the same pathway, such as by same-operon membership in bacteria. Using a modified experimental lac operon system, we are undertaking a combined theoretical-experimental approach to demonstrate that (i) the lac operon has an implicit ultrasensitive switch that we predict is avoided by gene expression correlations induced by same-operon membership; (ii) bacterial growth rates are sensitive to crossing the ultrasensitive threshold. Our results suggest that correlations in intrinsic gene expression noise are exploited by evolution to ameliorate the detrimental effects of nonlinearities in metabolite concentrations.

  7. Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy

    Science.gov (United States)

    Xia, Minglu; Sun, Qingping

    2017-10-01

    Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.

  8. ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance

    DEFF Research Database (Denmark)

    Olesen, Laurits Højgaard; Bruus, Henrik; Ajdari, A.

    2006-01-01

    therefore extend the latter theories to account for three experimentally relevant effects: (i) vertical confinement of the pumping channel, (ii) Faradaic currents from electrochemical reactions at the electrodes, and (iii) nonlinear surface capacitance of the Debye layer. We report here that these effects......Recent experiments have demonstrated that ac electrokinetic micropumps permit integrable, local, and fast pumping (velocities similar to mm/s) with low driving voltage of a few volts only. However, they also displayed many quantitative and qualitative discrepancies with existing theories. We...

  9. Current and Future Constraints on Higgs Couplings in the Nonlinear Effective Theory

    Energy Technology Data Exchange (ETDEWEB)

    de Blas, Jorge [INFN, Padua; Eberhardt, Otto [Valencia U., IFIC; Krause, Claudius [Fermilab

    2018-03-02

    We perform a Bayesian statistical analysis of the constraints on the nonlinear Effective Theory given by the Higgs electroweak chiral Lagrangian. We obtain bounds on the effective coefficients entering in Higgs observables at the leading order, using all available Higgs-boson signal strengths from the LHC runs 1 and 2. Using a prior dependence study of the solutions, we discuss the results within the context of natural-sized Wilson coefficients. We further study the expected sensitivities to the different Wilson coefficients at various possible future colliders. Finally, we interpret our results in terms of some minimal composite Higgs models.

  10. Using strong nonlinearity and high-frequency vibrations to control effective mechanical stiffness

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2008-01-01

    the method of direct separation of motions with results of a modified multiple scales ap-proach, valid also for strong nonlinearity, the stiffening ef-fect is predicted for a generic 1-dof system, and results are tested against numerical simulation and ((it is planned)) laboratory experiments.......High-frequency excitation (HFE) can be used to change the effective stiffness of an elastic structure, and related quanti-ties such as resonance frequencies, wave speed, buckling loads, and equilibrium states. There are basically two ways to do this: By using parametrical HFE (with or without non...

  11. Generalized effective potential in nonlinear theories of the 4-th order

    International Nuclear Information System (INIS)

    Ananikyan, N.S.; Savvidy, G.K.

    1980-01-01

    By means of the Legendre transformations in the framework of nonlinear theories of the 4-th order a generalized effective potential GITA(phi, G, H, S) is constructed. It depends on PHI, a possible expectation value of the quantum field; on G, H, possible expectation values of the 2- a.nd 3-point connected Green functions and on S= a possible expectation value of the classical action. The expansion for the functional GITA(phi, G, H, S) is obtained, which is similar to the loop expansion for the effective action GITA(phi)

  12. Nonlinear effects in parallel magnetic fields in vanadyl and iron (111) ions solutions

    International Nuclear Information System (INIS)

    Ryzhov, V.A.; Fomichev, V.N.

    1983-01-01

    Nonlinear effects (NE) in vanadyl (VOSO 4 ) and iron (FeCl 3 x6H 2 O) solutions are investigated experimentally in the 268-323 K temperature range in parallel constant and variable linearly polarized magnetic fields, including conditions when EPR spectra are lacking due to strong resonance transition widening. It is shown that nonlinear effects are specified, on the one side, by the effect of a variable field on the relaxation processes and, on the other side, by resonance transitions in parallel fields. The relaxation and resonance effects contribute to different phase components of the second harmonic of magnetization, recorded in the experiment, at low frequences of a variable field (as compared to characteristic frequences of lattice motion). Therefore, separate analysis of the effects is possible. The presence of NE effects under conditions, when the EPR signal is not observed, and the possibility of the inverse problem solution using the variation technique on the base of simple models reveal that NE in parallel magnetic fields may be used for the investigation of paramagnets with a large EPR resonance transitions width

  13. Application of Hierarchical Linear Models/Linear Mixed-Effects Models in School Effectiveness Research

    Science.gov (United States)

    Ker, H. W.

    2014-01-01

    Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…

  14. Examples of mixed-effects modeling with crossed random effects and with binomial data

    NARCIS (Netherlands)

    Quené, H.; van den Bergh, H.

