WorldWideScience

Sample records for nonlinear maxwell equations

  1. Variational principle for nonlinear gyrokinetic Vlasov--Maxwell equations

    International Nuclear Information System (INIS)

    Brizard, Alain J.

    2000-01-01

    A new variational principle for the nonlinear gyrokinetic Vlasov--Maxwell equations is presented. This Eulerian variational principle uses constrained variations for the gyrocenter Vlasov distribution in eight-dimensional extended phase space and turns out to be simpler than the Lagrangian variational principle recently presented by H. Sugama [Phys. Plasmas 7, 466 (2000)]. A local energy conservation law is then derived explicitly by the Noether method. In future work, this new variational principle will be used to derive self-consistent, nonlinear, low-frequency Vlasov--Maxwell bounce-gyrokinetic equations, in which the fast gyromotion and bounce-motion time scales have been eliminated

  2. Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic coordinates

    International Nuclear Information System (INIS)

    Brizard, A.

    1988-09-01

    A gyrokinetic formalism using magnetic coordinates is used to derive self-consistent, nonlinear Maxwell-Vlasov equations that are suitable for particle simulation studies of finite-β tokamak microturbulence and its associated anomalous transport. The use of magnetic coordinates is an important feature of this work as it introduces the toroidal geometry naturally into our gyrokinetic formalism. The gyrokinetic formalism itself is based on the use of the Action-variational Lie perturbation method of Cary and Littlejohn, and preserves the Hamiltonian structure of the original Maxwell-Vlasov system. Previous nonlinear gyrokinetic sets of equations suitable for particle simulation analysis have considered either electrostatic and shear-Alfven perturbations in slab geometry, or electrostatic perturbations in toroidal geometry. In this present work, fully electromagnetic perturbations in toroidal geometry are considered. 26 refs

  3. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    Science.gov (United States)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  4. Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations

    Science.gov (United States)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America

  5. Implications of the Electrostatic Approximation in the Beam Frame on the Nonlinear Vlasov-Maxwell Equations for Intense Beam Propagation

    International Nuclear Information System (INIS)

    Davidson, Ronald C.; Lee, W. Wei-li; Hong Qin; Startsev, Edward

    2001-01-01

    This paper develops a clear procedure for solving the nonlinear Vlasov-Maxwell equations for a one-component intense charged particle beam or finite-length charge bunch propagating through a cylindrical conducting pipe (radius r = r(subscript)w = const.), and confined by an applied focusing force. In particular, the nonlinear Vlasov-Maxwell equations are Lorentz-transformed to the beam frame ('primed' variables) moving with axial velocity relative to the laboratory. In the beam frame, the particle motions are nonrelativistic for the applications of practical interest, already a major simplification. Then, in the beam frame, we make the electrostatic approximation which fully incorporates beam space-charge effects, but neglects any fast electromagnetic processes with transverse polarization (e.g., light waves). The resulting Vlasov-Maxwell equations are then Lorentz-transformed back to the laboratory frame, and properties of the self-generated fields and resulting nonlinear Vlasov-Maxwell equations in the laboratory frame are discussed

  6. Variational Principles, Lie Point Symmetries, and Similarity Solutions of the Vector Maxwell Equations in Non-linear Optics

    DEFF Research Database (Denmark)

    Webb, Garry; Sørensen, Mads Peter; Brio, Moysey

    2004-01-01

    to circumvent this problem, non-canonical Poisson bracket formulations of the equations are obtained in which the electric field is one of the non-canonical variables. Noether's theorem, and the Lie point symmetries admitted by the equations are used to obtain four conservation laws, including......The vector Maxwell equations of nonlinear optics coupled to a single Lorentz oscillator and with instantaneous Kerr nonlinearity are investigated by using Lie symmetry group methods. Lagrangian and Hamiltonian formulations of the equations are obtained. The aim of the analysis is to explore...... the properties of Maxwell's equations in nonlinear optics, without resorting to the commonly used nonlinear Schr\\"odinger (NLS) equation approximation in which a high frequency carrier wave is modulated on long length and time scales due to nonlinear sideband wave interactions. This is important in femto...

  7. Constitutive equations for orthotropic nonlinear viscoelastic behaviour using a generalized Maxwell model Application to wood material

    Science.gov (United States)

    Vidal-Sallé, Emmanuelle; Chassagne, Pierre

    2007-06-01

    This paper presents a nonlinear viscoelastic orthotropic constitutive equation applied to wood material. The proposed model takes into account mechanical and mechanosorptive creep via a 3D stress ratio and moisture change rate for a cylindrical orthotropic material. Orthotropic frame is based on the grain direction (L), radial (R) and hoop (T) directions, which are natural wood directions. Particular attention is taken to ensure the model to fulfill the necessary dissipation conditions. It is based on a rheological generalized Maxwell model with two elements in parallel in addition with a single linear spring taking into account the long term response. The proposed model is implemented in the finite element code ABAQUS/Standard® via a user subroutine UMAT and simple example is shown to demonstrate the capability of the proposed model. Future works would deal with damage and fracture prediction for wooden structures submitted to climate variations and mechanical loading.

  8. Mathematics and Maxwell's equations

    International Nuclear Information System (INIS)

    Boozer, Allen H

    2010-01-01

    The universality of mathematics and Maxwell's equations is not shared by specific plasma models. Computations become more reliable, efficient and transparent if specific plasma models are used to obtain only the information that would otherwise be missing. Constraints of high universality, such as those from mathematics and Maxwell's equations, can be obscured or lost by integrated computations. Recognition of subtle constraints of high universality is important for (1) focusing the design of control systems for magnetic field errors in tokamaks from perturbations that have little effect on the plasma to those that do, (2) clarifying the limits of applicability to astrophysics of computations of magnetic reconnection in fields that have a double periodicity or have B-vector =0 on a surface, as in a Harris sheet. Both require a degree of symmetry not expected in natural systems. Mathematics and Maxwell's equations imply that neighboring magnetic field lines characteristically separate exponentially with distance along a line. This remarkably universal phenomenon has been largely ignored, though it defines a trigger for reconnection through a critical magnitude of exponentiation. These and other examples of the importance of making distinctions and understanding constraints of high universality are explained.

  9. Boltzmann’s Six-Moment One-Dimensional Nonlinear System Equations with the Maxwell-Auzhan Boundary Conditions

    Directory of Open Access Journals (Sweden)

    A. Sakabekov

    2016-01-01

    Full Text Available We prove existence and uniqueness of the solution of the problem with initial and Maxwell-Auzhan boundary conditions for nonstationary nonlinear one-dimensional Boltzmann’s six-moment system equations in space of functions continuous in time and summable in square by a spatial variable. In order to obtain a priori estimation of the initial and boundary value problem for nonstationary nonlinear one-dimensional Boltzmann’s six-moment system equations we get the integral equality and then use the spherical representation of vector. Then we obtain the initial value problem for Riccati equation. We have managed to obtain a particular solution of this equation in an explicit form.

  10. A discontinuous Galerkin method for solving transient Maxwell equations with nonlinear material properties

    KAUST Repository

    Sirenko, Kostyantyn

    2014-07-01

    Discontinuous Galerkin time-domain method (DGTD) has been used extensively in computational electromagnetics for analyzing transient electromagnetic wave interactions on structures described with linear constitutive relations. DGTD expands unknown fields independently on disconnected mesh elements and uses numerical flux to realize information exchange between fields on different elements (J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Method, 2008). The numerical flux of choice for \\'linear\\' Maxwell equations is the upwind flux, which mimics accurately the physical behavior of electromagnetic waves on discontinuous boundaries. It is obtained from the analytical solution of the Riemann problem defined on the boundary of two neighboring mesh elements.

  11. Nonlinear optics using the multipolar Hamiltonian : The Bloch-Maxwell equations and local fields

    NARCIS (Netherlands)

    Knoester, Jasper; Mukamel, Shaul

    1989-01-01

    A systematic method for calculating nonlinear-optical susceptibilities in condensed phases, which incorporates intermolecular forces and spontaneous emission in a consistent way, is developed, using the multipolar (µ•D) Hamiltonian. Reduced equations of motion that couple the electromagnetic field

  12. Vector solitons for the reduced Maxwell-Bloch equations with variable coefficients in nonlinear optics

    Science.gov (United States)

    Chai, Jun; Tian, Bo; Sun, Wen-Rong; Liu, De-Yin

    2018-01-01

    Under investigation in this paper is the reduced Maxwell-Bloch equations with variable coefficients, which describe the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium. Hirota method and symbolic computation are applied to solve such equations. By introducing the dependent variable transformations, we give the bilinear forms, vector one-, two- and N-soliton solutions in analytic forms. The types of the vector solitons are analyzed: Only the bright-single-hump solitons can be observed in q and r1 , the soliton in r2 is the bright-double-hump soliton, and there exist three types of solitons in r3 , including the dark-single-hump soliton, dark-double-hump soliton and dark-like-bright soliton, with q as the inhomogeneous electric field, r1 and r2 as the real and imaginary parts of the polarization of the two-level medium, and r3 as the population difference between the ground and excited states. Figures are presented to show the vector soliton solutions. Different types of the interactions between the vector two solitons are presented. In each component, only the overtaking elastic interaction can be observed.

  13. Statistically-averaged rate equations for intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.C.; Lee, W.W.; Stoltz, P.

    1997-08-01

    This paper presents a detailed formulation and analysis of the rate equations for statistically-averaged quantities for an intense nonneutral beam propagating through a periodic solenoidal focusing field B{sup sol}(x). The analysis is based on the nonlinear Vlasov-Maxwell equations in the electrostatic approximation, assuming a thin beam with characteristic beam radius r{sub b} {much_lt} S. The results are applied to investigate the nonlinear evolution of the generalized entropy, mean canonical angular momentum {l_angle}P{sub {theta}}{r_angle}, center-of-mass motion for {l_angle}X{r_angle} and {l_angle}Y{r_angle}, mean kinetic energy (1/2) {l_angle}X{sup {prime}2} + Y{sup {prime}2}{r_angle}, mean-square beam radius {l_angle}X{sup 2} + Y{sup 2}{r_angle}, and coupled rate equations for the unnormalized transverse emittance {epsilon}(s) and root-mean-square beam radius R{sub b}(s) = {l_angle}X{sup 2} + Y{sup 2}{r_angle}{sup 1/2}. Global energy balance is discussed, and the coupled rate equations for {epsilon}(s) and R{sub b}(s) are examined for the class of axisymmetric beam distributions F{sub b}.

  14. Development of nonperturbative nonlinear optics models including effects of high order nonlinearities and of free electron plasma: Maxwell-Schrödinger equations coupled with evolution equations for polarization effects, and the SFA-like nonlinear optics model

    Science.gov (United States)

    Lorin, E.; Lytova, M.; Memarian, A.; Bandrauk, A. D.

    2015-03-01

    This paper is dedicated to the exploration of non-conventional nonlinear optics models for intense and short electromagnetic fields propagating in a gas. When an intense field interacts with a gas, usual nonlinear optics models, such as cubic nonlinear Maxwell, wave and Schrödinger equations, derived by perturbation theory may become inaccurate or even irrelevant. As a consequence, and to include in particular the effect of free electrons generated by laser-molecule interaction, several heuristic models, such as UPPE, HOKE models, etc, coupled with Drude-like models [1, 2], were derived. The goal of this paper is to present alternative approaches based on non-heuristic principles. This work is in particular motivated by the on-going debate in the filamentation community, about the effect of high order nonlinearities versus plasma effects due to free electrons, in pulse defocusing occurring in laser filaments [3-9]. The motivation of our work goes beyond filamentation modeling, and is more generally related to the interaction of any external intense and (short) pulse with a gas. In this paper, two different strategies are developed. The first one is based on the derivation of an evolution equation on the polarization, in order to determine the response of the medium (polarization) subject to a short and intense electromagnetic field. Then, we derive a combined semi-heuristic model, based on Lewenstein’s strong field approximation model and the usual perturbative modeling in nonlinear optics. The proposed model allows for inclusion of high order nonlinearities as well as free electron plasma effects.

  15. Kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.C. [Princeton Univ., NJ (United States). Princeton Plasma Physics Lab.; Chen, C. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Science and Fusion Center

    1997-08-01

    A kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field B{sup sol}({rvec x}) is developed. The analysis is carried out for a thin beam with characteristic beam radius r{sub b} {much_lt} S, and directed axial momentum {gamma}{sub b}m{beta}{sub b}c (in the z-direction) large compared with the transverse momentum and axial momentum spread of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general distribution function f{sub b}({rvec x},{rvec p},t) and self-consistent electrostatic field consistent with the thin-beam approximation, the kinetic model is used to investigate detailed beam equilibrium properties for a variety of distribution functions. Examples are presented both for the case of a uniform solenoidal focusing field B{sub z}(z) = B{sub 0} = const. and for the case of a periodic solenoidal focusing field B{sub z}(z + S) = B{sub z}(z). The nonlinear Vlasov-Maxwell equations are simplified in the thin-beam approximation, and an alternative Hamiltonian formulation is developed that is particularly well-suited to intense beam propagation in periodic focusing systems. Based on the present analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through a periodic solenoidal focusing field {rvec B}{sup sol}({rvec x}) is found to be remarkably tractable and rich in physics content. The Vlasov-Maxwell formalism developed here can be extended in a straightforward manner to investigate detailed stability behavior for perturbations about specific choices of beam equilibria.

  16. Bilinear Forms and Soliton Solutions for the Reduced Maxwell-Bloch Equations with Variable Coefficients in Nonlinear Optics

    Science.gov (United States)

    Chai, Jun; Tian, Bo; Chai, Han-Peng

    2018-02-01

    Investigation in this paper is given to the reduced Maxwell-Bloch equations with variable coefficients, describing the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium. We apply the Hirota method and symbolic computation to study such equations. With the help of the dependent variable transformations, we present the variable-coefficient-dependent bilinear forms. Then, we construct the one-, two- and N-soliton solutions in analytic forms for them. Supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023, 11471050, the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), and the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02

  17. Maxwell's equations of electrodynamics an explanation

    CERN Document Server

    Ball, David W

    2012-01-01

    Maxwell's Equations of Electrodynamics: An Explanation is a concise discussion of Maxwell's four equations of electrodynamics - the fundamental theory of electricity, magnetism, and light. It guides readers step-by-step through the vector calculus and development of each equation. Pictures and diagrams illustrate what the equations mean in basic terms. The book not only provides a fundamental description of our universe but also explains how these equations predict the fact that light is better described as "electromagnetic radiation."

  18. The Maxwell equations as a Bäcklund transformation

    Directory of Open Access Journals (Sweden)

    C. J. Papachristou

    2015-07-01

    Full Text Available Bäcklund transformations (BTs are a useful tool for integrating nonlinear partial differential equations (PDEs. However, the significance of BTs in linear problems should not be ignored. In fact, an important linear system of PDEs in Physics, namely, the Maxwell equations of Electromagnetism, may be viewed as a BT relating the wave equations for the electric and the magnetic field, these equations representing integrability conditions for solution of the Maxwell system. We examine the BT property of this system in detail, both for the vacuum case and for the case of a linear conducting medium.

  19. Propagation of ultra-short solitons in stochastic Maxwell's equations

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, Levent, E-mail: LKurt@gc.cuny.edu [Department of Science, Borough of Manhattan Community College, City University of New York, New York, New York 10007 (United States); Schäfer, Tobias [Department of Mathematics, College of Staten Island, City University of New York, Staten Island, New York 10314 (United States)

    2014-01-15

    We study the propagation of ultra-short short solitons in a cubic nonlinear medium modeled by nonlinear Maxwell's equations with stochastic variations of media. We consider three cases: variations of (a) the dispersion, (b) the phase velocity, (c) the nonlinear coefficient. Using a modified multi-scale expansion for stochastic systems, we derive new stochastic generalizations of the short pulse equation that approximate the solutions of stochastic nonlinear Maxwell's equations. Numerical simulations show that soliton solutions of the short pulse equation propagate stably in stochastic nonlinear Maxwell's equations and that the generalized stochastic short pulse equations approximate the solutions to the stochastic Maxwell's equations over the distances under consideration. This holds for both a pathwise comparison of the stochastic equations as well as for a comparison of the resulting probability densities.

  20. Modified Maxwell equations in quantum electrodynamics

    CERN Document Server

    Harmuth, Henning F; Meffert, Beate

    2001-01-01

    Divergencies in quantum field theory referred to as "infinite zero-point energy" have been a problem for 70 years. Renormalization has always been considered an unsatisfactory remedy. In 1985 it was found that Maxwell's equations generally do not have solutions that satisfy the causality law. An additional term for magnetic dipole currents corrected this shortcoming. Rotating magnetic dipoles produce magnetic dipole currents, just as rotating electric dipoles in a material like barium titanate produce electric dipole currents. Electric dipole currents were always part of Maxwell's equations. T

  1. MAXWELL EQUATIONS FOR A GENERALISED LAGRANGIAN FUNCTIONAL ECUACIONES DE MAXWELL PARA UNA FUNCIONAL DE LAGRANGE GENERALIZADA

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available This work deals with the problem of the construction of the Lagrange functional for an electromagnetic field. The generalised Maxwell equations for an electromagnetic field in free space are introduced. The main idea relies on the change of Lagrange function under the integral action. Usually, the Lagrange functional which describes the electromagnetic field is built with the quadrate of the electromagnetic field tensor . Such a quadrate term is the reason, from a mathematical point of view, for the linear form of the Maxwell equations in free space. The author does not make this assumption and nonlinear Maxwell equations are obtained. New material parameters of free space are established. The equations obtained are quite similar to the well-known Maxwell equations. The energy tensor of the electromagnetic field from a chiral approach to the Born Infeld Lagrangian is discussed in connection with the cosmological constant.Se aborda el problema de la construcción de la funcional de Lagrange de un campo electromagnético. Se introducen las ecuaciones generalizadas de Maxwell de un campo electromagnético en el espacio libre. La idea principal se basa en el cambio de función de Lagrange en virtud de la acción integral. Por lo general, la funcional de lagrange, que describe el campo electromagnético, se construye con el cuadrado del tensor de campo electromagnético. Ese término cuadrático es la razón, desde un punto de vista matemático, de la forma lineal de las ecuaciones de Maxwell en el espacio libre. Se obtienen las ecuaciones no lineales de Maxwell sin considerar esta suposición. Las ecuaciones de Maxwell obtenidas son bastante similares a las conocidas ecuaciones de Maxwell. Se analiza el tensor de energía del campo electromagnético en un enfoque quiral de la Lagrangiana de Born Infeld en relación con la constante cosmológica.

  2. On fictitious domain formulations for Maxwell's equations

    DEFF Research Database (Denmark)

    Dahmen, W.; Jensen, Torben Klint; Urban, K.

    2003-01-01

    We consider fictitious domain-Lagrange multiplier formulations for variational problems in the space H(curl: Omega) derived from Maxwell's equations. Boundary conditions and the divergence constraint are imposed weakly by using Lagrange multipliers. Both the time dependent and time harmonic...

  3. Charging Capacitors According to Maxwell's Equations: Impossible

    OpenAIRE

    Funaro, Daniele

    2014-01-01

    The charge of an ideal parallel capacitor leads to the resolution of the wave equation for the electric field with prescribed initial conditions and boundary constraints. Independently of the capacitor's shape and the applied voltage, none of the corresponding solutions is compatible with the full set of Maxwell's equations. The paradoxical situation persists even by weakening boundary conditions, resulting in the impossibility to describe a trivial phenomenon such as the capacitor's charging...

  4. FDTD for Hydrodynamic Electron Fluid Maxwell Equations

    Directory of Open Access Journals (Sweden)

    Yingxue Zhao

    2015-05-01

    Full Text Available In this work, we develop a numerical method for solving the three dimensional hydrodynamic electron fluid Maxwell equations that describe the electron gas dynamics driven by an external electromagnetic wave excitation. Our numerical approach is based on the Finite-Difference Time-Domain (FDTD method for solving the Maxwell’s equations and an explicit central finite difference method for solving the hydrodynamic electron fluid equations containing both electron density and current equations. Numerical results show good agreement with the experiment of studying the second-harmonic generation (SHG from metallic split-ring resonator (SRR.

  5. Nonlinear Maxwell's and Schrodinger equations for describing the volumetric interaction of femtosecond laser pulses with transparent solid dielectrics: effect of the boundary conditions

    Czech Academy of Sciences Publication Activity Database

    Zhukov, V.P.; Bulgakova, Nadezhda M.; Fedoruk, M.P.

    2017-01-01

    Roč. 84, č. 7 (2017), s. 439-446 ISSN 1070-9762 R&D Projects: GA MŠk LO1602; GA ČR GA16-12960S Institutional support: RVO:68378271 Keywords : glass * femtosecond laser pulses * Maxwell's and Schrdinger equations Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 0.299, year: 2016

  6. Green`s function of Maxwell`s equations and corresponding implications for iterative methods

    Energy Technology Data Exchange (ETDEWEB)

    Singer, B.S. [Macquarie Univ., Sydney (Australia); Fainberg, E.B. [Inst. of Physics of the Earth, Moscow (Russian Federation)

    1996-12-31

    Energy conservation law imposes constraints on the norm and direction of the Hilbert space vector representing a solution of Maxwell`s equations. In this paper, we derive these constrains and discuss the corresponding implications for the Green`s function of Maxwell`s equations in a dissipative medium. It is shown that Maxwell`s equations can be reduced to an integral equation with a contracting kernel. The equation can be solved using simple iterations. Software based on this algorithm have successfully been applied to a wide range of problems dealing with high contrast models. The matrix corresponding to the integral equation has a well defined spectrum. The equation can be symmetrized and solved using different approaches, for instance one of the conjugate gradient methods.

  7. How to obtain the covariant form of Maxwell's equations from the continuity equation

    International Nuclear Information System (INIS)

    Heras, Jose A

    2009-01-01

    The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations

  8. High-order finite element approximations of the Maxwell equations

    NARCIS (Netherlands)

    Sarmany, D.

    2010-01-01

    This thesis discusses numerical approximations of electromagnetic wave propagation, which is mathematically described by the Maxwell equations. These equations are typically either formulated as integral equations or as (partial) differential equations. Throughout this thesis, the numerical

  9. Exact Internal Controllability of Maxwell's Equations

    International Nuclear Information System (INIS)

    Zhang, X.

    2000-01-01

    In this paper we obtain two exact internal controllability results of Maxwell's equations in a general region by using multiplier techniques. The first one is exact controllability in a short time, in which we obtain the 'optimal' (observability) estimates when the location and the shape of the controller is fixed. What happens if we allow the controller to change? Under some conditions, we show that by doing that the system can be exactly controllable within any given time duration, which is our second exact controllability result

  10. Generalized Maxwell equations and charge conservation censorship

    Science.gov (United States)

    Modanese, G.

    2017-02-01

    The Aharonov-Bohm electrodynamics is a generalization of Maxwell theory with reduced gauge invariance. It allows to couple the electromagnetic field to a charge which is not locally conserved, and has an additional degree of freedom, the scalar field S = ∂αAα, usually interpreted as a longitudinal wave component. By reformulating the theory in a compact Lagrangian formalism, we are able to eliminate S explicitly from the dynamics and we obtain generalized Maxwell equation with interesting properties: they give ∂μFμν as the (conserved) sum of the (possibly non-conserved) physical current density jν, and a “secondary” current density iν which is a nonlocal function of jν. This implies that any non-conservation of jν is effectively “censored” by the observable field Fμν, and yet it may have real physical consequences. We give examples of stationary solutions which display these properties. Possible applications are to systems where local charge conservation is violated due to anomalies of the Adler-Bell-Jackiw (ABJ) kind or to macroscopic quantum tunnelling with currents which do not satisfy a local continuity equation.

  11. Maxwell's equations and their consequences elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W 0

    2013-01-01

    Elementary Electromagnetic Theory Volume 3: Maxwell's Equations and their Consequences is the third of three volumes that intend to cover electromagnetism and its potential theory. The third volume considers the implications of Maxwell's equations, such as electromagnetic radiation in simple cases, and its relation between Maxwell's equation and the Lorenz transformation. Included in this volume are chapters 11-14, which contain an in-depth discussion of the following topics: Electromagnetic Waves The Lorentz Invariance of Maxwell's Equation Radiation Motion of Charged Particles Intended

  12. Maxwell Equations and the Redundant Gauge Degree of Freedom

    Science.gov (United States)

    Wong, Chun Wa

    2009-01-01

    On transformation to the Fourier space (k,[omega]), the partial differential Maxwell equations simplify to algebraic equations, and the Helmholtz theorem of vector calculus reduces to vector algebraic projections. Maxwell equations and their solutions can then be separated readily into longitudinal and transverse components relative to the…

  13. An extended formulation of Maxwell's equations

    International Nuclear Information System (INIS)

    Lehnert, B.

    1985-10-01

    An extended Lorentz invariant formulation of Maxwell's equations is presented which both includes time dependent and steady-state solutions. In this approach the charge and current densities are treated as intrinsic properties of the electromagnetic field itself, in vacuo. Two main results follow from such an approach. First, a longitudinal electric wave is predicted to propagate in vacuo. Second, an axially symmetric steady state can be outlined in which 'self-confined' electromagnetic radiation circulates in closed orbits around the axis of symmetry. For this state values are obtained of the charge, the spin, and the product between magnetic moment and mass which are of the same order of magnitude as those observed for some elementary particles such as the proton and electron. Consequently, this may provide certain areas of conventional elementary particle analysis with some complementary ideas. Whether the predicted new phenomena also correspond to physical realities is so far an open question which requires further investigation. With 6 refs. (Author)

  14. Electromagnetic Unification: 150th Anniversary of Maxwell's Equations

    OpenAIRE

    Beléndez Vázquez, Augusto

    2014-01-01

    This article, published in Mètode is recalled that in 2015 the sesquicentennial of the Maxwell equations is celebrated. In 1865 Maxwell published an article entitled "A dynamical theory of the electromagnetic field" containing the Maxwell equations, the theoretical prediction of the existence of electromagnetic waves and electromagnetic theory of light. The article refers to Oersted, Ampere and Faraday, who laid the foundations of modern electromagnetism in the first third of the nineteenth c...

  15. Chaotic dynamics in the Maxwell-Bloch equations

    International Nuclear Information System (INIS)

    Holm, D.D.; Kovacic, G.

    1992-01-01

    In the slowly varying envelope approximation and the rotating wave approximation for the Maxwell-Bloch equations, we describe how the presence of a small-amplitude probe laser in an excited, two-level, resonant medium leads to homoclinic chaos in the laser-matter dynamics. We also describe a derivation of the Maxwell-Bloch equations from an action principle

  16. A Generalization of the Einstein-Maxwell Equations

    Science.gov (United States)

    Cotton, Fredrick

    2016-03-01

    The proposed modifications of the Einstein-Maxwell equations include: (1) the addition of a scalar term to the electromagnetic side of the equation rather than to the gravitational side, (2) the introduction of a 4-dimensional, nonlinear electromagnetic constitutive tensor and (3) the addition of curvature terms arising from the non-metric components of a general symmetric connection. The scalar term is defined by the condition that a spherically symmetric particle be force-free and mathematically well-behaved everywhere. The constitutive tensor introduces two auxiliary fields which describe the particle structure. The additional curvature terms couple both to particle solutions and to electromagnetic and gravitational wave solutions. http://sites.google.com/site/fwcotton/em-30.pdf

  17. J ames Clerk Maxwell and his Equations

    Indian Academy of Sciences (India)

    He published in 1856 the essay on 'On the stability of the motion of Saturn's rings' which won him the Adams Prize. Maxwell as a Teacher. Maxwell was appointed to the Chair of Natural Philosophy at. Marischal College, Aberdeen in 1856. He held this appointment for three sessions until the professorship was suppressed.

  18. Stochastic Levy Divergence and Maxwell's Equations

    Directory of Open Access Journals (Sweden)

    B. O. Volkov

    2015-01-01

    Full Text Available One of the main reasons for interest in the Levy Laplacian and its analogues such as Levy d'Alembertian is a connection of these operators with gauge fields. The theorem proved by Accardi, Gibillisco and Volovich stated that a connection in a bundle over a Euclidean space or over a Minkowski space is a solution of the Yang-Mills equations if and only if the corresponding parallel transport to the connection is a solution of the Laplace equation for the Levy Laplacian or of the d'Alembert equation for the Levy d'Alembertian respectively (see [5, 6]. There are two approaches to define Levy type operators, both of which date back to the original works of Levy [7]. The first is that the Levy Laplacian (or Levy d'Alembertian is defined as an integral functional generated by a special form of the second derivative. This approach is used in the works [5, 6], as well as in the paper [8] of Leandre and Volovich, where stochastic Levy-Laplacian is discussed. Another approach to the Levy Laplacian is defining it as the Cesaro mean of second order derivatives along the family of vectors, which is an orthonormal basis in the Hilbert space. This definition of the Levy Laplacian is used for the description of solutions of the Yang-Mills equations in the paper [10].The present work shows that the definitions of the Levy Laplacian and the Levy d'Alembertian based on Cesaro averaging of the second order directional derivatives can be transferred to the stochastic case. In the article the values of these operators on a stochastic parallel transport associated with a connection (vector potential are found. In this case, unlike the deterministic case and the stochastic case of Levy Laplacian from [8], these values are not equal to zero if the vector potential corresponding to the stochastic parallel transport is a solution of the Maxwell's equations. As a result, two approaches to definition of the Levy Laplacian in the stochastic case give different operators. This

  19. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  20. J ames Clerk Maxwell and his Equations

    Indian Academy of Sciences (India)

    gler maker' of the period whose students included G G Stokes, ... Besides reading with Hopkins, he also attended Stokes' lectures. ... This shrewd assess- ment was borne out later by several formulae advanced by. Maxwell where the results have proved to be correct but the mathematical arguments leading to them were ...

  1. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  2. Maxwell-Vlasov equations as a continuous Hamiltonian system

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1980-09-01

    The well-known Maxwell-Vlasov equations that describe a collisionless plasma are cast into Hamiltonian form. The dynamical variables are the physical although noncanonical variables E, B and f. We present a Poisson bracket which acts on these variables and the energy functional to produce the equations of motion

  3. Maxwell-Vlasov equations as a continuous Hamiltonian system

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1980-11-01

    The well-known Maxwell-Vlasov equations that describe a collisionless plasma are cast into Hamiltonian form. The dynamical variables are the physical although noncanonical variables E, B, and f. We present a Poisson bracket which acts on these variables and the energy functional to produce the equations of motion

  4. Second order guiding-center Vlasov–Maxwell equations

    DEFF Research Database (Denmark)

    Madsen, Jens

    2010-01-01

    Second order gyrogauge invariant guiding-center coordinates with strong E×B-flow are derived using the Lie transformation method. The corresponding Poisson bracket structure and equations of motion are obtained. From a variational principle the explicit Vlasov–Maxwell equations are derived...

  5. Internal stabilization of Maxwell's equations in heterogeneous media

    Directory of Open Access Journals (Sweden)

    Cristina Pignotti

    2005-09-01

    Full Text Available We consider the internal stabilization of Maxwell's equations with Ohm's law with space variable coefficients in a bounded region with a smooth boundary. Our result is mainly based on an observability estimate, obtained in some particular cases by the multiplier method, a duality argument and a weakening of norm argument, and arguments used in internal stabilization of scalar wave equations.

  6. The Maxwell equations in a uniformly accelerated frame

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.; Perez S, C.I.

    2007-01-01

    The solution of the source-free Maxwell equations in a uniformly accelerated frame of reference is expressed in terms of a single complex scalar potential that obeys a second-order equation. The field of a static electric charge is obtained as an example of a stationary axisymmetric field. (Author)

  7. A Derivation of Maxwell Equations in Quaternion Space

    Directory of Open Access Journals (Sweden)

    Christianto V.

    2010-04-01

    Full Text Available Quaternion space and its respective Quaternion Relativity (it also may be called as Rotational Relativity has been defined in a number of papers, and it can be shown that this new theory is capable to describe relativistic motion in elegant and straightforward way. Nonetheless there are subsequent theoretical developments which remains an open question, for instance to derive Maxwell equations in Q-space. Therefore the purpose of the present paper is to derive a consistent description of Maxwell equations in Q-space. First we consider a simplified method similar to the Feynman's derivation of Maxwell equations from Lorentz force. And then we present another derivation method using Dirac decomposition, introduced by Gersten (1999. Further observation is of course recommended in order to refute or verify some implication of this proposition.

  8. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  9. Pollution free discretization of Maxwell's equations in terms of potentials

    International Nuclear Information System (INIS)

    Jaun, A.; Appert, K.; Vaclavik, J.

    1994-03-01

    A 2D discretization of Maxwell's equations is studied in terms of the electromagnetic potentials using linear and cubic finite elements. The formulation is first analyzed with respect to the discrete dispersion properties to show that it is pollution free. It is then further applied to a simple cylindrical waveguide problem, showing good convergence to the analytical eigenfrequencies. (author) 6 figs., 13 refs

  10. Maxwell's equations, quantum physics and the quantum graviton

    International Nuclear Information System (INIS)

    Gersten, Alexander; Moalem, Amnon

    2011-01-01

    Quantum wave equations for massless particles and arbitrary spin are derived by factorizing the d'Alembertian operator. The procedure is extensively applied to the spin one photon equation which is related to Maxwell's equations via the proportionality of the photon wavefunction Ψ to the sum E + iB of the electric and magnetic fields. Thus Maxwell's equations can be considered as the first quantized one-photon equation. The photon wave equation is written in two forms, one with additional explicit subsidiary conditions and second with the subsidiary conditions implicitly included in the main equation. The second equation was obtained by factorizing the d'Alembertian with 4×4 matrix representation of 'relativistic quaternions'. Furthermore, scalar Lagrangian formalism, consistent with quantization requirements is developed using derived conserved current of probability and normalization condition for the wavefunction. Lessons learned from the derivation of the photon equation are used in the derivation of the spin two quantum equation, which we call the quantum graviton. Quantum wave equation with implicit subsidiary conditions, which factorizes the d'Alembertian with 8×8 matrix representation of relativistic quaternions, is derived. Scalar Lagrangian is formulated and conserved probability current and wavefunction normalization are found, both consistent with the definitions of quantum operators and their expectation values. We are showing that the derived equations are the first quantized equations of the photon and the graviton.

  11. Incompressible Navier-Stokes equation from Einstein-Maxwell and Gauss-Bonnet-Maxwell theories

    International Nuclear Information System (INIS)

    Niu Chao; Tian Yu; Wu Xiaoning; Ling Yi

    2012-01-01

    The dual fluid description for a general cutoff surface at radius r=r c outside the horizon in the charged AdS black brane bulk space-time is investigated, first in the Einstein-Maxwell theory. Under the non-relativistic long-wavelength expansion with parameter ε, the coupled Einstein-Maxwell equations are solved up to O(ε 2 ). The incompressible Navier-Stokes equation with external force density is obtained as the constraint equation at the cutoff surface. For non-extremal black brane, the viscosity of the dual fluid is determined by the regularity of the metric fluctuation at the horizon, whose ratio to entropy density η/s is independent of both the cutoff r c and the black brane charge. Then, we extend our discussion to the Gauss-Bonnet-Maxwell case, where the incompressible Navier-Stokes equation with external force density is also obtained at a general cutoff surface. In this case, it turns out that the ratio η/s is independent of the cutoff r c but dependent on the charge density of the black brane.

  12. Maxwell-Like Equations for Free Dirac Electrons

    Science.gov (United States)

    Bruce, S. A.

    2018-03-01

    In this article, we show that the wave equation for a free Dirac electron can be represented in a form that is analogous to Maxwell's electrodynamics. The electron bispinor wavefunction is explicitly expressed in terms of its real and imaginary components. This leads us to incorporate into it appropriate scalar and pseudo-scalar fields in advance, so that a full symmetry may be accomplished. The Dirac equation then takes on a form similar to that of a set of inhomogeneous Maxwell's equations involving a particular self-source. We relate plane wave solutions of these equations to waves corresponding to free Dirac electrons, identifying the longitudinal component of the electron motion, together with the corresponding Zitterbewegung ("trembling motion").

  13. Algorithm development for Maxwell's equations for computational electromagnetism

    Science.gov (United States)

    Goorjian, Peter M.

    1990-01-01

    A new algorithm has been developed for solving Maxwell's equations for the electromagnetic field. It solves the equations in the time domain with central, finite differences. The time advancement is performed implicitly, using an alternating direction implicit procedure. The space discretization is performed with finite volumes, using curvilinear coordinates with electromagnetic components along those directions. Sample calculations are presented of scattering from a metal pin, a square and a circle to demonstrate the capabilities of the new algorithm.

  14. Nonlinear wave equations

    CERN Document Server

    Li, Tatsien

    2017-01-01

    This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.

  15. Fully nonlinear elliptic equations

    CERN Document Server

    Caffarelli, Luis A

    1995-01-01

    The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equa

  16. Wormhole Solutions in the Presence of Nonlinear Maxwell Field

    Directory of Open Access Journals (Sweden)

    S. H. Hendi

    2014-01-01

    Full Text Available In generalizing the Maxwell field to nonlinear electrodynamics, we look for the magnetic solutions. We consider a suitable real metric with a lower bound on the radial coordinate and investigate the properties of the solutions. We find that in order to have a finite electromagnetic field near the lower bound, we should replace the Born-Infeld theory with another nonlinear electrodynamics theory. Also, we use the cut-and-paste method to construct wormhole structure. We generalize the static solutions to rotating spacetime and obtain conserved quantities.

  17. Generating solutions to the Einstein-Maxwell equations

    Science.gov (United States)

    Contopoulos, I. G.; Esposito, F. P.; Kleidis, K.; Papadopoulos, D. B.; Witten, L.

    2015-09-01

    The Einstein-Maxwell (E-M) equations in a curved spacetime that admits at least one Killing vector are derived, from a Lagrangian density adapted to symmetries. In this context, an auxiliary space of potentials is introduced, in which, the set of potentials associated to an original (seed) solution of the E-M equations are transformed to a new set, either by continuous transformations or by discrete transformations. In this paper, continuous transformations are considered. Accordingly, originating from the so-called γA-metric, other exact solutions to the E-M equations are recovered and discussed.

  18. Knotted optical vortices in exact solutions to Maxwell's equations

    Science.gov (United States)

    de Klerk, Albertus J. J. M.; van der Veen, Roland I.; Dalhuisen, Jan Willem; Bouwmeester, Dirk

    2017-05-01

    We construct a family of exact solutions to Maxwell's equations in which the points of zero intensity form knotted lines topologically equivalent to a given but arbitrary algebraic link. These lines of zero intensity, more commonly referred to as optical vortices, and their topology are preserved as time evolves and the fields have finite energy. To derive explicit expressions for these new electromagnetic fields that satisfy the nullness property, we make use of the Bateman variables for the Hopf field as well as complex polynomials in two variables whose zero sets give rise to algebraic links. The class of algebraic links includes not only all torus knots and links thereof, but also more intricate cable knots. While the unknot has been considered before, the solutions presented here show that more general knotted structures can also arise as optical vortices in exact solutions to Maxwell's equations.

