ElNady, Khaled; Goda, Ibrahim; Ganghoffer, Jean-François
2016-09-01
The asymptotic homogenization technique is presently developed in the framework of geometrical nonlinearities to derive the large strains effective elastic response of network materials viewed as repetitive beam networks. This works extends the small strains homogenization method developed with special emphasis on textile structures in Goda et al. (J Mech Phys Solids 61(12):2537-2565, 2013). A systematic methodology is established, allowing the prediction of the overall mechanical properties of these structures in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the chosen equivalent continuum. Internal scale effects of the initially discrete structure are captured by the consideration of a micropolar effective continuum model. Applications to the large strain response of 3D hexagonal lattices and dry textiles exemplify the powerfulness of the proposed method. The effective mechanical responses obtained for different loadings are validated by FE simulations performed over a representative unit cell.
Organic nonlinear optical materials
Umegaki, S.
1987-01-01
Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.
Nonlinear Materials Characterization Facility
Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...
Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties
Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon
2014-01-01
Purpose The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency during anterior-posterior stretching. Method Three materially linear and three materially nonlinear models were created and stretched up to 10 mm in 1 mm increments. Phonation onset pressure (Pon) and fundamental frequency (F0) at Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1 mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models. Results Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length. Conclusions Nonlinear synthetic models appear to more accurately represent the human vocal folds than linear models, especially with respect to F0 response. PMID:22271874
Response of Saturated Porous Nonlinear Materials to Dynamic Loadings
1984-05-31
the following section a bilinear hysteretic skeleton was modeled, followed by calculations on an actual sand from Enewetak Atoll . In this section...the response of saturated sand from Enewetak Atoll . The skeleton properties are taken from laboratory data reported in the second volunie of this study...with an actual saturated sand from Enewetak Atoll . In Section 2, the theoretical background and numerical code, TPDAP, used in this study are described
Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties
Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon
2012-01-01
Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…
Modeling of nonlinear optic and ESR response of CDW MX materials
Energy Technology Data Exchange (ETDEWEB)
Saxena, A.; Gammel, J.T.; Bishop, A.R. [Los Alamos National Lab., NM (United States); Shuai, Z.; Bredas, J.L. [Center de Recherche en Electronique et Photonique Moleculaires, Universite de Mons-Hainaut (Belgium); Batistic, I. [Zagreb Univ. (Croatia). Dept. of Physics; Alouani, M. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics
1994-09-01
We report results on the nonlinear optic and ESR response of the PtX MX chain materials calculated using a discrete, 3/4-filled, two-band, tight-binding Peierls-Hubbard model. We calculated electroabsorption (EA) spectra for the three PtX (X=Cl, Br, 1) charge-density-wave (CDW) materials and find good agreement with the experimental data. We also obtain EA spectra for localized defects in PtBr. In addition, the field orientation dependence of the electron spin resonance spectra associated with the spin carrying defects is calculated for PtX materials and compared with ESR data on photoinduced defects.
Beyond the perturbative description of the nonlinear optical response of low-index materials.
Reshef, Orad; Giese, Enno; Zahirul Alam, M; De Leon, Israel; Upham, Jeremy; Boyd, Robert W
2017-08-15
We show that standard approximations in nonlinear optics are violated for situations involving a small value of the linear refractive index. Consequently, the conventional equation for the intensity-dependent refractive index, n(I)=n0+n2I, becomes inapplicable in epsilon-near-zero and low-index media, even in the presence of only third-order effects. For the particular case of indium tin oxide, we find that the χ((3)), χ((5)), and χ((7)) contributions to refraction eclipse the linear term; thus, the nonlinear response can no longer be interpreted as a perturbation in these materials. Although the response is non-perturbative, we find no evidence that the power series expansion of the material polarization diverges.
Eaton, D F
1991-07-19
The current state of materials development in nonlinear optics is summarized, and the promise of these materials is critically evaluated. Properties and important materials constants of current commercial materials and of new, promising, inorganic and organic molecular and polymeric materials with potential in second- and third-order nonlinear optical applications are presented.
A computer program for predicting nonlinear uniaxial material responses using viscoplastic models
Chang, T. Y.; Thompson, R. L.
1984-01-01
A computer program was developed for predicting nonlinear uniaxial material responses using viscoplastic constitutive models. Four specific models, i.e., those due to Miller, Walker, Krieg-Swearengen-Rhode, and Robinson, are included. Any other unified model is easily implemented into the program in the form of subroutines. Analysis features include stress-strain cycling, creep response, stress relaxation, thermomechanical fatigue loop, or any combination of these responses. An outline is given on the theoretical background of uniaxial constitutive models, analysis procedure, and numerical integration methods for solving the nonlinear constitutive equations. In addition, a discussion on the computer program implementation is also given. Finally, seven numerical examples are included to demonstrate the versatility of the computer program developed.
Sifain, Andrew E; Tadesse, Loza F; Bjorgaard, Josiah A; Chavez, David E; Prezhdo, Oleg V; Scharff, R Jason; Tretiak, Sergei
2017-03-21
Conjugated energetic molecules (CEMs) are a class of explosives with high nitrogen content that posses both enhanced safety and energetic performance properties and are ideal for direct optical initiation. As isolated molecules, they absorb within the range of conventional lasers. Crystalline CEMs are used in practice, however, and their properties can differ due to intermolecular interaction. Herein, time-dependent density functional theory was used to investigate one-photon absorption (OPA) and two-photon absorption (TPA) of monomers and dimers obtained from experimentally determined crystal structures of CEMs. OPA scales linearly with the number of chromophore units, while TPA scales nonlinearly, where a more than 3-fold enhancement in peak intensity, per chromophore unit, is calculated. Cooperative enhancement depends on electronic delocalization spanning both chromophore units. An increase in sensitivity to nonlinear laser initiation makes these materials suitable for practical use. This is the first study predicting a cooperative enhancement of the nonlinear optical response in energetic materials composed of relatively small molecules. The proposed model quantum chemistry is validated by comparison to crystal structure geometries and the optical absorption of these materials dissolved in solution.
Lee, Ho-Jun; Saravanos, Dimitris A.
1997-01-01
Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.
Nonlinear optics and organic materials
Energy Technology Data Exchange (ETDEWEB)
Shen, Y.R.
1994-07-01
We shall consider an interesting topic relating nonlinear optics and organic materials: how nonlinear optics can be used to study organic materials. One of the main differences between linear and nonlinear responses of a medium to incoming radiation is in their symmetries. It leads to the possibility that some properties of the medium could be more sensitively probed by nonlinear, rather than linear, optical means, or vise versa. A well-known example is that some vibrational modes of a medium could be Raman-active but infrared-inactive, and would be more readily observed by Raman scattering, which is a two-photon transition process. In this paper, we shall discuss, with the help of three examples, how we can use second harmonic generation (SHG) and sum frequency generation (SFG) to obtain unique information about a material. We shall focus on thin films, surfaces, and interfaces.
Distributed nonlinear optical response
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov
2005-01-01
The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...
Řehoř, Martin; Pr&oring; ša, Vít; T&oring; ma, Karel
2016-10-01
Rigorous analysis of the response of nonlinear materials to step inputs requires one to simultaneously handle the discontinuity, differentiation, and nonlinearity. This task is however beyond the reach of the standard theories such as the classical theory of distributions and presents a considerable mathematical difficulty. New advanced mathematical tools are necessary to handle the challenge. An elegant and relatively easy-to-use framework capable of accomplishing the task is provided by the Colombeau algebra, which is a generalisation of the classical theory of distributions to the nonlinear setting. We use the Colombeau algebra formalism and derive explicit formulae describing the response of incompressible Maxwell viscoelastic fluid subject to step load/deformation in the lubricated squeeze flow setting.
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Intrinsic nonlinear response of surface plasmon polaritons
Im, Song-Jin; Kim, Gum-Hyok
2015-01-01
We offer a model to describe the intrinsic nonlinear response of surface plasmon polaritons (SPPs). Relation of the complex nonlinear coefficient of SPPs to the third-order nonlinear susceptibility of the metal is provided. As reported in a recent study, gold is highly lossy and simultaneously highly nonlinear due to interband absorption and interband thermo-modulation at a wavelength shorter than 700 nm. The effect of the high loss of the metal on the SPP nonlinear propagation is taken into account in our model. With the model we show difference in sign of real and imaginary parts between the nonlinear propagation coefficient and the nonlinear susceptibility of component material for the first time to our knowledge. Our model could have practical importance in studying plasmonic devices utilizing the nonlinear phase modulation and the nonlinear absorption of SPPs. For example, it allows one to extract the complex nonlinear susceptibility of gold through a measurement of SPP nonlinear propagation at the visib...
Whittam, A J
2001-01-01
susceptibility from 26 pm/V (same film without octadecanoic acid) to 40 pm/V. This increase in the second-order susceptibility occurred even though the amount of NLO-active dye was effectively diluted by the addition of the inactive octadecanoic acid. The wavelength of the absorption maximum ranged from 346-440 nm and there was direct correlation between the susceptibilities and the transparency of the films at the harmonic wavelength. Hemicyanine dyes were synthesised, with the general formulae: - (a) C sub 1 sub 8 H sub 3 sub 7 -A sup + -[CH=CH-C sub 6 H sub 4] sub x -N(CH sub 3) sub 2 I (b) C sub 1 sub 8 H sub 3 sub 7 -A sup + -[CH=CH] sub y -C sub 6 H sub 4 -N(CH sub 3) sub 2 I where A sup + is a pyridinium or isoquinolinium acceptor, and x = 1 or 2, and y = 1 or 2. The optically nonlinear dyes were investigated via the Langmuir-Blodgett (LB) technique. The dyes all produced isotherm data, with molecular areas of 22-60 A sup 2 per molecule, which are consistent with the cross-sectional areas of the chromo...
Brands, Dave W A; Bovendeerd, Peter H M; Wismans, Jac S H M
2002-11-01
In current Finite Element (FE) head models, brain tissue is commonly assumed to display linear viscoelastic material behaviour. However, brain tissue behaves like a non-linear viscoelastic solid for shear strains above 1%. The main objective of this study was to study the effect of non-linear material behaviour on the predicted brain response. We used a non-linear viscoelastic constitutive model, developed on the basis of experimental shear data presented elsewere. First we tested the numerical implementation of the constitutive model by simulating the response of a silicone gel (Sylgard 572 A&B) filled cylindrical cup, subjected to a transient rotational acceleration. The experimental results could be reproduced within 9%. Subsequently, the effect of non-linear material modelling on computed brain response was investigated in an existing three-dimensional head model subjected to an eccentric rotation. At the applied external load strains in the brain were approximately ten times larger than was expected on the basis of published data. This is probably caused by the values of the shear moduli applied in the model. These are at least a factor of ten lower than the ones used in head models in literature but comparable to material data in recent literature. Non-linear material behaviour was found to influence the levels of predicted strains (+20%) and stresses (-11%) but not their temporal and spatial distribution. The pressure response was independent of non-linear material behaviour. In fact it could be predicted by the equilibrium of momentum, and thus it is independent of the choice of the brain constitutive model.
Nonlinear Dynamics of Structures with Material Degradation
Soltani, P.; Wagg, D. J.; Pinna, C.; Whear, R.; Briody, C.
2016-09-01
Structures usually experience deterioration during their working life. Oxidation, corrosion, UV exposure, and thermo-mechanical fatigue are some of the most well-known mechanisms that cause degradation. The phenomenon gradually changes structural properties and dynamic behaviour over their lifetime, and can be more problematic and challenging in the presence of nonlinearity. In this paper, we study how the dynamic behaviour of a nonlinear system changes as the thermal environment causes certain parameters to vary. To this end, a nonlinear lumped mass modal model is considered and defined under harmonic external force. Temperature dependent material functions, formulated from empirical test data, are added into the model. Using these functions, bifurcation parameters are defined and the corresponding nonlinear responses are observed by numerical continuation. A comparison between the results gives a preliminary insight into how temperature induced properties affects the dynamic response and highlights changes in stability conditions of the structure.
Nonlinear acoustics and honeycomb materials
Thompson, D. O.
2012-05-01
The scope of research activity that Bruce Thompson embraced was very large. In this talk three different research topics that the author shared with Bruce are reviewed. They represent Bruce's introduction to NDE and include nonlinear acoustics, nondestructive measurements of adhesive bond strengths in honeycomb panels, and studies of flexural wave dispersion in honeycomb materials. In the first of these, four harmonics of a 30 Mhz finite amplitude wave were measured for both fused silica and aluminum single crystals with varying lengths and amounts of cold work using a capacity microphone with heterodyne receiver with a flat frequency response from 30 to 250 Mhz. The results for fused silica with no dislocation structure could be described by a model due to Fubini, originally developed for gases, that depends upon only the second and third order elastic constants and not the fourth and higher order constants. The same was not true for the aluminum with dislocation structures. These results raised some questions about models for harmonic generation in materials with dislocations. In the second topic, experiments were made to determine the adhesive bond strengths of honeycomb panels using the vibrational response of the panels (Chladni figures). The results showed that both the damping characteristics of panel vibrations as a whole and velocity of propagation of elastic waves that travel along the surface and sample the bondline can be correlated with destructively determined bond strengths. Finally, the phase velocity of flexural waves traveling along a 1-inch honeycomb sandwich panel was determined from 170 Hz to 50 Khz, ranging from 2.2×104 cm/sec at the low end to 1.18×105 cm/sec at 40 Khz. The dispersion arises from the finite thickness of the panel and agreed with the results of continuum models for the honeycomb. Above 40 Khz, this was not the case. The paper concludes with a tribute to Bruce for his many wonderful contributions and lessons beyond his
New nonlinear optical materials based on ferrofluids
Energy Technology Data Exchange (ETDEWEB)
Huang, J P [Department of Physics, Fudan University, Shanghai 200433 (China); Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Yu, K W [Department of Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)
2006-01-01
We exploit theoretically a new class of magneto-controlled nonlinear optical material based on ferrofluids in which ferromagnetic nanoparticles are coated with a nonmagnetic metallic nonlinear shell. Such an optical material can have anisotropic nonlinear optical properties and a giant enhancement of nonlinearity, as well as an attractive figure of merit.
Structural optimization for nonlinear dynamic response.
Dou, Suguang; Strachan, B Scott; Shaw, Steven W; Jensen, Jakob S
2015-09-28
Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped-clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order of magnitude by relatively simple changes in the shape of these elements. We expect the proposed approach, and its extensions, to be useful for the design of systems used for fundamental studies of nonlinear behaviour as well as for the development of commercial devices that exploit nonlinear behaviour.
Graphene - a rather ordinary nonlinear optical material
khurgin, Jacob B
2014-01-01
An analytical expression for the nonlinear refractive index of graphene has been derived and used to obtain the performance metrics of third order nonlinear devices using graphene as a nonlinear medium. None of the metrics is found to be superior to the existing nonlinear optical materials.
Variational principles for nonlinear piezoelectric materials
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Ramos, R.; Guinovart-Diaz, R. [Universidad de la Habana, Facultad de Matematica y Computacion, Vedado, Habana (Cuba); Pobedria, B.E. [Moscow State University M. V. Lomonosov, Composites Department, Moscow (Russian Federation); Padilla, P. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas (IIMAS), Cd. Universitaria, Mexico D.F. (Mexico); Bravo-Castillero, J. [Universidad de la Habana, Facultad de Matematica y Computacion, Vedado, Habana (Cuba); Campus Estado de Mexico. Division de Arquitectura e Ingenieria, Instituto Tecnologico de Estudios Superiores de Monterrey, Atizapan de Zaragoza, Estado de Mexico (Mexico); Maugin, G.A. [Universite Pierre et Marie Curie. Case 162, UMR 7607 CNRS, Laboratoire de Modelisation en Mecanique, Paris Cedex 05 (France)
2004-12-01
In the present paper, we consider the behavior of nonlinear piezoelectric materials by generalization for this case of the Hashin-Shtrikman variational principles. The new general formulation used here differs from others, because, it gives the possibility to evaluate the upper and lower Hashin-Shtrikman bounds for specific physical nonlinearities of piezoelectric materials. Geometrical nonlinearities are not considered. (orig.)
Structural optimization for nonlinear dynamic response
DEFF Research Database (Denmark)
Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.
2015-01-01
condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped–clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...... by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance...
A nonlinear constitutive model for magnetostrictive materials
Institute of Scientific and Technical Information of China (English)
Xin'en Liu; Xiaojing Zheng
2005-01-01
A general nonlinear constitutive model is proposed for magnetostrictive materials, based on the important physical fact that a nonlinear part of the elastic strain produced by a pre-stress is related to the magnetic domain rotation or movement and is responsible for the change of the maximum magnetostrictive strain with the pre-stress. To avoid the complicity of determining the tensor function describing the nonlinear elastic strain part, this paper proposes a simplified model by means of linearizing the nonlinear function.For the convenience of engineering applications, the expressions of the 3-D (bulk), 2-D (film) and 1-D (rod) models are, respectively, given for an isotropic material and their applicable ranges are also discussed. By comparison with the experimental data of a Terfenol-D rod, it is found that the proposed model can accurately predict the magnetostrictive strain curves in low, moderate and high magnetic field regions for various compressive pre-stress levels. The numerical simulation further illustrates that, for either magnetostrictive rods or thin films, the proposed model can effectively describe the effects of the pre-stress or residual stress on the magnetization and magnetostrictive strain curves, while none of the known models can capture all of them. Therefore, the proposed model enjoys higher precision and wider applicability than the previous models, especially in the region of the high field.
Advances in nonlinear optical materials and devices
Byer, Robert L.
1991-01-01
The recent progress in the application of nonlinear techniques to extend the frequency of laser sources has come from the joint progress in laser sources and in nonlinear materials. A brief summary of the progress in diode pumped solid state lasers is followed by an overview of progress in nonlinear frequency extension by harmonic generation and parametric processes. Improved nonlinear materials including bulk crystals, quasiphasematched interactions, guided wave devices, and quantum well intersubband studies are discussed with the idea of identifying areas of future progress in nonlinear materials and devices.
Allis, D G; Spencer, J T
2001-07-02
A theoretical study of several new classes of polyhedral-based molecules has shown that these species display large calculated nonlinear optical responses. These new classes of molecules are based on charged aromatic subunits connected through polyhedral cluster bridges, such as closo-[1-(C(7)H(6))-12-(C(5)Me(4))C(2)B(10)H(10)]. These compounds show calculated first hyperpolarizabilities (beta) ranging from 6.5 to 8413.9 x 10(-30) cm(5) esu(-1). A basis for understanding the origin of these large responses is proposed based on the two-state model and consideration of the orbital and electronic features of the molecules. In general, the highest occupied molecular orbitals for these species are localized on the aromatic donor rings, such as the cyclopentadienyl system, while the lowest unoccupied molecular orbitals are largely on the aromatic acceptor rings, such as the tropylium system. The electronic properties of these polyhedral-based systems appear to be significantly different from the analogous organic [5.6.7]quinarene system (tropyliumcyclopentadienylbenzene). The organic quinarene appears to behave as a completely electron-delocalized system over all three rings while the polyhedral-based compounds can best be described as consisting of two relatively independent, highly polarized regions.
Design of Organic Nonlinear Optical Materials
1990-06-01
This project deals with a new approach to designing organic nonlinear optical materials for second harmonic generation based on the use of hydrogen...patterns for even simple organic molecules. For organic nonlinear optical materials this dilemma means that even the most promising organic molecule may
Probing hysteretic elasticity in weakly nonlinear materials
Energy Technology Data Exchange (ETDEWEB)
Johnson, Paul A [Los Alamos National Laboratory; Haupert, Sylvain [UPMC UNIV PARIS; Renaud, Guillaume [UPMC UNIV PARIS; Riviere, Jacques [UPMC UNIV PARIS; Talmant, Maryline [UPMC UNIV PARIS; Laugier, Pascal [UPMC UNIV PARIS
2010-12-07
Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.
Modulational instability in periodic quadratic nonlinear materials
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2001-01-01
We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never complete...
Nonlinear frequency response analysis of structural vibrations
Weeger, Oliver; Wever, Utz; Simeon, Bernd
2014-12-01
In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.
Development of Organic Nonlinear Optical Materials
1992-10-22
10 SOVRCE Of FUNO#NG NUM#E*S DM J .j PROGRAM PR0jECT TA5. ~ *0. I1I TITLE &Vila* So.Ivety ClaUMC400NJ Development of Organic NonLinear Optical Materials (U...0102-LF-014-6603 UNCLASSIFIED (U) AFOSR Contract: F4962040-C 0097 FINAL REPORT Development of Organic Nonlinear Optical Materials by J. Sounnk IL
Mesoscale Engineering of Nanocomposite Nonlinear Optical Materials
Energy Technology Data Exchange (ETDEWEB)
Afonso, C.N.; Feldman, L.C.; Gonella, F.; Haglund, R.F.; Luepke, G.; Magruder, R.H.; Mazzoldi, P.; Osborne, D.H.; Solis, J.; Zuhr, R.A.
1999-11-01
Complex nonlinear optical materials comprising elemental, compound or alloy quantum dots embedded in appropriate dielectric or semiconducting hosts may be suitable for deployment in photonic devices. Ion implantation, ion exchange followed by ion implantation, and pulsed laser deposition have ail been used to synthesize these materials. However, the correlation between the parameters of energetic-beam synthesis and the nonlinear optical properties is still very rudimentary when one starts to ask what is happening at nanoscale dimensions. Systems integration of complex nonlinear optical materials requires that the mesoscale materials science be well understood within the context of device structures. We discuss the effects of beam energy and energy density on quantum-dot size and spatial distribution, thermal conductivity, quantum-dot composition, crystallinity and defects - and, in turn, on the third-order optical susceptibility of the composite material. Examples from recent work in our laboratories are used to illustrate these effects.
Analysis of nonlinear transient responses of piezoelectric resonators.
Hagiwara, Manabu; Takahashi, Seita; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki
2011-09-01
The electric transient response method is an effective technique to evaluate material constants of piezoelectric ceramics under high-power driving. In this study, we tried to incorporate nonlinear piezoelectric behaviors in the analysis of transient responses. As a base for handling the nonlinear piezoelectric responses, we proposed an assumption that the electric displacement is proportional to the strain without phase lag, which could be described by a real and constant piezoelectric e-coefficient. Piezoelectric constitutive equations including nonlinear responses were proposed to calculate transient responses of a piezoelectric resonator. The envelopes and waveforms of current and vibration velocity in transient responses observed in some piezoelectric ceramics could be fitted with the calculation including nonlinear responses. The procedure for calculation of mechanical quality factor Q(m) for piezoelectric resonators with nonlinear behaviors was also proposed.
Laser and nonlinear optical materials
Energy Technology Data Exchange (ETDEWEB)
De Shazer, L.G.
1986-01-01
This book contains 21 papers. Some of the titles are: Frequency conversion materials from a device perspective; Recent developments in area; Recent developments in barium borate; Growth of laser crystals at Airtron; Crystal growth and the future of solid state lasers; Faraday rotator materials for laser systems; and Mechanical properties of single crystal ceramics.
A Photonic Basis for Deriving Nonlinear Optical Response
Andrews, David L.; Bradshaw, David S.
2009-01-01
Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as…
Design of materials with prescribed nonlinear properties
DEFF Research Database (Denmark)
Wang, Fengwen; Sigmund, Ole; Jensen, Jakob Søndergaard
2014-01-01
We systematically design materials using topology optimization to achieve prescribed nonlinear properties under finite deformation. Instead of a formal homogenization procedure, a numerical experiment is proposed to evaluate the material performance in longitudinal and transverse tensile tests un....... The numerical examples illustrate optimized materials with rubber-like behavior and also optimized materials with extreme strain-independent Poisson's ratio for axial strain intervals of εi ∈ [0.00,0.30]. © 2014 Elsevier Ltd. All rights reserved....... under finite deformation, i.e. stress-strain relations and Poisson's ratio. By minimizing errors between actual and prescribed properties, materials are tailored to achieve the target. Both two dimensional (2D) truss-based and continuum materials are designed with various prescribed nonlinear properties...
Design of advanced materials for linear and nonlinear dynamics
DEFF Research Database (Denmark)
Frandsen, Niels Morten Marslev
The primary catalyst of this PhD project has been an ambition to design advanced materials and structural systems including, and possibly even exploiting, nonlinear phenomena such as nonlinear modal interaction leading to energy conversion between modes. An important prerequisite for efficient...... design is accurate and somewhat simple analysis tools, as well as a fundamental understanding of the physical phenomena responsible for the relevant effects. The emphasis of this work lies primarily in the investigation of various advanced material models, developing the necessary analytical tools...... to reveal the fundamental dynamic characteristics and thus the relevant design parameters.The thesis is built around the characterization of two one-dimensional, periodic material systems. The first is a nonlinear mass-spring chain with periodically varying material properties, representing a simple...
Metamaterials with tailored nonlinear optical response.
Husu, Hannu; Siikanen, Roope; Mäkitalo, Jouni; Lehtolahti, Joonas; Laukkanen, Janne; Kuittinen, Markku; Kauranen, Martti
2012-02-08
We demonstrate that the second-order nonlinear optical response of noncentrosymmetric metal nanoparticles (metamolecules) can be efficiently controlled by their mutual ordering in an array. Two samples with minor change in ordering have nonlinear responses differing by a factor of up to 50. The results arise from polarization-dependent plasmonic resonances modified by long-range coupling associated with metamolecular ordering. The approach opens new ways for tailoring the nonlinear responses of metamaterials and their tensorial properties.
Geometric and material nonlinear analysis of tensegrity structures
Institute of Scientific and Technical Information of China (English)
Hoang Chi Tran; Jaehong Lee
2011-01-01
A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations,while the material nonlinearity is treated through elastoplastic stressstrain relationship.The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method.A computer program is developed to predict the mechanical responses of tensegrity systems under tensile,compressive and flexural loadings.Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program.The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications.On the other hand,its bending strength capacity is not sensitive to the self-stress level.
The Effective AC Response of Nonlinear Composites
Institute of Scientific and Technical Information of China (English)
WEI En-Bo; GU Guo-Qing
2001-01-01
A perturbative approach is used to study the AC response of nonlinear composite media, which obey a current-field relation of the form J = σ E + χ|E|2 E with components having nonlinear response at finite frequencies. For a sinusoidal applied field, we extend the local potential in terms of sinusoidal components at fundamental frequency and high-order harmonic frequencies to treat the nonlinear composites. For nonlinear composite media vith a low concentrations of spherical inclusions, we give the formulae of the nonlinear effective AC susceptibility χ*3ω at the third harmonic frequency.
Nonlinear Electromagnetic Interactions in Energetic Materials
Wood, M A; Moore, D S
2016-01-01
We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for non-ionizing identification of explosives. We use molecular dynamics simulations to compute such two-dimensional Raman spectra in the terahertz range for planar slabs made of PETN and ammonium nitrate. We discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for stand-off explosive detection.
MACROSCOPIC STRAIN POTENTIALS IN NONLINEAR POROUS MATERIALS
Institute of Scientific and Technical Information of China (English)
刘熠; 黄筑平
2003-01-01
By taking a hollow sphere as a representative volume element (RVE), the macroscopic strain potentials of porous materials with power-law incompressible matrix are studied in this paper.According to the principles of the minimum potential energy in nonlinear elasticity and the variational procedure, static admissible stress fields and kinematic admissible displacement fields are constructed,and hence the upper and the lower bounds of the macroscopic strain potential are obtained. The bounds given in the present paper differ so slightly that they both provide perfect approximations of the exact strain potential of the studied porous materials. It is also found that the upper bound proposed by previous authors is much higher than the present one, and the lower bounds given by Cocks is much lower. Moreover, the present calculation is also compared with the variational lower bound of Ponte Castafneda for statistically isotropic porous materials. Finally, the validity of the hollow spherical RVE for the studied nonlinear porous material is discussed by the difference between the present numerical results and the Cocks bound.
Effective ac response in weakly nonlinear composites
Energy Technology Data Exchange (ETDEWEB)
Wei Enbo [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Yang Zidong [College of Power Engineering, University of Shanghai Science and Technology, Shanghai 200093 (China); Gu Guoqing [Information College of Science and Technology, East China Normal University, Shanghai 200062 (China)
2004-01-07
The perturbation method is developed to deal with the problem of determining the effective nonlinear conductivity of Kerr-like nonlinear media under an external ac electric field. As an example, we have considered the cylindrical inclusion embedded in a host under the sinusoidal external field E{sub 1} sin (<{omega}t) + E{sub 3} sin (3<{omega}t) with frequencies{omega} and 3{omega}. The potentials of composites at higher harmonics are derived in both local inclusion particle and host regions. The effective responses of bulk nonlinear composites at basic frequency and harmonics are given for cylindrical composites in the dilute limit. Moreover, the relationships between the nonlinear effective responses at the basic frequency and the third harmonics are derived.
Optimal design for nonlinear response models
Fedorov, Valerii V
2013-01-01
Optimal Design for Nonlinear Response Models discusses the theory and applications of model-based experimental design with a strong emphasis on biopharmaceutical studies. The book draws on the authors' many years of experience in academia and the pharmaceutical industry. While the focus is on nonlinear models, the book begins with an explanation of the key ideas, using linear models as examples. Applying the linearization in the parameter space, it then covers nonlinear models and locally optimal designs as well as minimax, optimal on average, and Bayesian designs. The authors also discuss ada
Eliminating material constraints for nonlinearity with plasmonic metamaterials
Neira, Andres D.; Olivier, Nicolas; Nasir, Mazhar E.; Dickson, Wayne; Wurtz, Gregory A.; Zayats, Anatoly V.
2015-01-01
Nonlinear optical materials comprise the foundation of modern photonics, offering functionalities ranging from ultrafast lasers to optical switching, harmonic and soliton generation. Optical nonlinearities are typically strong near the electronic resonances of a material and thus provide limited tuneability for practical use. Here we show that in plasmonic nanorod metamaterials, the Kerr-type nonlinearity is not limited by the nonlinear properties of the constituents. Compared with gold's nonlinearity, the measured nonlinear absorption and refraction demonstrate more than two orders of magnitude enhancement over a broad spectral range that can be engineered via geometrical parameters. Depending on the metamaterial's effective plasma frequency, either a focusing or defocusing nonlinearity is observed. The ability to obtain strong and fast optical nonlinearities in a given spectral range makes these metamaterials a flexible platform for the development of low-intensity nonlinear applications. PMID:26195182
Laser And Nonlinear Optical Materials For Laser Remote Sensing
Barnes, Norman P.
2005-01-01
NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.
Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation
1994-02-28
Organosilicon Polymeric Nonlinear Optical Materials for Optical C: F49620-93-C-0039 Switching and Modulation 6. AUTHOR(S) Mr. Sandip K. Sengupta, Dr...D FINAL REPORT for Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation Prepared for: USAF, AFMC (AFOSR) Air Force...34Organosilicon Polymeric Nonlinear Optical Materials for Optical Switching and Modulation," contract number F49620-93-C-0039. The work has been performed by Dr
Characterizaticr of Solid State Laser and Nonlinear Optical Materials.
1995-02-02
materials useful in the different methods for obtaining frequency agility: narrow line emitters with multiple lasing channels and nonlinear optical materials . In...codoped with two or more rare earth ions were studied and computers models developed to explain their spectral dynamics. The nonlinear optical materials investigated
Unsymmetrical squaraines for nonlinear optical materials
Marder, Seth R. (Inventor); Chen, Chin-Ti (Inventor); Cheng, Lap-Tak (Inventor)
1996-01-01
Compositions for use in non-linear optical devices. The compositions have first molecular electronic hyperpolarizability (.beta.) either positive or negative in sign and therefore display second order non-linear optical properties when incorporated into non-linear optical devices.
Nonlinear material behaviour of spider silk yields robust webs.
Cranford, Steven W; Tarakanova, Anna; Pugno, Nicola M; Buehler, Markus J
2012-02-01
Natural materials are renowned for exquisite designs that optimize function, as illustrated by the elasticity of blood vessels, the toughness of bone and the protection offered by nacre. Particularly intriguing are spider silks, with studies having explored properties ranging from their protein sequence to the geometry of a web. This material system, highly adapted to meet a spider's many needs, has superior mechanical properties. In spite of much research into the molecular design underpinning the outstanding performance of silk fibres, and into the mechanical characteristics of web-like structures, it remains unknown how the mechanical characteristics of spider silk contribute to the integrity and performance of a spider web. Here we report web deformation experiments and simulations that identify the nonlinear response of silk threads to stress--involving softening at a yield point and substantial stiffening at large strain until failure--as being crucial to localize load-induced deformation and resulting in mechanically robust spider webs. Control simulations confirmed that a nonlinear stress response results in superior resistance to structural defects in the web compared to linear elastic or elastic-plastic (softening) material behaviour. We also show that under distributed loads, such as those exerted by wind, the stiff behaviour of silk under small deformation, before the yield point, is essential in maintaining the web's structural integrity. The superior performance of silk in webs is therefore not due merely to its exceptional ultimate strength and strain, but arises from the nonlinear response of silk threads to strain and their geometrical arrangement in a web.
Laser and nonlinear optical materials: SPIE volume 681
Energy Technology Data Exchange (ETDEWEB)
De Shazer, L.G.
1987-01-01
This book contains papers arranged under the following session headings: Nonlinear optical crystals; Laser host crystals; Electro-optic and magneto-optic materials; and Characterization of optical materials.
Bacteriorhodopsin: Tunable Optical Nonlinear Magnetic Response
Bovino, F A; Sibilia, C; Giardina, M; Váró, G; Gergely, C
2011-01-01
We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under "off resonance" femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.
Investigating nonlinear distortion in the photopolymer materials
Malallah, Ra'ed; Cassidy, Derek; Muniraj, Inbarasan; Zhao, Liang; Ryle, James P.; Sheridan, John T.
2017-05-01
Propagation and diffraction of a light beam through nonlinear materials are effectively compensated by the effect of selftrapping. The laser beam propagating through photo-sensitive polymer PVA/AA can generate a waveguide of higher refractive index in direction of the light propagation. In order to investigate this phenomenon occurring in light-sensitive photopolymer media, the behaviour of a single light beam focused on the front surface of photopolymer bulk is investigated. As part of this work the self-bending of parallel beams separated in spaces during self-writing waveguides are studied. It is shown that there is strong correlation between the intensity of the input beams and their separation distance and the resulting deformation of waveguide trajectory during channels formation. This self-channeling can be modelled numerically using a three-dimension model to describe what takes place inside the volume of a photopolymer media. Corresponding numerical simulations show good agreement with experimental observations, which confirm the validity of the numerical model that was used to simulate these experiments.
Optomechanical response of a nonlinear mechanical resonator
Shevchuk, Olga; Singh, Vibhor; Steele, Gary A.; Blanter, Ya. M.
2015-11-01
We investigate theoretically in detail the nonlinear effects in the response of an optical/microwave cavity coupled to a Duffing mechanical resonator. The cavity is driven by a laser at a red or blue mechanical subband, and a probe laser measures the reflection close to the cavity resonance. Under these conditions, we find that the cavity exhibits optomechanically induced reflection (OMIR) or absorption (OMIA) and investigate the optomechanical response in the limit of nonlinear driving of the mechanics. Similar to linear mechanical drive, in an overcoupled cavity the red sideband drive may lead to both OMIA and OMIR depending on the strength of the drive, whereas the blue sideband drive only leads to OMIR. The dynamics of the phase of the mechanical resonator leads to the difference between the shapes of the response of the cavity and the amplitude response of the driven Duffing oscillator, for example, at weak red sideband drive the OMIA dip has no inflection point. We also verify that mechanical nonlinearities beyond Duffing model have little effect on the size of the OMIA dip though they affect the width of the dip.
Electrets in soft materials: nonlinearity, size effects, and giant electromechanical coupling.
Deng, Qian; Liu, Liping; Sharma, Pradeep
2014-07-01
Development of soft electromechanical materials is critical for several tantalizing applications such as soft robots and stretchable electronics, among others. Soft nonpiezoelectric materials can be coaxed to behave like piezoelectrics by merely embedding charges and dipoles in their interior and assuring some elastic heterogeneity. Such so-called electret materials have been experimentally shown to exhibit very large electromechanical coupling. In this work, we derive rigorous nonlinear expressions that relate effective electromechanical coupling to the creation of electret materials. In contrast to the existing models, we are able to both qualitatively and quantitatively capture the known experimental results on the nonlinear response of electret materials. Furthermore, we show that the presence of another form of electromechanical coupling, flexoelectricity, leads to size effects that dramatically alter the electromechanical response at submicron feature sizes. One of our key conclusions is that nonlinear deformation (prevalent in soft materials) significantly enhances the flexoelectric response and hence the aforementioned size effects.
All-optical signal processing in quadratic nonlinear materials
DEFF Research Database (Denmark)
Johansen, Steffen Kjær
2002-01-01
of materials with a second order nonlinearity, the so-called X(2) materials, is faster and stronger than that of more conventional materials with a cubic nonlinearity. The X(2) materials support spatial solitons consisting of two coupled components, the fundamental wave (FW) and its second harmonic (SH......). During this project the interaction between such spatial solitons has been investigated theoretically through perturbation theory and experimentally via numerical simulations. The outcome of this research isnew theoretical tools for quantitatively predicting the escape angle, i.e. the angle of incidence...... and exploitation of these cubic nonlinearities in two-period QPM wave-guides has been another area of investigation. Introducing the second period might make practical engineering of the nonlinearities possible. A major result is the discovery that cubic nonlinearities leads to an enhancement of the bandwidth...
Chemomechanical Instabilities in Responsive Materials
Borckmans, P; Khokhlov, A. R; Métens, S
2009-01-01
This volume contains a selection of the papers presented by renowned specialists of each field. It is the first book in which the communities of nonlinear chemists and gel specialist communicate and show how interactions between the two fields can actually produce working devices based on the transduction of chemical to mechanical energy and vice-versa. Beside subtle ways of using the slaving of responsive materials devices to oscillatory reactions, emphasis is brought on emerging properties that are possessed by neither of the separated constituents. Several contributions on these aspects are included, in relation to their potential relevance to biological, medical and technological applications. The whole constitutes a specific multidisciplinary "new" field. Both advanced and basic aspects of the two fields can be found the this collection of lectures. The book will not only benefit to doctoral students or young post-docs to learn the ropes of both subjects, but also to active researchers from one field, to...
Nonlinear constitutive behavior of ferroelectric materials
Institute of Scientific and Technical Information of China (English)
2008-01-01
The ferroelectric specimen is considered as an aggregation of many randomly oriented domains. According to this mechanism,a multi-domain mechanical model is developed in this paper. Each domain is represented by one element. The applied stress and electric field are taken to be the stress and electric field in the formula of the driving force of domain switching for each element in the specimen. It means that the macroscopic switching criterion is used for calculating the volume fraction of domain switching for each element. By using the hardening relation between the driving force of domain switching and the volume fraction of domain switching calibrated,the volume fraction of domain switching for each element is calculated. Substituting the stress and electric field and the volume fraction of domain switching into the constitutive equation of ferroelectric material,one can easily get the strain and electric displacement for each element. The macroscopic behavior of the ferroelectric specimen is then directly calculated by volume averaging. Mean-while,the nonlinear finite element analysis for the ferroelectric specimen is carried out. In the finite element simulation,the volume fraction of domain switching for each element is calculated by using the same method mentioned above. The in-teraction between different elements is taken into account in the finite element simulation and the local stress and electric field for each element is obtained. The macroscopic behavior of the specimen is then calculated by volume averaging. The computation results involve the electric butterfly shaped curves of axial strain versus the axial electric field and the hysteresis loops of electric displacement versus the electric field for ferroelectric specimens under the uniaxial coupled stress and electric field loading. The present theoretical prediction agrees reasonably with the experimental results.
Structure property relationships for the nonlinear optical response of fullerenes
Rustagi, Kailash C.; Ramaniah, Lavanya M.; Nair, Selvakumar V.
1994-11-01
We present a phenomenological theory of nonlinear optical response of fullerenes. An empirical tight-binding model is used in conjunction with a classical electromagnetic picture for the screening. Since in bulk media such a picture of screening corresponds to the self- consistent field approach, the only additional approximation involved in our approach is the neglect of nonlocality. We obtain reliable estimates for the linear and nonlinear susceptibilities of C60, C70, C76 and other pure carbon fullerenes and also substituted fullerenes. The relatively large values of (beta) that we obtain for C76 and substituted fullerenes appear promising for the development of fullerene-based nonlinear optical materials. Our phenomenological picture of screening provides a good understanding of the linear absorption spectra of higher fullerenes and predicts that a comparison of the one-photon and multi-photon spectra will provide an insight into screening effects in these systems.
Nonlinear phononics and structural control of strongly correlated materials
Energy Technology Data Exchange (ETDEWEB)
Mankowsky, Roman
2016-01-20
Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal
1992-02-13
niobate and absolute measurements of nonlinear optical coefficients of six different commonly used nonlinear optical materials. The refractometry data for...applied radiation and is now an established technology for Nd:YAG lasers. Optical parametric oscillation and amplification provide a method of generating...continuously tunable output -3- The relative advantages of nonlinear optical frequency conversion compared to other methods for the generation of near
A review of recent theoretical studies in nonlinear crystals: towards the design of new materials
Luppi, Eleonora; Véniard, Valérie
2016-12-01
Nonlinear optics is an important and exciting field of fundamental and applied research, with applications in many different disciplines such as physics chemistry, material science and biology. In the recent years, nonlinear optical phenomena started to be also widely used in technological applications for optoelectronics and photovoltaics. This coincided with an important experimental and theoretical search for new materials with an efficient and exploitable nonlinear optical response. Here, starting from the discovery of nonlinear optics, we review the most important theoretical formalisms developed to understand, interpret and predict the nonlinear optical phenomena. We show the different level of approximation of the many-electrons interactions that these formalisms can describe which are fundamental in the interpretation of the experiments. The impact of the theory is then analyzed on different classes of new materials particularly studied in these years: silicon bulk to nano, compound semiconductors, graphene, transition metal dichalcogenide, hexagonal boron nitride and borate crystals.
Bednarcyk, Brett A.; Arnold, Steven M.
2012-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion
Directory of Open Access Journals (Sweden)
Jun Wang
2013-01-01
Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.
Effects of Particle Shape and Microstructure on Effective Nonlinear Response
Institute of Scientific and Technical Information of China (English)
HUANG Ji-Ping; LI Zhen-Ya
2001-01-01
We consider a binary granular composite medium, in which two materials have high-order nonlinearities.The effect of particle shape on effective nonlinear response (ENR) is investigated by assuming all the particles to be shaped as uniaxial ellipsoid. We discuss two types of arrangements of particles: 1) parallel axes (Case I); 2) random axes (Case II). During the process of numerical calculation, one component material is assumed to be linear, and two kinds of conductors are assumed to be at high conducting contrast. We find that: 1) the shape effect on ENR is possibly strong; 2) the enhanced ENR can even be obtained by choosing particles of appropriate ellipsoidal shapes; 3) the ENR enhancement predicted by Case I is much stronger than that by Case II.``
Molecular and crystal design of nonlinear optical organic materials
Energy Technology Data Exchange (ETDEWEB)
Suponitsky, Kirill Yu; Antipin, Mikhail Yu [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation); Timofeeva, Tatiana V [Department of Chemistry, New Mexico Highlands University (United States)
2006-06-30
The results of theoretical and experimental studies on the second-order molecular and crystal nonlinear optical susceptibilities of organic and several classes of organoelement compounds are summarised. Modern methods used in these studies are briefly characterised, their advantages and drawbacks are outlined as regards their application to the systematic search for efficient nonlinear optical materials. Recent achievements and the main challenges in the field are thoroughly discussed and an optimum algorithm of the design of such materials is proposed.
Organic/Organometallic Hybrids as Broadband Nonlinear Transmission Materials
2010-06-01
property correlation in organometallic complexes in order to develop broadband nonlinear transmission materials . To realize this goal, we have...platinum complexes and 10 zinc phthalocyanine derivatives provided by collaborators in China. From these studies, we have discovered that in order to...in the near-IR region still limited their application as broadband nonlinear absorbing materials . To solve this problem, two approaches were
Predicting nonlinear properties of metamaterials from the linear response.
O'Brien, Kevin; Suchowski, Haim; Rho, Junsuk; Salandrino, Alessandro; Kante, Boubacar; Yin, Xiaobo; Zhang, Xiang
2015-04-01
The discovery of optical second harmonic generation in 1961 started modern nonlinear optics. Soon after, R. C. Miller found empirically that the nonlinear susceptibility could be predicted from the linear susceptibilities. This important relation, known as Miller's Rule, allows a rapid determination of nonlinear susceptibilities from linear properties. In recent years, metamaterials, artificial materials that exhibit intriguing linear optical properties not found in natural materials, have shown novel nonlinear properties such as phase-mismatch-free nonlinear generation, new quasi-phase matching capabilities and large nonlinear susceptibilities. However, the understanding of nonlinear metamaterials is still in its infancy, with no general conclusion on the relationship between linear and nonlinear properties. The key question is then whether one can determine the nonlinear behaviour of these artificial materials from their exotic linear behaviour. Here, we show that the nonlinear oscillator model does not apply in general to nonlinear metamaterials. We show, instead, that it is possible to predict the relative nonlinear susceptibility of large classes of metamaterials using a more comprehensive nonlinear scattering theory, which allows efficient design of metamaterials with strong nonlinearity for important applications such as coherent Raman sensing, entangled photon generation and frequency conversion.
Directory of Open Access Journals (Sweden)
E. Mardani
2008-01-01
Full Text Available A prismatic beam made of a behaviorally nonlinear material was analyzed under a concentrated load moving with a known velocity on a nonlinear elastic foundation with a reaction the vibration equation of motion was derived using Hamilton principle and Euler Lagrange equation. The amplitude of vibration, circular frequency, bending moment, stress and deflection of the beam can be calculated by the presented solution. Considering the response of the beam, in the sense of its resonance, it was found that there is no critical velocity when the behavior of the beam and foundation material is assumed to be physically nonlinear and there are finite values for the deflection, stress and bending moment of the beam when
Nonlinear elastic behavior of phantom materials for elastography
Energy Technology Data Exchange (ETDEWEB)
Pavan, Theo Z; Madsen, Ernest L; Frank, Gary R; Hall, Timothy J [Medical Physics Department, University of Wisconsin, Room 1005, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI 53705 (United States); Adilton O Carneiro, Antonio, E-mail: tjhall@wisc.ed [Departamento de Fisica e Matematica, FFCLRP, Universidade de Sao Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirao Preto, Sao Paulo (Brazil)
2010-05-07
The development of phantom materials for elasticity imaging is reported in this paper. These materials were specifically designed to provide nonlinear stress/strain relationship that can be controlled independently of the small strain shear modulus of the material. The materials are mixtures of agar and gelatin gels. Oil droplet dispersions in these materials provide further control of the small strain shear modulus and the nonlinear parameter of the material. Since these materials are mostly water, they are assumed to be incompressible under typical experimental conditions in elasticity imaging. The Veronda-Westman model for strain energy density provided a good fit to all materials used in this study. Materials with a constant gelatin concentration (3.0% dry weight) but varying agar concentration (0.6-2.8% dry weight) demonstrated the same power law relationship between elastic modulus and agar concentration found for pure agar (1.89 {+-} 0.02), consistent with percolation theory, and provided a consistent nonlinearity parameter of 4.5 {+-} 0.3. The insights provided by this study will form the basis for stable elastography phantoms with stiffness and nonlinear stress/strain relationships in the background that differ from those in the target.
Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals.
Lepeshkin, Nick N; Schweinsberg, Aaron; Piredda, Giovanni; Bennink, Ryan S; Boyd, Robert W
2004-09-17
We describe a new type of artificial nonlinear optical material composed of a one-dimensional metal-dielectric photonic crystal. Because of the resonant nature of multiple Bragg reflections, the transmission within the transmission band can be quite large, even though the transmission through the same total thickness of bulk metal would be very small. This procedure allows light to penetrate into the highly nonlinear metallic layers, leading to a large nonlinear optical response. We present experimental results for a Cu/SiO(2) crystal which displays a strongly enhanced nonlinear optical response (up to 12X) in transmission.
A Strategy for the Development of Macromolecular Nonlinear Optical Materials
1990-01-01
obsolete. SECURITY CLASSIFICATION OF THIS PAGE STRATEGY FOR THE DEVELOPMENT OF MACROMOLECULAR NONLINEAR OPTICAL MATERIALS Braja K. Mandala , Jan-Chan...materials is significantly different from the conventional inorganic NLO materials. The extent of second order (quadratic) NLO effect such as second...is a criterion of paramount importance for a large second order electro-optic effect in organic materials 8 ,9 . The most common approach to obtain
Strong nonlinear photonic responses from microbiologically synthesized tellurium nanocomposites
Liao, K.-S.; Wang, Jingyuan; Dias, S.; Dewald, J.; Alley, N.J.; Baesman, S.M.; Oremland, R.S.; Blau, W.J.; Curran, S.A.
2010-01-01
A new class of nanomaterials, namely microbiologically-formed nanorods composed of elemental tellurium [Te(0)] that forms unusual nanocomposites when combined with poly(m-phenylenevinylene-co-2,5-dioctoxy-phenylenevinylene) (PmPV) is described. These bio-nanocomposites exhibit excellent broadband optical limiting at 532 and 1064 nm. Nonlinear scattering, originating from the laser induced solvent bubbles and microplasmas, is responsible for this nonlinear behavior. The use of bacterially-formed Te(0) when combined with an organic chemical host (e.g., PmPV) is a new green method of nanoparticle syntheses. This opens the possibilities of using unique, biologically synthesized materials to advance future nanoelectronic and nanophotonic applications. ?? 2009 Elsevier B.V. All rights reserved.
Application of Novel Nonlinear Optical Materials to Optical Processing
Banerjee, Partha P.
1999-01-01
We describe wave mixing and interactions in nonlinear photorefractive polymers and disodium flourescein. Higher diffracted orders yielding forward phase conjugation can be generated in a two-wave mixing geometry in photorefractive polymers, and this higher order can be used for image edge enhancement and correlation. Four-wave mixing and phase conjugation is studied using nonlinear disodium floureschein, and the nature and properties of gratings written in this material are investigated.
Dielectric and Elastic Characterization of Nonlinear Heterogeneous Materials
Directory of Open Access Journals (Sweden)
Stefano Giordano
2009-09-01
Full Text Available This review paper deals with the dielectric and elastic characterization of composite materials constituted by dispersions of nonlinear inclusions embedded in a linear matrix. The dielectric theory deals with pseudo-oriented particles shaped as ellipsoids of revolution: it means that we are dealing with mixtures of inclusions of arbitrary aspect ratio and arbitrary non-random orientational distributions. The analysis ranges from parallel spheroidal inclusions to completely random oriented inclusions. Each ellipsoidal inclusion is made of an isotropic dielectric material described by means of the so-called Kerr nonlinear relation. On the other hand, the nonlinear elastic characterization takes into consideration a dispersion of nonlinear (spherical or cylindrical inhomogeneities. Both phases are considered isotropic (actually it means polycrystalline or amorphous solids. Under the simplifying hypotheses of small deformation for the material body and of small volume fraction of the embedded phase, we describe a theory for obtaining the linear and nonlinear elastic properties (bulk and shear moduli and Landau coefficients of the overall material.