    2008-01-01

    Psycholinguistic data are often analyzed with repeated-measures analyses of variance (ANOVA), but this paper argues that mixed-effects (multilevel) models provide a better alternative method. First, models are discussed in which the two random factors of participants and items are crossed, and not

  15. Soil non-linearity and its effect on the dynamic behaviour of offshore platform foundations

    Energy Technology Data Exchange (ETDEWEB)

    Madshus, Christian

    1997-07-01

    in the laboratory tests. It was also found that models where the hysteretic non-linearity is approximated by any type of viscous or complex stiffness effect will severely overpredict the soil damping of the superimposed load component. The resonant response of dynamic systems with cyclically time-varying stiffness has been studied through numerical simulations and analytical derivations. The responses of these systems have been compared to numerically simulated responses of systems with real hysteretic non-linearity and comparable loading. It has been concluded that the time-varying systems reasonably well reproduce the resonant response of the non-linear systems for most situations. The time-varying system approach is proposed as a candidate method for linearization of dynamic platform foundation response analyses. The thesis recommends investigations for further validation of the findings made in the thesis before the approach may be utilized in platform design. Recommendations are also given on improved methods for platform foundation monitoring systems and for improving elasto-plastic constitutive soil models.

  16. Probabilistic and Scenario Seismic and Liquefaction Hazard Analysis of the Mississippi Embayment Incorporating Nonlinear Site Effects

    Science.gov (United States)

    Cramer, C. H.; Dhar, M. S.

    2017-12-01

    The influence of deep sediment deposits of the Mississippi Embayment (ME) on the propagation of seismic waves is poorly understood and remains a major source of uncertainty for site response analysis. Many researchers have studied the effects of these deposits on seismic hazard of the area using available information at the time. In this study, we have used updated and newly available resources for seismic and liquefaction hazard analyses of the ME. We have developed an improved 3D geological model. Additionally, we used surface geological maps from Cupples and Van Arsdale (2013) to prepare liquefaction hazard maps. Both equivalent linear and nonlinear site response codes were used to develop site amplification distributions for use in generating hazard maps. The site amplification distributions are created using the Monte Carlo approach of Cramer et al. (2004, 2006) on a 0.1-degree grid. The 2014 National Seismic Hazard model and attenuation relations (Petersen et al., 2014) are used to prepare seismic hazard maps. Then liquefaction hazard maps are generated using liquefaction probability curves from Holzer (2011) and Cramer et al. (2015). Equivalent linear response (w/ increased precision, restricted nonlinear behavior with depth) shows similar hazard for the ME compared to nonlinear analysis (w/o pore pressure) results. At short periods nonlinear deamplification dominates the hazard, but at long periods resonance amplification dominates. The liquefaction hazard tends to be high in Holocene and late Pleistocene lowland sediments, even with lowered ground water levels, and low in Pleistocene loess of the uplands. Considering pore pressure effects in nonlinear site response analysis at a test site on the lowlands shows amplification of ground motion at short periods. PGA estimates from ME liquefaction and MMI observations are in the 0.25 to 0.4 g range. Our estimated M7.5 PGA hazard within 10 km of the fault can exceed this. Ground motion observations from

  17. Effects of simulant mixed waste on EPDM and butyl rubber

    International Nuclear Information System (INIS)

    Nigrey, P.J.; Dickens, T.G.

    1997-11-01

    The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F trademark), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste

  18. Large Spatial and Temporal Separations of Cause and Effect in Policy Making - Dealing with Non-linear Effects

    Science.gov (United States)

    McCaskill, John

    There can be large spatial and temporal separation of cause and effect in policy making. Determining the correct linkage between policy inputs and outcomes can be highly impractical in the complex environments faced by policy makers. In attempting to see and plan for the probable outcomes, standard linear models often overlook, ignore, or are unable to predict catastrophic events that only seem improbable due to the issue of multiple feedback loops. There are several issues with the makeup and behaviors of complex systems that explain the difficulty many mathematical models (factor analysis/structural equation modeling) have in dealing with non-linear effects in complex systems. This chapter highlights those problem issues and offers insights to the usefulness of ABM in dealing with non-linear effects in complex policy making environments.

  19. Effects of configuration mixing in heavy-ion elastic scattering

    International Nuclear Information System (INIS)

    Cappuzzello, F.; Bondi, M.; Nicoloso, D.; Tropea, S.; Lubian, J.; Gomes, P.R.S.; Linares, R.; Oliveira, J.R.B.; Chamon, L.C.; Gasques, L.R.; Agodi, C.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; De Napoli, M.; Nunes Garcia, V.; Paes, B.; Foti, A.

    2014-01-01

    A theoretical study of the influence of configuration mixing on elastic scattering cross section is performed for the system 16 O + 27 Al at 100 MeV. A simple two-state model space, including the 27 Al 5/2 + ground and 5/2 + excited state at 2.73 MeV, is used in the coupled channel equations. The results indicate that even a weak degree of mixing is able to sizeably affect the elastic cross section, determining mainly a damping of Fraunhofer oscillations, as observed in the experiments. (authors)

  20. Effect of Mixing on Microorganism Growth in Loop Bioreactors

    Directory of Open Access Journals (Sweden)

    A. M. Al Taweel

    2012-01-01

    Full Text Available The impact of mixing on the promotion of microorganism growth rate has been analyzed using a multiphase forced-circulation pipe-loop reactor model capable of identifying conditions under which it is possible to convert natural gas into Single-Cell Protein. The impact of mixing in the interphase mass transfer was found to exert a critical role in determining the overall productivity of the bioreactor, particularly at the high cell loadings needed to reduce the capital costs associated with the large-scale production needed for the production of relatively low-value SCP in a sustainable manner.