  19. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  20. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  1. The free-electron laser - Maxwell's equations driven by single-particle currents

    Science.gov (United States)

    Colson, W. B.; Ride, S. K.

    1980-01-01

    It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.

  2. Fully electromagnetic nonlinear gyrokinetic equations for tokamak edge turbulence

    DEFF Research Database (Denmark)

    Hahm, T.S.; Wang, Lu; Madsen, Jens

    2009-01-01

    An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high ExB shear has been derived. The phase-space action variational Lie...

  3. Nonlocal symmetries and nonlocal conservation laws of Maxwell's equations

    International Nuclear Information System (INIS)

    Anco, S.C.; Bluman, G.

    1997-01-01

    Nonlocal symmetries are obtained for Maxwell's equations in three space-time dimensions through the use of two potential systems involving scalar and vector potentials for the electromagnetic field. Corresponding nonlocal conservation laws are derived from these symmetries. The conservation laws yield nine functionally independent constants of motion which cannot be expressed in terms of the constants of motion arising from local conservation laws for space-time symmetries. These nine constants of motion represent additional conserved quantities for the electromagnetic field in three space endash time dimensions. copyright 1997 American Institute of Physics

  4. Damped nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nicholson, D.R.; Goldman, M.V.

    1976-01-01

    High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time

  5. CSR Fields: Direct Numerical Solution of the Maxwell's Equation

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2011-01-01

    We discuss the properties of the coherent electromagnetic fields of a very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based on the results of a direct numerical solution of Maxwell's equations together with Newton's equations. We use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element mesh techniques and hence produces self-consistent and stable solutions for very short bunches. We investigate the fine structure of the CSR fields including coherent edge radiation. This approach should be useful in the study of existing and future concepts of particle accelerators and ultrafast coherent light sources. The coherent synchrotron radiation (CSR) fields have a strong action on the beam dynamics of very short bunches, which are moving in the bends of all kinds of magnetic elements. They are responsible for additional energy loss and energy spread; micro bunching and beam emittance growth. These fields may bound the efficiency of damping rings, electron-positron colliders and ultrafast coherent light sources, where high peak currents and very short bunches are envisioned. This is relevant to most high-brightness beam applications. On the other hand these fields together with transition radiation fields can be used for beam diagnostics or even as a powerful resource of THz radiation. A history of the study of CSR and a good collection of references can be found in (1). Electromagnetic theory suggests several methods on how to calculate CSR fields. The most popular method is to use Lienard-Wiechert potentials. Other approach is to solve numerically the approximate equations, which are a Schrodinger type equation. These numerical methods are described in (2). We suggest that a direct solution of Maxwell's equations together with Newton's equations can describe the detailed structure of the CSR fields (3).

  6. Einstein–Maxwell Field Equation in Isotropic Coordinates: An ...

    Indian Academy of Sciences (India)

    equations with reference to the general relativistic prediction of gravitational col- lapse. For this purpose charged fluid ball models are required and the external field of such a ball is to be matched with the Reissner–Nordström solution. Due to the strong nonlinearity of Einstein's field equations and the lack of a com-.

  7. Soluble Boltzmann equations for internal state and Maxwell models

    NARCIS (Netherlands)

    Futcher, E.; Hoare, M.R.; Hendriks, E.M.; Ernst, M.H.

    We consider a class of scalar nonlinear Boltzmann equations describing the evolution of a microcanonical ensemble in which sub-systems exchange internal energy ‘randomly’ in binary interactions. In the continuous variable version these models can equally be interpreted as Boltzmann equations for

  8. Limited-diffraction solutions to Maxwell and Schroedinger equations

    International Nuclear Information System (INIS)

    Lu, Jian-yu; Greenleaf, J.F.

    1996-10-01

    The authors have developed a new family of limited diffraction electromagnetic X-shaped waves based on the scalar X-shaped waves discovered previously. These waves are diffraction-free in theory and particle-like (wave packets), in that they maintain their shape as they propagate to an infinite distance. The 'X waves' possess (theoretically) infinitely extended 'arms' and - at least, the ones studied in this paper - have an infinite total energy: therefore, they are not physically realizable. However, they can be truncated in both space and time and 'approximated' by means of a finite aperture radiator so to get a large enough depth of interest (depth of field). In addition to the Maxwell equations, X wave solutions to the free Schroedinger equation are also obtained. Possible applications of these new waves are discussed. Finally, the authors discuss the appearance of the X-shaped solutions from the purely geometric point of view of the special relativity theory

  9. Two-Potential Formalism for Numerical Solution of the Maxwell Equations

    OpenAIRE

    Kudryavtsev, Alexey N.; Trashkeev, Sergey I.

    2012-01-01

    A new formulation of the Maxwell equations based on two vector and two scalar potentials is proposed. The use of these potentials allows the electromagnetic field equations to be written in the form of a hyperbolic system. In contrast to the original Maxwell equations, this system contains only evolutionary equations and does not include equations having the character of differential constraints. This fact makes the new equations especially convenient for numerical simulations of electromagne...

  10. The forced nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Kaup, D.J.; Hansen, P.J.

    1985-01-01

    The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)

  11. Fourier analysis of numerical algorithms for the Maxwell equations

    Science.gov (United States)

    Liu, Yen

    1993-01-01

    The Fourier method is used to analyze the dispersive, dissipative, and isotropy errors of various spatial and time discretizations applied to the Maxwell equations on multi-dimensional grids. Both Cartesian grids and non-Cartesian grids based on hexagons and tetradecahedra are studied and compared. The numerical errors are quantitatively determined in terms of phase speed, wave number, propagation direction, gridspacings, and CFL number. The study shows that centered schemes are more efficient than upwind schemes. The non-Cartesian grids yield superior isotropy and higher accuracy than the Cartesian ones. For the centered schemes, the staggered grids produce less errors than the unstaggered ones. A new unstaggered scheme which has all the best properties is introduced. The study also demonstrates that a proper choice of time discretization can reduce the overall numerical errors due to the spatial discretization.

  12. Spherically symmetric static solutions of the Einstein-Maxwell equations

    International Nuclear Information System (INIS)

    Krishna Rao, J.; Trivedi, M.M.

    1998-01-01

    We report a new formalism to obtain solutions of Einstein-Maxwell's equations for static spheres assuming the matter content to be a charged perfect fluid of null-conductivity. Defining three new variables u = 4 4πΕr 2 , v= 4πpr 2 and w= (4π/3)(ρ+ε)r 2 where Ε, ρ and ε denote respectively energy densities of the electric, matter and free gravitational fields whereas p is the fluid pressure, Einstein's field equations are rewritten in an elegant form. The solutions given are all shown to possess simple relations between u, v and w. Another solution for which all the three functions, u, v and w are constants is a trivial case of the present formalism. We have presented six new solutions with ε= 2ρ. For the first three solutions w and u are constants with v as a variable whereas the remaining three solutions satisfy the equation of state for isothermal gas; v=kw=-ku where: i) k is an arbitrary constant but not equal to 1 or 1/3, ii) k= 1 and iii) k= 1/3. We also obtained a generalization of Cooperstock and De la Cruz's solution which is regular for 2ρ > ε but singular for 2ρ ≤ ε. (author)

  13. On the Physical Origin of the Oppenheimer-Ahluwalia Zero-Energy Solutions of Maxwell Equations

    Science.gov (United States)

    Chubykalo, Andrew E.

    By virtue of the Chubykalo-Smirnov-Rueda generalized form of the Maxwell-Lorentz equation, a new form of the energy density of the electromagnetic field is obtained. This result allows us to explain a physical origin of the Oppenheimer-Ahluwalia zero-energy solutions of the Maxwell equations.

  14. Nonlinear elliptic differential equations with multivalued nonlinearities

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Nonlinear elliptic differential equations with multivalued ... has a solution. Finally in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth .... A is upper semicontinuous (as a set-valued map) from every finite dimensional subspace of X into ...

  15. The general Lie group and similarity solutions for the one-dimensional Vlasov-Maxwell equations

    Science.gov (United States)

    Roberts, D.

    1985-01-01

    The general Lie point transformation group and the associated reduced differential equations and similarity forms for the solutions are derived here for the coupled (nonlinear) Vlasov-Maxwell equations in one spatial dimension. The case of one species in a background is shown to admit a larger group than the multispecies case. Previous exact solutions are shown to be special cases of the above solutions, and many of the new solutions are found to constrain the form of the distribution function much more than, for example, the BGK solutions do. The individual generators of the Lie group are used to find the possible subgroups. Finally, a simple physical argument is given to show that the asymptotic solution for a one-species, one-dimensional plasma is one of the general similarity solutions.

  16. Stochastic Levy Laplacian and d'Alambertian and Maxwell's equations

    Directory of Open Access Journals (Sweden)

    B. O. Volkov

    2015-01-01

    Full Text Available One of the main reasons for interest in the Levy Laplacian and its analogues such as Levy d'Alembertian is a connection of these operators with gauge fields. The theorem proved by Accardi, Gibillisco and Volovich stated that a connection in a bundle over a Euclidean space or over a Minkowski space is a solution of the Yang-Mills equations if and only if the corresponding parallel transport to the connection is a solution of the Laplace equation for the Levy Laplacian or of the d'Alembert equation for the Levy d'Alembertian respectively (see [5, 6]. There are two approaches to define Levy type operators, both of which date back to the original works of Levy (see [7]. The first is that the Levy Laplacian (or Levy d'Alembertian is defined as an integral functional generated by a special form of the second derivative. This approach is used in the works [5, 6], as well as in the paper [8] of Leandre and Volovich, where stochastic Levy-Laplacian is discussed. Another approach to the Levy Laplacian is defining it as the Cesaro mean of second order derivatives along the family of vectors, which is an orthonormal basis in the Hilbert space. This definition of the Levy Laplacian is used for the description of solutions of the Yang-Mills equations in the paper [10].The present work shows that the definitions of the Levy Laplacian and the Levy d'Alembertian based on Cesaro averaging of the second order directional derivatives can be transferred to the stochastic case. In the article the values of these operators on a stochastic parallel transport associated with a connection (vector potential are found. In this case, unlike the deterministic case and the stochastic case of Levy Laplacian from [8], these values are not equal to zero if the vector potential corresponding to the stochastic parallel transport is a solution of the Maxwell's equations. As a result, two approaches to definition of the Levy Laplacian in the stochastic case give different operators

  17. `Number States' and `Pilot Waves' Hidden in Maxwell's Classical Equations

    Science.gov (United States)

    Carroll, John E.

    2010-12-01

    Schrödingers equation with boundary conditions gives quantized energy states for electron waves, but Maxwell's wave equations have quantized states only by analogies with harmonic oscillators. This problem is addressed by a novel theory of wave-packets using diffracting Transverse Electric and Transverse Magnetic fields defined by axial H- and E-fields. All transverse fields and gradient operators can together be rotated about the propagation axis at frequencies, independent of the modal frequency. Without altering the axial fields, any helical motion propagates at the group velocity. This is quite different from single frequency helical modes (e.g. Laguerre Gaussian) travelling at the phase velocity. Reversing time and frequency, allows counter rotating helical solutions. These are referred to as adjoint or a fields that may interact and propagate with the classical causal reference or r fields. Overlapping and counter rotating r and a fields with slightly different frequencies interfere, leaving circular polarization states unaltered and creating a nodal structure in the transverse fields distinct from the nodal structure in the axial fields. Number states arise from requiring that transverse and axial nodes co-locate with integral spacings to form a wave-packet,. The a fields act as pilot waves for future potential positions of a quantized interaction between r and a fields. Uncertainty in the position of the overlap leads to conventional probabilistic quantum interpretations. The a fields are not fully determined until their detection with the r wave and this late determination can offer explanations for non-local entanglement.

  18. Lectures on nonlinear evolution equations initial value problems

    CERN Document Server

    Racke, Reinhard

    2015-01-01

    This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...

  19. Nonlinear differential equations

    CERN Document Server

    Struble, Raimond A

    2017-01-01

    Detailed treatment covers existence and uniqueness of a solution of the initial value problem, properties of solutions, properties of linear systems, stability of nonlinear systems, and two-dimensional systems. 1962 edition.

  20. Introduction to nonlinear dispersive equations

    CERN Document Server

    Linares, Felipe

    2015-01-01

    This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introdu...

  1. Comparison of different Maxwell solvers coupled to a PIC resolution method of Maxwell-Vlasov equations; Evaluation de differents solveurs Maxwell pour la resolution de Maxwell-Vlasov par une methode PIC

    Energy Technology Data Exchange (ETDEWEB)

    Fochesato, Ch. [CEA Bruyeres-le-Chatel, Dept. de Conception et Simulation des Armes, Service Simulation des Amorces, Lab. Logiciels de Simulation, 91 (France); Bouche, D. [CEA Bruyeres-le-Chatel, Dept. de Physique Theorique et Appliquee, Lab. de Recherche Conventionne, Centre de Mathematiques et Leurs Applications, 91 (France)

    2007-07-01

    The numerical solution of Maxwell equations is a challenging task. Moreover, the range of applications is very wide: microwave devices, diffraction, to cite a few. As a result, a number of methods have been proposed since the sixties. However, among all these methods, none has proved to be free of drawbacks. The finite difference scheme proposed by Yee in 1966, is well suited for Maxwell equations. However, it only works on cubical mesh. As a result, the boundaries of complex objects are not properly handled by the scheme. When classical nodal finite elements are used, spurious modes appear, which spoil the results of simulations. Edge elements overcome this problem, at the price of rather complex implementation, and computationally intensive simulations. Finite volume methods, either generalizing Yee scheme to a wider class of meshes, or applying to Maxwell equations methods initially used in the field of hyperbolic systems of conservation laws, are also used. Lastly, 'Discontinuous Galerkin' methods, generalizing to arbitrary order of accuracy finite volume methods, have recently been applied to Maxwell equations. In this report, we more specifically focus on the coupling of a Maxwell solver to a PIC (Particle-in-cell) method. We analyze advantages and drawbacks of the most widely used methods: accuracy, robustness, sensitivity to numerical artefacts, efficiency, user judgment. (authors)

  2. Modern nonlinear equations

    CERN Document Server

    Saaty, Thomas L

    1981-01-01

    Covers major types of classical equations: operator, functional, difference, integro-differential, and more. Suitable for graduate students as well as scientists, technologists, and mathematicians. "A welcome contribution." - Math Reviews. 1964 edition.

  3. dimensional nonlinear evolution equations

    Indian Academy of Sciences (India)

    –. (4)) by applying the exp-function method. The computer symbolic systems such as. Maple and Mathematica allow us to perform complicated and tedious calculations. 2. Solutions of (N + 1)-dimensional generalized Boussinesq equation.

  4. Orbiting the moons of Pluto complex solutions to the Einstein, Maxwell, Schroedinger and Dirac equations

    CERN Document Server

    Rauscher, Elizabeth A

    2011-01-01

    The Maxwell, Einstein, Schrödinger and Dirac equations are considered the most important equations in all of physics. This volume aims to provide new eight- and twelve-dimensional complex solutions to these equations for the first time in order to reveal

  5. Stochastic nonlinear beam equations

    Czech Academy of Sciences Publication Activity Database

    Brzezniak, Z.; Maslowski, Bohdan; Seidler, Jan

    2005-01-01

    Roč. 132, č. 1 (2005), s. 119-149 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA201/01/1197 Institutional research plan: CEZ:AV0Z10190503 Keywords : stochastic beam equation * stability Subject RIV: BA - General Mathematics Impact factor: 0.896, year: 2005

  6. Pseudo spectral collocation with Maxwell polynomials for kinetic equations with energy diffusion

    Science.gov (United States)

    Sánchez-Vizuet, Tonatiuh; Cerfon, Antoine J.

    2018-02-01

    We study the approximation and stability properties of a recently popularized discretization strategy for the speed variable in kinetic equations, based on pseudo-spectral collocation on a grid defined by the zeros of a non-standard family of orthogonal polynomials called Maxwell polynomials. Taking a one-dimensional equation describing energy diffusion due to Fokker–Planck collisions with a Maxwell–Boltzmann background distribution as the test bench for the performance of the scheme, we find that Maxwell based discretizations outperform other commonly used schemes in most situations, often by orders of magnitude. This provides a strong motivation for their use in high-dimensional gyrokinetic simulations. However, we also show that Maxwell based schemes are subject to a non-modal time stepping instability in their most straightforward implementation, so that special care must be given to the discrete representation of the linear operators in order to benefit from the advantages provided by Maxwell polynomials.

  7. Generalized nonlinear Proca equation and its free-particle solutions

    Science.gov (United States)

    Nobre, F. D.; Plastino, A. R.

    2016-06-01

    We introduce a nonlinear extension of Proca's field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schrödinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q → 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ ^{μ }(ěc {x},t), involves an additional field Φ ^{μ }(ěc {x},t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E2 = p2c2 + m2c4 for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed.

  8. Generalized nonlinear Proca equation and its free-particle solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, F.D. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil); Plastino, A.R. [Universidad Nacional Buenos Aires-Noreoeste, CeBio y Secretaria de Investigacion, Junin (Argentina)

    2016-06-15

    We introduce a nonlinear extension of Proca's field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schroedinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q → 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ{sup μ}(vector x,t), involves an additional field Φ{sup μ}(vector x,t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E{sup 2} = p{sup 2}c{sup 2} + m{sup 2}c{sup 4} for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed. (orig.)

  9. Multilevel iterative solvers for the edge finite element solution of the 3D Maxwell equation

    NARCIS (Netherlands)

    Nechaev, O.V.; Shurina, E.P.; Bochev, Mikhail A.

    2008-01-01

    In the edge vector finite element solution of the frequency domain Maxwell equations, the presence of a large kernel of the discrete rotor operator is known to ruin convergence of standard iterative solvers. We extend the approach of [R. Hiptmair, Multigrid method for Maxwell’s equations, SIAM J.

  10. Adaptive finite element techniques for the Maxwell equations using implicit a posteriori error estimates

    NARCIS (Netherlands)

    Harutyunyan, D.; Izsak, F.; van der Vegt, Jacobus J.W.; Bochev, Mikhail A.

    For the adaptive solution of the Maxwell equations on three-dimensional domains with N´ed´elec edge finite element methods, we consider an implicit a posteriori error estimation technique. On each element of the tessellation an equation for the error is formulated and solved with a properly chosen

  11. Exact cosmological solutions of Einstein-Maxwell equations as perturbations of the Bertotti-Robinson model

    International Nuclear Information System (INIS)

    Portugal, R.; Soares, I.D.

    1985-01-01

    Two new classes of spatially homogeneous cosmological solutions of Einstein-Maxwell equations are obtained by considering a class of exact perturbations of the static Bertotti-Robinson (BR) model. The BR solution is shown to be unstable under these perturbations, being perturbed into exact cosmological solutions with perfect fluid (equations of state p = lambda rho, O [pt

  12. A reliable treatment for nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Khani, F.; Hamedi-Nezhad, S.; Molabahrami, A.

    2007-01-01

    Exp-function method is used to find a unified solution of nonlinear wave equation. Nonlinear Schroedinger equations with cubic and power law nonlinearity are selected to illustrate the effectiveness and simplicity of the method. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving nonlinear equation

  13. Maxwell Equation Violation by Density Dependent Magnetic Fields in Neutron Stars

    Science.gov (United States)

    Alloy, Marcelo D.; Menezes, Débora P.

    We show that the widely used density dependent magnetic field prescriptions, necessary to account for the variation of the field intensity from the crust to the core of neutron stars violate one of the Maxwell equations. We estimate how strong the violation is when different equations of state are used and check for which cases the pathological problem can be cured. We then propose a simple solution that allows for the usual prescriptions to be used without violating a fundamental equation of physics.

  14. An analogy between macroscopic and microscopic systems for Maxwell's equations in higher dimensions

    Science.gov (United States)

    Emre Kansu, Mustafa

    2013-12-01

    In this study, Maxwell's equations are discussed for macroscopic and microscopic systems by obtaining them from free and bound charge and current densities. In addition to electric and magnetic fields, the polarization and magnetization vectors are defined by the hyperbolic octonion basis. Finally, by introducing the hyperbolic octonionic field equation, for the first time, the hyperbolic octonionic source equation is represented in a simple, useful and elegant manner in terms of free charge, free and bound current densities.

  15. Electromagnetic theory, Maxwell's Equations and special relativity in a tensorial formalism: introductory aspects

    International Nuclear Information System (INIS)

    Silva, Rone Lemos da; Souza, Manoelito

    2011-01-01

    Full text: This work intends to show a brief introduction about tensor calculus and how they are considered, their connections with differential forms and the geometric algebra. To begin with, its a brief presentation of the concepts that involve the indicial notation with demonstration of some important equations of Mathematics and Physics. Actually, both fields will prove always the most simple, elegant and compact representation of mathematical entities. Indeed the approach presented here lends itself to this role, thus the power of representation of the indicial notation presented as an effective tool mathematical to serve the Physics. As an application example in Physics, Theory of Relativity and Maxwell Equations of Electromagnetic Theory are shown in a tensor formulation its showing how elegant and powerful is this approach. Maxwell's equations of electromagnetism, for instance, presents a reduced form, no less important, but only about the way they are written. Its also important to remember that once using the brief notation presented here, symmetry of Maxwell's equations generalization with the inclusion of magnetic monopoles is discussed, once the existence of these particles is consistent with Maxwell's equations, if the electric charges are quantized, which is observed. About the Theory of Relativity, is a fact that must be written in terms of tensors, thus defining a non-Euclidean space. (author)

  16. Resolution of unsteady Maxwell equations with charges in non convex domains

    International Nuclear Information System (INIS)

    Garcia, Emmanuelle

    2002-01-01

    This research thesis deals with the modelling and numerical resolution of problems related to plasma physics. The interaction of charged particles (electrons and ions) with electromagnetic fields is modelled with the system of unsteady Vlasov-Maxwell coupled equations (the Vlasov system describes the transport of charged particles and the Maxwell equations describe the wave propagation). The author presents definitions related to singular domains, establishes a Helmholtz decomposition in a space of electro-magnetostatic solutions. He reports a mathematical analysis of decompositions into a regular and a singular part of general functional spaces intervening in the investigation of the Maxwell system in complex geometries. The method is then implemented for bi-dimensional domains. A last part addressed the study and the numerical resolution of three-dimensional problems

  17. The mathematical theory of time-harmonic Maxwell's equations expansion-, integral-, and variational methods

    CERN Document Server

    Kirsch, Andreas

    2015-01-01

    This book gives a concise introduction to the basic techniques needed for the theoretical analysis of the Maxwell Equations, and filters in an elegant way the essential parts, e.g., concerning the various function spaces needed to rigorously investigate the boundary integral equations and variational equations. The book arose from lectures taught by the authors over many years and can be helpful in designing graduate courses for mathematically orientated students on electromagnetic wave propagation problems. The students should have some knowledge on vector analysis (curves, surfaces, divergence theorem) and functional analysis (normed spaces, Hilbert spaces, linear and bounded operators, dual space). Written in an accessible manner, topics are first approached with simpler scale Helmholtz Equations before turning to Maxwell Equations. There are examples and exercises throughout the book. It will be useful for graduate students and researchers in applied mathematics and engineers working in the theoretical ap...

  18. Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, Kim Ø; Salerno, M.

    2006-01-01

    A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz......-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated....

  19. Multilevel iterative solvers for the edge finite element solution of the 3D Maxwell equation

    NARCIS (Netherlands)

    Nechaev, O.V.; Shurina, E.P.; Bochev, Mikhail A.

    In the edge vector finite element solution of the frequency domain Maxwell equations, the presence of a large kernel of the discrete rotor operator is known to ruin convergence of standard iterative solvers. We extend the approach of [1] and, using domain decomposition ideas, construct a multilevel

  20. Efficient time-stepping-free time integration of the Maxwell equations

    NARCIS (Netherlands)

    Bochev, Mikhail A.; Brushlinskii, K.V.; Gavreeva, M.S.; Zhukov, V.T.; Severin, A.V.; Cmykhova, N.A.

    Solution of the time dependent Maxwell equations is an important problem arising in many applications ranging from nanophotonics to geoscience and astronomy. The problem is far from trivial, and solutions typically exhibit complicated wave properties as well as damping behavior. Usually, special

  1. Generalization of the Biot--Savart law to Maxwell's equations using special relativity

    International Nuclear Information System (INIS)

    Neuenschwander, D.E.; Turner, B.N.

    1992-01-01

    Maxwell's equations are obtained by generalizing the laws of magnetostatics, which follow from the Biot--Savart law and superposition, to be consistent with special relativity. The Lorentz force on a charged particle and its rate of energy change also follow by making Newton's second law for a particle in a magnetostatic field consistent with special relativity

  2. Time-integration methods for finite element discretisations of the second-order Maxwell equation

    NARCIS (Netherlands)

    Sarmany, D.; Bochev, Mikhail A.; van der Vegt, Jacobus J.W.

    This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite element method (DG-FEM) and the H(curl)-conforming FEM. For the spatial discretisation, hierarchic H(curl)-conforming basis

  3. Time-integration methods for finite element discretisations of the second-order Maxwell equation

    NARCIS (Netherlands)

    Sarmany, D.; Bochev, Mikhail A.; van der Vegt, Jacobus J.W.

    This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite element method DG-FEM) and the $H(\\mathrm{curl})$-conforming FEM. For the spatial discretisation, hierarchic

  4. Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains

    KAUST Repository

    Bonito, Andrea

    2013-12-01

    This note establishes regularity estimates for the solution of the Maxwell equations in Lipschitz domains with non-smooth coefficients and minimal regularity assumptions. The argumentation relies on elliptic regularity estimates for the Poisson problem with non-smooth coefficients. © 2013 Elsevier Ltd.

  5. New numerical methods for solving the time-dependent Maxwell equations

    NARCIS (Netherlands)

    De Raedt, H; Kole, JS; Michielsen, KFL; Figge, MT; Berz, M; Makino, K

    2005-01-01

    We review some recent developments in numerical algorithms to solve the time-dependent Maxwell equations for systems with spatially varying permittivity and permeabilitly. We show that the Suzuki product-formula approach can be used to construct a family of unconditionally stable algorithms, the

  6. Modeling High Frequency Semiconductor Devices Using Maxwell's Equations

    National Research Council Canada - National Science Library

    El-Ghazaly, Samier

    1999-01-01

    .... In this research, we first replaced the conventional semiconductor device models, which are based on Poisson's Equation as a semiconductor model, with a new one that uses the full-wave electro...

  7. An enhanced vector diagram of Maxwell's equations for chiral media

    Directory of Open Access Journals (Sweden)

    Carlos Villarroel González

    2012-01-01

    Full Text Available En este trabajo se deriva un diagrama de las ecuaciones de Maxwell, en medios homogéneos isotrópicos, tal que pueda incluir un medio quiral. Este diagrama puede ser utilizado para obtener las relaciones entre campos, potenciales y fuentes, relacionando en forma adecuada las componentes vectoriales presentes en el diagrama. La construcción de este diagrama está basada en la similitud formal entre muchos teoremas del cálculo vectorial y aquellos del algebra vectorial. Se explica, en detalle, la construcción del diagrama para dos diferentes calibres, el de Lorentz y el de Coulomb, y se presentan algunas ecuaciones que pueden ser obtenidas del diagrama. En este trabajo, este enfoque, se aplica al cálculo numérico bidimensional de dos láminas quiral. Este trabajo puede ser una herramienta posible de usar en el diseño de dispositivos utilizados en sistemas de comunicaciones inalámbricas, en el rango espectral desde 1 GHz hasta aproximadamente 60 GHz, por ejemplo duplexores basados en divisores de potencia y filtraje posterior de frecuencia, utilizando SRR/CSRR (resonador de anillos divisores/ celdas coplanares SSR. Los dispositivos de circuito que utilizan SRR/CSRR tienen un tamaño muy pequeño, debido a que operan en sistemas sub-lambda. Este trabajo también puede ser útil para el análisis del diseño, entre otros, de parches impresos para la banda S y para la discusión de diferentes tipos de filtros y otros dispositivos que utilicen metamateriales y guías de onda coplanares.

  8. Maxwell-Equations Based on Mining Transient Electromagnetic Method for Coal Mine-Disaster Water Detection

    OpenAIRE

    Su, Benyu; Yu, Jingcun; Sheng, Chenxing; Zhang, Yulei

    2017-01-01

    Water-bearing geological structure is a serious threat to coalmine safety. This research focuses on detecting water-bearing geological structure by transient electromagnetic method. First, we introduce the principle of mining transient electromagnetic method, and then explain the technique of Finite Different Time Domain using in the transient electromagnetic method. Based on Maxwell equations, we derive the difference equations of electromagnetic field and study the responses of water-bearin...

  9. Simultaneous exact controllability for Maxwell equations and for a second-order hyperbolic system

    Directory of Open Access Journals (Sweden)

    Boris V. Kapitonov

    2010-02-01

    Full Text Available We present a result on "simultaneous" exact controllability for two models that describe two hyperbolic dynamics. One is the system of Maxwell equations and the other a vector-wave equation with a pressure term. We obtain the main result using modified multipliers in order to generate a necessary observability estimate which allow us to use the Hilbert Uniqueness Method (HUM introduced by Lions.

  10. Variational methods in nonlinear field equations solitary waves, hylomorphic solitons and vortices

    CERN Document Server

    Benci, Vieri

    2014-01-01

    The book analyzes the existence of solitons, namely of finite energy solutions of field equations which exhibit stability properties. The book is divided in two parts. In the first part, the authors give an abstract definition of solitary wave and soliton and we develop an abstract existence theory for hylomorphic solitons, namely for those solitons which minimize the energy for a given charge. In the second part, the authors apply this theory to prove the existence of hylomorphic solitons for some classes of field equations (nonlinear Klein-Gordon-Maxwell equations, nonlinear Schrödinger-Maxwell equations, nonlinear beam equation,..). The abstract theory is sufficiently flexible to be applied to other situations, like the existence of vortices. The books is addressed to Mathematicians and Physicists.

  11. Strong cosmic censorship for solutions of the Einstein-Maxwell field equations with polarized Gowdy symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Nungesser, Ernesto; Rendall, Alan D [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)

    2009-05-21

    A proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this, it is seen that the deep results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  12. Reformulation of Maxwell's equations to incorporate near-solute solvent structure.

    Science.gov (United States)

    Yang, Pei-Kun; Lim, Carmay

    2008-09-04

    Maxwell's equations, which treat electromagnetic interactions between macroscopic charged objects in materials, have explained many phenomena and contributed to many applications in our lives. Derived in 1861 when no methods were available to determine the atomic structure of macromolecules, Maxwell's equations assume the solvent to be a structureless continuum. However, near-solute solvent molecules are highly structured, unlike far-solute bulk solvent molecules. Current methods cannot treat both the near-solute solvent structure and time-dependent electromagnetic interactions in a macroscopic system. Here, we derive "microscopic" electrodynamics equations that can treat macroscopic time-dependent electromagnetic field problems like Maxwell's equations and reproduce the solvent molecular and dipole density distributions observed in molecular dynamics simulations. These equations greatly reduce computational expense by not having to include explicit solvent molecules, yet they treat the solvent electrostatic and van der Waals effects more accurately than continuum models. They provide a foundation to study electromagnetic interactions between molecules in a macroscopic system that are ubiquitous in biology, bioelectromagnetism, and nanotechnology. The general strategy presented herein to incorporate the near-solute solvent structure would enable studies on how complex cellular protein-ligand interactions are affected by electromagnetic radiation, which could help to prevent harmful electromagnetic spectra or find potential therapeutic applications.

  13. On the Generalized Maxwell Equations and Their Prediction of Electroscalar Wave

    Directory of Open Access Journals (Sweden)

    Arbab A. I.

    2009-04-01

    Full Text Available We have formulated the basic laws of electromagnetic theory in quaternion form. The formalism shows that Maxwell equations and Lorentz force are derivable from just one quaternion equation that only requires the Lorentz gauge. We proposed a quaternion form of the continuity equation from which we have derived the ordinary continuity equation. We introduce new transformations that produces a scalar wave and generalize the continuity equation to a set of three equations. These equations imply that both current and density are waves. Moreover, we have shown that the current can not cir- culate around a point emanating from it. Maxwell equations are invariant under these transformations. An electroscalar wave propagating with speed of light is derived upon requiring the invariance of the energy conservation equation under the new transforma- tions. The electroscalar wave function is found to be proportional to the electric field component along the charged particle motion. This scalar wave exists with or without considering the Lorentz gauge. We have shown that the electromagnetic fields travel with speed of light in the presence or absence of free charges.

  14. (2 + 1)-dimensional dynamical black holes in Einstein-nonlinear Maxwell theory

    Science.gov (United States)

    Gurtug, O.; Mazharimousavi, S. Habib; Halilsoy, M.

    2018-02-01

    Radiative extensions of BTZ metric in 2 + 1 dimensions are found which are sourced by nonlinear Maxwell fields and a null current. This may be considered as generalization of the problem formulated long go by Vaidya and Bonnor. The mass and charge are functions of retarded/advanced null coordinate apt for decay/inflation. The new solutions are constructed through a Theorem that works remarkably well for any nonlinear electrodynamic model. Hawking temperature is analyzed for the case of the Born-Infeld electrodynamics.

  15. Non-linear effects in the Boltzmann equation

    International Nuclear Information System (INIS)

    Barrachina, R.O.

    1985-01-01

    The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es

  16. Nonlinear heat conduction equations with memory: Physical meaning and analytical results

    Science.gov (United States)

    Artale Harris, Pietro; Garra, Roberto

    2017-06-01

    We study nonlinear heat conduction equations with memory effects within the framework of the fractional calculus approach to the generalized Maxwell-Cattaneo law. Our main aim is to derive the governing equations of heat propagation, considering both the empirical temperature-dependence of the thermal conductivity coefficient (which introduces nonlinearity) and memory effects, according to the general theory of Gurtin and Pipkin of finite velocity thermal propagation with memory. In this framework, we consider in detail two different approaches to the generalized Maxwell-Cattaneo law, based on the application of long-tail Mittag-Leffler memory function and power law relaxation functions, leading to nonlinear time-fractional telegraph and wave-type equations. We also discuss some explicit analytical results to the model equations based on the generalized separating variable method and discuss their meaning in relation to some well-known results of the ordinary case.

  17. Variational symmetries and conservation laws of the coupled Maxwell-Dirac equations

    Science.gov (United States)

    Fliss, Jackson; Menon, Balraj

    2012-03-01

    The role of symmetry groups has become increasing important in the study of modern physics. The theorems of Emmy Noether link conservation laws to symmetries of the action functional. Contact symmetries can be constructed from the invariance of the action under infinitesimal transformations that are dependent on the independent variables and the dependent variables. First-order generalized symmetries can be constructed by including the first derivatives of the dependent variables. In the case of the coupled Maxwell-Dirac equations, the independent variables and dependent variables are, respectively, the spacetime coordinates and the fields. In this talk I will review the familiar symmetries of field theory, as well as investigate the first-order generalized symmetries of the coupled Maxwell-Dirac equations. The local conservation laws associated with each of these, via the theorems of Noether, will be addressed as well.

  18. A new type of massive spin-one boson: And its relation with Maxwell equations

    International Nuclear Information System (INIS)

    Ahluwalia, D.V.

    1995-01-01

    First, the author showed that in the (1, 0) circle-plus (0, 1) representation space there exist not one but two theories for charged particles. In the Weinberg construct, the boson and its antiboson carry same relative intrinsic parity, whereas in the author's construct the relative intrinsic parities of the boson and its antiboson are opposite. These results originate from the commutativity of the operations of Charge conjugation and Parity in Weinberg's theory, and from the anti-commutativity of the operations of Charge conjugation and Parity in the author's theory. The author thus claims that he has constructed a first non-trivial quantum theory of fields for the Wigner-type particles. Second, the massless limit of both theories seems formally identical and suggests a fundamental modification of Maxwell equations. At its simplest level, the modification to Maxwell equations enters via additional boundary condition(s)

  19. Modular hp-FEM system HERMES and its application to Maxwell´s equations

    Czech Academy of Sciences Publication Activity Database

    Vejchodský, Tomáš; Šolín, P.; Zítka, M.

    2007-01-01

    Roč. 76, č. 2 (2007), s. 223-228 ISSN 0378-4754. [MODELLING 2005. Plzeň, 04.06.2005-08.06.2005] R&D Projects: GA ČR GP201/04/P021 Institutional research plan: CEZ:AV0Z10190503 Keywords : hp-FEM * time-harmonic Maxwell´s equations * hierarchic higher-order edge elements Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2007

  20. Infinitely many large energy solutions of superlinear Schrodinger-Maxwell equations

    Directory of Open Access Journals (Sweden)

    Lin Li

    2012-12-01

    Full Text Available In this article we study the existence of infinitely many large energy solutions for the superlinear Schrodinger-Maxwell equations $$displaylines{ -Delta u+V(xu+ phi u=f(x,u quad hbox{in }mathbb{R}^3,cr -Delta phi=u^2, quad hbox{in }mathbb{R}^3, }$$ via the Fountain Theorem in critical point theory. In particular, we do not use the classical Ambrosetti-Rabinowitz condition.

  1. Effective Hamiltonians, two level systems, and generalized Maxwell-Bloch equations

    International Nuclear Information System (INIS)

    Sczaniecki, L.

    1981-02-01

    A new method is proposed involving a canonical transformation leading to the non-secular part of time-independent perturbation calculus. The method is used to derive expressions for effective Shen-Walls Hamiltonians which, taken in the two-level approximation and on the inclusion of non-Hamiltonian terms into the dynamics of the system, lead to generalized Maxwell-Bloch equations. The rotating wave approximation is written anew within the framework of our formalism. (author)

  2. Theoretical and numerical study of the equations of Vlasov-Maxwell in the covariant formalism

    International Nuclear Information System (INIS)

    Back, A.

