WorldWideScience

Sample records for nonlinear integro-differential equations

  1. Stability analysis of Runge-Kutta methods for nonlinear neutral delay integro-differential equations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The sufficient conditions for the stability and asymptotic stability of Runge-Kutta methods for nonlinear neutral delay integro-differential equations are derived. A numerical test that confirms the theoretical results is given in the end.

  2. Biorthogonal Systems Approximating the Solution of the Nonlinear Volterra Integro-Differential Equation

    Directory of Open Access Journals (Sweden)

    Berenguer MI

    2010-01-01

    Full Text Available This paper deals with obtaining a numerical method in order to approximate the solution of the nonlinear Volterra integro-differential equation. We define, following a fixed-point approach, a sequence of functions which approximate the solution of this type of equation, due to some properties of certain biorthogonal systems for the Banach spaces and .

  3. PERIODIC BOUNDARY VALUE PROBLEM FOR NONLINEAR INTEGRO-DIFFERENTIAL EQUATION OF MIXED TYPE ON TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    Yepeng Xing; Qiong Wang; Valery G. Romanovski

    2009-01-01

    We prove several new comparison results and develop the monotone iterative tech-nique to show the existence of extremal solutions to a kind of periodic boundary value problem (PBVP) for nonlinear integro-differential equation of mixed type on time scales.

  4. Group analysis of evolutionary integro-differential equations describing nonlinear waves: the general model

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Nail H [Department of Mathematics and Science, Blekinge Institute of Technology, SE-371 79 Karlskrona (Sweden); Meleshko, Sergey V [School of Mathematics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Rudenko, Oleg V, E-mail: nib@bth.se, E-mail: sergey@math.sut.ac.th, E-mail: rudenko@acs366.phys.msu.ru [Department of Physics, Moscow State University, 119991 Moscow (Russian Federation)

    2011-08-05

    The paper deals with an evolutionary integro-differential equation describing nonlinear waves. A particular choice of the kernel in the integral leads to well-known equations such as the Khokhlov-Zabolotskaya equation, the Kadomtsev-Petviashvili equation and others. Since the solutions of these equations describe many physical phenomena, the analysis of the general model studied in this paper is important. One of the methods for obtaining solutions of differential equations is provided by the Lie group analysis. However, this method is not applicable to integro-differential equations. Therefore, we discuss new approaches developed in modern group analysis and apply them to the general model considered in this paper. Reduced equations and exact solutions are also presented.

  5. Numerical solution of nonlinear fractional-order Volterra integro-differential equations by SCW

    Science.gov (United States)

    Zhu, Li; Fan, Qibin

    2013-05-01

    Fractional calculus is an extension of derivatives and integrals to non-integer orders and has been widely used to model scientific and engineering problems. In this paper, we describe the fractional derivative in the Caputo sense and give the second kind Chebyshev wavelet (SCW) operational matrix of fractional integration. Then based on above results we propose the SCW operational matrix method to solve a kind of nonlinear fractional-order Volterra integro-differential equations. The main characteristic of this approach is that it reduces the integro-differential equations into a nonlinear system of algebraic equations. Thus, it can simplify the problem of fractional order equation solving. The obtained numerical results indicate that the proposed method is efficient and accurate for this kind equations.

  6. On a Nonlinear Partial Integro-Differential Equation

    CERN Document Server

    Abergel, Frederic

    2009-01-01

    Consistently fitting vanilla option surfaces is an important issue when it comes to modelling in finance. Local volatility models introduced by Dupire in 1994 are widely used to price and manage the risks of structured products. However, the inconsistencies observed between the dynamics of the smile in those models and in real markets motivate researches for stochastic volatility modelling. Combining both those ideas to form Local and Stochastic Volatility models is of interest for practitioners. In this paper, we study the calibration of the vanillas in those models. This problem can be written as a nonlinear and nonlocal partial differential equation, for which we prove short-time existence of solutions.

  7. Dissipativity of Multistep Runge-Kutta Methods for Nonlinear Volterra Delay-integro-differential Equations

    Institute of Scientific and Technical Information of China (English)

    Rui QI; Cheng-jian ZHANG; Yu-jie ZHANG

    2012-01-01

    This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k,l)-algebraically stable multistep Runge-Kutta methods with constrained grid and an uniform grid.The finitedimensional and infinite-dimensional dissipativity results of (k,l)-algebraically stable Runge-Kutta methods are obtained.

  8. Nonlinear boundary value problems for first order impulsive integro-differential equations

    Directory of Open Access Journals (Sweden)

    Xinzhi Liu

    1989-01-01

    Full Text Available In this paper, we investigate a class of first order impulsive integro-differential equations subject to certain nonlinear boundary conditions and prove, with the help of upper and lower solutions, that the problem has a solution lying between the upper and lower solutions. We also develop monotone iterative technique and show the existence of multiple solutions of a class of periodic boundary value problems.

  9. Systems of nonlinear Volterra integro-differential equations of arbitrary order

    Directory of Open Access Journals (Sweden)

    Kourosh Parand

    2018-10-01

    Full Text Available In this paper, a new approximate method for solving of systems of nonlinear Volterra integro-differential equations of arbitrary (integer and fractional order is introduced. For this purpose, the generalized fractional order of the Chebyshev orthogonal functions (GFCFs based on the classical Chebyshev polynomials of the first kind has been introduced that can be used to obtain the solution of the integro-differential equations (IDEs. Also, we construct the fractional derivative operational matrix of order $\\alpha$ in the Caputo's definition for GFCFs. This method reduced a system of IDEs by collocation method into a system of algebraic equations. Some examples to illustrate the simplicity and the effectiveness of the propose method have been presented.