Nonlinear mechanics of soft fibrous materials
Ogden, Raymond
2015-01-01
The book presents a state-of-the-art overview of the fundamental theories, established models and ongoing research related to the modeling of these materials. Two approaches are conventionally used to develop constitutive relations for highly deformable fibrous materials. According to the phenomenological approach, a strain energy density function can be defined in terms of strain invariants. The other approach is based on kinetic theories, which treats a fibrous material as a randomly oriented inter-tangled network of long molecular chains bridged by permanent and temporary junctions. At the micro-level, these are associated with chemical crosslinks and active entanglements, respectively. The papers include carefully crafted overviews of the fundamental formulation of the three-dimensional theory from several points of view, and address their equivalences and differences. Also included are solutions to boundary-value problems which are amenable to experimental verification. A further aspect is the elasticity...
Organic materials with nonlinear optical properties
Stupp, Samuel I.; Son, Sehwan; Lin, Hong-Cheu
1995-01-01
The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4'-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidene) phenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl) 4'-[(4'-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it.
Directory of Open Access Journals (Sweden)
Wei Sun
2015-01-01
Full Text Available Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the expression of equivalent strain of composite plate was derived. Then, the analytical model of hard-coating composite plate was created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphson method to solve the vibration response and resonant frequencies of composite plate and a specific calculation procedure was also proposed. Finally, a cantilever plate coated with MgO + Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies of composite plate were calculated using the proposed method. The calculation results were compared with the experiment and general linear calculation, and the correctness of the created model was verified. The study shows the proposed method can still maintain an acceptable precision when the material nonlinearity of hard coating is stronger.
A thermodynamic approach to nonlinear ultrasonics for material state awareness and prognosis
Chillara, Vamshi Krishna
2016-01-01
We develop a thermodynamic framework for modeling nonlinear ultrasonic damage sensing and prognosis in materials undergoing progressive damage. The framework is based on the internal variable approach and relies on the construction of a pseudo-elastic strain energy function that captures the energetics associated with the damage progression. The pseudo-elastic strain energy function is composed of two energy functions - one that describes how a material stores energy in an elastic fashion and the other describes how material dissipates energy or stores it in an inelastic fashion. Experimental motivation for the choice of the above two functionals is discussed and some specific choices pertaining to damage progression during fatigue and creep are presented. The thermodynamic framework is employed to model the nonlinear response of material undergoing stress relaxation and creep-like degradation. For each of the above cases, evolution of the nonlinearity parameter with damage as well as with macroscopic measura...
Li, Guangmao; Wu, Kui; Liu, Qiong; Yang, Zhihua; Pan, Shilie
2016-06-15
The development of frequency-conversion technology in the infrared region is in urgent need of new excellent infrared nonlinear optical (IR NLO) materials. How to achieve a good balance between laser damage threshold (LDT) and NLO coefficient (dij) for new IR NLO candidates is still a challenge. The combination of the highly electropositive alkali metal (Na) and Zn with d(10) electronic configuration into crystal structure affords one new IR NLO material, Na2ZnGe2S6. It exhibits excellent properties including a wide transparent region (0.38-22 μm), large band gap (3.25 eV), and especially a balance between a strong NLO coefficient (30-fold that of KDP) and a high LDT (6-fold that of AgGaS2), indicating a promising application in the IR region. Moreover, novel common-vertex-linked wavelike ∞[GeS3]n chains are interestingly discovered in Na2ZnGe2S6, which rarely exist in the reported thiogermanides containing alkali metals. In addition, calculated SHG density and dipole moment demonstrate that the large NLO response is mainly attributed to the cooperative effects of the [GeS4] and [ZnS4] units.
Influence of spiral framework on nonlinear optical materials.
Hu, Yang-Yang; Sun, Shi-Ling; Tian, Wen-Tao; Tian, Wei Quan; Xu, Hong-Liang; Su, Zhong-Min
2014-04-04
A series of spiral donor-π-acceptor frameworks (i.e. 2-2, 3-3, 4-4, and 5-5) based on 4-nitrophenyldiphenylamine with π-conjugated linear acenes (naphthalenes, anthracenes, tetracenes, and pentacenes) serving as the electron donor and nitro (NO2 ) groups serving as the electron acceptor were designed to investigate the relationships between the nonlinear optical (NLO) responses and the spirality in the frameworks. A parameter denoted as D was defined to describe the extent of the spiral framework. The D value reached its maximum if the number of NO2 groups was equal to the number of fused benzene rings contained in the linear acene. A longer 4-nitrophenyldiphenylamine chain led to a larger D value and, further, to a larger first hyperpolarizability. Different from traditional NLO materials with charge transfer occurring in the one-dimensional direction, charge transfer in 2-2, 3-3, 4-4, and 5-5 occur in three-dimensional directions due to the attractive spiral frameworks, and this is of great importance in the design of NLO materials. The origin of such an enhancement in the NLO properties of these spiral frameworks was explained with the aid of molecular orbital analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yu, Weiguo; Jia, Jianhong; Gao, Jianrong; Han, Liang; Li, Yujin
2015-03-01
Six symmetrical ferrocenyl Schiff base materials were synthesized and characterized by UV, 1H NMR, mass spectrometry (MS) and elemental analysis. Their off-resonant third-order nonlinear optical properties were measured using femtosecond laser and degenerate four-wave mixing (DFWM) technique. The third-order nonlinear optical susceptibilities χ(3) were 1.961-6.363 × 10-13 esu. The nonlinear refractive indexes n2 were 3.609-11.716 × 10-12 esu. The second-order hyperpolarizabilities γ of these molecules were 1.967-6.388 × 10-31 esu. The response time were 45.759-73.079 fs. The results indicate that these materials have potential nonlinear optical applications.
Materials for Nonlinear Optics Chemical Perspectives
1991-01-01
introduced into LB muldilayers built from 1/1 mixtures with an amphiphilic cyclodextrin . The polyenic chains are again perpendicular to the substrate...molecules in inorganic matrices. The encapsulated molecules can be used to induce new optical properties in the material or to probe the changes at the...glass are discussed here. First, laser dyes including rhodamines and coumarins are encapsulated . The resulting doped gel-glasses exhibit optical gain
Non-linear stochastic response of a shallow cable
DEFF Research Database (Denmark)
Larsen, Jesper Winther; Nielsen, Søren R.K.
2004-01-01
The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two-degrees-of-freedom...
Detection of electromagnetic radiation using nonlinear materials
Energy Technology Data Exchange (ETDEWEB)
Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin
2016-06-14
An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.
Effective Response of Nonlinear Composite under External AC and DC Electric Field
Institute of Scientific and Technical Information of China (English)
LIU Ye; LIANG Fang-Chu; SHEN Hong-Liang
2005-01-01
A perturbation method is used to study effective response of nonlinear Kerr composites, which are subject to the constitutive relation of electric displacement and electric field, Dα = εαE + xα|E|2E. Under the external AC and DC electric field Eapp = Eα(1 + sinwt), the effective nonlinear responses and local potentials are induced by the cubic nonlinearity of Kerr materials at all harmonics. As an example in three dimensions, we have investigated this kind of nonlinear composites with spherical inclusions embedded in a host. At all harmonic frequencies, the potentials in inclusion and host regions are derived. Furthermore, the formulae of the effective linear and nonlinear responses are given in the dilute limit.
Modeling of Z-scan characteristics for one-dimensional nonlinear photonic bandgap materials.
Chen, Shuqi; Zang, Weiping; Schülzgen, Axel; Liu, Xin; Tian, Jianguo; Moloney, Jerome V; Peyghambarian, Nasser
2009-12-01
We propose a Z-scan theory for one-dimensional nonlinear photonic bandgap materials. The Z-scan characteristics for this material are analyzed. Results show that the Z-scan curves for photonic bandgap materials with nonlinear refraction are similar to those of uniform materials exhibiting both nonlinear refraction and nonlinear absorption simultaneously. Effects of nonlinear absorption on reflected and transmitted Z-scan results are also discussed.
Linear and nonlinear optical response of spherical anisotropic semiconductor microcrystallites
Ramaniah, Lavanya M.; Nair, Selvakumar V.; Rustagi, Kailash C.
1989-12-01
We present a phenomenological theory of the linear and nonlinear optical properties associated with the Fröhlich resonances of an optically anisotropic, spherical semiconductor crystallite. Using the Maxwell-Garnett approach, we calculate the effective dielectric function of a composite medium containing such crystallites. To study the effect of anisotropy, we take CdS and CdSe quantum dots as examples for the inclusions, and use a two-resonance model for the dielectric function. Even for randomly oriented inclusions, the Fröhlich resonances split as a result of anisotropic local-field corrections. At higher laser intensities, absorption saturation leads to bistability or tristability in the optical response of individual crystallites, while the response of the composite medium with randomly oriented inclusions shows multistability, with many intermediate branches. The nonlinear response of such a composite medium also exhibits a new kind of orientation-induced broadening of resonances. We also find that tristability is possible in another kind of inhomogeneous material, viz., a composite medium containing two types of isotropic spherical crystallites.
Delocalization of nonlinear optical responses in plasmonic nanoantennas
Viarbitskaya, Sviatlana; Cluzel, Benoit; Francs, Gérard Colas des; Bouhelier, Alexandre
2015-01-01
Remote excitation and emission of two-photon luminescence and second-harmonic generation are observed in micrometer long gold rod optical antennas upon local illumination with a tightly focused near-infrared femtosecond laser beam. We show that the nonlinear radiations can be emitted from the entire antenna and the measured far-field angular patterns bear the information regarding the nature and origins of the respective nonlinear processes. We demonstrate that the nonlinear responses are transported by the propagating surface plasmon at excitation frequency, enabling thereby polariton-mediated tailoring and design of nonlinear responses.
Mäkelä, J T A; Korhonen, R K
2016-06-14
Modern fibril-reinforced computational models of articular cartilage can include inhomogeneous tissue composition and structure, and nonlinear mechanical behavior of collagen, proteoglycans and fluid. These models can capture well experimental single step creep and stress-relaxation tests or measurements under small strains in unconfined and confined compression. Yet, it is known that in indentation, especially at high strain velocities, cartilage can express highly nonlinear response. Different fibril reinforced poroelastic and poroviscoelastic models were used to assess measured highly nonlinear stress-relaxation response of rabbit articular cartilage in indentation. Experimentally measured depth-dependent volume fractions of different tissue constituents and their mechanical nonlinearities were taken into account in the models. In particular, the collagen fibril network was modeled using eight separate models that implemented five different constitutive equations to describe the nonlinearity. These consisted of linear elastic, nonlinear viscoelastic and multiple nonlinear elastic representations. The model incorporating the most nonlinearly increasing Young׳s modulus of collagen fibrils as a function of strain captured best the experimental data. Relative difference between the model and experiment was ~3%. Surprisingly, the difference in the peak forces between the experiment and the model with viscoelastic collagen fibrils was almost 20%. Implementation of the measured volume fractions did not improve the ability of the model to capture the measured mechanical data. These results suggest that a highly nonlinear formulation for collagen fibrils is needed to replicate multi-step stress-relaxation response of rabbit articular cartilage in indentation with high strain rates.
Organic nonlinear optical materials: where we have been and where we are going.
Marder, Seth R
2006-01-14
Nonlinear optical (NLO) materials can be useful for a variety of applications varying from modulation of optical signals facilitated by the electro-optic effect-the effect whereby the refractive index of a material changes in response to an applied electric field-to microfabrication, sensing, imaging, and cancer therapy facilitated by multiphoton absorption, wherein molecules simultaneously absorb two or more photons of light. This short Focus article is a brief personal perspective of some of the key advances in second-order NLO materials and in multiphoton-absorbing materials, and of how and why these advances have led to renewed interest in organic NLO materials.
NONLINEAR RESPONSES OF A FLUID-CONVEYING PIPE EMBEDDED IN NONLINEAR ELASTIC FOUNDATIONS
Institute of Scientific and Technical Information of China (English)
Qin Qian; Lin Wang; Qiao Ni
2008-01-01
The nonlinear responses of planar motions of a fluid-conveying pipe embedded in nonlinear elastic foundations are investigated via the differential quadrature method diseretization (DQMD) of the governing partial differential equation. For the analytical model, the effect of the nonlinear elastic foundation is modeled by a nonlinear restraining force. By using an iterative algorithm, a set of ordinary differential dynamical equations derived from the equation of motion of the system are solved numerically and then the bifurcations are analyzed. The numerical results, in which the existence of chaos is demonstrated, are presented in the form of phase portraits of the oscillations. The intermittency transition to chaos has been found to arise.
Analysis of nonlinear optical properties in donor–acceptor materials
Energy Technology Data Exchange (ETDEWEB)
Day, Paul N. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); General Dynamics Information Technology, Inc., Dayton, Ohio 45431 (United States); Pachter, Ruth [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); Nguyen, Kiet A. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); UES, Inc., Dayton, Ohio 45432 (United States)
2014-05-14
Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.
Directory of Open Access Journals (Sweden)
Mohammad M. Kashani
2016-01-01
Full Text Available A numerical model is presented that enables simulation of the nonlinear flexural response of corroded reinforced concrete (RC components. The model employs a force-based nonlinear fibre beam-column element. A new phenomenological uniaxial material model for corroded reinforcing steel is used. This model accounts for the impact of corrosion on buckling strength, postbuckling behaviour, and low-cycle fatigue degradation of vertical reinforcement under cyclic loading. The basic material model is validated through comparison of simulated and observed responses for uncorroded RC columns. The model is used to explore the impact of corrosion on the inelastic response of corroded RC columns.
Enhanced nonlinear refractive index in epsilon-near-zero materials
Caspani, L; Clerici, M; Ferrera, M; Roger, T; Di Falco, A; Kim, J; Kinsey, N; Shalaev, V M; Boltasseva, A; Faccio, D
2016-01-01
New propagation regimes for light arise from the ability to tune the dielectric permittivity to extremely low values. Here we demonstrate a universal approach based on the low linear permittivity values attained in the epsilon-near-zero (ENZ) regime for enhancing the nonlinear refractive index, which enables remarkable light-induced changes of the material properties. Experiments performed on Al-doped ZnO (AZO) thin films show a six-fold increase of the Kerr nonlinear refractive index ($n_2$) at the ENZ wavelength, located in the 1300 nm region. This in turn leads to light-induced refractive index changes of the order of unity, thus representing a new paradigm for nonlinear optics.
Harmonic Phase Response of Nonlinear Radar Targets
2015-10-01
to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT...of an improvised explosive device (IED). Previous nonlinear radar systems detect targets via transmission of a single frequency ω, stepping...electronically nonlinear components, such as transistors, diodes , and semiconductors. While many circuit devices, such as amplifiers, mixers, and
Tuning the nonlinear response of (6,5)-enriched single-wall carbon nanotubes dispersions
Aréstegui, O. S.; Silva, E. C. O.; Baggio, A. L.; Gontijo, R. N.; Hickmann, J. M.; Fantini, C.; Alencar, M. A. R. C.; Fonseca, E. J. S.
2017-04-01
Ultrafast nonlinear optical properties of (6,5)-enriched single-wall carbon nanotubes (SWCNTs) dispersions are investigated using the thermally managed Z-scan technique. As the (6,5) SWCNTs presented a strong resonance in the range of 895-1048 nm, the nonlinear refractive index (n2) and the absorption coefficients (β) measurements were performed tuning the laser exactly around absorption peak of the (6,5) SWCNTs. It is observed that the nonlinear response is very sensitive to the wavelength and the spectral behavior of n2 is strongly correlated to the tubes one-photon absorption band, presenting also a peak when the laser photon energy is near the tube resonance energy. This result suggests that a suitable selection of nanotubes types may provide optimized nonlinear optical responses in distinct regions of the electromagnetic spectrum. Analysis of the figures of merit indicated that this material is promising for ultrafast nonlinear optical applications under near infrared excitation.
Energy Technology Data Exchange (ETDEWEB)
Lidorikis, E. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Busch, K. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)]|[Instituet fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, D-76128, Karlsruhe (Germany); Li, Q. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Chan, C.T. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)]|[Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Soukoulis, C.M. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)
1997-12-01
We consider the general problem of electromagnetic wave propagation through a one-dimensional system consisting of a nonlinear medium sandwiched between two linear structures. Special emphasis is given to systems where the latter comprise Bragg reflectors. We obtain an exact expression for the nonlinear response of such dielectric superlattices when the nonlinear impurity is very thin, or in the {delta}-function limit. We find that both the switching-up and switching-down intensities of the bistable response can be made very low, when the frequency of the incident wave matches that of the impurity mode of the structure. Numerical results for a nonlinear layer of finite width display qualitatively similar behavior, thus confirming the usefulness of the simpler {delta}-function model. In addition, an analytical solution for the resonance states of an infinitely extended finite-width superlattice with a finite-width nonlinear impurity is presented. {copyright} {ital 1997} {ital The American Physical Society}
Nonlinear magneto-electric response of a giant magnetostrictive/piezoelectric composite cylinder
Institute of Scientific and Technical Information of China (English)
Yuan-Wen Gao; Juan-Juan Zhang
2012-01-01
In this study,we investigate the nonlinear coupling magneto-electric (ME) effect of a giant magnetostrictive/piezoelectric composite cylinder.The nonlinear constitutive relations of the ME material are taken into account,and the influences of the nonlinear material properties on the ME effect are investigated for the static and dynamic cases,respectively.The influences of different constraint conditions on the ME effect are discussed.In the dynamic case considering nonlinear material properties,the double frequency ME response (The response frequency is twice the applied magnetic frequency) is obtained and discussed,which can be used to explain the experiment phenomenon in which the input signal with frequency f is converted to the output signal with 2f in ME laminated structures.Some calculations on nonlinear ME effect are conducted.The obtained results indicate that the nonlinear material properties affect not only the magnitude of the ME effect in the static case but also the ME response frequency in the dynamic case.
Semiclassical mode-coupling factorizations of coherent nonlinear optical response
Jansen, TL; Mukamel, S
2003-01-01
The identification of relevant collective coordinates is crucial for the interpretation of coherent nonlinear spectroscopies of complex molecules and liquids. Using an h expansion of Liouville space generating functions, we show how to factorize multitime nonlinear response functions into products o
Nonlinearity-induced PT-symmetry without material gain
Miri, Mohammad-Ali; Alù, Andrea
2016-06-01
Parity-time symmetry has raised a great deal of attention in optics in recent years, yet its application has been so far hindered by the stringent requirements on coherent gain balanced with loss. In this paper, we show that the conditions to enable parity and time symmetry can be simultaneously satisfied for a pair of modes with mixed frequencies interacting in a nonlinear medium, without requiring the presence of material gain. First, we consider a guided wave structure with second order nonlinearity and we derive the PT-symmetric Hamiltonian that governs the interaction of two waves of mixed frequencies when accompanied by a high intensity pump beam at the sum frequency. We also extend the results to an array of coupled nonlinear waveguide channels. It is shown that the evolution dynamics of the low-frequency waves is associated with a periodic PT-symmetric lattice while the phase of the pump beams can be utilized as a control parameter to modify the gain and loss distribution, thus realizing different PT lattices by design. Our results suggest that nonlinear wave mixing processes can form a rich platform to realize PT-symmetric Hamiltonians of arbitrary dimensions in optical systems, without requiring material gain.
Min, Changjun; Wang, Pei; Chen, Chunchong; Deng, Yan; Lu, Yonghua; Ming, Hai; Ning, Tingyin; Zhou, Yueliang; Yang, Guozhen
2008-04-15
All-optical switching based on a subwavelength metallic grating structure containing nonlinear optical materials has been proposed and numerically investigated. Metal-dielectric composite material is used in the switching for its larger third-order nonlinear susceptibility (approximately 10(-7)esu) and ultrafast response properties. The calculated dependence of the signal light intensity on the pump light intensity shows a bistable behavior, which results in a significant switch effect. It rests on a surface plasmon's enhanced intensity-dependent change of the effective dielectric constant of Kerr nonlinear media, corresponding to a transition of the far-field transmission from a low- to high-transmission state. The study of this switching structure shows great advantages of smaller size, lower requirement of pump light intensity, and shorter switching time at approximately the picosecond level.
NONLINEAR BUCKLING CHARACTERISTIC OF GRADED MULTIWEB STRUCTURE OF HETEROGENEOUS MATERIALS
Institute of Scientific and Technical Information of China (English)
LI Yong; ZHANG Zhi-min
2005-01-01
The graded multiweb structure of heterogeneous anisotropic materials, which makes full use of the continuous, gradual and changing physical mechanical performance of material properties, has a widespread application in aeroplane aerofoil structure and automobile lightweight structure. On the basis of laminate buckling theory,the equivalent rigidity method is adopted to establish the corresponding constitutive relation and the non-linear buckling governing equation for the graded multiweb structure. In finding the solution, the critical load of buckling under different complicated boundary conditions together with combined loads were obtained and testification of the experimental analysis shows that the calculation results can satisfy the requirements of engineering design in a satisfactory way. Results obtained from the research say that: graded materials can reduce the concentrated stress on the interface in an effective way and weaken the effect of initial defect in materials and thereby improve the strength and toughness of materials.
Stochastic Nonlinear Response of Woven CMCs
Kuang, C. Liu; Arnold, Steven M.
2013-01-01
It is well known that failure of a material is a locally driven event. In the case of ceramic matrix composites (CMCs), significant variations in the microstructure of the composite exist and their significance on both deformation and life response need to be assessed. Examples of these variations include changes in the fiber tow shape, tow shifting/nesting and voids within and between tows. In the present work, the influence of scale specific architectural features of woven ceramic composite are examined stochastically at both the macroscale (woven repeating unit cell (RUC)) and structural scale (idealized using multiple RUCs). The recently developed MultiScale Generalized Method of Cells methodology is used to determine the overall deformation response, proportional elastic limit (first matrix cracking), and failure under tensile loading conditions and associated probability distribution functions. Prior results showed that the most critical architectural parameter to account for is weave void shape and content with other parameters being less in severity. Current results show that statistically only the post-elastic limit region (secondary hardening modulus and ultimate tensile strength) is impacted by local uncertainties both at the macro and structural level.
DEFF Research Database (Denmark)
Palleti, Hara Naga Krishna Teja; Thomsen, Ole Thybo; Taher, Siavash Talebi;
In this paper, polymer foam cored sandwich structures with fibre reinforced composite face sheets subjected to combined mechanical and thermal loads will be analysed using the commercial FE code ABAQUS® incorporating both material and geometrical nonlinearity. Large displacements and rotations ar...... are included in the analysis. The full nonlinear stress-strain curves up to failure will be considered for the polymer foams at different temperatures to study the effect of material nonlinearity in detail....
Intrinsic optical bistability between left-handed material and nonlinear optical materials
Institute of Scientific and Technical Information of China (English)
Shi Hong-Yan; Jiang Yong-Yuan; Sun Xiu-Dong; Guo Ru-Hai; Zhao Yi-Ping
2005-01-01
The electromagnetic properties of the interface between a left-handed material and a conventional nonlinear material were investigated theoretically and numerically. We found a new phenomenon-optical bistability of the interface.It was shown that the incident intensity, incident angle and permeability ratio between the left-handed and the nonlinear materials could dramatically affect the optical bistable behaviour. We also compared the bistable behaviours of different electromagnetic modes. The results indicated that the TE mode was prior to the TM mode to obtain optical bistability for the same parameter.
A donor-nanotube paradigm for nonlinear optical materials.
Xiao, Dequan; Bulat, Felipe A; Yang, Weitao; Beratan, David N
2008-09-01
Studies of the nonlinear electronic response of donor/acceptor substituted nanotubes suggest a behavior that is both surprising and qualitatively distinct from that in conventional conjugated organic species. We find that the carbon nanotubes serve as both electronic bridges and acceptors, leading to a donor-nanotube paradigm for the effective design of large first hyperpolarizabilities. We also find that tuning the donor orientation, relative to the nanotube, can significantly enhance the first hyperpolarizability.
Responsive cell-material interfaces.
Dhowre, Hala S; Rajput, Sunil; Russell, Noah A; Zelzer, Mischa
2015-01-01
Major design aspects for novel biomaterials are driven by the desire to mimic more varied and complex properties of a natural cellular environment with man-made materials. The development of stimulus responsive materials makes considerable contributions to the effort to incorporate dynamic and reversible elements into a biomaterial. This is particularly challenging for cell-material interactions that occur at an interface (biointerfaces); however, the design of responsive biointerfaces also presents opportunities in a variety of applications in biomedical research and regenerative medicine. This review will identify the requirements imposed on a responsive biointerface and use recent examples to demonstrate how some of these requirements have been met. Finally, the next steps in the development of more complex biomaterial interfaces, including multiple stimuli-responsive surfaces, surfaces of 3D objects and interactive biointerfaces will be discussed.
Effect of carbonation on the linear and nonlinear dynamic properties of cement-based materials
Eiras, Jesus N.; Kundu, Tribikram; Popovics, John S.; Monzó, José; Borrachero, María V.; Payá, Jordi
2016-01-01
Carbonation causes a physicochemical alteration of cement-based materials, leading to a decrease of porosity and an increase of material hardness and strength. However, carbonation will decrease the pH of the internal pore water solution, which may depassivate the internal reinforcing steel, giving rise to structural durability concerns. Therefore, the proper selection of materials informed by parameters sensitive to the carbonation process is crucial to ensure the durability of concrete structures. The authors investigate the feasibility of using linear and nonlinear dynamic vibration response data to monitor the progression of the carbonation process in cement-based materials. Mortar samples with dimensions of 40×40×160 mm were subjected to an accelerated carbonation process through a carbonation chamber with 55% relative humidity and >95% of CO2 atmosphere. The progress of carbonation in the material was monitored using data obtained with the test setup of the standard resonant frequency test (ASTM C215-14), from a pristine state until an almost fully carbonated state. Linear dynamic modulus, quality factor, and a material nonlinear response, evaluated through the upward resonant frequency shift during the signal ring-down, were investigated. The compressive strength and the depth of carbonation were also measured. Carbonation resulted in a modest increase in the dynamic modulus, but a substantive increase in the quality factor (inverse attenuation) and a decrease in the material nonlinearity parameter. The combined measurement of the vibration quality factor and nonlinear parameter shows potential as a sensitive measure of material changes brought about by carbonation.
Material reconstruction for spectral computed tomography with detector response function
Liu, Jiulong; Gao, Hao
2016-11-01
Different from conventional computed tomography (CT), spectral CT using energy-resolved photon-counting detectors is able to provide the unprecedented material compositions. However accurate spectral CT needs to account for the detector response function (DRF), which is often distorted by factors such as pulse pileup and charge-sharing. In this work, we propose material reconstruction methods for spectral CT with DRF. The simulation results suggest that the proposed methods reconstructed more accurate material compositions than the conventional method without DRF. Moreover, the proposed linearized method with linear data fidelity from spectral resampling had improved reconstruction quality from the nonlinear method directly based on nonlinear data fidelity.
Effective nonlinear AC response to composite with spherical particles
Institute of Scientific and Technical Information of China (English)
Chen Xiao-Gang; Liang Fang-Chu; Wei En-Bo
2005-01-01
An effective nonlinear alternative-current (AC) response to granular nonlinear-composite with spherical inclusions embedded in a host medium under the action of an external AC field is investigated by using a perturbation approach.The local potentials of composite at higher harmonics are derived both in a region of local inclusion particles and in a local host region under the action of a sinusoidal field E1 sinωt + E3sin3ωt. An effective nonlinear-response to composite and the relationship between the effective nonlinear-responses at the fundamental frequency and the third harmonics are also studied for the spherical inclusions in a dilute limit.
Modeling of nonlinear responses for reciprocal transducers involving polarization switching
DEFF Research Database (Denmark)
Willatzen, Morten; Wang, Linxiang
2007-01-01
Nonlinearities and hysteresis effects in a reciprocal PZT transducer are examined by use of a dynamical mathematical model on the basis of phase-transition theory. In particular, we consider the perovskite piezoelectric ceramic in which the polarization process in the material can be modeled....... We present numerical results for the reciprocal-transducer system and identify the influence of nonlinearities on the system dynamics at high and low frequency as well as electrical impedance effects due to tuning by a series inductance. It is found that nonlinear effects are not important at high...... by Landau theory for the first-order phase transformation, in which each polarization state is associated with a minimum of the Landau free-energy function. Nonlinear constitutive laws are obtained by using thermodynamical equilibrium conditions, and hysteretic behavior of the material can be modeled...
Relationships between nonlinear normal modes and response to random inputs
Schoneman, Joseph D.; Allen, Matthew S.; Kuether, Robert J.
2017-02-01
The ability to model nonlinear structures subject to random excitation is of key importance in designing hypersonic aircraft and other advanced aerospace vehicles. When a structure is linear, superposition can be used to construct its response to a known spectrum in terms of its linear modes. Superposition does not hold for a nonlinear system, but several works have shown that a system's dynamics can still be understood qualitatively in terms of its nonlinear normal modes (NNMs). This work investigates the connection between a structure's undamped nonlinear normal modes and the spectrum of its response to high amplitude random forcing. Two examples are investigated: a spring-mass system and a clamped-clamped beam modeled within a geometrically nonlinear finite element package. In both cases, an intimate connection is observed between the smeared peaks in the response spectrum and the frequency-energy dependence of the nonlinear normal modes. In order to understand the role of coupling between the underlying linear modes, reduced order models with and without modal coupling terms are used to separate the effect of each NNM's backbone from the nonlinear couplings that give rise to internal resonances. In the cases shown here, uncoupled, single-degree-of-freedom nonlinear models are found to predict major features in the response with reasonable accuracy; a highly inexpensive approximation such as this could be useful in design and optimization studies. More importantly, the results show that a reduced order model can be expected to give accurate results only if it is also capable of accurately predicting the frequency-energy dependence of the nonlinear modes that are excited.
Qing Wang, Yan; Zu, Jean W.
2017-10-01
This work investigates the porosity-dependent nonlinear forced vibrations of functionally graded piezoelectric material (FGPM) plates by using both analytical and numerical methods. The FGPM plates contain porosities owing to the technical issues during the preparation of FGPMs. Two types of porosity distribution, namely, even and uneven distribution, are considered. A modified power law model is adopted to describe the material properties of the porous FGPM plates. Using D’Alembert’s principle, the out-of-plane equation of motion is derived by taking into account the Kármán nonlinear geometrical relations. After that, the Galerkin method is used to discretize the equation of motion, resulting in a set of ordinary differential equations with respect to time. These ordinary differential equations are solved analytically by employing the harmonic balance method. The approximate analytical results are verified by using the adaptive step-size fourth-order Runge–Kutta method. By means of the perturbation technique, the stability of approximate analytical solutions is examined. An interesting nonlinear broadband vibration phenomenon is detected in the FGPM plates with porosities. Nonlinear frequency-response characteristics of the present smart structures are investigated for various system parameters including the porosity type, the porosity volume fraction, the electric potential, the external excitation, the damping and the constituent volume fraction. It is found that these parameters have significant effects on the nonlinear vibration characteristics of porous FGPM plates.
Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.
1989-01-01
In response to the tremendous growth in the development of advanced materials, such as fiber-reinforced plastic (FRP) composite materials, a new numerical method is developed to analyze and predict the time-dependent properties of these materials. Basic concepts in viscoelasticity, laminated composites, and previous viscoelastic numerical methods are presented. A stable numerical method, called the nonlinear differential equation method (NDEM), is developed to calculate the in-plane stresses and strains over any time period for a general laminate constructed from nonlinear viscoelastic orthotropic plies. The method is implemented in an in-plane stress analysis computer program, called VCAP, to demonstrate its usefulness and to verify its accuracy. A number of actual experimental test results performed on Kevlar/epoxy composite laminates are compared to predictions calculated from the numerical method.
Nonlinear Optical Materials for the Smart Filtering of Optical Radiation.
Dini, Danilo; Calvete, Mário J F; Hanack, Michael
2016-11-23
The control of luminous radiation has extremely important implications for modern and future technologies as well as in medicine. In this Review, we detail chemical structures and their relevant photophysical features for various groups of materials, including organic dyes such as metalloporphyrins and metallophthalocyanines (and derivatives), other common organic materials, mixed metal complexes and clusters, fullerenes, dendrimeric nanocomposites, polymeric materials (organic and/or inorganic), inorganic semiconductors, and other nanoscopic materials, utilized or potentially useful for the realization of devices able to filter in a smart way an external radiation. The concept of smart is referred to the characteristic of those materials that are capable to filter the radiation in a dynamic way without the need of an ancillary system for the activation of the required transmission change. In particular, this Review gives emphasis to the nonlinear optical properties of photoactive materials for the function of optical power limiting. All known mechanisms of optical limiting have been analyzed and discussed for the different types of materials.
Structure/property relationships in non-linear optical materials
Energy Technology Data Exchange (ETDEWEB)
Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.
Directory of Open Access Journals (Sweden)
Şeref Doğuşcan Akbaş
2013-01-01
Full Text Available Geometrically nonlinear static analysis of edge cracked cantilever Timoshenko beams composed of functionally graded material (FGM subjected to a nonfollower transversal point load at the free end of the beam is studied with large displacements and large rotations. Material properties of the beam change in the height direction according to exponential distributions. The cracked beam is modeled as an assembly of two subbeams connected through a massless elastic rotational spring. In the study, the finite element of the beam is constructed by using the total Lagrangian Timoshenko beam element approximation. The nonlinear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The convergence study is performed for various numbers of finite elements. In the study, the effects of the location of crack, the depth of the crack, and various material distributions on the nonlinear static response of the FGM beam are investigated in detail. Also, the difference between the geometrically linear and nonlinear analysis of edge cracked FGM beam is investigated in detail.
A non-linear homogeneous model for bone-like materials under compressive load.
Mengoni, M; Voide, R; de Bien, C; Freichels, H; Jérôme, C; Léonard, A; Toye, D; Müller, R; van Lenthe, G H; Ponthot, J P
2012-02-01
Finite element (FE) models accurately compute the mechanical response of bone and bone-like materials when the models include their detailed microstructure. In order to simulate non-linear behavior, which currently is only feasible at the expense of extremely high computational costs, coarser models can be used if the local morphology has been linked to the apparent mechanical behavior. The aim of this paper is to implement and validate such a constitutive law. This law is able to capture the non-linear structural behavior of bone-like materials through the use of fabric tensors. It also allows for irreversible strains using an elastoplastic material model incorporating hardening. These features are expressed in a constitutive law based on the anisotropic continuum damage theory coupled with isotropic elastoplasticity in a finite strain framework. This material model was implemented into metafor (LTAS-MNNL, University of Liège, Belgium), a non-linear FE software. The implementation was validated against experimental data of cylindrical samples subjected to compression. Three materials with bone-like microstructure were tested: aluminum foams of variable density (ERG, Oakland, CA, USA), polylactic acid foam (CERM, University of Liège, Liège, Belgium), and cancellous bone tissue of a deer antler (Faculty of Veterinary Medicine, University of Liège, Liège, Belgium).
Thermal conductivities of some novel nonlinear optical materials.
Beasley, J D
1994-02-20
Results of thermal conductivity measurements are reported for several of the more recently developed nonlinear optical crystals. New or substantially revised values of thermal conductivity were obtained in six materials. Notable thermal conductivities measured were those for AgGaS(2) [0.014 W/(cm K) and 0.015 W/(cm K)], AgGaSe(2) [0.010 W/(cm K) and 0.011 W/(cm K)], beta barium borate [0.016 W/(cm K) and 0.012 W/(cm K)], and ZnGeP(2) [0.36 W/(cm K) and 0.35 W/(cm K)], with values quoted for directions respectively parallel and perpendicular to the optic axis for each material. These new data provide necessary input for the design of high-power optical frequency converters.
Thioborates: potential nonlinear optical materials with rich structural chemistry.
Lian, Yu-Kun; Wu, Li-Ming; Chen, Ling
2017-03-27
Nonlinear optical (NLO) crystal materials with good performance are urgently needed. Various compounds have been explored to date. Metal chalcogenides and borates are common sources of potential NLO materials with desirable properties, particularly in the IR and UV regions, respectively. However, these two types of crystals have their specific drawbacks. Thioborates, as an emerging system, have unique advantages by combining the merits of borates and sulfides, i.e., the high laser damage thresholds and rich structural diversity of borates with large optical nonlinearity and the favorable transparency range of sulfides. However, only a limited number of thioborates are known. This paper summarizes the known thioborates according to structural motifs that range from zero-dimension to three-dimension, most of which are formed by sharing corners of the basic building units (BS3)(3-) and (BS4)(5-). Although nearly one-third of the known thioborates are noncentrosymmetric, most of their properties, especially their NLO behaviors, are unexplored. Further attempts and additional investigations are required with respect to design syntheses, property improvements and micro-mechanism studies.
Goldberg, Robert K.
2000-01-01
There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.
On the dimension of complex responses in nonlinear structural vibrations
Wiebe, R.; Spottswood, S. M.
2016-07-01
The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to
Modeling of the nonlinear resonant response in sedimentary rocks
Energy Technology Data Exchange (ETDEWEB)
Ten Cate, James A [Los Alamos National Laboratory; Shankland, Thomas J [Los Alamos National Laboratory; Vakhnenko, Vyacheslav O [NON LANL; Vakhnenko, Oleksiy [NON LANL
2009-04-03
We suggest a model for describing a wide class of nonlinear and hysteretic effects in sedimentary rocks at longitudinal bar resonance. In particular, we explain: hysteretic behaviour of a resonance curve on both its upward and downward slopes; linear softening of resonant frequency with increase of driving level; gradual (almost logarithmic) recovery of resonant frequency after large dynamical strains; and temporal relaxation of response amplitude at fixed frequency. Starting with a suggested model, we predict the dynamical realization of end-point memory in resonating bar experiments with a cyclic frequency protocol. These theoretical findings were confirmed experimentally at Los Alamos National Laboratory. Sedimentary rocks, particularly sandstones, are distinguished by their grain structure in which each grain is much harder than the intergrain cementation material. The peculiarities of grain and pore structures give rise to a variety of remarkable nonlinear mechanical properties demonstrated by rocks, both at quasistatic and alternating dynamic loading. Thus, the hysteresis earlier established for the stress-strain relation in samples subjected to quasistatic loading-unloading cycles has also been discovered for the relation between acceleration amplitude and driving frequency in bar-shaped samples subjected to an alternating external drive that is frequency-swept through resonance. At strong drive levels there is an unusual, almost linear decrease of resonant frequency with strain amplitude, and there are long-term relaxation phenomena such as nearly logarithmic recovery (increase) of resonant frequency after the large conditioning drive has been removed. In this report we present a short sketch of a model for explaining numerous experimental observations seen in forced longitudinal oscillations of sandstone bars. According to our theory a broad set of experimental data can be understood as various aspects of the same internally consistent pattern. Furthermore
Metal-nanocluster composites made by ion implantation: A novel third-order nonlinear material
Energy Technology Data Exchange (ETDEWEB)
Haglund, R.F. Jr.; Yang, L.; Magruder, R.H. III; Becker, K.; Wittig, J.E. [Vanderbilt Univ., Nashville, TN (United States); White, C.W.; Zhur, R.A. [Oak Ridge National Lab., TN (United States); Yang, L.; Dorsinville, R.; Alfano, R.R. [City Univ. of New York, NY (United States)
1993-03-01
We describe our recent studies of metal-insulator nanocluster composites made by ion implantation in such substrates as glass and sapphire. The metal clusters have diameters ranging from 3 to 30 nm. The composites exhibit an electronic nonlinear optical response which is fast on the picosecond time scale. In addition to possibilities for technological application, these materials also offer a way of studying unusual properties of composite materials, such as the quantum confinement of conduction-band electrons and the transverse relaxation time T{sub 2} as a function of cluster size.
Metal-nanocluster composites made by ion implantation: A novel third-order nonlinear material
Energy Technology Data Exchange (ETDEWEB)
Haglund, R.F. Jr.; Yang, L.; Magruder, R.H. III; Becker, K.; Wittig, J.E. (Vanderbilt Univ., Nashville, TN (United States)); White, C.W.; Zhur, R.A. (Oak Ridge National Lab., TN (United States)); Yang, L.; Dorsinville, R.; Alfano, R.R. (City Univ. of New York, NY (United States))
1993-03-01
We describe our recent studies of metal-insulator nanocluster composites made by ion implantation in such substrates as glass and sapphire. The metal clusters have diameters ranging from 3 to 30 nm. The composites exhibit an electronic nonlinear optical response which is fast on the picosecond time scale. In addition to possibilities for technological application, these materials also offer a way of studying unusual properties of composite materials, such as the quantum confinement of conduction-band electrons and the transverse relaxation time T[sub 2] as a function of cluster size.
Computation simulation of the nonlinear response of suspension bridges
Energy Technology Data Exchange (ETDEWEB)
McCallen, D.B.; Astaneh-Asl, A.
1997-10-01
Accurate computational simulation of the dynamic response of long- span bridges presents one of the greatest challenges facing the earthquake engineering community The size of these structures, in terms of physical dimensions and number of main load bearing members, makes computational simulation of transient response an arduous task. Discretization of a large bridge with general purpose finite element software often results in a computational model of such size that excessive computational effort is required for three dimensional nonlinear analyses. The aim of the current study was the development of efficient, computationally based methodologies for the nonlinear analysis of cable supported bridge systems which would allow accurate characterization of a bridge with a relatively small number of degrees of freedom. This work has lead to the development of a special purpose software program for the nonlinear analysis of cable supported bridges and the methodologies and software are described and illustrated in this paper.
Nonlinear Optical Response of Conjugated Polymer to Electric Field
Institute of Scientific and Technical Information of China (English)
ZHOU Yu-fang; ZHUANG De-xin; CUI Bin
2005-01-01
The organic π-conjugated polymers are of major interest materials for the use in electro-optical and nonlinear optical devices. In this work, for a selected polyacetylene chain, the optical absorption spectra in UV/Vis regime as well as the linear polarizabilitiy and nonlinear hyperpolarizability are calculated by using quantum chemical ab initio and semiempirical methods. The relationship of its optical property to electric field is obtained. Some physical mechanism of electric field effect on molecular optical property is discussed by means of electron distribution and intramolecular charge transfer.
A stabilized complementarity formulation for nonlinear analysis of 3D bimodular materials
Zhang, L.; Zhang, H. W.; Wu, J.; Yan, B.
2016-06-01
Bi-modulus materials with different mechanical responses in tension and compression are often found in civil, composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equation of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three parametric variables introduced in the principal stress directions. The original problem is transformed into a standard linear complementarity problem (LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke's algorithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent convergence behavior compared with traditional iterative schemes. Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.
Nonlinear Response of Cantilever Beams to Combination and Subcombination Resonances
Directory of Open Access Journals (Sweden)
Ali H. Nayfeh
1998-01-01
Full Text Available The nonlinear planar response of cantilever metallic beams to combination parametric and external subcombination resonances is investigated, taking into account the effects of cubic geometric and inertia nonlinearities. The beams considered here are assumed to have large length-to-width aspect ratios and thin rectangular cross sections. Hence, the effects of shear deformations and rotatory inertia are neglected. For the case of combination parametric resonance, a two-mode Galerkin discretization along with Hamilton’s extended principle is used to obtain two second-order nonlinear ordinary-differential equations of motion and associated boundary conditions. Then, the method of multiple scales is applied to obtain a set of four first-order nonlinear ordinary-differential equations governing the modulation of the amplitudes and phases of the two excited modes. For the case of subcombination resonance, the method of multiple scales is applied directly to the Lagrangian and virtual-work term. Then using Hamilton’s extended principle, we obtain a set of four first-order nonlinear ordinary-differential equations governing the amplitudes and phases of the two excited modes. In both cases, the modulation equations are used to generate frequency- and force-response curves. We found that the trivial solution exhibits a jump as it undergoes a subcritical pitchfork bifurcation. Similarly, the nontrivial solutions also exhibit jumps as they undergo saddle-node bifurcations.
Modeling and non-linear responses of MEMS capacitive accelerometer
Directory of Open Access Journals (Sweden)
Sri Harsha C.
2014-01-01
Full Text Available A theoretical investigation of an electrically actuated beam has been illustrated when the electrostatic-ally actuated micro-cantilever beam is separated from the electrode by a moderately large gap for two distinct types of geometric configurations of MEMS accelerometer. Higher order nonlinear terms have been taken into account for studying the pull in voltage analysis. A nonlinear model of gas film squeezing damping, another source of nonlinearity in MEMS devices is included in obtaining the dynamic responses. Moreover, in the present work, the possible source of nonlinearities while formulating the mathematical model of a MEMS accelerometer and their influences on the dynamic responses have been investigated. The theoretical results obtained by using MATLAB has been verified with the results obtained in FE software and has been found in good agreement. Criterion towards stable micro size accelerometer for each configuration has been investigated. This investigation clearly provides an understanding of nonlinear static and dynamics characteristics of electrostatically micro cantilever based device in MEMS.
Measurement of Localized Nonlinear Microwave Response of Superconductors
Lee, Sheng-Chiang; Palmer, Benjamin; Maiorov, B.
2005-03-01
We measure the local harmonic generation from superconducting thin films at microwave frequencies to investigate the intrinsic nonlinear Meissner effect near T/c in zero magnetic field. Both second and third harmonic generation are measured to identify time-reversal symmetry breaking (TRSB) and time-reversal symmetric (TRS) nonlinearities. The microscope can measure the local nonlinear response of a bicrystal grain boundary [Sheng-Chiang Lee and Steven M. Anlage, Physica C 408-410, 324 (2004); cond-mat/0408170]. We also performed a systematic doping-dependent study of the nonlinear response and find that the TRS characteristic nonlinearity current density scale follows the doping dependence of the de-pairing critical current density [cond-mat/0405595]. We extract a spontaneous TRSB characteristic current density scale that onsets at T/c, grows with decreasing temperature, and systematically decreases in magnitude (at fixed T/T/c) with under-doping. The origin of this current scale could be Josephson circulating currents or the spontaneous magnetization associated with a TRSB order parameter.
Energy Technology Data Exchange (ETDEWEB)
Cho, Seung Hyun; Park, Choon Su; Seo, Dae Cheol [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Cho, Seung Wan [Dept. of Mechanical Engineering, Sunngkyunkwan University, Suwon (Korea, Republic of); Jhang, Kyung Young [Dept. of Mechanical Engineering, Hanyang University, Seoul (Korea, Republic of)
2014-08-15
Recently, much attention has been paid to nonlinear ultrasonic technology as a potential tool to assess hidden damages that cannot be detected by conventional ultrasonic testing. One nonlinear ultrasonic technique is measurement of the resonance frequency shift, which is based on the hysteresis of the material elasticity. Sophisticated measurement of resonance frequency is required, because the change in resonance frequency is usually quite small. In this investigation, the nonlinear electromagnetic acoustic resonance (NEMAR) method was employed. The NEMAR method uses noncontact electromagnetic acoustic transducers (EMATs) in order to minimize the effect of the transducer on the frequency response of the object. Aluminum plate specimens that underwent three point bending fatigue were tested witha shear wave EMAT. The hysteretic nonlinear parameter α, a key indicator of damage, was calculated from the resonance frequency shift at several levels of input voltage. The hysteretic nonlinear parameter of a damaged sample was compared to that of an intact one, showing a difference in the values.
Basic Studies of Nonlinear Optical Materials for Eye and Sensor Protection
2004-03-10
1 BASIC STUDIES OF NONLINEAR OPTICAL MATERIALS FOR EYE AND SENSOR PROTECTION I. Abstract: We have studied the spectroscopy, kinetics and...study liquid or solid materials from CW to 100x10-15 seconds. Basic Studies of Nonlinear Optical Materials for Eye and Sensor Protection
Nonlinear analysis of the forced response of structural elements
Nayfeh, A. H.; Mook, D. T.; Sridhar, S.
1974-01-01
A general procedure is presented for the nonlinear analysis of the forced response of structural elements to harmonic excitations. Internal resonances (i.e., modal interactions) are taken into account. All excitations are considered, with special consideration given to resonant excitations. The general procedure is applied to clamped-hinged beams. The results reveal that exciting a higher mode may lead to a larger response in a lower interacting mode, contrary to the results of linear analyses.
Nonlinear microwave switching response of BSCCO single crystals
Energy Technology Data Exchange (ETDEWEB)
Jacobs, T.; Sridhar, S. [Northeastern Univ., Boston, MA (United States). Dept. of Physics; Willemsen, B.A. [Northeastern Univ., Boston, MA (United States). Dept. of Physics]|[Rome Lab., Hanscom AFB, MA (United States); Li, Qiang [Brookhaven National Lab., Upton, NY (United States); Gu, G.D.; Koshizuka, N. [Superconductivity Research Lab., Tokyo (Japan)
1996-06-01
Measurements of the surface impedance in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystal with microwave currents flowing along the {cflx c} axis show clear evidence of a step-like nonlinearity. The surface resistance switches between apparently quantized levels for microwave field strength changes < 1 mG. This nonlinear response can arise from the presence of intrinsic Josephson junctions along the {cflx c} axis of these samples driven by the microwave current.
Nonlinear optics response of semiconductor quantum wells under high magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Chemla, D.S.
1993-07-01
Recent investigations on the nonlinear optical response of semiconductor quantum wells in a strong perpendicular magnetic field, H, are reviewed. After some introductory material the evolution of the linear optical properties of GaAs QW`s as a function of H is discussed; an examination is made of how the magneto-excitons (MX) extrapolate continuously between quasi-2D QW excitons (X) when H = 0, and pairs of Landau levels (LL) when H {yields} {infinity}. Next, femtosecond time resolved investigations of their nonlinear optical response are presented; the evolution of MX-MX interactions with increasing H is stressed. Finally, how, as the dimensionality is reduced by application of H, the number of scattering channels is limited and relaxation of electron-hole pairs is affected. How nonlinear optical spectroscopy can be exploited to access the relaxation of angular momentum within magneto-excitons is also discussed.
Nonlinear THz response of metallic armchair graphene nanoribbon superlattices
Wang, Yichao; Andersen, David R.
2016-11-01
We study the third order THz nonlinear response of metallic armchair graphene nanoribbon superlattices in the presence of an elliptically-polarized excitation field using the time dependent perturbation theory. For a one-dimensional Kronig-Penney potential of infinite length, the nonlinear response can be described perturbatively by a low energy \\mathbf{k}\\centerdot \\mathbf{p} N-photon coupling model. Remarkably, as shown by Burset et al the energy dispersion of the metallic band in the direction parallel to the superlattice wavevector is independent of the applied superlattice potential while the energy dispersion in the direction perpendicular to the superlattice wavevector depends strongly on the superlattice parameters. As a result, we predict novel behavior for the nonlinear response of single layer metallic acGNR superlattices to an applied elliptically-polarized electric field. Our work shows that the superlattice potential, periodicity, Fermi level, excitation field polarization state, and temperature all play a significant role in the resulting THz nonlinear conductances.
On the prediction of stress relaxation from known creep of nonlinear materials
Energy Technology Data Exchange (ETDEWEB)
Touati, D.; Cederbaum, G. [Ben-Gurion Univ. of the Negev, Beer Sheva (Israel)
1997-04-01
A method to predict the nonlinear relaxation behavior from creep experiments of nonlinear viscoelastic materials is presented. It is shown that for given nonlinear creep properties, and creep compliance represented by the Prony series, the Schapery creep model can be transformed into a set of first order nonlinear equations. The solution of these equations enables the obtaining of the nonlinear stress relaxation curves. The strain-dependent constitutive equation can then be constructed for a given nonlinear viscoelastic model, as needed for engineering applications. A comparison example of the calculated stress relaxation curves, with test data for polyurethane demonstrates the very good accuracy of the proposed method.