    2011-11-01

    A new point of view is proposed for the simulation of plasmas using the kinetic model which links the equations of Vlasov for the distribution of particles and the equations of Maxwell for the electromagnetic contribution of fields. We use the following principle: the equations of Physics are mathematical objects which put in relation geometrical objects. To preserve the geometrical properties of the various objects in an equation, we use, for the theoretical and numerical study, the differential geometry. All the equations of Physics can be written with differential forms and this point of view is not dependent on the choice of coordinates. We propose then a discretization of the differential forms by using B-Splines. To be coherent with the theory, we also propose a discretization of the various operations of the differential geometry. We test our scheme, first on the equations of Maxwell with several boundary conditions and since it does not depend on the system of coordinates, we also test it when we change coordinates. Finally, we apply the same method to the equations of Vlasov-Poisson in one-dimension and we propose several numerical schemes. (author)

  3. Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations

    Energy Technology Data Exchange (ETDEWEB)

    Després, Bruno, E-mail: despres@ann.jussieu.fr [Laboratory Jacques Louis Lions, University Pierre et Marie Curie, Paris VI, Boîte courrier 187, 75252 Paris Cedex 05 (France); Weder, Ricardo, E-mail: weder@unam.mx [Departamento de Física Matemática, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Apartado Postal 20-126, DF 01000 (Mexico)

    2016-03-22

    We study the long-time asymptotic of the solutions to Maxwell's equation in the case of an upper-hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Després, L.M. Imbert-Gérard and R. Weder (2014) [15], where the singular solutions to Maxwell's equations in the frequency domain were constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems, in particular, because upper-hybrid resonances are a possible scenario for the heating of plasmas, and since they can be a model for the diagnostics involving wave scattering in plasmas. - Highlights: • The upper-hybrid resonance in the cold plasma model is considered. • The long-time asymptotic of the solutions to Maxwell's equations is studied. • A method based in a singular limiting absorption principle is proposed.

  4. A Model for Solving the Maxwell Quasi Stationary Equations in a 3-Phase Electric Reduction Furnace

    Directory of Open Access Journals (Sweden)

    S. Ekrann

    1982-10-01

    Full Text Available A computer code has been developed for the approximate computation of electric and magnetic fields within an electric reduction furnace. The paper describes the numerical methods used to solve Maxwell's quasi-stationary equations, which are the governing equations for this problem. The equations are discretized by a staggered grid finite difference technique. The resulting algebraic equations are solved by iterating between computations of electric and magnetic quantities. This 'outer' iteration converges only when the skin depth is larger or of about the same magnitude as the linear dimensions of the computational domain. In solving for electric quantities with magnetic quantities being regarded as known, and vice versa, the central computational task is the solution of a Poisson equation for a scalar potential. These equations are solved by line successive overrelaxation combined with a rebalancing technique.

  5. A negative-norm least-squares method for time-harmonic Maxwell equations

    KAUST Repository

    Copeland, Dylan M.

    2012-04-01

    This paper presents and analyzes a negative-norm least-squares finite element discretization method for the dimension-reduced time-harmonic Maxwell equations in the case of axial symmetry. The reduced equations are expressed in cylindrical coordinates, and the analysis consequently involves weighted Sobolev spaces based on the degenerate radial weighting. The main theoretical results established in this work include existence and uniqueness of the continuous and discrete formulations and error estimates for simple finite element functions. Numerical experiments confirm the error estimates and efficiency of the method for piecewise constant coefficients. © 2011 Elsevier Inc.

  6. Superconvergence of mixed finite element approximations to 3-D Maxwell's equations in metamaterials

    KAUST Repository

    Huang, Yunqing

    2011-09-01

    Numerical simulation of metamaterials has attracted more and more attention since 2000, after the first metamaterial with negative refraction index was successfully constructed. In this paper we construct a fully-discrete leap-frog type finite element scheme to solve the three-dimensional time-dependent Maxwell\\'s equations when metamaterials are involved. First, we obtain some superclose results between the interpolations of the analytical solutions and finite element solutions obtained using arbitrary orders of Raviart-Thomas-Nédélec mixed spaces on regular cubic meshes. Then we prove the superconvergence result in the discrete l2 norm achieved for the lowest-order Raviart-Thomas-Nédélec space. To our best knowledge, such superconvergence results have never been obtained elsewhere. Finally, we implement the leap-frog scheme and present numerical results justifying our theoretical analysis. © 2011 Elsevier Inc.

  7. High-order accurate methods for solving the time-harmonic Maxwell's equations

    Science.gov (United States)

    Wilcox, Lucas Charles

    Maxwell's equations are the partial differential equations describing electromagnetism. They can be used to model electric and magnetic fields in different materials from light in fiber optic cables to radar waves bouncing off a stealth fighter jet. In problems with electromagnetic radiation of a single frequency Maxwell's equations may be reduced to their time-harmonic form. Further simplifying the problem a multilayer boundary variation method for the forward modeling of multilayered diffraction optics is presented. This approach enables fast and high-order accurate modeling of periodic transmission optics consisting of an arbitrary number of materials and interfaces of general shape subject to plane wave illumination or, by solving a sequence of problems, illumination by beams. The key developments of the algorithm are discussed as are details of an efficient implementation. Numerous comparisons with exact solutions and highly accurate direct solutions confirm the accuracy, versatility, and efficiency of the proposed method. The high accuracy of the method is leveraged to solve an application involving the in-coupling process for grating-coupled planar optical waveguide sensors. For more general solutions of the time-harmonic Maxwell's equations an hp-adaptive discontinuous Galerkin finite element method is studied. The discontinuous Galerkin finite element method is a general method for solving partial differential equations that has had success with time evolution problems. The application to time-harmonic problems is a new and developing area of research. As a first step, an overlapping Schwarz method for the discontinuous Galerkin discretization of the indefinite Helmholtz equation is examined. For an hp-adaptive method to be successful an error indicator is required to determine the areas of the computational domain that need increased resolution. The use of adjoint based error indicators is explored through solving the time-harmonic Maxwell's equations for

  8. Generalized solutions of nonlinear partial differential equations

    CERN Document Server

    Rosinger, EE

    1987-01-01

    During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research.The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concernin

  9. Numerical treatment of a nonlinear hyperbolic equation

    Directory of Open Access Journals (Sweden)

    Nabiha Brik

    2017-03-01

    Full Text Available In this work we consider a nonlinear elliptic partial differential equation, which is derived from an application of a nonlinear Schrödinger equation. Using a variational approach on this problem leads to an optimization problem with a nonlinear constraint. A numerical solution based on finite-element method is used. We propose a new iterative algorithm to relax this problem to a quadratic version.

  10. Linear superposition solutions to nonlinear wave equations

    International Nuclear Information System (INIS)

    Liu Yu

    2012-01-01

    The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed

  11. Thermoviscous Model Equations in Nonlinear Acoustics

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne

    Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....

  12. Partial Fourier analysis of time-harmonic Maxwell's equations in axisymmetric domains

    International Nuclear Information System (INIS)

    Nkemzi, Boniface

    2003-01-01

    We analyze the Fourier method for treating time-harmonic Maxwell's equations in three-dimensional axisymmetric domains with non-axisymmetric data. The Fourier method reduces the three-dimensional boundary value problem to a system of decoupled two-dimensional boundary value problems on the plane meridian domain of the axisymmetric domain. The reduction process is fully described and suitable weighted spaces are introduced on the meridian domain to characterize the two-dimensional solutions. In particular, existence and uniqueness of solutions of the two-dimensional problems is proved and a priori estimates for the solutions are given. (author)

  13. From pure spinors to quantum physics and to some classical field equations like Maxwell's and gravitational

    International Nuclear Information System (INIS)

    Budinich, Paolo

    2009-03-01

    In a previous paper we proposed a purely mathematical way to quantum mechanics based on Cartan's simple spinors in their most elementary form of 2 components spinors. Here we proceed along that path proposing, this time, a symmetric tensor, quadrilinear in simple spinors, as a candidate for the symmetric tensor of general relativity. The procedure resembles closely that in which one builds bilinearly from simple spinors an asymmetric electromagnetic tensor, from which easily descend Maxwell's equations and the photon can be seen as a bilinear combination of neutrinos. Here Lorentzian spaces result compact, building up spheres, where hopefully the problems of the Standard Model could be solved. (author)

  14. An efficient discontinuous Galerkin finite element method for highly accurate solution of maxwell equations

    KAUST Repository

    Liu, Meilin

    2012-08-01

    A discontinuous Galerkin finite element method (DG-FEM) with a highly accurate time integration scheme for solving Maxwell equations is presented. The new time integration scheme is in the form of traditional predictor-corrector algorithms, PE CE m, but it uses coefficients that are obtained using a numerical scheme with fully controllable accuracy. Numerical results demonstrate that the proposed DG-FEM uses larger time steps than DG-FEM with classical PE CE) m schemes when high accuracy, which could be obtained using high-order spatial discretization, is required. © 1963-2012 IEEE.

  15. Fast semi-analytical solution of Maxwell's equations in Born approximation for periodic structures.

    Science.gov (United States)

    Pisarenco, Maxim; Quintanilha, Richard; van Kraaij, Mark G M M; Coene, Wim M J

    2016-04-01

    We propose a fast semi-analytical approach for solving Maxwell's equations in Born approximation based on the Fourier modal method (FMM). We show that, as a result of Born approximation, most matrices in the FMM algorithm become diagonal, thus allowing a reduction of computational complexity from cubic to linear. Moreover, due to the analytical representation of the solution in the vertical direction, the number of degrees of freedom in this direction is independent of the wavelength. The method is derived for planar illumination with two basic polarizations (TE/TM) and an arbitrary 2D geometry infinitely periodic in one horizontal direction.

  16. An energy-conserving method for stochastic Maxwell equations with multiplicative noise

    Science.gov (United States)

    Hong, Jialin; Ji, Lihai; Zhang, Liying; Cai, Jiaxiang

    2017-12-01

    In this paper, it is shown that three-dimensional stochastic Maxwell equations with multiplicative noise are stochastic Hamiltonian partial differential equations possessing a geometric structure (i.e. stochastic multi-symplectic conservation law), and the energy of system is a conservative quantity almost surely. We propose a stochastic multi-symplectic energy-conserving method for the equations by using the wavelet collocation method in space and stochastic symplectic method in time. Numerical experiments are performed to verify the excellent abilities of the proposed method in providing accurate solution and preserving energy. The mean square convergence result of the method in temporal direction is tested numerically, and numerical comparisons with finite difference method are also investigated.

  17. Maxwell's equations in divergence form for general media with applications to MHD

    International Nuclear Information System (INIS)

    Van Putten, M.H.P.M.

    1991-01-01

    Maxwell's equations in media with general constitutive relations are reformulated in covariant form as a system of divergence equations without constraints. Our reformulation enables us to express general electro-magneto-fluid problems as hyperbolic systems in divergence form. We illustrate this method on the MHD problem. In the absence of constraints, a general representation is derived for the characteristic form for first-order systems of quasi-linear partial differential equations in vector fields and scalars. Using this covariant formulation of characteristics, we find that the principle of covariance imposes a very rigid structure on the infinitesimally small amplitude waves in MHD. To demonstrate the power of the reformulation, we study numerically ultra-relativistic wave breaking using the divergence formulation of MHD. (orig.)

  18. Stochastic effects on the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Flessas, G P; Leach, P G L; Yannacopoulos, A N

    2004-01-01

    The aim of this article is to provide a brief review of recent advances in the field of stochastic effects on the nonlinear Schroedinger equation. The article reviews rigorous and perturbative results. (review article)

  19. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  20. Polynomial solutions of nonlinear integral equations

    Energy Technology Data Exchange (ETDEWEB)

    Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu

    2009-05-22

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.

  1. Polynomial solutions of nonlinear integral equations

    International Nuclear Information System (INIS)

    Dominici, Diego

    2009-01-01

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials

  2. Nonlinear elliptic equations of the second order

    CERN Document Server

    Han, Qing

    2016-01-01

    Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler-Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge-Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and "elementary" proofs for results in important special cases. This book will serve as a valuable resource for graduate stu...

  3. Gravitational and electromagnetic potentials of the stationary Einstein-Maxwell field equations

    International Nuclear Information System (INIS)

    Jones, T.C.

    1979-01-01

    Associated with the stationary Einstein-Maxwell field equations is an infinite hierarchy of potentials. The basic characteristics of these potentials are examined in general and then in greater detail for the particular case of the Reissner-Nordstrom metric. Thier essential utility in the process of solution generation is elucidated, and the necessary equations for solution generation are developed. Appropriate generating functions, which contain the complete infinite hierarchy of potentials, are developed and analyzed. Particular attention is paid to the inherent gauge freedom of these generating functions. Two methods of solution generation, which yield asymptotically flat solutions in vacuum, are generalized to include electromagnetism. One method, using potentials consistent with the Harrison transformation and the Reissner-Nordstrom metric, is discussed in detail, and its resultant difficulties are explored

  4. An elementary solution of the Maxwell equations for a time-dependent source

    International Nuclear Information System (INIS)

    Rivera, R; Villarroel, D

    2002-01-01

    We present an elementary solution of the Maxwell equations for a time-dependent source consisting of an infinite solenoid with a current density that increases linearly with time. The geometrical symmetries and the time dependence of the current density make possible a mathematical treatment that does not involve the usual technical difficulties, thus making this presentation suitable for students that are taking a first course in electromagnetism. We also show that the electric field generated by the solenoid can be used to construct an exact solution of the relativistic equation of motion of the electron that takes into account the effect of the radiation. In particular, we derive, in an almost trivial way, the formula for the radiation rate of an electron in circular motion

  5. On solution of Maxwell's equations in axisymmetric domains with edges. Part II: Numerical aspects

    International Nuclear Information System (INIS)

    Nkemzi, Boniface

    2003-10-01

    In this paper we consider the Fourier-finite-element method for treating the Maxwell's equations in three-dimensional axisymmetric domains with reentrant edges. By means of partial Fourier analysis, the 3D BVP is decomposed into an infinite sequence of 2D variational equations in the plane meridian domain of the axisymmetric domain, a finite number of which is considered and treated using nodal H 1 -conforming finite elements. For domains with reentrant edges, the singular field method is employed to compensate the singular behavior of the solutions. Emphases are given to estimates of the Fourier-finite-element approximation error and convergence analysis in the H 1 -norm under different regularity assumptions. (author)

  6. New exact solutions for two nonlinear equations

    International Nuclear Information System (INIS)

    Wang Quandi; Tang Minying

    2008-01-01

    In this Letter, we investigate two nonlinear equations given by u t -u xxt +3u 2 u x =2u x u xx +uu xxx and u t -u xxt +4u 2 u x =3u x u xx +uu xxx . Through some special phase orbits we obtain four new exact solutions for each equation above. Some previous results are extended

  7. Advances in iterative methods for nonlinear equations

    CERN Document Server

    Busquier, Sonia

    2016-01-01

    This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations...

  8. Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses

    Science.gov (United States)

    Joseph, Rose M.; Hagness, Susan C.; Taflove, Allen

    1991-01-01

    The initial results for femtosecond pulse propagation and scattering interactions for a Lorentz medium obtained by a direct time integration of Maxwell's equations are reported. The computational approach provides reflection coefficients accurate to better than 6 parts in 10,000 over the frequency range of dc to 3 x 10 to the 16th Hz for a single 0.2-fs Gaussian pulse incident upon a Lorentz-medium half-space. New results for Sommerfeld and Brillouin precursors are shown and compared with previous analyses. The present approach is robust and permits 2D and 3D electromagnetic pulse propagation directly from the full-vector Maxwell's equations.

  9. On Coupled Rate Equations with Quadratic Nonlinearities

    Science.gov (United States)

    Montroll, Elliott W.

    1972-01-01

    Rate equations with quadratic nonlinearities appear in many fields, such as chemical kinetics, population dynamics, transport theory, hydrodynamics, etc. Such equations, which may arise from basic principles or which may be phenomenological, are generally solved by linearization and application of perturbation theory. Here, a somewhat different strategy is emphasized. Alternative nonlinear models that can be solved exactly and whose solutions have the qualitative character expected from the original equations are first searched for. Then, the original equations are treated as perturbations of those of the solvable model. Hence, the function of the perturbation theory is to improve numerical accuracy of solutions, rather than to furnish the basic qualitative behavior of the solutions of the equations. PMID:16592013

  10. Spherical space Bessel-Legendre-Fourier mode solver for Maxwell's wave equations

    Science.gov (United States)

    Alzahrani, Mohammed A.; Gauthier, Robert C.

    2015-02-01

    For spherically symmetric dielectric structures, a basis set composed of Bessel, Legendre and Fourier functions, BLF, are used to cast Maxwell's wave equations into an eigenvalue problem from which the localized modes can be determined. The steps leading to the eigenmatrix are reviewed and techniques used to reduce the order of matrix and tune the computations for particular mode types are detailed. The BLF basis functions are used to expand the electric and magnetic fields as well as the inverse relative dielectric profile. Similar to the common plane wave expansion technique, the BLF matrix returns the eigen-frequencies and eigenvectors, but in BLF only steady states, non-propagated, are obtained. The technique is first applied to a air filled spherical structure with perfectly conducting outer surface and then to a spherical microsphere located in air. Results are compared published values were possible.

  11. Infinite sets of conservation laws for linear and nonlinear field equations

    International Nuclear Information System (INIS)

    Mickelsson, J.

    1984-01-01

    The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of the space-time symmetry group is established. It is shown that each symmetric element of the enveloping algebra of the space-time symmetry group of a linear field equation generates a one-parameter group of symmetries of the field equation. The cases of the Maxwell and Dirac equations are studied in detail. Then it is shown that (at least in the sense of a power series in the 'coupling constant') the conservation laws of the linear case can be deformed to conservation laws of a nonlinear field equation which is obtained from the linear one by adding a nonlinear term invariant under the group of space-time symmetries. As an example, our method is applied to the Korteweg-de Vries equation and to the massless Thirring model. (orig.)

  12. Cylindrical and spherical space equivalents to the plane wave expansion technique of Maxwell's wave equations

    Science.gov (United States)

    Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed

    2015-02-01

    The plane wave expansion (PWM) technique applied to Maxwell's wave equations provides researchers with a supply of information regarding the optical properties of dielectric structures. The technique is well suited for structures that display a linear periodicity. When the focus is directed towards optical resonators and structures that lack linear periodicity the eigen-process can easily exceed computational resources and time constraints. In the case of dielectric structures which display cylindrical or spherical symmetry, a coordinate system specific set of basis functions have been employed to cast Maxwell's wave equations into an eigen-matrix formulation from which the resonator states associated with the dielectric profile can be obtained. As for PWM, the inverse of the dielectric and field components are expanded in the basis functions (Fourier-Fourier-Bessel, FFB, in cylindrical and Fourier- Bessel-Legendre, BLF, in spherical) and orthogonality is employed to form the matrix expressions. The theoretical development details will be presented indicating how certain mathematical complications in the process have been overcome and how the eigen-matrix can be tuned to a specific mode type. The similarities and differences in PWM, FFB and BLF are presented. In the case of structures possessing axial cylindrical symmetry, the inclusion of the z axis component of propagation constant makes the technique applicable to photonic crystal fibers and other waveguide structures. Computational results will be presented for a number of different dielectric geometries including Bragg ring resonators, cylindrical space slot channel waveguides and bottle resonators. Steps to further enhance the computation process will be reported.

  13. On implicit abstract neutral nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Eduardo, E-mail: lalohm@ffclrp.usp.br [Universidade de São Paulo, Departamento de Computação e Matemática, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (Brazil); O’Regan, Donal, E-mail: donal.oregan@nuigalway.ie [National University of Ireland, School of Mathematics, Statistics and Applied Mathematics (Ireland)

    2016-04-15

    In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.

  14. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian

    2014-10-08

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

  15. Handbook of Nonlinear Partial Differential Equations

    CERN Document Server

    Polyanin, Andrei D

    2011-01-01

    New to the Second Edition More than 1,000 pages with over 1,500 new first-, second-, third-, fourth-, and higher-order nonlinear equations with solutions Parabolic, hyperbolic, elliptic, and other systems of equations with solutions Some exact methods and transformations Symbolic and numerical methods for solving nonlinear PDEs with Maple(t), Mathematica(R), and MATLAB(R) Many new illustrative examples and tables A large list of references consisting of over 1,300 sources To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology. They

  16. Exact solutions for nonlinear foam drainage equation

    Science.gov (United States)

    Zayed, E. M. E.; Al-Nowehy, Abdul-Ghani

    2017-02-01

    In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the Riccati equation expansion method and the ( G^' }/G)-expansion method are used to construct exact solutions with parameters of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential equations in mathematical physics. We compare our results together with each other yielding from these integration tools. Also, our results have been compared with the well-known results of others.

  17. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    Science.gov (United States)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2018-01-01

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown to be robust and provide high-order accuracy.

  18. Nonlinear streak computation using boundary region equations

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J A; Martel, C, E-mail: juanangel.martin@upm.es, E-mail: carlos.martel@upm.es [Depto. de Fundamentos Matematicos, E.T.S.I Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, 28040 Madrid (Spain)

    2012-08-01

    The boundary region equations (BREs) are applied for the simulation of the nonlinear evolution of a spanwise periodic array of streaks in a flat plate boundary layer. The well-known BRE formulation is obtained from the complete Navier-Stokes equations in the high Reynolds number limit, and provides the correct asymptotic description of three-dimensional boundary layer streaks. In this paper, a fast and robust streamwise marching scheme is introduced to perform their numerical integration. Typical streak computations present in the literature correspond to linear streaks or to small-amplitude nonlinear streaks computed using direct numerical simulation (DNS) or the nonlinear parabolized stability equations (PSEs). We use the BREs to numerically compute high-amplitude streaks, a method which requires much lower computational effort than DNS and does not have the consistency and convergence problems of the PSE. It is found that the flow configuration changes substantially as the amplitude of the streaks grows and the nonlinear effects come into play. The transversal motion (in the wall normal-streamwise plane) becomes more important and strongly distorts the streamwise velocity profiles, which end up being quite different from those of the linear case. We analyze in detail the resulting flow patterns for the nonlinearly saturated streaks and compare them with available experimental results. (paper)

  19. Gevrey type solutions of nonlinear difference equations

    NARCIS (Netherlands)

    Immink, G.K.

    2006-01-01

    We prove the existence of Gevrey type solutions for locally analytic, nonlinear difference equations possessing a formal solution that belongs to some (generalized) Gevrey class of divergent power series in z(-1/p). We consider different types of domains: domains bounded by a curve with limiting

  20. Front propagation in nonlinear parabolic equations

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Hilhorst, D.; Petzeltová, Hana; Takáč, P.

    2014-01-01

    Roč. 90, č. 2 (2014), s. 551-572 ISSN 0024-6107 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : nonlinear parabolic equations * front propagation * travelling wave Subject RIV: BA - General Mathematics Impact factor: 0.820, year: 2014 http://jlms.oxfordjournals.org/content/90/2/551

  1. Symmetries of nonlinear ordinary differential equations: The ...

    Indian Academy of Sciences (India)

    2015-10-21

    Oct 21, 2015 ... Abstract. Lie symmetry analysis is one of the powerful tools to analyse nonlinear ordinary dif- ferential equations. We review the effectiveness of this method in terms of various symmetries. We present the method of deriving Lie point symmetries, contact symmetries, hidden symmetries, nonlocal symmetries ...

  2. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

    Science.gov (United States)

    Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

    2018-02-01

    We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

  3. Dynamics of a magnetic monopole in matter, Maxwell equations in dyonic matter and detection of electric dipole moments

    International Nuclear Information System (INIS)

    Artru, X.; Fayolle, D.

    2001-01-01

    For a monopole, the analogue of the Lorentz equation in matter is shown to be f = g (H-v centre dot D). Dual-symmetric Maxwell equations, for matter containing hidden magnetic charge in addition to electric ones, are given. They apply as well to ordinary matter if the particles possess T-violating electric dipole moments. Two schemes of experiments for the detection of such moments in macroscopic pieces of matter are proposed

  4. Nanoscale roughness effect on Maxwell-like boundary conditions for the Boltzmann equation

    Energy Technology Data Exchange (ETDEWEB)

    Brull, S., E-mail: Stephane.Brull@math.u-bordeaux.fr; Charrier, P., E-mail: Pierre.Charrier@math.u-bordeaux.fr; Mieussens, L., E-mail: Luc.Mieussens@math.u-bordeaux.fr [University of Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400 Talence (France)

    2016-08-15

    It is well known that the roughness of the wall has an effect on microscale gas flows. This effect can be shown for large Knudsen numbers by using a numerical solution of the Boltzmann equation. However, when the wall is rough at a nanometric scale, it is necessary to use a very small mesh size which is much too expansive. An alternative approach is to incorporate the roughness effect in the scattering kernel of the boundary condition, such as the Maxwell-like kernel introduced by the authors in a previous paper. Here, we explain how this boundary condition can be implemented in a discrete velocity approximation of the Boltzmann equation. Moreover, the influence of the roughness is shown by computing the structure scattering pattern of mono-energetic beams of the incident gas molecules. The effect of the angle of incidence of these molecules, of their mass, and of the morphology of the wall is investigated and discussed in a simplified two-dimensional configuration. The effect of the azimuthal angle of the incident beams is shown for a three-dimensional configuration. Finally, the case of non-elastic scattering is considered. All these results suggest that our approach is a promising way to incorporate enough physics of gas-surface interaction, at a reasonable computing cost, to improve kinetic simulations of micro- and nano-flows.

  5. Integrable peakon equations with cubic nonlinearity

    International Nuclear Information System (INIS)

    Hone, Andrew N W; Wang, J P

    2008-01-01

    We present a new integrable partial differential equation found by Vladimir Novikov. Like the Camassa-Holm and Degasperis-Procesi equations, this new equation admits peaked soliton (peakon) solutions, but it has nonlinear terms that are cubic, rather than quadratic. We give a matrix Lax pair for V Novikov's equation, and show how it is related by a reciprocal transformation to a negative flow in the Sawada-Kotera hierarchy. Infinitely many conserved quantities are found, as well as a bi-Hamiltonian structure. The latter is used to obtain the Hamiltonian form of the finite-dimensional system for the interaction of N peakons, and the two-body dynamics (N = 2) is explicitly integrated. Finally, all of this is compared with some analogous results for another cubic peakon equation derived by Zhijun Qiao. (fast track communication)

  6. Analytic treatment of nonlinear evolution equations using first ...

    Indian Academy of Sciences (India)

    power of this manageable method is confirmed by applying it for three selected nonlinear evolution equations. This approach can also be applied to other nonlinear differential equations. Keywords. Exact solutions; first integral method; combined KdV–mKdV equation; Pochhammer–. Chree equation; coupled nonlinear ...

  7. Three-Dimensional High-Order Spectral Volume Method for Solving Maxwell's Equations on Unstructured Grids

    Science.gov (United States)

    Liu, Yen; Vinokur, Marcel; Wang, Z. J.

    2004-01-01

    A three-dimensional, high-order, conservative, and efficient discontinuous spectral volume (SV) method for the solutions of Maxwell's equations on unstructured grids is presented. The concept of discontinuous 2nd high-order loca1 representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) method, but instead of using a Galerkin finite-element formulation, the SV method is based on a finite-volume approach to attain a simpler formulation. Conventional unstructured finite-volume methods require data reconstruction based on the least-squares formulation using neighboring cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In the SV method, one starts with a relatively coarse grid of triangles or tetrahedra, called spectral volumes (SVs), and partition each SV into a number of structured subcells, called control volumes (CVs), that support a polynomial expansion of a desired degree of precision. The unknowns are cell averages over CVs. If all the SVs are partitioned in a geometrically similar manner, the reconstruction becomes universal as a weighted sum of unknowns, and only a few universal coefficients need to be stored for the surface integrals over CV faces. Since the solution is discontinuous across the SV boundaries, a Riemann solver is thus necessary to maintain conservation. In the paper, multi-parameter and symmetric SV partitions, up to quartic for triangle and cubic for tetrahedron, are first presented. The corresponding weight coefficients for CV face integrals in terms of CV cell averages for each partition are analytically determined. These discretization formulas are then applied to the integral form of

  8. Fast Solutions of Maxwell's Equation for High Resolution Electromagnetic Imaging of Transport Pathways

    Energy Technology Data Exchange (ETDEWEB)

    DAY,DAVID M.; NEWMAN,GREGORY A.

    1999-10-01

    A fast precondition technique has been developed which accelerates the finite difference solutions of the 3D Maxwell's equations for geophysical modeling. The technique splits the electric field into its curl free and divergence free projections, and allows for the construction of an inverse operator. Test examples show an order of magnitude speed up compared with a simple Jacobi preconditioner. Using this preconditioner a low frequency Neumann series expansion is developed and used to compute responses at multiple frequencies very efficiently. Simulations requiring responses at multiple frequencies, show that the Neumann series is faster than the preconditioned solution, which must compute solutions at each discrete frequency. A Neumann series expansion has also been developed in the high frequency limit along with spectral Lanczos methods in both the high and low frequency cases for simulating multiple frequency responses with maximum efficiency. The research described in this report was to have been carried out over a two-year period. Because of communication difficulties, the project was funded for first year only. Thus the contents of this report are incomplete with respect to the original project objectives.

  9. Taming the nonlinearity of the Einstein equation.

    Science.gov (United States)

    Harte, Abraham I

    2014-12-31

    Many of the technical complications associated with the general theory of relativity ultimately stem from the nonlinearity of Einstein's equation. It is shown here that an appropriate choice of dynamical variables may be used to eliminate all such nonlinearities beyond a particular order: Both Landau-Lifshitz and tetrad formulations of Einstein's equation are obtained that involve only finite products of the unknowns and their derivatives. Considerable additional simplifications arise in physically interesting cases where metrics become approximately Kerr or, e.g., plane waves, suggesting that the variables described here can be used to efficiently reformulate perturbation theory in a variety of contexts. In all cases, these variables are shown to have simple geometrical interpretations that directly relate the local causal structure associated with the metric of interest to the causal structure associated with a prescribed background. A new method to search for exact solutions is outlined as well.

  10. Nonlinear potential theory of degenerate elliptic equations

    CERN Document Server

    Heinonen, Juha; Martio, Olli

    2006-01-01

    A self-contained treatment appropriate for advanced undergraduates and graduate students, this text offers a detailed development of the necessary background for its survey of the nonlinear potential theory of superharmonic functions.Starting with the theory of weighted Sobolev spaces, this treatment advances to the theory of weighted variational capacity. Succeeding chapters investigate solutions and supersolutions of equations, with emphasis on refined Sobolev spaces, variational integrals, and harmonic functions. Chapter 7 defines superharmonic functions via the comparison principle, and ch

  11. Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2013-01-01

    Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.

  12. Solving Nonlinear Euler Equations with Arbitrary Accuracy

    Science.gov (United States)

    Dyson, Rodger W.

    2005-01-01

    A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.

  13. Scientific discussion | Unifying physics and technology in light of Maxwell's equations | Royal Society, London | 16-17 November

    CERN Multimedia

    2015-01-01

    Discussion meeting organised by Professor Anatoly Zayats, Professor John Ellis and Professor Roy Pike.   16-17 November 2015 at The Royal Society 6-9 Carlton House Terrace, London Event details The unification of electric and magnetic fields about 150 years ago in what is now known as electromagnetic theory expressed in Maxwell's Equations has enabled virtually all modern electrical, electronic, radio and photonic technologies. What new scientific breakthroughs and applications will unification with the other fields provide? This meeting brings together high-energy, optical, quantum and solid-state physicists to discuss recent developments enabled by Maxwell's Equations and will try to predict future innovations. Attending this event This event is intended for researchers in relevant fields and is free to attend. There are a limited number of places and registration is essential. For more information, visit the Royal Society event website.

  14. Maxwell-Schroedinger equations for a dilute gas Bose-Einstein condensate coupled to an electromagnetic field

    International Nuclear Information System (INIS)

    Avetisyan, Yu. A.; Trifonov, E. D.

    2008-01-01

    We give a general formulation of the semiclassical approach to solving the problem of interaction between a Bose-Einstein condensate of dilute gas and electromagnetic radiation without using the commonly applied mean-field approximation. We suggest variants of the systems of Maxwell-Schroedinger equations whose solution describes such effects as superradiant light scattering, light beam amplification, atomic wave (atomic laser) amplification, induced transparency, and reduction in the group velocity of light

  15. Forces Associated with Nonlinear Nonholonomic Constraint Equations

    Science.gov (United States)

    Roithmayr, Carlos M.; Hodges, Dewey H.

    2010-01-01

    A concise method has been formulated for identifying a set of forces needed to constrain the behavior of a mechanical system, modeled as a set of particles and rigid bodies, when it is subject to motion constraints described by nonholonomic equations that are inherently nonlinear in velocity. An expression in vector form is obtained for each force; a direction is determined, together with the point of application. This result is a consequence of expressing constraint equations in terms of dot products of vectors rather than in the usual way, which is entirely in terms of scalars and matrices. The constraint forces in vector form are used together with two new analytical approaches for deriving equations governing motion of a system subject to such constraints. If constraint forces are of interest they can be brought into evidence in explicit dynamical equations by employing the well-known nonholonomic partial velocities associated with Kane's method; if they are not of interest, equations can be formed instead with the aid of vectors introduced here as nonholonomic partial accelerations. When the analyst requires only the latter, smaller set of equations, they can be formed directly; it is not necessary to expend the labor to form the former, larger set first and subsequently perform matrix multiplications.

  16. Nonlinear moments method for the isotropic Boltzmann equation and the invariance of collision integral

    International Nuclear Information System (INIS)

    Ehnder, A.Ya.; Ehnder, I.A.

    1999-01-01

    A new approach to develop nonlinear moment method to solve the Boltzmann equation is presented. This approach is based on the invariance of collision integral as to the selection of the base functions. The Sonin polynomials with the Maxwell weighting function are selected to serve as the base functions. It is shown that for the arbitrary cross sections of the interaction the matrix elements corresponding to the moments from the nonlinear integral of collisions are bound by simple recurrent bonds enabling to express all nonlinear matrix elements in terms of the linear ones. As a result, high-efficiency numerical pattern to calculate nonlinear matrix elements is obtained. The presented approach offers possibilities both to calculate relaxation processes within high speed range and to some more complex kinetic problems [ru

  17. High-order FDTD methods via derivative matching for Maxwell's equations with material interfaces

    International Nuclear Information System (INIS)

    Zhao Shan; Wei, G.W.

    2004-01-01

    This paper introduces a series of novel hierarchical implicit derivative matching methods to restore the accuracy of high-order finite-difference time-domain (FDTD) schemes of computational electromagnetics (CEM) with material interfaces in one (1D) and two spatial dimensions (2D). By making use of fictitious points, systematic approaches are proposed to locally enforce the physical jump conditions at material interfaces in a preprocessing stage, to arbitrarily high orders of accuracy in principle. While often limited by numerical instability, orders up to 16 and 12 are achieved, respectively, in 1D and 2D. Detailed stability analyses are presented for the present approach to examine the upper limit in constructing embedded FDTD methods. As natural generalizations of the high-order FDTD schemes, the proposed derivative matching methods automatically reduce to the standard FDTD schemes when the material interfaces are absent. An interesting feature of the present approach is that it encompasses a variety of schemes of different orders in a single code. Another feature of the present approach is that it can be robustly implemented with other high accuracy time-domain approaches, such as the multiresolution time-domain method and the local spectral time-domain method, to cope with material interfaces. Numerical experiments on both 1D and 2D problems are carried out to test the convergence, examine the stability, access the efficiency, and explore the limitation of the proposed methods. It is found that operating at their best capacity, the proposed high-order schemes could be over 2000 times more efficient than their fourth-order versions in 2D. In conclusion, the present work indicates that the proposed hierarchical derivative matching methods might lead to practical high-order schemes for numerical solution of time-domain Maxwell's equations with material interfaces

  18. Soliton solutions of some nonlinear evolution equations with time ...

    Indian Academy of Sciences (India)

    Dark and bright soliton; KdV equation; nonlinear Schrödinger equation; G(m, n) equation. PACS Nos 42.81.Dp; 42.65.Tg; 05.45.Yv. 1. Introduction. To find exact solutions of the nonlinear evolution equations (NLEEs) is one of the cen- tral themes in mathematics and physics. In recent years, many powerful methods have.

  19. Soliton solutions of some nonlinear evolution equations with time ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 80; Issue 2. Soliton solutions of some nonlinear evolution equations with time-dependent coefficients ... In this paper, we obtain exact soliton solutions of the modified KdV equation, inho-mogeneous nonlinear Schrödinger equation and (, ) equation with variable ...

  20. Analytic treatment of nonlinear evolution equations using first ...

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/pram/079/01/0003-0017 ... Exact solutions; first integral method; combined KdV–mKdV equation; Pochhammer–Chree equation; coupled nonlinear evolution equations. ... The power of this manageable method is confirmed by applying it for three selected nonlinear evolution equations.

  1. Analytic treatment of nonlinear evolution equations using first ...

    Indian Academy of Sciences (India)

    In this paper, we show the applicability of the first integral method to combined KdV-mKdV equation, Pochhammer–Chree equation and coupled nonlinear evolution equations. The power of this manageable method is confirmed by applying it for three selected nonlinear evolution equations. This approach can also be ...

  2. Nonlinear self-adjointness of the Krichever-Novikov equation

    Science.gov (United States)

    Galiakberova, L. R.; Ibragimov, N. H.

    2014-02-01

    It is known that the classification of third-order evolutionary equations with the constant separant possessing a nontrivial Lie-Bäcklund algebra (in other words, integrable equations) results in the linear equation, the KdV equation and the Krichever-Novikov equation. The first two of these equations are nonlinearly self-adjoint. This property allows to associate conservation laws of the equations in question with their symmetries. The problem on nonlinear self-adjointness of the Krichever-Novikov equation has not been solved yet. In the present paper we solve this problem and find the explicit form of the differential substitution providing the nonlinear self-adjointness.

  3. Nonlinear partial differential equations and their applications

    CERN Document Server

    Lions, Jacques Louis

    2002-01-01

    This book contains the written versions of lectures delivered since 1997 in the well-known weekly seminar on Applied Mathematics at the Collège de France in Paris, directed by Jacques-Louis Lions. It is the 14th and last of the series, due to the recent and untimely death of Professor Lions. The texts in this volume deal mostly with various aspects of the theory of nonlinear partial differential equations. They present both theoretical and applied results in many fields of growing importance such as Calculus of variations and optimal control, optimization, system theory and control, op

  4. Exact and explicit solitary wave solutions to some nonlinear equations

    International Nuclear Information System (INIS)

    Jiefang Zhang

    1996-01-01

    Exact and explicit solitary wave solutions are obtained for some physically interesting nonlinear evolutions and wave equations in physics and other fields by using a special transformation. These equations include the KdV-Burgers equation, the MKdV-Burgers equation, the combined KdV-MKdV equation, the Newell-Whitehead equation, the dissipative Φ 4 -model equation, the generalized Fisher equation, and the elastic-medium wave equation

  5. Nonlinear dynamics in the relativistic field equation

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Mizuno, Yuji; Kado, Tatsuhiko; Zhao, Hua-An

    2007-01-01

    We have investigated relativistic equations and chaotic behaviors of the gravitational field with the use of general relativity and nonlinear dynamics. The space component of the Friedmann equation shows chaotic behaviors in case of the inflation (h=G-bar /G>0) and open (ζ=-1) universe. In other cases (h= 0 andx-bar 0 ) and the parameters (a, b, c and d); (2) the self-similarity of solutions in the x-x-bar plane and the x-ρ plane. We carried out the numerical calculations with the use of the microsoft EXCEL. The self-similarity and the hierarchy structure of the universe have been also discussed on the basis of E-infinity theory

  6. Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations

    International Nuclear Information System (INIS)

    Esteban, M.J.; Georgiev, V.; Sere, E.