  10. A lumped mass nonconforming finite element method for nonlinear parabolic integro-differential equations on anisotropic meshes

    Institute of Scientific and Technical Information of China (English)

    SHI Dong-yang; WANG Hui-min; LI Zhi-yan

    2009-01-01

    A lumped mass approximation scheme of a low order Crouzeix-Raviart type nonconforming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.

  11. Integral mean value method for solving a general nonlinear Fredholm integro-differential equation under the mixed conditions

    Directory of Open Access Journals (Sweden)

    Ahmad Molabahrami

    2013-09-01

    Full Text Available In this paper, the integral mean value method is employed to handle the general nonlinear Fredholm integro-differential equations under the mixed conditions. The application of the method is based on the integral mean value theorem for integrals. By using the integral mean value method, an integro-differential equation is transformed to an ordinary differential equation, then by solving it, the obtained solution is transformed to a system of nonlinear algebraic equations to calculate the unknown values. The efficiency of the approach will be shown by applying the procedure on some examples. In this respect, a comparison with series pattern solutions, obtained by some analytic methods, is given. For the approximate solution given by integral mean value method, the bounds of the absolute errors are given. The Mathematica program of the integral mean value method based on the procedure in this paper is designed.

  12. The Use of Iterative Methods to Solve Two-Dimensional Nonlinear Volterra-Fredholm Integro-Differential Equations

    Directory of Open Access Journals (Sweden)

    shadan sadigh behzadi

    2012-03-01

    Full Text Available In this present paper, we solve a two-dimensional nonlinear Volterra-Fredholm integro-differential equation by using the following powerful, efficient but simple methods: (i Modified Adomian decomposition method (MADM, (ii Variational iteration method (VIM, (iii Homotopy analysis method (HAM and (iv Modified homotopy perturbation method (MHPM. The uniqueness of the solution and the convergence of the proposed methods are proved in detail. Numerical examples are studied to demonstrate the accuracy of the presented methods.

  13. Positive solutions for Neumann boundary value problems of nonlinear second-order integro-differential equations in ordered Banach spaces

    OpenAIRE

    Liang Yue; Yang He

    2011-01-01

    Abstract The paper deals with the existence of positive solutions for Neumann boundary value problems of nonlinear second-order integro-differential equations - u ″ ( t ) + M u ( t ) = f ( t , u ( t ) , ( S u ) ( t ) ) , 0 < t < 1 , u ′ ( 0 ) = u ′ ( 1 ) = θ and u ″ ( t ) + M u ( t ) = f ( t , u ( t ) , ( S u ) ( t ) ) , 0 < t < 1 , u ′ ( 0 ) ...

  14. Existence and Analytic Approximation of Solutions of Duffing Type Nonlinear Integro-Differential Equation with Integral Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Alsaedi Ahmed

    2009-01-01

    Full Text Available A generalized quasilinearization technique is developed to obtain a sequence of approximate solutions converging monotonically and quadratically to a unique solution of a boundary value problem involving Duffing type nonlinear integro-differential equation with integral boundary conditions. The convergence of order for the sequence of iterates is also established. It is found that the work presented in this paper not only produces new results but also yields several old results in certain limits.

  15. Numerical Solution of Nonlinear Fredholm Integro-Differential Equations Using Spectral Homotopy Analysis Method

    Directory of Open Access Journals (Sweden)

    Z. Pashazadeh Atabakan

    2013-01-01

    Full Text Available Spectral homotopy analysis method (SHAM as a modification of homotopy analysis method (HAM is applied to obtain solution of high-order nonlinear Fredholm integro-differential problems. The existence and uniqueness of the solution and convergence of the proposed method are proved. Some examples are given to approve the efficiency and the accuracy of the proposed method. The SHAM results show that the proposed approach is quite reasonable when compared to homotopy analysis method, Lagrange interpolation solutions, and exact solutions.

  16. On the Property of Being a Bary Basis for a System of Eigenfunctions of a Nonlinear Integro-Differential Equation

    CERN Document Server

    Zhidkov, E P

    2000-01-01

    We consider a nonlinear integro-differential equation on a segment with zero Dirichlet boundary conditions and a normalization condition, containing a spectral parameter, which can arise in the mean field approximation for a quantum-mechanical description of a solid. We prove the existence of a countable set of solutions and investigate properties of these solutions. The main result consists in proving the property of being a Bary basis for a sequence of solutions of the problem, possessing a given behavior, the existence of which is proved.

  17. Repeated games for eikonal equations, integral curvature flows and non-linear parabolic integro-differential equations

    CERN Document Server

    Imbert, Cyril

    2009-01-01

    The main purpose of this paper is to approximate several non-local evolution equations by zero-sum repeated games in the spirit of the previous works of Kohn and the second author (2006 and 2009): general fully non-linear parabolic integro-differential equations on the one hand, and the integral curvature flow of an interface (Imbert, 2008) on the other hand. In order to do so, we start by constructing such a game for eikonal equations whose speed has a non-constant sign. This provides a (discrete) deterministic control interpretation of these evolution equations. In all our games, two players choose positions successively, and their final payoff is determined by their positions and additional parameters of choice. Because of the non-locality of the problems approximated, by contrast with local problems, their choices have to "collect" information far from their current position. For integral curvature flows, players choose hypersurfaces in the whole space and positions on these hypersurfaces. For parabolic i...

  18. Lipschitz Regularity of Solutions for Mixed Integro-Differential Equations

    CERN Document Server

    Barles, Guy; Ciomaga, Adina; Imbert, Cyril

    2011-01-01

    We establish new Hoelder and Lipschitz estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii-Lions's method. We thus extend the Hoelder regularity results recently obtained by Barles, Chasseigne and Imbert (2011). In addition, we deal with a new class of nonlocal equations that we term mixed integro-differential equations. These equations are particularly interesting, as they are degenerate both in the local and nonlocal term, but their overall behavior is driven by the local-nonlocal interaction, e.g. the fractional diffusion may give the ellipticity in one direction and the classical diffusion in the complementary one.