Mechanical Response of Thermoelectric Materials
Energy Technology Data Exchange (ETDEWEB)
Wereszczak, Andrew A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Case, Eldon D. [Michigan State Univ., East Lansing, MI (United States)
2015-05-01
A sufficient mechanical response of thermoelectric materials (TEMats) to structural loadings is a prerequisite to the exploitation of any candidate TEMat's thermoelectric efficiency. If a TEMat is mechanically damaged or cracks from service-induced stresses, then its thermal and electrical functions can be compromised or even cease. Semiconductor TEMats tend to be quite brittle and have a high coefficient of thermal expansion; therefore, they can be quite susceptible to mechanical failure when subjected to operational thermal gradients. Because of this, sufficient mechanical response (vis-a-vis, mechanical properties) of any candidate TEMat must be achieved and sustained in the context of the service-induced stress state to which it is subjected. This report provides an overview of the mechanical responses of state-of-the-art TEMats; discusses the relevant properties that are associated with those responses and their measurement; and describes important, nonequilibrium phenomena that further complicate their use in thermoelectric devices. For reference purposes, the report also includes several appendixes that list published data on elastic properties and strengths of a variety of TEMats.
Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials
Fang, Ming; Sha, Wei E I; Xiong, Xiaoyan Y Z; Wu, Xianliang
2016-01-01
Applications of metallic metamaterials have generated significant interest in recent years. Electromagnetic behavior of metamaterials in the optical range is usually characterized by a local-linear response. In this article, we develop a finite-difference time-domain (FDTD) solution of the hydrodynamic model that describes a free electron gas in metals. Extending beyond the local-linear response, the hydrodynamic model enables numerical investigation of nonlocal and nonlinear interactions between electromagnetic waves and metallic metamaterials. By explicitly imposing the current continuity constraint, the proposed model is solved in a self-consistent manner. Charge, energy and angular momentum conservation laws of high-order harmonic generation have been demonstrated for the first time by the Maxwell-hydrodynamic FDTD model. The model yields nonlinear optical responses for complex metallic metamaterials irradiated by a variety of waveforms. Consequently, the multiphysics model opens up unique opportunities f...
Non-linear Constitutive Model for the Oligocarbonate Polyurethane Material
Institute of Scientific and Technical Information of China (English)
Marek Pawlikowski
2014-01-01
The polyurethane,which was the subject of the constitutive research presented in the paper,was based on oligocarbonate diols Desmophen C2100 produced by Bayer@.The constitutive modelling was performed with a view to applying the material as the inlay of intervertebral disc prostheses.The polyurethane was assumed to be non-linearly viscohyperelastic,isotropic and incompressible.The constitutive equation was derived from the postulated strain energy function.The elastic and rheological constants were identified on the basis of experimental tests,i.e.relaxation tests and monotonic uniaxial tests at two different strain rates,i.e.λ =0.1 min-1 and λ =1.0 min-1.The stiffness tensor was derived and introduced to Abaqus@finite element (FE) software in order to numerically validate the constitutive model.The results of the constants identification and numerical implementation show that the derived constitutive equation is fully adequate to model stress-strain behavior of the polyurethane material.
Emerging Low-Dimensional Materials for Nonlinear Optics and Ultrafast Photonics.
Liu, Xiaofeng; Guo, Qiangbing; Qiu, Jianrong
2017-02-22
Low-dimensional (LD) materials demonstrate intriguing optical properties, which lead to applications in diverse fields, such as photonics, biomedicine and energy. Due to modulation of electronic structure by the reduced structural dimensionality, LD versions of metal, semiconductor and topological insulators (TIs) at the same time bear distinct nonlinear optical (NLO) properties as compared with their bulk counterparts. Their interaction with short pulse laser excitation exhibits a strong nonlinear character manifested by NLO absorption, giving rise to optical limiting or saturated absorption associated with excited state absorption and Pauli blocking in different materials. In particular, the saturable absorption of these emerging LD materials including two-dimensional semiconductors as well as colloidal TI nanoparticles has recently been utilized for Q-switching and mode-locking ultra-short pulse generation across the visible, near infrared and middle infrared wavelength regions. Beside the large operation bandwidth, these ultrafast photonics applications are especially benefit from the high recovery rate as well as the facile processibility of these LD materials. The prominent NLO response of these LD materials have also provided new avenues for the development of novel NLO and photonics devices for all-optical control as well as optical circuits beyond ultrafast lasers.
Effective Dielectric Response of Nonlinear Composites of Coated Metal Inclusions
Institute of Scientific and Technical Information of China (English)
CHEN Guo-Qing; WU Ya-Min
2007-01-01
The effective dielectric response of the composites in which nondilute coated metal particles are randomly embedded in a linear host is investigated. Two types of coated particles are considered, one is that the core is nonlinear, the other is that the shell is nonlinear. We derive general expressions for the effective linear dielectric function and the effective third-order nonlinear susceptibility, and take one step forward to perform numerical calculations on the coated metal/dielectric composites. Numerical results show that the effective linear and nonlinear dielectric responses can be greatly enhanced near the surface plasmon resonant frequency. Moreover, the resonant peaks are found within a range from 0.46ωp to 0.57ωp for spherical particles and from 0.59ωp to 0.7ωp for cylindrical inclusions. In the frequency region, the resonant peak can achieve the maximum, according to an optimal structural parameter and volume fraction. The resonant frequency exhibits a redshift with the increasing structural parameter k or volume fraction f or dimensionality factor D.
Frequency Response and Gap Tuning for Nonlinear Electrical Oscillator Networks
Bhat, Harish S.; Vaz, Garnet J.
2013-01-01
We study nonlinear electrical oscillator networks, the smallest example of which consists of a voltage-dependent capacitor, an inductor, and a resistor driven by a pure tone source. By allowing the network topology to be that of any connected graph, such circuits generalize spatially discrete nonlinear transmission lines/lattices that have proven useful in high-frequency analog devices. For such networks, we develop two algorithms to compute the steady-state response when a subset of nodes are driven at the same fixed frequency. The algorithms we devise are orders of magnitude more accurate and efficient than stepping towards the steady-state using a standard numerical integrator. We seek to enhance a given network's nonlinear behavior by altering the eigenvalues of the graph Laplacian, i.e., the resonances of the linearized system. We develop a Newton-type method that solves for the network inductances such that the graph Laplacian achieves a desired set of eigenvalues; this method enables one to move the eigenvalues while keeping the network topology fixed. Running numerical experiments using three different random graph models, we show that shrinking the gap between the graph Laplacian's first two eigenvalues dramatically improves a network's ability to (i) transfer energy to higher harmonics, and (ii) generate large-amplitude signals. Our results shed light on the relationship between a network's structure, encoded by the graph Laplacian, and its function, defined in this case by the presence of strongly nonlinear effects in the frequency response. PMID:24223751
Nonlinear response from the perspective of energy landscapes and beyond
Heuer, Andreas; Schroer, Carsten F. E.; Diddens, Diddo; Rehwald, Christian; Blank-Burian, Markus
2017-08-01
The paper discusses the nonlinear response of disordered systems. In particular we show how the nonlinear response can be interpreted in terms of properties of the potential energy landscape. It is shown why the use of relatively small systems is very helpful for this approach. For a standard model system we check which system sizes are particular suited. In case of the driving of a single particle via an external force the concept of an effective temperature helps to scale the force dependence for different temperature on a single master curve. In all cases the mobility increases with increasing external force. These results are compared with a stochastic process described by a 1d Langevin equation where a similar scaling is observed. Furthermore it is shown that for different classes of disordered systems the mobility can also decrease with increasing force. The results can be related to the properties of the chosen potential energy landscape. Finally, results for the crossover from the linear to the nonlinear conductivity of ionic liquids are presented, inspired by recent experimental results in the Roling group. Apart from a standard imidazolium-based ionic liquid we study a system which is characterized by a low conductivity as compared to other ionic liquids and very small nonlinear effects. We show via a real space structural analysis that for this system a particularly strong pair formation is observed and that the strength of the pair formation is insensitive to the application of strong electric fields. Consequences of this observation are discussed.
Li, Bing-Xuan; Wei, Yong; Huang, Cheng-Hui; Zhuang, Feng-Jiang; Zhang, Ge; Guo, Guo-Cong
2014-01-01
In the present paper the authors report a research on testing the nonlinear optical performance of optical materials in visible and infrared band. Based on the second order nonlinear optic principle and the photoelectric signal detection technology, the authors have proposed a new testing scheme in which a infrared OPO laser and a method for separating the beams arising from frequency matching and the light produced by other optical effects were used. The OPO laser is adopted as light source to avoid the error of measurement caused by absorption because the double frequency signal of the material is in the transmittance band Our research work includes testing system composition, operational principle and experimental method. The experimental results of KTP, KDP, AGS tested by this method were presented. In the experiment several new infrared non-linear materials were found. This method possesses the merits of good stability and reliability, high sensitivity, simple operation and good reproducibility, which can effectively make qualitative and semi-quantitative test for optical material's nonlinear optical properties from visible to infrared. This work provides an important test -method for the research on second order nonlinear optical materials in visible, infrared and ultraviolet bands.
Scaling Laws for the Response of Nonlinear Elastic Media with Implications for Cell Mechanics
Shokef, Yair; Safran, Samuel A.
2012-04-01
We show how strain stiffening affects the elastic response to internal forces, caused either by material defects and inhomogeneities or by active forces that molecular motors generate in living cells. For a spherical force dipole in a material with a strongly nonlinear strain energy density, strains change sign with distance, indicating that, even around a contractile inclusion or molecular motor, there is radial compression; it is only at a long distance that one recovers the linear response in which the medium is radially stretched. Scaling laws with irrational exponents relate the far-field renormalized strain to the near-field strain applied by the inclusion or active force.
Nonlinear wave mixing and susceptibility properties of negative refractive index materials.
Chowdhury, Aref; Tataronis, John A
2007-01-01
We present an analysis of second-order and third-order nonlinear susceptibilities and wave-mixing properties of negative refractive index materials. We show that the nonlinear susceptibilities for noncentrosymmetric and centrosymmetric media may be positive or negative and away from resonance depending on the frequency of interest relative to the resonant frequencies of the material. Manipulation of the signs of the nonlinear susceptibilities is important in the field of optics, particularly for solitons and compensation of nonlinear effects. We also show that three- and four-wave mixing can be naturally phase matched in the material.
Hazardous Materials Management and Emergency Response (HAMMER)
Federal Laboratory Consortium — The Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Federal Training Center is a safety and emergency response training center that offers...
Composite structures for the enhancement of nonlinear optical materials.
Neeves, A E; Birnboim, M H
1988-12-01
Calculations of the nonlinear optical behavior are developed for model composites consisting of nanospheres with a metallic core and a nonlinear shell suspended in a nonlinear medium. The concept for the enhancement of optical phase conjugation from all these nonlinear regions is that the optical field can be concentrated both inside and in the neighborhood of the metallic core, aided by surface-mediated plasmon resonance. Calculations for gold cores and aluminum cores indicate that phase-conjugate reflectivity enhancements of 10(8) may be possible.
Inclusion Tuning of Nonlinear Optical Materials: KTP (Potassium Titanyl Phosphate) Isomorphs
1988-06-01
o OFCE OF NAVAL RESEARCH Contract N00014-87-K-0457 V R&T Code 4134015-01 0) Technical. Report No. 23 "Inclusion Tuning of Nonlinear Optical Materials : KIP...bry block nuum.ber) see attached #11 Inclusion Tuning of Nonlinear Optical Materials : KTP Isomorphs * Q1 UISTRISUTION/AVAII..ASILITY 00 ABSTRACT 21
Eye/Sensor Protection against Laser Irradiation Organic Nonlinear Optical Materials
1989-06-12
Recent developments in organic nonlinear optical materials for application to eye and sensor protection are reviewed. This compendium includes a...noteworthy organic third-order nonlinear optical materials is included as an appendix. Lasers are playing an important and increasing role in modern
The Synthesis of Third—order Optical Nonlinear Organic Polyheterocyclic Materials
Institute of Scientific and Technical Information of China (English)
JianRongGAO; LuBaiCHENG; 等
2002-01-01
Synthesis of the third-order nonlinear materials:bis (1,4-dihydroxynaphthalene) tetrathiafulvalene and bis (1,4-dialkoxylnaphthalene) tetrathiafulvalene has been achieved in four steps, starting from 2,3-dichloro-1,4-naphthaquinone. The materials exhibit larger third-order nonlinear optical susceptibilities χ.
Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials
Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)
1996-01-01
There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.
Thermally Stable Heterocyclic Imines as New Potential Nonlinear Optical Materials
Nesterov, Volodymyr V.; Antipin, Mikhail Y.; Nesterov, Vladimir N.; Moore, Craig E.; Cardelino, Beatriz H.; Timofeeva, Tatiana V.
2004-01-01
In the course of a search for new thermostable acentric nonlinear optical crystalline materials, several heterocyclic imine derivatives were designed, with the general structure D-pi-A(D'). Introduction of a donor amino group (D') into the acceptor moiety was expected to bring H-bonds into their crystal structures, and so to elevate their melting points and assist in an acentric molecular packing. Six heterocycle-containing compounds of this type were prepared, single crystals were grown for five of them, and these crystals were characterized by X-ray analysis. A significant melting temperature elevation was found for all of the synthesized compounds. Three of the compounds were also found to crystallize in acentric space groups. One of the acentric compounds is built as a three-dimensional H-bonded molecular network. In the other two compounds, with very similar molecular structure, the molecules form one-dimensional H-bonded head-to-head associates (chains). These chains are parallel in two different crystallographic directions and form very unusual interpenetrating chain patterns in an acentric crystal. Two of the compounds crystallized with centrosymmetric molecular packing.
Kelly, John V.; O'Brien, Jeff; O'Neill, Feidhlim T.; Gleeson, Michael R.; Sheridan, John T.
2004-10-01
Non-local and non-linear models of photopolymer materials, which include diffusion effects, have recently received much attention in the literature. The material response is non-local as it is assumed that monomers are polymerised to form polymer chains and that these chains grow away from a point of initiation. The non-locality is defined in terms of a spatial non-local material response function. The numerical method of solution typically involves retaining either two or four harmonics of the Fourier series of monomer concentration in the calculation. In this paper a general set of equations is derived which allows inclusion of higher number of harmonics for any response function. The numerical convergence for varying number of harmonics retained is investigated with special care being taken to note the effect of the; non-local material variance s, the power law degree k, and the rates of diffusion, D, and polymerisation F0. General non-linear material responses are also included.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Some theoretical methods have been reported to deal with nonlinear problems of composite materials but the accuracy is not so good. In the meantime, a lot of nonlinear problems are difficult to be managed by the theoretical methods. The present study aims to use the developed method, the random microstructure finite element method, to deal with these nonlinear problems. In this paper, the random microstructure finite element method is used to deal with all three kinds of nonlinear property problems of composite materials. The analyzed results suggest that the influences of the nonlinear phenomena on the effective properties of composite materials are significant and the random microstructure finite element method is an efficient tool to investigate the nonlinear problems.
Directory of Open Access Journals (Sweden)
M. Ordu
2017-09-01
Full Text Available Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed in the frequency-resolved response when mid-infrared pump and probe pulses are overlapped in a fiber segment. The oscillations arise from the nonlinear frequency resolved nonlinear (χ(3 response in the germanium semiconductor. Our work represents the first observation of coherent oscillations in the emerging field of germanium mid-infrared fiber optics.
Extrinsic contribution and non-linear response in lead-free KNN-modified piezoceramics
Energy Technology Data Exchange (ETDEWEB)
Ochoa, D A; Garcia, J E; Perez, R; Gomis, V; Albareda, A [Department of Applied Physics, Universitat Politecnica de Catalunya, 08034 Barcelona (Spain); Rubio-Marcos, F; Fernandez, J F, E-mail: jose@fa.upc.ed [Department of Electroceramics, Instituto de Ceramica y Vidrio, CSIC, 28049 Madrid (Spain)
2009-01-21
Finding lead-free ceramics with good piezoelectric properties is nowadays one of the most important challenges in materials science. The (K, Na, Li)(Nb, Ta, Sb)O{sub 3} system is one of the most promising candidates as a lead-free ceramic for transducer applications and is currently the object of important research work. In this paper, (K{sub 0.44}Na{sub 0.52}Li{sub 0.04})(Nb{sub 0.86}Ta{sub 0.10}Sb{sub 0.04})O{sub 3} was prepared by a conventional ceramic processing route. For this composition, orthorhombic-to-tetragonal phase transition was observed at temperatures very close to room temperature. As a consequence, good room temperature electromechanical properties were observed, displaying good thermal stability. We show that the most important contribution to dielectric, piezoelectric and elastic response comes from extrinsic effects, as was observed in other perovskite based materials. Nonlinearities in electromechanical properties induced by high electric field or mechanical stress were studied. Non-linear dielectric response was found to be less important than for soft PZT ceramics and was analysed within the Rayleigh framework. The results reveal that the non-linear response at room temperature in this material is mainly due to the irreversible wall domain movement.
Ponte Castañeda, Pedro
2016-11-01
This paper presents a variational method for estimating the effective constitutive response of composite materials with nonlinear constitutive behavior. The method is based on a stationary variational principle for the macroscopic potential in terms of the corresponding potential of a linear comparison composite (LCC) whose properties are the trial fields in the variational principle. When used in combination with estimates for the LCC that are exact to second order in the heterogeneity contrast, the resulting estimates for the nonlinear composite are also guaranteed to be exact to second-order in the contrast. In addition, the new method allows full optimization with respect to the properties of the LCC, leading to estimates that are fully stationary and exhibit no duality gaps. As a result, the effective response and field statistics of the nonlinear composite can be estimated directly from the appropriately optimized linear comparison composite. By way of illustration, the method is applied to a porous, isotropic, power-law material, and the results are found to compare favorably with earlier bounds and estimates. However, the basic ideas of the method are expected to work for broad classes of composites materials, whose effective response can be given appropriate variational representations, including more general elasto-plastic and soft hyperelastic composites and polycrystals.
Nonlocal description of X waves in quadratic nonlinear materials
DEFF Research Database (Denmark)
Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole
2006-01-01
We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...
Nonlinear Dielectric Response of Water Treed XLPE Cable Insulation
Energy Technology Data Exchange (ETDEWEB)
Hvidsten, Sverre
1999-07-01
Condition assessment of XLPE power cables is becoming increasingly important for the utilities, due to a large number of old cables in service with high probability of failure caused by water tree degradation. The commercial available techniques are generally based upon measurements of the dielectric response, either by time (polarisation/depolarisation current or return voltage) or frequency domain measurements. Recently it has been found that a high number of water trees in XLPE insulated cables causes the dielectric response to increase more than linearly with increasing test voltage. This nonlinear feature of water tree degraded XLPE insulation has been suggested to be of a great importance, both for diagnostic purposes, and for fundamental understanding of the water tree phenomenon itself. The main purpose of this thesis have been to study the nonlinear feature of the dielectric response measured on watertreed XLPE insulation. This has been performed by dielectric response measurements in both time and frequency domain, numerical calculations of losses of simplified water tree models, and fmally water content and water permeation measurements on single water trees. The dielectric response measurements were performed on service aged cable samples and laboratory aged Rogowski type objects. The main reason for performing laboratory ageing was to facilitate diagnostic testing as a function of ageing time of samples containing mainly vented water trees. A new method, based upon inserting NaC1 particles at the interface between the upper semiconductive screen and the insulation, was found to successfully enhance initiation and growth of vented water trees. AC breakdown strength testing show that it is the vented water trees that reduce the breakdown level of both the laboratory aged test objects and service aged cable samples. Vented water treeing was found to cause the dielectric response to become nonlinear at a relatively low voltage level. However, the measured
Energy Technology Data Exchange (ETDEWEB)
Torello, David [GW Woodruff School of Mechanical Engineering, Georgia Tech (United States); Kim, Jin-Yeon [School of Civil and Environmental Engineering, Georgia Tech (United States); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Tech and GW Woodruff School of Mechanical Engineering, Georgia Tech (United States)
2015-03-31
This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.
A FORTRAN program for calculating nonlinear seismic ground response
Joyner, William B.
1977-01-01
The program described here was designed for calculating the nonlinear seismic response of a system of horizontal soil layers underlain by a semi-infinite elastic medium representing bedrock. Excitation is a vertically incident shear wave in the underlying medium. The nonlinear hysteretic behavior of the soil is represented by a model consisting of simple linear springs and Coulomb friction elements arranged as shown. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. A brief program description is provided here with instructions for preparing the input and a source listing. A more detailed discussion of the method is presented elsewhere as is the description of a different program employing implicit integration.
Nonlinear dynamic response of stay cables under axial harmonic excitation
Institute of Scientific and Technical Information of China (English)
Xu XIE; He ZHAN; Zhi-cheng ZHANG
2008-01-01
This paper proposes a new numerical simulation method for analyzing the parametric vibration of stay cables based on the theory of nonlinear dynamic response of structures under the asynchronous support excitation.The effects of important parameters related to parametric vibration of cables,I.e., characteristics of structure,excitation frequency,excitation amplitude,damping effect of the air and the viscous damping coefficient of the cables,were investigated by using the proposed method for the cables with significant length difference as examples.The analysis results show that nonlinear finite element method is a powerful technique in analyzing the parametric vibration of cables,the behavior of parametric vibration of the two cables with different Irvine parameters has similar properties,the amplitudes of parametric vibration of cables are related to the frequency and amplitude of harmonic support excitations and the effect of distributed viscous damping on parametric vibration of the cables is very small.
High-accuracy acoustic detection of nonclassical component of material nonlinearity.
Haupert, Sylvain; Renaud, Guillaume; Rivière, Jacques; Talmant, Maryline; Johnson, Paul A; Laugier, Pascal
2011-11-01
The aim is to assess the nonclassical component of material nonlinearity in several classes of materials with weak, intermediate, and high nonlinear properties. In this contribution, an optimized nonlinear resonant ultrasound spectroscopy (NRUS) measuring and data processing protocol applied to small samples is described. The protocol is used to overcome the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic nonlinearity. External temperature fluctuation is identified as a primary source of measurement contamination. For instance, a variation of 0.1 °C produced a frequency variation of 0.01%, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to overcome environmental effects, the reference frequency measurements are repeated before each excitation level and then used to compute nonlinear parameters. Using this approach, relative resonant frequency shifts of 10(-5) can be measured, which is below the limit of 10(-4) often considered as the limit of NRUS sensitivity under common experimental conditions. Due to enhanced sensitivity resulting from the correction procedure applied in this work, nonclassical nonlinearity in materials that before have been assumed to only be classically nonlinear in past work (steel, brass, and aluminum) is reported.
Models of the delayed nonlinear Raman response in diatomic gases
Palastro, J. P.; Antonsen, T. M., Jr.; Pearson, A.
2011-07-01
We examine the delayed response of a diatomic gas to a polarizing laser field with the goal of obtaining computationally efficient methods for use with laser pulse propagation simulations. We demonstrate that for broadband pulses, heavy molecules such as O2 and N2, and typical atmospheric temperatures, the initial delayed response requires only classical physics. The linear kinetic Green's function is derived from the Boltzmann equation and shown to be in excellent agreement with full density-matrix calculations. A straightforward perturbation approach for the fully nonlinear, kinetic impulse response is also presented. With the kinetic theory a reduced fluid model of the diatomic gas’ orientation is derived. Transport coefficients are introduced to model the kinetic phase mixing of the delayed response. In addition to computational rapidity, the fluid model provides intuition through the use of familiar macroscopic quantities. Both the kinetic and the fluid descriptions predict a nonlinear steady-state alignment after passage of the laser pulse, which in the fluid model is interpreted as an anisotropic temperature of the diatomic fluid with respect to motion about the polarization axis.
Ganesh, R.; Gonella, S.
2017-02-01
The motive of this work is to understand the complex spatial characteristics of finite-amplitude elastic wave propagation in periodic structures and leverage the unique opportunities offered by nonlinearity to activate complementary functionalities and design adaptive spatial wave manipulators. The underlying assumption is that the magnitude of wave propagation is small with respect to the length scale of the structure under consideration, albeit large enough to elicit the effects of finite deformation. We demonstrate that the interplay of dispersion, nonlinearity and modal complexity involved in the generation and propagation of higher harmonics gives rise to secondary wave packets that feature multiple characteristics, one of which conforms to the dispersion relation of the corresponding linear structure. This provides an opportunity to engineer desired wave characteristics through a geometric and topological design of the unit cell, and results in the ability to activate complementary functionalities, typical of high frequency regimes, while operating at low frequencies of excitation - an effect seldom observed in linear periodic structures. The ability to design adaptive switches is demonstrated here using lattice configurations whose response is characterized by geometric and/or material nonlinearities.
Transient response of an active nonlinear sandwich piezolaminated plate
Oveisi, Atta; Nestorović, Tamara
2017-04-01
In this paper, the dynamic modelling and active vibration control of a piezolaminated plate with geometrical nonlinearities are investigated using a semi-analytical approach. For active vibration control purposes, the core orthotropic elastic layer is assumed to be perfectly bonded with two piezo-layers on its top and bottom surfaces which act as sensor and actuator, respectively. In the modelling procedure, the piezo-layers are assumed to be connected via a proportional derivative (PD) feedback control law. Hamilton's principle is employed to acquire the strong form of the dynamic equation in terms of additional higher order strain expressions by means of von Karman strain-displacement correlation. The obtained nonlinear partial differential equation (NPDE) is converted to a system of nonlinear ordinary differential equations (NODEs) by engaging Galerkin method and using the orthogonality of shape functions for the simply supported boundary conditions. Then, the resulting system of NODEs is solved numerically by employing the built-in Mathematica function, "NDSolve". Next, the vibration attenuation performance is evaluated and sensitivity of the closed-loop system is investigated for several control parameters and the external disturbance parameters. The proposed solution in open loop configuration is validated by finite element (FE) package ABAQUS both in the spatial domain and for the time-/frequency-dependent response.
Nonlinear electromechanical response of the ferroelectret ultrasonic transducers
Döring, Joachim; Bovtun, Viktor; Bartusch, Jürgen; Erhard, Anton; Kreutzbruck, Marc; Yakymenko, Yuriy
2010-08-01
The ultrasonic transmission between two air-coupled polypropylene (PP) ferroelectret (FE) transducers in dependence on the amplitude of the high-voltage exciting pulse revealed a strongly nonlinear electromechanical response of the FE transmitter. This phenomenon is described by a linear increase of the inverse electromechanical transducer constant t_{33}^{(1)} of the PP FE film with an increase of the exciting electrical pulse amplitude. Enlargement of t_{33}^{(1)} by a factor of 4 was achieved by application of 3500 V exciting pulses. The electrostriction contribution to t_{33}^{(1)} can be attributed to the electrostatic force between electrodes and the Maxwell stress effect. The nonlinear electromechanical properties of the PP FE result in a strong increase of its air-coupled ultrasonic (ACUS) figure of merit ( FOM) under the high-voltage excitation, which exceeds results of the PP FE technological optimization. The FOM increase can be related to the increase of PP FE coupling factor and/or to the decrease of its acoustic impedance. A significant enhancement of the ACUS system transmission (12 dB) and signal-to-noise ratio (32 dB) was demonstrated by the increase of excitation voltage up to 3500 V. The nonlinear electromechanical properties of the PP FEs seem to be very important for their future applications.
Finding the Next Deep-Ultraviolet Nonlinear Optical Material: NH4B4O6F.
Shi, Guoqiang; Wang, Ying; Zhang, Fangfang; Zhang, Bingbing; Yang, Zhihua; Hou, Xueling; Pan, Shilie; Poeppelmeier, Kenneth R
2017-08-09
Nonlinear optical materials are essential for the development of solid-state lasers. KBe2BO3F2 (KBBF) is a unique nonlinear optical material for generation of deep-ultraviolet coherent light; however, its industrial application is limited. Here, we report a new material NH4B4O6F, which exhibits a wide deep-ultraviolet transparent range and suitable birefringence that enables frequency doubling below 200 nm. NH4B4O6F possesses large nonlinear coefficients about 2.5 times that of KBBF. In addition, it is easy to grow bulk crystals and does not contain toxic elements.
Investigation of nonlinear optical properties of various organic materials by the Z-scan method
Ganeev, R. A.; Boltaev, G. S.; Tugushev, R. I.; Usmanov, T.
2012-06-01
We have studied the nonlinear optical properties of various organic materials (vegetable oil, juice, wine, cognac, Coca-Cola and Fanta drinks, Nescafé coffee, tea, gasoline, clock oil, glycerol, and polyphenyl ether) that are used in everyday life. Their nonlinearities have been studied by the Z-scan method in the near-IR and visible spectral ranges. We have shown that the majority of samples possess a nonlinear absorption; however, some of the studied materials show a strong saturated absorption and nonlinear refraction. Red wine and glycerol proved to be the most interesting materials. For these samples, we have observed a change in the sign of the nonlinear absorption with increasing laser intensity, which was attributed to the competition between two-photon absorption and saturated absorption.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
Energy Technology Data Exchange (ETDEWEB)
Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn [Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027 (China)
2016-08-15
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises.
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Simulations of coherent nonlinear optical response of molecular vibronic dimers
Perlík, Václav
2016-01-01
We have implemented vibronic dynamics for simulations of the third order coherent response of electronic dimers. In the present communication we provide the full and detailed description of the dynamical model, recently used for simulations of chlorophyll-carotenoid dyads, terylene dimers, or hypericin. We allow for explicit vibronic level structure, by including selected vibrational modes into a "system". Bath dynamics include the Landau-Teller vibrational relaxation, electronic dephasing, and nonlinear vibronic (to bath) coupling. Simulations combine effects of transport and dephasing between vibronic levels. Transport is described by master equation within secular approximation, phase is accumulated in cumulants and its calculation follows the transport pathways during waiting time period.
Chip scale low dimensional materials: optoelectronics & nonlinear optics
Gu, Tingyi
The CMOS foundry infrastructure enables integration of high density, high performance optical transceivers. We developed integrated devices that assemble resonators, waveguide, tapered couplers, pn junction and electrodes. Not only the volume standard manufacture in silicon foundry is promising to low-lost optical components operating at IR and mid-IR range, it also provides a robust platform for revealing new physical phenomenon. The thesis starts from comparison between photonic crystal and micro-ring resonators based on chip routers, showing photonic crystal switches have small footprint, consume low operation power, but its higher linear loss may require extra energy for signal amplification. Different designs are employed in their implementation in optical signal routing on chip. The second part of chapter 2 reviews the graphene based optoelectronic devices, such as modulators, lasers, switches and detectors, potential for group IV optoelectronic integrated circuits (OEIC). In chapter 3, the highly efficient thermal optic control could act as on-chip switches and (transmittance) tunable filters. Local temperature tuning compensates the wavelength differences between two resonances, and separate electrode is used for fine tuning of optical pathways between two resonators. In frequency domain, the two cavity system also serves as an optical analogue of Autler-Towns splitting, where the cavity-cavity resonance detuning is controlled by the length of pathway (phase) between them. The high thermal sensitivity of cavity resonance also effectively reflects the heat distribution around the nanoheaters, and thus derives the thermal conductivity in the planar porous suspended silicon membrane. Chapter 4 & 5 analyze graphene-silicon photonic crystal cavities with high Q and small mode volume. With negligible nonlinear response to the milliwatt laser excitation, the monolithic silicon PhC turns into highly nonlinear after transferring the single layer graphene with
The Synthesis of Third-order Optical Nonlinear Organic Polyheterocyclic Materials
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Synthesis of the third-order nonlinear materials: bis (l,4-dihydroxynaphthalene)tetrathiafulvalene and bis (1,4-dialkoxylnaphthalene) tetrathiafulvalene has been achieved in four steps, starting from 2,3-dichloro-l,4-naphthaquinone. The matcrials exhibit larger third-order nonlinear optical susceptibilities X(3).
Exact solutions of optical pulse propagation in nonlinear meta-materials
Nanda, Lipsa
2017-01-01
An analytical and simulation based method has been used to exactly solve the nonlinear wave propagation in bulk media exhibiting frequency dependent dielectric susceptibility and magnetic permeability. The method has been further extended to investigate the intensity distribution in a nonlinear meta-material with negative refractive index where both ɛ and μ are dispersive and negative in nature.
Non-linear modeling of active biohybrid materials
Paetsch, C.
2013-11-01
Recent advances in engineered muscle tissue attached to a synthetic substrate motivate the development of appropriate constitutive and numerical models. Applications of active materials can be expanded by using robust, non-mammalian muscle cells, such as those of Manduca sexta. In this study, we propose a model to assist in the analysis of biohybrid constructs by generalizing a recently proposed constitutive law for Manduca muscle tissue. The continuum model accounts (i) for the stimulation of muscle fibers by introducing multiple stress-free reference configurations for the active and passive states and (ii) for the hysteretic response by specifying a pseudo-elastic energy function. A simple example representing uniaxial loading-unloading is used to validate and verify the characteristics of the model. Then, based on experimental data of muscular thin films, a more complex case shows the qualitative potential of Manduca muscle tissue in active biohybrid constructs. © 2013 Elsevier Ltd. All rights reserved.
Probing material nonlinearity at various depths by time reversal mirrors
Payan, C.; Ulrich, T. J.; Le Bas, P. Y.; Griffa, M.; Schuetz, P.; Remillieux, M. C.; Saleh, T. A.
2014-04-01
In this Letter, the time reversal mirror is used to focus elastic energy at a prescribed location and to analyze the amplitude dependence of the focus signal, thus providing the nonlinearity of the medium. By varying the frequency content of the focused waveforms, the technique can be used to probe the surface, by penetrating to a depth defined by the wavelength of the focused waves. The validity of this concept is shown in the presence of gradual and distributed damage in concrete by comparing actual results with a reference nonlinear measurement and X ray tomography images.
Probing material nonlinearity at various depths by time reversal mirrors
Energy Technology Data Exchange (ETDEWEB)
Payan, C. [LMA UPR CNRS 7051, Aix Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille (France); Ulrich, T. J.; Le Bas, P. Y.; Remillieux, M. C. [Los Alamos National Laboratory, EES-17, Los Alamos, New Mexico 87545 (United States); Griffa, M.; Schuetz, P. [Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, 8600 Dübendorf (Switzerland); Saleh, T. A. [Los Alamos National Laboratory, MST-16, Los Alamos, New Mexico 87545 (United States)
2014-04-07
In this Letter, the time reversal mirror is used to focus elastic energy at a prescribed location and to analyze the amplitude dependence of the focus signal, thus providing the nonlinearity of the medium. By varying the frequency content of the focused waveforms, the technique can be used to probe the surface, by penetrating to a depth defined by the wavelength of the focused waves. The validity of this concept is shown in the presence of gradual and distributed damage in concrete by comparing actual results with a reference nonlinear measurement and X ray tomography images.
Simulations of heart valves by thin shells with non-linear material properties
Borazjani, Iman; Asgharzadeh, Hafez; Hedayat, Mohammadali
2016-11-01
The primary function of a heart valve is to allow blood to flow in only one direction through the heart. Triangular thin-shell finite element formulation is implemented, which considers only translational degrees of freedom, in three-dimensional domain to simulate heart valves undergoing large deformations. The formulation is based on the nonlinear Kirchhoff thin-shell theory. The developed method is intensively validated against numerical and analytical benchmarks. This method is added to previously developed membrane method to obtain more realistic results since ignoring bending forces can results in unrealistic wrinkling of heart valves. A nonlinear Fung-type constitutive relation, based on experimentally measured biaxial loading tests, is used to model the material properties for response of the in-plane motion in heart valves. Furthermore, the experimentally measured liner constitutive relation is used to model the material properties to capture the flexural motion of heart valves. The Fluid structure interaction solver adopts a strongly coupled partitioned approach that is stabilized with under-relaxation and the Aitken acceleration technique. This work was supported by American Heart Association (AHA) Grant 13SDG17220022 and the Center of Computational Research (CCR) of University at Buffalo.
Confidence bounds for nonlinear dose-response relationships.
Baayen, C; Hougaard, P
2015-11-30
An important aim of drug trials is to characterize the dose-response relationship of a new compound. Such a relationship can often be described by a parametric (nonlinear) function that is monotone in dose. If such a model is fitted, it is useful to know the uncertainty of the fitted curve. It is well known that Wald confidence intervals are based on linear approximations and are often unsatisfactory in nonlinear models. Apart from incorrect coverage rates, they can be unreasonable in the sense that the lower confidence limit of the difference to placebo can be negative, even when an overall test shows a significant positive effect. Bootstrap confidence intervals solve many of the problems of the Wald confidence intervals but are computationally intensive and prone to undercoverage for small sample sizes. In this work, we propose a profile likelihood approach to compute confidence intervals for the dose-response curve. These confidence bounds have better coverage than Wald intervals and are more precise and generally faster than bootstrap methods. Moreover, if monotonicity is assumed, the profile likelihood approach takes this automatically into account. The approach is illustrated using a public dataset and simulations based on the Emax and sigmoid Emax models. Copyright © 2015 John Wiley & Sons, Ltd.
Stochastic response of nonlinear system in probability domain
Indian Academy of Sciences (India)
Deepak Kumar; T K Datta
2006-08-01
A stochastic averaging procedure for obtaining the probability density function (PDF) of the response for a strongly nonlinear single-degree-of-freedom system, subjected to both multiplicative and additive random excitations is presented. The procedure uses random Van Der Pol transformation, Ito’s equation of limiting diffusion process and stochastic averaging technique as outlined by Zhu and others. However, the equations are rederived in generalized form and arranged in such a way that the procedure lends itself to a numerical computational scheme using FFT. The main objective of the modiﬁcation is to consider highly irregular nonlinear functions which cannot be integrated in closed form and also to solve problems where analytical expressions for probability density function cannot be obtained. The procedure is applied to obtain the PDF of the response of Dufﬁng oscillator subjected to additive and multiplicative random excitations represented by rational power spectral density functions (PSDFs). The results are veriﬁed by digital simulation. It is shown that the procedure provides results which compare very well with those obtained from simulation analysis not only for wide-band excitations but also for very narrow-band excitations, which are weak (when normalized with respect to mass of the system).
Self-Assembly of Nanocomposite Nonlinear Optical Materials for Photonic Devices Project
National Aeronautics and Space Administration — This program targets the development of new highly anisotropic nonlinear optical nanocomposite materials for NASA and non-NASA applications in advanced photonic and...
Erofeev, V. I.; Leontieva, A. V.; Malkhanov, A. O.
2017-06-01
Within the framework of self consistent dynamic problems, the impact of dislocations and point defects on the spatial localization of nonlinear acoustic waves propagating in materials has been studied.
Spontaneous emission and nonlinear effects in photonic bandgap materials
Fogel, Ishella S.; Bendickson, Jon M.; Tocci, Michael D.; Bloemer, Mark J.; Scalora, Michael; Bowden, Charles M.; Dowling, Jonathan P.
1998-03-01
We summarize and review our theoretical and experimental work on spontaneous emission and nonlinear effects in one-dimensional, photonic bandgap (PBG) structures. We present a new result: a method for calculating the normal-mode solutions - and hence the spontaneous emission of embedded emitters - in an arbitrary, linear, lossless, one-dimensional, PBG structure.
Non-Linear Optical Studies of IR Materials with Infrared Femtosecond Laser
2016-12-15
AFRL-RD-PS- AFRL-RD-PS- TR-2016-0055 TR-2016-0055 NON-LINEAR OPTICAL STUDIES OF IR MATERIALS WITH INFRARED FEMTOSECOND LASER Enam...ANDREAS SCHMITT-SODY, DR-III ERIN PETTYJOHN, DR-III Program Manager Deputy Chief, High Power Electromagnetics Division This...TITLE AND SUBTITLE Non-Linear Optical Studies of IR Materials with Infrared Femtosecond Laser 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9451-14-1
Hybrid Nonlinear Optical Materials for Applications in Power Limiting and Photorefractive Devices
2010-03-01
Final 3. DATES COVERED (From - To) 04/01/2007 to 11/30/2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA9550-07-1-0307 Hybrid Nonlinear Optical Materials for...Hybrid Nonlinear Optical Materials for Applications in Power Limiting and Photorefractive devices Prime Contract: FA95500710307
Microcrack Identification in Cement-Based Materials Using Nonlinear Acoustic Waves
Chen, X. J.; Kim, J.-Y.; Qu, J.; Kurtis, K. E.; Wu, S. C.; Jacobs, L. J.
2007-03-01
This paper presents results from tests that use nonlinear acoustic waves to distinguish microcracks in cement-based materials. Portland cement mortar samples prepared with alkali-reactive aggregate were exposed to an aggressive environment to induce cracking were compared to control samples, of the same composition, but which were not exposed to aggressive conditions. Two nonlinear ultrasonic methods were used to characterize the samples, with the aim of identifying the time and extent of microcracking; these techniques were a nonlinear acoustical modulation (NAM) method and a harmonic amplitude relation (HAR) method. These nonlinear acoustic results show that both methods can distinguish damaged samples from undamaged ones, demonstrating the potential of nonlinear acoustic waves to provide a quantitative evaluation of the deterioration of cement-based materials.
Pyrene-Based Small Molecular Nonlinear Optical Materials Modified by ``Click-Reaction''
Liang, Pengxia; Li, Zhengqiang; Mi, Yongsheng; Yang, Zhou; Wang, Dong; Cao, Hui; He, Wanli; Yang, Huai
2015-08-01
Two pyrene derivatives were successfully synthesized via an efficient copper(I)-catalyzed azide alkyne 1,3-dipolar cycloaddition. The photophysical and electrochemical properties were characterized using ultraviolet-visible absorption spectra, fluorescence spectra, cyclic voltammograms and density functional theory modulations. These results showed that the symmetry structure of these derivatives formed an electron-delocalized organic system, which have larger effects in achieving a third-order nonlinear optical (NLO) response. The third-order nonlinear properties including the nonlinear absorption and the nonlinear susceptibilities investigated by Z-scan technique indicate that the title compounds can serve as a promising candidate for third-order NLO applications.
Martin, D A
2015-01-01
We study evolution equations and stationary homogeneous solutions for electric and magnetic field amplitudes in a ring cavity with flat mirrors. The cavity is filled with a positive or negative refraction index material with third order Kerr-like electric nonlinearities and also magnetic nonlinearities, which can be relevant in metamaterials. We consider the degree of freedom of polarization in the incident beam. It is found that considering a magnetic nonlinearity increases the variety of possible qualitatively different solutions. A classification of solutions is proposed in terms of the number of bifurcations. The analysis can be useful for the implementation of optical switching or memory storage using ring cavities with non linear materials.
Nonlinear dynamic response of an electrically actuated imperfect microbeam resonator
Ruzziconi, Laura
2013-08-04
We present a study of the dynamic behavior of a MEMS device constituted of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. The nonlinear behavior is highlighted, which includes ranges of multistability, where the non-resonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is capable also to capture the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. Copyright © 2013 by ASME.
Nonlinear Magnetic Phenomena in Highly Polarized Target Materials
Kiselev, Yu F
2007-01-01
The report introduces and surveys nonlinear magnetic phenomena which have been observed at high nuclear polarizations in polarized targets of the SMC and of the COMPASS collaborations at CERN. Some of these phenomena, namely the frequency modulation eect and the distortion of the NMR line shape, promote the development of the polarized target technique. Others, as the spin-spin cross-relaxation between spin subsystems can be used for the development of quantum statistical physics. New findings bear on an electromagnetic noise and the spectrally resolved radiation from LiD with negatively polarized nuclei detected by low temperature bolometers. These nonlinear phenomena need to be taken into account for achieving the ultimate polarizations.
Nonlinear optical response of some Graphene oxide and Graphene fluoride derivatives
Liaros, Nikolaos; Orfanos, Ioannis; Papadakis, Ioannis; Couris, Stelios
2016-12-01
The nonlinear optical properties of two graphene derivatives, graphene oxide and graphene fluoride, are investigated by means of the Z-scan technique employing 35 ps and 4 ns, visible (532 nm) laser excitation. Both derivatives were found to exhibit significant third-order nonlinear optical response at both excitation regimes, with the nonlinear absorption being relatively stronger and concealing the presence of nonlinear refraction under ns excitation, while ps excitation reveals the presence of both nonlinear absorption and refraction. Both nonlinear properties are of great interest for several photonics, opto-fluidics, opto-electronics and nanotechnology applications.
Understanding nonlinear responses of the climate system to orbital forcing
Rial, J. A.; Anaclerio, C. A.
2000-12-01
We have recently introduced the working hypothesis that frequency modulation (FM) of the orbital eccentricity forcing may be one important source of the nonlinearities observed in δ 18O time series from deep-sea sediment cores (J.H. Rial (1999a) Pacemaking the lce Ages by frequency modulation of Earth's orbital eccentricity. Science 285, 564-568). In this paper we shall discuss further evidence of frequency modulation found in data from the Vostok ice core. Analyses of the 430,000-year long, orbitally untuned, time series of CO 2, deuterium, aerosol and methane, suggest frequency modulation of the 41 kyr (0.0244 kyr -1) obliquity forcing by the 413 kyr-eccentricity signal and its harmonics. Conventional and higher-order spectral analyses show that two distinct spectral peaks at ˜29 kyr (0.034 kyr -1) and ˜69 kyr (0.014 kyr -1) and other, smaller peaks surrounding the 41 kyr obliquity peak are harmonically (nonlinearly) related and likely to be FM-generated sidebands of the obliquity signal. All peaks can be closely matched by the spectrum of an appropriately built theoretical FM signal. A preliminary model, based on the classic logistic growth delay differential equation, reproduces the longer period FM effect and the familiar multiply peaked spectra of the eccentricity band. Since the FM effect appears to be a common feature in climate response, finding out its cause may help understand climate dynamics and global climate change.
[Pulp response to restorative materials].
Advokaat, J G
1990-03-01
Restorations may affect the pulp negatively, rather due to microleakage than to toxic properties of the materials used. Hyperalgesia occurs more frequently after restoration with composite resins than with amalgam, though the resins in contrast to amalgam may be bonded to the enamel margins. A number of recommendations are presented in order to minimize the marginal gap between cavity walls and amalgam and to prevent marginal fracture.
Optical and Nonlinear Optical Response of Light Sensor Thin Films
Directory of Open Access Journals (Sweden)
S. Z. Weisz
2005-04-01
Full Text Available For potential ultrafast optical sensor application, both VO2 thin films andnanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates weresuccessfully prepared using pulsed laser deposition (PLD and RF co-sputteringtechniques. In photoluminescence (PL measurement c-Si/SiO2 film containsnanoparticles of crystal Si exhibits strong red emission with the band maximum rangingfrom 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremelyintense and ultrafast nonlinear optical (NLO response. The recorded holography fromall these thin films in a degenerate-four-wave-mixing configuration shows extremelylarge third-order response. For VO2 thin films, an optically induced semiconductor-tometalphase transition (PT immediately occurred upon laser excitation. it accompanied.It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created bylaser excitation in conduction band of the c-Si nanoparticles. It was verified byintroducing Eu3+ which is often used as a probe sensing the environment variations. Itturns out that the entire excited state dynamical process associated with the creation,movement and trapping of the charge carriers has a characteristic 500 ps duration.
Neutrophil Responses to Sterile Implant Materials
Siddharth Jhunjhunwala; Stephanie Aresta-DaSilva; Katherine Tang; David Alvarez; Webber, Matthew J.; Tang, Benjamin C.; Lavin, Danya M.; Omid Veiseh; Doloff, Joshua C; Suman Bose; Arturo Vegas; Minglin Ma; Gaurav Sahay; Alan Chiu; Andrew Bader
2015-01-01
In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcap...
Nonlinear Stochastic Analysis of Subharmonic Response of a Shallow Cable
DEFF Research Database (Denmark)
Zhou, Q.; Stærdahl, Jesper Winther; Nielsen, Søren R.K.
2007-01-01
The paper deals with the subharmonic response of a shallow cable due to time variations of the chord length of the equilibrium suspension, caused by time varying support point motions. Initially, the capability of a simple nonlinear two-degree-of-freedom model for the prediction of chaotic...... time-consuming for the finite difference model, most of the results are next based on the reduced model. Under harmonical varying support point motions the stable subharmonic motion consists of a harmonically varying component in the equilibrium plane and a large subharmonic out-of-plane component......, producing a trajectory at the mid-point of shape as an infinity sign. However, when the harmonical variation of the chordwise elongation is replaced by a narrow-banded Gaussian excitation with the same standard deviation and a centre frequency equal to the circular frequency of the harmonic excitation...
Confidence bounds for nonlinear dose-response relationships
DEFF Research Database (Denmark)
Baayen, C; Hougaard, P
2015-01-01
. It is well known that Wald confidence intervals are based on linear approximations and are often unsatisfactory in nonlinear models. Apart from incorrect coverage rates, they can be unreasonable in the sense that the lower confidence limit of the difference to placebo can be negative, even when an overall...... test shows a significant positive effect. Bootstrap confidence intervals solve many of the problems of the Wald confidence intervals but are computationally intensive and prone to undercoverage for small sample sizes. In this work, we propose a profile likelihood approach to compute confidence...... intervals for the dose-response curve. These confidence bounds have better coverage than Wald intervals and are more precise and generally faster than bootstrap methods. Moreover, if monotonicity is assumed, the profile likelihood approach takes this automatically into account. The approach is illustrated...
Crystal growth in fluid flow: Nonlinear response effects
Peng, H. L.; Herlach, D. M.; Voigtmann, Th.
2017-08-01
We investigate crystal-growth kinetics in the presence of strong shear flow in the liquid, using molecular-dynamics simulations of a binary-alloy model. Close to the equilibrium melting point, shear flow always suppresses the growth of the crystal-liquid interface. For lower temperatures, we find that the growth velocity of the crystal depends nonmonotonically on the shear rate. Slow enough flow enhances the crystal growth, due to an increased particle mobility in the liquid. Stronger flow causes a growth regime that is nearly temperature-independent, in striking contrast to what one expects from the thermodynamic and equilibrium kinetic properties of the system, which both depend strongly on temperature. We rationalize these effects of flow on crystal growth as resulting from the nonlinear response of the fluid to strong shearing forces.
Molecular design of porphyrin-based nonlinear optical materials.
Keinan, Shahar; Therien, Michael J; Beratan, David N; Yang, Weitao
2008-11-27
Nonlinear optical chromophores containing (porphyrinato)Zn(II), proquinoid, and (terpyridyl)metal(II) building blocks were optimized in a library containing approximately 10(6) structures using the linear combination of atomic potentials (LCAP) methodology. We report here the library design and molecular property optimizations. Two basic structural types of large beta(0) chromophores were examined: linear and T-shaped motifs. These T-shaped geometries suggest a promising NLO chromophoric architecture for experimental investigation and further support the value of performing LCAP searches in large chemical spaces.
Large nonlocal nonlinear optical response of castor oil
Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.
2009-09-01
The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.