    1995-01-01

    The Maxwell-Dirac system describes the interaction of an electron with its own electromagnetic field. We prove the existence of soliton-like solutions of Maxwell-Dirac in (3+1)-Minkowski space-time. The solutions obtained are regular, stationary in time, and localized in space. They are found by a variational method, as critical points of an energy functional. This functional is strongly indefinite and presents a lack of compactness. We also find soliton-like solutions for the Klein-Gordon-Dirac system, arising in the Yukawa model. (author). 32 refs

  7. Equating TIMSS Mathematics Subtests with Nonlinear Equating Methods Using NEAT Design: Circle-Arc Equating Approaches

    Science.gov (United States)

    Ozdemir, Burhanettin

    2017-01-01

    The purpose of this study is to equate Trends in International Mathematics and Science Study (TIMSS) mathematics subtest scores obtained from TIMSS 2011 to scores obtained from TIMSS 2007 form with different nonlinear observed score equating methods under Non-Equivalent Anchor Test (NEAT) design where common items are used to link two or more test…

  8. A unified Hamiltonian solution to Maxwell-Schrödinger equations for modeling electromagnetic field-particle interaction

    Science.gov (United States)

    Chen, Yongpin P.; Sha, Wei E. I.; Jiang, Lijun; Meng, Min; Wu, Yu Mao; Chew, Weng Cho

    2017-06-01

    A novel unified Hamiltonian approach is proposed to solve Maxwell-Schrödinger equation for modeling the interaction between classical electromagnetic (EM) fields and particles. Based on the Hamiltonian of electromagnetics and quantum mechanics, a unified Maxwell-Schrödinger system is derived by the variational principle. The coupled system is well-posed and symplectic, which ensures energy conserving property during the time evolution. However, due to the disparity of wavelengths of EM waves and that of electron waves, a numerical implementation of the finite-difference time-domain (FDTD) method to the multiscale coupled system is extremely challenging. To overcome this difficulty, a reduced eigenmode expansion technique is first applied to represent the wave function of the particle. Then, a set of ordinary differential equations (ODEs) governing the time evolution of the slowly-varying expansion coefficients are derived to replace the original Schrödinger equation. Finally, Maxwell's equations represented by the vector potential with a Coulomb gauge, together with the ODEs, are solved self-consistently. For numerical examples, the interaction between EM fields and a particle is investigated for both the closed, open and inhomogeneous electromagnetic systems. The proposed approach not only captures the Rabi oscillation phenomenon in the closed cavity but also captures the effects of radiative decay and shift in the open free space. After comparing with the existing theoretical approximate models, it is found that the approximate models break down in certain cases where a rigorous self-consistent approach is needed. This work is helpful for the EM simulation of emerging nanodevices or next-generation quantum electrodynamic systems.

  9. On a new series of integrable nonlinear evolution equations

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Wadati, Miki; Konno, Kimiaki; Shimizu, Tohru.

    1980-10-01

    Recent results of our research are surveyed in this report. The derivative nonlinear Schroedinger equation for the circular polarized Alfven wave admits the spiky soliton solutions for the plane wave boundary condition. The nonlinear equation for complex amplitude associated with the carrier wave is shown to be a generalized nonlinear Schroedinger equation, having the ordinary cubic nonlinear term and the derivative of cubic nonlinear term. A generalized scheme of the inverse scattering transformation has confirmed that superposition of the A-K-N-S scheme and the K-N scheme for the component equations valids for the generalized nonlinear Schroedinger equation. Then, two types of new integrable nonlinear evolution equation have been derived from our scheme of the inverse scattering transformation. One is the type of nonlinear Schroedinger equation, while the other is the type of Korteweg-de Vries equation. Brief discussions are presented for physical phenomena, which could be accounted by the second type of the new integrable nonlinear evolution equation. Lastly, the stationary solitary wave solutions have been constructed for the integrable nonlinear evolution equation of the second type. These solutions have peculiar structure that they are singular and discrete. It is a new challenge to construct singular potentials by the inverse scattering transformation. (author)

  10. Nonlinear integral equations for the sausage model

    Science.gov (United States)

    Ahn, Changrim; Balog, Janos; Ravanini, Francesco

    2017-08-01

    The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.

  11. Nontrivial Periodic Solutions for Nonlinear Second-Order Difference Equations

    Directory of Open Access Journals (Sweden)

    Tieshan He

    2011-01-01

    Full Text Available This paper is concerned with the existence of nontrivial periodic solutions and positive periodic solutions to a nonlinear second-order difference equation. Under some conditions concerning the first positive eigenvalue of the linear equation corresponding to the nonlinear second-order equation, we establish the existence results by using the topological degree and fixed point index theories.

  12. Long-term strength curves generated by the nonlinear Maxwell-type model for viscoelastoplastic materials and the linear damage rule under step loading

    Directory of Open Access Journals (Sweden)

    Andrew V. Khokhlov

    2016-09-01

    Full Text Available The nonlinear Maxwell-type constitutive relation with two arbitrary material functions is formulated for viscoelastoplastic materials and studied analytically in uni-axial case to reveal capabilities of the model and its applicability scope. Its coupling with a number of fracture criteria is analyzed in order to simulate creep rupture under constant and piecewise-constant loading and to compare creep life estimates arising as a result. The limit strain criterion, the critical dissipation criterion and two proposed new families of failure criteria taking into account a strain history (i.e. a whole creep curve are considered. Long-term strength curves equations generated by each one of the four chosen failure criteria are derived. Their general qualitative properties are analyzed and compared to each other under minimal restrictions on material functions of the constitutive relation. It is proved that qualitative properties of all theoretic long-term strength curves coincide with basic properties of typical test long-term strength curves of viscoelastoplastic materials. For every failure criteria considered herein, rapture time under step-wise loading is evaluated for arbitrary material functions and compared to the lifetime yielding from the linear damage accumulation rule (i.e. “Miner’s rule”. General formulas for cumulative damage (“Miner’s sum” deviations from unity are obtained for all failure criteria coupled with the nonlinear Maxwell-type constitutive relation. Their dependences on material functions and loading program parameters are examined. In particular, it is proved that the linear damage rule is exactly valid for the critical dissipation criterion whatever material functions, number of loading steps and stress levels are chosen. On the contrary, for the limit strain criterion, the linear damage rule is never valid for two-step loading and cumulative damage at rapture instant is greater or less than unity depending on the

  13. Multirate Particle-in-Cell Time Integration Techniques of Vlasov-Maxwell Equations for Collisionless Kinetic Plasma Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guangye [Los Alamos National Laboratory; Chacon, Luis [Los Alamos National Laboratory; Knoll, Dana Alan [Los Alamos National Laboratory; Barnes, Daniel C [Coronado Consulting

    2015-07-31

    A multi-rate PIC formulation was developed that employs large timesteps for slow field evolution, and small (adaptive) timesteps for particle orbit integrations. Implementation is based on a JFNK solver with nonlinear elimination and moment preconditioning. The approach is free of numerical instabilities (ωpeΔt >>1, and Δx >> λD), and requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant gains (vs. conventional explicit PIC) may be possible for large scale simulations. The paper is organized as follows: Vlasov-Maxwell Particle-in-cell (PIC) methods for plasmas; Explicit, semi-implicit, and implicit time integrations; Implicit PIC formulation (Jacobian-Free Newton-Krylov (JFNK) with nonlinear elimination allows different treatments of disparate scales, discrete conservation properties (energy, charge, canonical momentum, etc.)); Some numerical examples; and Summary.

  14. Application of the trial equation method for solving some nonlinear ...

    Indian Academy of Sciences (India)

    the trial equation method. Also a more general trial equation method is proposed. Keywords. Trial equation method; KdV equation; K(m, n) equation; dual-power law; soliton solution. PACS Nos 02.30.Jr; 02.70.Wz; 04.20.Jb. 1. Introduction. Nonlinear phenomena exist in all the fields such as fluid mechanics, plasma physics, ...

  15. Model for describing plasmonic nanolasers using Maxwell-Liouville equations with finite-difference time-domain calculations

    Science.gov (United States)

    Trivedi, Dhara J.; Wang, Danqing; Odom, Teri W.; Schatz, George C.

    2017-11-01

    We present a theoretical study of lasing action when plasmonic metallic structures that show lattice plasmon resonances are embedded in a gain medium. Our model combines classical electrodynamics for arrays of gold nanoparticles with a four-level quantum Liouville model of the laser dye photophysics. A numerical solution was implemented using finite-difference time-domain calculations coupled with a finite-difference solution to the Liouville equation. A particular focus of this work is the influence of dephasing in the quantum dynamics on the emission intensity at the threshold for lasing. We find that dephasing in the quantum system leads to reduced lasing emission, but with little effect on the long-term population inversion. Both electronic and vibrational dephasing is considered, but only electronic dephasing is significant, with the fully dephased result appearing for dephasing times comparable to plasmon dephasing (˜10 fs) while fully coherent results involve >100 ps dephasing times as determined by the rate of stimulated emission. There are factor-of-2 differences between the Maxwell-Liouville results (greater emission intensities and narrower widths) compared to the corresponding results of rate-equation models of the dye states, which indicates the importance of using the Maxwell-Liouville approach in modeling these systems. We also examine rate-equation models with and without constraints arising from the Pauli exclusion principle, and we find relatively small effects.

  16. Semiclassical quantization of the nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nohl, C.R.

    1976-01-01

    Using the functional integral technique of Dashen, Hasslacher, and Neveu, we perform a semiclassical quantization of the nonlinear Schrodinger equation (NLSE), which reproduces McGuire's exact result for the energy levels of the bound states of the theory. We show that the stability angle formalism leads to the one-loop normal ordering and self-energy renormalization expected from perturbation theory, and demonstrate that taking into account center-of-mass motion gives the correct nonrelativistic energy--momentum relation. We interpret the classical solution in the context of the quantum theory, relating it to the matrix element of the field operator between adjacent bound states in the limit of large quantum numbers. Finally, we quantize the NLSE as a theory of N component fermion fields and show that the semiclassical method yields the exact energy levels and correct degeneracies

  17. Solitary waves, steepening and initial collapse in the Maxwell-Lorentz system

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Brio, Moysey; Webb, Garry

    2002-01-01

    We present a numerical study of Maxwell's equations in nonlinear dispersive optical media describing propagation of pulses in one Cartesian space dimension. Dispersion and nonlinearity are accounted for by a linear Lorentz model and an instantaneous Kerr nonlinearity, respectively. The dispersion......–Rosales weakly dispersive system. The weak dispersion in general cannot prevent the wave breaking with instantaneous or delayed nonlinearities....

  18. The multi-order envelope periodic solutions to the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Xiao Yafeng; Xue Haili; Zhang Hongqing

    2011-01-01

    Based on Jacobi elliptic function and the Lame equation, the perturbation method is applied to get the multi-order envelope periodic solutions of the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation. These multi-order envelope periodic solutions can degenerate into the different envelope solitary solutions. (authors)

  19. Decomposition of a hierarchy of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Geng Xianguo

    2003-01-01

    The generalized Hamiltonian structures for a hierarchy of nonlinear evolution equations are established with the aid of the trace identity. Using the nonlinearization approach, the hierarchy of nonlinear evolution equations is decomposed into a class of new finite-dimensional Hamiltonian systems. The generating function of integrals and their generator are presented, based on which the finite-dimensional Hamiltonian systems are proved to be completely integrable in the Liouville sense. As an application, solutions for the hierarchy of nonlinear evolution equations are reduced to solving the compatible Hamiltonian systems of ordinary differential equations

  20. Partially integrable nonlinear equations with one higher symmetry

    International Nuclear Information System (INIS)

    Mikhailov, A V; Novikov, V S; Wang, J P

    2005-01-01

    In this letter, we present a family of second order in time nonlinear partial differential equations, which have only one higher symmetry. These equations are not integrable, but have a solution depending on one arbitrary function. (letter to the editor)

  1. Oscillation criteria for third order delay nonlinear differential equations

    Directory of Open Access Journals (Sweden)

    E. M. Elabbasy

    2012-01-01

    via comparison with some first differential equations whose oscillatory characters are known. Our results generalize and improve some known results for oscillation of third order nonlinear differential equations. Some examples are given to illustrate the main results.

  2. Application of the trial equation method for solving some nonlinear ...

    Indian Academy of Sciences (India)

    Their key idea is to expand solutions of given differential equations as functions of solutions of solvable differential equations, in particular, polynomial and rational func- tions. This idea is so good that many types of nonlinear differential equations can be solved by it. Also, Liu proposed the trial equation method and applied ...

  3. Application of the trial equation method for solving some nonlinear ...

    Indian Academy of Sciences (India)

    In this paper some exact solutions including soliton solutions for the KdV equation with dual power law nonlinearity and the (, ) equation with generalized evolution are obtained using the trial equation method. Also a more general trial equation method is proposed.

  4. Comment on “Maxwell's equations and electromagnetic Lagrangian density in fractional form” [J. Math. Phys. 53, 033505 (2012)

    International Nuclear Information System (INIS)

    Rabei, Eqab M.; Al-Jamel, A.; Widyan, H.; Baleanu, D.

    2014-01-01

    In a recent paper, Jaradat et al. [J. Math. Phys. 53, 033505 (2012)] have presented the fractional form of the electromagnetic Lagrangian density within the Riemann-Liouville fractional derivative. They claimed that the Agrawal procedure [O. P. Agrawal, J. Math. Anal. Appl. 272, 368 (2002)] is used to obtain Maxwell's equations in the fractional form, and the Hamilton's equations of motion together with the conserved quantities obtained from fractional Noether's theorem are reported. In this comment, we draw the attention that there are some serious steps of the procedure used in their work are not applicable even though their final results are correct. Their work should have been done based on a formulation as reported by Baleanu and Muslih [Phys. Scr. 72, 119 (2005)

  5. Simple equation method for nonlinear partial differential equations and its applications

    Directory of Open Access Journals (Sweden)

    Taher A. Nofal

    2016-04-01

    Full Text Available In this article, we focus on the exact solution of the some nonlinear partial differential equations (NLPDEs such as, Kodomtsev–Petviashvili (KP equation, the (2 + 1-dimensional breaking soliton equation and the modified generalized Vakhnenko equation by using the simple equation method. In the simple equation method the trial condition is the Bernoulli equation or the Riccati equation. It has been shown that the method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering problems.

  6. On Some Unusual Properties of Wave Solutions of Free Maxwell Equations

    OpenAIRE

    Augusto Espinoza; Andrey Chubykalo

    2006-01-01

    Se descubren algunas propiedades inusuales de las soluciones de las llamadas ecuaciones libres de Maxwell. Mostramos la existencia de soluciones que representan las ondas electromagnéticas en el vacío para los cuales el vector de Poynting no coincide con el vector de Umov. Se presentan soluciones que corresponden a ondas magnéticas estacionarias de una configuración inusual en el vacío, que describen en el vacio formaciones estables anulares y esféricas de campo. Se demuestra que en el vacío,...

  7. Exact solutions for some nonlinear systems of partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, A.A. [Department of Mathematics, Faculty of Science, Helwan University (Egypt)], E-mail: profdarwish@yahoo.com; Ramady, A. [Department of Mathematics, Faculty of Science, Beni-Suef University (Egypt)], E-mail: aramady@yahoo.com

    2009-04-30

    A direct and unified algebraic method for constructing multiple travelling wave solutions of nonlinear systems of partial differential equations (PDEs) is used and implemented in a computer algebraic system. New solutions for some nonlinear partial differential equations (NLPDEs) are obtained. Graphs of the solutions are displayed.

  8. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.

    2000-01-01

    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  9. On additional symmetries of the nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Orlov, A.Yu.; Shul'man, E.I.; AN SSSR, Moscow. Inst. Teoreticheskoj Fiziki)

    1985-01-01

    Noncommutative algebra of apparently dependent on coordinates (additional) generators of symmetries of one-dimensional nonlinear evolution equations (NEE), solved by the inverse scattering method, is considered. A regular method is suggested to obtain evidently dependent on x and t symmetries of the nonlinear Schroedinger equation and L-A-pairs for them. It is shown that generators of additional symmetries form conformal algebra

  10. Analytic treatment of nonlinear evolution equations using first ...

    Indian Academy of Sciences (India)

    that when solving the solutions of nonlinear evolution equations, they all must need the help of a computer algebra system, such as Maple or Mathematica. Among those approaches, the first integral method is a tool to generate the soliton and periodic solutions of the nonlinear partial differential equations. The advantage of ...

  11. Exact Solution of a Generalized Nonlinear Schrodinger Equation Dimer

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Maniadis, P.; Tsironis, G.P.

    1998-01-01

    We present exact solutions for a nonlinear dimer system defined throught a discrete nonlinear Schrodinger equation that contains also an integrable Ablowitz-Ladik term. The solutions are obtained throught a transformation that maps the dimer into a double Sine-Gordon like ordinary nonlinear...

  12. Nonlinear integrodifferential equations as discrete systems

    Science.gov (United States)

    Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.

    1999-06-01

    We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.

  13. Method of moving frames to solve time-dependent Maxwell's equations on anisotropic curved surfaces: Applications to invisible cloak and ELF propagation

    Science.gov (United States)

    Chun, Sehun

    2017-07-01

    Applying the method of moving frames to Maxwell's equations yields two important advancements for scientific computing. The first is the use of upwind flux for anisotropic materials in Maxwell's equations, especially in the context of discontinuous Galerkin (DG) methods. Upwind flux has been available only to isotropic material, because of the difficulty of satisfying the Rankine-Hugoniot conditions in anisotropic media. The second is to solve numerically Maxwell's equations on curved surfaces without the metric tensor and composite meshes. For numerical validation, spectral convergences are displayed for both two-dimensional anisotropic media and isotropic spheres. In the first application, invisible two-dimensional metamaterial cloaks are simulated with a relatively coarse mesh by both the lossless Drude model and the piecewisely-parametered layered model. In the second application, extremely low frequency propagation on various surfaces such as spheres, irregular surfaces, and non-convex surfaces is demonstrated.

  14. Exploring the nonlinear cloud and rain equation

    Science.gov (United States)

    Koren, Ilan; Tziperman, Eli; Feingold, Graham

    2017-01-01

    Marine stratocumulus cloud decks are regarded as the reflectors of the climate system, returning back to space a significant part of the income solar radiation, thus cooling the atmosphere. Such clouds can exist in two stable modes, open and closed cells, for a wide range of environmental conditions. This emergent behavior of the system, and its sensitivity to aerosol and environmental properties, is captured by a set of nonlinear equations. Here, using linear stability analysis, we express the transition from steady to a limit-cycle state analytically, showing how it depends on the model parameters. We show that the control of the droplet concentration (N), the environmental carrying-capacity (H0), and the cloud recovery parameter (τ) can be linked by a single nondimensional parameter (μ=√{N }/(ατH0) ) , suggesting that for deeper clouds the transition from open (oscillating) to closed (stable fixed point) cells will occur for higher droplet concentration (i.e., higher aerosol loading). The analytical calculations of the possible states, and how they are affected by changes in aerosol and the environmental variables, provide an enhanced understanding of the complex interactions of clouds and rain.

  15. A nonlinear bounce kinetic equation for trapped electrons

    International Nuclear Information System (INIS)

    Gang, F.Y.

    1990-03-01

    A nonlinear bounce averaged drift kinetic equation for trapped electrons is derived. This equation enables one to compute the nonlinear response of the trapped electron distribution function in terms of the field-line projection of a potential fluctuation left-angle e -inqθ φ n right-angle b . It is useful for both analytical and computational studies of the nonlinear evolution of short wavelength (n much-gt 1) trapped electron mode-driven turbulence. 7 refs

  16. Smoothing and Decay Estimates for Nonlinear Diffusion Equations Equations of Porous Medium Type

    CERN Document Server

    Vázquez, Juan Luis

    2006-01-01

    This text is concerned with the quantitative aspects of the theory of nonlinear diffusion equations; equations which can be seen as nonlinear variations of the classical heat equation. They appear as mathematical models in different branches of Physics, Chemistry, Biology, and Engineering, and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on estimates and functional analysis.Concentrating on a class of equations with nonlinearities of power type that lead to degenerate or singular parabolicity ("equations of porou

  17. Exact traveling wave solutions for system of nonlinear evolution equations.

    Science.gov (United States)

    Khan, Kamruzzaman; Akbar, M Ali; Arnous, Ahmed H

    2016-01-01

    In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolution equations those arise in mathematical physics and engineering fields. It is uncomplicated to extend this method to higher-order nonlinear evolution equations in mathematical physics. And it should be possible to apply the same method to nonlinear evolution equations having more general forms of nonlinearities by utilizing the traveling wave hypothesis.

  18. The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves

    Directory of Open Access Journals (Sweden)

    Andrew V. Khokhlov

    2017-04-01

    Full Text Available The nonlinear Maxwell-type constitutive relation with two arbitrary material functions for viscoelastoplastic multi-modulus materials is studied analytically in uniaxial isothermic case to reveal the model abilities and applicability scope and to develop techniques of its identification, tuning and fitting. The constitutive equation is aimed at adequate modeling of the rheological phenomena set which is typical for reonomic materials exhibiting non-linear hereditary properties, strong strain rate sensitivity, secondary creep, yielding at constant stress, tension compression asymmetry and such temperature effects as increase of material compliance, strain rate sensitivity and rates of dissipation, relaxation, creep and plastic strain accumulation with temperature growth. The model is applicable for simulation of mechanical behaviour of various polymers, their solutions and melts, solid propellants, sand-asphalt concretes, composite materials, titanium and aluminum alloys, ceramics at high temperature and so on. To describe the influence of temperature on material mechanical behavior (under isothermic conditions, two scalar material parameters of the model (viscosity coefficient and “modulus of elasticity” are considered as a functions of temperature level. The general restrictions on their properties which are necessary and sufficient for adequate qualitative description of the basic thermomechanical phenomena related to typical temperature influence on creep and relaxation curves, creep recovery curves, creep curves under step-wise loading and quasi-static stress-strain curves of viscoelastoplastic materials are obtained. The restrictions are derived using systematic analytical study of general qualitative features of the theoretic creep and relaxation curves, creep curves under step-wise loading, long-term strength curves and stress-strain curves at constant strain or stress rates generated by the constitutive equation (under minimal

  19. The many faces of Maxwell, Dirac and Einstein equations a Clifford bundle approach

    CERN Document Server

    Rodrigues, Jr, Waldyr A

    2016-01-01

    This book is an exposition of the algebra and calculus of differential forms, of the Clifford and Spin-Clifford bundle formalisms, and of vistas to a formulation of important concepts of differential geometry indispensable for an in-depth understanding of space-time physics. The formalism discloses the hidden geometrical nature of spinor fields. Maxwell, Dirac and Einstein fields are shown to have representatives by objects of the same mathematical nature, namely sections of an appropriate Clifford bundle. This approach reveals unity in diversity and suggests relationships that are hidden in the standard formalisms and opens new paths for research. This thoroughly revised second edition also adds three new chapters: on the Clifford bundle approach to the Riemannian or semi-Riemannian differential geometry of branes; on Komar currents in the context of the General Relativity theory; and an analysis of the similarities and main differences between Dirac, Majorana and ELKO spinor fields. The exercises with solut...

  20. The effect of nonlinearity on unstable zones of Mathieu equation

    Science.gov (United States)

    Saryazdi, M. Gh

    2017-03-01

    Mathieu equation is a well-known ordinary differential equation in which the excitation term appears as the non-constant coefficient. The mathematical modelling of many dynamic systems leads to Mathieu equation. The determination of the locus of unstable zone is important for the control of dynamic systems. In this paper, the stable and unstable regions of Mathieu equation are determined for three cases of linear and nonlinear equations using the homotopy perturbation method. The effect of nonlinearity is examined in the unstable zone. The results show that the transition curves of linear Mathieu equation depend on the frequency of the excitation term. However, for nonlinear equations, the curves depend also on initial conditions. In addition, increasing the amplitude of response leads to an increase in the unstable zone.

  1. International Conference on Differential Equations and Nonlinear Mechanics

    CERN Document Server

    2001-01-01

    The International Conference on Differential Equations and Nonlinear Mechanics was hosted by the University of Central Florida in Orlando from March 17-19, 1999. One of the conference days was dedicated to Professor V. Lakshmikantham in th honor of his 75 birthday. 50 well established professionals (in differential equations, nonlinear analysis, numerical analysis, and nonlinear mechanics) attended the conference from 13 countries. Twelve of the attendees delivered hour long invited talks and remaining thirty-eight presented invited forty-five minute talks. In each of these talks, the focus was on the recent developments in differential equations and nonlinear mechanics and their applications. This book consists of 29 papers based on the invited lectures, and I believe that it provides a good selection of advanced topics of current interest in differential equations and nonlinear mechanics. I am indebted to the Department of Mathematics, College of Arts and Sciences, Department of Mechanical, Materials and Ae...

  2. An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms

    Science.gov (United States)

    Sá, Lucas

    2017-03-01

    Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.

  3. Soliton solutions for some x-dependent nonlinear evolution equations

    International Nuclear Information System (INIS)

    Wang, Pan

    2014-01-01

    Under investigation in this paper are two x-dependent nonlinear evolution equations: the generalized x-dependent nonlinear Schrödinger (NLS) equation and the modified Korteweg–de Vries (KdV) equation. With the help of Hirota method and symbolic computation, the one- and two-soliton solutions have been obtained for the generalized x-dependent NLS and KdV equations. Propagation and evolution of one soliton have been investigated through the physical quantities of amplitude, width and velocity. The effects of the parameters in the equations on the interaction of two solitons have been studied analytically and graphically. (paper)

  4. More on Bogomol’nyi equations of three-dimensional generalized Maxwell-Higgs model using on-shell method

    Energy Technology Data Exchange (ETDEWEB)

    Atmaja, A.N. [Quantum Science Centre, Department of Physics, Faculty of Science, University of Malaya,50603 Kuala Lumpur (Malaysia); Research Center for Physics, Indonesian Institute of Sciences (LIPI),Kompleks PUSPIPTEK Serpong, Tangerang 15310 (Indonesia); Ramadhan, H.S. [Departemen Fisika, FMIPA, Universitas Indonesia,Depok 16424 (Indonesia); Hora, E. da [Coordenadoria Interdisciplinar de Ciência e Tecnologia & Departemento de Física,Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil)

    2016-02-18

    We use a recent on-shell method, developed in http://dx.doi.org/10.1103/PhysRevD.90.105009, to construct Bogomol’nyi equations of the three-dimensional generalized Maxwell-Higgs model http://dx.doi.org/10.1140/epjc/s10052-011-1833-9. The resulting Bogomol’nyi equations are parametrized by a constant C{sub 0} and they can be classified into two types determined by the value of C{sub 0}=0 and C{sub 0}≠0. We identify that the Bogomol’nyi equations obtained by Bazeia et al. http://dx.doi.org/10.1140/epjc/s10052-011-1833-9 are of the (C{sub 0}=0)-type Bogomol’nyi equations. We show that the Bogomol’nyi equations of this type do not admit the Prasad-Sommerfield limit in its spectrum. As a resolution, the vacuum energy must be lifted up by adding some constant to the potential. Some possible solutions whose energy equal to the vacuum are discussed briefly. The on-shell method also reveals a new (C{sub 0}≠0)-type Bogomol’nyi equations. This non-zero C{sub 0} is related to a non-trivial function f{sub C{sub 0}} defined as a difference between energy density of the scalar potential term and of the gauge kinetic term. It turns out that these Bogomol’nyi equations correspond to vortices with locally non-zero pressures, while their average pressureP remain zero globally by the finite energy constraint.

  5. Relativistic extension of a charge-conservative finite element solver for time-dependent Maxwell-Vlasov equations

    Science.gov (United States)

    Na, D.-Y.; Moon, H.; Omelchenko, Y. A.; Teixeira, F. L.

    2018-01-01

    Accurate modeling of relativistic particle motion is essential for physical predictions in many problems involving vacuum electronic devices, particle accelerators, and relativistic plasmas. A local, explicit, and charge-conserving finite-element time-domain (FETD) particle-in-cell (PIC) algorithm for time-dependent (non-relativistic) Maxwell-Vlasov equations on irregular (unstructured) meshes was recently developed by Moon et al. [Comput. Phys. Commun. 194, 43 (2015); IEEE Trans. Plasma Sci. 44, 1353 (2016)]. Here, we extend this FETD-PIC algorithm to the relativistic regime by implementing and comparing three relativistic particle-pushers: (relativistic) Boris, Vay, and Higuera-Cary. We illustrate the application of the proposed relativistic FETD-PIC algorithm for the analysis of particle cyclotron motion at relativistic speeds, harmonic particle oscillation in the Lorentz-boosted frame, and relativistic Bernstein modes in magnetized charge-neutral (pair) plasmas.

  6. Derivation of Maxwell's Equations Based on a Continuum Mechanical Model of Vacuum and a Singularity Model of Electric Charges

    Directory of Open Access Journals (Sweden)

    Xiao-Song Wang

    2008-04-01

    Full Text Available The main purpose of this paper is to seek a mechanical interpretation of electromagnetic phenomena. We suppose that vacuumis filled with a kind of continuously distributed material which may be called $Omega (1$ substratum. Further, we speculate that the $Omega (1$ substratum might behave like a fluid with respect to translational motion of large bodies through it, but would still posses elasticity to produce small transverse vibrations. Thus, we propose a visco-elastic constitutive relation of the $Omega (1$ substratum. Furthermore, we speculate that electric charges are emitting or absorbing the $Omega (1$ substratum continuously and establish a fluidic source and sink model of electric charges. Thus,Maxwell's equations in vacuum are derived by methods of continuum mechanics based on this mechanical model of vacuum and the singularity model of electric charges.

  7. Stability of a Leap-Frog Discontinuous Galerkin Method for Time-Domain Maxwell's Equations in Anisotropic Materials

    Science.gov (United States)

    Araújo, Adérito; Barbeiro, Sílvia; Ghalati, Maryam Khaksar

    2017-05-01

    In this work we discuss the numerical discretization of the time-dependent Maxwell's equations using a fully explicit leap-frog type discontinuous Galerkin method. We present a sufficient condition for the stability, for cases of typical boundary conditions, either perfect electric, perfect magnetic or first order Silver-M\\"uller. The bounds of the stability region point out the influence of not only the mesh size but also the dependence on the choice of the numerical flux and the degree of the polynomials used in the construction of the finite element space, making possible to balance accuracy and computational efficiency. In the model we consider heterogeneous anisotropic permittivity tensors which arise naturally in many applications of interest. Numerical results supporting the analysis are provided.

  8. Additive nonlinear biomass equations: A likelihood-based approach

    Science.gov (United States)

    David L. R. Affleck; Ulises Dieguez-Aranda

    2016-01-01

    Since Parresol’s (Can. J. For. Res. 31:865-878, 2001) seminal article on the topic, it has become standard to develop nonlinear tree biomass equations to ensure compatibility among total and component predictions and to fit these equations using multistep generalized least-squares methods. In particular, many studies have specified equations for total tree...

  9. Existence of solutions of nonlinear integrodifferential equations of ...

    Indian Academy of Sciences (India)

    a nonlinear integrodifferential equation of Sobolev type with nonlocal condition. The results are ... gated the same type of problem to different classes of abstract differential equations in. Banach spaces [1±4, 8, 11, 13, ..... [2] Balachandran K and Chandrasekaran M, Existence of solutions of a delay differential equation with ...

  10. Soliton solutions of some nonlinear evolution equations with time ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we obtain exact soliton solutions of the modified KdV equation, inho- mogeneous nonlinear Schrödinger equation and G(m, n) equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the ...

  11. A new auxiliary equation and exact travelling wave solutions of nonlinear equations

    International Nuclear Information System (INIS)

    Sirendaoreji

    2006-01-01

    A new auxiliary ordinary differential equation and its solutions are used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the auxiliary equation which has more new exact solutions. More new exact travelling wave solutions are obtained for the quadratic nonlinear Klein-Gordon equation, the combined KdV and mKdV equation, the sine-Gordon equation and the Whitham-Broer-Kaup equations

  12. Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations

    Energy Technology Data Exchange (ETDEWEB)

    Mancas, Stefan C. [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, SLP (Mexico)

    2013-09-02

    We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential equations and the Abel equations which in their first-kind form have only cubic and quadratic terms. Then, employing an old integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers–Huxley type equations which are obtained in this way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second order nonlinear equations.

  13. Global solutions of nonlinear Schrödinger equations

    CERN Document Server

    Bourgain, J

    1999-01-01

    This volume presents recent progress in the theory of nonlinear dispersive equations, primarily the nonlinear Schrödinger (NLS) equation. The Cauchy problem for defocusing NLS with critical nonlinearity is discussed. New techniques and results are described on global existence and properties of solutions with large Cauchy data. Current research in harmonic analysis around Strichartz's inequalities and its relevance to nonlinear PDE is presented. Several topics in NLS theory on bounded domains are reviewed. Using the NLS as an example, the book offers comprehensive insight on current research r

  14. Solutions to nonlinear Schrodinger equations for special initial data

    Directory of Open Access Journals (Sweden)

    Takeshi Wada

    2015-11-01

    Full Text Available This article concerns the solvability of the nonlinear Schrodinger equation with gauge invariant power nonlinear term in one space dimension. The well-posedness of this equation is known only for $H^s$ with $s\\ge 0$. Under some assumptions on the nonlinearity, this paper shows that this equation is uniquely solvable for special but typical initial data, namely the linear combinations of $\\delta(x$ and p.v. (1/x, which belong to $H^{-1/2-0}$. The proof in this article allows $L^2$-perturbations on the initial data.

  15. Global existence and uniqueness of nonlinear evolutionary fluid equations

    CERN Document Server

    Qin, Yuming; Wang, Taige

    2015-01-01

    This book presents recent results on nonlinear evolutionary fluid equations such as the compressible (radiative) magnetohydrodynamics (MHD) equations, compressible viscous micropolar fluid equations, the full non-Newtonian fluid equations and non-autonomous compressible Navier-Stokes equations. These types of partial differential equations arise in many fields of mathematics, but also in other branches of science such as physics and fluid dynamics. This book will be a valuable resource for graduate students and researchers interested in partial differential equations, and will also benefit practitioners in physics and engineering.

  16. The matrix nonlinear Schrodinger equation in dimension 2

    DEFF Research Database (Denmark)

    Zuhan, L; Pedersen, Michael

    2001-01-01

    In this paper we study the existence of global solutions to the Cauchy problem for the matrix nonlinear Schrodinger equation (MNLS) in 2 space dimensions. A sharp condition for the global existence is obtained for this equation. This condition is in terms of an exact stationary solution of a semi...... of a semilinear elliptic equation. In the scalar case, the MNLS reduces to the well-known cubic nonlinear Schrodinger equation for which existence of solutions has been studied by many authors. (C) 2001 Academic Press.......In this paper we study the existence of global solutions to the Cauchy problem for the matrix nonlinear Schrodinger equation (MNLS) in 2 space dimensions. A sharp condition for the global existence is obtained for this equation. This condition is in terms of an exact stationary solution...

  17. Nonlinear modes of the tensor Dirac equation and CPT violation

    Science.gov (United States)

    Reifler, Frank J.; Morris, Randall D.

    1993-01-01

    Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated.

  18. Symmetries of nonlinear ordinary differential equations: The ...

    Indian Academy of Sciences (India)

    2015-10-21

    Oct 21, 2015 ... equation and showed that it admits sl(3, R) algebra and constructed a linearizing trans- formation from ... ers of ˙x to zero, one obtains a set of linear partial differential equations for the unknown functions ξ and η. ...... [11] N H Ibragimov, Elementary Lie group analysis and ordinary differential equations (John.

  19. On Some Unusual Properties of Wave Solutions of Free Maxwell Equations

    Directory of Open Access Journals (Sweden)

    Augusto Espinoza

    2006-01-01

    Full Text Available Se descubren algunas propiedades inusuales de las soluciones de las llamadas ecuaciones libres de Maxwell. Mostramos la existencia de soluciones que representan las ondas electromagnéticas en el vacío para los cuales el vector de Poynting no coincide con el vector de Umov. Se presentan soluciones que corresponden a ondas magnéticas estacionarias de una configuración inusual en el vacío, que describen en el vacio formaciones estables anulares y esféricas de campo. Se demuestra que en el vacío, de acuerdo a las soluciones obtenidas el campo eléctrico E puede ser un vector polar así como un vector axial; y el campo magnético B, en su turno, puede ser un vector axial así como también un vector polar. Se muestra que tales soluciones existen cuando los vectores E y B, no son vectores polares ni axiales. Además, estas soluciones corresponden a ondas electromagnéticas que no transfieren energía ni momentos en cualquier punto del vacío.

  20. Rogue waves of the Hirota and the Maxwell-Bloch equations

    Science.gov (United States)

    Li, Chuanzhong; He, Jingsong; Porseizan, K.

    2013-01-01

    In this paper, we derive a Darboux transformation of the Hirota and the Maxwell-Bloch (H-MB) system which is governed by femtosecond pulse propagation through an erbium doped fiber and further generalize it to the matrix form of the n-fold Darboux transformation of this system. This n-fold Darboux transformation implies the determinant representation of nth solutions of (E[n],p[n],η[n]) generated from the known solution of (E,p,η). The determinant representation of (E[n],p[n],η[n]) provides soliton solutions, positon solutions, and breather solutions (both bright and dark breathers) of the H-MB system. From the breather solutions, we also construct a bright and dark rogue wave solution for the H-MB system, which is currently one of the hottest topics in mathematics and physics. Surprisingly, the rogue wave solution for p and η has two peaks because of the order of the numerator and denominator of them. Meanwhile, after fixing the time and spatial parameters and changing two other unknown parameters α and β, we generate a rogue wave shape.