  19. Positive Solutions for a Second-Order Nonlinear Impulsive Singular Integro-Differential Equation with Integral Conditions in Banach Spaces

    Institute of Scientific and Technical Information of China (English)

    Xingqiu ZHANG

    2012-01-01

    The existence of positive solutions to a boundary value problem of second-order impulsive singular integro-differential equation with integral boundary conditions in a Banach space is obtained by means of fixed point theory.Moreover,an application is also given to illustrate the main result.

  20. Splitting methods for partial Volterra integro-differential equations

    NARCIS (Netherlands)

    Brunner, H.; Houwen, P.J. van der; Sommeijer, B.P.

    1999-01-01

    The spatial discretization of initial-value problems for (nonlinear) parabolic or hyperbolic PDEs with memory terms leads to (large) systems of Volterra integro-differential equations (VIDEs). In this paper we study the efficient numerical solution of such systems by methods based on linear multiste

  1. A DELAY-DEPENDENT STABILITY CRITERION FOR NONLINEAR STOCHASTIC DELAY-INTEGRO-DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Niu Yuanling; Zhang Chengjian; Duan Jinqiao

    2011-01-01

    A type of complex systems under both random influence and memory effects is considered.The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations.A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small enough.Numerical simulations are presented to illustrate the theoretical result.

  2. Piecewise weighted pseudo almost periodic solutions of impulsive integro-differential equations via fractional operators

    Directory of Open Access Journals (Sweden)

    Zhinan Xia

    2015-07-01

    Full Text Available In this article, we show sufficient conditions for the existence, uniqueness and attractivity of piecewise weighted pseudo almost periodic classical solution of nonlinear impulsive integro-differential equations. The working tools are based on the fixed point theorem and fractional powers of operators. An application to impulsive integro-differential equations is presented.

  3. EXTRAPOLATION AND A-POSTERIORI ERROR ESTIMATORS OF PETROV-GALERKIN METHODS FOR NON-LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Shu-hua Zhang; Tao Lin; Yan-ping Lin; Ming Rao

    2001-01-01

    In this paper we will show that the Richardson extrapolation can be used to enhance the numerical solution generated by a Petrov-Galerkin finite element method for the initialvalue problem for a nonlinear Volterra integro-differential equation. As by-products, we will also show that these enhanced approximations can be used to form a class of aposteriori estimators for this Petrov-Galerkin finite element method. Numerical examples are supplied to illustrate the theoretical results.

  4. An oscillation criterion for inhomogeneous Stieltjes integro-differential equations

    Directory of Open Access Journals (Sweden)

    M. A. El-Sayed

    1994-01-01

    Full Text Available The aim of the paper is to give an oscillation theorem for inhomogeneous Stieltjes integro-differential equation of the form p(tx′+∫atx(sdσ=f(t. The paper generalizes the author's work [2].

  5. Banach空间非线性脉冲积分-微分方程终值问题的极值解%EXTREMAL SOLUTIONS OF TERMINAL VALUE PROBLEMS FOR NONLINEAR IMPULSIVE INTEGRO-DIFFERENTIAL EQUATIONS IN BANACH SPACES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The comparison principle is first established,and then the lower and upper solution method and the monotone iterative technique are employed to the study of terminal value problems for the first order nonlinear impulsive integro-differential equations in Banach spaces.Finally,the existence theorem on the maximal and minimal solutions is obtained.

  6. Terminal value problems of impulsive integro-differential equations in Banach spaces

    Directory of Open Access Journals (Sweden)

    Dajun Guo

    1997-01-01

    Full Text Available This paper uses cone theory and the monotone iterative technique to investigate the existence of minimal nonnegative solutions of terminal value problems for first order nonlinear impulsive integro-differential equations of mixed type in a Banach space.

  7. N-th order impulsive integro-differential equations in Banach spaces

    Directory of Open Access Journals (Sweden)

    Manfeng Hu

    2004-03-01

    Full Text Available We investigate the maximal and minimal solutions of initial value problem for N-th order nonlinear impulsive integro-differential equation in Banach space by establishing a comparison result and using the upper and lower solutions methods.

  8. Analytic solution to a class of integro-differential equations

    Directory of Open Access Journals (Sweden)

    Xuming Xie

    2003-03-01

    Full Text Available In this paper, we consider the integro-differential equation $$ epsilon^2 y''(x+L(xmathcal{H}(y=N(epsilon,x,y,mathcal{H}(y, $$ where $mathcal{H}(y[x]=frac{1}{pi}(Pint_{-infty}^{infty} frac{y(t}{t-x}dt$ is the Hilbert transform. The existence and uniqueness of analytic solution in appropriately chosen space is proved. Our method consists of extending the equation to an appropriately chosen region in the complex plane, then use the Contraction Mapping Theorem.

  9. Aleksandrov-Bakelman-Pucci Type Estimates For Integro-Differential Equations

    CERN Document Server

    Guillen, Nestor

    2011-01-01

    In this work we provide an Aleksandrov-Bakelman-Pucci type estimate for a certain class of fully nonlinear elliptic integro-differential equations and generalizations of both the Monge-Amp\\`ere operator and the convex envelope to a nonlocal, fractional-order setting. This particular elliptic family under consideration is large enough to capture the second order theory as the order of the integro-differential equations tends to 2. Moreover, our estimate is uniform in the order of the equations, resulting in a genuine generalization of the existing ABP estimate. This result also gives a new comparison theorem for viscosity solutions of such equations which only depends on the $L^\\infty$ and $L^n$ norms of the right hand side, in contrast to previous comparison results which utilize the continuity of the right hand side for their conclusions. These results appear to be new even for the linear case of the relevant equations.