Shock-loading response of advanced materials
Energy Technology Data Exchange (ETDEWEB)
Gray, G.T. III
1993-08-01
Advanced materials, such as composites (metal, ceramic, or polymer-matrix), intermetallics, foams (metallic or polymeric-based), laminated materials, and nanostructured materials are receiving increasing attention because their properties can be custom tailored specific applications. The high-rate/impact response of advanced materials is relevant to a broad range of service environments such as the crashworthiness of civilian/military vehicles, foreign-object-damage in aerospace, and light-weight armor. Increased utilization of these material classes under dynamic loading conditions requires an understanding of the relationship between high-rate/shock-wave response as a function of microstructure if we are to develop models to predict material behavior. In this paper the issues relevant to defect generation, storage, and the underlying physical basis needed in predictive models for several advanced materials will be reviewed.
Creep characterization of gels and nonlinear viscoelastic material model
Ishikawa, Kiyotaka; Fujikawa, Masaki; Makabe, Chobin; Tanaka, Kou
2016-07-01
In this paper, we examine gel creep behavior and develop a material model for useful and simple numerical simulation of this behavior. This study has three stages and aims: (1) gel creep behavior is examined; (2) the material model is determined and the material constants are identified; and (3) the versatility of the material model and the constants are evaluated. The creep behavior is found to be independent of the initial stress level in the present experiment. Thus, the viscoelastic model proposed by Simo is selected, and its material constants are identified using the results of creep tests. Moreover, from the results of numerical calculations and experiments, it is found that the chosen material model has good reproducibility, predictive performance and high versatility.
Nonlinear Allometric Equation for Crop Response to Soil Salinity
Directory of Open Access Journals (Sweden)
E. Misle
2015-06-01
Full Text Available Crop response to soil salinity has been extensively studied, from empirical works to modelling approach, being described by different equations, first as a piecewise linear model. The equation employed can differ with actual response, causing miscalculation in practical situations, particularly at the higher extremes of the curve. The aim of this work is to propose a new equation, which allows determining the full response to salinity of plant species and to provide a verification using different experimental data sets. A new nonlinear equation is exposed supported by the allometric approach, in which the allometric exponent is salinity-dependent and decreases with the increase in relative salinity. A conversion procedure of parameters of the threshold-slope model is presented; also, a simple procedure for estimating the maximum salinity (zero-yield point when data sets are incomplete is exposed. The equation was tested in a wide range of experimental situations, using data sets from published works, as well as new measurements on seed germination. The statistical indicators of quality (R2, absolute sum of squares and standard deviation of residuals showed that the equation accurately fits the tested empirical results. The new equation for determining crop response to soil salinity is able to follow the response curve of any crop with remarkable accuracy and flexibility. Remarkable characteristics are: a maximum at minimum salinity, a maximum salinity point can be found (zero-yield depending on the data sets, and a meaningful inflection point, as well as the two points at which the slope of the curve equals unity, can be found.
Ultrafast response of phase-change memory materials
Lindenberg, Aaron
2015-03-01
We describe recent experiments probing the first steps in the amorphous-to-crystalline transition that underlies the behavior of phase-change materials, examining both electric-field-driven and optically-driven responses in GeSbTe and AgInSbTe alloys. First measurements using femtosecond x-ray pulses at the Linac Coherent Light Source will be described which enable direct snapshots of these transitions and associated intermediate states. We will also describe studies using single-cycle terahertz pulses as an all-optical means of biasing phase-change materials on femtosecond time-scales in order to examine the threshold-switching response on microscopically relevant time-scales. These studies indicate nonlinear scaling with the applied electric field and field-induced crystallization as evidenced by ultrafast optical reflectivity and conductivity measurements, from which a mechanistic understanding of these phase transitions can be obtained.
Stable Second-Order Nonlinear Optical Materials Based on Interpenetrating Polymer Networks
1994-03-17
0IJUN93 to 31MAY94 4. 1I1Lk ANDLSUBI1ILIE D. ?-UNUING NUMBERS •’• Stable Second-Order Nonlinear Optical Materials Based On C:N00014-90-J-1148...release and sale; its distribution is unlimited. I Stable Second-Order Nonlinear Optical Materials Based On Interpenetrating Polymer Networks S... Optical Materials Based On Interpenetrating Polymer Networks by S. Marturunkakul, J. I. Chen, L. Li, X. L. Jiang, R. J. Jeng, S. K. Sengupta, J. Kumar
{open_quotes}Quadrupoled{close_quotes} materials for second-order nonlinear optics
Energy Technology Data Exchange (ETDEWEB)
Hubbard, S.F.; Petschek, R.G.; Singer, K.D. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics] [and others
1997-10-01
We describe a new approach to second-order nonlinear optical materials, namely quadrupoling. This approach is valid in the regime of Kleinman (full permutation) symmetry breaking, and thus requires a two- or three dimensional microscopic nonlinearity at wavelengths away from material resonances. This {open_quotes}quadrupolar{close_quotes} nonlinearity arises from the second rank pseudotensor of the rotationally invariant representation of the second-order nonlinear optical tensor. We have experimentally investigated candidate molecules comprised of chiral camphorquinone derivatives by measuring the scalar invariant associated with the rank two pseudotensor using hyper-Rayleigh scattering. We have found sizable scalar figures of merit for several compounds using light for which the second harmonic wavelengths are greater than 100 nm longer than the absorption peak location. At these wavelengths, the quadrupolar scalar is as large as the polar (EFISH) scalar of p-nitroaniline. Prospects for applications are discussed.
Blom, F.C.; Driessen, A.; Hoekstra, Hugo; van Schoot, J.B.P.; van Schoot, Jan B.P.; Popma, T.J.A.
1999-01-01
In the long trajectory from the synthesis of organic nonlinear optical materials to the completed all-optical device it is highly desirable to be able to concentrate already in an early state on only a few promising materials. Third harmonic generation (THG) is a very convenient method as it allows
Blom, Freek C.; Driessen, Alfred; Hoekstra, Hugo J.W.M.; Schoot, van Jan B.P.; Popma, Th.J.A.
1999-01-01
In the long trajectory from the synthesis of organic nonlinear optical materials to the completed all-optical device it is highly desirable to be able to concentrate already in an early state on only a few promising materials. Third harmonic generation (THG) is a very convenient method as it allows
An exact approach to intensity analysis of optical pulses in nonlinear meta-materials
Nanda, Lipsa
2016-05-01
The nonlinear pulse propagation has been analytically studied by solving the nonlinear Schrödinger's equation (NLSE) in bulk media exhibiting frequency dependent dielectric permittivity(ɛ) and magnetic permeability(μ). The exact solutions obtained are shown to be of trigonometric & localized types. The analytical and simulation based method has been further extended to investigate the intensity distribution in a nonlinear meta-material which behaves as a negative refractive medium (NRM), where both ɛ and μ are shown to be dispersive and negative in nature.
Simulations of the Ocean Response to a Hurricane: Nonlinear Processes
Zedler, Sarah E.
2009-10-01
Superinertial internal waves generated by a tropical cyclone can propagate vertically and laterally away from their local generation site and break, contributing to turbulent vertical mixing in the deep ocean and maintenance of the stratification of the main thermocline. In this paper, the results of a modeling study are reported to investigate the mechanism by which superinertial fluctuations are generated in the deep ocean. The general properties of the superinertial wave wake were also characterized as a function of storm speed and central latitude. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model (OGCM) was used to simulate the open ocean response to realistic westward-tracking hurricane-type surface wind stress and heat and net freshwater buoyancy forcing for regions representative of midlatitudes in the Atlantic, the Caribbean, and low latitudes in the eastern Pacific. The model had high horizontal [Δ(x, y) = 1/6°] and vertical (Δz = 5 m in top 100 m) resolution and employed a parameterization for vertical mixing induced by shear instability. In the horizontal momentum equation, the relative size of the nonlinear advection terms, which had a dominant frequency near twice the inertial, was large only in the upper 200 m of water. Below 200 m, the linear momentum equations obeyed a linear balance to 2%. Fluctuations at nearly twice the inertial frequency (2f) were prevalent throughout the depth of the water column, indicating that these nonlinear advection terms in the upper 200 m forced a linear mode below at nearly twice the inertial frequency via vorticity conservation. Maximum variance at 2f in horizontal velocity occurred on the south side of the track. This was in response to vertical advection of northward momentum, which in the north momentum equation is an oscillatory positive definite term that constituted a net force to the south at a frequency near 2f. The ratio of this term to the Coriolis force was larger on the
Tailoring the nonlinear response of MEMS resonators using shape optimization
DEFF Research Database (Denmark)
Li, Lily L.; Polunin, Pavel M.; Dou, Suguang
2017-01-01
We demonstrate systematic control of mechanical nonlinearities in micro-electromechanical (MEMS) resonators using shape optimization methods. This approach generates beams with non-uniform profiles, which have nonlinearities and frequencies that differ from uniform beams. A set of bridge-type mic......We demonstrate systematic control of mechanical nonlinearities in micro-electromechanical (MEMS) resonators using shape optimization methods. This approach generates beams with non-uniform profiles, which have nonlinearities and frequencies that differ from uniform beams. A set of bridge...
Directory of Open Access Journals (Sweden)
Bonić Zoran
2010-01-01
Full Text Available The paper presents application of nonlinear material models in the software package Ansys. The development of the model theory is presented in the paper of the mathematical modeling of material nonlinear problems in structural analysis (part I - theoretical foundations, and here is described incremental-iterative procedure for solving problems of nonlinear material used by this package and an example of modeling of spread footing by using Bilinear-kinematics and Drucker-Prager mode was given. A comparative analysis of the results obtained by these modeling and experimental research of the author was made. Occurrence of the load level that corresponds to plastic deformation was noted, development of deformations with increasing load, as well as the distribution of dilatation in the footing was observed. Comparison of calculated and measured values of reinforcement dilatation shows their very good agreement.
Material and Geometric Nonlinear Analysis of Functionally Graded Plate-Shell Type Structures
Moita, J. S.; Araújo, A. L.; Mota Soares, C. M.; Mota Soares, C. A.; Herskovits, J.
2016-08-01
A nonlinear formulation for general Functionally Graded Material plate-shell type structures is presented. The formulation accounts for geometric and material nonlinear behaviour of these structures. Using the Newton-Raphson incremental-iterative method, the incremental equilibrium path is obtained, and in case of snap-through occurrence the automatic arc-length method is used. This simple and fast element model is a non-conforming triangular flat plate/shell element with 24 degrees of freedom for the generalized displacements. It is benchmarked in the solution of some illustrative plate- shell examples and the results are presented and discussed with numerical alternative models. Benchmark tests with material and geometrically nonlinear behaviour are also proposed.
Neutrophil Responses to Sterile Implant Materials.
Directory of Open Access Journals (Sweden)
Siddharth Jhunjhunwala
Full Text Available In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30-500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices.
Gong, Jiao-Li; Liu, Jin-Song; Chu, Zheng; Yang, Zhen-Gang; Wang, Ke-Jia; Yao, Jian-Quan
2016-10-01
The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide (InSb) and indium arsenide (InAs) in an intense terahertz (THz) field are studied by using the method of ensemble Monte Carlo (EMC) at room temperature. The results show that the radiations of two materials generate about 2-THz periodic regular spectrum distributions under a high field of 100 kV/cm at 1-THz center frequency. The center frequencies are enhanced to about 7 THz in InSb, and only 5 THz in InAs, respectively. The electron valley occupancy and the percentage of new electrons excited by impact ionization are also calculated. We find that the band nonparabolicity and impact ionization promote the generation of nonlinear high frequency radiation, while intervalley scattering has the opposite effect. Moreover, the impact ionization dominates in InSb, while impact ionization and intervalley scattering work together in InAs. These characteristics have potential applications in up-convension of THz wave and THz nonlinear frequency multiplication field. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574105 and 61177095), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2012FFA074 and 2013BAA002), the Wuhan Municipal Applied Basic Research Project, China (Grant No. 20140101010009), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2013KXYQ004 and 2014ZZGH021).
Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.
2000-01-01
Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.
Khan, Kamran
2012-11-09
We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.
2015-03-01
AFRL-RY-WP-TP-2015-0068 GROWTH AND STUDY OF NONLINEAR OPTICAL MATERIALS FOR FREQUENCY CONVERSION DEVICES WITH APPLICATIONS IN DEFENCE AND...2015 Technical Paper 1 August 2013 – 1 August 2014 4. TITLE AND SUBTITLE GROWTH AND STUDY OF NONLINEAR OPTICAL MATERIALS FOR FREQUENCY CONVERSION...SUBJECT TERMS hydride vapor phase epitaxy, nonlinear optical materials , quasi-phase matching 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Nonlinear response of superconductors to alternating fields and currents
Energy Technology Data Exchange (ETDEWEB)
McDonald, Jason [Iowa State Univ., Ames, IA (United States)
1997-10-08
This report discusses the following topics on superconductivity: nonlinearities in hard superconductors such as surface impedance of a type II superconductimg half space and harmonic generation and intermodulation due to alternating transport currents; and nonlinearities in superconducting weak links such as harmonic generation by a long Josephson Junction in a superconducting slab.
On the Prediction of the Nonlinear Absorption in Reverse Saturable Absorbing Materials
Pachter, Ruth; Nguyen, Kiet A.; Day, Paul N.; Kennel, Joshua C.
2001-03-01
In our continuing efforts to design materials that exhibit reverse saturable absorption (RSA), we systematically examine the ability of the time-dependent density functional theory (TDDFT) method using local, nonlocal, and hybrid functionals, to predict the experimental nonlinear absorption for a variety of organic and organometallic molecular systems, including a number of free-base porphyrins, phthalocyanine and their metal complexes. The ground and triplet-triplet excitation energies, as well as the oscillator strengths are calculated, indicating good agreement with experiment. We conclude that the TDDFT approach with a hybrid functional provides good estimates for the nonlinear absorption of RSA materials.
Wave propagation in parallel-plate waveguides filled with nonlinear left-handed material
Institute of Scientific and Technical Information of China (English)
Burhan Zamir; Rashid Ali
2011-01-01
A theoretical investigation of field components for transverse electric mode in the parallel-plate waveguides has been studied. In this analysis two different types of waveguide structures have been discussed, i.e., (a) normal good/perfect conducting parallel-plate waveguide filled with nonlinear left-handed material and (b) high-temperature-superconducting parallel-plate waveguide filled with nonlinear left-handed material. The dispersion relations of transverse electric mode have also been discussed for these two types of waveguide structures.
Nonlinear dynamic response of beam and its application in nanomechanical resonator
Institute of Scientific and Technical Information of China (English)
Yin Zhang; Yun Liu; Kevin D. Murphy
2012-01-01
Nonlinear dynamic response of nanomechanical resonator is of very important characteristics in its application.Two categories of the tension-dominant and curvaturedominant nonlinearities are analyzed.The dynamic nonlinearity of four beam structures of nanomechanical resonator is quantitatively studied via a dimensional analysis approach.The dimensional analysis shows that for the nanomechanical resonator of tension-dominant nonlinearity,its dynamic nonlinearity decreases monotonically with increasing axial loading and increases monotonically with the increasing aspect ratio of length to thickness; the dynamic nonlinearity can only result in the hardening effects.However,for the nanomechanical resonator of the curvature-dominant nonlinearity,its dynamic nonlinearity is only dependent on axial loading.Compared with the tension-dominant nonlinearity,the curvature-dominant nonlinearity increases monotonically with increasing axial loading; its dynamic nonlinearity can result in both hardening and softening effects.The analysis on the dynamic nonlinearity can be very helpful to the tuning application of the nanomechanical resonator.
Modeling thermal/chemical/mechanical response of energetic materials
Energy Technology Data Exchange (ETDEWEB)
Baer, M.R.; Hobbs, M.L.; Gross, R.J. [and others
1995-07-01
An overview of modeling at Sandia National Laboratories is presented which describes coupled thermal, chemical and mechanical response of energetic materials. This modeling addresses cookoff scenarios for safety assessment studies in systems containing energetic materials. Foundation work is discussed which establishes a method for incorporating chemistry and mechanics into multidimensional analysis. Finite element analysis offers the capabilities to simultaneously resolve reactive heat transfer and structural mechanics in complex geometries. Nonlinear conduction heat transfer, with multiple step finite-rate chemistry, is resolved using a thermal finite element code. Rate equations are solved element-by-element using a modified matrix-free stiff solver This finite element software was developed for the simulation of systems requiring large numbers of finite elements. An iterative implicit scheme, based on the conjugate gradient method, is used and a hemi-cube algorithm is employed for the determination of view factors in surface-to-surface radiation transfer The critical link between the reactive heat transfer and mechanics is the introduction of an appropriate constitutive material model providing a stress-strain relationship for quasi-static mechanics analysis. This model is formally derived from bubble nucleation theory, and parameter variations of critical model parameters indicate that a small degree of decomposition leads to significant mechanical response. Coupled thermal/chemical/mechanical analysis is presented which simulates experiments designed to probe cookoff thermal-mechanical response of energetic materials.
Nonlinear Simulation of Plasma Response to the NSTX Error Field
Breslau, J. A.; Park, J. K.; Boozer, A. H.; Park, W.
2008-11-01
In order to better understand the effects of the time-varying error field in NSTX on rotation braking, which impedes RWM stabilization, we model the plasma response to an applied low-n external field perturbation using the resistive MHD model in the M3D code. As an initial benchmark, we apply an m=2, n=1 perturbation to the flux at the boundary of a non-rotating model equilibrium and compare the resulting steady-state island sizes with those predicted by the ideal linear code IPEC. For sufficiently small perturbations, the codes agree; for larger perturbations, the nonlinear correction yields an upper limit on the island width beyond which stochasticity sets in. We also present results of scaling studies showing the effects of finite resistivity on island size in NSTX, and of time-dependent studies of the interaction between these islands and plasma rotation. The M3D-C1 code is also being evaluated as a tool for this analysis; first results will be shown. J.E. Menard, et al., Nucl. Fus. 47, S645 (2007). W. Park, et al., Phys. Plasmas 6, 1796 (1999). J.K. Park, et al., Phys. Plasmas 14, 052110 (2007). S.C. Jardin, et al., J. Comp. Phys. 226, 2146 (2007).
Chortis, Dimitris I
2013-01-01
This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and...
Comment on "Nonlinear refraction measurements of materials using the moiré deflectometry"
Rashidian Vaziri, M. R.
2015-12-01
In an influential paper Jamshidi-Ghaleh and Mansour [1] (Opt. Commun. 234 (2004) 419), have reported on a new method for measuring the nonlinear refractive index of materials using the rotational moiré deflectometry technique. In the cited work, the authors apply the ray matrix theory for finding the beam deflection angle on the plane of the first grating in the used geometry. To this end, using the parabolic approximation, the exponential term in the beam irradiance is expanded and retaining the first two resultant terms, the nonlinear sample is treated as a thin lens with a position dependent focal length. In this comment, the effective focal length of the nonlinear sample has been rederived in detail using the Gaussian beam theory and it is shown that it must contain a correction factor. The relative error introduced by ignoring this factor can be as large as 73.5-84.4% in determining the nonlinear refractive index of thin samples.
Third-order nonlinear optical response of push-pull azobenzene polymers
Papagiannouli, I.; Iliopoulos, K.; Gindre, D.; Sahraoui, B.; Krupka, O.; Smokal, V.; Kolendo, A.; Couris, S.
2012-12-01
The nonlinear optical response of a series of azo-containing side-chain polymers is investigated using Z-scan technique, employing 35 ps and 4 ns laser pulses, at 532 nm. The systems were found to exhibit strong nonlinear optical response, dominated by nonlinear refraction. In all cases, the nonlinear absorption and refraction have been determined and are compared with those of disperse red 1 considered as reference. The corresponding third-order susceptibilities χ(3) were determined to be as large as 10-7 and 10-5 esu under ps and ns laser excitation, respectively. Finally, the results are discussed and compared with other reported data.
Zhu, F. H.; Fu, Y. M.
2008-12-01
By considering the effect of interfacial damage and using the variation principle, three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived based on the general six-degrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite difference method, and the results are validated by comparison with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.
Fatigue Life Prediction of Metallic Materials Based on the Combined Nonlinear Ultrasonic Parameter
Zhang, Yuhua; Li, Xinxin; Wu, Zhenyong; Huang, Zhenfeng; Mao, Hanling
2017-07-01
The fatigue life prediction of metallic materials is always a tough problem that needs to be solved in the mechanical engineering field because it is very important for the secure service of mechanical components. In this paper, a combined nonlinear ultrasonic parameter based on the collinear wave mixing technique is applied for fatigue life prediction of a metallic material. Sweep experiments are first conducted to explore the influence of driving frequency on the interaction of two driving signals and the fatigue damage of specimens, and the amplitudes of sidebands at the difference frequency and sum frequency are tracked when the driving frequency changes. Then, collinear wave mixing tests are carried out on a pair of cylindrically notched specimens with different fatigue damage to explore the relationship between the fatigue damage and the relative nonlinear parameters. The experimental results show when the fatigue degree is below 65% the relative nonlinear parameter increases quickly, and the growth rate is approximately 130%. If the fatigue degree is above 65%, the increase in the relative nonlinear parameter is slow, which has a close relationship with the microstructure evolution of specimens. A combined nonlinear ultrasonic parameter is proposed to highlight the relationship of the relative nonlinear parameter and fatigue degree of specimens; the fatigue life prediction model is built based on the relationship, and the prediction error is below 3%, which is below the prediction error based on the relative nonlinear parameters at the difference and sum frequencies. Therefore, the combined nonlinear ultrasonic parameter using the collinear wave mixing method can effectively estimate the fatigue degree of specimens, which provides a fast and convenient method for fatigue life prediction.
Fatigue Life Prediction of Metallic Materials Based on the Combined Nonlinear Ultrasonic Parameter
Zhang, Yuhua; Li, Xinxin; Wu, Zhenyong; Huang, Zhenfeng; Mao, Hanling
2017-08-01
The fatigue life prediction of metallic materials is always a tough problem that needs to be solved in the mechanical engineering field because it is very important for the secure service of mechanical components. In this paper, a combined nonlinear ultrasonic parameter based on the collinear wave mixing technique is applied for fatigue life prediction of a metallic material. Sweep experiments are first conducted to explore the influence of driving frequency on the interaction of two driving signals and the fatigue damage of specimens, and the amplitudes of sidebands at the difference frequency and sum frequency are tracked when the driving frequency changes. Then, collinear wave mixing tests are carried out on a pair of cylindrically notched specimens with different fatigue damage to explore the relationship between the fatigue damage and the relative nonlinear parameters. The experimental results show when the fatigue degree is below 65% the relative nonlinear parameter increases quickly, and the growth rate is approximately 130%. If the fatigue degree is above 65%, the increase in the relative nonlinear parameter is slow, which has a close relationship with the microstructure evolution of specimens. A combined nonlinear ultrasonic parameter is proposed to highlight the relationship of the relative nonlinear parameter and fatigue degree of specimens; the fatigue life prediction model is built based on the relationship, and the prediction error is below 3%, which is below the prediction error based on the relative nonlinear parameters at the difference and sum frequencies. Therefore, the combined nonlinear ultrasonic parameter using the collinear wave mixing method can effectively estimate the fatigue degree of specimens, which provides a fast and convenient method for fatigue life prediction.
Mixed-Metal Carbonate Fluorides as Deep-Ultraviolet Nonlinear Optical Materials.
Tran, T Thao; Young, Joshua; Rondinelli, James M; Halasyamani, P Shiv
2017-01-25
Noncentrosymmetric mixed-metal carbonate fluorides are promising materials for deep-ultraviolet (DUV) nonlinear optical (NLO) applications. We report on the synthesis, characterization, structure-property relationships, and electronic structure calculations on two new DUV NLO materials: KMgCO3F and Cs9Mg6(CO3)8F5. Both materials are noncentrosymmetric (NCS). KMgCO3F crystallizes in the achiral and nonpolar NCS space group P6̅2m, whereas Cs9Mg6(CO3)8F5 is found in the polar space group Pmn21. The compounds have three-dimensional structures built up from corner-shared magnesium oxyfluoride and magnesium oxide octahedra. KMgCO3F (Cs9Mg6(CO3)8F5) exhibits second-order harmonic generation (SHG) at both 1064 and 532 nm incident radiation with efficiencies of 120 (20) × α-SiO2 and 0.33 (0.10) × β-BaB2O4, respectively. In addition, short absorption edges of <200 and 208 nm for KMgCO3F and Cs9Mg6(CO3)8F5, respectively, are observed. We compute the electron localization function and density of states of these two compounds using first-principles density functional theory, and show that the different NLO responses arise from differences in the denticity and alignment of the anionic carbonate units. Finally, an examination of the known SHG active AMCO3F (A = alkali metal, M = alkaline earth metal, Zn, Cd, or Pb) materials indicates that, on average, smaller A cations and larger M cations result in increased SHG efficiencies.
Khan, Kamran
2012-11-10
We formulate a variational constitutive framework that accounts for nonlinear viscous behavior of electrically sensitive polymers, specifically Dielectric Elastomers (DEs), under large deformation. DEs are highly viscoelastic and their actuation response is greatly affected in dynamic applications. We used the generalized Maxwell model to represent the viscoelastic response of DE allowing the material to relax with multiple mechanisms. The constitutive updates at each load increment are obtained by minimizing an objective function formulated using the free energy and electrostatic energy of the elastomer, in addition to the viscous dissipation potential of the dashpots in each Maxwell branch. The model is then used to predict the electromechanical instability (EMI) of DE. The electro-elastic response of the DE is verified with available analytical solutions in the literature and then the material parameters are calibrated using experimental data. The model is integrated with finite element software to perform a variety of simulations on different types of electrically driven actuators under various electromechanical loadings. The electromechanical response of the DE and the critical conditions at which EMI occurs were found to be greatly affected by the viscoelasticity. Our model predicts that under a dead load EMI can be avoided if the DE operates at a high voltage rate. Subjected to constant, ramp and cyclic voltage, our model qualitatively predicts responses similar to the ones obtained from the analytical solutions and experimental data available in the literature. © 2012 Springer-Verlag Berlin Heidelberg.
Harmonic response of a class of finite extensibility nonlinear oscillators
Febbo, M.
2011-06-01
Finite extensibility oscillators are widely used to simulate those systems that cannot be extended to infinity. For example, they are used when modelling the bonds between molecules in a polymer or DNA molecule or when simulating filaments of non-Newtonian liquids. In this paper, the dynamic behavior of a harmonically driven finite extensibility oscillator is presented and studied. To this end, the harmonic balance method is applied to determine the amplitude-frequency and amplitude-phase equations. The distinguishable feature in this case is the bending of the amplitude-frequency curve to the frequency axis, making it asymptotically approach the limit of maximum elongation of the oscillator, which physically represents the impossibility of the system reaching this limit. Also, the stability condition that defines stable and unstable steady-state solutions is derived. The study of the effect of the system parameters on the response reveals that a decreasing value of the damping coefficient or an increasing value of the excitation amplitude leads to the appearance of a multi-valued response and to the existence of a jump phenomenon. In this sense, the critical amplitude of the excitation, which means here a certain value of external excitation that results in the occurrence of jump phenomena, is also derived. Numerical experiments to observe the effects of system parameters on the frequency-amplitude response are performed and compared with analytical calculations. At a low value of the damping coefficient or at a high value of excitation amplitude, the agreement is poor for low frequencies but good for high frequencies. It is demonstrated that the disagreement is caused by the neglect of higher-order harmonics in the analytical formulation. These higher-order harmonics, which appear as distinguishable peaks at certain values in the frequency response curves, are possible to calculate considering not the linearized frequency of the oscillator but its actual
Nonlinear Response of High Arch Dams to Nonuniform Seismic Excitation Considering Joint Effects
Directory of Open Access Journals (Sweden)
Masoomeh Akbari
2013-01-01
Full Text Available Nonuniform excitation due to spatially varying ground motions on nonlinear responses of concrete arch dams is investigated. A high arch dam was selected as numerical example, reservoir was modelled as incompressible material, foundation was assumed as mass-less medium, and all contraction and peripheral joints were modelled considering the ability of opening/closing. This study used Monte-Carlo simulation approach for generating spatially nonuniform ground motion. In this approach, random seismic characteristics due to incoherence and wave passage effects were investigated and finally their effects on structural response were compared with uniform excitation at design base level earthquake. Based on the results, nonuniform input leads to some differences than uniform input. Moreover using nonuniform excitation increase, stresses on dam body.
Ganeev, R. A.
2017-08-01
The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.
Nonlinear optical response in Kronig-Penney type graphene superlattice in terahertz regime
Jiang, Lijuan; Yuan, Rui-Yang; Zhao, Xin; Lv, Jing; Yan, Hui
2015-05-01
The terahertz nonlinear optical response in Kronig-Penney (KP) type graphene superlattice is demonstrated. The single-, triple- and quintuple-frequencies of the fifth-order nonlinear responses are investigated for different frequencies and temperatures with the angle φ along the periodicity of the superlattice toward the external field tuning from 0 to π/2. The results show that the fifth-order nonlinear optical conductance of graphene superlattice is enhanced in the terahertz regime when φ = 0, i.e. an external field is applied along the periodicity of the superlattice. The fifth-order nonlinear optical conductances at φ = 0 for different frequencies and temperatures are calculated. The results show that the nonlinear optical conductance is enhanced in low frequency and low temperature. Our results suggest that KP type graphene superlattices are preferred structures for developing graphene-based nonlinear photonics and optoelectronics devices.
Collapse arrest and soliton stabilization in nonlocal nonlinear media
DEFF Research Database (Denmark)
Bang, Ole; Krolikowski, Wieslaw; Wyller, John
2002-01-01
We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian that nonloc......We investigate the properties of localized waves in cubic nonlinear materials with a symmetric nonlocal nonlinear response of arbitrary shape and degree of nonlocality, described by a general nonlocal nonlinear Schrodinger type equation. We prove rigorously by bounding the Hamiltonian...
Nonlinear response of the quantum Hall system to a strong electromagnetic radiation
Avetissian, H. K.; Mkrtchian, G. F.
2016-12-01
We study nonlinear response of a quantum Hall system in semiconductor-hetero-structures via third harmonic generation process and nonlinear Faraday effect. We demonstrate that Faraday rotation angle and third harmonic radiation intensity have a characteristic Hall plateaus feature. These nonlinear effects remain robust against the significant broadening of Landau levels. We predict realization of an experiment through the observation of the third harmonic signal and Faraday rotation angle, which are within the experimental feasibility.
Thermodynamics and nonlinear mechanics of materials with photoresponsive microstructure
Oates, William S.; Bin, Jonghoon
2014-03-01
The ability to directly convert visible light radiation into useful mechanical work provides many opportunities in the field of smart materials and adaptive structures ranging from biomedical applications to control of heliostat mirrors for solar harvesting. The complexities associated with coupling time-dependent Maxwell's equations with linear momentum and mechanics is discussed by introducing a set of electronic order parameters that govern the coupling between electromagnetic radiation and mechanics of a deformable solid. Numerical examples are given illustrating how this methodology is applied to a special class of liquid crystal polymer networks containing azobenzene. The dynamics associated with light absorption and its effect on deformation of the polymer are solved in three dimensions using finite difference methods and compared to experimental results. Particular emphasis is placed on the effect of polarized light on microstructure evolution and stresses that occur during photoisomerization of the optically active microstructure.
Garbovskiy, Y.; Klimusheva, G.; Mirnaya, T.
2016-09-01
Mesomorphic metal alkanoates is very promising yet overlooked class of nonlinear-optical materials. Metal alkanoates can exhibit a broad variety of condensed states of matter including solid crystals, plastic crystals, lyotropic and thermotropic ionic liquid crystals, liquids, mesomorphic glasses, and Langmuir-Blodgett films. Glass-forming properties of metal alkanoates combined with their use as nano-reactors and anisotropic host open up simple and efficient way to design various photonic nanomaterials. Despite very interesting physics, the experimental data on optical and nonlinearoptical properties of such materials are scarce. The goal of the present paper is to fill the gap by discussing recent advances in the field of photonic materials made of metal alkanoates, organic dyes, and nanoparticles. Optical and nonlinear-optical properties of the following materials are reviewed: (i) mesomorphic glass doped with organic dyes; (ii) smectic glass composed of cobalt alkanoates; (iii) semiconductor nanoparticles embedded in a glassy host; (iv) metal nanoparticles - glass (the cobalt octanoate) nanocomposites.
Directory of Open Access Journals (Sweden)
Alain Mignot
2005-09-01
Full Text Available This paper shows the existence of a solution of the quasi-static unilateral contact problem with nonlocal friction law for nonlinear elastic materials. We set up a variational incremental problem which admits a solution, when the friction coefficient is small enough, and then by passing to the limit with respect to time we obtain a solution.
A new approach of binary addition and subtraction by non-linear material based switching technique
Indian Academy of Sciences (India)
Archan Kumar Das; Partha Partima Das; Sourangshu Mukhopadhyay
2005-02-01
Here, we refer a new proposal of binary addition as well as subtraction in all-optical domain by exploitation of proper non-linear material-based switching technique. In this communication, the authors extend this technique for both adder and subtractor accommodating the spatial input encoding system.
Predicting the dielectric nonlinearity of anisotropic composite materials via tensorial analysis
Energy Technology Data Exchange (ETDEWEB)
Giordano, S [Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Rocchia, W [NEST CNR-INFM, Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)
2006-11-29
The discovery of new materials with peculiar optical properties as well as the prediction of their behaviour given the microstructure is a matter of remarkable interest in the community of material scientists. A complete theory allowing such a prediction is not yet available. We have formulated a theory able to analytically predict the effective second- and third-order nonlinear electrical behaviour of a dilute dispersion of randomly oriented anisotropic nonlinear spheres in a linear host. The inclusion medium has non-vanishing second- and third-order nonlinear hypersusceptibilities. As a result, the overall composite material is nonlinear but isotropic because of the random orientation of the inclusions. We derive the expressions for the equivalent permittivity and for the Kerr equivalent hypersusceptibility in terms of the characteristic electric tensors describing the electrical behaviour of the spheres. The complete averaging over inclusion positions and orientations led to general results in the dilute limit. We show that these results are consistent with earlier theories and that they provide null second-order hypersusceptibility as expected in a macroscopically isotropic medium. This theory generalizes the well-known Maxwell-Garnett formula and it can be easily specialized to any of the 32 crystallographic symmetry classes. Despite this study assuming static conditions, it can be generalized to the sinusoidal regime, pointing at an interesting way to engineer optically active materials with desired behaviour.
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
Making use of disk targets composed of several peculiar materials (foam Au, foam C8H8)and hohlraum with a special structure, experiments have been done at"Xing Guang - II" laser facility,which study the characteristics of hot electrons and therelated nonlinear processes such as StimulatedRaman Scattering (SRS), Two Plasma Decay (TPD), StimulatedBrillouin Scattering (SBS), etc.
Parametric characteristic of the random vibration response of nonlinear systems
Institute of Scientific and Technical Information of China (English)
Xing-Jian Dong; Zhi-Ke Peng; Wen-Ming Zhang; Guang Meng; Fu-Lei Chu
2013-01-01
Volterra series is a powerful mathematical tool for nonlinear system analysis,and there is a wide range of non-linear engineering systems and structures that can be represented by a Volterra series model.In the present study,the random vibration of nonlinear systems is investigated using Volterra series.Analytical expressions were derived for the calculation of the output power spectral density (PSD) and input-output cross-PSD for nonlinear systems subjected to Gaussian excitation.Based on these expressions,it was revealed that both the output PSD and the input-output crossPSD can be expressed as polynomial functions of the nonlinear characteristic parameters or the input intensity.Numerical studies were carried out to verify the theoretical analysis result and to demonstrate the effectiveness of the derived relationship.The results reached in this study are of significance to the analysis and design of the nonlinear engineering systems and structures which can be represented by a Volterra series model.
Modeling mechanical response of heterogeneous materials
Pal, Siladitya
Heterogeneous materials are ubiquitous in nature and as synthetic materials. These materials provide unique combination of desirable mechanical properties emerging from its heterogeneities at different length scales. Future structural and technological applications will require the development of advanced light weight materials with superior strength and toughness. Cost effective design of the advanced high performance synthetic materials by tailoring their microstructure is the challenge facing the materials design community. Prior knowledge of structure-property relationships for these materials is imperative for optimal design. Thus, understanding such relationships for heterogeneous materials is of primary interest. Furthermore, computational burden is becoming critical concern in several areas of heterogeneous materials design. Therefore, computationally efficient and accurate predictive tools are highly essential. In the present study, we mainly focus on mechanical behavior of soft cellular materials and tough biological material such as mussel byssus thread. Cellular materials exhibit microstructural heterogeneity by interconnected network of same material phase. However, mussel byssus thread comprises of two distinct material phases. A robust numerical framework is developed to investigate the micromechanisms behind the macroscopic response of both of these materials. Using this framework, effect of microstuctural parameters has been addressed on the stress state of cellular specimens during split Hopkinson pressure bar test. A voronoi tessellation based algorithm has been developed to simulate the cellular microstructure. Micromechanisms (microinertia, microbuckling and microbending) governing macroscopic behavior of cellular solids are investigated thoroughly with respect to various microstructural and loading parameters. To understand the origin of high toughness of mussel byssus thread, a Genetic Algorithm (GA) based optimization framework has been
Directory of Open Access Journals (Sweden)
Yong Zhao
1997-01-01
Full Text Available A nonlinear three dimensional (3D single rack model and a nonlinear 3D whole pool multi-rack model are developed for the spent fuel storage racks of a nuclear power plant (NPP to determine impacts and frictional motion responses when subjected to 3D excitations from the supporting building floor. The submerged free standing rack system and surrounding water are coupled due to hydrodynamic fluid-structure interaction (FSI using potential theory. The models developed have features that allow consideration of geometric and material nonlinearities including (1 the impacts of fuel assemblies to rack cells, a rack to adjacent racks or pool walls, and rack support legs to the pool floor; (2 the hydrodynamic coupling of fuel assemblies with their storing racks, and of a rack with adjacent racks, pool walls, and the pool floor; and (3 the dynamic motion behavior of rocking, twisting, and frictional sliding of rack modules. Using these models 3D nonlinear time history dynamic analyses are performed per the U.S. Nuclear Regulatory Commission (USNRC criteria. Since few such modeling, analyses, and results using both the 3D single and whole pool multiple rack models are available in the literature, this paper emphasizes description of modeling and analysis techniques using the SOLVIA general purpose nonlinear finite element code. Typical response results with different Coulomb friction coefficients are presented and discussed.
Nonlinear response to a click in a time-domain model of the mammalian ear.
Meaud, Julien; Lemons, Charlsie
2015-07-01
In this paper, a state-space implementation of a previously developed frequency-domain model of the cochlea is coupled to a lumped parameter model of the middle ear. After validation of the time-domain model by comparison of its steady-state response to results obtained with a frequency-domain formulation, the nonlinear response of the cochlea to clicks is investigated. As observed experimentally, a compressive nonlinearity progressively develops within the first few cycles of the response of the basilar membrane (BM). Furthermore, a time-frequency analysis shows that the instantaneous frequency of the BM response to a click progressively approaches the characteristic frequency. This phenomenon, called glide, is predicted at all stimulus intensities, as in experiments. In typical experiments with sensitive animals, the click response is characterized by a long ringing and the response envelope includes several lobes. In order to achieve similar results, inhomogeneities are introduced in the cochlear model. Simulations demonstrate the strong link between characteristics of the frequency response, such as dispersion and frequency-dependent nonlinearity, and characteristics of the time-domain response, such as the glide and a time-dependent nonlinearity. The progressive buildup of cochlear nonlinearity in response to a click is shown to be a consequence of the glide and of frequency-dependent nonlinearity.
Z-scan for thin media with more than one nonlocal nonlinear response.
Irivas, B A Martinez; Carrasco, M L Arroyo; Otero, M M Mendez; García, R Ramos; Castillo, M D Iturbe
2016-06-13
A model to characterize the response of a thin media that can exhibit more than one nonlocal nonlinear response when it is illuminated with a Gaussian beam in a z-scan experiment is proposed. The model considers that these nonlocal contributions can be treated as independent contributions in the refractive or absorptive nonlinear response. Numerical results for two nonlocal nonlinear contributions with different magnitudes between them are presented. Experimental results obtained from a hydrogenated amorphous silicon sample are used to corroborate this model.
INVESTIGATION OF RANDOM RESPONSE OF ROTATIONAL SHELL WHEN CONSIDERING GEOMETRIC NONLINEAR BEHAVIOUR
Institute of Scientific and Technical Information of China (English)
GAO Shi-qiao(高世桥); JIN Lei(金磊); H.J.Niemann; LIU Hai-peng(刘海鹏)
2001-01-01
An iteration method of statistic linearization (IMSL) is presented. By this method, an equivalent linear term was formed in geometric relation and then an equivalent stiffness matrix for nonlinear term in vibration equation was established. Using the method to solve the statistic linear vibration equations, the effect of geometric nonlinearity on the random response of rotational shell is obtained.
Measurements of dynamical response of non-linear systems. How hard can it be?
DEFF Research Database (Denmark)
Darula, Radoslav
2015-01-01
Measurements of a dynamical response of linear system are widely used in praxis, they are standardized and well known. On the other hand, for the non-linear systems the principle of superposition can’t be applied and also the non-linear systems can excite the harmonics or undergo jump phenomena...
Artificial Neural Networks for Nonlinear Dynamic Response Simulation in Mechanical Systems
DEFF Research Database (Denmark)
Christiansen, Niels Hørbye; Høgsberg, Jan Becker; Winther, Ole
2011-01-01
It is shown how artificial neural networks can be trained to predict dynamic response of a simple nonlinear structure. Data generated using a nonlinear finite element model of a simplified wind turbine is used to train a one layer artificial neural network. When trained properly the network is able...
Ren, Shijin
2003-01-01
Response surface models based on multiple linear regression had previously been developed for the toxicity of aromatic chemicals to Tetrahymena pyriformis. However, a nonlinear relationship between toxicity and one of the molecular descriptors in the response surface model was observed. In this study, response surface models were established using six nonlinear modeling methods to handle the nonlinearity exhibited in the aromatic chemicals data set. All models were validated using the method of cross-validation, and prediction accuracy was tested on an external data set. Results showed that response surface models based on locally weighted regression scatter plot smoothing (LOESS), multivariate adaptive regression splines (MARS), neural networks (NN), and projection pursuit regression (PPR) provided satisfactory power of model fitting and prediction and had similar applicabilities. The response surface models based on nonlinear methods were difficult to interpret and conservative in discriminating toxicity mechanisms.
Korjik, M. V.; Buganov, O.; Fedorov, A. A.; Emelianchik, I.; Griesmayer, E.; Mechinsky, V.; Nargelas, S.; Sidletskiy, O.; Tamulaitis, G.; Tikhomirov, S. N.; Vaitkevicius, A.
2016-01-01
The time resolution of the detectors currently in use is limited by 50-70 ps due to the spontaneous processes involved in the development of the response signal, which forms after the relaxation of carriers generated during the interaction. In this study, we investigate the feasibility of exploiting sub-picosecond phenomena occurring after the interaction of scintillator material with ionizing radiation by probing the material with ultra-short laser pulses. One of the phenomena is the elastic polarization due to the local lattice distortion caused by the displacement of electrons and holes generated by ionization. The key feature of the elastic polarization is its short response time, which makes it prospective for using as an optically detectable time mark. The nonlinear optical absorption of femtosecond light pulses of appropriate wavelength is demonstrated to be a prospective tool to form the mark. This study was aimed at searching for inorganic crystalline media combining scintillation properties and non-...
Lousse, V; Vigneron, J P
2001-02-01
The theory of photonic crystals is extended to include the optical Kerr effect taking place in weak third-order, nonlinear materials present in the unit cell. The influence on the dispersion relations of the illumination caused by a single Bloch mode transiting through the crystal structure is examined. Special attention is given to the modification of the photonic gap width and position. Assuming an instantaneous change of refractive index with illumination, the nonlinear band structure problem is solved as a sequence of ordinary, linear band structure calculations, carried out in a plane-wave field representation.
Indian Academy of Sciences (India)
S Gunasekaran; G Anand; R Arun Balaji; J Dhanalakshmi; S Kumaresan
2010-10-01
Single crystals of urea thiourea mercuric sulphate (UTHS) and urea thiourea mercuric chloride (UTHC), semi-organic nonlinear optical materials, were grown by low-temperature solution growth technique by slow evaporation method using water as the solvent. Good quality single crystals were grown within three weeks. The nonlinear nature of the crystals was confirmed by SHG test. The UV–Vis spectrum showed the transmitting ability of the crystals in the entire visible region. FTIR spectrum was recorded and vibrational assignments were made. The degree of dopant inclusion was ascertained by AAS. The TGA–DTA studies showed the thermal properties of the crystals.
Mártin, Daniel A.; Hoyuelos, Miguel
2009-11-01
We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative-refraction-index material with third-order effective electric and magnetic nonlinearities. Two coupled nonlinear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato-Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.
Energy Technology Data Exchange (ETDEWEB)
Kim, D.; Ghanem, R. [State Univ. of New York, Buffalo, NY (United States)
1994-12-31
Multigrid solution technique to solve a material nonlinear problem in a visual programming environment using the finite element method is discussed. The nonlinear equation of equilibrium is linearized to incremental form using Newton-Rapson technique, then multigrid solution technique is used to solve linear equations at each Newton-Rapson step. In the process, adaptive mesh refinement, which is based on the bisection of a pair of triangles, is used to form grid hierarchy for multigrid iteration. The solution process is implemented in a visual programming environment with distributed computing capability, which enables more intuitive understanding of solution process, and more effective use of resources.
Directory of Open Access Journals (Sweden)
Da-Guang Zhang
2015-10-01
Full Text Available For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Da-Guang; Li, Meng-Han; Zhou, Hao-Miao, E-mail: zhouhm@cjlu.edu.cn [College of Information Engineering, China Jiliang University, 310018, Hangzhou (China)
2015-10-15
For magnetostrictive rods under combined axial pre-stress and magnetic field, a general one-dimension nonlinear magneto-elastic coupled constitutive model was built in this paper. First, the elastic Gibbs free energy was expanded into polynomial, and the relationship between stress and strain and the relationship between magnetization and magnetic field with the polynomial form were obtained with the help of thermodynamic relations. Then according to microscopic magneto-elastic coupling mechanism and some physical facts of magnetostrictive materials, a nonlinear magneto-elastic constitutive with concise form was obtained when the relations of nonlinear strain and magnetization in the polynomial constitutive were instead with transcendental functions. The comparisons between the prediction and the experimental data of different magnetostrictive materials, such as Terfenol-D, Metglas and Ni showed that the predicted magnetostrictive strain and magnetization curves were consistent with experimental results under different pre-stresses whether in the region of low and moderate field or high field. Moreover, the model can fully reflect the nonlinear magneto-mechanical coupling characteristics between magnetic, magnetostriction and elasticity, and it can effectively predict the changes of material parameters with pre-stress and bias field, which is useful in practical applications.
Townsend, Molly T; Sarigul-Klijn, Nesrin
2016-01-01
Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications.
Equivalent circuit simulation of HPEM-induced transient responses at nonlinear loads
Directory of Open Access Journals (Sweden)
M. Kotzev
2017-09-01
Full Text Available In this paper the equivalent circuit modeling of a nonlinearly loaded loop antenna and its transient responses to HPEM field excitations are investigated. For the circuit modeling the general strategy to characterize the nonlinearly loaded antenna by a linear and a nonlinear circuit part is pursued. The linear circuit part can be determined by standard methods of antenna theory and numerical field computation. The modeling of the nonlinear circuit part requires realistic circuit models of the nonlinear loads that are given by Schottky diodes. Combining both parts, appropriate circuit models are obtained and analyzed by means of a standard SPICE circuit simulator. It is the main result that in this way full-wave simulation results can be reproduced. Furthermore it is clearly seen that the equivalent circuit modeling offers considerable advantages with respect to computation speed and also leads to improved physical insights regarding the coupling between HPEM field excitation and nonlinearly loaded loop antenna.
Non-linear dynamic response of a wind turbine blade
Chopra, I.; Dugundji, J.
1979-01-01
The paper outlines the nonlinear dynamic analysis of an isolated three-degree flap-lag-feather wind turbine blade under a gravity field and with shear flow. Lagrangian equations are used to derive the nonlinear equations of motion of blade for arbitrarily large angular deflections. The limit cycle analysis for forced oscillations and the determination of the principal parametric resonance of the blade due to periodic forces from the gravity field and wind shear are performed using the harmonic balance method. Results are obtained first for a two-degree flap-lag blade, then the effect of the third degree of freedom (feather) is studied. The self-excited flutter solutions are obtained for a uniform wind and with gravity forces neglected. The effects of several parameters on the blade stability are examined, including coning angle, structural damping, Lock number, and feather frequency. The limit cycle flutter solution of a typical configuration shows a substantial nonlinear softening spring behavior.
Metal-organic frameworks as competitive materials for non-linear optics.
Mingabudinova, L R; Vinogradov, V V; Milichko, V A; Hey-Hawkins, E; Vinogradov, A V
2016-09-26
The last five years have witnessed a huge breakthrough in the creation and the study of the properties of a new class of compounds - metamaterials. The next stage of this technological revolution will be the development of active, controllable, and non-linear metamaterials, surpassing natural media as platforms for optical data processing and quantum information applications. However, scientists are constantly faced with the need to find new methods that can ensure the formation of quantum and non-linear metamaterials with higher resolution. One such method of producing metamaterials in the future, which will provide scalability and availability, is chemical synthesis. Meanwhile, the chemical synthesis of organized 3D structures with a period of a few nanometers and a size of up to a few millimeters is not an easy task and is yet to be resolved. The most promising avenue seems to be the use of highly porous structures based on metal-organic frameworks that have demonstrated their unique properties in the field of non-linear optics (NLO) over the past three years. Thus, the aim of this review is to examine current progress and the possibilities of using metal-organic frameworks in the field of non-linear optics as chemically obtained metamaterials of the future. The review begins by presenting the theoretical principles of physical phenomena represented by mathematical descriptions for clarity. Major attention is paid to the second harmonic generation (SHG) effect. In this section we compare inorganic single crystals, which are most commonly used to study the effect in question, to organic materials, which also possess the required properties. Based on these data, we present a rationale for the possibility of studying the non-linear optical properties of metal-organic structures as well as describing the use of synthetic approaches and the difficulties associated with them. The second part of the review explicitly acquaints the reader with a new class of materials
Cardiovascular Response Identification Based on Nonlinear Support Vector Regression
Wang, Lu; Su, Steven W.; Chan, Gregory S. H.; Celler, Branko G.; Cheng, Teddy M.; Savkin, Andrey V.
This study experimentally investigates the relationships between central cardiovascular variables and oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage. The modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with small training data set.
Terenziani, Francesca; Parthasarathy, Venkatakrishnan; Ghosh, Sampa; Pandey, Ravindra; Das, Puspendu K.; Blanchard-Desce, Mireille
2009-08-01
While structure-properties relationships are quite actively and successfully investigated at the molecular level of engineering of optical nonlinear responses, supramolecular structure-property relationships are an appealing field. The realization that interchromophoric interactions between strongly polar/polarizable NLO chromophores can significantly affect the NLO response of each chromophoric unit as well as promote associations has opened new dimensions for molecular design. Several elegant routes have been implemented to hinder or counterbalance dipole-dipole interactions between dipolar NLO chromophores for the elaboration of second-order materials (for SHG or electro-optical modulation). At opposite, we have implemented a reverse strategy by confining discrete numbers of NLO push-pull chromophores in close proximity within covalent organic nanoclusters with the aim to exploit interchromophoric interactions in order to achieve enhanced NLO responses. As a proof of concept, we present here the investigation of two-series of multichromophoric covalent assemblies built from NLO push-pull chromophores showing that cooperative enhancement can be achieved both for second-order optical responses (first hyperpolarizabilities) or third-order responses (two-photon absorption cross-sections).