  1. Deterministic methods for the relativistic Vlasov-Maxwell equations and the Van Allen belts dynamics; Methodes deterministes de resolution des equations de Vlasov-Maxwell relativistes en vue du calcul de la dynamique des ceintures de Van Allen

    Energy Technology Data Exchange (ETDEWEB)

    Le Bourdiec, S

    2007-03-15

    Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)

  2. An efficient numerical method for solving nonlinear foam drainage equation

    Science.gov (United States)

    Parand, Kourosh; Delkhosh, Mehdi

    2018-02-01

    In this paper, the nonlinear foam drainage equation, which is a famous nonlinear partial differential equation, is solved by using a hybrid numerical method based on the quasilinearization method and the bivariate generalized fractional order of the Chebyshev functions (B-GFCF) collocation method. First, using the quasilinearization method, the equation is converted into a sequence of linear partial differential equations (LPD), and then these LPDs are solved using the B-GFCF collocation method. A very good approximation of solutions is obtained, and comparisons show that the obtained results are more accurate than the results of other researchers.

  3. Positive Solutions for Coupled Nonlinear Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Wenning Liu

    2014-01-01

    Full Text Available We consider the existence of positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary values. Assume the nonlinear term is superlinear in one equation and sublinear in the other equation. By constructing two cones K1, K2 and computing the fixed point index in product cone K1×K2, we obtain that the system has a pair of positive solutions. It is remarkable that it is established on the Cartesian product of two cones, in which the feature of two equations can be opposite.

  4. Solvability of nonlinear integral equations of product type

    Directory of Open Access Journals (Sweden)

    Bilal Boulfoul

    2018-01-01

    Full Text Available This article concerns nonlinear functional integral equations of product type. The first two equations set on a the positive half-axis encompass different classes of nonlinear integral equations and may involve the product of finitely many integral functions. The existence of integrable solutions is based on improved versions of Krasnoselskii's fixed point theorem combined with techniques of measure of weak noncompactness and some elements from functional analysis. The third one is an integro-differential equation set on a bounded interval, for which the existence of absolutely continuous solutions is provided. Examples show the applicability of our results.

  5. Existence of solutions of nonlinear integrodifferential equations of ...

    Indian Academy of Sciences (India)

    Abstract. In this paper we prove the existence of mild and strong solutions of a nonlinear integrodifferential equation of Sobolev type with nonlocal condition. The results are obtained by using semigroup theory and the Schauder fixed point theorem.

  6. Exactly soluble multidimensional Fokker-Planck equations with nonlinear drift

    International Nuclear Information System (INIS)

    Brand, H.; Schenzle, A.

    1981-01-01

    The time-dependent analytic solutions of three classes of multidimensional Fokker-Planck equations with nonlinear drift are presented together with eigenvalues which are complex and depend essentially on the correlation functions of the fluctuations. (orig.)

  7. Nonlinear damped Schrodinger equation in two space dimensions

    Directory of Open Access Journals (Sweden)

    Tarek Saanouni

    2015-04-01

    Full Text Available In this article, we study the initial value problem for a semi-linear damped Schrodinger equation with exponential growth nonlinearity in two space dimensions. We show global well-posedness and exponential decay.

  8. Oscillation criteria for fourth-order nonlinear delay dynamic equations

    Directory of Open Access Journals (Sweden)

    Yunsong Qi

    2013-03-01

    Full Text Available We obtain criteria for the oscillation of all solutions to a fourth-order nonlinear delay dynamic equation on a time scale that is unbounded from above. The results obtained are illustrated with examples

  9. Analytical solution of differential equation with cubic nonlinearity

    OpenAIRE

    Инхиреева, Т. А.; Козловских, Александр Владимирович

    2016-01-01

    This paper considers method of Cauchy problem solution for nonlinear differential equation. Source of solution error and way of eliminating it is studied. Solution obtained with suggestedmethod is compared with solution obtained with built-in MATLAB functions.

  10. Forced oscillation of hyperbolic equations with mixed nonlinearities

    Directory of Open Access Journals (Sweden)

    Yutaka Shoukaku

    2012-04-01

    Full Text Available In this paper, we consider the mixed nonlinear hyperbolic equations with forcing term via Riccati inequality. Some sufficient conditions for the oscillation are derived by using Young inequality and integral averaging method.

  11. Symmetries of nonlinear ordinary differential equations: The ...

    Indian Academy of Sciences (India)

    2015-10-21

    Oct 21, 2015 ... Lie point symmetries; -symmetries; Noether symmetries; contact symmetries; adjoint symmetries; nonlocal symmetries; hidden symmetries; ... 620 024, India; Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401, India ...

  12. Nonlinear Schrödinger equations with mean terms in nonresonant multidimensional quadratic materials.

    Science.gov (United States)

    Ablowitz, M J; Biondini, G; Blair, S

    2001-04-01

    We derive the asymptotic equations governing the evolution of a quasi-monochromatic optical pulse in a nonresonant quadratic material starting from Maxwell equations. Under rather general assumptions, equations of nonlinear Schrödinger (NLS) type with coupling to mean fields result (here called NLSM). In particular, if the incident pulse is polarized along one of the principal axes of the material, scalar NLSM equations are obtained. For a generic input, however, coupled vector NLSM systems result. Special reductions of these equations include the usual scalar and vector NLS equations. Based on results known for similar systems which arise in other physical contexts, we expect the behavior of the solutions to be characterized by a rather large variety of phenomena. In particular, we show that the presence of the coupling to the dc fields can have a dramatic effect on the dynamics of the optical pulse, and stable localized multidimensional pulses can arise through interaction with boundary terms associated to the mean fields.

  13. On the solution of the nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Zayed, E.M.E.; Zedan, Hassan A.

    2003-01-01

    In this paper we study the nonlinear Schrodinger equation with respect to the unknown function S(x,t). New dimensional reduction and exact solution for a nonlinear Schrodinger equation are presented and a complete group classification is given with respect to the function S(x,t). Moreover, specializing the potential function S(x,t), new classes of invariant solution and group classification are obtained in the cases of physical interest

  14. An introduction to geometric theory of fully nonlinear parabolic equations

    International Nuclear Information System (INIS)

    Lunardi, A.

    1991-01-01

    We study a class of nonlinear evolution equations in general Banach space being an abstract version of fully nonlinear parabolic equations. In addition to results of existence, uniqueness and continuous dependence on the data, we give some qualitative results about stability of the stationary solutions, existence and stability of the periodic orbits. We apply such results to some parabolic problems arising from combustion theory. (author). 24 refs

  15. Averaging approximation to singularly perturbed nonlinear stochastic wave equations

    Science.gov (United States)

    Lv, Yan; Roberts, A. J.

    2012-06-01

    An averaging method is applied to derive effective approximation to a singularly perturbed nonlinear stochastic damped wave equation. Small parameter ν > 0 characterizes the singular perturbation, and να, 0 ⩽ α ⩽ 1/2, parametrizes the strength of the noise. Some scaling transformations and the martingale representation theorem yield the effective approximation, a stochastic nonlinear heat equation, for small ν in the sense of distribution.

  16. dimensional nonlinear Schrödinger equation with spatially

    Indian Academy of Sciences (India)

    Hong-Yu Wu

    2017-08-16

    Aug 16, 2017 ... Abstract. From a generic transformation, a (3+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity is studied and exact spatiotemporal soliton cluster solutions are derived. When the azimuthal parameter m = 0, Gaussian solitons are constructed. For the modulation depth q ...

  17. Nonlinear analysis of a reaction-diffusion system: Amplitude equations

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)

    2012-10-15

    A reaction-diffusion system with a nonlinear diffusion term is considered. Based on nonlinear analysis, the amplitude equations are obtained in the cases of the Hopf and Turing instabilities in the system. Turing pattern-forming regions in the parameter space are determined for supercritical and subcritical instabilities in a two-component reaction-diffusion system.

  18. Nonlinear acoustic wave equations with fractional loss operators.

    Science.gov (United States)

    Prieur, Fabrice; Holm, Sverre

    2011-09-01

    Fractional derivatives are well suited to describe wave propagation in complex media. When introduced in classical wave equations, they allow a modeling of attenuation and dispersion that better describes sound propagation in biological tissues. Traditional constitutive equations from solid mechanics and heat conduction are modified using fractional derivatives. They are used to derive a nonlinear wave equation which describes attenuation and dispersion laws that match observations. This wave equation is a generalization of the Westervelt equation, and also leads to a fractional version of the Khokhlov-Zabolotskaya-Kuznetsov and Burgers' equations. © 2011 Acoustical Society of America

  19. The covariant form of Maxwell equations for the fast simulation of the eddy current non destructive testing of complex specimens

    International Nuclear Information System (INIS)

    Caire, Francois

    2014-01-01

    This PhD work concerns the development of fast numerical tools, dedicated to the computation of the electromagnetic interaction between a low frequency 3D current source and a complex conductor, presenting rough interfaces and/or conductivity variations. The main application concerns the simulation of the Eddy Current nondestructive testing process applied to complex specimens. Indeed, the semi-analytical models available today are restricted to canonical geometries. The proposed method is based on the covariant form of Maxwell's equations, which translates the physical equations and relationships in a non-orthogonal coordinate system depending on the geometry of the specimen. Historically, this method (Curvilinear Coordinate Method, CCM or C-method) has been developed in the framework of optical applications, particularly for the characterization of diffraction gratings. Here, we transpose this formalism into the quasi-static regime and we extend the Second Order Vector Potential formalism, initially dedicated to orthonormal curvilinear coordinates systems, to general curvilinear coordinate systems. Thanks to this change of base, we are able to determine numerically a set of modal solutions of the source-free Maxwell equations in the new coordinate system introduced, and this allows us to represent the unknown fields as modal expansions in source-free domains. Then, the coefficients of these expansions are computed by introducing the source fields and by enforcing the boundary conditions that the total fields must verify at interfaces between the different media. In order to tackle the case of a layered conductor presenting rough interfaces, the generalized SOVP formalism is coupled with a recursive routine called the S-matrix algorithm. On the other hand, the application case of a complex shape specimen with depth-varying physical properties is treated by coupling the modal method we developed with a high-order numerical method: pseudo-spectral method. The

  20. Numerical resolution of the time-domain three-dimensional Maxwell equations by a conform finite element approximation. Part I: theoretical formulation

    International Nuclear Information System (INIS)

    Heintze, E.

    1993-01-01

    The aim of this report is to present a method for solving the time-domain three-dimensional Maxwell equations. This method is based on a variational formulation and can be easily coupled with a particle solver for the Vlasov equation. The necessity to take into account complex three-dimensional geometries and to have a spatial resolution fitted to the various computation zones, leads to choose a finite element method built on tetrahedral unstructured meshes. 12 refs

  1. Analytical exact solution of the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da

    2011-01-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  2. An analysis of the nonlinear equation

    Indian Academy of Sciences (India)

    optimal ... Equation (2) will admit a one-dimensional Lie algebra with the basis ...... u)ux + p(x, u) conditional equivalence groups. They also looked at the determination of conservation laws. All their results will apply to our equation when eq.

  3. Nonlinear ordinary differential equations analytical approximation and numerical methods

    CERN Document Server

    Hermann, Martin

    2016-01-01

    The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...

  4. Numerical solution of the Maxwell-Vlasov equations in the periodic regime. Application to the study of isotope separation by ion cyclotron resonance

    International Nuclear Information System (INIS)

    Omnes, P.

    1999-01-01

    This work is dedicated to the study of the behaviour of a magnetic confined plasma that is excited by a purely sinusoidal electric current delivered by an antenna. The response of the electrons to the electromagnetic field is considered as linear, whereas the ions of the plasma are represented by a non-relativistic Vlasov equation. In order to avoid transients, the coupled Maxwell-Vlasov equations are solved in a periodic mode and in a bounded domain. An equivalent electric conductivity tensor has been defined, this tensor is a linear operator that links the electric current generated by the movement of the particles to the electromagnetic field. Theoretical considerations can assure the existence and uniqueness of a periodical solution to Vlasov equations and of a solution to Maxwell equations in harmonic mode. The system of equations is periodical and has been solved by using an iterative method. The application of this method to the simulation of a isotopic separation device based on ionic cyclotron resonance has shown that the convergence is reached in a few iterations and that the solution is valid. Furthermore a method based on a finite-volume formulation of Maxwell equations in the time domain is presented. 2 new variables are defined in order to better take into account the Gauss' law and the conservation of the magnetic flux, the new system is still hyperbolic. The parallelization of the process has been successfully realized. (A.C.)

  5. Time-independent integral equation for Maxwell's system. Application of radar cross section computation

    International Nuclear Information System (INIS)

    Pujols, Agnes

    1991-01-01

    We prove that the scattering operator for the wave equation in the exterior of an non-homogeneous obstacle exists. Its distribution kernel is represented by a time-dependent boundary integral equation. A space-time integral variational formulation is developed for determining the current induced by the scattering of an electromagnetic wave by an homogeneous object. The discrete approximation of the variational problem using a finite element method in both space and time leads to stable convergent schemes, giving a numerical code for perfectly conducting cylinders. (author) [fr

  6. Derivation of an applied nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, Todd Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Laine, Mark Richard [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schwarz, Jens [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rambo, Patrick K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  7. GHM method for obtaining rationalsolutions of nonlinear differential equations.

    Science.gov (United States)

    Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo

    2015-01-01

    In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.

  8. Traveling wave solutions of a highly nonlinear shallow water equation

    NARCIS (Netherlands)

    Geyer, A.; Quirchmayr, Ronald

    2018-01-01

    Motivated by the question whether higher-order nonlinear model equations, which go beyond the Camassa-Holm regime of moderate amplitude waves, could point us to new types of waves profiles, we study the traveling wave solutions of a quasilinear evolution equation which models the propagation of

  9. Integral conditions for nonoscillation of second order nonlinear differential equations

    Czech Academy of Sciences Publication Activity Database

    Cecchi, M.; Došlá, Z.; Marini, M.; Vrkoč, Ivo

    2006-01-01

    Roč. 64, č. 6 (2006), s. 1278-1289 ISSN 0362-546X R&D Projects: GA AV ČR(CZ) IAA1163401 Institutional research plan: CEZ:AV0Z10190503 Keywords : change of integration * half-linear differential equation * nonlinear differential equation Subject RIV: BA - General Mathematics Impact factor: 0.677, year: 2006

  10. Existence of solutions of nonlinear integrodifferential equations of ...

    Indian Academy of Sciences (India)

    of solutions of semilinear evolution equations of Sobolev type in Banach spaces. This type of equations ... in a Banach space X and ranges contained in a Banach space Y and the nonlinear. Proc. Indian Acad. Sci. ... From the above fact and the closed graph theorem imply the boundedness of the linear operator AB└1 : Y 3 ...

  11. Nonlinear partial differential equations: Integrability, geometry and related topics

    Science.gov (United States)

    Krasil'shchik, Joseph; Rubtsov, Volodya

    2017-03-01

    Geometry and Differential Equations became inextricably entwined during the last one hundred fifty years after S. Lie and F. Klein's fundamental insights. The two subjects go hand in hand and they mutually enrich each other, especially after the "Soliton Revolution" and the glorious streak of Symplectic and Poisson Geometry methods in the context of Integrability and Solvability problems for Non-linear Differential Equations.

  12. Numerical bifurcation analysis of a class of nonlinear renewal equations

    NARCIS (Netherlands)

    Breda, Dimitri; Diekmann, Odo; Liessi, Davide; Scarabel, Francesca

    2016-01-01

    We show, by way of an example, that numerical bifurcation tools for ODE yield reliable bifurcation diagrams when applied to the pseudospectral approximation of a one-parameter family of nonlinear renewal equations. The example resembles logistic-and Ricker-type population equations and exhibits

  13. Analysis of solutions of a nonlinear scalar field differential equation

    Science.gov (United States)

    Muhamadiev, E. M.; Naimov, A. N.

    2017-10-01

    We consider a nonlinear differential equation arising in mathematical models of elementary particle theory. For this equation, we examine questions of the extendability of solutions, the boundedness of solutions at infinity, and the search for new conditions for the existence of a positive particle-like solution.

  14. Iterative estimate of the solution of nonlinear integral equations by ...

    African Journals Online (AJOL)

    The paper considered the application of Picard's iteration scheme in the approximation of solutions of operator equations in Banach spaces. Using Lipschitz continuity condition and the prescribed auxiliary scalar function, the location of existence of solution for a nonlinear integral equation of Fredholm type and second kind ...

  15. Multiple solutions to some singular nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Monica Lazzo

    2001-01-01

    Full Text Available We consider the equation $$ - h^2 Delta u + V_varepsilon(x u = |u|^{p-2} u $$ which arises in the study of standing waves of a nonlinear Schrodinger equation. We allow the potential $V_varepsilon$ to be unbounded below and prove existence and multiplicity results for positive solutions.

  16. Several Dynamical Properties for a Nonlinear Shallow Water Equation

    Directory of Open Access Journals (Sweden)

    Ls Yong

    2014-01-01

    Full Text Available A nonlinear third order dispersive shallow water equation including the Degasperis-Procesi model is investigated. The existence of weak solutions for the equation is proved in the space L1(R∩BV (R under certain assumptions. The Oleinik type estimate and L2N(R  (N is a natural number estimate for the solution are obtained.

  17. Solitary wave solutions to nonlinear evolution equations in ...

    Indian Academy of Sciences (India)

    where u(x,y,t) is a travelling wave solution of nonlinear partial differential equation. We use the ... The ordinary differential equation (9) is then integrated as long as all terms contain derivatives, where we neglect ...... In addition to deterministic perturbation terms, stochastic perturbation terms will also be taken into account.

  18. Exact solutions of some nonlinear partial differential equations using ...

    Indian Academy of Sciences (India)

    The functional variable method is a powerful solution method for obtaining exact solutions of some nonlinear partial differential equations. In this paper, the functional variable method is used to establish exact solutions of the generalized forms of Klein–Gordon equation, the (2 + 1)-dimensional Camassa–Holm ...

  19. MINPACK-1, Subroutine Library for Nonlinear Equation System

    International Nuclear Information System (INIS)

    Garbow, Burton S.

    1984-01-01

    1 - Description of problem or function: MINPACK1 is a package of FORTRAN subprograms for the numerical solution of systems of non- linear equations and nonlinear least-squares problems. The individual programs are: Identification/Description: - CHKDER: Check gradients for consistency with functions, - DOGLEG: Determine combination of Gauss-Newton and gradient directions, - DPMPAR: Provide double precision machine parameters, - ENORM: Calculate Euclidean norm of vector, - FDJAC1: Calculate difference approximation to Jacobian (nonlinear equations), - FDJAC2: Calculate difference approximation to Jacobian (least squares), - HYBRD: Solve system of nonlinear equations (approximate Jacobian), - HYBRD1: Easy-to-use driver for HYBRD, - HYBRJ: Solve system of nonlinear equations (analytic Jacobian), - HYBRJ1: Easy-to-use driver for HYBRJ, - LMDER: Solve nonlinear least squares problem (analytic Jacobian), - LMDER1: Easy-to-use driver for LMDER, - LMDIF: Solve nonlinear least squares problem (approximate Jacobian), - LMDIF1: Easy-to-use driver for LMDIF, - LMPAR: Determine Levenberg-Marquardt parameter - LMSTR: Solve nonlinear least squares problem (analytic Jacobian, storage conserving), - LMSTR1: Easy-to-use driver for LMSTR, - QFORM: Accumulate orthogonal matrix from QR factorization QRFAC Compute QR factorization of rectangular matrix, - QRSOLV: Complete solution of least squares problem, - RWUPDT: Update QR factorization after row addition, - R1MPYQ: Apply orthogonal transformations from QR factorization, - R1UPDT: Update QR factorization after rank-1 addition, - SPMPAR: Provide single precision machine parameters. 4. Method of solution - MINPACK1 uses the modified Powell hybrid method and the Levenberg-Marquardt algorithm

  20. Exact solutions of a nonpolynomially nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Parwani, R.; Tan, H.S.

    2007-01-01

    A nonlinear generalisation of Schrodinger's equation had previously been obtained using information-theoretic arguments. The nonlinearities in that equation were of a nonpolynomial form, equivalent to the occurrence of higher-derivative nonlinear terms at all orders. Here we construct some exact solutions to that equation in 1+1 dimensions. On the half-line, the solutions resemble (exponentially damped) Bloch waves even though no external periodic potential is included. The solutions are nonperturbative as they do not reduce to solutions of the linear theory in the limit that the nonlinearity parameter vanishes. An intriguing feature of the solutions is their infinite degeneracy: for a given energy, there exists a very large arbitrariness in the normalisable wavefunctions. We also consider solutions to a q-deformed version of the nonlinear equation and discuss a natural discretisation implied by the nonpolynomiality. Finally, we contrast the properties of our solutions with other solutions of nonlinear Schrodinger equations in the literature and suggest some possible applications of our results in the domains of low-energy and high-energy physics

  1. Reduction of the equation for lower hybrid waves in a plasma to a nonlinear Schroedinger equation

    Science.gov (United States)

    Karney, C. F. F.

    1977-01-01

    Equations describing the nonlinear propagation of waves in an anisotropic plasma are rarely exactly soluble. However it is often possible to make approximations that reduce the exact equations into a simpler equation. The use of MACSYMA to make such approximations, and so reduce the equation describing lower hybrid waves into the nonlinear Schrodinger equation which is soluble by the inverse scattering method is demonstrated. MACSYMA is used at several stages in the calculation only because there is a natural division between calculations that are easiest done by hand, and those that are easiest done by machine.

  2. A Leap-Frog Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations in Metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Li, J., Waters, J. W., Machorro, E. A.

    2012-06-01

    Numerical simulation of metamaterials play a very important role in the design of invisibility cloak, and sub-wavelength imaging. In this paper, we propose a leap-frog discontinuous Galerkin method to solve the time-dependent Maxwell’s equations in metamaterials. Conditional stability and error estimates are proved for the scheme. The proposed algorithm is implemented and numerical results supporting the analysis are provided.

  3. Self-similar solutions of the modified nonlinear schrodinger equation

    International Nuclear Information System (INIS)

    Kitaev, A.V.

    1986-01-01

    This paper considers a 2 x 2 matrix linear ordinary differential equation with large parameter t and irregular singular point of fourth order at infinity. The leading order of the monodromy data of this equation is calculated in terms of its coefficients. Isomonodromic deformations of the equation are self-similar solutions of the modified nonlinear Schrodinger equation, and therefore inversion of the expressions obtained for the monodromy data gives the leading term in the time-asymptotic behavior of the self-similar solution. The application of these results to the type IV Painleve equation is considered in detail

  4. 1/f Noise from nonlinear stochastic differential equations.

    Science.gov (United States)

    Ruseckas, J; Kaulakys, B

    2010-03-01

    We consider a class of nonlinear stochastic differential equations, giving the power-law behavior of the power spectral density in any desirably wide range of frequency. Such equations were obtained starting from the point process models of 1/fbeta noise. In this article the power-law behavior of spectrum is derived directly from the stochastic differential equations, without using the point process models. The analysis reveals that the power spectrum may be represented as a sum of the Lorentzian spectra. Such a derivation provides additional justification of equations, expands the class of equations generating 1/fbeta noise, and provides further insights into the origin of 1/fbeta noise.

  5. Complex nonlinear Lagrangian for the Hasegawa-Mima equation

    International Nuclear Information System (INIS)

    Dewar, R.L.; Abdullatif, R.F.; Sangeetha, G.G.

    2005-01-01

    The Hasegawa-Mima equation is the simplest nonlinear single-field model equation that captures the essence of drift wave dynamics. Like the Schroedinger equation it is first order in time. However its coefficients are real, so if the potential φ is initially real it remains real. However, by embedding φ in the space of complex functions a simple Lagrangian is found from which the Hasegawa-Mima equation may be derived from Hamilton's Principle. This Lagrangian is used to derive an action conservation equation which agrees with that of Biskamp and Horton. (author)

  6. Nonlinear Fokker-Planck Equations Fundamentals and Applications

    CERN Document Server

    Frank, Till Daniel

    2005-01-01

    Providing an introduction to the theory of nonlinear Fokker-Planck equations, this book discusses fundamental properties of transient and stationary solutions, emphasizing the stability analysis of stationary solutions by means of self-consistency equations, linear stability analysis, and Lyapunov's direct method. Also treated are Langevin equations and correlation functions. Nonlinear Fokker-Planck Equations addresses various phenomena such as phase transitions, multistability of systems, synchronization, anomalous diffusion, cut-off solutions, travelling-wave solutions and the emergence of power law solutions. A nonlinear Fokker-Planck perspective to quantum statistics, generalized thermodynamics, and linear nonequilibrium thermodynamics is given. Theoretical concepts are illustrated where possible by simple examples. The book also reviews several applications in the fields of condensed matter physics, the physics of porous media and liquid crystals, accelerator physics, neurophysics, social sciences, popul...

  7. Adomian solution of a nonlinear quadratic integral equation

    Directory of Open Access Journals (Sweden)

    E.A.A. Ziada

    2013-04-01

    Full Text Available We are concerned here with a nonlinear quadratic integral equation (QIE. The existence of a unique solution will be proved. Convergence analysis of Adomian decomposition method (ADM applied to these type of equations is discussed. Convergence analysis is reliable enough to estimate the maximum absolute truncated error of Adomian’s series solution. Two methods are used to solve these type of equations; ADM and repeated trapezoidal method. The obtained results are compared.

  8. Linear differential equations to solve nonlinear mechanical problems: A novel approach

    OpenAIRE

    Nair, C. Radhakrishnan

    2004-01-01

    Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...

  9. Detection the nonlinear ultrasonic signals based on modified Duffing equations

    Directory of Open Access Journals (Sweden)

    Yuhua Zhang

    Full Text Available The nonlinear ultrasonic signals, like second harmonic generation (SHG signals, could reflect the nonlinearity of material induced by fatigue damage in nonlinear ultrasonic technique which are weak nonlinear signals and usually submerged by strong background noise. In this paper the modified Duffing equations are applied to detect the SHG signals relating to the fatigue damage of material. Due to the Duffing equation could only detect the signal with specific frequency and initial phase, firstly the frequency transformation is carried on the Duffing equation which could detect the signal with any frequency. Then the influence of initial phases of to-be-detected signal and reference signal on the detection result is studied in detail, four modified Duffing equations are proposed to detect actual engineering signals with any initial phase. The relationship between the response amplitude and the total driving force is applied to estimate the amplitude of weak periodic signal. The detection results show the modified Duffing equations could effectively detect the second harmonic in SHG signals. When the SHG signals include strong background noise, the noise doesn’t change the motion state of Duffing equation and the second harmonic signal could be detected until the SNR of noisy SHG signals are −26.3, yet the frequency spectrum method could only identify when the SNR is greater than 0.5. When estimation the amplitude of second harmonic signal, the estimation error of Duffing equation is obviously less than the frequency spectrum analysis method under the same noise level, which illustrates the Duffing equation has the noise immune capacity. The presence of the second harmonic signal in nonlinear ultrasonic experiments could provide an insight about the early fatigue damage of engineering components. Keywords: Modified Duffing equations, SHG signals, Amplitude estimation, Second harmonic signal detection

  10. Scale transformation of Maxwell's equations and scattering by an elliptic cylinder.

    Science.gov (United States)

    Ferrari, Lawrence A

    2011-06-01

    A scale transformation that converts an ellipse into a circle has been suggested in the literature as a method for eliminating the need to evaluate the conventional Mathieu function solution for scattering by an elliptic cylinder. This suggestion is tested by examining the wave equation in the scaled coordinate system and by evaluating the scattering from a thin ellipse for conditions where it is expected that an approximate solution can be obtained using the scalar theory single-slit approximation. It is found that, for a plane electromagnetic wave normally incident on a thin perfectly conducting ellipse, the position of the first minimum in the diffraction pattern, relative to the central axis, differs by approximately a factor of 7 between the single-slit and the scaled theory approach to the problem. The examination of the scaled wave equation and the scattering calculation suggests that, because the scale transformation generates an anisotropic medium, the use of a uniform medium solution in the scaled coordinate system is not appropriate.

  11. Quadrupole terms in the Maxwell equations: Born energy, partial molar volume, and entropy of ions.

    Science.gov (United States)

    Slavchov, Radomir I; Ivanov, Tzanko I

    2014-02-21

    A new equation of state relating the macroscopic quadrupole moment density Q to the gradient of the field ∇E in an isotropic fluid is derived: Q = αQ(∇E - U∇·E/3), where the quadrupolarizability αQ is proportional to the squared molecular quadrupole moment. Using this equation of state, a generalized expression for the Born energy of an ion dissolved in quadrupolar solvent is obtained. It turns out that the potential and the energy of a point charge in a quadrupolar medium are finite. From the obtained Born energy, the partial molar volume and the partial molar entropy of a dissolved ion follow. Both are compared to experimental data for a large number of simple ions in aqueous solutions. From the comparison the value of the quadrupolar length LQ is determined, LQ = (αQ/3ɛ)(1/2) = 1-4 Å. Data for ion transfer from aqueous to polar oil solution are analyzed, which allowed for the determination of the quadrupolarizability of nitrobenzene.

  12. A one-dimensional analysis of real and complex turbulence and the Maxwell set for the stochastic Burgers equation

    International Nuclear Information System (INIS)

    Neate, A D; Truman, A

    2005-01-01

    The inviscid limit of the Burgers equation, with body forces white noise in time, is discussed in terms of the level surfaces of the minimizing Hamilton-Jacobi function and the classical mechanical caustic and their algebraic pre-images under the classical mechanical flow map. The problem is analysed in terms of a reduced (one-dimensional) action function using a circle of ideas due to Arnol'd, Cayley and Klein. We characterize those parts of the caustic which are singular, and give an explicit expression for the cusp density on caustics and level surfaces. By considering the double points of level surfaces we find an explicit formula for the Maxwell set in the two-dimensional polynomial case, and we extend this to higher dimensions using a double discriminant of the reduced action, solving a long-standing problem for Hamiltonian dynamical systems. When the pre-level surface touches the pre-caustic, the geometry (number of cusps) on the level surface changes infinitely rapidly causing 'real turbulence'. Using an idea of Klein, it is shown that the geometry (number of swallowtails) on the caustic also changes infinitely rapidly when the real part of the pre-caustic touches its complex counterpart, causing 'complex turbulence'. These are both inherently stochastic in nature, and we determine their intermittence in terms of the recurrent behaviour of two processes

  13. DIRECT SOLUTIONS OF THE MAXWELL EQUATIONS EXPLAIN OPPOSITION PHENOMENA OBSERVED FOR HIGH-ALBEDO SOLAR SYSTEM OBJECTS

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Liu Li; Dlugach, Janna M.; Rosenbush, Vera K.; Kiselev, Nikolai N.; Shkuratov, Yuri G.

    2009-01-01

    Several spectacular backscattering effects observed for particulate planetary surfaces have been interpreted in terms of the effect of weak localization (WL) of electromagnetic waves. However, the interference concept of WL explicitly relies on the notion of phase of an electromagnetic wave and is strictly applicable only when particles forming the surface are widely separated. Therefore, one needs a definitive quantitative proof of the WL nature of specific optical effects observed for densely packed particulate media. We use numerically exact computer solutions of the Maxwell equations to simulate electromagnetic scattering by realistic models consisting of large numbers of randomly positioned, densely packed particles. By increasing the particle packing density from zero to ∼40%, we track the onset and evolution of the full suite of backscattering optical effects predicted by the low-density theory of WL, including the brightness and polarization opposition effects (BOE and POE). We find that all manifestations of WL, except the circular polarization ratio and POE, are remarkably immune to packing-density effects. Even POE can survive packing densities typical of planetary regolith surfaces. Our numerical data coupled with the results of unique observations at near-backscattering geometries demonstrate that the BOE and POE detected simultaneously for high-albedo solar system objects are caused by the effect of WL.

  14. Backward stochastic differential equations from linear to fully nonlinear theory

    CERN Document Server

    Zhang, Jianfeng

    2017-01-01

    This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

  15. Traveling wave solutions and conservation laws for nonlinear evolution equation

    Science.gov (United States)

    Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa

    2018-02-01

    In this work, the Riccati-Bernoulli sub-ordinary differential equation and modified tanh-coth methods are used to reach soliton solutions of the nonlinear evolution equation. We acquire new types of traveling wave solutions for the governing equation. We show that the equation is nonlinear self-adjoint by obtaining suitable substitution. Therefore, we construct conservation laws for the equation using new conservation theorem. The obtained solutions in this work may be used to explain and understand the physical nature of the wave spreads in the most dispersive medium. The constraint condition for the existence of solitons is stated. Some three dimensional figures for some of the acquired results are illustrated.

  16. Nonlinear partial differential equation in engineering

    CERN Document Server

    Ames, William F

    1972-01-01

    In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat

  17. Electromagnetic fields radiated from a lightning return stroke - Application of an exact solution to Maxwell's equations

    Science.gov (United States)

    Le Vine, D. M.; Meneghini, R.

    1978-01-01

    A solution is presented for the electromagnetic fields radiated by an arbitrarily oriented current filament over a conducting ground plane in the case where the current propagates along the filament at the speed of light, and this solution is interpreted in terms of radiation from lightning return strokes. The solution is exact in the fullest sense; no mathematical approximations are made, and the governing differential equations and boundary conditions are satisfied. The solution has the additional attribute of being specified in closed form in terms of elementary functions. This solution is discussed from the point of view of deducing lightning current wave forms from measurements of the electromagnetic fields and understanding the effects of channel tortuosity on the radiated fields. In addition, it is compared with two approximate solutions, the traditional moment approximation and the Fraunhofer approximation, and a set of criteria describing their applicability are presented and interpreted.

  18. Exact solutions for the quintic nonlinear Schroedinger equation with time and space modulated nonlinearities and potentials

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Calvo, Gabriel F.

    2009-01-01

    In this Letter, by means of similarity transformations, we construct explicit solutions to the quintic nonlinear Schroedinger equation with potentials and nonlinearities depending both on time and on the spatial coordinates. We present the general approach and use it to study some examples and find nontrivial explicit solutions such as periodic (breathers), quasiperiodic and bright and dark soliton solutions

  19. Numerical solution to nonlinear Tricomi equation using WENO schemes

    Directory of Open Access Journals (Sweden)

    Adrian Sescu

    2010-09-01

    Full Text Available Nonlinear Tricomi equation is a hybrid (hyperbolic-elliptic second order partial differential equation, modelling the sonic boom focusing. In this paper, the Tricomi equation is transformed into a hyperbolic system of first order equations, in conservation law form. On the upper boundary, a new mixed boundary condition for the acoustic pressure is used to avoid the inclusion of the Dirac function in the numerical solution. Weighted Essentially Non-Oscillatory (WENO schemes are used for the spatial discretization, and the time marching is carried out using the second order accurate Runge-Kutta total-variation diminishing (TVD scheme.

  20. Embedded solitons in the third-order nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Debabrata; Ali, Sk Golam; Talukdar, B [Department of Physics, Visva-Bharati University, Santiniketan 731235 (India)], E-mail: binoy123@bsnl.in

    2008-06-15

    We work with a sech trial function with space-dependent soliton parameters and envisage a variational study for the nonlinear Schoedinger (NLS) equation in the presence of third-order dispersion. We demonstrate that the variational equations for pulse evolution in this NLS equation provide a natural basis to derive a potential model which can account for the existence of a continuous family of embedded solitons supported by the third-order NLS equation. Each member of the family is parameterized by the propagation velocity and co-efficient of the third-order dispersion.

  1. Wave-breaking and generic singularities of nonlinear hyperbolic equations

    International Nuclear Information System (INIS)

    Pomeau, Yves; Le Berre, Martine; Guyenne, Philippe; Grilli, Stephan

    2008-01-01

    Wave-breaking is studied analytically first and the results are compared with accurate numerical simulations of 3D wave-breaking. We focus on the time dependence of various quantities becoming singular at the onset of breaking. The power laws derived from general arguments and the singular behaviour of solutions of nonlinear hyperbolic differential equations are in excellent agreement with the numerical results. This shows the power of the analysis by methods using generic concepts of nonlinear science. (open problem)

  2. Perturbation Solutions of the Quintic Duffing Equation with Strong Nonlinearities

    Directory of Open Access Journals (Sweden)

    Mehmet Pakdemirli

    Full Text Available The quintic Duffing equation with strong nonlinearities is considered. Perturbation solutions are constructed using two different techniques: The classical multiple scales method (MS and the newly developed multiple scales Lindstedt Poincare method (MSLP. The validity criteria for admissible solutions are derived. Both approximate solutions are contrasted with the numerical solutions. It is found that MSLP provides compatible solution with the numerical solution for strong nonlinearities whereas MS solution fail to produce physically acceptable solution for large perturbation parameters.

  3. Universality in an information-theoretic motivated nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Parwani, R; Tabia, G

    2007-01-01

    Using perturbative methods, we analyse a nonlinear generalization of Schrodinger's equation that had previously been obtained through information-theoretic arguments. We obtain analytical expressions for the leading correction, in terms of the nonlinearity scale, to the energy eigenvalues of the linear Schrodinger equation in the presence of an external potential and observe some generic features. In one space dimension these are (i) for nodeless ground states, the energy shifts are subleading in the nonlinearity parameter compared to the shifts for the excited states; (ii) the shifts for the excited states are due predominantly to contribution from the nodes of the unperturbed wavefunctions, and (iii) the energy shifts for excited states are positive for small values of a regulating parameter and negative at large values, vanishing at a universal critical value that is not manifest in the equation. Some of these features hold true for higher dimensional problems. We also study two exactly solved nonlinear Schrodinger equations so as to contrast our observations. Finally, we comment on the possible significance of our results if the nonlinearity is physically realized

  4. Solving Nonlinear Partial Differential Equations with Maple and Mathematica

    CERN Document Server

    Shingareva, Inna K

    2011-01-01

    The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple an

  5. Existence and Approximate Solutions for Nonlinear Hybrid Fractional Integrodifferential Equations

    Directory of Open Access Journals (Sweden)

    B.C. Dhage

    2016-06-01

    Full Text Available In this paper we prove existence and approximation of the solutions for initial value problems of nonlinear hybrid fractional differential equations with maxima and with a linear as well as quadratic perturbation of second type. The main results rely on Dhage iteration method embodied in the recent hybrid fixed point theorem of Dhage (2014 in a partially ordered normed linear space. The approximation of the solutions of the considered nonlinear fractional differential equations are obtained under weaker mixed partial continuity and Lipschitz conditions. Our hypotheses and the main results are also illustrated by a numerical example.

  6. Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms

    KAUST Repository

    Carrillo, José A.

    2016-09-22

    In this paper we present a numerical scheme for nonlinear continuity equations, which is based on the gradient flow formulation of an energy functional with respect to the quadratic transportation distance. It can be applied to a large class of nonlinear continuity equations, whose dynamics are driven by internal energies, given external potentials and/or interaction energies. The solver is based on its variational formulation as a gradient flow with respect to the Wasserstein distance. Positivity of solutions as well as energy decrease of the semi-discrete scheme are guaranteed by its construction. We illustrate this property with various examples in spatial dimension one and two.