  10. Controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with delay and Poisson jumps

    Directory of Open Access Journals (Sweden)

    Diem Dang Huan

    2015-12-01

    Full Text Available The current paper is concerned with the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps in Hilbert spaces. Using the theory of a strongly continuous cosine family of bounded linear operators, stochastic analysis theory and with the help of the Banach fixed point theorem, we derive a new set of sufficient conditions for the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps. Finally, an application to the stochastic nonlinear wave equation with infinite delay and Poisson jumps is given.

  11. Construction of Canonical Polynomial Basis Functions for Solving Special Nth -Order Linear Integro-Differential Equations

    Directory of Open Access Journals (Sweden)

    1 Taiwo O. A

    2013-01-01

    Full Text Available The problem of solving special nth-order linear integro-differential equations has special importance in engineering and sciences that constitutes a good model for many systems in various fields. In this paper, we construct canonical polynomial from the differential parts of special nth-order integro-differential equations and use it as our basis function for the numerical solutions of special nth-order integro-differential equations. The results obtained by this method are compared with those obtained by Adomian Decomposition method. It is also observed that the new method is an effective method with high accuracy. Some examples are given to illustrate the method.

  12. ADFE METHOD WITH HIGH ACCURACY FOR NONLINEAR PARABOLIC INTEGRO-DIFFERENTIAL SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    崔霞

    2002-01-01

    Alternating direction finite element (ADFE) scheme for d-dimensional nonlinear system of parabolic integro-differential equations is studied. By using a local approximation based on patches of finite elements to treat the capacity term qi(u), decomposition of the coefficient matrix is realized; by using alternating direction, the multi-dimensional problem is reduced to a family of single space variable problems, calculation work is simplified; by using finite element method, high accuracy for space variant is kept; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity of the coefficients and boundary conditions is treated; by introducing Ritz-Volterra projection, the difficulty coming from the memory term is solved. Finally, by using various techniques for priori estimate for differential equations, the unique resolvability and convergence properties for both FE and ADFE schemes are rigorously demonstrated, and optimal H1 and L2norm space estimates and O((△t)2) estimate for time variant are obtained.

  13. Application of fuzzy Laplace transforms for solving fuzzy partial Volterra integro-differential equations

    OpenAIRE

    Ullah, Saif; Farooq, Muhammad; Ahmad, Latif; Abdullah, Saleem

    2014-01-01

    Fuzzy partial integro-differential equations have a major role in the fields of science and engineering. In this paper, we propose the solution of fuzzy partial Volterra integro-differential equation with convolution type kernel using fuzzy Laplace transform method (FLTM) under Hukuhara differentiability. It is shown that FLTM is a simple and reliable approach for solving such equations analytically. Finally, the method is illustrated with few examples to show the ability of the proposed method.

  14. Method for solving the periodic problem for integro-differential equations

    Directory of Open Access Journals (Sweden)

    Snezhana G. Hristova

    1989-05-01

    Full Text Available In the paper a monotone-iterative method for approximate finding a couple of minimal and maximal quasisolutions of the periodic problem for a system of integro-differential equations of Volterra type is justified.

  15. Compactness for an integro-differential equation with measures

    Directory of Open Access Journals (Sweden)

    Gabriela Grosu

    2010-01-01

    Full Text Available In this paper, using some compactness arguments, we prove some local or even global existence results for the essentially bounded solution to an integro-differential Cauchy problem with distributed measures in a real Banach space. An example involving the Dirac measure concentrated at point is included.

  16. Banach空间中二阶混合型脉冲积分-微分方程初值问题解的存在性%The Existence of Solutions of Initial Value Problems for Nonlinear Second Order Impulsive Integro-Differential Equations of Mixed Type in Banach Spaces

    Institute of Scientific and Technical Information of China (English)

    俞卫琴; 陈芳启

    2008-01-01

    By the use of Monch fixed point theorem and a new comparison result, the solutions of initial value problems for nonlinear second order impulsive integro-differential equations of mixed type in Banach spaces are investigated and the existence theorem is obtained.

  17. Lipschitz regularity for integro-differential equations with coercive Hamiltonians and application to large time behavior

    Science.gov (United States)

    Barles, Guy; Ley, Olivier; Topp, Erwin

    2017-02-01

    In this paper, we provide suitable adaptations of the ‘weak version of Bernstein method’ introduced by the first author in 1991, in order to obtain Lipschitz regularity results and Lipschitz estimates for nonlinear integro-differential elliptic and parabolic equations set in the whole space. Our interest is to obtain such Lipschitz results to possibly degenerate equations, or to equations which are indeed ‘uniformly elliptic’ (maybe in the nonlocal sense) but which do not satisfy the usual ‘growth condition’ on the gradient term allowing to use (for example) the Ishii-Lions’ method. We treat the case of a model equation with a superlinear coercivity on the gradient term which has a leading role in the equation. This regularity result together with comparison principle provided for the problem allow to obtain the ergodic large time behavior of the evolution problem in the periodic setting.

  18. Green's functional for a higher order ordinary integro-differential equation with nonlocal conditions

    Science.gov (United States)

    Özen, Kemal

    2016-12-01

    One of the little-known techniques for ordinary integro-differential equations in literature is Green's functional method, the origin of which dates back to Azerbaijani scientist Seyidali S. Akhiev. According to this method, Green's functional concepts for some simple forms of such equations have been introduced in the several studies. In this study, we extend Green's functional concept to a higher order ordinary integro-differential equation involving generally nonlocal conditions. A novel kind of adjoint problem and Green's functional are constructed for completely nonhomogeneous problem. By means of the obtained Green's functional, the solution to the problem is identified.