Time-Dependent Nonlinear Optical Susceptibility of an Out-of-Equilibrium Soft Material
Ghofraniha, Neda; Conti, Claudio; Ruocco, Giancarlo; Zamponi, Francesco
2009-01-01
We investigate the time-dependent nonlinear optical absorption of a clay dispersion (Laponite) in an organic dye (rhodamine B) water solution displaying liquid-arrested state transition. Specifically, we determine the characteristic time τD of the nonlinear susceptibility buildup due to the Soret effect. By comparing τD with the relaxation time provided by standard dynamic light scattering measurements we report on the decoupling of the two collective diffusion times at the two very different length scales during the aging of the out-of-equilibrium system. With this demonstration experiment we also show the potentiality of nonlinear optics measurements in the study of the late stage of arrest in soft materials.
Nonlinear dynamical model and response of avian cranial kinesis.
Meekangvan, Preeda; A Barhorst, Alan; Burton, Thomas D; Chatterjee, Sankar; Schovanec, Lawrence
2006-05-01
All modern birds have kinetic skulls in which the upper bill can move relative to the braincase, but the biomechanics and motion dynamics of cranial kinesis in birds are poorly understood. In this paper, we model the dynamics of avian cranial kinesis, such as prokinesis and proximal rhynchokinesis in which the upper jaw pivots around the nasal-frontal (N-F) hinge. The purpose of this paper is to present to the biological community an approach that demonstrates the application of sophisticated predictive mathematical modeling tools to avian kinesis. The generality of the method, however, is applicable to the advanced study of the biomechanics of other skeletal systems. The paper begins with a review of the relevant biological literature as well as the essential morphology of avian kinesis, especially the mechanical coupling of the upper and lower jaw by the postorbital ligament. A planar model of the described bird jaw morphology is then developed that maintains the closed kinematic topology of the avian jaw mechanism. We then develop the full nonlinear equations of motion with the assumption that the M. protractor pterygoideus and M. depressor mandibulae act on the quadrate as a pure torque, and the nasal frontal hinge is elastic with damping. The mechanism is shown to be a single degree of freedom device due to the holonomic constraints present in the quadrate-jugal bar-upper jaw-braincase-quadrate kinematic chain as well as the quadrate-lower jaw-postorbital ligament-braincase-quadrate kinematic chain. The full equations are verified via simulation and animation using the parameters of a Grey Heron (Ardea cinerea). Next we develop a simplified analytical model of the equations by power series expansion. We demonstrate that this model reproduces the dynamics of the full model to a high degree of fidelity. We proceed to use the harmonic balance technique to develop the frequency response characteristics of the jaw mechanism. It is shown that this avian cranial
Nonlinear response of metallic acGNR to an elliptically-polarized terahertz excitation field
Wang, Yichao
2016-01-01
We present a theoretical description of the nonlinear response induced by an elliptically-polarized terahertz beam normally-incident on intrinsic and extrinsic metallic armchair graphene nanorib- bons. Our results show that using a straightforward experimental setup, it should be possible to observe novel polarization-dependent nonlinearities at low excitation field strengths of the or- der of 10 4 V/m. At low temperatures the Kerr nonlinearities in extrinsic nanoribbons persist to significantly higher excitation frequencies than they do for linear polarizations, and at room tem- peratures, the third-harmonic nonlinearities are enhanced by 2-3 orders of magnitude. Finally, the Fermi-level and temperature dependence of the nonlinear response is characterized.
On the effects of nonlinearities in room impulse response measurements with exponential sweeps
DEFF Research Database (Denmark)
Ciric, Dejan; Markovic, Milos; Mijic, Miomir
2013-01-01
In room impulse response measurements, there are some common disturbances that affect the measured results. These disturbances include nonlinearity, noise and time variance. In this paper, the effects of nonlinearities in the measurements with exponential sweep-sine signals are analyzed from...... different perspectives. The analysis combines theoretical approach, simulations and measurements. The focus is on distortion artifacts in the causal part of the impulse response and their effects on room acoustical parameters. The results show that the sweep-sine method is vulnerable to a certain extent...... to nonlinearities from a theoretical standpoint, but the consequences of this vulnerability are reduced in the responses measured in practice. However, due to irretrievable contamination of the impulse responses, the nonlinearities (especially strong ones) should be avoided....
Non-linear model of impurity diffusion in nanoporous materials upon ultrasonic treatment
Directory of Open Access Journals (Sweden)
R.M. Peleshchak
2014-06-01
Full Text Available Non-linear theory of diffusion of impurities in porous materials upon ultrasonic treatment is described. It is shown that at a defined value of deformation amplitude, an average concentration of vacancies and temperature as a result of the effect of ultrasound possibly leads to the formation of nanoclusters of vacancies and to their periodic educations in porous materials. It is shown that at a temperature smaller than some critical value, a significant growth of a diffusion coefficient is observed in porous materials.
A Novel Method for Prediction of Nonlinear Aeroelastic Responses
2010-01-01
Brian A. Freno Graduate Student, Texas A&M University Publications Journal articles: 1. Gargoloff, J. I. and Cizmas, P. G. A., “Mesh Generation and...papers: 1. Cizmas, P. G. A., Freno , B. A., Brenner, T. A., Worley, G. D., “A High-Fidelity Nonlinear Aeroelastic Model for Aircraft with Large Wing
Numerical Simulation of Seabed Response and Liquefaction due to Non-linear Waves
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-feng; ZHANG Qing-he; HAN Tao; QIN Chong-ren
2005-01-01
Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-linearity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.
Synthesis, characterization and non-linear optical response of organophilic carbon dots
Bourlinos, Athanasios B.
2013-09-01
For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.
Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin; Witherow, William K.; Bank, Curtis; Shields, Angela; Hicks, Rosline; Ashley, Paul R.
1996-01-01
In this paper, we will take a closer look at the state of the art of polydiacetylene, and metal-free phthalocyanine films, in view of the microgravity impact on their optical properties, their nonlinear optical properties and their potential advantages for integrated optics. These materials have many attractive features with regard to their use in integrated optical circuits and optical switching. Thin films of these materials processed in microgravity environment show enhanced optical quality and better molecular alignment than those processed in unit gravity. Our studies of these materials indicate that microgravity can play a major role in integrated optics technology. Polydiacetylene films are produced by UV irradiation of monomer solution through an optical window. This novel technique of forming polydiacetylene thin films has been modified for constructing sophisticated micro-structure integrated optical patterns using a pre-programmed UV-Laser beam. Wave guiding through these thin films by the prism coupler technique has been demonstrated. The third order nonlinear parameters of these films have been evaluated. Metal-free phthalocyanine films of good optical quality are processed in our laboratories by vapor deposition technique. Initial studies on these films indicate that they have excellent chemical, laser, and environmental stability. They have large nonlinear optical parameters and show intrinsic optical bistability. This bistability is essential for optical logic gates and optical switching applications. Waveguiding and device making investigations of these materials are underway.
Rajesh, K; Balaswamy, B; Yamamoto, K; Yamaki, H; Kawamata, J; Radhakrishnan, T P
2011-02-01
Optical and nonlinear optical properties like fluorescence and second harmonic generation (SHG) of molecular materials can be strongly influenced by the mode of assembly of the molecules. The Langmuir-Blodgett (LB) technique is an elegant route to the controlled assembly of molecules in ultrathin films, and complexation of ionic amphiphiles in the Langmuir film by polyions introduced in the aqueous subphase provides a simple and efficient access to further control, stabilization, and optimization. The monolayer LB film of the hemicyanine-based amphiphile, N-n-octadecyl-4-[2-(4-(N,N-ethyloctadecylamino)phenyl)ethenyl]pyridinium possessing a "tail-head-tail" structure, shows fluorescence as well as SHG response. The concomitant enhancement of both of these linear and nonlinear optical attributes is achieved through templating with the polyanion of carboxymethylcellulose. Brewster angle and atomic force microscopy reveal the influence of polyelectrolyte templating on the morphology of the Langmuir and LB films. Polarized absorption and fluorescence spectroscopy provide insight into the impact of complexation with the polyelectrolyte on the orientation and deaggregation of the hemicyanine headgroup leading to fluorescence and SHG enhancement in the LB film.
Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin
2016-08-01
This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.
Modeling Granular Materials as Compressible Non-Linear Fluids: Heat Transfer Boundary Value Problems
Energy Technology Data Exchange (ETDEWEB)
Massoudi, M.C.; Tran, P.X.
2006-01-01
We discuss three boundary value problems in the flow and heat transfer analysis in flowing granular materials: (i) the flow down an inclined plane with radiation effects at the free surface; (ii) the natural convection flow between two heated vertical walls; (iii) the shearing motion between two horizontal flat plates with heat conduction. It is assumed that the material behaves like a continuum, similar to a compressible nonlinear fluid where the effects of density gradients are incorporated in the stress tensor. For a fully developed flow the equations are simplified to a system of three nonlinear ordinary differential equations. The equations are made dimensionless and a parametric study is performed where the effects of various dimensionless numbers representing the effects of heat conduction, viscous dissipation, radiation, and so forth are presented.
The effect of large deformation and material nonlinearity on gel indentation
Institute of Scientific and Technical Information of China (English)
Zheng Duan; Yonghao An; Jiaping Zhang; Hanqing Jiang
2012-01-01
A gel,an aggregate of polymers with solvents,has dual attributes of solid and liquid as solvent migrates in and out of the polymer network.Indentation has recently been used to characterize the mechanical properties of gels.This paper evaluates the effects of large deformation and material nonlinearity on gel indentation through theoretical modeling and finite element analysis.It is found that large deformation significantly affects the interpretation of the experimental observations and the classical relation between indentation force and depth has limitations for large deformation.The material nonlinearity does not play a very important role on indentation experiment so that the poroelasticity is a good approximation.Based on these observations,this paper proposes an alternative approach to measure the mechanical properties of gels,namely,uniaxial compression experiment.
(3+1)-dimensional nonlinear propagation equation for ultrashort pulsed beam in left-handed material
Institute of Scientific and Technical Information of China (English)
Hu Yong-Hua; Fu Xi-Quan; Wen Shuang-Chun; Su Wen-Hua; Fan Dian-Yuan
2006-01-01
In this paper a comprehensive framework for treating the nonlinear propagation of ultrashort pulse in metamaterial with dispersive dielectric susceptibility and magnetic permeability is presented. Under the slowly-evolving-wave approximation, a generalized (3+1)-dimensional wave equation first order in the propagation coordinate and suitable for both right-handed material (RHM) and left-handed material (LHM) is derived. By the commonly used Drude dispersive model for LHM, a (3+1)-dimensional nonlinear Schr(o)dinger equation describing ultrashort pulsed beam propagation in LHM is obtained, and its difference from that for conventional RHM is discussed. Particularly, the self-steeping effect of ultrashort pulse is found to be anomalous in LHM.
Nonlinear optical response of a two-dimensional atomic crystal.
Merano, Michele
2016-01-01
The theory of Bloembergen and Pershan for the light waves at the boundary of nonlinear media is extended to a nonlinear two-dimensional (2D) atomic crystal, i.e., a single planar atomic lattice, placed between linear bulk media. The crystal is treated as a zero-thickness interface, a real 2D system. Harmonic waves emanate from it. Generalization of the laws of reflection and refraction give the direction and the intensity of the harmonic waves. As a particular case that contains all the essential physical features, second-order harmonic generation is considered. The theory, due to its simplicity that stems from the special character of a single planar atomic lattice, is able to elucidate and explain the rich experimental details of harmonic generation from a 2D atomic crystal.
Terahertz-Driven Nonlinear Spin Response of Antiferromagnetic Nickel Oxide
Baierl, S.; Mentink, J. H.; Hohenleutner, M.; Braun, L.; Do, T.-M.; Lange, C.; Sell, A.; Fiebig, M.; Woltersdorf, G.; Kampfrath, T.; Huber, R.
2016-11-01
Terahertz magnetic fields with amplitudes of up to 0.4 Tesla drive magnon resonances in nickel oxide while the induced dynamics is recorded by femtosecond magneto-optical probing. We observe distinct spin-mediated optical nonlinearities, including oscillations at the second harmonic of the 1 THz magnon mode. The latter originate from coherent dynamics of the longitudinal component of the antiferromagnetic order parameter, which are probed by magneto-optical effects of second order in the spin deflection. These observations allow us to dynamically disentangle electronic from lattice-related contributions to magnetic linear birefringence and dichroism—information so far only accessible by ultrafast THz spin control. The nonlinearities discussed here foreshadow physics that will become essential in future subcycle spin switching.
Third-order nonlinear optical materials: practical issues and theoretical challenges.
Samoć, Marek
2011-09-01
The renewed interest in all-optical switching has led to more detailed experimental investigations of nonlinear optical properties of materials within wide wavelength ranges. The objectives of these studies are discussed here in the context of the availability of suitable computational data that might be compared with the results of the experimental research. It is concluded that the currently available data are insufficient and should be augmented to provide better guidance for experimental work.
Understanding of Materials State and its Degradation using Non-Linear Ultrasound (NLU) Approaches
2011-07-01
at Ultrasonic Frequencies, Journal of Applied Physics 105, 043520, Hikata A., Chick B. B., and Elbaum C., (1965) Dislocation Contribution to the...Second Harmonic Generation of ultrasonic waves, Journal of Applied Physics Vol. 36 Number1 Hikata A. and Elbaum C., (1966) Generation of...Material Damage in a Nickel-base Superalloy using Nonlinear Rayleigh Surface Waves, Journal of Applied Physics 99, 124913 Hurley D. C., Balzar D
Implementation of tristate logic based all optical flip-flop with nonlinear material
Institute of Scientific and Technical Information of China (English)
Partha Ghosh; Sourangshu Mukhopadhyay
2005-01-01
@@ The advantages of multivalued logic in optical parallel computation need no introduction. There are lots of proposals, already reported, where tristate, quarternary state logic operations can be performed with optics. Here we report a new approach to implement tristate logic based all optical flip-flop using optical nonlinear material. The concept and the principle of operation of this type of flip-flop are different from that of the conventional binary one.
A contribution to the development of wide band-gap nonlinear optical laser materials
Stone-Sundberg, Jennifer Leigh
The primary focus of this work is on examining structure-property relationships of interest for high-power nonlinear optical and laser crystals. An intuitive and simply illustrated method for assessing the nonlinear optical potential of structurally characterized noncentrosymmetric materials is introduced. This method is applied to materials including common quartz and tourmaline and then extended to synthetic materials including borates, silicates, aluminates, and phosphates. Particularly, the contributions of symmetric tetrahedral and triangular anionic groups are inspected. It is shown that both types of groups significantly contribute to the optical frequency converting abilities of noncentrosymmetric crystals. In this study, several known materials are included as well as several new materials. The roles of the orientation, composition, and packing density of these anionic groups are also discussed. The structures and optical properties of the known materials BPO 4, NaAlO2, LaCa4O(BO3)3, and tourmaline; the new compounds La0.8Y0.2Sc3 (BO3)4 and Ba2B10O 17; and the laser host Sr3Y0.75Yb0.25(BO 3)3 are described.
The nonlinear optical response of a two-dimensional atomic crystal
Merano, Michele
2015-01-01
The theory of Bloembergen and Persham for the light waves at the boundary of nonlinear media is applied to a nonlinear two-dimensional atomic crystal placed in between linear bulk media. The crystal is treated as a zero-thickness interface, a real two-dimensional system. Harmonic waves emanate from it. Generalization of the laws of reflection and refraction give the direction and the intensity of the harmonic waves. The nonlinear polarization of these special materials is very sensitive to the substrate on which they are deposited. Experiments on second harmonic generation of a $\\rm MoS_{2}$ monolayer are discussed to elucidate this point.
Measurement of nonlinear elastic response in rock by the resonant bar method
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A. [Los Alamos National Lab., NM (United States); Rasolofosaon, P.; Zinszner, B. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)
1993-04-01
In this work we are studying the behavior of the fundamental (Young`s) mode resonant peak as a function of drive amplitude in rock samples. Our goal from these studies is to obtain nonlinear moduli for many rock types, and to study the nonlinear moduli as a function of water saturation and other changes in physical properties. Measurements were made on seven different room dry rock samples. For one sample measurements were taken at 16 saturation levels between 1 and 98%. All samples display a ``softening`` nonlinearity, that is, the resonant frequency shifts downward with increasing drive amplitude. In extreme cases, the resonant frequency changes by as much as 25% over a strain interval of 10{sup {minus}7} to {approximately}4 {times} 10{sup {minus}5}. Measurements indicate that the nonlinear response is extremely sensitive to saturation. Estimates of a combined cubic and quartic nonlinear parameter {Gamma} range from approximately {minus}300 to {minus}10{sup 9} for the rock samples.
Manimala, James M; Sun, C T
2016-06-01
The amplitude-dependent dynamic response in acoustic metamaterials having nonlinear local oscillator microstructures is studied using numerical simulations on representative discrete mass-spring models. Both cubically nonlinear hardening and softening local oscillator cases are considered. Single frequency, bi-frequency, and wave packet excitations at low and high amplitude levels were used to interrogate the models. The propagation and attenuation characteristics of harmonic waves in a tunable frequency range is found to correspond to the amplitude and nonlinearity-dependent shifts in the local resonance bandgap for such nonlinear acoustic metamaterials. A predominant shift in the propagated wave spectrum towards lower frequencies is observed. Moreover, the feasibility of amplitude and frequency-dependent selective filtering of composite signals consisting of individual frequency components which fall within propagating or attenuating regimes is demonstrated. Further enrichment of these wave manipulation mechanisms in acoustic metamaterials using different combinations of nonlinear microstructures presents device implications for acoustic filters and waveguides.
Nonlinear Optical Properties of a MMA-Silica Nanohybrid Material Doped with Rhodamine 6G
Directory of Open Access Journals (Sweden)
J. Lima-Gutiérrez
2013-01-01
Full Text Available A novel nanohybrid material based on MMA-Silica has been synthesized with an organic dye dopant (R6G to tailor the optical properties. This novel material can be used on several devices such as active laser media for an organic solid state laser, OLEDs, or as a characterization media for new organic dye molecules. Thin films were deposited by dip-coating and characterized by absorption and reflection UV-VIS, photoluminescence, SEM, and Z-scan technique to verify their nonlinear behavior. R6G dye dopant has been used to verify that the nanohybrid matrix does not inhibit its optical properties.
NONLINEAR RESPONSES OF GAMMA —RAY DOSIMETERS
Institute of Scientific and Technical Information of China (English)
罗达玲; 杨健明; 等
1994-01-01
Either sublinear or supralinear responses of dosimeters to γ-ray can be described by a response function derived from statistical Poisson distribution.The characteristic parameters of the function determine linearity,sublinearity and supralinearlty in their responses.The experimental data of gamma dose-responses of alanine ESR dosimeters film dosimeters.LiF(Mg,Cu,P) and LiF(Mg,Ti) thermoluminescence dosimeters are used to test the response function.
Goyal, Deepak
Textile composites have a wide variety of applications in the aerospace, sports, automobile, marine and medical industries. Due to the availability of a variety of textile architectures and numerous parameters associated with each, optimal design through extensive experimental testing is not practical. Predictive tools are needed to perform virtual experiments of various options. The focus of this research is to develop a better understanding of linear elastic response, plasticity and material damage induced nonlinear behavior and mechanics of load flow in textile composites. Textile composites exhibit multiple scales of complexity. The various textile behaviors are analyzed using a two-scale finite element modeling. A framework to allow use of a wide variety of damage initiation and growth models is proposed. Plasticity induced non-linear behavior of 2x2 braided composites is investigated using a modeling approach based on Hill's yield function for orthotropic materials. The mechanics of load flow in textile composites is demonstrated using special non-standard postprocessing techniques that not only highlight the important details, but also transform the extensive amount of output data into comprehensible modes of behavior. The investigations show that the damage models differ from each other in terms of amount of degradation as well as the properties to be degraded under a particular failure mode. When compared with experimental data, predictions of some models match well for glass/epoxy composite whereas other's match well for carbon/epoxy composites. However, all the models predicted very similar response when damage factors were made similar, which shows that the magnitude of damage factors are very important. Full 3D as well as equivalent tape laminate predictions lie within the range of the experimental data for a wide variety of braided composites with different material systems, which validated the plasticity analysis. Conclusions about the effect of
Institute of Scientific and Technical Information of China (English)
Long Xiaohong; Li Li
2004-01-01
The practical design of the cable-stayed bridge of the 3rd Macao-Taipa bridge is investigated by the finite element analysis program ANSYS, and 3-D elements BEAM188 and BEAM4 are adopted to create a dynamic calculation model. In order to analyze the material nonlinear seismic response of the cable-stayed bridge, the nonlinear behaviors of the ductile plastic hinges of the bridge towers are taken into account by employing the nonlinear rotational spring element COMBIN40. To simulate a major earthquake, three earthquake records were chosen using a wave-choosing program and input into the bridge structure along longitudinal and transversal directions. Comparisons of the linear and nonlinear seismic responses of the cable-stayed bridge are performed. In addition, a study of TMD primary control is carried out using element MASS21 and element COMBIN14, and it is indicated that the effects of mitigation monitoring are evident.
Institute of Scientific and Technical Information of China (English)
F. H. Zhu; Y. M. Fu
2008-01-01
By considering the effect of interfacial damage and using the variation principle, three-dimensional nonli-near dynamic governing equations of the laminated plates with interfacial damage are derived based on the general six-degrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite dif-ference method, and the results are validated by compari-son with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.
Mendiratta, Shruti; Lee, Cheng-Hua; Usman, Muhammad; Lu, Kuang-Lieh
2015-10-01
Metal-organic frameworks (MOFs) have been intensively studied over the past decade because they represent a new category of hybrid inorganic-organic materials with extensive surface areas, ultrahigh porosity, along with the extraordinary tailorability of structure, shape and dimensions. In this highlight, we summarize the current state of MOF research and report on structure-property relationships for nonlinear optical (NLO) and dielectric applications. We focus on the design principles and structural elements needed to develop potential NLO and low dielectric (low-κ) MOFs with an emphasis on enhancing material performance. In addition, we highlight experimental evidence for the design of devices for low-dielectric applications. These results motivate us to develop better low-dielectric and NLO materials and to perform in-depth studies related to deposition techniques, patterning and the mechanical performance of these materials in the future.
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.
1993-01-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.
1993-06-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr. [Los Alamos National Lab., NM (United States)
1993-11-01
Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.
Sudarshanam, V. S.; Claus, Richard O.
1993-03-01
A new cylindrical coil configuration for polyvinylidene flouride (PVF2) film based fiber optic phase modulator is studied for the frequency response and nonlinearity of phase shift at the resonance frequency. This configuration, hitherto unapproached for PVF2 film modulators, offers resonance at well defined, controllable and higher frequencies than possible for the flat-strip configuration. Two versions of this configuration are presented that differ strongly in both the resonance frequency and the phase shift nonlinearity coefficient.
Nonlinear Site Response Due to Large Ground Acceleration: Observation and Computer Simulation
Noguchi, S.; Furumura, T.; Sasatani, T.
2009-12-01
We studied nonlinear site response due to large ground acceleration during the 2003 off-Miyagi Earthquake (Mw7.0) in Japan by means of horizontal-to-vertical spectral ratio analysis of S-wave motion. The results were then confirmed by finite-difference method (FDM) simulation of nonlinear seismic wave propagation. A nonlinear site response is often observed at soft sediment sites, and even at hard bedrock sites which are covered by thin soil layers. Nonlinear site response can be induced by strong ground motion whose peak ground acceleration (PGA) exceeds about 100 cm/s/s, and seriously affects the amplification of high frequency ground motion and PGA. Noguchi and Sasatani (2008) developed an efficient technique for quantitative evaluation of nonlinear site response using the horizontal-to-vertical spectral ratio of S-wave (S-H/V) derived from strong ground motion records, based on Wen et al. (2006). We applied this technique to perform a detailed analysis of the properties of nonlinear site response based on a large amount of data recorded at 132 K-NET and KiK-net strong motion stations in Northern Japan during the off-Miyagi Earthquake. We succeeded in demonstrating a relationship between ground motion level, nonlinear site response and surface soil characteristics. For example, the seismic data recorded at KiK-net IWTH26 showed obvious characteristics of nonlinear site response when the PGA exceeded 100 cm/s/s. As the ground motion level increased, the dominant peak of S-H/V shifted to lower frequency, the high frequency level of S-H/V dropped, and PGA amplification decreased. On the other hand, the records at MYGH03 seemed not to be affected by nonlinear site response even for high ground motion levels in which PGA exceeds 800 cm/s/s. The characteristics of such nonlinear site amplification can be modeled by evaluating Murnaghan constants (e.g. McCall, 1994), which are the third-order elastic constants. In order to explain the observed characteristics of
Saravanan, M.
2016-08-01
The crystals (dimethyl amino pyridinium 4-nitrophenolate 4-nitrophenol [DMAPNP] suitable for NLO applications were grown by the slow cooling method. The solubility and metastable zone width measurement of DMAPNP specimen was studied. The material crystallizes in the orthorhombic crystal system with noncentrosymmetric space group of P212121. The ocular precision in the intact visible region was found to be good for non-linear optical claim. Quality of the grown crystal is ascertained by the HRXRD and etching studies. Laser Damage Threshold and Photoluminescence studies designate that the grown crystal contains less imperfection. The mechanical behaviour of DMAPNP sample at different temperatures was investigated to determine the hardness stability of the grown specimen. The piezoelectric temperament and the relative Second Harmonic Generation (for diverse particle sizes) of the material were also studied. The third order nonlinear optical properties of DMAPNP crystals were premeditated by Z-scan method. Birefringence and optical homogeneity of the crystal were evaluated using modified channel spectrum method. The half wave voltage of the grown crystal deliberate from the elector optic experimentation. Photoconductivity measurement specified consummate of inducing dipoles owing to brawny incident radiation and also disclose the nonlinear activities of the grown specimen.
Second harmonic generation of near millimeter wave radiation by nonlinear bulk material
Ahn, B. H.
1980-06-01
Bulk crystals have been used frequently to obtain second harmonic generation (SHG) and third harmonic generation (THG) of radiation from the fundamental input frequency, particularly in the optical region. For example ammonium dihydrogen phosphate, potassium dihydrogen phosphate, semiconductor materials, and ferroelectric materials were used for the SHG of input laser beams. SHG and THG have also been realized in the microwave region. Boyd, et. al., reported on the nonlinear coefficients and other important parameters at 55 GHz. Later, Boyd and Pollack published a comprehensive paper on the nonlinear coefficients of LiTaO3 and LiNbO3 in the microwave region. DiDomenico, Jrl, et. al., obtained a 9 GHz TH output with an efficiency of 8.5% from a 2200 watt 3 GHz source by use of a 73% BaTiO3 - 27% SrTiO3 ceramic in a coaxial cavity configuration. Impetus for bulk harmonic generation in the microwave region was given by the discovery that some ferroelectric crystals have very large nonlinear coefficients, large enough to compensate for the lower frequencies of the microwave region in comparison to those of the optical region.
Response bounds for complex systems with a localised and uncertain nonlinearity
Butlin, T.
2016-12-01
Predicting the vibration response of complex nonlinear structures is a significant challenge: the response may involve many modes of the structure; nonlinearity precludes the use of efficient techniques developed for linear systems; and there is often uncertainty associated with the nonlinear law, even to the extent that its functional form is not always known. This paper builds on a recently developed method for handling this class of problem in a novel way. The method exploits the fact that nonlinearities are often spatially localised, and seeks the best- and worst-case system response with respect to a chosen metric by regarding the internal nonlinear force as an independent excitation to the underlying linear system. Constraints are used to capture what is thought to be known about the nonlinearity without needing to specify a particular law. This paper focuses on the case of systems with a single point nonlinearity but with arbitrarily complex underlying linear dynamics, driven by a sinusoidal force excitation. Semi-analytic upper and lower bounds are proposed for root-mean-square response metrics subject to constraints which specify that the nonlinearity should be a combination of (A) passive, (B) displacement-limited, and / or (C) force-saturating. The concept of 'equivalent linear bounds' is also introduced for cases where the response metric is thought to be dominated by the same frequency as the input. The bounds corresponding to a passive and displacement-limited nonlinearity are compared with Monte Carlo experimental and numerical results from an impacting beam test rig. The bounds corresponding to a passive and force-saturating nonlinearity are compared with numerical results for a friction-damped beam. The global upper and lower bounds are satisfied for all input frequencies but are generally found to be rather conservative. The 'equivalent linear bounds' show remarkably good agreement for predicting the range of root-mean-square velocity responses
Nonlinearity of dose-response functions for carcinogenicity.
Hoel, D G; Portier, C J
1994-01-01
Carcinogenesis data for 315 chemicals were obtained from the National Cancer Institute-National Toxicology Program (NCI-NTP) bioassay programs and were analyzed to examine the shape of carcinogenesis dose-response curves. Tumor site data were more often consistent with a quadratic response than with a linear response, suggesting that the routine use of linear dose-response models will often overestimate risk. Information from in vivo short-term mutagenicity and genotoxicity assays was also ob...
Three-dimensional Material and Geometrical Nonlinear Analysis of Adhesively Bonded Single Lap Joint
Directory of Open Access Journals (Sweden)
S. Narasimhan
2003-04-01
Full Text Available The paper presents 3-D viscoplastic analysis of adhesively bonded single lap joint considering material and geometric nonlinearity. Total Lagrangian formulation is used to develop a 3-D finite element for geometric nonlinear analysis. The overall geometry of the single lap joint, the loading, and the boundary conditions has been considered, both according to the ASTM testing standards and from those adopted in earlier investigations. The constitutive relations for the adhesive are developed using a pressure-dependant (modified von Mises yield function and Ramberg-Osgood idealisation for the experimental stress-strain curve. The adherends and adhesive layers are both modelled using 20-noded solid elements. However, observations have been made, in particular, on peel and shear stresses in the adhesive layer, which provide useful insight into the 3-D nature of the problem.
Anbuchezhiyan, M.; Ponnusamy, S.; Muthamizhchelvan, C.
2010-02-01
Single crystal of a new semiorganic nonlinear optical material, L-cystine dihydrobromide, was grown successfully from aqueous solution by slow evaporation method. The grown crystals were characterized by single crystal X-ray diffraction technique to determine the cell parameters. Powder X-ray diffraction analysis also confirms the structure of the grown title compound. The functional groups and vibrational frequencies have been identified using FTIR and FT Raman spectral data. Transmittance of the title compound was analyzed using UV-Vis spectrum. The mechanical strength of the grown crystal was found using Vickers microhardness measurement. The thermal stability of the grown crystal was determined with the aid of thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Second order nonlinear optical behavior of the grown crystal has been confirmed by Kurtz powder second harmonic generation (SHG) test and its SHG efficiency was found as deff=0.38 deff (KDP).
Energy Technology Data Exchange (ETDEWEB)
Anbuchezhiyan, M. [Department of Physics, Valliammai Engineering College, S.R.M. Nagar, Kattankulathur 603 203, Chennai (India); Ponnusamy, S., E-mail: suruponnus@gmail.co [Centre for Material Science and Nano Devices, Department of Physics, SRM University, Kattankulathur 603 203, Chennai (India); Muthamizhchelvan, C. [Centre for Material Science and Nano Devices, Department of Physics, SRM University, Kattankulathur 603 203, Chennai (India)
2010-02-15
Single crystal of a new semiorganic nonlinear optical material, L-cystine dihydrobromide, was grown successfully from aqueous solution by slow evaporation method. The grown crystals were characterized by single crystal X-ray diffraction technique to determine the cell parameters. Powder X-ray diffraction analysis also confirms the structure of the grown title compound. The functional groups and vibrational frequencies have been identified using FTIR and FT Raman spectral data. Transmittance of the title compound was analyzed using UV-Vis spectrum. The mechanical strength of the grown crystal was found using Vickers microhardness measurement. The thermal stability of the grown crystal was determined with the aid of thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Second order nonlinear optical behavior of the grown crystal has been confirmed by Kurtz powder second harmonic generation (SHG) test and its SHG efficiency was found as d{sub eff}=0.38d{sub eff} (KDP).
Bhattacharjee, Satyaki; Matouš, Karel
2016-05-01
A new manifold-based reduced order model for nonlinear problems in multiscale modeling of heterogeneous hyperelastic materials is presented. The model relies on a global geometric framework for nonlinear dimensionality reduction (Isomap), and the macroscopic loading parameters are linked to the reduced space using a Neural Network. The proposed model provides both homogenization and localization of the multiscale solution in the context of computational homogenization. To construct the manifold, we perform a number of large three-dimensional simulations of a statistically representative unit cell using a parallel finite strain finite element solver. The manifold-based reduced order model is verified using common principles from the machine-learning community. Both homogenization and localization of the multiscale solution are demonstrated on a large three-dimensional example and the local microscopic fields as well as the homogenized macroscopic potential are obtained with acceptable engineering accuracy.
Institute of Scientific and Technical Information of China (English)
LI YaoChen
2007-01-01
The hysteresis phenomena of ferroelectric/ferroelastic material in polarization procedure are investigated.Some assumptions are presented based on the published experimental data.The electrical yielding criterion,mechanical yielding criterion and isotropic hardening model are established.The flow theory in incremental forms in polarization procedure is presented.The nonlinear constitutive law for electrical-mechanical coupling is proposed phenomenologically.Finally,the nonlinear constitutive law expressed in a form of matrices and vectors,which is immediately associated with finite element analysis,is formulated.In the example problem of a rectangular specimen subjected to a uniaxial electric field,the procedure from virgin state to fully polarized state is simulated.Afterward,a uniaxial compressive loading is applied to depolarizing the specimen.Results are in agreement with the experimental data.
Institute of Scientific and Technical Information of China (English)
2007-01-01
The hysteresis phenomena of ferroelectric/ferroelastic material in polarization procedure are investigated. Some assumptions are presented based on the published experimental data. The electrical yielding criterion, mechanical yielding criterion and isotropic hardening model are established. The flow theory in incremental forms in polarization procedure is presented. The nonlinear constitutive law for electrical-mechanical coupling is proposed phenomenologically. Finally, the nonlinear constitutive law expressed in a form of matrices and vectors, which is immediately associated with finite element analysis, is formulated. In the example problem of a rectangular specimen subjected to a uniaxial electric field, the procedure from virgin state to fully polarized state is simulated. Afterward, a uniaxial compressive loading is applied to depolarizing the specimen. Results are in agreement with the experimental data.
Dimensionality of InGaAs nonlinear optical response
Energy Technology Data Exchange (ETDEWEB)
Bolton, S.R. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.
1995-07-01
In this thesis the ultrafast optical properties of a series of InGaAs samples ranging from the two to the three dimensional limit are discussed. An optical system producing 150 fs continuum centered at 1.5 microns was built. Using this system, ultrafast pump-probe and four wave mixing experiments were performed. Carrier thermalization measurements reveal that screening of the Coulomb interaction is relatively unaffected by confinement, while Pauli blocking nonlinearities at the band edge are approximately twice as strong in two dimensions as in three. Carrier cooling via phonon emission is influenced by confinement due both to the change in electron distribution function and the reduction in electron phonon coupling. Purely coherent band edge effects, as measured by the AC Stark effect and four wave mixing, are found to be dominated by the changes in excitonic structure which take place with confinement.
Ultrafast third-order nonlinear optical response of pyrene derivatives
Shi, Yufang; Li, Zhongguo; Fang, Yu; Sun, Jinyu; Zhao, Minggen; Song, Yinglin
2017-05-01
Two mono-substituted pyrene derivatives with delocalized electron system 1-(pyren-1-yl)-3-(4-Methyl thiophene-2-yl) acrylic ketone (13#) and 1-(pyren-1-yl)-3-(4-bromo thiophene-2-yl) acrylic ketone (15#) were successfully synthesized. The resultant compounds were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (IR), high resolution mass spectrum (HR-MS), and UV-vis spectra. The third-order nonlinear optical properties of the compounds were investigated using Z-scan technique with femtosecond laser pulses at 500 nm and 700 nm, respectively. Both of the compounds showed a decrease in transmittance about the focus, which are typical of two-photon absorption. It was found that the two-photon absorption behavior of the pyrene derivatives were modified by substituents on thiophene ring. These results indicate that both compounds can be promising candidates for future optoelectronic and bio-imaging applications.
Nonlinear laser pulse response in a crystalline lens.
Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D
2016-04-01
The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated.
Rodríguez-Rosales, A. A.; Ortega-Martínez, R.; Morales-Saavedra, O. G.
2011-01-01
The study of the nonlinear refractive index response γ of several organic dyes and their impact on the nonlinear optical (NLO) properties of nematic liquid crystals (LC) was performed via Z-scan measurements. For his purpose, a low power CW He-Ne laser system (λ approx 633 nm) was implemented. Studies were carried out at the low absorption spectroscopic region of the implemented samples (dyes, liquid crystals and mixtures at different ratios of these materials). Samples were prepared at 1% weight of the used solvent (THF) and were sandwiched in glass cells with a gap thickness of ~100 μm. The implemented dyes have shown the largest optical nonlinearities and represent the main contributors to the cubic NLO-properties of the LC:Dye mixtures. In our particular studies, 5CB liquid crystal doped with DR1 azo-dye, resulted in the simultaneous positive and negative exhibition of nonlinear refractive indexes γ, depending on the polarization state of the excitation laser beam. Experimental conditions and results are described in detail.
Li, Chao; Yin, Wenlong; Gong, Pifu; Li, Xiaoshuang; Zhou, Molin; Mar, Arthur; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng; Chen, Chuangtian
2016-05-18
A new mercury selenide BaHgSe2 was synthesized. This air-stable compound displays a large nonlinear optical (NLO) response and melts congruently. The structure contains chains of corner-sharing [HgSe3](4-) anions in the form of trigonal planar units, which may serve as a new kind of basic functional group in IR NLO materials to confer large NLO susceptibilities and physicochemical stability. Such trigonal planar units may inspire a path to finding new classes of IR NLO materials of practical utility that are totally different from traditional chalcopyrite materials.
Flom, Steven R; Beadie, Guy; Bayya, Shyam S; Shaw, Brandon; Auxier, Jason M
2015-11-01
Femtosecond Z-scan measurements have been performed on six window materials at 772, 1030, and 1550 nm. Measurements of the nonlinear refractive index are presented for reference materials, fused silica and BK7 and four near-infrared window materials, multispectral ZnS (CLEARTRAN), aluminum oxynitride (AlON), spinel (MgAl2O4) ceramic, and barium gallogermanate (BGG) glass.
Wang, Yingwei; Mu, Haoran; Li, Xiaohong; Yuan, Jian; Chen, Jiazhang; Xiao, Si; Bao, Qiaoliang; Gao, Yongli; He, Jun
2016-05-01
We report the large nonlinear response and ultrafast carrier relaxation dynamics of a graphene-Bi2Te3 heterostructure produced by two-step chemical vapour deposition. The nonlinear refractive index reaches n2 = 0.2 × 10-7 cm2/W at the telecommunication wavelength of 1550 nm, which is almost seven orders of magnitude larger than that of the bulk Si material. Additionally, a pump-probe experiment is performed to investigate the ultrafast dynamic process (intraband relaxation time τ1 = 270 ± 20 fs; interband relaxation time τ2 = 3.6 ± 0.2 ps) of the graphene-Bi2Te3 heterostructure. Then, based on the donor-acceptor structure model, we propose a theoretical model to explain the dynamic relaxation process. Our results show that the graphene-Bi2Te3 heterostructure is a promising saturable absorber for ultrafast pulse laser applications at telecommunication wavelengths.
Kim, Hyun Sung; Pham, Tung Cao Thanh; Yoon, Kyung Byung
2012-05-16
The demand for nonlinear optical (NLO) materials with exceptional NLO properties is very large, and hence the search for such materials should be continued not only to enhance their functions in current applications but also to help expedite the materialization of photonics in which photons instead of electrons are used for signal processing, transmission, and storage. This article summarizes the preparation, characteristics, and the future perspectives of novel second order nonlinear optical (2NLO) materials prepared by orientation-controlled incorporation of 2NLO molecules into zeolite channels and third order nonlinear optical (3NLO) materials prepared by compartmentalization of very small (<1.3 nm) PbS QDs within zeolite nanopores under different environments, and the novel chemistry newly unveiled during the preparation of novel zeolite based NLO materials. This journal is © The Royal Society of Chemistry 2012
Yu, Xiang-xiang; Wang, Yu-hua
2014-01-13
Silver nanoparticles synthesized in a synthetic sapphire matrix were fabricated by ion implantation using the metal vapor vacuum arc ion source. The optical absorption spectrum of the Ag: Al2O3 composite material has been measured. The analysis of the supercontinuum spectrum displayed the nonlinear refractive property of this kind of sample. Nonlinear optical refraction index was identified at 800 nm excitation using the Kerr-lens autocorrelation (KLAC) technique. The spectrum showed that the material possessed self-defocusing property (n(2) = -1.1 × 10(-15) cm(2)W). The mechanism of nonlinear refraction has been discussed.
NONLINEAR DYNAMICS RESPONSE OF CASING PIPE UNDER COMBINED WAVE-CURRENT
Institute of Scientific and Technical Information of China (English)
TANG You-gang; GU Jia-yang; ZUO Jian-li; MIN Jian-qin
2005-01-01
The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up considering the beam mode and Morison's nonlinear fluid loads as well as the vortex-excited loads. The approach of calculating vortex-excited nonlinear vibration by Galerkin's method was proposed. The natural vibration frequencies and modes were obtained, and the response including primary resonance induced by current and the composite resonance under combined wave-current for the 170 m long casing pipe in the 160 m depth of water were investigated. The results show that the dynamics response of casing pipe obviously increases, and the complicated response behaviors of casing pipe are described under combined wave-current.
Regular nonlinear response of the driven Duffing oscillator to chaotic time series
Institute of Scientific and Technical Information of China (English)
YuanYe; Li Yue; Danilo P. Mandic; Yang Bao-Jun
2009-01-01
Nonlinear response of the driven Duffing oscillator to periodic or quasi-periodic signals has been well studied. In this paper, we investigate the nonlinear response of the driven Duffing oscillator to non-periodic, more specifically, chaotic time series. Through numerical simulations, we find that the driven Duffing oscillator can also show regular nonlinear response to the chaotic time series with different degree of chaos as generated by the same chaotic series generating model, and there exists a relationship between the state of the driven Duffing oscillator and the chaoticity of the input signal of the driven Duffing oscillator. One real-world and two artificial chaotic time series are used to verify the new feature of Duffing oscillator. A potential application of the new feature of Duffing oscillator is also indicated.
RBFNN Model for Predicting Nonlinear Response of Uniformly Loaded Paddle Cantilever
Directory of Open Access Journals (Sweden)
Abdullah H. Abdullah
2009-01-01
Full Text Available The Radial basis Function neural network (RBFNN model has been developed for the prediction of nonlinear response for paddle Cantilever with built-in edges and different sizes, thickness and uniform loads. Learning data was performed by using a nonlinear finite element program, incremental stages of the nonlinear finite element analysis were generated by using 25 schemes of built paddle Cantilevers with different thickness and uniform distributed loads. The neural network model has 5 input nodes representing the uniform distributed load and paddle size, length, width and thickness, eight nodes at hidden layer and one output node representing the max. deflection response (1500×1 represent the deflection response of load. Regression analysis between finite element results and values predicted by the neural network model shows the least error.
Understanding and Ameliorating Non-Linear Phase and Amplitude Responses in AMCW Lidar
Directory of Open Access Journals (Sweden)
John P. Godbaz
2011-12-01
Full Text Available Amplitude modulated continuous wave (AMCW lidar systems commonly suffer from non-linear phase and amplitude responses due to a number of known factors such as aliasing and multipath inteference. In order to produce useful range and intensity information it is necessary to remove these perturbations from the measurements. We review the known causes of non-linearity, namely aliasing, temporal variation in correlation waveform shape and mixed pixels/multipath inteference. We also introduce other sources of non-linearity, including crosstalk, modulation waveform envelope decay and non-circularly symmetric noise statistics, that have been ignored in the literature. An experimental study is conducted to evaluate techniques for mitigation of non-linearity, and it is found that harmonic cancellation provides a significant improvement in phase and amplitude linearity.
A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
Matouš, Karel; Geers, Marc G. D.; Kouznetsova, Varvara G.; Gillman, Andrew
2017-02-01
Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.
A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
Energy Technology Data Exchange (ETDEWEB)
Matouš, Karel, E-mail: kmatous@nd.edu [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States); Geers, Marc G.D.; Kouznetsova, Varvara G. [Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven (Netherlands); Gillman, Andrew [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 (United States)
2017-02-01
Since the beginning of the industrial age, material performance and design have been in the midst of innovation of many disruptive technologies. Today's electronics, space, medical, transportation, and other industries are enriched by development, design and deployment of composite, heterogeneous and multifunctional materials. As a result, materials innovation is now considerably outpaced by other aspects from component design to product cycle. In this article, we review predictive nonlinear theories for multiscale modeling of heterogeneous materials. Deeper attention is given to multiscale modeling in space and to computational homogenization in addressing challenging materials science questions. Moreover, we discuss a state-of-the-art platform in predictive image-based, multiscale modeling with co-designed simulations and experiments that executes on the world's largest supercomputers. Such a modeling framework consists of experimental tools, computational methods, and digital data strategies. Once fully completed, this collaborative and interdisciplinary framework can be the basis of Virtual Materials Testing standards and aids in the development of new material formulations. Moreover, it will decrease the time to market of innovative products.
Bell, Iris R; Sarter, Barbara; Standish, Leanna J; Banerji, Prasanta; Banerji, Pratip
2015-06-01
The purpose of the present paper is to (a) summarize evidence for the nanoparticle nature and biological effects of traditional homeopathically-prepared medicines at low and ultralow doses; (b) provide details of historically-based homeopathic green manufacturing materials and methods, relating them to top-down mechanical attrition and plant-based biosynthetic processes in modern nanotechnology; (c) outline the potential roles of nonlinear dose-responses and dynamical interactions with complex adaptive systems in generating endogenous amplification processes during low dose treatment. Possible mechanisms of low dose effects, for which there is evidence involving nanoparticles and/or homeopathically-manufactured medicines, include hormesis, time-dependent sensitization, and stochastic resonance. All of the proposed mechanisms depend upon endogenous nonlinear amplification processes in the recipient organism in interaction with the salient, albeit weak signal properties of the medicine. Conventional ligand-receptor mechanisms relevant to higher doses are less likely involved. Effects, especially for homeopathically-prepared nanophytomedicines, include bidirectional host state-dependent changes in function. Homeopathic clinicians report successful treatment of serious infections and cancers. Preclinical biological evidence is consistent with such claims. Controlled biological data on homeopathically-prepared medicines indicate modulation of gene expression and biological signaling pathways regulating cell cycles, immune reactions, and central nervous system function from studies on cells, animals, and human subjects. As a 200-year old system of traditional medicine used by millions of people worldwide, homeopathy offers a pulsed low dose treatment strategy and strong safety record to facilitate progress in translational nanomedicine with plants and other natural products. In turn, modern nanotechnology methods can improve homeopathic manufacturing procedures
Razzaq, Zia
1989-01-01
Straight or curved hat-section members are often used as structural stiffeners in aircraft. For instance, they are employed as stiffeners for the dorsal skin as well as in the aerial refueling adjacent area structure in F-106 aircraft. The flanges of the hat-section are connected to the aircraft skin. Thus, the portion of the skin closing the hat-section interacts with the section itself when resisting the stresses due to service loads. The flexural fatigue life of such a closed section is estimated using materially nonlinear axial fatigue characteristics. It should be recognized that when a structural shape is subjected to bending, the fatigue life at the neutral axis is infinity since the normal stresses are zero at that location. Conversely, the fatigue life at the extreme fibers where the normal bending stresses are maximum can be expected to be finite. Thus, different fatigue life estimates can be visualized at various distances from the neural axis. The problem becomes compounded further when significant portions away from the neutral axis are stressed into plastic range. A theoretical analysis of the closed hat-section subjected to flexural cyclic loading is first conducted. The axial fatigue characteristics together with the related axial fatigue life formula and its inverted form given by Manson and Muralidharan are adopted for an aluminum alloy used in aircraft construction. A closed-form expression for predicting the flexural fatigue life is then derived for the closed hat-section including materially nonlinear action. A computer program is written to conduct a study of the variables such as the thicknesses of the hat-section and the skin, and the type of alloy used. The study has provided a fundamental understanding of the flexural fatigue life characteristics of a practical structural component used in aircraft when materially nonlinear action is present.
Prediction of nonlinear optical properties of organic materials. General theoretical considerations
Cardelino, B.; Moore, C.; Zutaut, S.
1993-01-01
The prediction of nonlinear optical properties of organic materials is geared to assist materials scientists in the selection of good candidate molecules. A brief summary of the quantum mechanical methods used for estimating hyperpolarizabilities will be presented. The advantages and limitations of each technique will be discussed. Particular attention will be given to the finite-field method for calculating first and second order hyperpolarizabilities, since this method is better suited for large molecules. Corrections for dynamic fields and bulk effects will be discussed in detail, focusing on solvent effects, conformational isomerization, core effects, dispersion, and hydrogen bonding. Several results will be compared with data obtained from third-harmonic-generation (THG) and dc-induced second harmonic generation (EFISH) measurements. These comparisons will demonstrate the qualitative ability of the method to predict the relative strengths of hyperpolarizabilities of a class of compounds. The future application of molecular mechanics, as well as other techniques, in the study of bulk properties and solid state defects will be addressed. The relationship between large values for nonlinear optical properties and large conjugation lengths is well known, and is particularly important for third-order processes. For this reason, the materials with the largest observed nonresonant third-order properties are conjugated polymers. An example of this type of polymer is polydiacetylene. One of the problems in dealing with polydiacetylene is that substituents which may enhance its nonlinear properties may ultimately prevent it from polymerizing. A model which attempts to predict the likelihood of solid-state polymerization is considered, along with the implications of the assumptions that are used. Calculations of the third-order optical properties and their relationship to first-order properties and energy gaps will be discussed. The relationship between monomeric and
First principles crystal engineering of nonlinear optical materials. I. Prototypical case of urea
Masunov, Artëm E.; Tannu, Arman; Dyakov, Alexander A.; Matveeva, Anastasia D.; Freidzon, Alexandra Ya.; Odinokov, Alexey V.; Bagaturyants, Alexander A.
2017-06-01
The crystalline materials with nonlinear optical (NLO) properties are critically important for several technological applications, including nanophotonic and second harmonic generation devices. Urea is often considered to be a standard NLO material, due to the combination of non-centrosymmetric crystal packing and capacity for intramolecular charge transfer. Various approaches to crystal engineering of non-centrosymmetric molecular materials were reported in the literature. Here we propose using global lattice energy minimization to predict the crystal packing from the first principles. We developed a methodology that includes the following: (1) parameter derivation for polarizable force field AMOEBA; (2) local minimizations of crystal structures with these parameters, combined with the evolutionary algorithm for a global minimum search, implemented in program USPEX; (3) filtering out duplicate polymorphs produced; (4) reoptimization and final ranking based on density functional theory (DFT) with many-body dispersion (MBD) correction; and (5) prediction of the second-order susceptibility tensor by finite field approach. This methodology was applied to predict virtual urea polymorphs. After filtering based on packing similarity, only two distinct packing modes were predicted: one experimental and one hypothetical. DFT + MBD ranking established non-centrosymmetric crystal packing as the global minimum, in agreement with the experiment. Finite field approach was used to predict nonlinear susceptibility, and H-bonding was found to account for a 2.5-fold increase in molecular hyperpolarizability to the bulk value.