  7. Properties of some nonlinear Schroedinger equations motivated through information theory

    International Nuclear Information System (INIS)

    Yuan, Liew Ding; Parwani, Rajesh R

    2009-01-01

    We update our understanding of nonlinear Schroedinger equations motivated through information theory. In particular we show that a q-deformation of the basic nonlinear equation leads to a perturbative increase in the energy of a system, thus favouring the simplest q = 1 case. Furthermore the energy minimisation criterion is shown to be equivalent, at leading order, to an uncertainty maximisation argument. The special value η = 1/4 for the interpolation parameter, where leading order energy shifts vanish, implies the preservation of existing supersymmetry in nonlinearised supersymmetric quantum mechanics. Physically, η might be encoding relativistic effects.

  8. Integrability of a system of two nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Zhukhunashvili, V.Z.

    1989-01-01

    In recent years the inverse scattering method has achieved significant successes in the integration of nonlinear models that arise in different branches of physics. However, its region of applicability is still restricted, i.e., not all nonlinear models can be integrated. In view of the great mathematical difficulties that arise in integration, it is clearly worth testing a model for integrability before turning to integration. Such a possibility is provided by the Zakharov-Schulman method. The question of the integrability of a system of two nonlinear Schroedinger equations is resolved. It is shown that the previously known cases exhaust all integrable variants

  9. Maxwell's equations in axiomatic quantum field theory. I. Field tensor and potentials. [Borcher's algebraic refomulation

    Energy Technology Data Exchange (ETDEWEB)

    Bongaarts, P.J.M.

    1977-07-01

    An approach to the investigation of the Maxwell field in the framework of axiomatic quantum field theory is presented which employs Borchers' algebraic reformulation of Wightman theory in a modified form adapted to the special features of the electromagnetic field. This makes it possible to clarify the relation between tensor and potential field operators, the meaning and properties of different gauges, the sense in which field equations hold and the properties of state spaces with their special subspaces.

  10. Non-minimal Einstein–Maxwell theory: the Fresnel equation and the Petrov classification of a trace-free susceptibility tensor

    Science.gov (United States)

    Balakin, Alexander B.; Zayats, Alexei E.

    2018-03-01

    We construct a classification of dispersion relations for electromagnetic waves non-minimally coupled to space-time curvature, based on analysis of the susceptibility tensor which appears in the non-minimal Einstein–Maxwell theory. We classify solutions to the Fresnel equation for the model with a trace-free non-minimal susceptibility tensor according to the Petrov scheme. For all Petrov types we discuss specific features of the dispersion relations, and plot the corresponding wave surfaces.

  11. Reduction of the state vector by a nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Pearle, P.

    1976-01-01

    It is hypothesized that the state vector describes the physical state of a single system in nature. Then it is necessary that the state vector of a macroscopic apparatus not assume the form of a superposition of macroscopically distinguishable state vectors. To prevent this, it is suggested that a nonlinear term be added to the Schrodinger equation, which rapidly drives the amplitude of one or another of the state vectors in such a superposition to one, and the rest to zero. It is proposed that it is the phase angles of the amplitudes immediately after a measurement which determine which amplitude is driven to one. A diffusion equation is arrived at to describe the reduction of an ensemble of state vectors corresponding to an ensemble of macroscopically identically prepared experiments. Then a nonlinear term to add to the Schrodinger equation is presented, and it is shown that this leads to the diffusion equation in a weak-coupling approximation

  12. Soliton solutions of coupled nonlinear Klein-Gordon equations

    International Nuclear Information System (INIS)

    Alagesan, T.; Chung, Y.; Nakkeeran, K.

    2004-01-01

    The coupled nonlinear Klein-Gordon equations are analyzed for their integrability properties in a systematic manner through Painleve test. From the Painleve test, by truncating the Laurent series at the constant level term, the Hirota bilinear form is identified, from which one-soliton solutions are derived. Then, the results are generalized to the two, three and N-coupled Klein-Gordon equations

  13. Group-theoretical analysis of variable coefficient nonlinear telegraph equations

    OpenAIRE

    Huang, Ding-jiang; Zhou, Shuigeng

    2011-01-01

    Given a class of differential equations with arbitrary element, the problems of symmetry group, nonclassical symmetry and conservation law classifications are to determine for each member the structure of its Lie symmetry group, conditional symmetry and conservation law under some proper equivalence transformations groups. In this paper, an extensive investigation of these three aspects is carried out for the class of variable coefficient (1+1)-dimensional nonlinear telegraph equations with c...

  14. A new Newton-like method for solving nonlinear equations.

    Science.gov (United States)

    Saheya, B; Chen, Guo-Qing; Sui, Yun-Kang; Wu, Cai-Ying

    2016-01-01

    This paper presents an iterative scheme for solving nonline ar equations. We establish a new rational approximation model with linear numerator and denominator which has generalizes the local linear model. We then employ the new approximation for nonlinear equations and propose an improved Newton's method to solve it. The new method revises the Jacobian matrix by a rank one matrix each iteration and obtains the quadratic convergence property. The numerical performance and comparison show that the proposed method is efficient.

  15. Pseudospectral discretization of nonlinear delay equations : New prospects for numerical bifurcation analysis

    NARCIS (Netherlands)

    Breda, D.; Diekmann, O.; Gyllenberg, M.; Scarabel, F.; Vermiglio, R.

    2016-01-01

    We apply the pseudospectral discretization approach to nonlinear delay models described by delay differential equations, renewal equations, or systems of coupled renewal equations and delay differential equations. The aim is to derive ordinary differential equations and to investigate the stability

  16. Iterative solution of a nonlinear operator equation

    International Nuclear Information System (INIS)

    Chidume, C.E.

    1988-01-01

    Suppose X=L p , p ≥ 2, and K is a non-empty closed convex subset of X. Suppose T:K → X is a monotonic Lipschitzian mapping with Lipschitz constant L ≥ 1 such that, for x in K and fixed f in X, the equation x+Tx=f has a solution in K. Define the sequence (x n ) ∞ n=0 by x 0 is an element of K, x n+1 =x n +λr n , for n ≥ 1, where λ=((p-1)L 2 ) -1 and r n =f-x n -Tx n . Then, (x n ) ∞ n=0 converges strongly to a solution of x+Tx=f in K. Convergence is at least as fast as a geometric progression with ratio (1-λ) 1/2 . A related result deals with convergence of the sequence (x n ) ∞ n=0 when T is monotone and locally Lipschitzian. (author). 19 refs

  17. He's iteration formulation for solving nonlinear algebraic equations

    International Nuclear Information System (INIS)

    Qian, W-X; Ye, Y-H; Chen, J; Mo, L-F

    2008-01-01

    Newton iteration method is sensitive to initial guess and its slope. To overcome the shortcoming, He's iteration method is used to solve nonlinear algebraic equations where Newton iteration method becomes invalid. Some examples are given, showing that the method is effective

  18. Projection-iteration methods for solving nonlinear operator equations

    International Nuclear Information System (INIS)

    Nguyen Minh Chuong; Tran thi Lan Anh; Tran Quoc Binh

    1989-09-01

    In this paper, the authors investigate a nonlinear operator equation in uniformly convex Banach spaces as in metric spaces by using stationary and nonstationary generalized projection-iteration methods. Convergence theorems in the strong and weak sense were established. (author). 7 refs

  19. An approximation method for nonlinear integral equations of Hammerstein type

    International Nuclear Information System (INIS)

    Chidume, C.E.; Moore, C.

    1989-05-01

    The solution of a nonlinear integral equation of Hammerstein type in Hilbert spaces is approximated by means of a fixed point iteration method. Explicit error estimates are given and, in some cases, convergence is shown to be at least as fast as a geometric progression. (author). 25 refs

  20. Blowing-up semilinear wave equation with exponential nonlinearity ...

    Indian Academy of Sciences (India)

    Indian Acad. Sci. (Math. Sci.) Vol. 123, No. 3, August 2013, pp. 365–372. c Indian Academy of Sciences. Blowing-up semilinear wave equation with exponential nonlinearity in two space dimensions. T SAANOUNI. Department of Mathematics, Faculty of Sciences of Tunis,. University of Tunis El Manar, El Manar 2092, Tunisia.

  1. Case-Deletion Diagnostics for Nonlinear Structural Equation Models

    Science.gov (United States)

    Lee, Sik-Yum; Lu, Bin

    2003-01-01

    In this article, a case-deletion procedure is proposed to detect influential observations in a nonlinear structural equation model. The key idea is to develop the diagnostic measures based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm. An one-step pseudo approximation is proposed to reduce the…

  2. An Orthogonal Residual Procedure for Nonlinear Finite Element Equations

    DEFF Research Database (Denmark)

    Krenk, S.

    A general and robust solution procedure for nonlinear finite element equations with limit points is developed. At each equilibrium iteration the magnitude of the load is adjusted such that the residual force is orthogonal to the current displacement increment from the last equilibrium state...

  3. Local Influence Analysis of Nonlinear Structural Equation Models

    Science.gov (United States)

    Lee, Sik-Yum; Tang, Nian-Sheng

    2004-01-01

    By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…

  4. Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.

    Science.gov (United States)

    Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem

    2018-01-01

    In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.

  5. Solitary wave solutions to nonlinear evolution equations in ...

    Indian Academy of Sciences (India)

    This paper obtains solitons as well as other solutions to a few nonlinear evolution equations that appear in various areas of mathematical physics. The two analytical integrators that are applied to extract solutions are tan–cot method and functional variable approaches. The soliton solutions can be used in the further study of ...

  6. Perturbation method for periodic solutions of nonlinear jerk equations

    International Nuclear Information System (INIS)

    Hu, H.

    2008-01-01

    A Lindstedt-Poincare type perturbation method with bookkeeping parameters is presented for determining accurate analytical approximate periodic solutions of some third-order (jerk) differential equations with cubic nonlinearities. In the process of the solution, higher-order approximate angular frequencies are obtained by Newton's method. A typical example is given to illustrate the effectiveness and simplicity of the proposed method

  7. The Local Stability of Solutions for a Nonlinear Equation

    Directory of Open Access Journals (Sweden)

    Haibo Yan

    2014-01-01

    Full Text Available The approach of Kruzkov’s device of doubling the variables is applied to establish the local stability of strong solutions for a nonlinear partial differential equation in the space L1(R by assuming that the initial value only lies in the space L1(R∩L∞(R.

  8. Advances in nonlinear partial differential equations and stochastics

    CERN Document Server

    Kawashima, S

    1998-01-01

    In the past two decades, there has been great progress in the theory of nonlinear partial differential equations. This book describes the progress, focusing on interesting topics in gas dynamics, fluid dynamics, elastodynamics etc. It contains ten articles, each of which discusses a very recent result obtained by the author. Some of these articles review related results.

  9. Maximal saddle solution of a nonlinear elliptic equation involving the ...

    Indian Academy of Sciences (India)

    Abstract. A saddle solution is called maximal saddle solution if its absolute value is not smaller than those absolute values of any solutions that vanish on the Simons cone. C = {s = t} and have the same sign as s − t. We prove the existence of a maximal saddle solution of the nonlinear elliptic equation involving the ...

  10. Maximal saddle solution of a nonlinear elliptic equation involving the ...

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 124; Issue 1. Maximal Saddle ... -Laplacian; maximal saddle solution; monotone iteration methods. ... We prove the existence of a maximal saddle solution of the nonlinear elliptic equation involving the -Laplacian, by using the method of monotone iteration,.

  11. Topological horseshoes in travelling waves of discretized nonlinear wave equations

    International Nuclear Information System (INIS)

    Chen, Yi-Chiuan; Chen, Shyan-Shiou; Yuan, Juan-Ming

    2014-01-01

    Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes

  12. An inhomogeneous wave equation and non-linear Diophantine approximation

    DEFF Research Database (Denmark)

    Beresnevich, V.; Dodson, M. M.; Kristensen, S.

    2008-01-01

    A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...

  13. Invariant Solutions for a Class of Perturbed Nonlinear Wave Equations

    Directory of Open Access Journals (Sweden)

    Waheed A. Ahmed

    2017-11-01

    Full Text Available Approximate symmetries of a class of perturbed nonlinear wave equations are computed using two newly-developed methods. Invariant solutions associated with the approximate symmetries are constructed for both methods. Symmetries and solutions are compared through discussing the advantages and disadvantages of each method.

  14. Numerical treatments for solving nonlinear mixed integral equation

    Directory of Open Access Journals (Sweden)

    M.A. Abdou

    2016-12-01

    Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.

  15. Exact non-linear equations for cosmological perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 41566 (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Wu, David Chan Lon; Yoo, Jaiyul, E-mail: jinn-ouk.gong@apctp.org, E-mail: jchan@knu.ac.kr, E-mail: hr@kasi.re.kr, E-mail: clwu@physik.uzh.ch, E-mail: jyoo@physik.uzh.ch [Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, Universität Zürich, CH-8057 Zürich (Switzerland)

    2017-10-01

    We present a complete set of exact and fully non-linear equations describing all three types of cosmological perturbations—scalar, vector and tensor perturbations. We derive the equations in a thoroughly gauge-ready manner, so that any spatial and temporal gauge conditions can be employed. The equations are completely general without any physical restriction except that we assume a flat homogeneous and isotropic universe as a background. We also comment briefly on the application of our formulation to the non-expanding Minkowski background.

  16. High order analysis of nonlinear periodic differential equations

    International Nuclear Information System (INIS)

    Amore, Paolo; Lamas, Hector Montes

    2004-01-01

    In this Letter we apply a method recently devised in [Phys. Lett. A 316 (2003) 218] to find accurate approximate solutions to a certain class of nonlinear differential equations. The analysis carried out in [Phys. Lett. A 316 (2003) 218] is refined and results of much higher precision are obtained for the problems previously considered (Duffing equation, sextic oscillator). Fast convergence to the exact results is observed both for the frequency and for the Fourier coefficients. The method is also applied with success to more general polynomial potentials (the octic oscillator) and to the van der Pol equation

  17. An Efficient Series Solution for Nonlinear Multiterm Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Moh’d Khier Al-Srihin

    2017-01-01

    Full Text Available In this paper, we introduce an efficient series solution for a class of nonlinear multiterm fractional differential equations of Caputo type. The approach is a generalization to our recent work for single fractional differential equations. We extend the idea of the Taylor series expansion method to multiterm fractional differential equations, where we overcome the difficulty of computing iterated fractional derivatives, which are difficult to be computed in general. The terms of the series are obtained sequentially using a closed formula, where only integer derivatives have to be computed. Several examples are presented to illustrate the efficiency of the new approach and comparison with the Adomian decomposition method is performed.

  18. Modelling of nonlinear shoaling based on stochastic evolution equations

    DEFF Research Database (Denmark)

    Kofoed-Hansen, Henrik; Rasmussen, Jørgen Hvenekær

    1998-01-01

    are recast into evolution equations for the complex amplitudes, and serve as the underlying deterministic model. Next, a set of evolution equations for the cumulants is derived. By formally introducing the well-known Gaussian closure hypothesis, nonlinear evolution equations for the power spectrum...... with experimental data in four different cases as well as with the underlying deterministic model. In general, the agreement is found to be acceptable, even far beyond the region where Gaussianity (Gaussian sea state) may be justified. (C) 1998 Elsevier Science B.V....

  19. New non-linear modified massless Klein-Gordon equation

    Energy Technology Data Exchange (ETDEWEB)

    Asenjo, Felipe A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Facultad de Ingenieria y Ciencias, Santiago (Chile); Hojman, Sergio A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Santiago (Chile); Universidad de Chile, Departamento de Fisica, Facultad de Ciencias, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)

    2017-11-15

    The massless Klein-Gordon equation on arbitrary curved backgrounds allows for solutions which develop ''tails'' inside the light cone and, therefore, do not strictly follow null geodesics as discovered by DeWitt and Brehme almost 60 years ago. A modification of the massless Klein-Gordon equation is presented, which always exhibits null geodesic propagation of waves on arbitrary curved spacetimes. This new equation is derived from a Lagrangian which exhibits current-current interaction. Its non-linearity is due to a self-coupling term which is related to the quantum mechanical Bohm potential. (orig.)

  20. Two-dimensional nonlinear equations of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1985-01-01

    Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations

  1. Nonlinear dynamics in the Einstein-Friedmann equation

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Mizuno, Yuji; Ohta, Shigetoshi; Mori, Keisuke; Horiuchi, Tanji

    2009-01-01

    We have studied the gravitational field equations on the basis of general relativity and nonlinear dynamics. The space component of the Einstein-Friedmann equation shows the chaotic behaviours in case the following conditions are satisfied: (i)the expanding ratio: h=x . /x max = +0.14) for the occurrence of the chaotic behaviours in the Einstein-Friedmann equation (0 ≤ λ ≤ +0.14). The numerical calculations are performed with the use of the Microsoft EXCEL(2003), and the results are shown in the following cases; λ = 2b = +0.06 and +0.14.

  2. A granular computing method for nonlinear convection-diffusion equation

    Directory of Open Access Journals (Sweden)

    Tian Ya Lan

    2016-01-01

    Full Text Available This paper introduces a method of solving nonlinear convection-diffusion equation (NCDE, based on the combination of granular computing (GrC and characteristics finite element method (CFEM. The key idea of the proposed method (denoted as GrC-CFEM is to reconstruct the solution from coarse-grained layer to fine-grained layer. It first gets the nonlinear solution on the coarse-grained layer, and then the function (Taylor expansion is applied to linearize the NCDE on the fine-grained layer. Switch to the fine-grained layer, the linear solution is directly derived from the nonlinear solution. The full nonlinear problem is solved only on the coarse-grained layer. Numerical experiments show that the GrC-CFEM can accelerate the convergence and improve the computational efficiency without sacrificing the accuracy.

  3. Exact solutions of nonlinear generalizations of the Klein Gordon and Schrodinger equations

    International Nuclear Information System (INIS)

    Burt, P.B.

    1978-01-01

    Exact solutions of sine Gordon and multiple sine Gordon equations are constructed in terms of solutions of a linear base equation, the Klein Gordon equation and also in terms of nonlinear base equations where the nonlinearity is polynomial in the dependent variable. Further, exact solutions of nonlinear generalizations of the Schrodinger equation and of additional nonlinear generalizations of the Klein Gordon equation are constructed in terms of solutions of linear base equations. Finally, solutions with spherical symmetry, of nonlinear Klein Gordon equations are given. 14 references

  4. Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell-Stefan model and incompressible Navier-Stokes equations.

    Science.gov (United States)

    Asinari, Pietro

    2009-11-01

    A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.

  5. Non-linear wave equations:Mathematical techniques

    International Nuclear Information System (INIS)

    1978-01-01

    An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es

  6. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    Science.gov (United States)

    Indekeu, Joseph O.; Smets, Ruben

    2017-08-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.

  7. A mixed finite element method for nonlinear diffusion equations

    KAUST Repository

    Burger, Martin

    2010-01-01

    We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.

  8. New ray (characteristic) equations for the equations of physics; Hamilton–Jacobi theory in more-dimensional space

    NARCIS (Netherlands)

    Hoenders, B.J.

    1996-01-01

    The geometrical optical concept of rays is generalized for fields generated by any system of coupled non-linear partial differential equations of arbitrary order like the vector wave equations for (non)linear media, the Maxwell equations, the equations of magneto-hydrodynamics, the system of

  9. Numerical solution of the Maxwell-Vlasov equations in the periodic regime. Application to the study of isotope separation by ion cyclotron resonance; Resolution numerique des equations de Maxwell-Vlasov en regime periodique. Application a l'etude de la separation isotopique par resonance cyclotron ionique

    Energy Technology Data Exchange (ETDEWEB)

    Omnes, P

    1999-01-25

    This work is dedicated to the study of the behaviour of a magnetic confined plasma that is excited by a purely sinusoidal electric current delivered by an antenna. The response of the electrons to the electromagnetic field is considered as linear,whereas the ions of the plasma are represented by a non-relativistic Vlasov equation. In order to avoid transients, the coupled Maxwell-Vlasov equations are solved in a periodic mode and in a bounded domain. An equivalent electric conductivity tensor has been defined, this tensor is a linear operator that links the electric current generated by the movement of the particles to the electromagnetic field. Theoretical considerations can assure the existence and uniqueness of a periodical solution to Vlasov equations and of a solution to Maxwell equations in harmonic mode. The system of equations is periodical and has been solved by using an iterative method. The application of this method to the simulation of a isotopic separation device based on ionic cyclotron resonance has shown that the convergence is reached in a few iterations and that the solution is valid. Furthermore a method based on a finite-volume formulation of Maxwell equations in the time domain is presented. 2 new variables are defined in order to better take into account the Gauss' law and the conservation of the magnetic flux, the new system is still hyperbolic. The parallelization of the process has been successfully realized. (A.C.)

  10. Spectral transform and solvability of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Degasperis, A.

    1979-01-01

    These lectures deal with an exciting development of the last decade, namely the resolving method based on the spectral transform which can be considered as an extension of the Fourier analysis to nonlinear evolution equations. Since many important physical phenomena are modeled by nonlinear partial wave equations this method is certainly a major breakthrough in mathematical physics. We follow the approach, introduced by Calogero, which generalizes the usual Wronskian relations for solutions of a Sturm-Liouville problem. Its application to the multichannel Schroedinger problem will be the subject of these lectures. We will focus upon dynamical systems described at time t by a multicomponent field depending on one space coordinate only. After recalling the Fourier technique for linear evolution equations we introduce the spectral transform method taking the integral equations of potential scattering as an example. The second part contains all the basic functional relationships between the fields and their spectral transforms as derived from the Wronskian approach. In the third part we discuss a particular class of solutions of nonlinear evolution equations, solitons, which are considered by many physicists as a first step towards an elementary particle theory, because of their particle-like behaviour. The effect of the polarization time-dependence on the motion of the soliton is studied by means of the corresponding spectral transform, leading to new concepts such as the 'boomeron' and the 'trappon'. The rich dynamic structure is illustrated by a brief report on the main results of boomeron-boomeron and boomeron-trappon collisions. In the final section we discuss further results concerning important properties of the solutions of basic nonlinear equations. We introduce the Baecklund transform for the special case of scalar fields and demonstrate how it can be used to generate multisoliton solutions and how the conservation laws are obtained. (HJ)

  11. A new sub-equation method applied to obtain exact travelling wave solutions of some complex nonlinear equations

    International Nuclear Information System (INIS)

    Zhang Huiqun

    2009-01-01

    By using a new coupled Riccati equations, a direct algebraic method, which was applied to obtain exact travelling wave solutions of some complex nonlinear equations, is improved. And the exact travelling wave solutions of the complex KdV equation, Boussinesq equation and Klein-Gordon equation are investigated using the improved method. The method presented in this paper can also be applied to construct exact travelling wave solutions for other nonlinear complex equations.

  12. Center manifold for nonintegrable nonlinear Schroedinger equations on the line

    International Nuclear Information System (INIS)

    Weder, R.

    2000-01-01

    In this paper we study the following nonlinear Schroedinger equation on the line, where f is real-valued, and it satisfies suitable conditions on regularity, on growth as a function of u and on decay as x → ± ∞. The generic potential, V, is real-valued and it is chosen so that the spectrum of H:= -d 2 /dx 2 +V consists of one simple negative eigenvalue and absolutely-continuous spectrum filling (0,∞). The solutions to this equation have, in general, a localized and a dispersive component. The nonlinear bound states, that bifurcate from the zero solution at the energy of the eigenvalue of H, define an invariant center manifold that consists of the orbits of time-periodic localized solutions. We prove that all small solutions approach a particular periodic orbit in the center manifold as t→ ± ∞. In general, the periodic orbits are different for t→ ± ∞. Our result implies also that the nonlinear bound states are asymptotically stable, in the sense that each solution with initial data near a nonlinear bound state is asymptotic as t→ ± ∞ to the periodic orbits of nearby nonlinear bound states that are, in general, different for t→ ± ∞. (orig.)

  13. Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations

    Science.gov (United States)

    Zhang, Linghai

    2017-10-01

    The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 0 is a positive constant, if 0 mathematical neuroscience.

  14. Fluctuation-dissipation relation for nonlinear Langevin equations.

    Science.gov (United States)

    Kumaran, V

    2011-04-01

    It is shown that the fluctuation-dissipation theorem is satisfied by the solutions of a general set of nonlinear Langevin equations with a quadratic free-energy functional (constant susceptibility) and field-dependent kinetic coefficients, provided the kinetic coefficients satisfy the Onsager reciprocal relations for the irreversible terms and the antisymmetry relations for the reversible terms. The analysis employs a perturbation expansion of the nonlinear terms, and a functional integral calculation of the correlation and response functions, and it is shown that the fluctuation-dissipation relation is satisfied at each order in the expansion. ©2011 American Physical Society

  15. Dispersion Effects in Nonlinear Light Propagation in 1-D Fiber Gratings

    National Research Council Canada - National Science Library

    Martel, Carlos

    2003-01-01

    ...: The contractor will investigate the use of the so-called nonlinear coupled mode equations (NLCME) to obtain approximate solutions of Maxwells equations for light propagation in periodic optical fiber structures...

  16. Modelling nonlinearity in piezoceramic transducers: From equations to nonlinear equivalent circuits.

    Science.gov (United States)

    Parenthoine, D; Tran-Huu-Hue, L-P; Haumesser, L; Vander Meulen, F; Lematre, M; Lethiecq, M

    2011-02-01

    Quadratic nonlinear equations of a piezoelectric element under the assumptions of 1D vibration and weak nonlinearity are derived by the perturbation theory. It is shown that the nonlinear response can be represented by controlled sources that are added to the classical hexapole used to model piezoelectric ultrasonic transducers. As a consequence, equivalent electrical circuits can be used to predict the nonlinear response of a transducer taking into account the acoustic loads on the rear and front faces. A generalisation of nonlinear equivalent electrical circuits to cases including passive layers and propagation media is then proposed. Experimental results, in terms of second harmonic generation, on a coupled resonator are compared to theoretical calculations from the proposed model. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Unleashing Empirical Equations with "Nonlinear Fitting" and "GUM Tree Calculator"

    Science.gov (United States)

    Lovell-Smith, J. W.; Saunders, P.; Feistel, R.

    2017-10-01

    Empirical equations having large numbers of fitted parameters, such as the international standard reference equations published by the International Association for the Properties of Water and Steam (IAPWS), which form the basis of the "Thermodynamic Equation of Seawater—2010" (TEOS-10), provide the means to calculate many quantities very accurately. The parameters of these equations are found by least-squares fitting to large bodies of measurement data. However, the usefulness of these equations is limited since uncertainties are not readily available for most of the quantities able to be calculated, the covariance of the measurement data is not considered, and further propagation of the uncertainty in the calculated result is restricted since the covariance of calculated quantities is unknown. In this paper, we present two tools developed at MSL that are particularly useful in unleashing the full power of such empirical equations. "Nonlinear Fitting" enables propagation of the covariance of the measurement data into the parameters using generalized least-squares methods. The parameter covariance then may be published along with the equations. Then, when using these large, complex equations, "GUM Tree Calculator" enables the simultaneous calculation of any derived quantity and its uncertainty, by automatic propagation of the parameter covariance into the calculated quantity. We demonstrate these tools in exploratory work to determine and propagate uncertainties associated with the IAPWS-95 parameters.

  18. Painleve analysis, conservation laws, and symmetry of perturbed nonlinear equations

    International Nuclear Information System (INIS)

    Basak, S.; Chowdhury, A.R.

    1987-01-01

    The authors consider the Lie-Backlund symmetries and conservation laws of a perturbed KdV equation and NLS equation. The arbitrary coefficients of the perturbing terms can be related to the condition of existence of nontrivial LB symmetry generators. When the perturbed KdV equation is subjected to Painleve analysis a la Weiss, it is found that the resonance position changes compared to the unperturbed one. They prove the compatibility of the overdetermined set of equations obtained at the different stages of recursion relations, at least for one branch. All other branches are also indicated and difficulties associated them are discussed considering the perturbation parameter epsilon to be small. They determine the Lax pair for the aforesaid branch through the use of Schwarzian derivative. For the perturbed NLS equation they determine the conservation laws following the approach of Chen and Liu. From the recurrence of these conservation laws a Lax pair is constructed. But the Painleve analysis does not produce a positive answer for the perturbed NLS equation. So here they have two contrasting examples of perturbed nonlinear equations: one passes the Painleve test and its Lax pair can be found from the analysis itself, but the other equation does not meet the criterion of the Painleve test, though its Lax pair is found in another way

  19. Radial selfsimilar solutions of a nonlinear Ornstein-Uhlenbeck equation

    Directory of Open Access Journals (Sweden)

    Arij Bouzelmate

    2007-05-01

    Full Text Available This paper concerns the existence, uniqueness and asymptotic properties (as $r=|x|oinfty$ of radial self-similar solutions to the nonlinear Ornstein-Uhlenbeck equation [ v_t=Delta_p v+xcdot abla (|v|^{q-1}v ] in $mathbb{R}^Nimes (0, +infty$. Here $q>p-1>1$, $Ngeq 1$, and $Delta_p$ denotes the $p$-Laplacian operator. These solutions are of the form [ v(x,t=t^{-gamma} U(cxt^{-sigma}, ] where $gamma$ and $sigma$ are fixed powers given by the invariance properties of differential equation, while $U$ is a radial function, $U(y=u(r$, $r=|y|$. With the choice $c=(q-1^{-1/p}$, the radial profile $u$ satisfies the nonlinear ordinary differential equation $$ (|u'|^{p-2}u''+frac{N-1}r |u'|^{p-2}u'+frac{q+1-p}{p} r u'+(q-1 r(|u|^{q-1}u'+u=0 $$in $mathbb{R}_+$. We carry out a careful analysis of this equation anddeduce the corresponding consequences for the Ornstein-Uhlenbeck equation.

  20. Various Newton-type iterative methods for solving nonlinear equations

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2013-10-01

    Full Text Available The aim of the present paper is to introduce and investigate new ninth and seventh order convergent Newton-type iterative methods for solving nonlinear equations. The ninth order convergent Newton-type iterative method is made derivative free to obtain seventh-order convergent Newton-type iterative method. These new with and without derivative methods have efficiency indices 1.5518 and 1.6266, respectively. The error equations are used to establish the order of convergence of these proposed iterative methods. Finally, various numerical comparisons are implemented by MATLAB to demonstrate the performance of the developed methods.

  1. Nonzero solutions of nonlinear integral equations modeling infectious disease

    Energy Technology Data Exchange (ETDEWEB)

    Williams, L.R. (Indiana Univ., South Bend); Leggett, R.W.

    1982-01-01

    Sufficient conditions to insure the existence of periodic solutions to the nonlinear integral equation, x(t) = ..integral../sup t//sub t-tau/f(s,x(s))ds, are given in terms of simple product and product integral inequalities. The equation can be interpreted as a model for the spread of infectious diseases (e.g., gonorrhea or any of the rhinovirus viruses) if x(t) is the proportion of infectives at time t and f(t,x(t)) is the proportion of new infectives per unit time.

  2. pth Moment Exponential Stability of Nonlinear Hybrid Stochastic Heat Equations

    Directory of Open Access Journals (Sweden)

    Xuetao Yang

    2014-01-01

    Full Text Available We are concerned with the exponential stability problem of a class of nonlinear hybrid stochastic heat equations (known as stochastic heat equations with Markovian switching in an infinite state space. The fixed point theory is utilized to discuss the existence, uniqueness, and pth moment exponential stability of the mild solution. Moreover, we also acquire the Lyapunov exponents by combining the fixed point theory and the Gronwall inequality. At last, two examples are provided to verify the effectiveness of our obtained results.

  3. Intermittent Motion, Nonlinear Diffusion Equation and Tsallis Formalism

    Directory of Open Access Journals (Sweden)

    Ervin K. Lenzi

    2017-01-01

    Full Text Available We investigate an intermittent process obtained from the combination of a nonlinear diffusion equation and pauses. We consider the porous media equation with reaction terms related to the rate of switching the particles from the diffusive mode to the resting mode or switching them from the resting to the movement. The results show that in the asymptotic limit of small and long times, the spreading of the system is essentially governed by the diffusive term. The behavior exhibited for intermediate times depends on the rates present in the reaction terms. In this scenario, we show that, in the asymptotic limits, the distributions for this process are given by in terms of power laws which may be related to the q-exponential present in the Tsallis statistics. Furthermore, we also analyze a situation characterized by different diffusive regimes, which emerges when the diffusive term is a mixing of linear and nonlinear terms.

  4. Comparison Criteria for Nonlinear Functional Dynamic Equations of Higher Order

    Directory of Open Access Journals (Sweden)

    Taher S. Hassan

    2016-01-01

    Full Text Available We will consider the higher order functional dynamic equations with mixed nonlinearities of the form xnt+∑j=0Npjtϕγjxφjt=0, on an above-unbounded time scale T, where n≥2, xi(t≔ri(tϕαixi-1Δ(t,  i=1,…,n-1,   with  x0=x,  ϕβ(u≔uβsgn⁡u, and α[i,j]≔αi⋯αj. The function φi:T→T is a rd-continuous function such that limt→∞φi(t=∞ for j=0,1,…,N. The results extend and improve some known results in the literature on higher order nonlinear dynamic equations.

  5. Loss of Energy Concentration in Nonlinear Evolution Beam Equations

    Science.gov (United States)

    Garrione, Maurizio; Gazzola, Filippo

    2017-12-01

    Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation u_{tt} + u_{xxxx} + f(u)= g(x, t) in bounded space-time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.

  6. Nonlinear partial differential equations for scientists and engineers

    CERN Document Server

    Debnath, Lokenath

    1997-01-01

    "An exceptionally complete overview. There are numerous examples and the emphasis is on applications to almost all areas of science and engineering. There is truly something for everyone here. This reviewer feels that it is a very hard act to follow, and recommends it strongly. [This book] is a jewel." ---Applied Mechanics Review (Review of First Edition) This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. Methods and properties of solutions are presented, along with their physical significance, making the book more useful for a diverse readership. Topics and key features: * Thorough coverage of derivation and methods of soluti...

  7. Nonlocal Symmetries to Systems of Nonlinear Diffusion Equations

    International Nuclear Information System (INIS)

    Qu Changzheng; Kang Jing

    2008-01-01

    In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Those systems have physical applications in soil science, mathematical biology, and invariant curve flows in R 3 . Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.

  8. Symposium on Nonlinear Semigroups, Partial Differential Equations and Attractors

    CERN Document Server

    Zachary, Woodford

    1987-01-01

    The original idea of the organizers of the Washington Symposium was to span a fairly narrow range of topics on some recent techniques developed for the investigation of nonlinear partial differential equations and discuss these in a forum of experts. It soon became clear, however, that the dynamical systems approach interfaced significantly with many important branches of applied mathematics. As a consequence, the scope of this resulting proceedings volume is an enlarged one with coverage of a wider range of research topics.

  9. Inhomogeneous critical nonlinear Schroedinger equations with a harmonic potential

    International Nuclear Information System (INIS)

    Cao Daomin; Han Pigong

    2010-01-01

    In this paper, we study the Cauchy problem of the inhomogeneous nonlinear Schroedinger equation with a harmonic potential: i∂ t u=-div(f(x)∇u)+|x| 2 u-k(x)|u| 4/N u, x is an element of R N , N≥1, which models the remarkable Bose-Einstein condensation. We discuss the existence and nonexistence results and investigate the limiting profile of blow-up solutions with critical mass.

  10. Existence results for nonlinear implicit fractional differential equations

    Directory of Open Access Journals (Sweden)

    Mouffak Benchohra

    2014-09-01

    Full Text Available In this paper, we establish the existence and uniqueness of solution for a class of initial value problem for implicit fractional differential equations with Caputo fractional derivative. The arguments are based upon the Banach contraction principle, Schauder' fixed point theorem and the nonlinear alternative of Leray-Schauder type. As applications, two examples are included to show the applicability of our results.

  11. Nonlocal and nonlinear dispersion in a nonlinear Schrodinger-type equation: exotic solitons and short-wavelength instabilities

    DEFF Research Database (Denmark)

    Oster, Michael; Gaididei, Yuri B.; Johansson, Magnus

    2004-01-01

    We study the continuum limit of a nonlinear Schrodinger lattice model with both on-site and inter-site nonlinearities, describing weakly coupled optical waveguides or Bose-Einstein condensates. The resulting continuum nonlinear Schrodinger-type equation includes both nonlocal and nonlinear...

  12. Numerical method for the nonlinear Fokker-Planck equation

    International Nuclear Information System (INIS)

    Zhang, D.S.; Wei, G.W.; Kouri, D.J.; Hoffman, D.K.

    1997-01-01

    A practical method based on distributed approximating functionals (DAFs) is proposed for numerically solving a general class of nonlinear time-dependent Fokker-Planck equations. The method relies on a numerical scheme that couples the usual path-integral concept to the DAF idea. The high accuracy and reliability of the method are illustrated by applying it to an exactly solvable nonlinear Fokker-Planck equation, and the method is compared with the accurate K-point Stirling interpolation formula finite-difference method. The approach is also used successfully to solve a nonlinear self-consistent dynamic mean-field problem for which both the cumulant expansion and scaling theory have been found by Drozdov and Morillo [Phys. Rev. E 54, 931 (1996)] to be inadequate to describe the occurrence of a long-lived transient bimodality. The standard interpretation of the transient bimodality in terms of the flat region in the kinetic potential fails for the present case. An alternative analysis based on the effective potential of the Schroedinger-like Fokker-Planck equation is suggested. Our analysis of the transient bimodality is strongly supported by two examples that are numerically much more challenging than other examples that have been previously reported for this problem. copyright 1997 The American Physical Society

  13. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao

    2015-12-14

    Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.

  14. Improved algorithm for solving nonlinear parabolized stability equations

    International Nuclear Information System (INIS)

    Zhao Lei; Zhang Cun-bo; Liu Jian-xin; Luo Ji-sheng

    2016-01-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. (paper)

  15. Improved algorithm for solving nonlinear parabolized stability equations

    Science.gov (United States)

    Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

    2016-08-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

  16. Stokes phenomena and monodromy deformation problem for nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Chowdury, A.R.; Naskar, M.

    1986-01-01

    Following Flaschka and Newell, the inverse problem for Painleve IV is formulated with the help of similarity variables. The Painleve IV arises as the eliminant of the two second-order ordinary differential equations originating from the nonlinear Schrodinger equation. Asymptotic expansions are obtained near the singularities at zero and infinity of the complex eigenvalue plane. The corresponding analysis then displays the Stokes phenomena. The monodromy matrices connecting the solution Y /sub j/ in the sector S /sub j/ to that in S /sub j+1/ are fixed in structure by the imposition of certain conditions. It is then shown that a deformation keeping the monodromy data fixed leads to the nonlinear Schrodinger equation. While Flaschka and Newell did not make any absolute determination of the Stokes parameters, the present approach yields the values of the Stokes parameters in an explicit way, which in turn can determine the matrix connecting the solutions near zero and infinity. Finally, it is shown that the integral equation originating from the analyticity and asymptotic nature of the problem leads to the similarity solution previously determined by Boiti and Pampinelli

  17. An efficient algorithm for solving nonlinear system of differential equations and applications

    Directory of Open Access Journals (Sweden)

    Mustafa GÜLSU

    2015-10-01

    Full Text Available In this article, we apply Chebyshev collocation method to obtain the numerical solutions of nonlinear systems of differential equations. This method transforms the nonlinear systems of differential equation to nonlinear systems of algebraic equations. The convergence of the numerical method are given and their applicability is illustrated with some examples.