  19. THE NONLINEAR BOUNDARY VALUE PROBLEM FOR A CLASS OF INTEGRO-DIFFERENTIAL SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Rongrong Tang

    2006-01-01

    In this paper, using the theory of differential inequalities, we study the nonlinear boundary value problem for a class of integro-differential system. Under appropriate assumptions, the existence of solution is proved and the uniformly valid asymptotic expansions for arbitrary n-th order approximation and the estimation of remainder term are obtained simply and conveniently.

  20. THE NUMERICAL SOLUTION FOR A PARTIAL INTEGRO-DIFFERENTIAL EQUATION WITH A WEAKLY SINGULAR KERNEL

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, a first order semi-discrete method of a partial integro-differential equation with a weakly singular kernel is considered. We apply Galerkin spectral method in one direction, and the inversion technique for the Laplace transform in another direction, the result of the numerical experiment proves the accuracy of this method.

  1. Stepanov-like weighted pseudo almost automorphic solutions to fractional order abstract integro-differential equations

    Indian Academy of Sciences (India)

    Syed Abbas; V Kavitha; R Murugesu

    2015-08-01

    In this article, we study the concept of Stepanov-like weighted pseudo almost automorphic solutions to fractional order abstract integro-differential equations. We establish the results with Lipschitz condition and without Lipschitz condition on the forcing term. An interesting example is presented to illustrate the main findings. The results proven are new and complement the existing ones.

  2. EXISTENCE OF MULTIPLE POSITIVE PERIODIC SOLUTIONS TO A CLASS OF INTEGRO-DIFFERENTIAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,by the Avery-Henderson fixed point theorem,we investigate the existence of multiple positive periodic solutions to a class of integro-differential equation. Some suficient conditions are obtained for the existence of multiple positive periodic solutions.

  3. Analytical lie group approach for solving fractional integro-differential equations

    Science.gov (United States)

    Pashayi, S.; Hashemi, M. S.; Shahmorad, S.

    2017-10-01

    This study is concerned with the Lie symmetry group analysis of Fractional Integro-Differential Equations (FIDEs) with nonlocal structures based on a new development of prolongation formula. A new prolongation for FIDEs is extracted and invariant solutions are finally presented for some illustrative examples.

  4. Weighted asymptotic behavior of solutions to semilinear integro-differential equations in Banach spaces

    Directory of Open Access Journals (Sweden)

    Yan-Tao Bian

    2014-04-01

    Full Text Available In this article, we study weighted asymptotic behavior of solutions to the semilinear integro-differential equation $$ u'(t=Au(t+\\alpha\\int_{-\\infty}^{t}e^{-\\beta(t-s}Au(sds+f(t,u(t, \\quad t\\in \\mathbb{R}, $$ where $\\alpha, \\beta \\in \\mathbb{R}$, with $\\beta > 0, \\alpha \

  5. Error estimates for finite element solution for parabolic integro-differential equations

    Directory of Open Access Journals (Sweden)

    Hasan N. Ymeri

    1993-05-01

    Full Text Available In this paper we first study the stability of Ritz-Volterra projection and its maximum norm estimates, and then we use these results to derive some L\\infty error estimates for finite element methods for parabolic partial integro-differential equations.

  6. About one special boundary value problem for multidimensional parabolic integro-differential equation

    Science.gov (United States)

    Khairullin, Ermek

    2016-08-01

    In this paper we consider a special boundary value problem for multidimensional parabolic integro-differential equation with boundary conditions that contains as a boundary condition containing derivatives of order higher than the order of the equation. The solution is sought in the form of a thermal potential of a double layer. Shows lemma of finding the limits of the derivatives of the unknown function in the neighborhood of the hyperplane. Using the boundary condition and lemma obtained integral-differential equation (IDE) of parabolic operators, whĐţre an unknown function under the integral contains higher-order space variables derivatives. IDE is reduced to a singular integral equation (SIE), when an unknown function in the spatial variables satisfies the Holder. The characteristic part is solved in the class of distribution function using method of transformation of Fourier-Laplace. Found an algebraic condition for the transition to the classical generalized solution. Integral equation of the resolvent for the characteristic part of SIE is obtained. Integro-differential equation is reduced to the Volterra-Fredholm type integral equation of the second kind by method of regularization. It is shown that the solution of SIE is a solution of IDE. Obtain a theorem on the solvability of the boundary value problem of multidimensional parabolic integro-differential equation, when a known function of the spatial variables belongs to the Holder class and satisfies the solvability conditions.

  7. LOCAL FRACTIONAL VARIATIONAL ITERATION METHOD FOR SOLVING VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITHIN LOCAL FRACTIONAL OPERATORS

    Directory of Open Access Journals (Sweden)

    Ammar Ali Neamah

    2014-01-01

    Full Text Available The paper uses the Local fractional variational Iteration Method for solving the second kind Volterra integro-differential equations within the local fractional integral operators. The analytical solutions within the non-differential terms are discussed. Some illustrative examples will be discussed. The obtained results show the simplicity and efficiency of the present technique with application to the problems for the integral equations.