Sobota, Paul; Dornisch, Wolfgang; Klinkel, Sven
2016-08-01
The present approach deals with the dynamical analysis of thin structures using an isogeometric Reissner-Mindlin shell formulation. Here, a consistent and a lumped mass matrix are employed for the implicit time integration method. The formulation allows for large displacements and finite rotations. The Rodrigues formula, which incorporates the axial vector is used for the rotational description. It necessitates an interpolation of the director vector in the current configuration. Two concept for the interpolation of the director vector are presented. They are denoted as continuous interpolation method and discrete interpolation method. The shell formulation is based on the assumption of zero stress in thickness direction. In the present formulation an interface to 3D nonlinear material laws is used. It leads to an iterative procedure at each integration point. Here, a J2 plasticity material law is implemented. The suitability of the developed shell formulation for natural frequency analysis is demonstrated in numerical examples. Transient problems undergoing large deformations in combination with nonlinear material behavior are analyzed. The effectiveness, robustness and superior accuracy of the two interpolation methods of the shell director vector are investigated and are compared to numerical reference solutions.
Characterization of oxidized carbon materials with photoinduced absorption response
Uklein, A. V.; Diyuk, V. E.; Grishchenko, L. M.; Kozhanov, V. O.; Boldyrieva, O. Yu.; Lisnyak, V. V.; Multian, V. V.; Gayvoronsky, V. Ya.
2016-12-01
An efficient application of fast remote diagnostics for carbon material (CM) bulk particles was demonstrated. Porous layers of CM particles with different oxidation levels were characterized by self-action of picosecond laser pulses at 1064 nm. Nitrogen adsorption, Boehm titration, and thermal analysis of the oxidized CMs revealed diverse specific surface area S_{BET}, reasonable surface acidity, and high concentration of surface oxygen-containing groups. Dense CM porous layers showed a monotonous reduction of the absorptive nonlinear optical (NLO) response efficiency versus the oxidation level with characteristic magnitude Im(χ _C^{(3)})˜ 10^{-10} esu for the carbon particles fraction. The obtained Im(χ _C^{(3)})/S_{BET} ratio remains approximately constant, which indicates the certain proportion between the absorptive NLO response efficiency and the specific surface area. We suggest to use Im(χ _C^{(3)}) as a figure of merit for carbons subjected to the oxidation—the route to enhance the CM surface reactivity.
Institute of Scientific and Technical Information of China (English)
GaoJin-Yue; ZhangHan-Zhuang; YangJian-Bing
2003-01-01
We report on a theoreticalanalysis of the effects of a converging pump field of Gaussian transverse profile on second harmonic generation in a periodic nonlinear material with quasi-phase-matching. The outputs of the centre intensity and the intensity flux for second harmonic generation are derived by simulation, based on the parameters of quasi-phase-mismatch, the waist and focus positions of the input pump beam. The results show that when the transverse profile of the pump field is taken into account, the quasi-phase-match value and focus position of input beam for maximal second harmonic generation flollow new criteria.
Institute of Scientific and Technical Information of China (English)
张汉壮; 杨建冰; 高锦岳
2003-01-01
We report on a theoretical analysis of the effects of a converging pump field of Gaussian transverse profile on second harmonic generation in a periodic nonlinear material with quasi-phase-matching. The outputs of the centre intensity and the intensity flux for second harmonic generation are derived by simulation, based on the parameters of quasi-phase-mismatch, the waist and focus positions of the input pump beam. The results show that when the transverse profile of the pump field is taken into account, the quasi-phase-match value and focus position of input beam for maximal second harmonic generation follow new criteria.
Sunbuloglu, Emin; Bozdag, Ergun; Toprak, Tuncer; Islak, Civan
2013-01-01
This study is aimed at setting a method of experimental parameter estimation for large-deforming nonlinear viscoelastic continuous fibre-reinforced composite material model. Specifically, arterial tissue was investigated during experimental research and parameter estimation studies, due to medical, scientific and socio-economic importance of soft tissue research. Using analytical formulations for specimens under combined inflation/extension/torsion on thick-walled cylindrical tubes, in vitro experiments were carried out with fresh sheep arterial segments, and parameter estimation procedures were carried out on experimental data. Model restrictions were pointed out using outcomes from parameter estimation. Needs for further studies that can be developed are discussed.
An all-optical matrix multiplication scheme with non-linear material based switching system
Institute of Scientific and Technical Information of China (English)
Archan Kumar Das; Sourangshu Mukhopadhyay
2005-01-01
Optics is a potential candidate in information, data, and image processing. In all-optical data and information processing, optics has been used as information carrying signal because of its inherent advantages of parallelism. Several optical methods are proposed in support of the above processing. In many algebraic,arithmetic, and image processing schemes fundamental logic and memory operations are conducted exploring all-optical devices. In this communication we report an all-optical matrix multiplication operation with non-linear material based switching circuit.
Strength of anisotropy in a granular material: Linear versus nonlinear contact model.
La Ragione, Luigi; Gammariello, Marica; Recchia, Giuseppina
2016-12-01
In this paper, we deal with anisotropy in an idealized granular material made of a collection of frictional, elastic, contacting particles. We present a theoretical analysis for an aggregate of particles isotropically compressed and then sheared, in which two possible contacts laws between particles are considered: a linear contact law, where the contact stiffness is constant; and a nonlinear contact law, where the contact stiffness depends on the overlapping between particles. In the former case the anisotropy observed in the aggregate is associated with particle arrangement. In fact, although the aggregate is initially characterized by an isotropic network of contacts, during the loading, an anisotropic texture develops, which is measured by a fabric tensor. With a nonlinear contact law it is possible to develop anisotropy because contacting stiffnesses are different, depending on the orientation of the contact vectors with respect to the axis of the applied deformation. We find that before the peak load is reached, an aggregate made of particles with a linear contact law develops a much smaller anisotropy compared with that of an aggregate with a nonlinear law.
Strength of anisotropy in a granular material: Linear versus nonlinear contact model
La Ragione, Luigi; Gammariello, Marica; Recchia, Giuseppina
2016-12-01
In this paper, we deal with anisotropy in an idealized granular material made of a collection of frictional, elastic, contacting particles. We present a theoretical analysis for an aggregate of particles isotropically compressed and then sheared, in which two possible contacts laws between particles are considered: a linear contact law, where the contact stiffness is constant; and a nonlinear contact law, where the contact stiffness depends on the overlapping between particles. In the former case the anisotropy observed in the aggregate is associated with particle arrangement. In fact, although the aggregate is initially characterized by an isotropic network of contacts, during the loading, an anisotropic texture develops, which is measured by a fabric tensor. With a nonlinear contact law it is possible to develop anisotropy because contacting stiffnesses are different, depending on the orientation of the contact vectors with respect to the axis of the applied deformation. We find that before the peak load is reached, an aggregate made of particles with a linear contact law develops a much smaller anisotropy compared with that of an aggregate with a nonlinear law.
Kim, K. J.; Lee, J. H.; Park, D. K.; Jung, B. G.; Han, X.(Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany); Paik, J. K.
2016-01-01
Ships and offshore platforms that operate in Arctic regions at low temperatures are likely subjected to impact loads that arise from collisions with icebergs. The aim of this paper was to examine the nonlinear impact response of steel-plated structures in an Arctic environment. In addition to material tensile tests for characterisation of the mechanical properties of polar-class high-tensile steel of grade DH36, an experimental study was undertaken in a dropped-object test facility on steel-p...
Extremal Overall Elastic Response of Polycrystalline Materials
DEFF Research Database (Denmark)
Bendsøe, Martin P; Lipton, Robert
1996-01-01
Polycrystalline materials comprised of grains obtained froma single anisotropic material are considered in the frameworkof linear elasticity. No assumptions on the symmetry of thepolycrystal are made. We subject the material to independentexternal strain and stress fields with prescribed mean...
Fault zone damage, nonlinear site response, and dynamic triggering associated with seismic waves
Wu, Chunquan
, followed by a logarithmic recovery with time. The observed weak reductions of peak frequencies with near instantaneous recovery likely reflect nonlinear response with essentially fixed level of damage, while the larger drops followed by logarithmic recovery reflect the generation (and then recovery) of additional rock damage. The results indicate clearly that nonlinear site response may occur during medium-size earthquakes, and that the PGA threshold for in situ nonlinear site response is lower than the previously thought value of ˜100--200 Gal. The recent Mw9.0 off the Pacific coast of Tohoku earthquake and its aftershocks generated widespread strong shakings as large as ˜3000 Gal along the east coast of Japan. I systematically analyze temporal changes of material properties and nonlinear site response in the shallow crust associated with the Tohoku main shock, using seismic data recorded by the Japanese Strong Motion Network KIK-Net. I compute the spectral ratios of windowed records from a pair of surface and borehole stations, and then use the sliding-window spectral ratios to track the temporal changes in the site response of various sites at different levels of PGA The preliminary results show clear drop of resonant frequency of up to 70% during the Tohoku main shock at 6 sites with PGA from 600 to 1300 Gal. The third part of my thesis mostly focuses on how seismic waves trigger additional earthquakes at long-range distance, also known as dynamic triggering. Here I perform a comprehensive analysis of dynamic triggering around the Babaoshan and Huangzhuang-Gaoliying faults southwest of Beijing, China. The triggered earthquakes are identified as impulsive seismic arrivals with clear P- and S-waves in 5 Hz high-pass-filtered three-component velocity seismograms during the passage of large amplitude body and surface waves of large teleseismic earthquakes. The results suggest that triggered earthquakes in this region likely occur near the transition between the velocity
Diagnosing nonlinearities in the local and remote responses to partial Amazon deforestation
Badger, Andrew M.; Dirmeyer, Paul A.
2016-08-01
Using a set of fully coupled climate model simulations, the response to partial deforestation over the Amazon due to agricultural expansion has been analyzed. Three variations of 50% deforestation (all of western half, all of eastern half, and half of each grid box) were compared with total deforestation to determine the degree and character of nonlinearity of the climate response to partial deforestation. A metric is developed to quantify the degree and distribution of nonlinearity in the response, applicable to any variable. The metric also quantifies whether the response is saturating or accelerating, meaning significantly either more or less than 50% of the simulated response to total deforestation is attained at 50% deforestation. The spatial structure of the atmospheric response to Amazon deforestation reveals large areas across the tropics that exhibit a significant nonlinear component, particularly for temperature and geopotential height. Over the domain between 45°S and 45°N across all longitudes, 50% deforestation generally provides less than half of the total response to deforestation over oceans, indicating the marine portion of climate system is somewhat resilient to progressive deforestation. However, over continents there are both accelerating and saturating responses to 50% Amazon deforestation, and the response is different depending on whether the eastern or western half of Amazonia is deforested or half of the forest is removed uniformly across the region.
Zhang, Bingbing; Shi, Guoqiang; Yang, Zhihua; Zhang, Fangfang; Pan, Shilie
2017-03-27
Deep-ultraviolet nonlinear optical (DUV NLO) crystals are the key materials to extend the output range of solid-state lasers to below 200 nm. The only practical material KBe2 BO3 F2 suffers high toxicity through beryllium and strong layered growth. Herein, we propose a beryllium-free material design and synthesis strategy for DUV NLO materials. Introducing the (BO3 F)(4-) , (BO2 F2 )(3-) , and (BOF3 )(2-) groups in borates could break through the fixed 3D B-O network that would produce a larger birefringence without layering and simultaneously keep a short cutoff edge down to DUV. The theoretical and experimental studies on a series of fluorooxoborates confirm this strategy. Li2 B6 O9 F2 is identified as a DUV NLO material with a large second harmonic generation efficiency (0.9×KDP) and a large predicted birefringence (0.07) without layering. This study provides a feasible way to break down the DUV wall for NLO materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonlinear Gust Response Analysis of Free Flexible Aircraft
Directory of Open Access Journals (Sweden)
Chen Shilu
2013-01-01
Full Text Available Gust response analysis plays a very important role in large aircraft design. This paper presents a methodology for calculating the flight dynamic characteristics and gust response of free flexible aircraft. A multidisciplinary coupled numerical tool is developed to simulate detailed aircraft models undergoing arbitrary free flight motion in the time domain, by Computational Fluid Dynamics (CFD, Computational Structure Dynamics (CSD and Computational Flight Mechanics (CFM coupling. To achieve this objective, a structured, time-accurate flow-solver is coupled with a computational module solving the flight mechanics equations of motion and a structural mechanics code determining the structural deformations. A novel method to determine the trim state of flexible aircraft is also stated. First, the field velocity approach is validated, after the trim state is attained, gust responses for the one-minus-cosine gust profile are analyzed for the longitudinal motion of a slender-wing aircraft configuration with and without the consideration of structural deformation.
Thermoviscoelastic dynamic response for a composite material thin narrow strip
Energy Technology Data Exchange (ETDEWEB)
Dai, Hong Liang; Qi, Li-Li; Liu, Hai-Bo [Hunan University, Changsha (China)
2015-02-15
Based on von Karman nonlinear strain-displacement relationships and classical thin plate theory, a list of nonlinear dynamic equilibrium equations for a viscoelastic composite material thin narrow strip under thermal and mechanic loads are deduced. According to the material constitutive relationship and the relaxation modulus in the form of the Prony series, combing with the Newmark method and the Newton-cotes integration method, a new numerical algorithm for direct solving the whole problem in the time domain is established. By applying this numerical algorithm, the viscoelastic composite material thin narrow strip as the research subject is analyzed systematically, and its rich dynamical behaviors are revealed comprehensively. To verify the accuracy of the present work, a comparison is made with previously published results. Finally, the viscoelastic composite material thin narrow strip under harmonic excitation load and impact load are discussed in detail, and many valuable thermoviscoelastic dynamic characteristics are revealed.
Effects on the Floor Response Spectra by the Nonlinear Behavior of a Seismic Base Isolation System
Energy Technology Data Exchange (ETDEWEB)
Park, Hyungkui; Kim, Jung Han; Choi, Inkil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-05-15
An evaluation of safety being carried out for various risk factors of prevents for nuclear power plant accident. In general, an evaluation of the structural integrity was performed about seismic risk. In recent years, an assessment of integrity of internal equipment being carried out for earthquake loads owing to the possibility of severe accidents caused by the destruction of internal equipment or a blackout. Floor response spectra of the structure should be sought for evaluating of the integrity of internal equipment. The floor response spectra depends on the characteristics of seismic base isolation system such as the natural frequency, damping ratio, and height of the floor of the structure. An evaluation of the structural integrity using the equivalent stiffness of the seismic base isolation system was satisfactory. In this study, the effect of the non-linearity of isolated system in the floor response spectrum of the structure is analyzed. In this study, the floor response spectrum of the seismic base isolation system by the non-linear effect of the rubber isolator was analyzed. As a result, the influence of the non-linear isolated system was increased in hi-frequency domain. In addition, each floor exhibited a more different of responses compared with the equivalent linear model of the isolated structure. The non-linearity of the isolation system of the structure was considered, because of a more reliable assessment of integrity of equipment at each floor of seismic base the isolation system.
Energy Technology Data Exchange (ETDEWEB)
Castro, Hemerson P. S.; Alencar, Márcio A. R. C.; Hickmann, Jandir M. [Optics and Materials Group–OPTMA, Universidade Federal de Alagoas, CAIXA POSTAL 2051, 57061-970 Maceió (Brazil); Wender, Heberton [Brazilian Synchrotron National Laboratory (LNLS), CNPEM, Rua Giuseppe Máximo Scolfaro 10.000, 13083-970 Campinas (Brazil); Department of Physics, Universidade Federal do Mato Grosso do Sul, 79070-900, Campo Grande (Brazil); Teixeira, Sergio R. [Institute of Physics, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil); Dupont, Jairton [Laboratory of Molecular Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil)
2013-11-14
The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.
On the Boundary between Nonlinear Jump Phenomenon and Linear Response of Hypoid Gear Dynamics
Directory of Open Access Journals (Sweden)
Jun Wang
2011-01-01
Full Text Available A nonlinear time-varying (NLTV dynamic model of a hypoid gear pair system with time-dependent mesh point, line-of-action vector, mesh stiffness, mesh damping, and backlash nonlinearity is formulated to analyze the transitional phase between nonlinear jump phenomenon and linear response. It is found that the classical jump discontinuity will occur if the dynamic mesh force exceeds the mean value of tooth mesh force. On the other hand, the propensity for the gear response to jump disappears when the dynamic mesh force is lower than the mean mesh force. Furthermore, the dynamic analysis is able to distinguish the specific tooth impact types from analyzing the behaviors of the dynamic mesh force. The proposed theory is general and also applicable to high-speed spur, helical and spiral bevel gears even though those types of gears are not the primary focus of this paper.
Wind energy conversion. Volume VI. Nonlinear response of wind turbine rotor
Energy Technology Data Exchange (ETDEWEB)
Chopra, I.
1978-09-01
The nonlinear equations of motor for a rigid rotor restrained by three flexible springs representing, respectively, the flapping, lagging, and feathering motions are derived using Lagrange's equations, for arbitrary angular rotations. These are reduced to a consistent set of nonlinear equations using nonlinear terms up to third order. The complete analysis is divided into three parts, A, B, and C. Part A consists of forced response of two-degree flapping-lagging rotor under the excitation of pure gravitational field (i.e., no aerodynamic forces). In Part B, the effect of aerodynamic forces on the dynamic response of two-degree flapping-lagging rotor is investigated. In Part C, the effect of third degree of motion, feathering, is considered.
Issa, Jimmy S.; Shaw, Steven W.
2015-07-01
In this work we investigate the nonlinear dynamic response of systems composed of a primary inertia to which multiple identical vibration absorbers are attached. This problem is motivated by observations of systems of centrifugal pendulum vibration absorbers that are designed to reduce engine order torsional vibrations in rotating systems, but the results are relevant to translational systems as well. In these systems the total absorber mass is split into multiple equal masses for purposes of distribution and/or balance, and it is generally expected that the absorbers will act in unison, corresponding to a synchronous response. In order to capture nonlinear effects of the responses of the absorbers, specifically, their amplitude-dependent frequency, we consider them to possess nonlinear stiffness. The equations of motion for the system are derived and it is shown how one can uncouple the equations for the absorbers from that for the primary inertia, resulting in a system of identical resonators that are globally coupled. These symmetric equations are scaled for weak nonlinear effects, near resonant forcing, and small damping. The method of averaging is applied, from which steady-state responses and their stability are investigated. The response of systems with two, three, and four absorbers are considered in detail, demonstrating a rich variety of bifurcations of the synchronous response, resulting in responses with various levels of symmetry in which sub-groups of absorbers are mutually synchronous. It is also shown that undamped models with more than two absorbers possess a degenerate response, which is made robust by the addition of damping to the model. Design guidelines are proposed based on the nature of the system response, with the aim of minimizing the acceleration of the primary system. It is shown that the desired absorber parameters are selected so that the system achieves a stable synchronous response which does not undergo jumps via saddle
Growth and characterization of an organic nonlinear optical material: L-Histidine malonate
Ramya, K.; Saraswathi, N. T.; Raja, C. Ramachandra
2016-10-01
L-Histidine malonate is one of the potential organic material for nonlinear optical applications. Single crystals of L-Histidine malonate were grown by the liquid diffusion method. The lattice parameter values were evaluated from single crystal X-ray diffraction technique. The Fourier Transform Infra Red and Raman spectral studies were employed to identify the different modes of vibrations of molecular groups in the crystal. Optical characterization and the percentage of optical transmission were recorded using UV-vis-NIR spectroscopy. The molecular structure was established by proton and carbon Nuclear magnetic resonance spectral studies. The thermal behavior of the material has been studied by Thermo gravimetric and Differential thermal plots. The second harmonic generation conversion efficiency was found out from the powder technique of Kurtz and Perry.
DNA-based polymers as chiral templates for second-order nonlinear optical materials.
Wanapun, Duangporn; Hall, Victoria J; Begue, Nathan J; Grote, James G; Simpson, Garth J
2009-10-19
The unique symmetry properties of chiral systems allow the emergence of coherent second harmonic generation in polymeric materials lacking polar order. Deoxyribonucleic acid (DNA) treated with the surfactant cetyltrimethylammonium (CTMA) was drop-cast to spontaneously form films that are active for coherent second harmonic generation (SHG). SHG images acquired as a function of incident and exigent polarization are in good agreement with theoretical predictions assuming nonpolar D(infinity) symmetry for the double-stranded DNA chains. Doping the DNA films with crystal violet substantially increases the efficiency of SHG, but does not significantly alter the polarization-dependence, suggesting that the SHG generated upon doping arises from the same chiral-specific origin, presumably templated by the DNA. These results raise the possibility of new design strategies for organic nonlinear optical materials based on soft chiral polymers that do not require polar order.
Dyson, Doris H
2003-01-01
A possible reason for superficial learning in an introductory anesthesia course was considered to be a lack of visual reinforcement at the time of examination preparation. Students had limited access to live animal laboratories and clinical cases during the course, reducing their ability to depend on experiential learning. In an attempt to improve student learning, simple presentation software was used to develop a supplemental CD. The design involved multiple PowerPoint presentations that incorporated text, pictures, videos, and self-assessments. Non-linear exploration of the topics covered was made possible by extensive use of hyperlinks within and between presentations, moving the student to definitions, background material, videos, advanced details, and previously covered information. Comments received from students on a prototype were positive overall, and improvements were made related to their feedback. Other supplemental materials and lecture presentations can easily incorporate the techniques described here.
L-Cystine hydrochloride: A novel semi-organic nonlinear optical material for optical devices
Selvaraju, K.; Valluvan, R.; Kirubavathi, K.; Kumararaman, S.
2007-01-01
A new semi-organic nonlinear optical (NLO) material L-cystine hydrochloride (LCHCl) was grown in large size measuring 19 × 5 × 3 mm 3 by slow solvent evaporation technique for the first time in literature. The cell parameter values were determined by single crystal X-ray diffraction studies. Fourier Transform Infrared spectroscopic analysis was carried out on the grown sample to ascertain the fundamental functional groups. Thermal behavior of the grown LCHCl sample was analyzed by TG & DTA analysis. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester. The optical transmission studies and second harmonic generation (SHG) efficiency studies justified the device quality of the grown crystal and the SHG study reveals that the grown sample has nearly 1.2 times higher efficiency than that of potassium dihydrogen phosphate (KDP), a well known NLO material.
Performance analysis of flow lines with non-linear flow of material
Helber, Stefan
1999-01-01
Flow line design is one of the major tasks in production management. The decision to install a set of machines and buffers is often highly irreversible. It determines both cost and revenue to a large extent. In order to assess the economic impact of any possible flow line design, production rates and inventory levels have to be estimated. These performance measures depend on the allocation of buffers whenever the flow of material is occasionally disrupted, for example due to machine failures or quality problems. The book describes analytical methods that can be used to evaluate flow lines much faster than with simulation techniques. Based on these fast analytical techniques, it is possible to determine a flow line design that maximizes the net present value of the flow line investment. The flow of material through the line may be non-linear, for example due to assembly operations or quality inspections.
Solution Growth of a Novel Nonlinear Optical Material: L-Histidine Tetrafluoroborate
Aggarwal, M. D.; Choi, J.; Wang, W. S.; Bhat, K.; Lal, R. B.; Shields, Angela D.; Penn, Benjamin G.; Frazier, Donald O.
1998-01-01
Single crystals of L-Histidine tetrafluoroborate (L-HFB), a semiorganic nonlinear optical (NLO) material have been successfully grown by the temperature lowering and evaporation methods in our laboratory. Solubility curves of L-HFB have been determined in different solvents, such as water, ethanol and acetone. The solubility of L-HFB is very low in acetone, and ethanol, therefore, it is not feasible to grow L-HFB single crystals using these solvents. Good quality single crystals of a novel nonlinear optical material L-HFB have been grown from aqueous solution. Effects of seed orientation on morphologies of L-HFB crystals were studied. The advantages and disadvantage of both the evaporation and the temperature lowering techniques are compared. The single crystals in size 20 x 20 x 10 cubic mm were grown with deionized water as solvent in two weeks with an approximate growth rate of 1.4mm/day. The transmission range for these crystals has been found to be from 250 nm to 1500 nm.
Eiras, J N; Vu, Q A; Lott, M; Payá, J; Garnier, V; Payan, C
2016-07-01
This study demonstrates the feasibility of the dynamic acousto-elastic effect of a continuous high frequency wave for investigating the material nonlinearity upon transient vibration. The approach is demonstrated on a concrete sample measuring 15×15×60cm(3). Two ultrasonic transducers (emitter and receiver) are placed at its middle span. A continuous high frequency wave of 500kHz propagates through the material and is modulated with a hammer blow. The position of the hammer blow on the sample is configured to promote the first bending mode of vibration. The use of a continuous wave allows discrete time extraction of the nonlinear behavior by a short-time Fourier transform approach, through the simultaneous comparison of a reference non-modulated signal and an impact-modulated signal. The hammer blow results in phase shifts and variations of signal amplitude between reference and perturbed signals, which are driven by the resonant frequency of the sample. Finally, a comprehensive analysis of the relaxation mechanisms (modulus and attenuation recovery) is conducted to untangle the coupled fast and slow hysteretic effects. Copyright © 2016 Elsevier B.V. All rights reserved.
A nonlinear dynamical system approach for the yielding behaviour of a viscoplastic material.
Burghelea, Teodor; Moyers-Gonzalez, Miguel; Sainudiin, Raazesh
2017-02-15
A nonlinear dynamical system model that approximates a microscopic Gibbs field model for the yielding of a viscoplastic material subjected to varying external stresses recently reported in R. Sainudiin, M. Moyers-Gonzalez and T. Burghelea, Soft Matter, 2015, 11(27), 5531-5545 is presented. The predictions of the model are in fair agreement with microscopic simulations and are in very good agreement with the micro-structural semi-empirical model reported in A. M. V. Putz and T. I. Burghelea, Rheol. Acta, 2009, 48, 673-689. With only two internal parameters, the nonlinear dynamical system model captures several key features of the solid-fluid transition observed in experiments: the effect of the interactions between microscopic constituents on the yield point, the abruptness of solid-fluid transition and the emergence of a hysteresis of the micro-structural states upon increasing/decreasing external forces. The scaling behaviour of the magnitude of the hysteresis with the degree of the steadiness of the flow is consistent with previous experimental observations. Finally, the practical usefulness of the approach is demonstrated by fitting a rheological data set measured with an elasto-viscoplastic material.
Impact of stoichiometry on the linear and nonlinear optical response of SnOx thin films
Li, Zhong-guo; Liang, Ling-yan; Cao, Hong-tao; Song, Ying-lin
2017-06-01
SnO is a promising p-type oxide semiconductor materials for applications such as transparent electronics and solar cells. However, further improvement of its performance is hindered by its diverse stoichiometry. We investigated the nonlinear and saturable absorption characteristics of pristine SnO and O-rich SnOx films by femtosecond degenerate pump-probe measurements at 515 nm. UV-Vis absorption data indicate bandgap blueshift with increasing oxygen concentration. Pristine SnO film exhibit saturable absorption while nonlinear absorption is observed in O-rich SnOx films. Our results shed light on the utilization of SnO in future device applications.
Generation of High Frequency Response in a Dynamically Loaded, Nonlinear Soil Column
Energy Technology Data Exchange (ETDEWEB)
Spears, Robert Edward [Idaho National Laboratory; Coleman, Justin Leigh [Idaho National Laboratory
2015-08-01
Detailed guidance on linear seismic analysis of soil columns is provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998),” which is currently under revision. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain analysis which includes evaluation of soil columns. When performing linear analysis, a given soil column is typically evaluated with a linear, viscous damped constitutive model. When submitted to a sine wave motion, this constitutive model produces a smooth hysteresis loop. For nonlinear analysis, the soil column can be modelled with an appropriate nonlinear hysteretic soil model. For the model in this paper, the stiffness and energy absorption result from a defined post yielding shear stress versus shear strain curve. This curve is input with tabular data points. When submitted to a sine wave motion, this constitutive model produces a hysteresis loop that looks similar in shape to the input tabular data points on the sides with discontinuous, pointed ends. This paper compares linear and nonlinear soil column results. The results show that the nonlinear analysis produces additional high frequency response. The paper provides additional study to establish what portion of the high frequency response is due to numerical noise associated with the tabular input curve and what portion is accurately caused by the pointed ends of the hysteresis loop. Finally, the paper shows how the results are changed when a significant structural mass is added to the top of the soil column.
Liang, Fayun; Chen, Haibing; Huang, Maosong
2017-07-01
To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.
Non-Linear Wave Loads and Ship responses by a time-domain Strip Theory
DEFF Research Database (Denmark)
Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher
1998-01-01
A non-linear time-domain strip theory for vertical wave loads and ship responses is presented. The theory is generalized from a rigorous linear time-domain strip theory representaton. The hydrodynamic memory effect due to the free surface is approximated by a higher order differential equation...
Scaling of ac susceptibility and the nonlinear response function of high-temperature superconductors
Institute of Scientific and Technical Information of China (English)
CHEN; Kaixuan; NING; Zhenhua; XU; Hengyi; QI; Zhi; LU; Guo
2005-01-01
The amplitude-dependent ac susceptibility of high-temperature superconductors is shown to obey some empirical scaling relations. We try to analyze this behavior by extending a dc nonlinear response function of mixed state to the ac cases. The derived equations for critical current and ac susceptibility x(T) agree with the scaling relations of experimental data.
Knoester, Jasper; Mukamel, Shaul
1990-01-01
A general scheme is presented for calculating the nonlinear optical response in condensed phases that provides a unified picture of excitons, polaritons, retardation, and local-field effects in crystals and in disordered systems. A fully microscopic starting point is taken by considering the evoluti
Nonlinear optical response of C60 in solvents: picosecond transient grating experiments
Khudyakov, Dmitriy V.; Rubtsov, Igor V.; Lobach, Anatolii S.; Nadtochenko, Victor A.
1996-05-01
Time-resolved resonant nonlinear optical response of C60 in a chlorobenzene solution was measured for 528 nm excitation and 1055, 528, and 351 nm probing for zzzz and zzyy configurations. The slow part of the signal (8 +/- 2 ps) was attributed to the orientational motion of C60 excited molecules.
Nonlinear Optical Response of Disordered J Aggregates in the Motional Narrowing Limit
Knoester, Jasper
1995-01-01
We discuss the theory of nonlinear optical response of molecular aggregates with frequency disorder. In contrast to the usual modeling, we allow for spatial correlations in the disorder. We show that the joint distribution of all multi-exciton frequencies can be determined analytically to first orde
Switchable and responsive surfaces and materials for biomedical applications
Zhang, Johnathan
2015-01-01
Surface modification of biomaterials can ultimately determine whether a material is accepted or rejected from the human body, and a responsive surface can further make the material ""smart"" and ""intelligent"". Switchable and Responsive Surfaces and Materials for Biomedical Applications outlines synthetic and biological materials that are responsive under different stimuli, their surface design and modification techniques, and applicability in regenerative medicine/tissue engineering, drug delivery, medical devices, and biomedical diagnostics. Part one provides a detailed overview of swit
RESPONSE OF NONLINEAR OSCILLATOR UNDER NARROW-BAND RANDOM EXCITATION
Institute of Scientific and Technical Information of China (English)
戎海武; 王向东; 孟光; 徐伟; 方同
2003-01-01
The principal resonance of Duffing oscillator to narrow-band random parametricexcitation was investigated. The method of multiple scales was used to determine theequations of modulation of amplitude and phase. The behavior, stability and bifurcation ofsteady state response were studied by means of qualitative analyses. The effects of damping,detuning, bandwidth and magnitudes of deterministic and random excitations wereanalyzed. The theoretical analyses were verified by numerical results. Theoretical analysesand numerical simulations show that when the intensity of the random excitation increases,the nontrivial steady state solution may change from a limit cycle to a diffused limit cycle.Under some conditions the system may have two ,steady state solutions.
Mukamel, Shaul
2003-08-01
Computing response functions by following the time evolution of superoperators in Liouville space (whose vectors are ordinary Hilbert space operators) offers an attractive alternative to the diagrammatic perturbative expansion of many-body equilibrium and nonequilibrium Green's functions. The bookkeeping of time ordering is naturally maintained in real (physical) time, allowing the formulation of Wick's theorem for superoperators, giving a factorization of higher order response functions in terms of two fundamental Green's functions. Backward propagations and analytic continuations using artificial times (Keldysh loops and Matsubara contours) are avoided. A generating functional for nonlinear response functions unifies quantum field theory and the classical mode coupling formalism of nonlinear hydrodynamics and may be used for semiclassical expansions. Classical response functions are obtained without the explicit computation of stability matrices.
Non-linear states of a positive or negative refraction index material in a cavity with feedback
Mártin, D. A.; Hoyuelos, M.
2010-06-01
We study a system composed by a cavity with plane mirrors containing a positive or negative refraction index material with third order effective electric and magnetic non-linearities. The aim of the work is to present a general picture of possible non-linear states in terms of the relevant parameters of the system. The parameters are the ones that appear in a reduced description that has the form of the Lugiato-Lefever equation. This equation is obtained from two coupled non-linear Schrödinger equations for the electric and magnetic field amplitudes.
Variable-amplitude oscillatory shear response of amorphous materials
Perchikov, Nathan; Bouchbinder, Eran
2014-06-01
Variable-amplitude oscillatory shear tests are emerging as powerful tools to investigate and quantify the nonlinear rheology of amorphous solids, complex fluids, and biological materials. Quite a few recent experimental and atomistic simulation studies demonstrated that at low shear amplitudes, an amorphous solid settles into an amplitude- and initial-conditions-dependent dissipative limit cycle, in which back-and-forth localized particle rearrangements periodically bring the system to the same state. At sufficiently large shear amplitudes, the amorphous system loses memory of the initial conditions, exhibits chaotic particle motions accompanied by diffusive behavior, and settles into a stochastic steady state. The two regimes are separated by a transition amplitude, possibly characterized by some critical-like features. Here we argue that these observations support some of the physical assumptions embodied in the nonequilibrium thermodynamic, internal-variables based, shear-transformation-zone model of amorphous viscoplasticity; most notably that "flow defects" in amorphous solids are characterized by internal states between which they can make transitions, and that structural evolution is driven by dissipation associated with plastic deformation. We present a rather extensive theoretical analysis of the thermodynamic shear-transformation-zone model for a variable-amplitude oscillatory shear protocol, highlighting its success in accounting for various experimental and simulational observations, as well as its limitations. Our results offer a continuum-level theoretical framework for interpreting the variable-amplitude oscillatory shear response of amorphous solids and may promote additional developments.
Will Nonlinear Backcalculation Help?
DEFF Research Database (Denmark)
Ullidtz, Per
2000-01-01
demonstrates, that treating the subgrade as a nonlinear elastic material, can result in more realistic moduli and a much better agreement between measured and calculated stresses and strains.The response of nonlinear elastic materials can be calculated using the Finite Element Method (FEM). A much simpler...... approach is to use the Method of Equivalent Thicknesses (MET), modified for a nonlinear subgrade. The paper includes an example where moduli backcalculated using FEM, linear elastic theory and MET are compared. Stresses and strains predicted by the three methods are also compared to measured values...
Wang, X.; Zheng, G. T.
2016-02-01
A simple and general Equivalent Dynamic Stiffness Mapping technique is proposed for identifying the parameters or the mathematical model of a nonlinear structural element with steady-state primary harmonic frequency response functions (FRFs). The Equivalent Dynamic Stiffness is defined as the complex ratio between the internal force and the displacement response of unknown element. Obtained with the test data of responses' frequencies and amplitudes, the real and imaginary part of Equivalent Dynamic Stiffness are plotted as discrete points in a three dimensional space over the displacement amplitude and the frequency, which are called the real and the imaginary Equivalent Dynamic Stiffness map, respectively. These points will form a repeatable surface as the Equivalent Dynamic stiffness is only a function of the corresponding data as derived in the paper. The mathematical model of the unknown element can then be obtained by surface-fitting these points with special functions selected by priori knowledge of the nonlinear type or with ordinary polynomials if the type of nonlinearity is not pre-known. An important merit of this technique is its capability of dealing with strong nonlinearities owning complicated frequency response behaviors such as jumps and breaks in resonance curves. In addition, this technique could also greatly simplify the test procedure. Besides there is no need to pre-identify the underlying linear parameters, the method uses the measured data of excitation forces and responses without requiring a strict control of the excitation force during the test. The proposed technique is demonstrated and validated with four classical single-degree-of-freedom (SDOF) numerical examples and one experimental example. An application of this technique for identification of nonlinearity from multiple-degree-of-freedom (MDOF) systems is also illustrated.
Nonlinear response studies and corrections for a liquid crystal spatial light modulator
Indian Academy of Sciences (India)
Ravinder Kumar Banyal; B Raghavendra Prasad
2010-06-01
The nonlinear response of light transmission characteristics of a liquid crystal (LC) spatial light modulator (SLM) is studied. The results show that the device exhibits a wide range of variations with different control parameters and input settings. Experiments were performed to obtain intensity modulation that is best described by either power-law or sigmoidal functions. Based on the inverse transformation, an appropriate pre-processing scheme for electrically addressed input gray-scale images, particularly important in several optical processing and imaging applications, is suggested. Further, the necessity to compensate the SLM image nonlinearities in a volume holographic data storage and retrieval system is demonstrated.
Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.
2010-05-01
We present a procedure for the modeling of the dispersion of the nonlinear optical response of complex molecular structures that is based strictly on the results from experimental characterization. We show how under some general conditions, the use of the Thomas-Kuhn sum-rules leads to a successful modeling of the nonlinear response of complex molecular structures.
Extremal Overall Elastic Response of Polycrystalline Materials
DEFF Research Database (Denmark)
Bendsøe, Martin P; Lipton, Robert
1997-01-01
Polycrystalline materials comprised of grains obtained from a single anisotropic material are considered in the framework of linear elasticity. No assumptions on the symmetry of the polycrystal are made. We subject the material to independent external strain and stress fields with prescribed mean...
Nonlinear biofluvial responses to vegetation change in a semiarid environment
Neave, Mel; Rayburg, Scott
2007-09-01
The desertification of grassland communities in the Jornada del Muerto Basin, southern New Mexico, USA, has occurred in association with a series of geomorphic responses that have influenced the system of vegetation change. Rainfall simulation experiments indicate that the volume of runoff generated from basin surfaces and its ability to erode are greatly affected by the distribution of vegetation, which ultimately controls processes such as rainsplash erosion, soil infiltrability and crust development. Animal activities also influence rates of sediment movement from unvegetated surfaces by disrupting soil crusts and making loose sediment available for transportation by overland flow. Shrublands in the Jornada Basin have a patchier vegetation cover than grasslands, with vegetated areas (shrubs) being separated by unvegetated (intershrub) zones. The exposed intershrub surfaces are more vulnerable to erosion than the grass and shrub surfaces. Thus, water and sediment yields, calculated using rainfall simulation experiments, were higher for vegetated (shrub and grass) plots than they were for unvegetated (intershrub) plots. The runoff and erosion model, KINEROS2, predicts that at the base of a 100 m slope, shrubland surfaces shed seven times more runoff and 25 times more sediment than grassland surfaces. Evidence to support the prediction of higher rates of erosion in the shrubland can be found in the form of the extensive rill networks that are common in this community. The contraction of grasslands has been associated with elevated rates of erosion that have altered the morphology of the surface, lowering slopes between shrubs, and increasing the amplitude of the microtopography. Overall, the viability of the exposed soils for recolonization by grasses has been reduced, reinforcing the system of shrubland invasion and lending support to the use of state-and-transition models to describe ecologic responses to change within this environment. Combined, these results
Nonlinear response of summer temperature to Holocene insolation forcing in Alaska.
Clegg, Benjamin F; Kelly, Ryan; Clarke, Gina H; Walker, Ian R; Hu, Feng Sheng
2011-11-29
Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate "surprises" with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000-5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land-atmosphere-ocean feedbacks.
RESPONSE ANALYSIS OF RANDOMLY EXCITED NONLINEAR SYSTEMS WITH SYMMETRIC WEIGHTING PREISACH HYSTERESIS
Institute of Scientific and Technical Information of China (English)
应祖光
2003-01-01
An approximate method for analyzing the response of nonlinear systems with the Preisach hysteresis of the non-local memory under a stationary Gaussian excitation is presented based on the covariance and switching probability analysis. The covariance matrix equation of the Preisach hysteretic system response is derived. The cross correlation function of the Preisach hysteretic force and response in the covariance equation is evaluated by the switching probability analysis and the Gaussian approximation to the response process. Then an explicit expression of the correlation function is given for the case of symmetric Preisach weighting functions. The numerical result obtained is in good agreement with that from the digital simulation.
Dey, Prasenjit
understanding the basic unexplored science as well as creating technological developments. The dephasing dynamics in semiconductors typically occur in the picosecond to femtosecond timescale, thus the use of ultrafast laser spectroscopy is a potential route to probe such excitonic responses. The focus of this dissertation is two-fold: firstly, to develop the necessary instrumentation to accurately probe the aforementioned parameters and secondly, to explore the quantum dynamics and the underlying many-body interactions in different layered semiconducting materials. A custom-built multidimensional optical non-linear spectrometer was developed in order to perform two-dimensional spectroscopic (2DFT) measurements. The advantages of this technique are multifaceted compared to regular one-dimensional and non-linear incoherent techniques. 2DFT technique is based on an enhanced version of Four wave mixing experiments. This powerful tool is capable of identifying the resonant coupling, probing the coherent pathways, unambiguously extracting the homogeneous linewidth in the presence of inhomogeneity and decomposing a complex spectra into real and imaginary parts. It is not possible to uncover such crucial features by employing one dimensional non-linear technique. Monolayers as well as bulk TMDs and group III-VI bulk layered materials are explored in this dissertation. The exciton quantum dynamics is explored with three pulse four-wave mixing whereas the phase sensitive measurements are obtained by employing two-dimensional Fourier transform spectroscopy. Temperature and excitation density dependent 2DFT experiments unfold the information associated with the many-body interactions in the layered semiconducting samples.
Excited-state dynamics and nonlinear optical response of Ge nanocrystals embedded in silica matrix
Razzari, Luca; Gnoli, Andrea; Righini, Marcofabio; Dâna, Aykutlu; Aydinli, Atilla
2006-05-01
We use a dedicated Z-scan setup, arranged to account for cumulative effects, to study the nonlinear optical response of Ge nanocrystals embedded in silica matrix. Samples are prepared with plasma-enchanced chemical-vapor deposition and post-thermal annealing. We measure a third-order nonlinear refraction coefficient of γ =1×10-16m2/W. The nonlinear absorption shows an intensity-independent coefficient of β =4×10-10m/W related to fast processes. In addition, we measure a second β component around 10-9m /W with a relaxation time of 300μs that rises linearly with the laser intensity. We associate its origin to the absorption of excited carriers from a surface-defect state with a long depopulation time.
Yu, Shukai; Talbayev, Diyar
2016-01-01
We present an experimental and computational study of the nonlinear optical response of conduction electrons to intense terahertz (THz) electric field. Our observations (saturable absorption and an amplitude-dependent group refractive index) can be understood on the qualitative level as the breakdown of the effective mass approximation. However, a predictive theoretical description of the nonlinearity has been missing. We propose a model based on the semiclassical electron dynamics, a realistic band structure, and the free electron Drude parameters to accurately calculate the experimental observables in InSb. Our results open a path to predictive modeling of the conduction-electron optical nonlinearity in semiconductors, metamaterials, as well as high-field effects in THz plasmonics.
Zilletti, Michele; Marker, Arthur; Elliott, Stephen John; Holland, Keith
2017-05-01
In this study model identification of the nonlinear dynamics of a micro-speaker is carried out by purely electrical measurements, avoiding any explicit vibration measurements. It is shown that a dynamic model of the micro-speaker, which takes into account the nonlinear damping characteristic of the device, can be identified by measuring the response between the voltage input and the current flowing into the coil. An analytical formulation of the quasi-linear model of the micro-speaker is first derived and an optimisation method is then used to identify a polynomial function which describes the mechanical damping behaviour of the micro-speaker. The analytical results of the quasi-linear model are compared with numerical results. This study potentially opens up the possibility of efficiently implementing nonlinear echo cancellers.
Morimoto, Takahiro; Zhong, Shudan; Orenstein, Joseph; Moore, Joel E.
2016-12-01
We study nonlinear magneto-optical responses of metals by a semiclassical Boltzmann equation approach. We derive general formulas for linear and second-order nonlinear optical effects in the presence of magnetic fields that include both the Berry curvature and the orbital magnetic moment. Applied to Weyl fermions, the semiclassical approach (i) captures the directional anisotropy of linear conductivity under a magnetic field as a consequence of an anisotropic B2 contribution, which may explain the low-field regime of recent experiments; and (ii) predicts strong second harmonic generation proportional to B that is enhanced as the Fermi energy approaches the Weyl point, leading to large nonlinear Kerr rotation. Moreover, we show that the semiclassical formula for the circular photogalvanic effect arising from the Berry curvature dipole is reproduced by a full quantum calculation using a Floquet approach.
Sudheesh, P.; Siji Narendran, N. K.; Chandrasekharan, K.
2013-12-01
Here we report a study on the third-order nonlinear optical properties of a new class of phenylhydrazones and the influence of silver and gold metal nanoparticles on their nonlinear response. Metal nanoparticles were prepared by laser ablation method. Single beam Z-scan technique with a 7 ns, 10 Hz Nd: YAG laser pulses at 532 nm were employed for the measurements. The compounds exhibit well optical limiting properties. Hence, these compounds are a promising class of materials for the optical device applications.
Nonlinear response speedup in bimodal visual-olfactory object identification
Directory of Open Access Journals (Sweden)
Richard eHöchenberger
2015-09-01
Full Text Available Multisensory processes are vital in the perception of our environment. In the evaluation of foodstuff, redundant sensory inputs not only assist the identification of edible and nutritious substances, but also help avoiding the ingestion of possibly hazardous substances. While it is known that the non-chemical senses interact already at early processing levels, it remains unclear whether the visual and olfactory senses exhibit comparable interaction effects. To address this question, we tested whether the perception of congruent bimodal visual-olfactory objects is facilitated compared to unimodal stimulation. We measured response times (RT and accuracy during speeded object identification. The onset of the visual and olfactory constituents in bimodal trials was physically aligned in the first and perceptually aligned in the second experiment. We tested whether the data favored coactivation or parallel processing consistent with race models. A redundant-signals effect was observed for perceptually aligned redundant stimuli only, i.e. bimodal stimuli were identified faster than either of the unimodal components. Analysis of the RT distributions and accuracy data revealed that these observations could be explained by a race model. More specifically, visual and olfactory channels appeared to be operating in a parallel, positively dependent manner. While these results suggest the absence of early sensory interactions, future studies are needed to substantiate this interpretation.
Functional, Responsive Materials Assembled from Recombinant Oleosin
Hammer, Daniel
Biological cells are surrounded by a plasma membrane made primarily of phospholipids that form a bilayer. This membrane is permselective and compartmentalizes the cell. A simple form of artificial cell is the vesicle, in which a phospholipid bilayer membrane surrounds an aqueous solution. However, there is no a priori reason why a membrane needs to be made of phospholipids. It could be made of any surfactant that forms a bilayer. We have assembled membranes and other structures from the recombinant plant protein oleosin. The ability to assemble from a recombinant protein means that every molecule is identical, we have complete control over the sequence, and hence can build in designer functionality with high fidelity, including adhesion and enzymatic activity. Such incorporation is trivial using the tools of molecular biology. We find that while many variants of oleosin make membranes, others make micelles and sheets. We show how the type of supramolecular structure can be altered by the conditions of solvent, such as ionic strength, and the architecture of the surfactant itself. We show that protease cleavable domains can be incorporated within oleosin, and be engineered to protect other functional domains such as adhesive motifs, to make responsive materials whose activity and shape depend on the action of proteases. We will also present the idea of making ``Franken''-oleosins, where large domains of native oleosin are replaced with domains from other functional proteins, to make hybrids conferred by the donor protein. Thus, we can view oleosin as a template upon which a vast array of designer functionalities can be imparted..
A study of non-linearity in rainfall-runoff response using 120 UK catchments
Mathias, Simon A.; McIntyre, Neil; Oughton, Rachel H.
2016-09-01
This study presents a catchment characteristic sensitivity analysis concerning the non-linearity of rainfall-runoff response in 120 UK catchments. Two approaches were adopted. The first approach involved, for each catchment, regression of a power-law to flow rate gradient data for recession events only. This approach was referred to as the recession analysis (RA). The second approach involved calibrating a rainfall-runoff model to the full data set (both recession and non-recession events). The rainfall-runoff model was developed by combining a power-law streamflow routing function with a one parameter probability distributed model (PDM) for soil moisture accounting. This approach was referred to as the rainfall-runoff model (RM). Step-wise linear regression was used to derive regionalization equations for the three parameters. An advantage of the RM approach is that it utilizes much more of the observed data. Results from the RM approach suggest that catchments with high base-flow and low annual precipitation tend to exhibit greater non-linearity in rainfall-runoff response. In contrast, the results from the RA approach suggest that non-linearity is linked to low evaporative demand. The difference in results is attributed to the aggregation of storm-flow and base-flow into a single system giving rise to a seemingly more non-linear response when applying the RM approach to catchments that exhibit a strongly dual storm-flow base-flow response. The study also highlights the value and limitations in a regionlization context of aggregating storm-flow and base-flow pathways into a single non-linear routing function.
Measurement of nonlinear elastic response in rock by the resonant bar method
Energy Technology Data Exchange (ETDEWEB)
Johnson, P.A. (Los Alamos National Lab., NM (United States)); Rasolofosaon, P.; Zinszner, B. (Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France))
1993-01-01
In this work we are studying the behavior of the fundamental (Young's) mode resonant peak as a function of drive amplitude in rock samples. Our goal from these studies is to obtain nonlinear moduli for many rock types, and to study the nonlinear moduli as a function of water saturation and other changes in physical properties. Measurements were made on seven different room dry rock samples. For one sample measurements were taken at 16 saturation levels between 1 and 98%. All samples display a softening'' nonlinearity, that is, the resonant frequency shifts downward with increasing drive amplitude. In extreme cases, the resonant frequency changes by as much as 25% over a strain interval of 10[sup [minus]7] to [approximately]4 [times] 10[sup [minus]5]. Measurements indicate that the nonlinear response is extremely sensitive to saturation. Estimates of a combined cubic and quartic nonlinear parameter [Gamma] range from approximately [minus]300 to [minus]10[sup 9] for the rock samples.
Energy Technology Data Exchange (ETDEWEB)
Bhaumik, Lopamudra, E-mail: lbhaumi2@illinois.edu [University of Illinois at Urbana-Champaign (United States); Raychowdhury, Prishati, E-mail: prishati@iitk.ac.in [Indian Institute of Technology Kanpur (India)
2013-12-15
Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S{sub a}(T{sub 1})is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure.