  18. On localization in the discrete nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Bang, O.; Juul Rasmussen, J.; Christiansen, P.L.

    1993-01-01

    For some values of the grid resolution, depending on the nonlinearity, the discrete nonlinear Schrodinger equation with arbitrary power nonlinearity can be approximated by the corresponding continuum version of the equation. When the discretization becomes too coarse, the discrete equation exhibits...

  19. Dynamic behavior of a nonlinear rational difference equation and generalization

    Directory of Open Access Journals (Sweden)

    Shi Qihong

    2011-01-01

    Full Text Available Abstract This paper is concerned about the dynamic behavior for the following high order nonlinear difference equation x n = (x n-k + x n-m + x n-l /(x n-k x n-m + x n-m x n-l +1 with the initial data { x - l , x - l + 1 , … , x - 1 } ∈ ℝ + l and 1 ≤ k ≤ m ≤ l. The convergence of solution to this equation is investigated by introducing a new sequence, which extends and includes corresponding results obtained in the references (Li in J Math Anal Appl 312:103-111, 2005; Berenhaut et al. Appl. Math. Lett. 20:54-58, 2007; Papaschinopoulos and Schinas J Math Anal Appl 294:614-620, 2004 to a large extent. In addition, some propositions for generalized equations are reported.

  20. Removable singular sets of fully nonlinear elliptic equations

    Directory of Open Access Journals (Sweden)

    Lihe Wang

    1999-02-01

    Full Text Available In this paper we consider fully nonlinear elliptic equations, including the Monge-Ampere equation and the Weingarden equation. We assume that $F(D^2u, x = f(x quad x in Omega,,$ $u(x = g(x quad xin partial Omega $ has a solution $u$ in $C^2(Omega cap C(ar {Omega} $, and $F(D^2v(x, x = f(x quad xin Omegasetminus S,,$ $v(x= g(xquad xin partial Omega $ has a solution $v$ in $C^2(Omegasetminus S cap mbox{Lip}(Omega cap C(ar {Omega}$. We prove that under certain conditions on $S$ and $v$, the singular set $S$ is removable; i.e., $u=v$.

  1. Traveling kinks in cubic nonlinear Ginzburg-Landau equations.

    Science.gov (United States)

    Rosu, H C; Cornejo-Pérez, O; Ojeda-May, P

    2012-03-01

    Nonlinear cubic Euler-Lagrange equations of motion in the traveling variable are usually derived from Ginzburg-Landau free energy functionals frequently encountered in several fields of physics. Many authors considered in the past damped versions of such equations, with the damping term added by hand simulating the friction due to the environment. It is known that even in this damped case kink solutions can exist. By means of a factorization method, we provide analytic formulas for several possible kink solutions of such equations of motion in the undriven and constant field driven cases, including the recently introduced Riccati parameter kinks, which were not considered previously in such a context. The latter parameter controls the delay of the switching stage of the kinks. The delay is caused by antikink components that are introduced in the structure of the solution through this parameter.

  2. Simulation studies of hydrodynamic aspects of magneto-inertial fusion and high order adaptive algorithms for Maxwell equations

    Science.gov (United States)

    Wu, Lingling

    composite deuterium - xenon liners reduce the energy gain due to lower target compression rates. The effect of heating of targets by alpha particles on the fusion energy gain has also been investigated. The study of the dependence of the ram pressure amplification on radial compressibility showed a good agreement with the theory. The study concludes that a liner with higher Mach number and lower adiabatic index gamma (the radio of specific heats) will generate higher ram pressure amplification and higher fusion energy gain. We implemented a second order embedded boundary method for the Maxwell equations in geometrically complex domains. The numerical scheme is second order in both space and time. Comparing to the first order stair-step approximation of complex geometries within the FDTD method, this method can avoid spurious solution introduced by the stair step approximation. Unlike the finite element method and the FE-FD hybrid method, no triangulation is needed for this scheme. This method preserves the simplicity of the embedded boundary method and it is easy to implement. We will also propose a conservative (symplectic) fourth order scheme for uniform geometry boundary.

  3. Domain decomposition solvers for nonlinear multiharmonic finite element equations

    KAUST Repository

    Copeland, D. M.

    2010-01-01

    In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This is true for linear problems, but not for nonlinear problems. However, due to the periodicity of the solution, we can expand the solution in a Fourier series. Truncating this Fourier series and approximating the Fourier coefficients by finite elements, we arrive at a large-scale coupled nonlinear system for determining the finite element approximation to the Fourier coefficients. The construction of fast solvers for such systems is very crucial for the efficiency of this multiharmonic approach. In this paper we look at nonlinear, time-harmonic potential problems as simple model problems. We construct and analyze almost optimal solvers for the Jacobi systems arising from the Newton linearization of the large-scale coupled nonlinear system that one has to solve instead of performing the expensive time-integration procedure. © 2010 de Gruyter.

  4. Jacobi Elliptic Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2012-01-01

    Full Text Available We put a direct new method to construct the rational Jacobi elliptic solutions for nonlinear differential difference equations which may be called the rational Jacobi elliptic functions method. We use the rational Jacobi elliptic function method to construct many new exact solutions for some nonlinear differential difference equations in mathematical physics via the lattice equation and the discrete nonlinear Schrodinger equation with a saturable nonlinearity. The proposed method is more effective and powerful to obtain the exact solutions for nonlinear differential difference equations.

  5. Coupled equations of electromagnetic waves in nonlinear metamaterial waveguides.

    Science.gov (United States)

    Azari, Mina; Hatami, Mohsen; Meygoli, Vahid; Yousefi, Elham

    2016-11-01

    Over the past decades, scientists have presented ways to manipulate the macroscopic properties of a material at levels unachieved before, and called them metamaterials. This research can be considered an important step forward in electromagnetics and optics. In this study, higher-order nonlinear coupled equations in a special kind of metamaterial waveguides (a planar waveguide with metamaterial core) will be derived from both electric and magnetic components of the transverse electric mode of electromagnetic pulse propagation. On the other hand, achieving the refractive index in this research is worthwhile. It is also shown that the coupled equations are not symmetric with respect to the electric and magnetic fields, unlike these kinds of equations in fiber optics and dielectric waveguides. Simulations on the propagation of a fundamental soliton pulse in a nonlinear metamaterial waveguide near the resonance frequency (a little lower than the magnetic resonant frequency) are performed to study its behavior. These pulses are recommended to practice in optical communications in controlled switching by external voltage, even in low power.

  6. Robust fast controller design via nonlinear fractional differential equations.

    Science.gov (United States)

    Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong

    2017-07-01

    A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. On the nonlinear Schrodinger equation with nonzero boundary conditions

    Science.gov (United States)

    Fagerstrom, Emily

    This thesis is concerned with the study of the nonlinear Schrodinger (NLS) equation, which is important both from a physical and a mathematical point of view. In physics, it is a universal model for the evolutions of weakly nonlinear dispersive wave trains. As such it appears in many physical contexts, such as optics, acoustics, plasmas, biology, etc. Mathematically, it is a completely integrable, infinite-dimensional Hamiltonian system, and possesses a surprisingly rich structure. This equation has been extensively studied in the last 50 years, but many important questions are still open. In particular, this thesis contains the following original contributions: NLS with real spectral singularities. First, the focusing NLS equation is considered with decaying initial conditions. This situation has been studied extensively before, but the assumption is almost always made that the scattering coefficients have no real zeros, and thus the scattering data had no poles on the real axis. However, it is easy to produce example potentials with this behavior. For example, by modifying parameters in Satsuma-Yajima's sech potential, or by choosing a "box" potential with a particular area, one can obtain corresponding scattering entries with real zeros. The inverse scattering transform can be implemented by formulating the modified Jost eigenfunctions and the scattering data as a Riemann Hilbert problem. But it can also be formulated by using integral kernels. Doing so produces the Gelf'and-Levitan-Marchenko (GLM) equations. Solving these integral equations requires integrating an expression containing the reflection coefficient over the real axis. Under the usual assumption, the reflection coefficient has no poles on the real axis. In general, the integration contour cannot be deformed to avoid poles, because the reflection coefficient may not admit analytic extension off the real axis. Here it is shown that the GLM equations may be (uniquely) solved using a principal value

  8. Picone-type inequalities for nonlinear elliptic equations and their applications

    Directory of Open Access Journals (Sweden)

    Takaŝi Kusano

    2001-01-01

    Full Text Available Picone-type inequalities are derived for nonlinear elliptic equations, and Sturmian comparison theorems are established as applications. Oscillation theorems for forced super-linear elliptic equations and superlinear-sublinear elliptic equations are also obtained.

  9. Nonlinear Allometric Equation for Crop Response to Soil Salinity

    Directory of Open Access Journals (Sweden)

    E. Misle

    2015-06-01

    Full Text Available Crop response to soil salinity has been extensively studied, from empirical works to modelling approach, being described by different equations, first as a piecewise linear model. The equation employed can differ with actual response, causing miscalculation in practical situations, particularly at the higher extremes of the curve. The aim of this work is to propose a new equation, which allows determining the full response to salinity of plant species and to provide a verification using different experimental data sets. A new nonlinear equation is exposed supported by the allometric approach, in which the allometric exponent is salinity-dependent and decreases with the increase in relative salinity. A conversion procedure of parameters of the threshold-slope model is presented; also, a simple procedure for estimating the maximum salinity (zero-yield point when data sets are incomplete is exposed. The equation was tested in a wide range of experimental situations, using data sets from published works, as well as new measurements on seed germination. The statistical indicators of quality (R2, absolute sum of squares and standard deviation of residuals showed that the equation accurately fits the tested empirical results. The new equation for determining crop response to soil salinity is able to follow the response curve of any crop with remarkable accuracy and flexibility. Remarkable characteristics are: a maximum at minimum salinity, a maximum salinity point can be found (zero-yield depending on the data sets, and a meaningful inflection point, as well as the two points at which the slope of the curve equals unity, can be found.

  10. Bifurcation of positive solutions to scalar reaction-diffusion equations with nonlinear boundary condition

    Science.gov (United States)

    Liu, Ping; Shi, Junping

    2018-01-01

    The bifurcation of non-trivial steady state solutions of a scalar reaction-diffusion equation with nonlinear boundary conditions is considered using several new abstract bifurcation theorems. The existence and stability of positive steady state solutions are proved using a unified approach. The general results are applied to a Laplace equation with nonlinear boundary condition and bistable nonlinearity, and an elliptic equation with superlinear nonlinearity and sublinear boundary conditions.

  11. Multiplicity of ground state solutions for discrete nonlinear Schrodinger equations with unbounded potentials

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2017-02-01

    Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. In this article, we consider a class of discrete nonlinear Schrodinger equations with unbounded potentials. We obtain some new sufficient conditions on the multiplicity results of ground state solutions for the equations by using the symmetric mountain pass lemma. Recent results in the literature are greatly improved.

  12. Numerical solution of nonlinear Hammerstein fuzzy functional integral equations

    Science.gov (United States)

    Enkov, Svetoslav; Georgieva, Atanaska; Nikolla, Renato

    2016-12-01

    In this work we investigate nonlinear Hammerstein fuzzy functional integral equation. Our aim is to provide an efficient iterative method of successive approximations by optimal quadrature formula for classes of fuzzy number-valued functions of Lipschitz type to approximate the solution. We prove the convergence of the method by Banach's fixed point theorem and investigate the numerical stability of the presented method with respect to the choice of the first iteration. Finally, illustrative numerical experiment demonstrate the accuracy and the convergence of the proposed method.

  13. A Dual Orthogonality Procedure for Nonlinear Finite Element Equations

    DEFF Research Database (Denmark)

    Krenk, S.; Hededal, O.

    In the orthogonal residual procedure for solution of nonlinear finite element equations the load is adjusted in each equilibrium iteration to satisfy an orthogonality condition to the current displacement increment. It is here shown that the quasi-newton formulation of the orthogonal residual...... method consists of a simple one-term correction of the displacement subincrement, and that this correction leads to orthogonality between the corrected displacement subincrement and the current increment of the internal force vector, thus defining a dual orthogonality algorithm. It is demonstrated how...

  14. Generalized multiscale finite element methods. nonlinear elliptic equations

    KAUST Repository

    Efendiev, Yalchin R.

    2013-01-01

    In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press.

  15. Nonlinear wave equation with intrinsic wave particle dualism

    International Nuclear Information System (INIS)

    Klein, J.J.

    1976-01-01

    A nonlinear wave equation derived from the sine-Gordon equation is shown to possess a variety of solutions, the most interesting of which is a solution that describes a wave packet travelling with velocity usub(e) modulating a carrier wave travelling with velocity usub(c). The envelop and carrier wave speeds agree precisely with the group and phase velocities found by de Broglie for matter waves. No spreading is exhibited by the soliton, so that it behaves exactly like a particle in classical mechanics. Moreover, the classically computed energy E of the disturbance turns out to be exactly equal to the frequency ω of the carrier wave, so that the Planck relation is automatically satisfied without postulating a particle-wave dualism. (author)

  16. Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schroedinger's equation with Kerr law nonlinearity

    International Nuclear Information System (INIS)

    Zhang Zaiyun; Liu Zhenhai; Miao Xiujin; Chen Yuezhong

    2011-01-01

    In this Letter, we investigate the perturbed nonlinear Schroedinger's equation (NLSE) with Kerr law nonlinearity. All explicit expressions of the bounded traveling wave solutions for the equation are obtained by using the bifurcation method and qualitative theory of dynamical systems. These solutions contain bell-shaped solitary wave solutions, kink-shaped solitary wave solutions and Jacobi elliptic function periodic solutions. Moreover, we point out the region which these periodic wave solutions lie in. We present the relation between the bounded traveling wave solution and the energy level h. We find that these periodic wave solutions tend to the corresponding solitary wave solutions as h increases or decreases. Finally, for some special selections of the energy level h, it is shown that the exact periodic solutions evolute into solitary wave solution.

  17. Hidden physics models: Machine learning of nonlinear partial differential equations

    Science.gov (United States)

    Raissi, Maziar; Karniadakis, George Em

    2018-03-01

    While there is currently a lot of enthusiasm about "big data", useful data is usually "small" and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier-Stokes, Schrödinger, Kuramoto-Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.

  18. Asymptotic behavior for a quadratic nonlinear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Pavel I. Naumkin

    2008-02-01

    Full Text Available We study the initial-value problem for the quadratic nonlinear Schrodinger equation $$displaylines{ iu_{t}+frac{1}{2}u_{xx}=partial _{x}overline{u}^{2},quad xin mathbb{R},; t>1, cr u(1,x=u_{1}(x,quad xin mathbb{R}. }$$ For small initial data $u_{1}in mathbf{H}^{2,2}$ we prove that there exists a unique global solution $uin mathbf{C}([1,infty ;mathbf{H}^{2,2}$ of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region $|x|leq Csqrt{t}$ by the self-similar solution $frac{1}{sqrt{t}}MS(frac{x}{sqrt{t}}$ such that the total mass $$ frac{1}{sqrt{t}}int_{mathbb{R}}MS(frac{x}{sqrt{t}} dx=int_{mathbb{R}}u_{1}(xdx, $$ and in the far region $|x|>sqrt{t}$ the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schrodinger equations.

  19. Nonlinear H-infinity control, Hamiltonian systems and Hamilton-Jacobi equations

    CERN Document Server

    Aliyu, MDS

    2011-01-01

    A comprehensive overview of nonlinear Haeu control theory for both continuous-time and discrete-time systems, Nonlinear Haeu-Control, Hamiltonian Systems and Hamilton-Jacobi Equations covers topics as diverse as singular nonlinear Haeu-control, nonlinear Haeu -filtering, mixed H2/ Haeu-nonlinear control and filtering, nonlinear Haeu-almost-disturbance-decoupling, and algorithms for solving the ubiquitous Hamilton-Jacobi-Isaacs equations. The link between the subject and analytical mechanics as well as the theory of partial differential equations is also elegantly summarized in a single chapter

  20. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1979-01-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly

  1. Maxwell's fishpond

    International Nuclear Information System (INIS)

    Kinsler, Paul; Tan Jiajun; Thio, Timothy C Y; Trant, Claire; Kandapper, Navin

    2012-01-01

    Most of us will have at some time thrown a pebble into water, and watched the ripples spread outwards and fade away. But now there is also a way to reverse the process, and make those ripples turn around and reconverge again, …and again, and again. To do this we have designed the Maxwell's fishpond, a water wave or ‘transformation aquatics’ version of the Maxwell's fisheye lens (Tyc et al 2011 New J. Phys. 13 115004; Luneburg 1964 Mathematical Theory of Optics). These are transformation devices where wave propagation on the surface of a sphere is modelled using a flat device with spatially varying properties. And just as for rays from a point source on a sphere, a wave disturbance in a Maxwell's fisheye or fishpond spreads out at first, but then reforms itself at its opposite (or complementary) point. Here we show how such a device can be made for water waves, partly in friendly competition with comparable electromagnetic devices (Ma et al 2011 New J. Phys. 13 033016) and partly as an accessible and fun demonstration of the power of transformation mechanics. To the eye, our Maxwell's fishpond was capable of reforming a disturbance up to five times, although such a feat required taking considerable care, close observation, and a little luck. (paper)

  2. Explicit integration of Friedmann's equation with nonlinear equations of state

    International Nuclear Information System (INIS)

    Chen, Shouxin; Gibbons, Gary W.; Yang, Yisong

    2015-01-01

    In this paper we study the integrability of the Friedmann equations, when the equation of state for the perfect-fluid universe is nonlinear, in the light of the Chebyshev theorem. A series of important, yet not previously touched, problems will be worked out which include the generalized Chaplygin gas, two-term energy density, trinomial Friedmann, Born-Infeld, two-fluid models, and Chern-Simons modified gravity theory models. With the explicit integration, we are able to understand exactly the roles of the physical parameters in various models play in the cosmological evolution which may also offer clues to a profound understanding of the problems in general settings. For example, in the Chaplygin gas universe, a few integrable cases lead us to derive a universal formula for the asymptotic exponential growth rate of the scale factor, of an explicit form, whether the Friedmann equation is integrable or not, which reveals the coupled roles played by various physical sectors and it is seen that, as far as there is a tiny presence of nonlinear matter, conventional linear matter makes contribution to the dark matter, which becomes significant near the phantom divide line. The Friedmann equations also arise in areas of physics not directly related to cosmology. We provide some examples ranging from geometric optics and central orbits to soap films and the shape of glaciated valleys to which our results may be applied

  3. Semiclassical regularization of Vlasov equations and wavepackets for nonlinear Schrödinger equations

    Science.gov (United States)

    Athanassoulis, Agissilaos

    2018-03-01

    We consider the semiclassical limit of nonlinear Schrödinger equations with initial data that are well localized in both position and momentum (non-parametric wavepackets). We recover the Wigner measure (WM) of the problem, a macroscopic phase-space density which controls the propagation of the physical observables such as mass, energy and momentum. WMs have been used to create effective models for wave propagation in: random media, quantum molecular dynamics, mean field limits, and the propagation of electrons in graphene. In nonlinear settings, the Vlasov-type equations obtained for the WM are often ill-posed on the physically interesting spaces of initial data. In this paper we are able to select the measure-valued solution of the 1  +  1 dimensional Vlasov-Poisson equation which correctly captures the semiclassical limit, thus finally resolving the non-uniqueness in the seminal result of Zhang et al (2012 Comm. Pure Appl. Math. 55 582-632). The same approach is also applied to the Vlasov-Dirac-Benney equation with small wavepacket initial data, extending several known results.

  4. Exact solutions to a class of nonlinear Schrödinger-type equations

    Indian Academy of Sciences (India)

    Abstract. A class of nonlinear Schrödinger-type equations, including the Rangwala–Rao equation, the Gerdjikov–Ivanov equation, the Chen–Lee–Lin equation and the Ablowitz–. Ramani–Segur equation are investigated, and the exact solutions are derived with the aid of the homogeneous balance principle, and a set of ...

  5. Exact solutions to a class of nonlinear Schrödinger-type equations

    Indian Academy of Sciences (India)

    A class of nonlinear Schrödinger-type equations, including the Rangwala–Rao equation, the Gerdjikov–Ivanov equation, the Chen–Lee–Lin equation and the Ablowitz–Ramani–Segur equation are investigated, and the exact solutions are derived with the aid of the homogeneous balance principle, and a set of subsidiary ...

  6. Incorporation of exact boundary conditions into a discontinuous galerkin finite element method for accurately solving 2d time-dependent maxwell equations

    KAUST Repository

    Sirenko, Kostyantyn

    2013-01-01

    A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing transient electromagnetic wave interactions on two-dimensional waveguides. Numerical results demonstrate the proposed method\\'s superiority over the TD-DG-FEM that employs approximate boundary conditions and perfectly matched layers. Additionally, it is shown that the proposed method can produce the solution with ten-eleven digit accuracy when high-order spatial basis functions are used to discretize the Maxwell equations as well as the EACs. © 1963-2012 IEEE.

  7. Nonlinear Schrödinger equations with single power nonlinearity and harmonic potential

    Science.gov (United States)

    Cipolatti, R.; de Macedo Lira, Y.; Trallero-Giner, C.

    2018-03-01

    We consider a generalized nonlinear Schrödinger equation (GNLS) with a single power nonlinearity of the form λ ≤ft\\vert \\varphi \\right\\vert p , with p  >  0 and λ\\in{R} , in the presence of a harmonic confinement. We report the conditions that p and λ must fulfill for the existence and uniqueness of ground states of the GNLS. We discuss the Cauchy problem and summarize which conditions are required for the nonlinear term λ ≤ft\\vert \\varphi \\right\\vert p to render the ground state solutions orbitally stable. Based on a new variational method we provide exact formulæ for the minimum energy for each index p and the changing range of values of the nonlinear parameter λ. Also, we report an approximate close analytical expression for the ground state energy, performing a comparative analysis of the present variational calculations with those obtained by a generalized Thomas-Fermi approach, and soliton solutions for the respective ranges of p and λ where these solutions can be implemented to describe the minimum energy.

  8. Lax pair, conservation laws, solitons, and rogue waves for a generalised nonlinear Schroedinger-Maxwell-Bloch system under the nonlinear tunneling effect for an inhomogeneous erbium-doped silica fibre

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhe; Gao, Yi-Tian; Su, Chuan-Qi; Wang, Qi-Min; Mao, Bing-Qing [Beijing Univ. of Aeronautics and Astronautics (China). Ministry-of-Education Key Lab. of Fluid Mechanics and National Lab. for Computational Fluid Dynamics

    2016-04-01

    Under investigation in this article is a generalised nonlinear Schroedinger-Maxwell-Bloch system for the picosecond optical pulse propagation in an inhomogeneous erbium-doped silica optical fibre. Lax pair, conservation laws, Darboux transformation, and generalised Darboux transformation for the system are constructed; with the one- and two-soliton solutions, the first- and second-order rogue waves given. Soliton propagation is discussed. Nonlinear tunneling effect on the solitons and rogue waves are investigated. We find that (i) the detuning of the atomic transition frequency from the optical pulse frequency affects the velocity of the pulse when the detuning is small, (ii) nonlinear tunneling effect does not affect the energy redistribution of the soliton interaction, (iii) dispersion barrier/well has an effect on the soliton velocity, whereas nonlinear well/barrier does not, (iv) nonlinear well/barrier could amplify/compress the solitons or rogue waves in a smoother manner than the dispersion barrier/well, and (v) dispersion barrier could ''attract'' the nearby rogue waves, whereas the dispersion well has a repulsive effect on them.

  9. Iterative solution for nonlinear integral equations of Hammerstein type

    International Nuclear Information System (INIS)

    Chidume, C.E.; Osilike, M.O.

    1990-12-01

    Let E be a real Banach space with a uniformly convex dual, E*. Suppose N is a nonlinear set-valued accretive map of E into itself with open domain D; K is a linear single-valued accretive map with domain D(K) in E such that Im(N) is contained in D(K); K -1 exists and satisfies -1 x-K -1 y,j(x-y)>≥β||x-y|| 2 for each x, y is an element of Im(K) and some constant β > 0, where j denotes the single-valued normalized duality map on E. Suppose also that for each h is an element Im(K) the equation h is an element x+KNx has a solution x* in D. An iteration method is constructed which converges strongly to x*. Explicit error estimates are also computed. (author). 25 refs

  10. On the so called rogue waves in nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Y. Charles Li

    2016-04-01

    Full Text Available The mechanism of a rogue water wave is still unknown. One popular conjecture is that the Peregrine wave solution of the nonlinear Schrodinger equation (NLS provides a mechanism. A Peregrine wave solution can be obtained by taking the infinite spatial period limit to the homoclinic solutions. In this article, from the perspective of the phase space structure of these homoclinic orbits in the infinite dimensional phase space where the NLS defines a dynamical system, we examine the observability of these homoclinic orbits (and their approximations. Our conclusion is that these approximate homoclinic orbits are the most observable solutions, and they should correspond to the most common deep ocean waves rather than the rare rogue waves. We also discuss other possibilities for the mechanism of a rogue wave: rough dependence on initial data or finite time blow up.

  11. Lipschitz Metrics for a Class of Nonlinear Wave Equations

    Science.gov (United States)

    Bressan, Alberto; Chen, Geng

    2017-12-01

    The nonlinear wave equation {u_{tt}-c(u)(c(u)u_x)_x=0} determines a flow of conservative solutions taking values in the space {H^1(R)}. However, this flow is not continuous with respect to the natural H 1 distance. The aim of this paper is to construct a new metric which renders the flow uniformly Lipschitz continuous on bounded subsets of {H^1(R)}. For this purpose, H 1 is given the structure of a Finsler manifold, where the norm of tangent vectors is defined in terms of an optimal transportation problem. For paths of piecewise smooth solutions, one can carefully estimate how the weighted length grows in time. By the generic regularity result proved in [7], these piecewise regular paths are dense and can be used to construct a geodesic distance with the desired Lipschitz property.

  12. Non-linear partial differential equations an algebraic view of generalized solutions

    CERN Document Server

    Rosinger, Elemer E

    1990-01-01

    A massive transition of interest from solving linear partial differential equations to solving nonlinear ones has taken place during the last two or three decades. The availability of better computers has often made numerical experimentations progress faster than the theoretical understanding of nonlinear partial differential equations. The three most important nonlinear phenomena observed so far both experimentally and numerically, and studied theoretically in connection with such equations have been the solitons, shock waves and turbulence or chaotical processes. In many ways, these phenomen

  13. Approach in Theory of Nonlinear Evolution Equations: The Vakhnenko-Parkes Equation

    Directory of Open Access Journals (Sweden)

    V. O. Vakhnenko

    2016-01-01

    Full Text Available A variety of methods for examining the properties and solutions of nonlinear evolution equations are explored by using the Vakhnenko equation (VE as an example. The VE, which arises in modelling the propagation of high-frequency waves in a relaxing medium, has periodic and solitary traveling wave solutions some of which are loop-like in nature. The VE can be written in an alternative form, known as the Vakhnenko-Parkes equation (VPE, by a change of independent variables. The VPE has an N-soliton solution which is discussed in detail. Individual solitons are hump-like in nature whereas the corresponding solution to the VE comprises N-loop-like solitons. Aspects of the inverse scattering transform (IST method, as applied originally to the KdV equation, are used to find one- and two-soliton solutions to the VPE even though the VPE’s spectral equation is third-order and not second-order. A Bäcklund transformation for the VPE is used to construct conservation laws. The standard IST method for third-order spectral problems is used to investigate solutions corresponding to bound states of the spectrum and to a continuous spectrum. This leads to N-soliton solutions and M-mode periodic solutions, respectively. Interactions between these types of solutions are investigated.

  14. Reformulation of nonlinear integral magnetostatic equations for rapid iterative convergence

    International Nuclear Information System (INIS)

    Bloomberg, D.S.; Castelli, V.

    1985-01-01

    The integral equations of magnetostatics, conventionally given in terms of the field variables M and H, are reformulated with M and B. Stability criteria and convergence rates of the eigenvectors of the linear iteration matrices are evaluated. The relaxation factor β in the MH approach varies inversely with permeability μ, and nonlinear problems with high permeability converge slowly. In contrast, MB iteration is stable for β 3 , the number of iterations is reduced by two orders of magnitude over the conventional method, and at higher permeabilities the reduction is proportionally greater. The dependence of MB convergence rate on β, degree of saturation, element aspect ratio, and problem size is found numerically. An analytical result for the MB convergence rate for small nonlinear problems is found to be accurate for βless than or equal to1.2. The results are generally valid for two- and three-dimensional integral methods and are independent of the particular discretization procedures used to compute the field matrix

  15. Collapse of solitary excitations in the nonlinear Schrödinger equation with nonlinear damping and white noise

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Rasmussen, Kim

    1996-01-01

    We study the effect of adding noise and nonlinear damping in the two-dimensional nonlinear Schrodinger equation (NLS). Using a collective approach, we find that for initial conditions where total collapse occurs in the unperturbed NLS, the presence of the damping term will instead in an exponenti......We study the effect of adding noise and nonlinear damping in the two-dimensional nonlinear Schrodinger equation (NLS). Using a collective approach, we find that for initial conditions where total collapse occurs in the unperturbed NLS, the presence of the damping term will instead...

  16. A Preconditioned Iterative Method for Solving Systems of Nonlinear Equations Having Unknown Multiplicity

    Directory of Open Access Journals (Sweden)

    Fayyaz Ahmad

    2017-01-01

    Full Text Available A modification to an existing iterative method for computing zeros with unknown multiplicities of nonlinear equations or a system of nonlinear equations is presented. We introduce preconditioners to nonlinear equations or a system of nonlinear equations and their corresponding Jacobians. The inclusion of preconditioners provides numerical stability and accuracy. The different selection of preconditioner offers a family of iterative methods. We modified an existing method in a way that we do not alter its inherited quadratic convergence. Numerical simulations confirm the quadratic convergence of the preconditioned iterative method. The influence of preconditioners is clearly reflected in the numerically achieved accuracy of computed solutions.

  17. On the Ψ-Conditional Exponential Asymptotic Stability of Nonlinear Lyapunov Matrix Differential Equations

    Directory of Open Access Journals (Sweden)

    Diamandescu Aurel

    2016-07-01

    Full Text Available It is proved (necessary and sufficient conditions for Ψ– conditional exponential asymptotic stability of the trivial solution of nonlinear Lyapunov matrix differential equations

  18. On the Ψ-Conditional Asymptotic Stability of Nonlinear Lyapunov Matrix Differential Equations

    Directory of Open Access Journals (Sweden)

    Diamandescu Aurel

    2015-12-01

    Full Text Available It is proved (necessary and sufficient conditions for Ψ − conditional asymptotic stability of the trivial solution of linear or nonlinear Lyapunov matrix differential equations.

  19. Nonlinear stochastic heat equations with cubic nonlinearities and additive Q-regular noise in R^1

    Directory of Open Access Journals (Sweden)

    Henri Schurz

    2010-09-01

    Full Text Available Semilinear stochastic heat equations perturbed by cubic-type nonlinearities and additive space-time noise with homogeneous boundary conditions are discussed in R^1. The space-time noise is supposed to be Gaussian in time and possesses a Fourier expansion in space along the eigenfunctions of underlying Lapace operators. We follow the concept of approximate strong (classical Fourier solutions. The existence of unique continuous L^2-bounded solutions is proved. Furthermore, we present a procedure for its numerical approximation based on nonstandard methods (linear-implicit and justify their stability and consistency. The behavior of related total energy functional turns out to be crucial in the presented analysis.

  20. Self-similar solutions for some nonlinear evolution equations: KdV, mKdV and Burgers equations

    Directory of Open Access Journals (Sweden)

    S.A. El-Wakil

    2016-02-01

    Full Text Available A method for solving three types of nonlinear evolution equations namely KdV, modified KdV and Burgers equations, with self-similar solutions is presented. The method employs ideas from symmetry reduction to space and time variables and similarity reductions for nonlinear evolution equations are performed. The obtained self-similar solutions of KdV and mKdV equations are related to Bessel and Airy functions whereas those of Burgers equation are related to the error and Hermite functions. These solutions appear as new types of solitary, shock and periodic waves. Also, the method can be applied to other nonlinear evolution equations in mathematical physics.

  1. On the maximum principle for viscosity solutions of fully nonlinear elliptic equations in general domain

    Directory of Open Access Journals (Sweden)

    I. Capuzzo Dolcetta

    2007-12-01

    Full Text Available We analyze the validity of the Maximum Principle for viscosity solutions of fully nonlinear second order elliptic equations in general unbounded domains under suitable structure conditions on the equation allowing notably quadratic growth in the gradient terms.

  2. Approximate Symmetry Reduction to the Perturbed One-Dimensional Nonlinear Schrödinger Equation

    Science.gov (United States)

    Jia, Man; Wang, Jian-Yong; Lou, Sen-Yue

    2009-02-01

    The one-dimensional nonlinear Schrödinger equation with a perturbation of polynomial type is considered. Using the approximate symmetry perturbation theory, the approximate symmetries and approximate symmetry reduction equations are obtained.

  3. PERTURBATION ESTIMATES FOR THE MAXIMAL SOLUTION OF A NONLINEAR MATRIX EQUATION

    Directory of Open Access Journals (Sweden)

    Vejdi I. Hasanov

    2017-06-01

    Full Text Available In this paper a nonlinear matrix equation is considered. Perturba- tion estimations for the maximal solution of the considered equation are obtained. The results are illustrated by the use of numerical ex- amples.

  4. The nonlinear Schrödinger equation singular solutions and optical collapse

    CERN Document Server

    Fibich, Gadi

    2015-01-01

    This book is an interdisciplinary introduction to optical collapse of laser beams, which is modelled by singular (blow-up) solutions of the nonlinear Schrödinger equation. With great care and detail, it develops the subject including the mathematical and physical background and the history of the subject. It combines rigorous analysis, asymptotic analysis, informal arguments, numerical simulations, physical modelling, and physical experiments. It repeatedly emphasizes the relations between these approaches, and the intuition behind the results. The Nonlinear Schrödinger Equation will be useful to graduate students and researchers in applied mathematics who are interested in singular solutions of partial differential equations, nonlinear optics and nonlinear waves, and to graduate students and researchers in physics and engineering who are interested in nonlinear optics and Bose-Einstein condensates. It can be used for courses on partial differential equations, nonlinear waves, and nonlinear optics. Gadi Fib...

  5. Approximate Solutions of Nonlinear Partial Differential Equations by Modified q-Homotopy Analysis Method

    Directory of Open Access Journals (Sweden)

    Shaheed N. Huseen

    2013-01-01

    Full Text Available A modified q-homotopy analysis method (mq-HAM was proposed for solving nth-order nonlinear differential equations. This method improves the convergence of the series solution in the nHAM which was proposed in (see Hassan and El-Tawil 2011, 2012. The proposed method provides an approximate solution by rewriting the nth-order nonlinear differential equation in the form of n first-order differential equations. The solution of these n differential equations is obtained as a power series solution. This scheme is tested on two nonlinear exactly solvable differential equations. The results demonstrate the reliability and efficiency of the algorithm developed.

  6. Solitonlike solutions of the generalized discrete nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Henning, D.; Gabriel, H.

    1996-01-01

    We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interest...... of the nonintegrability parameter versus the integrability parameter. The heteroclinic map orbit is derived on the basis of a variational principle. Finally, we use homoclinic and heteroclinic orbits as initial conditions to excite designed stationary localized solutions of desired width in the dynamics of the discrete...

  7. An Eulerian gyrokinetic-Maxwell solver

    CERN Document Server

    Candy, J

    2003-01-01

    In this report we present a time-explicit, Eulerian numerical scheme for the solution of the nonlinear gyrokinetic-Maxwell equations. The treatment of electrons is fully drift-kinetic, transverse electromagnetic fluctuations are included, and profile variation is allowed over an arbitrary radial annulus. The code, gyro, is benchmarked against analytic theory, linear eigenmode codes, and nonlinear electrostatic gyrokinetic particle-in-cell codes. We have attempted preliminary finite-beta calculations in the range beta/beta sub c sub r sub i sub t =[0.0,0.5] for a reference discharge. Detailed diagnostic data is presented for these simulations, along with a number of caveats which reflect the uncharted nature of the parameter regime.

  8. Applications of algebraic method to exactly solve some nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, A.A. [Department of Mathematics, Faculty of Science, Helwan University (Egypt)]. E-mail: profdarwish@yahoo.com; Ramady, A. [Department of Mathematics, Faculty of Science, Beni-Suef University (Egypt)]. E-mail: aramady@yahoo.com

    2007-08-15

    A direct and unified algebraic method for constructing multiple travelling wave solutions of nonlinear evolution equations is used and implemented in a computer algebraic system. New solutions for some nonlinear partial differential equations (NLPDE's) are obtained. Graphs of the solutions are displayed.

  9. Stabilization of solutions to higher-order nonlinear Schrodinger equation with localized damping

    Directory of Open Access Journals (Sweden)

    Eleni Bisognin

    2007-01-01

    Full Text Available We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.

  10. Two Kinds of Square-Conservative Integrators for Nonlinear Evolution Equations

    International Nuclear Information System (INIS)

    Jing-Bo, Chen; Hong, Liu

    2008-01-01

    Based on the Lie-group and Gauss–Legendre methods, two kinds of square-conservative integrators for square-conservative nonlinear evolution equations are presented. Lie-group based square-conservative integrators are linearly implicit, while Gauss–Legendre based square-conservative integrators are nonlinearly implicit and iterative schemes are needed to solve the corresponding integrators. These two kinds of integrators provide natural candidates for simulating square-conservative nonlinear evolution equations in the sense that these integrators not only preserve the square-conservative properties of the continuous equations but also are nonlinearly stable. Numerical experiments are performed to test the presented integrators

  11. Discrete Localized States and Localization Dynamics in Discrete Nonlinear Schrödinger Equations

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yu.B.; Mezentsev, V.K.

    1996-01-01

    Dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity is taken into account. Stability properties of the stationary solutions...

  12. New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schroedinger Equation

    International Nuclear Information System (INIS)

    Yang Qin; Dai Chaoqing; Zhang Jiefang

    2005-01-01

    Some new exact travelling wave and period solutions of discrete nonlinear Schroedinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differential-different models.