  8. Application of the hybrid method with constant coefficients to solving the integro-differential equations of first order

    Science.gov (United States)

    Mehdiyeva, Galina; Imanova, Mehriban; Ibrahimov, Vagif

    2012-11-01

    As is well known investigation of many processes of natural sciences reduce to the solving of initial value problem for integro-differential equations which are one of the priority areas of modern mathematics. To define the exact solution of such problems is not always possible. Therefore the scientists constructed approximate methods for solving them. There are a number of papers devoted to finding approximate solutions of integro-differential equations. Unlike at papers investigated, here the numerical solution of initial value problem for Volterra integro-differential equations by the hybrid methods, constructed concrete methods with the degree p ≤ 6 and suggested algorithm for using them.

  9. Invariant and partially invariant solutions of integro-differential equations for linear thermoviscoelastic aging materials with memory

    Science.gov (United States)

    Zhou, Long-Qiao; Meleshko, Sergey V.

    2017-01-01

    A linear thermoviscoelastic model for homogeneous, aging materials with memory is established. A system of integro-differential equations is obtained by using two motions (a one-dimensional motion and a shearing motion) for this model. Applying the group analysis method to the system of integro-differential equations, the admitted Lie group is determined. Using this admitted Lie group, invariant and partially invariant solutions are found. The present paper gives a first example of application of partially invariant solutions to integro-differential equations.

  10. Abstract fractional integro-differential equations involving nonlocal initial conditions in α-norm

    Directory of Open Access Journals (Sweden)

    Wang Rong-Nian

    2011-01-01

    Full Text Available Abstract In the present paper, we deal with the Cauchy problems of abstract fractional integro-differential equations involving nonlocal initial conditions in α-norm, where the operator A in the linear part is the generator of a compact analytic semigroup. New criterions, ensuring the existence of mild solutions, are established. The results are obtained by using the theory of operator families associated with the function of Wright type and the semigroup generated by A, Krasnoselkii's fixed point theorem and Schauder's fixed point theorem. An application to a fractional partial integro-differential equation with nonlocal initial condition is also considered. Mathematics subject classification (2000 26A33, 34G10, 34G20

  11. Stability Analysis of Runge-Kutta Methods for Delay Integro-Differential Equations

    Institute of Scientific and Technical Information of China (English)

    甘四清; 郑纬民

    2004-01-01

    Considering a linear system of delay integro-differential equations with a constant delay whose zero solution is asympototically stable, this paper discusses the stability of numerical methods for the system. The adaptation of Runge-Kutta methods with a Lagrange interpolation procedure was focused on inheriting the asymptotic stability of underlying linear systems. The results show that an A-stable Runge-Kutta method preserves the asympototic stability of underlying linear systems whenever an unconstrained grid is used.

  12. SOLUTIONS FOR SECOND ORDER IMPULSIVE INTEGRO- DIFFERENTIAL EQUATION ON UNBOUNDED DOMAINS IN BANACH SPACES

    Institute of Scientific and Technical Information of China (English)

    CHEN Fang-qi; TIAN Rui-lan; CHEN Yu-shu

    2006-01-01

    Under loose conditions, the existence of solutions to initial value problem are studied for second order impulsive integro-differential equation with infinite moments of impulse effect on the positive half real axis in Banach spaces. By the use of recurrence method, Tonelii sequence and the locally convex topology, the new existence theorems are achieved, which improve the related results obtained by Guo Da-jun.

  13. Fibonacci collocation method with a residual error Function to solve linear Volterra integro differential equations

    Directory of Open Access Journals (Sweden)

    Salih Yalcinbas

    2016-01-01

    Full Text Available In this paper, a new collocation method based on the Fibonacci polynomials is introduced to solve the high-order linear Volterra integro-differential equations under the conditions. Numerical examples are included to demonstrate the applicability and validity of the proposed method and comparisons are made with the existing results. In addition, an error estimation based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation.

  14. Euler-Chebyshev methods for integro-differential equations

    NARCIS (Netherlands)

    Houwen, P.J. van der; Sommeijer, B.P.

    1996-01-01

    We construct and analyse explicit methods for solving initial value problems for systems of differential equations with expensive righthand side functions whose Jacobian has its stiff eigenvalues along the negative axis. Such equations arise after spatial discretization of parabolic integro-differen

  15. PERIODIC SOLUTIONS OF LINEAR NEUTRAL INTEGRO-DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    马世旺; 王志成; 许强

    2004-01-01

    Consider the linear neutral FDEd/dt[x(t)+ Ax(t -7)] =∫R[dL(8)]x(t+s)+f(t)where x and f are n-dimensional vectors;A is an n×n constant matrix and L(s) is an n×n matrix function with bounded total variation. Some necessary and sufficient conditions are given which guarantee the existence and uniqueness of periodic solutions to the above equation.

  16. 非线性抛物积分微分方程的类Wilson非协调元分析%Analysis of Quasi-Wilson Nonconforming Element for Nonlinear Parabolic Integro-differential Equation

    Institute of Scientific and Technical Information of China (English)

    王芬玲; 石东洋; 陈金环

    2012-01-01

    在半离散和全离散格式下讨论非线性抛物积分微分方程的类Wilson非协调有限元逼近.当问题的精确解u∈H3(Ω)/H4(Ω)时,利用该元的相容误差在能量模意义下可以达到O(h2 )/O(h3)比其插值误差高一阶和二阶的特殊性质,再结合协调部分的高精度分析及插值后处理技术,并借助于双线性插值代替传统有限元分析中不可缺少的Ritz-Volterra投影导出了半离散格式下的O(h2)阶超逼近和超收敛结果.同时分别得到了向后Euler全离散格式下的超逼近性和Crank-Nicolson全离散格式下的最优误差估计.%A nonconforming quasi-Wilson finite element approximation for nonlinear parabolic integro-differential equation is discussed under the semi-discrete and fully-discrete schemes. By use of the special property of the element,i. e. , the consistence error estimate in energy norm when the exact solution u of the problem belongs to H3(Ω)/ H4(Ω) can reach to O(h2)/O(h3), one/two order higher than the interpolation error, then combination it with the higher accuracy analysis of its conforming part and the interpolated postprocessing technique, the superclose and superconvergence results with order O(h2) are obtained for semi-discrete scheme through interpolation instead of the Ritz-Volterra projection which is an indispensable tool in traditional finite element analysis. The superclose property and the optimal error estimate for backward Euler and Crank-Nicolson fully-discrete schemes are derived , respectively.