A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula
Ries, J. B.; Cohen, A. L.; McCorkle, D. C.
2010-09-01
Anthropogenic elevation of atmospheric pCO2 is predicted to cause the pH of surface seawater to decline by 0.3-0.4 units by 2100 AD, causing a 50% reduction in seawater [CO3 2-] and undersaturation with respect to aragonite in high-latitude surface waters. We investigated the impact of CO2-induced ocean acidification on the temperate scleractinian coral Oculina arbuscula by rearing colonies for 60 days in experimental seawaters bubbled with air-CO2 gas mixtures of 409, 606, 903, and 2,856 ppm pCO2, yielding average aragonite saturation states (ΩA) of 2.6, 2.3, 1.6, and 0.8. Measurement of calcification (via buoyant weighing) and linear extension (relative to a 137Ba/138Ba spike) revealed that skeletal accretion was only minimally impaired by reductions in ΩA from 2.6 to 1.6, although major reductions were observed at 0.8 (undersaturation). Notably, the corals continued accreting new skeletal material even in undersaturated conditions, although at reduced rates. Correlation between rates of linear extension and calcification suggests that reduced calcification under ΩA = 0.8 resulted from reduced aragonite accretion, rather than from localized dissolution. Accretion of pure aragonite under each ΩA discounts the possibility that these corals will begin producing calcite, a less soluble form of CaCO3, as the oceans acidify. The corals’ nonlinear response to reduced ΩA and their ability to accrete new skeletal material in undersaturated conditions suggest that they strongly control the biomineralization process. However, our data suggest that a threshold seawater [CO3 2-] exists, below which calcification within this species (and possibly others) becomes impaired. Indeed, the strong negative response of O. arbuscula to ΩA = 0.8 indicates that their response to future pCO2-induced ocean acidification could be both abrupt and severe once the critical ΩA is reached.
Yelve, Nitesh P; Mitra, Mira; Mujumdar, P M; Ramadas, C
2016-08-01
A new hybrid method based upon nonlinear Lamb wave response in time and frequency domains is introduced to locate a delamination in composite laminates. In Lamb wave based nonlinear method, the presence of damage is shown by the appearance of higher harmonics in the Lamb wave response. The proposed method not only uses this spectral information but also the corresponding temporal response data, for locating the delamination. Thus, the method is termed as a hybrid method. The paper includes formulation of the method and its application to locate a Barely Visible Impact Damage (BVID) induced delamination in a Carbon Fiber Reinforced Polymer (CFRP) laminate. The method gives the damage location fairly well. It is a baseline free method, as it does not need data from the pristine specimen.
Georgievskii, D. V.
2007-06-01
Material functions are necessary element of the constitutive relations determining any model of continuum. These functions can be defined as a collection of objects from which the operator of constitutive relations can be reconstructed completely. The material functions are found in test experiments and show the differences between a given medium and other media in the framework of the same model [1]. The "test experiment theory" is an important part of modern experimental mechanics. Just as in any experiment, from determining the viscosity coefficient by using the rotational viscosimeters to constructing the yield surface by using machines combined loading, the material functions are determined with an unavoidable error. For example, experimenters know that, in experiments with arbitrary accuracy, the moduli of elasticity can only be measured with an unimprovable tolerance of about 7%. Starting already from [2], the investigators' attention has been repeatedly drawn to the fact that it is necessary to take into account this tolerance in determining the material constants, functions, and functionals in problems of mechanics and especially in analyzing the stability of deformation processes. Mathematically, this means that problems of stability under perturbations of the initial data, external constantly acting forces, domain boundaries, etc. should be supplemented with the assumption that the material functions have unknown perturbations of a certain class [3]. The variations of material functions in the framework of the linearized stability theory were considered in [2, 4, 5]. In what follows, we study isotropic tensor functions in the most general case of scalar and tensor nonlinearity. These functions are assigned the meaning of constitutive relations between the stress and strain rate tensors in continuum. These constitutive relations contain scalar material functions of invariants on which, as follows from the above, some variations proportional to a small
Francés, Jorge; Bleda, Sergio; Bej, Subhajit; Tervo, Jani; Navarro-Fuster, Víctor; Fenoll, Sandra; Martínez-Gaurdiola, Francisco J.; Neipp, Cristian
2016-04-01
In this work the split-field finite-difference time-domain method (SF-FDTD) has been extended for the analysis of two-dimensionally periodic structures with third-order nonlinear media. The accuracy of the method is verified by comparisons with the nonlinear Fourier Modal Method (FMM). Once the formalism has been validated, examples of one- and two-dimensional nonlinear gratings are analysed. Regarding the 2D case, the shifting in resonant waveguides is corroborated. Here, not only the scalar Kerr effect is considered, the tensorial nature of the third-order nonlinear susceptibility is also included. The consideration of nonlinear materials in this kind of devices permits to design tunable devices such as variable band filters. However, the third-order nonlinear susceptibility is usually small and high intensities are needed in order to trigger the nonlinear effect. Here, a one-dimensional CBG is analysed in both linear and nonlinear regime and the shifting of the resonance peaks in both TE and TM are achieved numerically. The application of a numerical method based on the finite- difference time-domain method permits to analyse this issue from the time domain, thus bistability curves are also computed by means of the numerical method. These curves show how the nonlinear effect modifies the properties of the structure as a function of variable input pump field. When taking the nonlinear behaviour into account, the estimation of the electric field components becomes more challenging. In this paper, we present a set of acceleration strategies based on parallel software and hardware solutions.
Evolution of Channels Draining Mount St. Helens: Linking Non-Linear and Rapid, Threshold Responses
Simon, A.
2010-12-01
The catastrophic eruption of Mount St. Helens buried the valley of the North Fork Toutle River (NFT) to a depth of up to 140 m. Initial integration of a new drainage network took place episodically by the “filling and spilling” (from precipitation and seepage) of depressions formed during emplacement of the debris avalanche deposit. Channel incision to depths of 20-30 m occurred in the debris avalanche and extensive pyroclastic flow deposits, and headward migration of the channel network followed, with complete integration taking place within 2.5 years. Downstream reaches were converted from gravel-cobble streams with step-pool sequences to smoothed, infilled channels dominated by sand-sized materials. Subsequent channel evolution was dominated by channel widening with the ratio of changes in channel width to changes in channel depth ranging from about 60 to 100. Widening resulted in significant adjustment of hydraulic variables that control sediment-transport rates. For a given discharge over time, flow depths were reduced, relative roughness increased and flow velocity and boundary shear stress decreased non-linearly. These changes, in combination with coarsening of the channel bed with time resulted in systematically reduced rates of degradation (in upstream reaches), aggradation (in downstream reaches) and sediment-transport rates through much of the 1990s. Vertical adjustments were, therefore, easy to characterize with non-linear decay functions with bed-elevation attenuating with time. An empirical model of bed-level response was then created by plotting the total dimensionless change in elevation against river kilometer for both initial and secondary vertical adjustments. High magnitude events generated from the generated from upper part of the mountain, however, can cause rapid (threshold) morphologic changes. For example, a rain-on-snow event in November 2006 caused up to 9 m of incision along a 6.5 km reach of Loowit Creek and the upper NFT. The event
Numerical estimation of 3D mechanical forces exerted by cells on non-linear materials.
Palacio, J; Jorge-Peñas, A; Muñoz-Barrutia, A; Ortiz-de-Solorzano, C; de Juan-Pardo, E; García-Aznar, J M
2013-01-04
The exchange of physical forces in both cell-cell and cell-matrix interactions play a significant role in a variety of physiological and pathological processes, such as cell migration, cancer metastasis, inflammation and wound healing. Therefore, great interest exists in accurately quantifying the forces that cells exert on their substrate during migration. Traction Force Microscopy (TFM) is the most widely used method for measuring cell traction forces. Several mathematical techniques have been developed to estimate forces from TFM experiments. However, certain simplifications are commonly assumed, such as linear elasticity of the materials and/or free geometries, which in some cases may lead to inaccurate results. Here, cellular forces are numerically estimated by solving a minimization problem that combines multiple non-linear FEM solutions. Our simulations, free from constraints on the geometrical and the mechanical conditions, show that forces are predicted with higher accuracy than when using the standard approaches.
Graphene Oxides as Tunable Broadband Nonlinear Optical Materials for Femtosecond Laser Pulses.
Jiang, Xiao-Fang; Polavarapu, Lakshminarayana; Neo, Shu Ting; Venkatesan, T; Xu, Qing-Hua
2012-03-15
Graphene oxide (GO) thin films on glass and plastic substrates were found to display interesting broadband nonlinear optical properties. We have investigated their optical limiting activity for femtosecond laser pulses at 800 and 400 nm, which could be tuned by controlling the extent of reduction. The as-prepared GO films were found to exhibit excellent broadband optical limiting behaviors, which were significantly enhanced upon partial reduction by using laser irradiation or chemical reduction methods. The laser-induced reduction of GO resulted in enhancement of effective two-photon absorption coefficient at 400 nm by up to ∼19 times and enhancement of effective two- and three-photon absorption coefficients at 800 nm by ∼12 and ∼14.5 times, respectively. The optical limiting thresholds of partially reduced GO films are much lower than those of various previously reported materials. Highly reduced GO films prepared by using the chemical method displayed strong saturable absorption behavior.
New approaches for the fabrication of photonic structures of nonlinear optical materials
Energy Technology Data Exchange (ETDEWEB)
Carvajal, J.J., E-mail: joanjosep.carvajal@urv.ca [Fisica i Cristal lografia de Materials i Nanomaterials (FiCMA-FiCNA), Univ. Rovira i Virgili (URV), Campus Sescelades, Marcel li Domingo, s/n, E-43007 Tarragona (Spain); Pena, A.; Kumar, R.; Pujol, M.C.; Mateos, X.; Aguilo, M. [Fisica i Cristal lografia de Materials i Nanomaterials (FiCMA-FiCNA), Univ. Rovira i Virgili (URV), Campus Sescelades, Marcel li Domingo, s/n, E-43007 Tarragona (Spain); Diaz, F., E-mail: f.diaz@urv.ca [Fisica i Cristal lografia de Materials i Nanomaterials (FiCMA-FiCNA), Univ. Rovira i Virgili (URV), Campus Sescelades, Marcel li Domingo, s/n, E-43007 Tarragona (Spain); Vazquez de Aldana, J.R.; Mendez, C.; Moreno, P.; Roso, L. [Servicio Laser, Univ. Salamanca, E-37008 Salamanca (Spain); Trifonov, T.; Rodriguez, A.; Alcubilla, R. [Dept. Enginyeria Electronica, Univ. Politecnica de Catalunya, E-08034 Barcelona (Spain); Kral, Z.; Ferre-Borrull, J.; Pallares, J.; Marsal, L.F. [Dept. d' Enginyeria Electronica, Univ. Rovira i Virgili (URV), E-43007 Tarragona (Spain); Di Finizio, S.; Macovez, R. [ICFO-Institut de Ciencies Fotoniques, E-08860 Castelldefels (Spain)
2009-12-15
We revisited two different strategies to fabricate 1D photonic crystals of nonlinear optical dielectric materials based on ultrafast laser ablation of the surface of an RbTiOPO{sub 4} crystal, and selective etching of ferroelectric domains of the surface of a periodically poled LiNbO{sub 4} crystal. We evaluated their behaviour as Bragg diffraction gratings. We also presented the recent advances we developed in a new procedure of fabrication of 2D and 3D photonic crystals of KTiOPO{sub 4} (KTP) grown on the surface of a KTP substrate by liquid phase epitaxial means within the pores of a silicon macroporous template. Optical, structural, morphological, and compositional characterization for the photonic crystals produced through this technique are presented.
Saravanan, M.; Senthil, A.; Rajasekar, S. Abraham
2016-09-01
Good optical quality, potential second order nonlinear optical crystal L-asparaginium picrate (LASP) was grown by the slow cooling method. The solubility and metastable zone width of LASP specimen was studied. The LASP crystal belongs to monoclinic crystal system with noncentrosymmetric space group P21. UV-Visible-NIR transmittance spectrum determines the optical band gap of LASP. Excellence of the grown crystal is ascertained by the etching studies. Laser Damage Threshold and Photoluminescence studies designate that the grown crystal contains less imperfection. The mechanical behaviour of LASP sample was investigated at different temperatures. The piezoelectric nature, Photoconductive nature and the relative Second Harmonic Generation (for various particle sizes) of the material were also studied. Birefringence and ocular (optical) homogeneity of the crystal were assessed using modified channel spectrum method.
Oluwole, David O; Yagodin, Alexey V; Mkhize, Nhlakanipho C; Sekhosana, Kutloano E; Martynov, Alexander G; Gorbunova, Yulia G; Tsivadze, Aslan Yu; Nyokong, Tebello
2017-02-24
We report original, selective, and efficient approaches to novel nonlinear optical (NLO) materials, namely homoleptic double- and triple-decker europium(III) complexes 2 and 3 with the A3 B-type phthalocyanine ligand (2,3-bis[2'-(2''-hydroxyethoxy)ethoxy]-9,10,16,17,23,24-hexa-n-butoxyphthalocyanine 1) bearing two anchoring diethyleneglycol chains terminated with OH groups. Their covalently linked nanoconjugates with mercaptosuccinic acid-capped ternary CdSeTe/CdTeS/ZnSeS quantum dots are prepared in the presence of an ethyl(dimethylaminopropyl)carbodiimide activating agent. Optical limiting (OL) properties of the obtained low-symmetry complexes and their conjugates with quantum dots (QDs) are measured for the first time by the open-aperture Z-scan technique (532 nm laser and pulse rate of 10 ns). For comparison, symmetrical double- and triple-decker Eu(III) octa-n-butoxyphthalocyaninates 5 and 6 and their mixtures with trioctylphosphine oxide-capped QDs are also synthesized and studied. It is revealed that both lowering of molecular symmetry and expansion of the π-electron system upon moving from double- to triple-decker complexes significantly improves the OL characteristics, making the low-symmetry triple-decker complex 3 the most efficient optical limiter in the studied family of sandwich complexes, affording 50 % lowering of light transmittance below 0.5 J cm(-2) input fluence. Conjugation (both covalent and noncovalent) with QDs affords further enhancement of the OL properties of both double- and triple-decker complexes. Altogether, the obtained results contribute to the development of novel nonlinear optical materials for future nanoelectronic and optical device applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dielectric Response of Glass-Forming Liquids in the Nonlinear Regime
Samanta, Subarna
Broadband dielectric spectroscopy is a powerful technique for understanding the dynamics in supercooled liquids. It generates information about the timescale of the orientational motions of molecular dipoles within the liquid. However, dynamics of liquids measured in the non-linear response regime has recently become an area of significant interest, because additional information can be obtained compared with linear response measurements. The first part of this thesis describes nonlinear dielectric relaxation experiments performed on various molecular glass forming-liquids, with an emphasis on the response at high frequencies (excess wing). A significant nonlinear dielectric effect (NDE) was found to persist in these modes, and the magnitude of this NDE traces the temperature dependence of the activation energy. A time resolved measurement technique monitoring the dielectric loss revealed that for the steady state NDE to develop it would take a very large number of high amplitude alternating current (ac) field cycles. High frequency modes were found to be 'slaved' to the average structural relaxation time, contrary to the standard picture of heterogeneity. Nonlinear measurements were also performed on the Johari-Goldstein beta-relaxation process. High ac fields were found to modify the amplitudes of these secondary modes. The nonlinear features of this secondary process are reminiscent of those found for the excess wing regime, suggesting that these two contributions to dynamics have common origins. The second part of this thesis describes the nonlinear effects observed from the application of high direct current (dc) bias fields superposed with a small amplitude sinusoidal ac field. For several molecular glass formers, the application of a dc field was found to slow down the system via reduction in configurational entropy (Adam-Gibbs relation). Time resolved measurements indicated that the rise of the non-linear effect is slower than its decay, as observed in the
Nutritional response of Okra to various packaging materials and ...
African Journals Online (AJOL)
Nutritional response of Okra to various packaging materials and chemical pickling agents. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... and groundnut oil) and packaging materials (glass jar, plastic and stainless ...
Xu, Jialiang; Semin, Sergey; Rasing, Theo; Rowan, Alan E
2015-03-01
Photonic circuits are expected to greatly contribute to the next generation of integrated chips, as electronic integrated circuits become confronted with bottlenecks such as heat generation and bandwidth limitations. One of the main challenges for the state-of-the-art photonic circuits lies in the development of optical materials with high nonlinear optical (NLO) susceptibilities, in particular in the wavelength and subwavelength dimensions which are compatible with on-chip technologies. In this review, the varied approaches to micro-/nanosized NLO materials based on building blocks of bio- and biomimetic molecules, as well as synthetic D-π-A chromophores, have been categorized as supramolecular self-assemblies, molecular scaffolds, and external force directed assemblies. Such molecular and supramolecular NLO materials have intrinsic advantages, such as structural diversities, high NLO susceptibilities, and clear structure-property relationships. These "bottom-up" fabrication approaches are proposed to be combined with the "top-down" techniques such as lithography, etc., to generate multifunctionality by coupling light and matter on the (sub)wavelength scale. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crystal growth of an organic non-linear optical material from the vapour phase
Hou, W
1999-01-01
Due to the potential applications of organic non-linear optical materials in the areas of optical processing and communication, the investigation of the crystal growth of new organic NLO materials has been an active field for the last 20 years. For such uses it is necessary to produce single crystals of high quality and perfection, free of strain and defects. When crystals are grown from the solution and the melt, solvent and the decomposition component in the melt can introduce impurities and imperfection to the as-grown crystals. For crystals grown from vapour phase, in the absence of the solvent, this cannot occur and the method promises to yield single crystals of higher quality. Despite this attraction, little attention has been paid to the vapour phase growth of organic NLO crystals. It was with this in mind that the following investigation was carried out. Using Methyl p-hydroxybenzoate (p-MHB), a potential organic NLO material, a comparison investigation was made of its crystal growth from both the va...
Sato, T.; Kato, S.; Masuda, A.
2016-09-01
This paper presents a resonance-type vibration energy harvester with a Duffing-type nonlinear oscillator which is designed to perform effectively in a wide frequency band. For the conventional linear vibration energy harvester, the maximum performance of the power generation and its bandwidth are in a relation of trade-off. Introducing a Duffing-type nonlinearity can expand the resonance frequency band and enable the harvester to generate larger electric power in a wider frequency range. However, since such nonlinear oscillator may have coexisting multiple steady-state solutions in the resonance band, it is difficult for the nonlinear harvester to maintain the high performance of the power generation constantly. The principle of self-excitation and entrainment has been utilized to give global stability to the high-energy orbit by destabilizing other unexpected low-energy orbits by introducing a switching circuit of the load resistance between positive and the negative values depending on the response amplitude of the oscillator. In this paper, an improved control law that switches the load resistance according to a frequency-dependent threshold is proposed to ensure the oscillator to respond in the high-energy orbit without ineffective power consumption. Numerical study shows that the steady-state responses of the harvester with the proposed control low are successfully kept on the high-energy orbit without repeating activation of the excitationmode.
Stable response of low-gravity liquid non-linear sloshing in a circle cylindrical tank
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Under pitch excitation, the sloshing of liquid in circular cylindrical tank includes planar motion, rotary motion and rotary motion inside planar motion. The boundaries between stable motion and unstable motion depend on the radius of the tank, the liquid height, the gravitational intension, the surface tensor and the sloshing damping. In this article, the differential equations of nonlinear sloshing are built first.And by variational principle, the Lagrange function of liquid pressure is constructed in volume intergration form. Then the velocity potential function is expanded in series by wave height function at the free surface. The nonlinear equations with kinematics and dynamics free surface boundary conditions through variation are derived. At last, these equations are solved by multiple-scales method. The influence of Bond number on the global stable response of nonlinear liquid sloshing in circular cylinder tank is analyzed in detail. The result indicates that variation of amplitude frequency response characteristics of the system with Bond, jump, lag and other nonlinear phenomena of liquid sloshing are investigated.
Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.
2010-02-01
Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.
Liu, Yi; Liu, Hui; Qin, Guangjiong; Gui, Zhiguo; Yang, Zhimao; Liu, Jialei
2017-10-01
Novel nonlinear optical polymer based on poly(aryl ether ketone) was designed and prepared. Such kind of materials showed excellent water solubility and thermal properties, its onset decomposition temperature can reach 314 °C; glass transition temperature can reach 170 °C. Though the nonlinear optical coefficients (d33) is not very large at 1310 nm, just about 13.9 pm/V; such kind of materials show us a low absorption spectral window at red and infrared light area (wavelength longer than 650 nm). Under the laser of 1310 nm, the morphology of the poled films can be detected by second harmonic generation (SHG) scanning microscopy.
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, S. [Nano Scale Device Research Laboratory, Centre for Electronics Design and Technology, Indian Institute of Science, Bangalore 560 012 (India); Pahari, S. [Administrative Department, Jadavpur University, Kolkata 700 032 (India); Sarkar, R. [Department of Computer Science and Engineering, West Bengal University of Technology, BF-142, Salt Lake City, Sector-1, Kolkata 700064 (India); Ghosh, S. [Department of Electronics and Telecommunication Engineering, Bengal Engineering and Science University, Howrah 711 103 (India); Ghatak, K.P. [Department of Electronic Science, University of Calcutta, 92, Achryya Prafulla Chandra Road, Kolkata 700 009 (India)], E-mail: kamakhyaghatak@yahoo.co.in
2008-10-01
We study the diffusivity-mobility ratio (DMR) in heavily doped nonlinear compounds forming band tails on the basis of a newly formulated electron dispersion law and III-V, ternary and quaternary materials form a special case of our generalized analysis. The complex nature of the energy spectrum and creation of a new forbidden zone is the consequence of anisotropic energy band constants and the interaction of the impurity atoms in the tails with spin-orbit splitting of valence bands for the other compounds. Analytically, the presence of non-removable poles in the dispersion relation of the undoped material creates the complex energy spectrum for the corresponding heavily doped sample. The DMR for the heavily doped II-VI, IV-VI and stressed materials has been studied. It has been found taking n-type CdGeAs{sub 2,}, Cd{sub 3}As{sub 2}, InAs, InSb, Hg{sub 1-x}Cd{sub x}Te, In{sub 1-x}Ga{sub x}As{sub y}P{sub 1-y} lattice matched to InP, CdS, PbTe, PbSnTe, Pb{sub 1-x}Sn{sub x}Se and stressed InSb as examples that the DMR increases with the increasing electron concentration with different numerical values and the nature of variations are totally band structure dependent. An experimental method of determining the DMR in heavily doped materials for arbitrary dispersion relations together with three applications in the area of material science in general has been suggested.
Sabater, A. B.; Rhoads, J. F.
2017-02-01
The parametric system identification of macroscale resonators operating in a nonlinear response regime can be a challenging research problem, but at the micro- and nanoscales, experimental constraints add additional complexities. For example, due to the small and noisy signals micro/nanoresonators produce, a lock-in amplifier is commonly used to characterize the amplitude and phase responses of the systems. While the lock-in enables detection, it also prohibits the use of established time-domain, multi-harmonic, and frequency-domain methods, which rely upon time-domain measurements. As such, the only methods that can be used for parametric system identification are those based on fitting experimental data to an approximate solution, typically derived via perturbation methods and/or Galerkin methods, of a reduced-order model. Thus, one could view the parametric system identification of micro/nanosystems operating in a nonlinear response regime as the amalgamation of four coupled sub-problems: nonparametric system identification, or proper experimental design and data acquisition; the generation of physically consistent reduced-order models; the calculation of accurate approximate responses; and the application of nonlinear least-squares parameter estimation. This work is focused on the theoretical foundations that underpin each of these sub-problems, as the methods used to address one sub-problem can strongly influence the results of another. To provide context, an electromagnetically transduced microresonator is used as an example. This example provides a concrete reference for the presented findings and conclusions.
The Overall Response of Composite Materials Undergoing Large Deformations
1991-11-15
of Materials Science and Mineral Engineering, University of California, Berkeley, March 6, 1990. Instituto de Investigaciones en Matematicas ...of them should be held on an equal footing. Thus, it appears that it is only on a rigorous sense that the lower bound is " superior " to the upper...minimize 10 functions than it is to solve nonlinear sets of equations, and therefore, the methods developed in this paper are computationally superior to
Nonlinear Response of Unbiased and Biased Bilayer Graphene at Terahertz Frequencies
McGouran, Riley
The main focus of this thesis is the investigation of the nonlinear response of unbiased and biased bilayer graphene to incident radiation at terahertz frequencies. We present a tight-binding model of biased and unbiased bilayer graphene that is used to calculate the nonlinear terahertz response. Dynamic equations are developed for the electron density matrix within the length gauge. These equations facilitate the calculation of interband and intraband carrier dynamics. We then obtain nonlinear transmitted and reflected terahertz fields using the calculated nonlinear interband and intraband current densities. We examine the nonlinear response of unbiased bilayer graphene as a function of the incident field amplitude. In this case the sample is taken to be undoped. In the reflected field, we find the maximum third harmonic amplitude to be approximately 30% of the fundamental frequency for an incident field of 1.5 kV cm-1, which is greater than that found in undoped monolayer graphene at the same field amplitude. To examine the nonlinear response of biased bilayer graphene, we investigate two different scenarios. In the first scenario, we consider an undoped sample at fixed temperature. We find that when the external bias has a value of 2 meV, the generated third harmonic in the reflected field is approximately 45% of the fundamental for an incident field amplitude of 2 kV cm-1 . When we increase the external bias further to 8 meV, we find the generated third harmonic field is approximately 38% of the fundamental for an incident field amplitude of 1 kV cm-1. For both of these bias values, the generated third harmonic is greater than that found in undoped monolayer graphene. In that system, the generated third harmonic field is approximately 32% of the fundamental for an incident field amplitude of 200 V cm-1. In the second scenario, we consider doped biased bilayer graphene. We fix the carrier density at 2x1012 cm-2, the incident field amplitude at 50 kV cm-1, and
Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.
2010-08-01
We introduce a self-consistent theory for the description of the optical linear and nonlinear response of molecules that is based strictly on the results of the experimental characterization. We show how the Thomas-Kuhn sum-rules can be used to eliminate the dependence of the nonlinear response on parameters that are not directly measurable. Our approach leads to the successful modeling of the dispersion of the nonlinear response of complex molecular structures with different geometries (dipolar and octupolar), and can be used as a guide towards the modeling in terms of fundamental physical parameters.
Wang, Xuefei; Wang, Ying; Zhang, Bingbing; Zhang, Fangfang; Yang, Zhihua; Pan, Shilie
2017-09-12
The discovery of new nonlinear optical (NLO) materials for coherent light generation in the deep-ultraviolet (DUV, wavelength below 200 nm) region is essential for the development of laser technologies. Herein, we report a new material CsB4O6F (CBF), which combines the superior structural genes of two famous NLO materials-β-BaB2O4 (BBO) and KBe2BO3F2 (KBBF). CBF exhibits excellent DUV optical properties including a short cutoff edge (155 nm), a large SHG response (~1.9 × KDP), and a suitable birefringence that enables frequency doubling down to 171.6 nm. Remarkably, CBF melts congruently and show an improved growth habit. In addition, our rational design strategy will contribute to the discovery of DUV NLO materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ranjbaran, Mina; Galiana, Henrietta L
2013-11-01
Studies of the vestibulo-ocular reflex (VOR) have revealed that this type of involuntary eye movement is influenced by viewing distance. This paper presents a bilateral model for the horizontal angular VOR in the dark based on realistic physiological mechanisms. It is shown that by assigning proper nonlinear neural computations at the premotor level, the model is capable of replicating target-distance-dependent VOR responses that are in agreement with geometrical requirements. Central premotor responses in the model are also shown to be consistent with experimental observations. Moreover, the model performance after simulated unilateral canal plugging also reproduces experimental observations, an emerging property. Such local nonlinear computations could similarly generate context-dependent behaviors in other more complex motor systems.
Improving the Material Response for Slow Heat of Energetic Materials
Energy Technology Data Exchange (ETDEWEB)
Nichols, A L
2010-03-08
The goal of modern high explosive slow heat cookoff modeling is to understand the level of mechanical violence. This requires understanding the coupled thermal-mechanical-chemical system that such an environment creates. Recent advances have improved our ability to predict the time to event, and we have been making progress on predicting the mechanical response. By adding surface tension to the product gas pores in the high explosive, we have been able to reduce the current model's tendency to overpressurize confinement vessels. We describe the model and demonstrate how it affects a LX-10 STEX experiment. Issues associated with current product gas equations of state are described and examined.
Dipole Solitons in Nonlinear Media with an Exponential-Decay Nonlocal Response
Institute of Scientific and Technical Information of China (English)
YANG Zhen-Jun; MA Xue-Kai; ZHENG Yi-Zhou; GAO Xing-Hui; LU Da-Quan; HU Wei
2011-01-01
By applying the variational approach,the analytical expression of dipole solitons is obtained in nonlinear media with an exponential-decay nonlocal response.The relations of the soliton power versus the propagation constant and the soliton width are given.Some numerical simulations are carried out.The results show that the analytical expression is in excellent agreement with the numerical results for the strongly nonlocal case.
Periodic response of nonlinear dynamical system with large number of degrees of freedom
Indian Academy of Sciences (India)
B P Patel; S M Ibrahim; Y Nath
2009-12-01
In this paper, a methodology based on shooting technique and Newmark's time integration scheme is proposed for predicting the periodic responses of nonlinear systems directly from solution of second order equations of motion without transforming to double ﬁrst order equations. The proposed methodology is quite suitable for systems with large number of degrees of freedom such as the banded system of equations from ﬁnite element discretization.
Nonlinear pulse propagation in a single- and a few-cycle regimes with Raman response
Indian Academy of Sciences (India)
Vimlesh Mishra; Ajit Kumar
2010-09-01
The propagation equation for a single- and a few-cycle pulses was derived in a cubic nonlinear medium including the Raman response. Using this equation, the propagation characteristics of a single- and a 4-cycle pulse, at 0.8 m wavelength, were studied numerically in one spatial dimension. It was shown that Raman term does influence the propagation characteristics of a single- as well as a few-cycle pulses by counteracting the self-steepening effect.
Institute of Scientific and Technical Information of China (English)
ZHANG JIA-SHU; XIAO XIAN-CI
2001-01-01
A multistage adaptive higher-order nonlinear finite impulse response (MAHONFIR) filter is proposed to predict chaotic time series. Using this approach, we may readily derive the decoupled parallel algorithm for the adaptation of the coefficients of the MAHONFIR filter, to guarantee a more rapid convergence of the adaptive weights to their optimal values. Numerical simulation results show that the MAHONFIR filters proposed here illustrate a very good performance for making an adaptive prediction of chaotic time series.
Evaluation of frost damage in cement-based materials by a nonlinear elastic wave technique
Eiras, J. N.; Kundu, T.; Popovics, J. S.; Monzó, J.; Soriano, L.; Payá, J.
2014-03-01
Frost resistance of concrete is a major concern in cold regions. RILEM (International union of laboratories and experts in construction materials, systems and structures) recommendations provide two alternatives for evaluating frost damage by nondestructive evaluation methods for concrete like materials. The first method is based on the ultrasonic pulse velocity measurement, while the second alternative technique is based on the resonant vibration test. In this study, we monitor the frost damage in Portland cement mortar samples with water to cement ratio of 0.5 and aggregate to cement ratio of 3. The samples are completely saturated by water and are frozen for 24 hours at -25°C. The frost damage is monitored after 0, 5, 10, 15 and 20 freezing-thawing cycles by nonlinear impact resonance acoustic spectroscopy (NIRAS). The results obtained are compared with those obtained by resonant vibration tests, the second alternative technique recommended by RILEM. The obtained results show that NIRAS is more sensitive to early stages of damage than the standard resonant vibration tests.
Inverse solution technique of steady-state responses for local nonlinear structures
Wang, Xing; Guan, Xin; Zheng, Gangtie
2016-03-01
An inverse solution technique with the ability of obtaining complete steady-state primary harmonic responses of local nonlinear structures in the frequency domain is proposed in the present paper. In this method, the nonlinear dynamic equations of motion is first condensed from many to only one algebraic amplitude-frequency equation of relative motion. Then this equation is transformed into a polynomial form, and with its frequency as the unknown variable, the polynomial equation is solved by tracing all the solutions of frequency with the increase of amplitude. With this solution technique, some complicated dynamic behaviors such as sharp tuning, anomalous jumps, breaks in responses and detached resonance curves could be obtained. The proposed method is demonstrated and validated through a finite element beam under force excitations and a lumped parameter model with a local nonlinear element under base excitations. The phenomenon of detached resonance curves in the frequency response and its coupling effects with multiple linear modes in the latter example are observed.
Energy Technology Data Exchange (ETDEWEB)
Lim, C.W. [Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)], E-mail: bccwlim@cityu.edu.hk; Lai, S.K. [Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)
2007-08-20
This Letter deals with a research subject in nonlinear mechanics and applied mathematics. It develops (i) accurate higher-order approximate analytical nonlinear oscillator system with negative dissipation, and (ii) analogy to long Josephson junction. Particular emphasis has been placed on the weakly damped nonlinear oscillating system with negative dissipation with respect to a transformed temporal variable derived from the weak link of the simplified Josephson junction model. Nevertheless, the system response is shown to be stable with positive dissipation with respect to the physical time at a specific location. The analysis forms an innovative extension of the harmonic balancing method commonly used in nonlinear oscillation and vibration systems such as the Duffing oscillator and van der Pol oscillator. Besides introducing coupling of linearized governing equation and harmonic balancing method, the method of averaging is also employed to obtain accurate higher-order analytical approximate solutions. Unlike the classical harmonic balance method without analytical solution, the approach not only considers energy dissipation but also presents simple linear algebraic approximate solutions. In addition, general approximate analytical expressions for the dispersion relations are also established. The presence of a small perturbed parameter is not required.
NONLINEAR TRANSIENT RESPONSE OF STAY CABLE WITH VISCOELASTICITY DAMPER IN CABLE-STAYED BRIDGE
Institute of Scientific and Technical Information of China (English)
陈水生; 孙炳楠; 冯义卿
2004-01-01
Taking the bending stiffness,static sag,and geometric non-linearity into consideration,the space nonlinear vibration partial differential equations were derived.The partical differential equations were discretized in space by finite center difference approximation,then the nonlinear ordinal differential equations were obtained.A hybrid method involving the combination of the Newmark method and the pseudo-force strategy was proposed to analyze the nonlinear transient response of the inclined cable-dampers system subjected to arbitrary dynamic loading.As an example,two typical stay cables were calculated by the present method.The results reveal both the validity and the deficiency of the viscoelasticity damper for vibration control of stay cables.The efficiency and accuracy of the proposed method is also verified by comparing the results with those obtained by using Runge-Kutta direct integration technique.A new time history analysis method is provided for the research on the stay cable vibration control.
Guevara, V R
2004-02-01
A nonlinear programming optimization model was developed to maximize margin over feed cost in broiler feed formulation and is described in this paper. The model identifies the optimal feed mix that maximizes profit margin. Optimum metabolizable energy level and performance were found by using Excel Solver nonlinear programming. Data from an energy density study with broilers were fitted to quadratic equations to express weight gain, feed consumption, and the objective function income over feed cost in terms of energy density. Nutrient:energy ratio constraints were transformed into equivalent linear constraints. National Research Council nutrient requirements and feeding program were used for examining changes in variables. The nonlinear programming feed formulation method was used to illustrate the effects of changes in different variables on the optimum energy density, performance, and profitability and was compared with conventional linear programming. To demonstrate the capabilities of the model, I determined the impact of variation in prices. Prices for broiler, corn, fish meal, and soybean meal were increased and decreased by 25%. Formulations were identical in all other respects. Energy density, margin, and diet cost changed compared with conventional linear programming formulation. This study suggests that nonlinear programming can be more useful than conventional linear programming to optimize performance response to energy density in broiler feed formulation because an energy level does not need to be set.
UNBALANCE RESPONSE AND TOUCH-RUBBING THRESHOLD SPEED OF ROTOR SUBJECTED TO NONLINEAR MAGNETIC FORCES
Institute of Scientific and Technical Information of China (English)
JING Minqing; LI Zixin; LUO Min; YU Lie
2008-01-01
Because of the effect of unbalance excitation and nonlinear magnetic force, the large vibration of the rotor supported by active magnetic bearing(AMB) will go beyond the radial gap of the bearing, even causing mechanical touch-rubbing when the system works at an operational speed closer to the critical speed. In order to investigate this problem, the linear model and nonlinear model of the single mass symmetric rigid rotor system supported by AMB are established respectively and the corresponding transfer functions of close-loop system are given. To pass through the numerical calculation by using MATLAB/Simulink, the effect of both the unbalance response and threshold speed of touch-rubbing of the system subjected to nonlinear magnetic forces and nonlinear output current of power amplifier are studied. Furthermore, threshold speed of touch-rubbing of the rotor-bearing system is defined and the results of numerical simulation are presented. Finally, based on above studies, two methods of increasing the touch-rubbing threshold speed are discussed.
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-08-01
In this paper, a novel fractional equivalent linearization (EL) approach is developed by incorporating a fractional derivative term into the classical linearization equation. Due to the introduction of the fractional derivative term, the accuracy of the new linearization is improved, illustrated by a Duffing oscillator that is subjected to a harmonic excitation. Furthermore, a new method for solving stochastic response of nonlinear SDOF system is developed by combining Karhunen-Loève (K-L) expansion and fractional EL. The method firstly decomposes the stochastic excitation in terms of a set of random variables and deterministic sub-excitations using K-L expansion, and then construct sub-fractional equivalent linear system according to each sub-excitation by fractional EL, the response of the original nonlinear system is finally approximated as the weighed summation of the deterministic response of each sub-system multiplied by the corresponding random variable. The random nature of the final response comes from the set of random variables that is obtained in K-L expansion. In this way, the stochastic response computation is converted to a set of deterministic response analysis problems. The effectiveness of the developed method is demonstrated by a Duffing oscillator that is subjected to stochastic excitation modeled by Winner process. The results are compared with the numerical method and Monte Carlo simulation (MCS).
High Pressure Response of Siliceous Materials
2013-02-01
materials apparent yield stress ( Sapp ) and Poisson’s ratio (ν) according to HELcalc = 1−ν 1− 2ν " # $ % & ’ Sapp . (2) Their values are compared...and this is shown in Fig. 3.10. The HELcalc values are somewhat larger than literature values, and this could be attributed to Sapp being larger
Energy Technology Data Exchange (ETDEWEB)
Golde, Daniel
2010-06-22
In the major part of this Thesis, we discuss the linear THz response of semiconductor nanostructures based on a microscopic theory. Here, two different problems are investigated: intersubband transitions in optically excited quantum wells and the THz plasma response of two-dimensional systems. In the latter case, we analyze the response of correlated electron and electron-hole plasmas. Extracting the plasma frequency from the linear response, we find significant deviations from the commonly accepted two-dimensional plasma frequency. Besides analyzing the pure plasma response, we also consider an intermediate regime where the response of the electron-hole plasma consists of a mixture of plasma contributions and excitonic transitions. A quantitative experiment-theory comparison provides novel insights into the behavior of the system at the transition from one regime to the other. The discussion of the intersubband transitions mainly focuses on the coherent superposition of the responses from true THz transitions and the ponderomotively accelerated carriers. We present a simple method to directly identify ponderomotive effects in the linear THz response. Apart from that, the excitonic contributions to intersubband transitions are investigated. The last part of the present Thesis deals with a completely different regime. Here, the extreme nonlinear optical response of low-dimensional semiconductor structures is discussed. Formally, extreme nonlinear optics describes the regime of light-matter interaction where the exciting field is strong enough such that the Rabi frequency is comparable to or larger than the characteristic transition frequency of the investigated system. Here, the Rabi frequency is given by the product of the electrical field strength and the dipole-matrix element of the respective transition. Theoretical investigations have predicted a large number of novel nonlinear effects arising for such strong excitations. Some of them have been observed in
7 CFR 613.3 - NRCS responsibilities in plant materials.
2010-01-01
... increase. (f) Encourage and assist conservation districts, commercial seed producers, and commercial and... CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS PLANT MATERIALS CENTERS § 613.3 NRCS... materials for conservation uses and the development of plant materials technology. NRCS' responsibilities...
Directory of Open Access Journals (Sweden)
Anatoly V. Klyuchevskii
2013-11-01
Full Text Available The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of a nonlinear oscillator with dissipation. The nonlinear oscillator model is applicable to the area because stress change shows up as quasi-periodic inharmonic oscillations at rifting attractor structures (RAS. The model is consistent with the space-time patterns of regional seismicity in which coupled large earthquakes, proximal in time but distant in space, may be a response to bifurcations in nonlinear resonance hysteresis in a system of three oscillators corresponding to the rifting attractors. The space-time distribution of coupled MLH > 5.5 events has been stable for the period of instrumental seismicity, with the largest events occurring in pairs, one shortly after another, on two ends of the rift system and with couples of smaller events in the central part of the rift. The event couples appear as peaks of earthquake ‘migration’ rate with an approximately decadal periodicity. Thus the energy accumulated at RAS is released in coupled large events by the mechanism of nonlinear oscillators with dissipation. The new knowledge, with special focus on space-time rifting attractors and bifurcations in a system of nonlinear resonance hysteresis, may be of theoretical and practical value for earthquake prediction issues. Extrapolation of the results into the nearest future indicates the probability of such a bifurcation in the region, i.e., there is growing risk of a pending M ≈ 7 coupled event to happen within a few years.
Directory of Open Access Journals (Sweden)
Hemantkumar Chavan
2017-01-01
Full Text Available Arsenite is a known carcinogen and its exposure has been implicated in a variety of noncarcinogenic health concerns. Increased oxidative stress is thought to be the primary cause of arsenite toxicity and the toxic effect is thought to be linear with detrimental effects reported at all concentrations of arsenite. But the paradigm of linear dose response in arsenite toxicity is shifting. In the present study we demonstrate that arsenite effects on mitochondrial respiration in primary hepatocytes follow a nonlinear dose response. In vitro exposure of primary hepatocytes to an environmentally relevant, moderate level of arsenite results in increased oxidant production that appears to arise from changes in the expression and activity of respiratory Complex I of the mitochondrial proton circuit. In primary hepatocytes the excess oxidant production appears to elicit adaptive responses that promote resistance to oxidative stress and a propensity to increased proliferation. Taken together, these results suggest a nonlinear dose-response characteristic of arsenite with low-dose arsenite promoting adaptive responses in a process known as mitohormesis, with transient increase in ROS levels acting as transducers of arsenite-induced mitohormesis.
The importance of ENSO nonlinearities in tropical pacific response to external forcing
Karamperidou, Christina; Jin, Fei-Fei; Conroy, Jessica L.
2016-12-01
Tropical Pacific climate varies at interannual, decadal and centennial time scales, and exerts a significant influence on global climate. Climate model projections exhibit a large spread in the magnitude and pattern of tropical Pacific warming in response to greenhouse-gas forcing. Here, we show that part of this spread can be explained by model biases in the simulation of interannual variability, namely the El Niño/Southern Oscillation (ENSO) phenomenon. We show that models that exhibit strong ENSO nonlinearities simulate a more accurate balance of ENSO feedbacks, and their projected tropical Pacific sea surface temperature warming pattern is closely linked to their projected ENSO response. Within this group, models with ENSO nonlinearity close to observed project stronger warming of the cold tongue, whereas models with stronger than observed ENSO nonlinearity project a more uniform warming of the tropical Pacific. These differences are also manifest in the projected changes of precipitation patterns, thereby highlighting that ENSO simulation biases may lead to potentially biased projections in long-term precipitation trends, with great significance for regional climate adaptation strategies.
$v_4$, $v_5$, $v_6$, $v_7$: nonlinear hydrodynamic response versus LHC data
Yan, Li
2015-01-01
Higher harmonics of anisotropic flow ($v_n$ with $n\\ge 4$) in heavy-ion collisions can be measured either with respect to their own plane, or with respect to a plane constructed using lower-order harmonics. We explain how such measurements are related to event-plane correlations. We show that CMS data on $v_4$ and $v_6$ are compatible with ATLAS data on event-plane correlations. If one assumes that higher harmonics are the superposition of non-linear and linear responses, then the linear and non-linear parts can be isolated under fairly general assumptions. By combining analyses of higher harmonics with analyses of $v_2$ and $v_3$, one can eliminate the uncertainty from initial conditions and define quantities that only involve nonlinear hydrodynamic response coefficients. Experimental data on $v_4$, $v_5$ and $v_6$ are in good agreement with hydrodynamic calculations. We argue that $v_7$ can be measured with respect to elliptic and triangular flow. We present predictions for $v_7$ versus centrality in Pb-Pb ...
Analysis on nonlinear wind-induced dynamic response of membrane roofs with aerodynamic effects
Institute of Scientific and Technical Information of China (English)
LI Qing-xiang; SUN Bing-nan
2008-01-01
Based on the characteristics of membrane structures and the air influence factors, this paper presen-ted a method to simulate the air aerodynamic force effects including the added air mass, the acoustic radiation damping and the pneumatic stiffness. The infinite air was modeled using the acoustic fluid element of commer-cial FE software and the finite element membrane roof models were coupled with fluid models. A comparison be-tween the results obtained by IrE computation and those obtained by the vibration experiment for a cable-mem-brane verified the validity of the method. Furthermore, applying the method to a flat membrane roof structure and using its wind tunnel test results, the analysis of nonlinear wind-induced dynamic responses for such geo-metrically nonlinear roofs, including the roof-air coupled model was performed. The result shows that the air has large influence on vibrating membrane roofs according to results of comparing the nodal time-history displace-ments, accelerations and stress of the two different cases. Meantime, numerical studies show that the method developed can successfully solve the nonlinear wind-induced dynamic response of the membrane roof with aero-dynamic effects.
Can we detect a nonlinear response to temperature in European plant phenology?
Jochner, Susanne; Sparks, Tim H.; Laube, Julia; Menzel, Annette
2016-10-01
Over a large temperature range, the statistical association between spring phenology and temperature is often regarded and treated as a linear function. There are suggestions that a sigmoidal relationship with definite upper and lower limits to leaf unfolding and flowering onset dates might be more realistic. We utilised European plant phenological records provided by the European phenology database PEP725 and gridded monthly mean temperature data for 1951-2012 calculated from the ENSEMBLES data set E-OBS (version 7.0). We analysed 568,456 observations of ten spring flowering or leafing phenophases derived from 3657 stations in 22 European countries in order to detect possible nonlinear responses to temperature. Linear response rates averaged for all stations ranged between -7.7 (flowering of hazel) and -2.7 days °C-1 (leaf unfolding of beech and oak). A lower sensitivity at the cooler end of the temperature range was detected for most phenophases. However, a similar lower sensitivity at the warmer end was not that evident. For only ˜14 % of the station time series (where a comparison between linear and nonlinear model was possible), nonlinear models described the relationship significantly better than linear models. Although in most cases simple linear models might be still sufficient to predict future changes, this linear relationship between phenology and temperature might not be appropriate when incorporating phenological data of very cold (and possibly very warm) environments. For these cases, extrapolations on the basis of linear models would introduce uncertainty in expected ecosystem changes.
Order reduction and efficient implementation of nonlinear nonlocal cochlear response models.
Filo, Maurice; Karameh, Fadi; Awad, Mariette
2016-12-01
The cochlea is an indispensable preliminary processing stage in auditory perception that employs mechanical frequency-tuning and electrical transduction of incoming sound waves. Cochlear mechanical responses are shown to exhibit active nonlinear spatiotemporal response dynamics (e.g., otoacoustic emission). To model such phenomena, it is often necessary to incorporate cochlear fluid-membrane interactions. This results in both excessively high-order model formulations and computationally intensive solutions that limit their practical use in simulating the model and analyzing its response even for simple single-tone inputs. In order to address these limitations, the current work employs a control-theoretic framework to reformulate a nonlinear two-dimensional cochlear model into discrete state space models that are of considerably lower order (factor of 8) and are computationally much simpler (factor of 25). It is shown that the reformulated models enjoy sparse matrix structures which permit efficient numerical manipulations. Furthermore, the spatially discretized models are linearized and simplified using balanced transformation techniques to result in lower-order (nonlinear) realizations derived from the dominant Hankel singular values of the system dynamics. Accuracy and efficiency of the reduced-order reformulations are demonstrated under the response to two fixed tones, sweeping tones and, more generally, a brief speech signal. The corresponding responses are compared to those produced by the original model in both frequency and spatiotemporal domains. Although carried out on a specific instance of cochlear models, the introduced framework of control-theoretic model reduction could be applied to a wide class of models that address the micro- and macro-mechanical properties of the cochlea.
Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbations
Energy Technology Data Exchange (ETDEWEB)
Turnbull, A. D.; Ferraro, N. M.; Lao, L. L.; Lanctot, M. J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Izzo, V. A. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Lazarus, E. A.; Hirshman, S. P. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Park, J.-K.; Lazerson, S.; Reiman, A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Cooper, W. A. [Association Euratom-Confederation Suisse, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Liu, Y. Q. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Turco, F. [Columbia University, 116th St and Broadway, New York, New York 10027 (United States)
2013-05-15
With the installation of non-axisymmetric coil systems on major tokamaks for the purpose of studying the prospects of ELM-free operation, understanding the plasma response to the applied fields is a crucial issue. Application of different response models, using standard tools, to DIII-D discharges with applied non-axisymmetric fields from internal coils, is shown to yield qualitatively different results. The plasma response can be treated as an initial value problem, following the system dynamically from an initial unperturbed state, or from a nearby perturbed equilibrium approach, and using both linear and nonlinear models [A. D. Turnbull, Nucl. Fusion 52, 054016 (2012)]. Criteria are discussed under which each of the approaches can yield a valid response. In the DIII-D cases studied, these criteria show a breakdown in the linear theory despite the small 10{sup −3} relative magnitude of the applied magnetic field perturbations in this case. For nonlinear dynamical evolution simulations to reach a saturated nonlinear steady state, appropriate damping mechanisms need to be provided for each normal mode comprising the response. Other issues arise in the technical construction of perturbed flux surfaces from a displacement and from the presence of near nullspace normal modes. For the nearby equilibrium approach, in the absence of a full 3D equilibrium reconstruction with a controlled comparison, constraints relating the 2D system profiles to the final profiles in the 3D system also need to be imposed to assure accessibility. The magnetic helicity profile has been proposed as an appropriate input to a 3D equilibrium calculation and tests of this show the anticipated qualitative behavior.
Prescott, Aaron M.; Abel, Steven M.
2016-12-01
The rational design of network behavior is a central goal of synthetic biology. Here, we combine in silico evolution with nonlinear dimensionality reduction to redesign the responses of fixed-topology signaling networks and to characterize sets of kinetic parameters that underlie various input-output relations. We first consider the earliest part of the T cell receptor (TCR) signaling network and demonstrate that it can produce a variety of input-output relations (quantified as the level of TCR phosphorylation as a function of the characteristic TCR binding time). We utilize an evolutionary algorithm (EA) to identify sets of kinetic parameters that give rise to: (i) sigmoidal responses with the activation threshold varied over 6 orders of magnitude, (ii) a graded response, and (iii) an inverted response in which short TCR binding times lead to activation. We also consider a network with both positive and negative feedback and use the EA to evolve oscillatory responses with different periods in response to a change in input. For each targeted input-output relation, we conduct many independent runs of the EA and use nonlinear dimensionality reduction to embed the resulting data for each network in two dimensions. We then partition the results into groups and characterize constraints placed on the parameters by the different targeted response curves. Our approach provides a way (i) to guide the design of kinetic parameters of fixed-topology networks to generate novel input-output relations and (ii) to constrain ranges of biological parameters using experimental data. In the cases considered, the network topologies exhibit significant flexibility in generating alternative responses, with distinct patterns of kinetic rates emerging for different targeted responses.