  13. Initial boundary value problems of nonlinear wave equations in an exterior domain

    International Nuclear Information System (INIS)

    Chen Yunmei.

    1987-06-01

    In this paper, we investigate the existence and uniqueness of the global solutions to the initial boundary value problems of nonlinear wave equations in an exterior domain. When the space dimension n >= 3, the unique global solution of the above problem is obtained for small initial data, even if the nonlinear term is fully nonlinear and contains the unknown function itself. (author). 10 refs

  14. Clapeyron equation and phase equilibrium properties in higher dimensional charged topological dilaton AdS black holes with a nonlinear source

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huai-Fan; Zhao, Hui-Hua; Zhang, Li-Chun; Zhao, Ren [Shanxi Datong University, Institute of Theoretical Physics, Datong (China); Shanxi Datong University, Department of Physics, Datong (China)

    2017-05-15

    Using Maxwell's equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black hole with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in the P-v diagrams. The two-phase equilibrium curves in the P-T diagrams are plotted, and we take the first order approximation of volume v in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for a higher dimensional charged topological black hole with a nonlinear source. The latent heat of an isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems. (orig.)

  15. Weak and Strong Order of Convergence of a Semidiscrete Scheme for the Stochastic Nonlinear Schrodinger Equation

    International Nuclear Information System (INIS)

    Bouard, Anne de; Debussche, Arnaud

    2006-01-01

    In this article we analyze the error of a semidiscrete scheme for the stochastic nonlinear Schrodinger equation with power nonlinearity. We consider supercritical or subcritical nonlinearity and the equation can be either focusing or defocusing. Allowing sufficient spatial regularity we prove that the numerical scheme has strong order 1/2 in general and order 1 if the noise is additive. Furthermore, we also prove that the weak order is always 1

  16. Investigation of perturbation techniques for nonlinear difference equations and other related topics: Final technical report

    International Nuclear Information System (INIS)

    Mickens, R.E.

    1986-01-01

    Investigations in mathematical physics are summarized for projects concerning a nonlinear wave equation; a second-order nonlinear difference equation; singular, nonlinear oscillators; and numerical instabilities. All of the results obtained through these research efforts have been presented in seminars and professional meetings and conferences. Further, all of these results have been published in the scientific literature. A list of exact references are given in the appendices to this report

  17. Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation

    CERN Document Server

    Kamvissis, Spyridon; Miller, Peter D

    2003-01-01

    This book represents the first asymptotic analysis, via completely integrable techniques, of the initial value problem for the focusing nonlinear Schrödinger equation in the semiclassical asymptotic regime. This problem is a key model in nonlinear optical physics and has increasingly important applications in the telecommunications industry. The authors exploit complete integrability to establish pointwise asymptotics for this problem's solution in the semiclassical regime and explicit integration for the underlying nonlinear, elliptic, partial differential equations suspected of governing

  18. Recent topics in non-linear partial differential equations 4

    CERN Document Server

    Mimura, M

    1989-01-01

    This fourth volume concerns the theory and applications of nonlinear PDEs in mathematical physics, reaction-diffusion theory, biomathematics, and in other applied sciences. Twelve papers present recent work in analysis, computational analysis of nonlinear PDEs and their applications.

  19. Nonlinear reaction-diffusion equations with delay: some theorems, test problems, exact and numerical solutions

    Science.gov (United States)

    Polyanin, A. D.; Sorokin, V. G.

    2017-12-01

    The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.

  20. Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate elliptic equations

    Directory of Open Access Journals (Sweden)

    Espen R. Jakobsen

    2002-05-01

    Full Text Available Using the maximum principle for semicontinuous functions [3,4], we prove a general ``continuous dependence on the nonlinearities'' estimate for bounded Holder continuous viscosity solutions of fully nonlinear degenerate elliptic equations. Furthermore, we provide existence, uniqueness, and Holder continuity results for bounded viscosity solutions of such equations. Our results are general enough to encompass Hamilton-Jacobi-Bellman-Isaacs's equations of zero-sum, two-player stochastic differential games. An immediate consequence of the results obtained herein is a rate of convergence for the vanishing viscosity method for fully nonlinear degenerate elliptic equations.

  1. Modified harmonic balance method for the solution of nonlinear jerk equations

    Science.gov (United States)

    Rahman, M. Saifur; Hasan, A. S. M. Z.

    2018-03-01

    In this paper, a second approximate solution of nonlinear jerk equations (third order differential equation) can be obtained by using modified harmonic balance method. The method is simpler and easier to carry out the solution of nonlinear differential equations due to less number of nonlinear equations are required to solve than the classical harmonic balance method. The results obtained from this method are compared with those obtained from the other existing analytical methods that are available in the literature and the numerical method. The solution shows a good agreement with the numerical solution as well as the analytical methods of the available literature.

  2. A perturbation expansion for the nonlinear Schroedinger equation with application to the influence of nonlinear Landau damping

    International Nuclear Information System (INIS)

    Weiland, J.; Ichikawa, Y.H.; Wilhelmsson, H.

    1977-12-01

    The Bogoliubov-Mitropolsky perturbation method has been applied to the study of a perturbation on soliton solutions to the nonlinear Schroedinger equation. The results are compared to those of Karpman and Maslov using the inverse scattering method and to those by Ott and Sudan on the KdV equation. (auth.)

  3. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2014-01-01

    Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  4. Application of He’s Variational Iteration Method to Nonlinear Helmholtz Equation and Fifth-Order KDV Equation

    DEFF Research Database (Denmark)

    Miansari, Mo; Miansari, Me; Barari, Amin

    2009-01-01

    In this article, He’s variational iteration method (VIM), is implemented to solve the linear Helmholtz partial differential equation and some nonlinear fifth-order Korteweg-de Vries (FKdV) partial differential equations with specified initial conditions. The initial approximations can be freely...

  5. The nonlinear heat equation with state–dependent parameters and its connection to the Burgers’ and the potential Burgers’ equation

    DEFF Research Database (Denmark)

    Backi, Christoph Josef; Bendtsen, Jan Dimon; Leth, John-Josef

    2014-01-01

    In this work the stability properties of a nonlinear partial differential equation (PDE) with state–dependent parameters is investigated. Among other things, the PDE describes freezing of foodstuff, and is closely related to the (Potential) Burgers’ Equation. We show that for certain forms of coe...

  6. Symmetries of the stationary Einstein--Maxwell equations. VI. Transformations which generate asymptotically flat spacetimes with arbitrary multipole moments

    International Nuclear Information System (INIS)

    Hoenselaers, C.; Kinnersley, W.; Xanthopoulos, B.C.

    1979-01-01

    A new series of transformations is presented for generating stationary axially symmetric asymptotically flat vacuum solutions of Einstein's equations. The application requires only algebraic manipulations to be performed. Several examples are given of new stationary axisymmetric solutions obtained in this way. It is conjectured that the transformations, applied to the genral Weyl metric, can be used to generate systematically all stationary metrics with axial symmetry

  7. Soliton solutions of the resonant nonlinear Schrödinger's equation in optical fibers with time-dependent coefficients by simplest equation approach

    Science.gov (United States)

    Eslami, M.; Mirzazadeh, M.; Biswas, Anjan

    2013-11-01

    In this paper, the resonant nonlinear Schrödinger's equation is studied with four forms of nonlinearity. This equation is also considered with time-dependent coefficients. The simplest equation method is applied to solve the governing equations and then exact 1-soliton solutions are obtained. It is shown that this method provides us with a powerful mathematical tool for solving nonlinear evolution equations with time-dependent coefficients in mathematical physics.

  8. Influence of nonlinear thermal radiation and Magnetic field on upper-convected Maxwell fluid flow due to a convectively heated stretching sheet in the presence of dust particles

    Directory of Open Access Journals (Sweden)

    Koneri L. Krupalakshmi

    Full Text Available A numerical investigation of two-dimensional MHD boundary layer flow and thermal characteristics of an electrically conducting dusty non-Newtonian fluid over a convectively heated stretching sheet has been considered. The effects of nonlinear thermal radiation, heat source or sink and viscous dissipation are also taken into the account. The Rosseland approximation is used to model the nonlinear thermal radiation. Suitable similarity transformations are used to transform the flow governing equations into a set of nonlinear differential equations of one independent variable. The Shooting method is adopted to solve transformed equations. The effects of various material parameters on the flow and heat transfer in terms of velocity and temperature distributions are drawn in the form of graphs and are briefly discussed. The numerical computations for the Nusselt number and skin friction drag are also carried out for the emerging parameters of interest in the problem. The obtained numerical results show the good agreement with the existing one for limiting case.

  9. A family of nonlinear Schrödinger equations admitting q-plane wave solutions

    Science.gov (United States)

    Nobre, F. D.; Plastino, A. R.

    2017-08-01

    Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross-Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross-Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field Φ (x → , t) (besides the usual one Ψ (x → , t)) must be introduced for consistency. The new field can be identified with Ψ* (x → , t) only when q → 1. For q ≠ 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields Ψ (x → , t) and Φ (x → , t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by Ψ (x → , t) and Φ (x → , t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.

  10. Global existence and decay of solutions of a nonlinear system of wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2012-03-01

    This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.

  11. Collocation and finite difference-collocation methods for the solution of nonlinear Klein-Gordon equation

    Science.gov (United States)

    Lakestani, Mehrdad; Dehghan, Mehdi

    2010-08-01

    Two numerical techniques based on the finite difference and collocation methods are presented for the solution of nonlinear Klein-Gordon equation. The operational matrix of derivative for the cubic B-spline scaling functions is presented and is utilized to reduce the solution of nonlinear Klein-Gordon equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new techniques.

  12. Geometrical Properties of Exotic Matter in the Solution of the Einstein-Maxwell Equations of Wormhole Type

    Science.gov (United States)

    Sukhanova, L. A.; Khlestkov, Yu. A.

    2017-11-01

    On the basis of a new exact solution of the equations of GRT for centrally-symmetric charged dust, the internal structure of a nonstationary time-periodic wormhole with two static necks continued into two asymptoticallyflat vacuum parallel spaces is investigated, and it is shown that the reason for the appearance in some regions of the curved spacetime of a wormhole of negative energy densities of the dustlike matter, which arise when expansion gives way to compression, is a change in the sign of the scalar (Gaussian) curvature of 4-spacetime from positive to negative due to the appearance of two-dimensional coordinate surfaces with principal curvatures of different signs.

  13. Deriving the New Traveling Wave Solutions for the Nonlinear Dispersive Equation, KdV-ZK Equation and Complex Coupled KdV System Using Extended Simplest Equation Method

    Science.gov (United States)

    Mohammed, K. Elboree

    2015-10-01

    In this paper, we investigate the traveling wave solutions for the nonlinear dispersive equation, Korteweg-de Vries Zakharov-Kuznetsov (KdV-ZK) equation and complex coupled KdV system by using extended simplest equation method, and then derive the hyperbolic function solutions include soliton solutions, trigonometric function solutions include periodic solutions with special values for double parameters and rational solutions. The properties of such solutions are shown by figures. The results show that this method is an effective and a powerful tool for handling the solutions of nonlinear partial differential equations (NLEEs) in mathematical physics.

  14. Justification of the Nonlinear Schrödinger Approximation for a Quasilinear Klein-Gordon Equation

    Science.gov (United States)

    Düll, Wolf-Patrick

    2017-11-01

    We consider a nonlinear Klein-Gordon equation with a quasilinear quadratic term. The Nonlinear Schrödinger (NLS) equation can be derived as a formal approximation equation describing the evolution of the envelopes of slowly modulated spatially and temporarily oscillating wave packet-like solutions to the quasilinear Klein-Gordon equation. It is the purpose of this paper to present a method that allows one to prove error estimates in Sobolev norms between exact solutions of the quasilinear Klein-Gordon equation and the formal approximation obtained via the NLS equation. The paper contains the first validity proof of the NLS approximation of a nonlinear hyperbolic equation with a quasilinear quadratic term by error estimates in Sobolev spaces. We expect that the method developed in the present paper will allow an answer to the relevant question of the validity of the NLS approximation for other quasilinear hyperbolic systems.

  15. New results on the mathematical problems in nonlinear physics

    International Nuclear Information System (INIS)

    1980-01-01

    The main topics treated in this report are: I) Existence of generalized Lagrangians. II) Conserved densities for odd-order polynomial evolution equations and linear evolution systems. III ) Conservation laws for Klein-Gordon, Di rae and Maxwell equations. IV) Stability conditions for finite-energy solutions of a non-linear Klein-Gordon equation. V) Hamiltonian approach to non-linear evolution equations and Backlund transformations. VI) Anharmonic vibrations: Status of results and new possible approaches. (Author) 83 refs

  16. A note on the prolongation structure of the cubically nonlinear integrable Camassa-Holm type equation

    Energy Technology Data Exchange (ETDEWEB)

    Stalin, S. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Senthilvelan, M., E-mail: velan@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2011-10-17

    In this Letter, we formulate an exterior differential system for the newly discovered cubically nonlinear integrable Camassa-Holm type equation. From the exterior differential system we establish the integrability of this equation. We then study Cartan prolongation structure of this equation. We also discuss the method of identifying conservation laws and Baecklund transformation for this equation from the identified exterior differential system. -- Highlights: → An exterior differential system for a cubic nonlinear integrable equation is given. → The conservation laws from the exterior differential system is derived. → The Baecklund transformation from the Cartan-Ehresmann connection is obtained.

  17. From the hypergeometric differential equation to a non-linear Schrödinger one

    International Nuclear Information System (INIS)

    Plastino, A.; Rocca, M.C.

    2015-01-01

    We show that the q-exponential function is a hypergeometric function. Accordingly, it obeys the hypergeometric differential equation. We demonstrate that this differential equation can be transformed into a non-linear Schrödinger equation (NLSE). This NLSE exhibits both similarities and differences vis-a-vis the Nobre–Rego-Monteiro–Tsallis one. - Highlights: • We show that the q-exponential is a hypergeometric function. • It thus obeys the hypergeometric differential equation (HDE). • We show that the HDE can be cast as a non-linear Schrödinger equation. • This is different from the Nobre, Rego-Monteiro, Tsallis one.

  18. Rigorous dynamic model of a direct methanol fuel cell based on Maxwell-Stefan mass transport equations and a Flory-Huggins activity model: Formulation and experimental validation

    Science.gov (United States)

    Schultz, Thorsten; Sundmacher, Kai

    A one-dimensional rigorous process model of a single-cell direct methanol fuel cell (DMFC) is presented. Multi-component mass transport in the diffusion layers and the polymer electrolyte membrane (PEM) is described using the generalised Maxwell-Stefan (MS) equation for porous structures. In the PEM, also local swelling behaviour and non-idealities are accounted for by a Flory-Huggins model for the activities of the mobile species inside the pores of the PEM. Phase equilibria between the pore liquid inside the PEM and those inside the pores of both catalyst layer are formulated based on literature data and activity models. Although two-phase behaviour in both diffusion layers is neglected, the model shows good agreement to own experimental data over a wide range of operating conditions, with respect to methanol and water crossover fluxes as well as to current-voltage characteristics. Only for very low current densities and in the limiting current regime significant deviations between model and experiments are found.

  19. On the equivalence between particular types of Navier-Stokes and non-linear Schroedinger equations

    International Nuclear Information System (INIS)

    Dietrich, K.; Vautherin, D.

    1985-01-01

    We derive a Schroedinger equation equivalent to the Navier-Stokes equation in the special case of constant kinematic viscosities. This equation contains a non-linear term similar to that proposed by Kostin for a quantum description of friction [fr

  20. On the solvability of initial-value problems for nonlinear implicit difference equations

    Directory of Open Access Journals (Sweden)

    Ha Thi Ngoc Yen

    2004-07-01

    Full Text Available Our aim is twofold. First, we propose a natural definition of index for linear nonautonomous implicit difference equations, which is similar to that of linear differential-algebraic equations. Then we extend this index notion to a class of nonlinear implicit difference equations and prove some existence theorems for their initial-value problems.

  1. On symmetry groups of a 2D nonlinear diffusion equation with source

    Indian Academy of Sciences (India)

    Symmetry analysis of higher-dimensional diffusion equations with convection was first considered in [15]. The equation considered here had the form: ut = n. ∑ i=1. (Di(u)uxi )xi + G(u)uxn . (3). The objective of this paper is to obtain the conditions enabling nontrivial symmetries to exist for the 2D nonlinear equation with a ...

  2. Derivation of Maxwell's Equations Based on a Continuum Mechanical Model of Vacuum and a Singularity Model of Electric Charges

    Directory of Open Access Journals (Sweden)

    Wang X.-S.

    2008-04-01

    Full Text Available The main purpose of this paper is to seek a mechanical interpretation of electromagnetic phenomena. We suppose that vacuum is filled with a kind of continuously distributed material which may be called Omega(1 substratum. Further, we speculate that the Omega(1 substratum might behave like a fluid with respect to translational motion of large bod- ies through it, but would still posses elasticity to produce small transverse vibrations. Thus, we propose a visco-elastic constitutive relation of the Omega(1 substratum. Further- more, we speculate that electric charges are emitting or absorbing the Omega(1 substratum continuously and establish a fluidic source and sink model of electric charges. Thus, Maxwell’s equations in vacuum are derived by methods of continuum mechanics based on this mechanical model of vacuum and the singularity model of electric charges.

  3. Multiphase Weakly Nonlinear Geometric Optics for Schrödinger Equations

    KAUST Repository

    Carles, Rémi

    2010-01-01

    We describe and rigorously justify the nonlinear interaction of highly oscillatory waves in nonlinear Schrödinger equations, posed on Euclidean space or on the torus. Our scaling corresponds to a weakly nonlinear regime where the nonlinearity affects the leading order amplitude of the solution, but does not alter the rapid oscillations. We consider initial states which are superpositions of slowly modulated plane waves, and use the framework of Wiener algebras. A detailed analysis of the corresponding nonlinear wave mixing phenomena is given, including a geometric interpretation of the resonance structure for cubic nonlinearities. As an application, we recover and extend some instability results for the nonlinear Schrödinger equation on the torus in negative order Sobolev spaces. © 2010 Society for Industrial and Applied Mathematics.

  4. Nonlinear self-adjointness and invariant solutions of a 2D Rossby wave equation

    Science.gov (United States)

    Cimpoiasu, Rodica; Constantinescu, Radu

    2014-02-01

    The paper investigates the nonlinear self-adjointness of the nonlinear inviscid barotropic nondivergent vorticity equation in a beta-plane. It is a particular form of Rossby equation which does not possess variational structure and it is studied using a recently method developed by Ibragimov. The conservation laws associated with the infinite-dimensional symmetry Lie algebra models are constructed and analyzed. Based on this Lie algebra, some classes of similarity invariant solutions with nonconstant linear and nonlinear shears are obtained. It is also shown how one of the conservation laws generates a particular wave solution of this equation.

  5. The G‧G-expansion method for the nonlinear lattice equations

    Science.gov (United States)

    Ayhan, Burcu; Bekir, Ahmet

    2012-09-01

    In this paper, we extended the {G'}/{G}-expansion method to three well-known nonlinear lattice equations. With the aid of symbolic computation, we choose nonlinear lattice equations to illustrate the validity and advantages of the algorithm. This method could give many kinds of exact solutions including soliton solutions expressed by hyperbolic functions and periodic solutions expressed by trigonometric functions in a uniform way if solutions of these kinds exist. It is shown that the proposed algorithm is effective and can be used for many other nonlinear lattice equations in mathematical physics and applied mathematics.

  6. Modified wave operators for nonlinear Schrodinger equations in one and two dimensions

    Directory of Open Access Journals (Sweden)

    Nakao Hayashi

    2004-04-01

    Full Text Available We study the asymptotic behavior of solutions, in particular the scattering theory, for the nonlinear Schr"{o}dinger equations with cubic and quadratic nonlinearities in one or two space dimensions. The nonlinearities are summation of gauge invariant term and non-gauge invariant terms. The scattering problem of these equations belongs to the long range case. We prove the existence of the modified wave operators to those equations for small final data. Our result is an improvement of the previous work [13

  7. On the solution of the space-time fractional cubic nonlinear Schrödinger equation

    Directory of Open Access Journals (Sweden)

    E.A. Yousif

    2018-03-01

    Full Text Available The space–time fractional nonlinear Schrödinger equation is studied based on the modified Riemann–Liouville derivative. The fractional mapping expansion method is used to find analytical solution of this model. We discuss the effects of the fractional differential order on the W-soliton and bright soliton solutions. The derived solutions show direct proportionality between soliton intensities and the value of the fractional order derivative. Keywords: Fractional mapping expansion method, Nonlinear fractional differential equation, Modified Riemann–Liouville derivative, Space-time fractional nonlinear Schrödinger equation

  8. Existence Results for Some Nonlinear Functional-Integral Equations in Banach Algebra with Applications

    Directory of Open Access Journals (Sweden)

    Lakshmi Narayan Mishra

    2016-04-01

    Full Text Available In the present manuscript, we prove some results concerning the existence of solutions for some nonlinear functional-integral equations which contains various integral and functional equations that considered in nonlinear analysis and its applications. By utilizing the techniques of noncompactness measures, we operate the fixed point theorems such as Darbo's theorem in Banach algebra concerning the estimate on the solutions. The results obtained in this paper extend and improve essentially some known results in the recent literature. We also provide an example of nonlinear functional-integral equation to show the ability of our main result.

  9. Exact solutions of some nonlinear partial differential equations using ...

    Indian Academy of Sciences (India)

    1Department of Mathematics, Islamic Azad University, Dezful Branch, Dezful, Iran ... such as physics, mechanics, chemistry, biology, mathematics and engineering. ... generates solitons. However, the balance between nonlinearity and genuinely nonlinear dispersion gives rise to the so-called compactons: solitons free of ...

  10. Blowing-up semilinear wave equation with exponential nonlinearity ...

    Indian Academy of Sciences (India)

    H1-norm. Hence, it is legitimate to consider an exponential nonlinearity. Moreover, the choice of an exponential nonlinearity emerges from a possible control of solutions via a. Moser–Trudinger type inequality [1, 16, 19]. In fact, Nakamura and Ozawa [17] proved global well-posedness and scattering for small Cauchy data in ...

  11. Generalized Wronskian relations one dimensional Schroedinger equation and nonlinear partial differential equations solvable by the inverse scattering method

    International Nuclear Information System (INIS)

    Calogero, F.

    1976-01-01

    A generalized Wronskian type relation is used to obtain a number of expressions for the scattering and bound state parameters (reflection and transmission coefficients, bound state energies and normalization constants) in the context of the one dimensional Schroedinger equation. These expressions are in the form of integrals over the wave functions multiplied by appropriate (generally nonlinear) combinations of the potentials and their derivatives. Some of them provide the basis for deriving classes of nonlinear partial differential equations that are solvable by the inverse scattering method. The main interest of this approach rests in its simplicity and in its delivery of nonlinear evolution equations that may involve more than one (space) variable and contain coefficients that are not constant

  12. Localized and periodic exact solutions to the nonlinear Schroedinger equation with spatially modulated parameters: Linear and nonlinear lattices

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Konotop, Vladimir V.; Perez-Garcia, Victor M.; Vekslerchik, Vadym E.

    2009-01-01

    Using similarity transformations we construct explicit solutions of the nonlinear Schroedinger equation with linear and nonlinear periodic potentials. We present explicit forms of spatially localized and periodic solutions, and study their properties. We put our results in the framework of the exploited perturbation techniques and discuss their implications on the properties of associated linear periodic potentials and on the possibilities of stabilization of gap solitons using polychromatic lattices.

  13. The effect of nonlinearity on unstable zones of Mathieu equation

    Indian Academy of Sciences (India)

    Mathieu equation is a well-known ordinary differential equation in which the excitation term appears as the non-constant coefficient. The mathematical modelling of many dynamic systems leads to Mathieu equation. The determination of the locus of unstable zone is important for the control of dynamic systems. In this paper ...

  14. Lie Group Analysis and Invariant Solutions for Nonlinear Time-Fractional Diffusion-Convection Equations*

    Science.gov (United States)

    Chen, Cheng; Jiang, Yao-Lin

    2017-09-01

    On the basis of Lie group theory, (1 + N)-dimensional time-fractional partial differential equations are studied and the expression of {η }α 0 is given. As applications, two special forms of nonlinear time-fractional diffusion-convection equations are investigated by Lie group analysis method. Then the equations are reduced into fractional ordinary differential equations under group transformations. Therefore, the invariant solutions and some exact solutions are obtained.

  15. Extension of the homotopy pertubation method for solving nonlinear differential-difference equations

    Energy Technology Data Exchange (ETDEWEB)

    Mousa, Mohamed Medhat [Benha Univ. (Egypt). Benha High Inst. of Technology; Al-Farabi Kazakh National Univ., Almaty (Kazakhstan); Kaltayev, Aidarkan [Al-Farabi Kazakh National Univ., Almaty (Kazakhstan); Bulut, Hasan [Firat Univ., Elazig (Turkey). Dept. of Mathematics

    2010-12-15

    In this paper, we have extended the homotopy perturbation method (HPM) to find approximate analytical solutions for some nonlinear differential-difference equations (NDDEs). The discretized modified Korteweg-de Vries (mKdV) lattice equation and the discretized nonlinear Schroedinger equation are taken as examples to demonstrate the validity and the great potential of the HPM in solving such NDDEs. Comparisons are made between the results of the presented method and exact solutions. The obtained results reveal that the HPM is a very effective and convenient tool for solving such kind of equations. (orig.)

  16. Fokker-Planck-Kolmogorov equation with nonlocal nonlinearity in quasiclassical approximation

    CERN Document Server

    Trifonov, A Yu

    2002-01-01

    The scheme of plotting the quasiclassically concentrated solutions of the Fokker-Planck-Kolmogorov (FPK) equation with nonlocal nonlinearity is presented on the basis of the WKB-Maslov complex method. The solutions of Cauchy problem for this equation, formal asymptotic ones by the D, D -> 0 small parameters, are plotted with the O(D sup 3 sup / sup 2) exponential accuracy. The Hamilton-Erenfest equation system (the system of equations for the medium and centered moments), derived in this work, plays an important role by plotting such solutions. The approximated Green function is plotted in the class of the FPK quasiclassically concentrated solutions and the superposition nonlinear principle is formulated

  17. Analysis of an Nth-order nonlinear differential-delay equation

    Science.gov (United States)

    Vallée, Réal; Marriott, Christopher

    1989-01-01

    The problem of a nonlinear dynamical system with delay and an overall response time which is distributed among N individual components is analyzed. Such a system can generally be modeled by an Nth-order nonlinear differential delay equation. A linear-stability analysis as well as a numerical simulation of that equation are performed and a comparison is made with the experimental results. Finally, a parallel is established between the first-order differential equation with delay and the Nth-order differential equation without delay.

  18. THE CLOSE RELATION BETWEEN THE MAXWELL SYSTEM AND THE DIRAC EQUATION WHEN THE ELECTRIC FIELD PARALLEL IS PARALLEL TO THE MAGNETIC FIELD LA ESTRECHA RELACIÓN ENTRE EL SISTEMA DE MAXWELL Y LA ECUACIÓN DE DIRAC, CUANDO EL CAMPO ELÉCTRICO ES PARALELO AL CAMPO MAGNÉTICO

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available In the present article we propose a simple equality involving the Dirac operator and the Maxwell operators from a chiral approach. This equality establishes a direct connection between solutions of the two systems. Moreover, we show that the connection is valid when a fairly natural relationship between the frequency of the electromagnetic wave and the energy of the Dirac particle is fulfilled, if the electric field is parallel to the magnetic field . Our analysis is based on the quaternionic form of the Dirac equation and on the quaternionic form of the Maxwell equations. In both cases the quaternionic reformulations are completely equivalent to the traditional form of the Dirac and Maxwell systems. This theory is a new quantum mechanics (QM interpretation. The research below shows that the QM represents the electrodynamics of the curvilinear closed chiral waves. This concords entirely with the modern interpretation and results of the quantum field theory.En el presente artículo se propone un simple igualdad que considera el operador de Dirac y los operadores de Maxwell bajo un enfoque quiral. Esta igualdad establece una conexión directa entre las soluciones de los dos sistemas. Además, se muestra que es válida cuando una relación muy natural se cumple entre la frecuencia de la onda electromagnética y la energía de la partícula Dirac, si el campo eléctrico es paralelo al campo magnético . Este análisis se basa en la forma cuaterniónica de la ecuación de Dirac y la forma cuaterniónica de las ecuaciones de Maxwell. En ambos casos las reformulaciones con cuaterniones son completamente equivalentes a la forma tradicional de los sistemas de Dirac y Maxwell. Esta teoría es una nueva interpretación de la mecánica cuántica. Este trabajo prueba que la mecánica cuántica representa la electrodinámica de ondas quirales curvilíneas cerradas. Esto está enteramente de acuerdo con la moderna interpretación y resultados de la teoría cu

  19. Method of the quasilinearization for nonlinear impulsive differential equations with linear boundary conditions

    Directory of Open Access Journals (Sweden)

    Paul Eloe

    2002-01-01

    Full Text Available The method of quasilinearization for nonlinear impulsive differential equations with linear boundary conditions is studied. The boundary conditions include periodic boundary conditions. It is proved the convergence is quadratic.

  20. Existence of Solutions of Abstract Nonlinear Mixed Functional Integrodifferential equation with nonlocal conditions

    Directory of Open Access Journals (Sweden)

    Dhakne Machindra B.

    2017-04-01

    Full Text Available In this paper we discuss the existence of mild and strong solutions of abstract nonlinear mixed functional integrodifferential equation with nonlocal condition by using Sadovskii’s fixed point theorem and theory of fractional power of operators.

  1. Stability and square integrability of solutions of nonlinear fourth order differential equations

    Directory of Open Access Journals (Sweden)

    Moussadek Remili

    2016-05-01

    Full Text Available The aim of the present paper is to establish a new result, which guarantees the asymptotic stability of zero solution and square integrability of solutions and their derivatives to nonlinear differential equations of fourth order.

  2. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    International Nuclear Information System (INIS)

    Maccari, A.

    1997-01-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio endash temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a open-quotes universalclose quotes character, inasmuch as they may be derived from a very large class of nonlinear evolution equations with a linear dispersive part. copyright 1997 American Institute of Physics

  3. Solving Fuzzy Nonlinear Volterra-Fredholm Integral Equations by Using Homotopy Analysis and Adomian Decomposition Methods

    Directory of Open Access Journals (Sweden)

    Shadan Sadigh Behzadi

    2011-12-01

    Full Text Available In this paper, Adomian decomposition method (ADM and homotopy analysis method (HAM are proposed to solving the fuzzy nonlinear Volterra-Fredholm integral equation of the second kind$(FVFIE-2$. we convert a fuzzy nonlinear Volterra-Fredholm integral equation to a nonlinear system of Volterra-Fredholm integral equation in crisp case. we use ADM , HAM and find the approximate solution of this system and hence obtain an approximation for fuzzy solution of the nonlinear fuzzy Volterra-Fredholm integral equation. Also, the existence and uniqueness of the solution and convergence of the proposed methods are proved. Examples is given and the results reveal that homotopy analysis method is very effective and simple compared with the Adomian decomposition method.

  4. Existence and attractivity results for nonlinear first order random differential equations

    Directory of Open Access Journals (Sweden)

    Bapurao C. Dhage

    2010-01-01

    Full Text Available In this paper, the existence and attractivity results are proved for nonlinear first order ordinary random differential equations. Two examples are provided to demonstrate the realization of the abstract developed theory.

  5. An Existence Result for Nonlinear Fractional Differential Equations on Banach Spaces

    Directory of Open Access Journals (Sweden)

    Djamila Seba

    2009-01-01

    Full Text Available The aim of this paper is to investigate a class of boundary value problem for fractional differential equations involving nonlinear integral conditions. The main tool used in our considerations is the technique associated with measures of noncompactness.

  6. Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics

    Science.gov (United States)

    Kakhktsyan, V. M.; Khachatryan, A. Kh.

    2013-07-01

    A mixed problem for a nonlinear integrodifferential equation arising in econometrics is considered. An analytical-numerical method is proposed for solving the problem. Some numerical results are presented.

  7. Oscillation of solutions to neutral nonlinear impulsive hyperbolic equations with several delays

    Directory of Open Access Journals (Sweden)

    Jichen Yang

    2013-01-01

    Full Text Available In this article, we study oscillatory properties of solutions to neutral nonlinear impulsive hyperbolic partial differential equations with several delays. We establish sufficient conditions for oscillation of all solutions.

  8. On positive solutions of reaction-diffusion equation with Caratheodory nonlinear term

    Directory of Open Access Journals (Sweden)

    O. V. Kapustyan

    2009-09-01

    Full Text Available In the paper for reaction-diffusion equation with Caratheodory nonlinear term under conditions, which do not guarantee uniqueness of Cauchy problem solution, we prove the global resolvability in the class of nonnegative integrable functions.

  9. On the integrability of the generalized Fisher-type nonlinear diffusion equations

    International Nuclear Information System (INIS)

    Wang Dengshan; Zhang Zhifei

    2009-01-01

    In this paper, the geometric integrability and Lax integrability of the generalized Fisher-type nonlinear diffusion equations with modified diffusion in (1+1) and (2+1) dimensions are studied by the pseudo-spherical surface geometry method and prolongation technique. It is shown that the (1+1)-dimensional Fisher-type nonlinear diffusion equation is geometrically integrable in the sense of describing a pseudo-spherical surface of constant curvature -1 only for m = 2, and the generalized Fisher-type nonlinear diffusion equations in (1+1) and (2+1) dimensions are Lax integrable only for m = 2. This paper extends the results in Bindu et al 2001 (J. Phys. A: Math. Gen. 34 L689) and further provides the integrability information of (1+1)- and (2+1)-dimensional Fisher-type nonlinear diffusion equations for m = 2

  10. Some nonlinear integral inequalities arising in differential equations

    Directory of Open Access Journals (Sweden)

    Assia Guezane-Lakoud

    2008-05-01

    Full Text Available The aim of this paper is to obtain estimates for functions satisfying some nonlinear integral inequalities. Using ideas from Pachpatte [3], we generalize the estimates presented in [2,4].

  11. New exact travelling wave solutions for the generalized nonlinear Schroedinger equation with a source

    International Nuclear Information System (INIS)

    Abdou, M.A.

    2008-01-01

    The generalized F-expansion method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for the generalized nonlinear Schrodinger equation with a source. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics

  12. Existence and Characterization of Solutions of Nonlinear Volterra-Stieltjes Integral Equations in Two Variables

    Directory of Open Access Journals (Sweden)

    Mohamed Abdalla Darwish

    2014-01-01

    Full Text Available The paper is devoted mainly to the study of the existence of solutions depending on two variables of a nonlinear integral equation of Volterra-Stieltjes type. The basic tool used in investigations is the technique of measures of noncompactness and Darbo’s fixed point theorem. The results obtained in the paper are applicable, in a particular case, to the nonlinear partial integral equations of fractional orders.

  13. A New Iterative Numerical Continuation Technique for Approximating the Solutions of Scalar Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    Grégory Antoni

    2017-01-01

    Full Text Available The present study concerns the development of a new iterative method applied to a numerical continuation procedure for parameterized scalar nonlinear equations. Combining both a modified Newton’s technique and a stationary-type numerical procedure, the proposed method is able to provide suitable approximate solutions associated with scalar nonlinear equations. A numerical analysis of predictive capabilities of this new iterative algorithm is addressed, assessed, and discussed on some specific examples.

  14. Singular and non-topological soliton solutions for nonlinear fractional differential equations

    Science.gov (United States)

    Ozkan, Guner

    2015-10-01

    In this article, the fractional derivatives are described in the modified Riemann-Liouville sense. We propose a new approach, namely an ansatz method, for solving fractional differential equations (FDEs) based on a fractional complex transform and apply it to solve nonlinear space-time fractional equations. As a result, the non-topological as well as the singular soliton solutions are obtained. This method can be suitable and more powerful for solving other kinds of nonlinear fractional FDEs arising in mathematical physics.

  15. pth-order approximation of the solution set of nonlinear equations

    Science.gov (United States)

    Evtushenko, Yu. G.; Tret'yakov, A. A.

    2013-12-01

    Given a system of nonlinear equations, a formula is derived for the family of its approximate solutions of up to the pth order of smallness. A formula approximating an implicit function up to the third order of smallness is presented. Iterative methods converging with the pth order are constructed for solving systems of nonlinear equations. These results are extended to the degenerate case. Examples of applying the results are given.

  16. Construction of local and non-local conservation laws for non-linear field equations

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1984-08-01

    A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)

  17. Analytical approximate solutions for a general class of nonlinear delay differential equations.

    Science.gov (United States)

    Căruntu, Bogdan; Bota, Constantin

    2014-01-01

    We use the polynomial least squares method (PLSM), which allows us to compute analytical approximate polynomial solutions for a very general class of strongly nonlinear delay differential equations. The method is tested by computing approximate solutions for several applications including the pantograph equations and a nonlinear time-delay model from biology. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using other methods.

  18. Combined solitary-wave solution for coupled higher-order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Tian Jinping; Tian Huiping; Li Zhonghao; Zhou Guosheng

    2004-01-01

    Coupled nonlinear Schroedinger equations model several interesting physical phenomena. We used a trigonometric function transform method based on a homogeneous balance to solve the coupled higher-order nonlinear Schroedinger equations. We obtained four pairs of exact solitary-wave solutions including a dark and a bright-soliton pair, a bright- and a dark-soliton pair, a bright- and a bright-soliton pair, and the last pair, a combined bright-dark-soliton pair

  19. Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations

    International Nuclear Information System (INIS)

    Udaltsov, Vladimir S.; Goedgebuer, Jean-Pierre; Larger, Laurent; Cuenot, Jean-Baptiste; Levy, Pascal; Rhodes, William T.

    2003-01-01

    We report that signal encoding with high-dimensional chaos produced by delayed feedback systems with a strong nonlinearity can be broken. We describe the procedure and illustrate the method with chaotic waveforms obtained from a strongly nonlinear optical system that we used previously to demonstrate signal encryption/decryption with chaos in wavelength. The method can be extended to any systems ruled by nonlinear time-delayed differential equations

  20. Conservation laws for certain time fractional nonlinear systems of partial differential equations

    Science.gov (United States)

    Singla, Komal; Gupta, R. K.

    2017-12-01

    In this study, an extension of the concept of nonlinear self-adjointness and Noether operators is proposed for calculating conserved vectors of the time fractional nonlinear systems of partial differential equations. In our recent work (J Math Phys 2016; 57: 101504), by proposing the symmetry approach for time fractional systems, the Lie symmetries for some fractional nonlinear systems have been derived. In this paper, the obtained infinitesimal generators are used to find conservation laws for the corresponding fractional systems.