  17. Stability of Runge-Kutta-Pouzet methods for Volterra integro-differential equations with delays

    Institute of Scientific and Technical Information of China (English)

    Chengming HUANG; Stefan VANDEWALLE

    2009-01-01

    This paper is concerned with the study of the stability of Runge Kutta-Pouzet methods for Volterra integro-differential equations with delays.We are interested in the comparison between the analytical and numerical stability regions.First,we focus on scalar equations with real coefficients.It is proved that all Gauss-Pouzet methods can retain the asymptotic stability of the analytical solution.Then,we consider the multidimensional case.A new stability condition for the stability of the analytical solution is given.Under this condition,the asymptotic stability of Gauss-Pouzet methods is investigated.

  18. One-step block method for solving Volterra integro-differential equations

    Science.gov (United States)

    Mohamed, Nurul Atikah binti; Majid, Zanariah Abdul

    2015-10-01

    One-step block method for solving linear Volterra integro-differential equations (VIDEs) is presented in this paper. In VIDEs, the unknown function appears in the form of derivative and under the integral sign. The popular methods for solving VIDEs are the method of quadrature or quadrature method combined with numerical method. The proposed block method will solve the ordinary differential equations (ODEs) part and Newton-Cotes quadrature rule is applied to calculate the integral part of VIDEs. Numerical problems are presented to illustrate the performance of the proposed method.

  19. Constructing conservation laws for fractional-order integro-differential equations

    Science.gov (United States)

    Lukashchuk, S. Yu.

    2015-08-01

    In a class of functions depending on linear integro-differential fractional-order variables, we prove an analogue of the fundamental operator identity relating the infinitesimal operator of a point transformation group, the Euler-Lagrange differential operator, and Noether operators. Using this identity, we prove fractional-differential analogues of the Noether theorem and its generalizations applicable to equations with fractional-order integrals and derivatives of various types that are Euler-Lagrange equations. In explicit form, we give fractional-differential generalizations of Noether operators that gives an efficient way to construct conservation laws, which we illustrate with three examples.

  20. Relativistic integro-differential form of the Lorentz-Dirac equation in 3D without runaways

    Science.gov (United States)

    Ibison, Michael; Puthoff, Harold E.

    2001-04-01

    It is well known that the third-order Lorentz-Dirac equation admits runaway solutions wherein the energy of the particle grows without limit, even when there is no external force. These solutions can be denied simply on physical grounds, and on the basis of careful analysis of the correspondence between classical and quantum theory. Nonetheless, one would prefer an equation that did not admit unphysical behavior at the outset. Such an equation - an integro-differential version of the Lorentz-Dirac equation - is currently available either in 1 dimension only, or in 3 dimensions only in the non-relativistic limit. It is shown herein how the Lorentz-Dirac equation may be integrated without approximation, and is thereby converted to a second-order integro-differential equation in 3D satisfying the above requirement. I.E., as a result, no additional constraints on the solutions are required because runaway solutions are intrinsically absent. The derivation is placed within the historical context established by standard works on classical electrodynamics by Rohrlich, and by Jackson.

  1. Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup

    Science.gov (United States)

    Gou, Haide; Li, Baolin

    2017-01-01

    In this paper, we study local and global existence of mild solution for an impulsive fractional functional integro differential equation with non-compact semi-group in Banach spaces. We establish a general framework to find the mild solutions for impulsive fractional integro-differential equations, which will provide an effective way to deal with such problems. The theorems proved in this paper improve and extend some related conclusions on this topic. Finally, two applications are given to illustrate that our results are valuable.

  2. OPTIMAL ESTIMATES FOR THE SEMIDISCRETE GALERKIN METHOD APPLIED TO PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS WITH NONSMOOTH DATA

    KAUST Repository

    GOSWAMI, DEEPJYOTI

    2014-01-01

    AWe propose and analyse an alternate approach to a priori error estimates for the semidiscrete Galerkin approximation to a time-dependent parabolic integro-differential equation with nonsmooth initial data. The method is based on energy arguments combined with repeated use of time integration, but without using parabolic-type duality techniques. An optimal L2-error estimate is derived for the semidiscrete approximation when the initial data is in L2. A superconvergence result is obtained and then used to prove a maximum norm estimate for parabolic integro-differential equations defined on a two-dimensional bounded domain. © 2014 Australian Mathematical Society.

  3. An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations

    KAUST Repository

    Pani, Amiya K.

    2010-06-06

    In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.

  4. Highly efficient H 1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation

    Institute of Scientific and Technical Information of China (English)

    石东洋; 廖歆; 唐启立

    2014-01-01

    A highly effcient H 1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h2) for both the original variable u in H1(Ω) norm and the flux p=∇u in H(div,Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.

  5. Integro-differential equations of fractional order with nonlocal fractional boundary conditions associated with financial asset model

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad

    2013-02-01

    Full Text Available In this article, we discuss the existence of solutions for a boundary-value problem of integro-differential equations of fractional order with nonlocal fractional boundary conditions by means of some standard tools of fixed point theory. Our problem describes a more general form of fractional stochastic dynamic model for financial asset. An illustrative example is also presented.