Nonlinear static and dynamic responses of an electrically actuated viscoelastic microbeam
Institute of Scientific and Technical Information of China (English)
Y. M. Fu; J. Zhang
2009-01-01
On the basis of the Euler-Bernoulli hypothesis,nonlinear static and dynamic responses of a viscoelastic microbeam under two kinds of electric forces [a purely direct current (DC) and a combined current composed of a DC and an alternating current] are studied. By using Taylor series expansion, a governing equation of nonlinear integro-differential type is derived, and numerical analyses are performed.When a purely DC is applied, there exist an instantaneous pull-in voltage and a durable pull-in voltage of which the physical meanings are also given, whereas under an applied combined current, the effect of the element relaxation coefficient on the dynamic pull-in phenomenon is observed where the largest Lyapunov exponent is taken as a criterion for the dynamic pull-in instability of viscoelastic microbeams.
Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers.
Buckland, E L; Boyd, R W
1997-05-15
The electrostrictive contribution to the nonlinear refractive index is investigated by use of frequency-dependent cross-phase modulation with a weak unpolarized cw probe wave and a harmonically modulated pump copropagating in optical fibers. Self-delayed homodyne detection is used to measure the amplitude of the sidebands imposed upon the probe wave as a function of pump intensity for pump modulation frequencies from 10 MHz to 1 GHz. The ratio of the electrostrictive nonlinear coefficient to the cross-phase-modulation Kerr coefficient for unpolarized light is measured to be 1.58:1 for a standard step-index single-mode fiber and 0.41:1 for dispersion-shifted fibers, indicating a larger electrostrictive response in silica fibers than previously expected.
STEADY-STATE RESPONSES AND THEIR STABILITY OF NONLINEAR VIBRATION OF AN AXIALLY ACCELERATING STRING
Institute of Scientific and Technical Information of China (English)
吴俊; 陈立群
2004-01-01
The steady-state transverse vibration of an axially moving string with geometric nonlinearity was investigated. The transport speed was assumed to be a constant mean speed with small harmonic variations. The nonlinear partial-differential equation that governs the transverse vibration of the string was derived by use of the Hamilton principle. The method of multiple scales was applied directly to the equation. The solvability condition of eliminating the secular terms was established. Closed form solutions for the amplitude and the existence conditions of nontrivial steady-state response of the two-to-one parametric resonance were obtained. Some numerical examples showing effects of the mean transport speed, the amplitude and the frequency of speed variation were presented. The Liapunov linearized stability theory was employed to derive the instability conditions of the trivial solution and the nontrivial solutions for the two-to-one parametric resonance. Some numerical examples highlighting influences of the related parameters on the instability conditions were presented.
Mártin, Daniel A; 10.1103/PhysRevE.80.056601
2012-01-01
We study evolution equations for electric and magnetic field amplitudes in a ring cavity with plane mirrors. The cavity is filled with a positive or negative refraction index material with third order effective electric and magnetic non-linearities. Two coupled non-linear equations for the electric and magnetic amplitudes are obtained. We prove that the description can be reduced to one Lugiato Lefever equation with generalized coefficients. A stability analysis of the homogeneous solution, complemented with numerical integration, shows that any combination of the parameters should correspond to one of three characteristic behaviors.
Directory of Open Access Journals (Sweden)
Xuming Huang
2009-01-01
Full Text Available We study the permanence of periodic predator-prey system with general nonlinear functional responses and stage structure for both predator and prey and obtain that the predator and the prey species are permanent.
Explorations of new second-order nonlinear optical materials in the K(I)-M(II)-I(V)-O systems.
Li, Pei-Xin; Hu, Chun-Li; Xu, Xiang; Wang, Rui-Yao; Sun, Chuan-Fu; Mao, Jiang-Gao
2010-05-17
Explorations of new second-order nonlinear optical (NLO) materials in the K(I)-M(II) -I(V)-O systems led to four novel mixed metal iodates, namely, K(2)M(IO(3))(4)(H(2)O)(2) (M = Mn, Co, Zn, Mg). The four compounds are isostructural and crystallize in space group I2 which is in the chiral and polar crystal class 2. Their structure features zero-dimensional {M(IO(3))(4)(H(2)O)(2)}(2-) anions that are separated by K(+) cations. The M(II) centers are ligated by two aqua ligands in trans fashion and four monodentate iodate anions. The K(+) cation is eight-coordinated by two iodate anions in bidentate chelating fashion and four other iodates in a unidentate fashion. Second harmonic generation (SHG) measurements indicate that K(2)Zn(IO(3))(4)(H(2)O)(2) and K(2)Mg(IO(3))(4)(H(2)O)(2) display moderate SHG responses that are approximately 2.3 and 1.4 times of KH(2)PO(4) (KDP), respectively, and they are also phase-matchable. The SHG response of K(2)Co(IO(3))(4)(H(2)O)(2) is much weaker (about 0.3 x KDP), and no obvious SHG signal was detected for K(2)Mn(IO(3))(4)(H(2)O)(2). Results of optical property calculations for the Zn and Mg phases revealed SHG responses of approximately 5.3 and 4.7 times of KDP, respectively, the order of Zn > Mg is in good agreement with the experiment data.
Experimental damage detection of cracked beams by using nonlinear characteristics of forced response
Andreaus, U.; Baragatti, P.
2012-08-01
Experimental evaluation of the flexural forced vibrations of a steel cantilever beam having a transverse surface crack extending uniformly along the width of the beam was performed, where an actual fatigue crack was introduced instead - as usual - of a narrow slot. The nonlinear aspects of the dynamic response of the beam under harmonic excitation were considered and the relevant quantitative parameters were evaluated, in order to relate the nonlinear resonances to the presence and size of the crack. To this end, the existence of sub- and super-harmonic components in the Fourier spectra of the acceleration signals was evidenced, and their amplitudes were quantified. In particular, the acceleration signals were measured in different positions along the beam axis and under different forcing levels at the beam tip. The remarkable relevance of the above mentioned nonlinear characteristics, and their substantial independence on force magnitude and measurement point were worthily noted in comparison with the behavior of the intact beam. Thus, a reliable method of damage detection was proposed which was based on simple tests requiring only harmonically forcing and acceleration measuring in any point non-necessarily near the crack. Then, the time-history of the acceleration recorded at the beam tip was numerically processed in order to obtain the time-histories of velocity and displacement. The nonlinear features of the forced response were described and given a physical interpretation in order to define parameters suitable for damage detection. The efficiency of such parameters was discussed with respect to the their capability of detecting damage and a procedure for damage detection was proposed which was able to detect even small cracks by using simple instruments. A finite element model of the cantilever beam was finally assembled and tuned in order to numerically simulate the results of the experimental tests.
Na₄La₂(CO₃)₅ and CsNa₅Ca₅(CO₃)₈: two new carbonates as UV nonlinear optical materials.
Luo, Min; Wang, GenXiang; Lin, Chensheng; Ye, Ning; Zhou, Yuqiao; Cheng, Wendan
2014-08-04
Two nonlinear optical crystal carbonates (Na4La2(CO3)5 and CsNa5Ca5(CO3)8 were successfully synthesized by hydrothermal method, and both of them crystallized in the same noncentrosymmetric hexagonal space group P63mc (No. 186). The structure of Na4La2(CO3)5 consists of a three-dimensional network made up of [CO3] triangles as well as irregular [Na(0.67)La(0.33)O10] and [NaO8] polyhedra. The structure of CsNa5Ca5(CO3)8 can be described as the standing-on-edge [CO3] groups connect the adjacent infinite [CaCO3]∞ layers in the ab plane to construct a framework with four types of channels running parallel to [010]. The Na, Cs, and [Na(0.67)Ca(0.33)] atoms reside in these channels. The measurement of second harmonic generation (SHG) by the method adapted from Kurtz and Perry indicated that Na4La2(CO3)5 and CsNa5Ca5(CO3)8 were phase-matchable in the visible region and exhibited SHG responses of approximately 3 and 1 × KH2PO4 (KDP). Meanwhile, they exhibited wide transparent region with short UV cutoff edge at about 235 and 210 nm, respectively, suggesting that these crystals as NLO materials may have potential applications in the UV region.
The nonlinear North Atlantic-Arctic ocean response to CO2 forcing
van der Linden, Eveline C.; Bintanja, Richard; Hazeleger, Wilco
2017-04-01
Most climate models project an increase in oceanic energy transport towards high northern latitudes in future climate projections, but the physical mechanisms are not yet fully understood. To obtain a more fundamental understanding of the processes that cause the ocean heat transport to increase, we carried out a set of sensitivity experiments using a coupled atmosphere-ocean general circulation model. Within these experiments, atmospheric CO2 levels are instantaneously set to one-fourth to four times current values. These model integrations, each with a length of 550 years, result in five considerably different quasi-equilibrium climate states. Our simulations show that poleward ocean heat transport in the Atlantic sector of the Arctic at 70°N increases from 0.03 PW in the coldest climate state to 0.2 PW in the warmest climate state. This increase is caused primarily by changes in sea ice cover, in horizontal ocean currents owing to anomalous winds in response to sea ice changes, and in ocean advection of thermal anomalies. Surprisingly, at subpolar latitudes, the subpolar gyre is found to weaken toward both the warmer and colder climates, relative to the current climate. This nonlinear response is caused by a complex interplay between seasonal sea ice melt, the near-surface wind response to sea ice changes, and changes in the density-driven circulation. The Atlantic Meridional Overturning Circulation (AMOC) and its associated heat transport even oppose the total ocean heat transport towards the Arctic in the warmest climate. Going from warm to cold climates, or from high to low CO2 concentrations, the strength of the AMOC initially increases, but then declines towards the coldest climate, implying a nonlinear AMOC-response to CO2-induced climate change. Evidently, the North Atlantic-Arctic ocean heat transport depends on an interplay between various (remote) coupled ocean-atmosphere-sea ice mechanisms that respond in a nonlinear way to climate change.
Materials and society -- Impacts and responsibilities
Energy Technology Data Exchange (ETDEWEB)
Westwood, A.R.C.
1995-11-01
The needs of today`s advanced societies have moved well beyond the requirements for food and shelter, etc., and now are focused on such concerns as international peace and domestic security, affordable health care, the swift and secure transmission of information, the conservation of resources, and a clean environment. Progress in materials science and engineering is impacting each of these concerns. This paper will present some examples of how this is occurring, and then comment on ethical dilemmas that can arise as a consequence of technological advances. The need for engineers to participate more fully in the development of public policies that help resolve such dilemmas, and so promote the benefits of advancing technology to society, will be discussed.
Materials and society — impacts and responsibilities
Westwood, A. R. C.
1996-06-01
The needs of today's advanced societies have moved well beyond the requirements for food and shelter, etc., and now are focused on such concerns as international peace and domestic security, affordable health care, the swift and secure transmission of information, the conservation of resources, and a clean environment. Progress in materials science and engineering is impacting each of these concerns. This article will present some examples of how this is occurring and then comment on ethical dilemmas that can arise as a consequence of technological advances. The need for engineers to participate more fully in the development of public policies that help resolve such dilemmas, and so promote the benefits of advancing technology to society, will be discussed.
Frazier, D. O.; Penn, B. G.; Witherow, W. K.; Paley, M. S.
1991-01-01
Research on the growth of second- and third-order nonlinear optical (NLO) organic thin film by vapor deposition is reviewed. Particular attention is given to the experimental methods for growing thin films of p-chlorophenylurea, diacetylenes, and phthalocyanines; characteristics of the resulting films; and approaches for advancing thin film technology. It is concluded that the growth of NLO thin films by vapor processes is a promising method for the fabrication of planar waveguides for nonlinear optical devices. Two innovative approaches are proposed including a method of controlling the input beam frequency to maximize nonlinear effects in thin films and single crystals, and the alternate approach to the molecular design of organic NLO materials by increasing the transition dipole moment between ground and excited states of the molecule.
Mircea, Dragos I.; Anlage, Steven M.
2004-03-01
Traditionally, the Andreev Bound States (ABS) have been studied by means of tunneling experiments and global electromagnetic resonant techniques. The zero bias conductance peak and the strong upturn in the penetration depth at low temperature are considered strong evidence for the existence of ABS. The nonlinear inductance arising from the current-dependent penetration depth leads to a nonlinear electrodynamic response that can be probed with our non-resonant near-field microwave microscope [S. C. Lee and S. M. Anlage, Appl. Phys. Lett. 82, 1893 (2003)]. In the experiment, microwave currents have been applied locally along different directions on the surface of YBCO films exposing the (110) surface in order to investigate the angular dependence of the second and third order harmonics generated by the sample. The temperature and the angular dependence measured for different levels of the applied microwave power, will be presented and compared with the theoretical predictions. This low-temperature anisotropic nonlinear behavior is relevant for the study of ABS as well as for identifying the existence of local pairing states with symmetry different from that of the bulk order parameter.
Zettergren, M. D.; Snively, J. B.; Komjathy, A.; Verkhoglyadova, O. P.
2017-02-01
Numerical models of ionospheric coupling with the neutral atmosphere are used to investigate perturbations of plasma density, vertically integrated total electron content (TEC), neutral velocity, and neutral temperature associated with large-amplitude acoustic waves generated by the initial ocean surface displacements from strong undersea earthquakes. A simplified source model for the 2011 Tohoku earthquake is constructed from estimates of initial ocean surface responses to approximate the vertical motions over realistic spatial and temporal scales. Resulting TEC perturbations from modeling case studies appear consistent with observational data, reproducing pronounced TEC depletions which are shown to be a consequence of the impacts of nonlinear, dissipating acoustic waves. Thermospheric acoustic compressional velocities are ˜±250-300 m/s, superposed with downward flows of similar amplitudes, and temperature perturbations are ˜300 K, while the dominant wave periodicity in the thermosphere is ˜3-4 min. Results capture acoustic wave processes including reflection, onset of resonance, and nonlinear steepening and dissipation—ultimately leading to the formation of ionospheric TEC depletions "holes"—that are consistent with reported observations. Three additional simulations illustrate the dependence of atmospheric acoustic wave and subsequent ionospheric responses on the surface displacement amplitude, which is varied from the Tohoku case study by factors of 1/100, 1/10, and 2. Collectively, results suggest that TEC depletions may only accompany very-large amplitude thermospheric acoustic waves necessary to induce a nonlinear response, here with saturated compressional velocities ˜200-250 m/s generated by sea surface displacements exceeding ˜1 m occurring over a 3 min time period.
Institute of Scientific and Technical Information of China (English)
Li Jie; Liu Zhangjun; Chen Jianbing
2009-01-01
This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochastic process and then a correlated matrix decomposition technique, which transforms a correlated random vector into a vector of standard uncorrelated random variables, is used to complete a double orthogonal decomposition of the stochastic processes. Considering the relationship between the Hartley transform and Fourier transform of a real-valued function, it is suggested that the first orthogonal expansion in the above process is carried out using the Hartley basis function instead of the trigonometric basis function in practical applications. The seismic ground motion is investigated using the above method. In order to capture the main probabilistic characteristics of the seismic ground motion, it is proposed to directly carry out the orthogonal expansion of the seismic displacements. The case study shows that the proposed method is feasible to represent the seismic ground motion with only a few random variables. In the second part of the paper, the probability density evolution method (PDEM) is employed to study the stochastic response of nonlinear structures subjected to earthquake excitations. In the PDEM, a completely uncoupled one-dimensional partial differential equation, the generalized density evolution equation, plays a central role in governing the stochastic seismic responses of the nonlinear structure. The solution to this equation will yield the instantaneous probability density function of the responses. Computational algorithms to solve the probability density evolution equation are described, An example, which deals with a nonlinear frame structure subjected to stochastic ground motions, is illustrated to validate the above approach.
Han, Qun; Xu, Wei; Sun, Jian-Qiao
2016-09-01
The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.
Model of nonlinear coupled thermo-hydro-elastodyanamics response for a saturated poroelastic medium
Institute of Scientific and Technical Information of China (English)
LIU GanBin; XIE KangHe; ZHENG RongYue
2009-01-01
Based on the Blot's wave equation and theory of thermodynamic,Darcy law of fluid and the modified Fourier law of heat conduction,a nonlinear fully coupled thermo-hydro-elastodynamic response model(THMD)for saturated porous medium is derived.The compressibility of the medium,the influence of fluid flux on the heat flux,and the influence of change of temperature on the fluid flux are considered in this model.With some simplification,the coupled nonlinear thermo-hydro-elastodynamic response model can be reduced to the thermo-elastodynamic(TMD)model based on the traditional Fourier law and,further more,to the Blot's wave equation without considering the heat phase.At last,the problem of one dimensional cylindrical cavity subjected to a time-dependent thermal/mechanical shock is analyzed by using the Laplace technique,the numerical results are used to discuss the influence of Blot's modulus M and coefficient of thermo-osmosis on displacement and to compare with the results of thermo-elastodynamic response to ascertain the validity of this model.
Model of nonlinear coupled thermo-hydro-elastodynamics response for a saturated poroelastic medium
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Based on the Biot’s wave equation and theory of thermodynamic, Darcy law of fluid and the modified Fourier law of heat conduction, a nonlinear fully coupled thermo-hydro-elastodynamic response model (THMD) for saturated porous medium is derived. The compressibility of the medium, the influence of fluid flux on the heat flux, and the influence of change of temperature on the fluid flux are considered in this model. With some simplification, the coupled nonlinear thermo-hydro-elastodynamic response model can be reduced to the thermo-elastodynamic (TMD) model based on the traditional Fourier law and, further more, to the Biot’s wave equation without considering the heat phase. At last, the problem of one dimensional cylindrical cavity subjected to a time-dependent thermal/mechanical shock is analyzed by using the Laplace technique, the numerical results are used to discuss the influence of Biot’s modulus M and coefficient of thermoos-mosis on displacement and to compare with the results of thermo-elastodynamic response to ascertain the validity of this model.
A fast continuation scheme for accurate tracing of nonlinear oscillator frequency response functions
Chen, Guoqiang; Dunne, J. F.
2016-12-01
A new algorithm is proposed to combine the split-frequency harmonic balance method (SF-HBM) with arc-length continuation (ALC) for accurate tracing of the frequency response of oscillators with non-expansible nonlinearities. ALC is incorporated into the SF-HBM in a two-stage procedure: Stage I involves finding a reasonably accurate response frequency and solution using a relatively large number of low-frequency harmonics. This step is achieved using the SF-HBM in conjunction with ALC. Stage II uses the SF-HBM to obtain a very accurate solution at the frequency obtained in Stage I. To guarantee rapid path tracing, the frequency axis is appropriately subdivided. This gives high chance of success in finding a globally optimum set of harmonic coefficients. When approaching a turning point however, arc-lengths are adaptively reduced to obtain a very accurate solution. The combined procedure is tested on three hardening stiffness examples: a Duffing model; an oscillator with non-expansible stiffness and single harmonic forcing; and an oscillator with non-expansible stiffness and multiple-harmonic forcing. The results show that for non-expansible nonlinearities and multiple-harmonic forcing, the proposed algorithm is capable of tracing-out frequency response functions with high accuracy and efficiency.
Directory of Open Access Journals (Sweden)
A.M. Elnaggar
2016-01-01
Full Text Available An analysis of primary, superharmonic of order five, and subharmonic of order one-three resonances for non-linear s.d.o.f. system with two distinct time-delays under an external excitation is investigated. The method of multiple scales is used to determine two first order ordinary differential equations which describe the modulation of the amplitudes and the phases. Steady-state solutions and their stabilities in each resonance are studied. Numerical results are obtained by using the Software of Mathematica, which presented in a group of figures. The effect of the feedback gains and time-delays on the non-linear response of the system is discussed and it is found that: an appropriate feedback can enhance the control performance. A suitable choice of the feedback gains and time-delays can enlarge the critical force amplitude, and reduce the peak amplitude of the response (or peak amplitude of the free oscillation term for the case of primary resonance (superharmonic resonance. Furthermore, a proper feedback can eliminate saddle-node bifurcation, thereby eliminating jump and hysteresis phenomena taking place in the corresponding uncontrolled system. For subharmonic resonance, an adequate feedback can reduce the regions of subharmonic resonance response.
A Space-Time Finite Element Model for Design and Control Optimization of Nonlinear Dynamic Response
Directory of Open Access Journals (Sweden)
P.P. Moita
2008-01-01
Full Text Available A design and control sensitivity analysis and multicriteria optimization formulation is derived for flexible mechanical systems. This formulation is implemented in an optimum design code and it is applied to the nonlinear dynamic response. By extending the spatial domain to the space-time domain and treating the design variables as control variables that do not change with time, the design space is included in the control space. Thus, one can unify in one single formulation the problems of optimum design and optimal control. Structural dimensions as well as lumped damping and stiffness parameters plus control driven forces, are considered as decision variables. The dynamic response and its sensitivity with respect to the design and control variables are discretized via space-time finite elements, and are integrated at-once, as it is traditionally used for static response. The adjoint system approach is used to determine the design sensitivities. Design optimization numerical examples are performed. Nonlinear programming and optimality criteria may be used for the optimization process. A normalized weighted bound formulation is used to handle multicriteria problems.
Liu, Chun-Guang; Guan, Wei; Song, Ping; Yan, Li-Kai; Su, Zhong-Min
2009-07-20
The redox-active tetrathiafulvalene (TTF) is a good electron donor, and porphyrin is highly delocalized in cyclic pi-conjugated systems. The direct combination of the two interesting building units into the same molecule provides an intriguing molecular system for designing nonlinear optical (NLO) molecular materials. In the present paper, the second-order NLO properties of a series of monoTTF-porphyrins and metalloporphyrins have been calculated by density functional theory (DFT) combined with the finite field (FF) method. Our calculations show that these compounds possess considerably large static first hyperpolarizabilities, approximately 400 x 10(-30) esu. Since the TTF unit is able to exist in three different stable redox states (TTF, TTF(*+), and TTF(2+)), the redox switching of the NLO response of the zinc(II) derivative of monoTTF-metalloporphyrin has been studied, and a substantial enhancement in static first hyperpolarizability has been obtained in its oxidized species according to our DFT-FF calculations. The beta values of one- and two-electron-oxidized species are 3.6 and 8.7 times as large as that of the neutral compound, especially for two-electron-oxidized species, with a value of 3384 x 10(-30) esu. This value is about 3 times that for a push-pull metalloporphyrin, which has an exceptionally large hyperpolarizability among reported organic NLO chromophores. Meanwhile, to give a more intuitive description of band assignments of the electron spectrum and trends in NLO behavior of these compounds, the time-dependent (TD)DFT method has been adopted to calculate the electron spectrum. The TDDFT calculations well-reproduce the soret band and Q-type bands of the monoTTF-porphyrin, and these absorption bands can be assigned to the pi --> pi* transition of the porphyrin core. On the other hand, the oxidized process significantly affects the geometrical structures of the TTF unit and porphyrin ring, and the two-electron-oxidized species has a planar TTF unit
Studying Climate Response to Forcing by the Nonlinear Dynamical Mode Decomposition
Mukhin, Dmitry; Gavrilov, Andrey; Loskutov, Evgeny; Feigin, Alexander
2017-04-01
An analysis of global climate response to external forcing, both anthropogenic (mainly, CO2 and aerosol) and natural (solar and volcanic), is needed for adequate predictions of global climate change. Being complex dynamical system, the climate reacts to external perturbations exciting feedbacks (both positive and negative) making the response non-trivial and poorly predictable. Thus an extraction of internal modes of climate system, investigation of their interaction with external forcings and further modeling and forecast of their dynamics, are all the problems providing the success of climate modeling. In the report the new method for principal mode extraction from climate data is presented. The method is based on the Nonlinear Dynamical Mode (NDM) expansion [1,2], but takes into account a number of external forcings applied to the system. Each NDM is represented by hidden time series governing the observed variability, which, together with external forcing time series, are mapped onto data space. While forcing time series are considered to be known, the hidden unknown signals underlying the internal climate dynamics are extracted from observed data by the suggested method. In particular, it gives us an opportunity to study the evolution of principal system's mode structure in changing external conditions and separate the internal climate variability from trends forced by external perturbations. Furthermore, the modes so obtained can be extrapolated beyond the observational time series, and long-term prognosis of modes' structure including characteristics of interconnections and responses to external perturbations, can be carried out. In this work the method is used for reconstructing and studying the principal modes of climate variability on inter-annual and decadal time scales accounting the external forcings such as anthropogenic emissions, variations of the solar activity and volcanic activity. The structure of the obtained modes as well as their response to
Institute of Scientific and Technical Information of China (English)
Wang Shaoli; Feng Xinlong; He Yinnian
2011-01-01
This article proposes a diffused hepatitis B virus (HBV) model with CTLimmune response and nonlinear incidence for the control of viral infections.By means of different Lyapunov functions,the global asymptotical properties of the viral-free equilibrium and immune-free equilibrium of the model are obtained.Global stability of the positive equilibrium of the model is also considered.The results show that the free diffusion of the virus has no effect on the global stability of such HBV infection problem with Neumann homogeneous boundary conditions.
Optimization of coherent optical OFDM transmitter using DP-IQ modulator with nonlinear response
Chang, Sun Hyok; Kang, Hun-Sik; Moon, Sang-Rok; Lee, Joon Ki
2016-07-01
In this paper, we investigate the performance of dual polarization orthogonal frequency division multiplexing (DP-OFDM) signal generation when the signal is generated by a DP-IQ optical modulator. The DP-IQ optical modulator is made of four parallel Mach-Zehnder modulators (MZMs) which have nonlinear responses and limited extinction ratios. We analyze the effects of the MZM in the DP-OFDM signal generation by numerical simulation. The operating conditions of the DP-IQ modulator are optimized to have the best performance of the DP-OFDM signal.
Zeveleanu, C.
1974-01-01
The insulation of nonlinear and random vibrations is considered for some ore preparing and sorting implements: rotary crushers, resonance screens, hammer mills, etc. The appearance of subharmonic vibrations is analyzed, and the conditions for their appearance are determined. A method is given for calculating the insulation of these vibrations by means of elastic elements made of rubber. The insulation of the random vibrations produced by Symons crushers is calculated by determining the transmissability and deformation of the insulation system for a narrow band random response.
Phase disruption as a new design paradigm for optimizing the nonlinear-optical response
Lytel, Rick; Kuzyk, Mark G
2015-01-01
The intrinsic optical nonlinearities of quasi-one dimensional structures, including conjugated chain polymers and nanowires, are shown to be dramatically enhanced by the judicious placement of a side group or wire of sufficiently short length to create a large phase disruption in the dominant eigenfunctions along the main path of probability current. Phase disruption is proposed as a new general principle for the design of molecules, nanowires and any quasi-1D quantum system with large intrinsic response and does not require charge donors-acceptors at the ends.
POD/MAC-Based Modal Basis Selection for a Reduced Order Nonlinear Response Analysis
Rizzi, Stephen A.; Przekop, Adam
2007-01-01
A feasibility study was conducted to explore the applicability of a POD/MAC basis selection technique to a nonlinear structural response analysis. For the case studied the application of the POD/MAC technique resulted in a substantial improvement of the reduced order simulation when compared to a classic approach utilizing only low frequency modes present in the excitation bandwidth. Further studies are aimed to expand application of the presented technique to more complex structures including non-planar and two-dimensional configurations. For non-planar structures the separation of different displacement components may not be necessary or desirable.
Non-linear wave loads and ship responses by a time-domain strip theory
DEFF Research Database (Denmark)
Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher
1998-01-01
A non-linear time-domain strip theory for vertical wave loads and ship responses is presented. The theory is generalized from a rigorous linear time-domain strip theory representation. The hydrodynamic memory effect due to the free surface is approximated by a higher order differential equation. ...... and are systematically compared with the experimental results given by Watanabe et al. (1989, J. Soc. Naval Architects Japan, 166) and O’Dea et al. (1992, Proc. 19th Symp. on Naval Hydrodynamics). The agreement between the present predictions and the experiments is very encouraging....
Effect of material uncertainties on dynamic response of segmental box girder bridge
Directory of Open Access Journals (Sweden)
Suchart Limkatanyu
2007-11-01
Full Text Available The main objective of this paper was to investigate the effect of material uncertainties on dynamic response of segmental box girder bridge subjected to a moving load, in this case a rapid passing trains. Literatures concerned with the design of segmental box girder bridge, the application of finite element analysis to model the segmental box girder bridge, and the minimum requirement for structural conditions of the bridge were described and discussed in detail. A series of finite element analysis was carried out using SAP2000 Nonlinear software. The effect was investigated by varying the Modulus of Elasticity by 5%, 10% and 15%. The results were then compared with the case of assumed uniform property which had already been checked for model accuracy using the Standard prEN 1991-2. The results showed that, for the uniform case, the dynamic responses of the bridge gave the highest response at the resonance speed. When considering the non-uniform material properties (non-uniform case, the effect of material uncertainties appeared to have an effect on both displacement and acceleration responses. Nonetheless, the dynamic factor provided in the design code was sufficient for designing the segmental box girder bridge with either uniform or non-uniform material properties for the train speeds considered in this study.
Tactile Response of Building Materials by Tactile Sensor
岡島, 達雄; 呉, 健丹; 堀越, 哲美; 武田, 雄二; 水谷, 章夫; 川邊, 伸二; ホリコシ, テツミ; ミズタニ, アキオ; カワベ, シンジ; Horikoshi, Tetsumi; Mizutani, Akio; Kawabe, Shinji
1991-01-01
The object of this paper is to clarify the tactile response of building materials by tactile sensor. We developed the compact tactile sensor that can measure the physical values of warmth, hardness and roughness of building materials. At a temperature of 2℃, psychological values of warmth, hardness and roughness were obtaind from the physical values of sixty materials by the tactile sensor. The tactile comfort value can be expressed from physical values of warmth, hardness and roughness by th...
Energy Technology Data Exchange (ETDEWEB)
Shariyat, M. [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: m_shariyat@yahoo.com
2009-04-15
In the present paper, an algorithm for nonlinear transient behavior analysis of thick functionally graded cylindrical vessels or pipes with temperature-dependent material properties under thermo-mechanical loads is presented. In contrast to researches presented so far, a Hermitian transfinite element method is proposed to improve the accuracy and to prevent artificial interference or cohesion formation at the mutual boundaries of the elements. Time variations of the temperatures, displacements, and stresses are obtained through a numerical Laplace inversion. Another novelty of the present research is using the transfinite element method to solve nonlinear problems. A sensitivity analysis includes investigating effects of the volume fraction index, dimensions, and temperature-dependency of the material properties is performed. Results confirm the efficiency of the present algorithm and reveal the significant effects of the temperature-dependency of the material properties and the elastic wave reflections and interferences on the responses. In comparison to other techniques, the present technique may be used to obtain relatively accurate and stable results in a less computational time.
A new method of binary addition scheme with massive use of non-linear material based system
Institute of Scientific and Technical Information of China (English)
Kuladeep Roy Chowdhury; Sourangshu Mukhopadhyay
2003-01-01
The limitations in electronics in arithmetic, algebraic & logic processing are well known. Very high speedperformance (above GHz) are not expected at all in conventional electronic mechanism. To achieve highspeed performance we may think on the introduction of optics instead of electronics for information pro-cessing and computing. Non-linear optical material is a successful candidate in this regard to play a majorrole in the optically controlled switching systems and therefore in all-optical parallel computation thesematerials can show a very good potential aspect. In this paper, we have proposed a new method of anoptical half adder as well as full adder circuit for binary addition using non-linear and linear optical ma-terials.
Directory of Open Access Journals (Sweden)
Wang Changfeng
2014-10-01
Full Text Available During an earthquake, the nonlinearity of the bridge structure mainly occurs at the supports, bridge piers and restrainers. When entering nonlinear stage, members of the bridge structure affect the elasto-plastic seismic response of the whole structure to a certain extent; for multi-span continuous bridges, longitudinal restrainers can be installed on the movable piers to optimise the distribution of seismic force and enable the movable piers to bear a certain amount of seismic effect. In order to evaluate the effect of nonlinearity of restrainer and supports on the elasto-plastic seismic response of continuous girder bridge, analytical models of continuous girder bridge structure considering the nonlinearity of movable supports, restrainers and bridge piers were built and the nonlinear time history analysis was conducted to evaluate the effect of nonlinearity of restraining devices and supports on the elasto-plastic seismic response of continuous girder bridge. Relevant structural measures and recommendation were made to reduce the seismic response of the fixed piers of the continuous girder bridge.
Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow
Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.
2016-06-01
Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and subjected to pulsatile pressure are investigated. The equations of motion are obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile flow and it is formulated using a hybrid model that contains the unsteady effects obtained from the linear potential flow theory and the pulsatile viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior. The case of shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration response to pulsatile flow and transmural pressure are here presented via frequency-response curves and time histories. The vibrations involving both a driven mode and a companion mode, which appear due to the axial symmetry, are also investigated. This theoretical framework represents a pioneering study that could be of great interest for biomedical applications. In particular, in the future, a more refined model of the one here presented will possibly be applied to reproduce the dynamic behavior of vascular prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent blood flow model is here considered by applying physiological waveforms of velocity and pressure during the heart beating period. This study provides, for the first time in literature, a fully coupled fluid-structure interaction model with deep insights in the nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and pulsatile flow.
Non-linear response of soil carbon gas (CO2, CH4) flux to oxygen availability
Mcnicol, G.; Silver, W. L.
2013-12-01
Soil oxygen (O2) concentration can impact soil carbon (C) fluxes of carbon dioxide (CO2) and methane (CH4), and is an important chemical gradient across the terrestrial-aquatic interface that drives large differences in ecosystem C storage. Few studies have established quantitative relationships between gas-phase O2 concentration and soil C fluxes in controlled settings. Though standard Michaelis-Menten enzyme kinetics would predict a highly non-linear relationship between O2 concentration and microbial consumption, existing studies have imposed coarse changes in O2 concentration that necessarily prevent detection of non-linearity. We report on the results of laboratory incubations designed to explore the short-term sensitivity of soil C emissions to a wide range of gas-phase O2 concentrations. Organic-rich soil was collected from a drained peatland and subjected to seven O2 concentration treatments ranging from 0.03 % - 20 % O2. We compared the fit of the observed C flux response to O2 concentration to linear, log-linear, and Michaelis-Menten functions using MSE and residual fits as performance metrics. We found that both CO2 and CH4 emissions were highly sensitive to O2 concentration, with emission rates increasing and decreasing, respectively, at higher O2. Net CH4 emission rates were attenuated at higher O2 concentrations most likely due to stimulation of gross CH4 consumption. A log-linear or Michaelis-Menten model better fit data than a linear model by both performance metrics, demonstrating, empirically, a non-linear relationship between O2 concentration and soil CO2 and CH4 fluxes. Our results suggest high O2 sensitivity of C-rich soils at the terrestrial-aquatic interface and show that the microbial response to soil redox chemistry must be measured over a biophysically meaningful range of conditions to derive relationships that accurately predict soil C fluxes.
Directory of Open Access Journals (Sweden)
Loyko V. I.
2015-06-01
Full Text Available Agricultural producers interested in marketing of raw materials, whereas processing companies are interested in the establishment of raw material zones, providing capacity utilization; therefore, the establishment of sustainable linkages between producers and processors of raw materials is an objective necessity. In the article, with the help of mathematical methods we examine the conditions of mutually beneficial economic relations between agricultural producers and processing enterprises. Mathematical model for estimating the profits of the company is built of the following conditions: producers sell processing plants raw materials, determined by the coefficient of the interest in the partnership at an agreed purchase price, and the remaining raw materials are processed, so they can sell their products independently. Profit of the processing plant is determined by the mathematical model. To describe the nonlinear market-based sales of goods from its retail price we used a hyperbolic demand function
Saravanan, M.; Abraham Rajasekar, S.
2016-04-01
The crystals (benzaldehyde 4-nitro phenyl hydrazone (BPH)) appropriate for NLO appliance were grown by the slow cooling method. The solubility and metastable zone width measurement of BPH specimen was studied. The material crystallizes in the monoclinic crystal system with noncentrosymmetric space group of Cc. The optical precision in the whole visible region was found to be excellent for non-linear optical claim. Excellence of the grown crystal is ascertained by the HRXRD and etching studies. Laser Damage Threshold and Photoluminescence studies designate that the grown crystal contains less imperfection. The mechanical behaviour of BPH sample at different temperatures was investigated to determine the hardness stability of the grown specimen. The piezoelectric temperament and the relative Second Harmonic Generation (for diverse particle sizes) of the material were also studied. The dielectric studies were executed at varied temperatures and frequencies to investigate the electrical properties. Photoconductivity measurement enumerates consummate of inducing dipoles due to strong incident radiation and also divulge the nonlinear behaviour of the material. The third order nonlinear optical properties of BPH crystals were deliberate by Z-scan method.
A double responsive smart upconversion fluorescence sensing material for glycoprotein.
Guo, Ting; Deng, Qiliang; Fang, Guozhen; Yun, Yaguang; Hu, Yongjin; Wang, Shuo
2016-11-15
A novel strategy was developed to prepare double responsive smart upconversion fluorescence material for highly specific enrichment and sensing of glycoprotein. The novel double responsive smart sensing material was synthesized by choosing Horse radish peroxidase (HRP) as modal protein, the grapheme oxide (GO) as support material, upconversion nanoparticles (UCNPs) as fluorescence signal reporter, N-isopropyl acrylamide (NIPAAM) and 4-vinylphenylboronic acid (VPBA) as functional monomers. The structure and component of smart sensing material was investigated by transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared (FTIR), respectively. These results illustrated the smart sensing material was prepared successfully. The recognition characterizations of smart sensing material were evaluated, and results showed that the fluorescence intensity of smart sensing material was reduced gradually, as the concentration of protein increased, and the smart sensing material showed selective recognition for HRP among other proteins. Furthermore, the recognition ability of the smart sensing material for glycoprotein was regulated by controlling the pH value and temperature. Therefore, this strategy opens up new way to construct smart material for detection of glycoprotein.
Dynamic brittle material response based on a continuum damage model
Energy Technology Data Exchange (ETDEWEB)
Chen, E.P.
1994-12-31
The response of brittle materials to dynamic loads was studied in this investigation based on a continuum damage model. Damage mechanism was selected to be interaction and growth of subscale cracks. Briefly, the cracks are activated by bulk tension and the density of activated cracks are described by a Weibull statistical distribution. The moduli of a cracked solid derived by Budiansky and O`Connell are then used to represent the global material degradation due to subscale cracking. This continuum damage model was originally developed to study rock fragmentation and was modified in the present study to improve on the post-limit structural response. The model was implemented into a transient dynamic explicit finite element code PRONTO 2D and then used for a numerical study involving the sudden stretching of a plate with a centrally located hole. Numerical results characterizing the dynamic responses of the material were presented. The effect of damage on dynamic material behavior was discussed.
Nonlinear Optics: Principles and Applications
DEFF Research Database (Denmark)
Rottwitt, Karsten; Tidemand-Lichtenberg, Peter
As nonlinear optics further develops as a field of research in electromagnetic wave propagation, its state-of-the-art technologies will continue to strongly impact real-world applications in a variety of fields useful to the practicing scientist and engineer. From basic principles to examples...... of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...... and matter, this text focuses on the physical understanding of nonlinear optics, and explores optical material response functions in the time and frequency domain....
Non-linear modeling of the plasma response to RMPs in ASDEX Upgrade
Orain, F; Viezzer, E; Dunne, M; Becoulet, M; Cahyna, P; Huijsmans, G T A; Morales, J; Willensdorfer, M; Suttrop, W; Kirk, A; Pamela, S; Strumberger, E; Guenter, S; Lessig, A
2016-01-01
The plasma response to Resonant Magnetic Perturbations (RMPs) in ASDEX Upgrade is modeled with the non-linear resistive MHD code JOREK, using input profiles that match those of the experiments as closely as possible. The RMP configuration for which Edge Localized Modes are best mitigated in experiments is related to the largest edge kink response observed near the X-point in modeling. On the edge resonant surfaces q = m=n, the coupling between the m + 2 kink component and the m resonant component is found to induce the amplification of the resonant magnetic perturbation. The ergodicity and the 3D-displacement near the X-point induced by the resonant ampli?cation can only partly explain the density pumpout observed in experiments.
Response Regimes in Equivalent Mechanical Model of Strongly Nonlinear Liquid Sloshing
Farid, M
2016-01-01
We consider equivalent mechanical model of liquid sloshing in partially-filled cylindrical vessel; the model treats both the regime of linear sloshing, and strongly nonlinear sloshing regime. The latter is related to hydraulic impacts applied to the vessel walls. These hydraulic impacts are commonly simulated with the help of high-power potential and dissipation functions. For the sake of analytic exploration, we substitute this traditional approach by treatment of an idealized vibro-impact system with velocity-dependent restitution coefficient. The obtained reduced model is similar to recently explored system of linear primary oscillator with attached vibro-impact energy sink. The ratio of modal mass of the first sloshing mode to the total mass of the liquid and the tank serves as a natural small parameter for multiple-scale analysis. In the case of external ground forcing, steady-state responses and chaotic strongly modulated responses are revealed. All analytical predictions of the reduced vibro-impact mod...
Institute of Scientific and Technical Information of China (English)
Chang-shui FENG; Wei-qiu ZHU
2009-01-01
We studied the response of harmonically and stochastically excited strongly nonlinear oscillators with delayed feedback bang-bang control using the stochastic averaging method. First, the time-delayed feedback bang-bang control force is expressed approximately in terms of the system state variables without time delay. Then the averaged Ito stochastic differential equations for the system are derived using the stochastic averaging method. Finally, the response of the system is obtained by solving the Fokker-Plank-Kolmogorov (FPK) equation associated with the averaged Ito equations. A Duffing oscillator with time-delayed feedback bang-bang control under combined harmonic and white noise excitations is taken as an example to illus-trate the proposed method. The analytical results are confirmed by digital simulation. We found that the time delay in feedback bang-bang control will deteriorate the control effectiveness and cause bifurcation of stochastic jump of Duffing oscillator.
Nonlinear response and dynamical transitions in a phase-field crystal model for adsorbed overlayers
Energy Technology Data Exchange (ETDEWEB)
Ramos, J A P [Departamento de Ciencias Exatas, Universidade Estadual do Sudoeste da Bahia, 45000-000 Vitoria da Conquista, BA (Brazil); Granato, E [Laboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, 12245-970 Sao Jose dos Campos, SP (Brazil); Ying, S C; Ala-Nissila, T [Department of Physics, PO Box 1843, Brown University, Providence, RI 02912-1843 (United States); Achim, C V [Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11000, FI-00076 Aalto, Espoo (Finland); Elder, K R, E-mail: Jorge@las.inpe.b [Department of Physics, Oakland University, Rochester, Michigan 48309-4487 (United States)
2010-09-01
The nonlinear response and sliding friction behavior of a phase-field crystal model for driven adsorbed atomic layers is determined numerically. The model describes the layer as a continuous density field coupled to the pinning potential of the substrate and under an external driving force. Dynamical equations which take into account both thermal fluctuations and inertial effects are used for numerical simulations of commensurate and incommensurate layers. At low temperatures, the velocity response of an initially commensurate layer shows hysteresis with dynamical melting and freezing transitions at different critical forces. The main features of the sliding friction behavior are similar to the results obtained previously from molecular dynamics simulations of particle models. However, the dynamical transitions correspond to nucleations of stripes rather than closed domains.
Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming
Directory of Open Access Journals (Sweden)
J. Schewe
2017-07-01
Full Text Available Projections of the response of Sahel rainfall to future global warming diverge significantly. Meanwhile, paleoclimatic records suggest that Sahel rainfall is capable of abrupt transitions in response to gradual forcing. Here we present climate modeling evidence for the possibility of an abrupt intensification of Sahel rainfall under future climate change. Analyzing 30 coupled global climate model simulations, we identify seven models where central Sahel rainfall increases by 40 to 300 % over the 21st century, owing to a northward expansion of the West African monsoon domain. Rainfall in these models is non-linearly related to sea surface temperature (SST in the tropical Atlantic and Mediterranean moisture source regions, intensifying abruptly beyond a certain SST warming level. We argue that this behavior is consistent with a self-amplifying dynamic–thermodynamical feedback, implying that the gradual increase in oceanic moisture availability under warming could trigger a sudden intensification of monsoon rainfall far inland of today's core monsoon region.
Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming
Schewe, Jacob; Levermann, Anders
2017-07-01
Projections of the response of Sahel rainfall to future global warming diverge significantly. Meanwhile, paleoclimatic records suggest that Sahel rainfall is capable of abrupt transitions in response to gradual forcing. Here we present climate modeling evidence for the possibility of an abrupt intensification of Sahel rainfall under future climate change. Analyzing 30 coupled global climate model simulations, we identify seven models where central Sahel rainfall increases by 40 to 300 % over the 21st century, owing to a northward expansion of the West African monsoon domain. Rainfall in these models is non-linearly related to sea surface temperature (SST) in the tropical Atlantic and Mediterranean moisture source regions, intensifying abruptly beyond a certain SST warming level. We argue that this behavior is consistent with a self-amplifying dynamic-thermodynamical feedback, implying that the gradual increase in oceanic moisture availability under warming could trigger a sudden intensification of monsoon rainfall far inland of today's core monsoon region.
Nonlinear functional response parameter estimation in a stochastic predator-prey model.
Gilioli, Gianni; Pasquali, Sara; Ruggeri, Fabrizio
2012-01-01
Parameter estimation for the functional response of predator-prey systems is a critical methodological problem in population ecology. In this paper we consider a stochastic predator-prey system with non-linear Ivlev functional response and propose a method for model parameter estimation based on time series of field data. We tackle the problem of parameter estimation using a Bayesian approach relying on a Markov Chain Monte Carlo algorithm. The efficiency of the method is tested on a set of simulated data. Then, the method is applied to a predator-prey system of importance for Integrated Pest Management and biological control, the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. The model is estimated on a dataset obtained from a field survey. Finally, the estimated model is used to forecast predator-prey dynamics in similar fields, with slightly different initial conditions.
Non-linear modeling of the plasma response to RMPs in ASDEX Upgrade
Orain, F.; Hölzl, M.; Viezzer, E.; Dunne, M.; Bécoulet, M.; Cahyna, P.; Huijsmans, G. T. A.; Morales, J.; Willensdorfer, M.; Suttrop, W.; Kirk, A.; Pamela, S.; Günter, S.; Lackner, K.; Strumberger, E.; Lessig, A.; the ASDEX Upgrade Team; the EUROfusion MST1 Team
2017-02-01
The plasma response to resonant magnetic perturbations (RMPs) in ASDEX Upgrade is modeled with the non-linear resistive MHD code JOREK, using input profiles that match those of the experiments as closely as possible. The RMP configuration for which edge localized modes are best mitigated in experiments is related to the largest edge kink response observed near the X-point in modeling. On the edge resonant surfaces q = m/n, the coupling between the kink component (m > nq) and the m resonant component is found to induce the amplification of the resonant magnetic perturbation. The ergodicity and the 3D-displacement near the X-point induced by the resonant amplification can only partly explain the density pumpout observed in experiments.
Electrical nonlinear response of a photomixer for applications in ultrafast measurements
Constantin, Florin L.
2014-05-01
Electrical nonlinear response of a low-temperature-grown GaAs photomixer is exploited for THz-wave modulation, detection and waveform sampling. Current-voltage response at low bias field is modelled by electron drift velocity saturation. THz-wave rectification is discussed in a small-signal approximation and experimentally addressed in connection with the curvature of IV plot. The optical heterodyne signal from two lasers down-converted with the photomixer is modulated by applying an alternative bias field. Conversely, heterodyne detection of a continuous-wave THz source is demonstrated with the photomixer using the optical beat between the lasers as local oscillator. Alternatively, THz-waves with tunable carrier and pulse repetition rate are generated with a THz frequency multiplier driven by a pulsed microwave synthesizer. Asynchronous optical sampling with a pulsed optical beat is demonstrated with the heterodyne detection scheme.
Wakabayashi, Hiroki; Uetsuji, Yasutomo; Tsuchiya, Kazuyoshi
2017-06-01
PZT thin films have excellent performance in deformation precision and response speed, so it is used widely for actuators and sensors of Micro Electro Mechanical System (MEMS). Although PZT thin films outputs large piezoelectricity at morphotropic phase bounfary (MPB), it shows a complicated hysteresis behavior caused by domain switching and structural phase transition between tetragonal and rhombohedral. In general, PZT thin films have some characteristic crystal morphologies. Additionally mechanical strains occur by lattice mismatch with substrate. Therefore it is important for fabrication and performance improvement of PZT thin films to understand the relation between macroscopic hysteresis response and microstructural changes. In this study, a multiscale nonlinear finite element simulation was proposed for PZT thin films at morphotropic phase boundary (MPB) on the substrate. The homogenization theory was employed for scale-bridging between macrostructure and microstructure. Figure 1 shows the proposed multiscale nonlinear simulation [1-3] based on the homogenization theory. Macrostructure is a homogeneous structure to catch the whole behaviors of actuators and sensors. And microstructure is a periodic inhomogeneous structure consisting of domains and grains. Macrostructure and microstructure are connected perfectly by homogenization theory and are analyzed by finite element method. We utilized an incremental form of fundamental constitutive law in consideration with physical property change caused by domain switching and structural phase transition. The developed multiscale finite element method was applied to PZT thin films with lattice mismatch strain on the substrate, and the relation between the macroscopic hysteresis response and microscopic domain switching and structural phase transition were investigated. Especially, we discuss about the effect of crystal morphologies and lattice mismatch strain on hysteresis response.
Mito, Masaki; Matsui, Hideaki; Tsuruta, Kazuki; Deguchi, Hiroyuki; Kishine, Jun-ichiro; Inoue, Katsuya; Kousaka, Yusuke; Yano, Shin-ichiro; Nakao, Yuya; Akimitsu, Jun
2015-10-01
The nonlinear and linear magnetic responses to an ac magnetic field H are useful for the study of the magnetic dynamics of both magnetic domains and their constituent spins. In particular, the third-harmonic magnetic response M3ω reflects the dynamics of magnetic domains. Furthermore, by considering the ac magnetic response as a function of H, we can evaluate the degree of magnetic nonlinearity, which is closely related to M3ω. In this study, a series of approaches was used to examine the itinerant magnet MnP, in which both ferromagnetic and helical phases are present. On the basis of this investigation, we systematize the diagnostic approach to evaluating nonlinearity in magnetic responses.
DEFF Research Database (Denmark)
Dich, Nadya; Doan, Stacey N; Kivimäki, Mika
2014-01-01
Previous research suggests that high levels of negative emotions may affect health. However, it is likely that the absence of an emotional response following stressful events may also be problematic. Accordingly, we investigated whether a non-linear association exists between negative emotional...... cardiovascular, metabolic and immune function biomarkers at three clinical follow-up examinations. A non-linear association between negative emotional response and allostatic load was observed: being at either extreme end of the distribution of negative emotional response increased the risk of physiological...