  6. Comparison Theorem for General Volterra-Stieltjes Integro-differential Equations%一般Volterra-Stieltjes微积分方程的比较定理

    Institute of Scientific and Technical Information of China (English)

    娄梅枝

    2003-01-01

    In this paper, A.B.Mingarelli's result is generalized to General Volterra-Stieltjes Integro-differential Equations. Comparison theorem and equivalence condition of non-oscillation are obtained. Classical Sturm comparison theorem and some conclusions are generalized.

  7. Incremental localized boundary-domain integro-differential equations of elastic damage mechanics for inhomogeneous body

    OpenAIRE

    Mikhailov, SE

    2006-01-01

    Copyright @ 2006 Tech Science Press A quasi-static mixed boundary value problem of elastic damage mechanics for a continuously inhomogeneous body is considered. Using the two-operator Green-Betti formula and the fundamental solution of an auxiliary homogeneous linear elasticity with frozen initial, secant or tangent elastic coe±cients, a boundary-domain integro-differential formulation of the elasto-plastic problem with respect to the displacement rates and their gradients is derived. Usin...

  8. Analysis of multiple interfacial cracks in three-dimensional bimaterials using hypersingular integro-differential equation method

    Institute of Scientific and Technical Information of China (English)

    Chun-hui XU; Tai-yan QIN; Li YUAN; NaoAki Noda

    2009-01-01

    By using the concept of finite-part integral, a set of hypersingular integro-differential equations for multiple interracial cracks in a three-dimensional infinite hi-material subjected to arbitrary loads is derived. In the numerical analysis, unknown displacement discontinuities are approximated with the products of the fundamental den-sity functions and power series. The fundamental functions are chosen to express a two-dimensional interface crack rigorously. As illustrative examples, the stress intensity factors for two rectangular interface cracks are calculated for various spacing, crack shape and elastic constants. It is shown that the stress intensity factors decrease with the crack spacing.

  9. Comparison principles for integro-differential equations with L{\\'e}vy operators - the case of spacial depending jumps -

    CERN Document Server

    Arisawa, M

    2010-01-01

    A comparison principle for the integro-differential equation with the L{\\'e}vy operator corresponding to the spacial depending jump process is presented in this paper. The jump $\\beta(x,z)$ at a point $x$ and the L{\\'e}vy measure $dq(z)$ satisfy conditions given independently for each of them, which is a major difference from other works. Moreover, a useful form of the viscosity solution is presented, which is equivalent to more "classical" definitions, and is used to prove the comparison principle easily.

  10. Analytical solution to DGLAP integro-differential equation in a simple toy-model with a fixed gauge coupling

    CERN Document Server

    Alvarez, Gustavo; Kniehl, Bernd A; Kondrashuk, Igor; Parra-Ferrada, Ivan

    2016-01-01

    We consider a simple model for QCD dynamics in which DGLAP integro-differential equation may be solved analytically. This is a gauge model which possesses dominant evolution of gauge boson (gluon) distribution and in which the gauge coupling does not run. This may be ${\\cal N} =4$ supersymmetric gauge theory with softly broken supersymmetry, other finite supersymmetric gauge theory with lower level of supersymmetry, or topological Chern-Simons field theories. We maintain only one term in the splitting function of unintegrated gluon distribution and solve DGLAP analytically for this simplified splitting function. The solution is found by use of the Cauchy integral formula. The solution restricts form of the unintegrated gluon distribution as function of transfer momentum and of Bjorken $x$. Then we consider an almost realistic splitting function of unintegrated gluon distribution as an input to DGLAP equation and solve it by the same method which we have developed to solve DGLAP equation for the toy-model. We ...

  11. Analytical solution to DGLAP integro-differential equation in a simple toy-model with a fixed gauge coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Gustavo [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Concepcion Univ. (Chile). Dept. de Fisica; Cvetic, Gorazd [Univ. Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor [Univ. del Bio-Bio, Chillan (Chile). Grupo de Matematica Aplicada; Univ. del Bio-Bio, Chillan (Chile). Grupo de Fisica de Altas Energias; Parra-Ferrada, Ivan [Talca Univ. (Chile). Inst. de Matematica y Fisica

    2016-11-15

    We consider a simple model for QCD dynamics in which DGLAP integro-differential equation may be solved analytically. This is a gauge model which possesses dominant evolution of gauge boson (gluon) distribution and in which the gauge coupling does not run. This may be N=4 supersymmetric gauge theory with softly broken supersymmetry, other finite supersymmetric gauge theory with lower level of supersymmetry, or topological Chern-Simons field theories. We maintain only one term in the splitting function of unintegrated gluon distribution and solve DGLAP analytically for this simplified splitting function. The solution is found by use of the Cauchy integral formula. The solution restricts form of the unintegrated gluon distribution as function of transfer momentum and of Bjorken x. Then we consider an almost realistic splitting function of unintegrated gluon distribution as an input to DGLAP equation and solve it by the same method which we have developed to solve DGLAP equation for the toy-model. We study a result obtained for the realistic gluon distribution and find a singular Bessel-like behaviour in the vicinity of the point x=0 and a smooth behaviour in the vicinity of the point x=1.

  12. Optimal Error Estimates of Two Mixed Finite Element Methods for Parabolic Integro-Differential Equations with Nonsmooth Initial Data

    KAUST Repository

    Goswami, Deepjyoti

    2013-05-01

    In the first part of this article, a new mixed method is proposed and analyzed for parabolic integro-differential equations (PIDE) with nonsmooth initial data. Compared to the standard mixed method for PIDE, the present method does not bank on a reformulation using a resolvent operator. Based on energy arguments combined with a repeated use of an integral operator and without using parabolic type duality technique, optimal L2 L2-error estimates are derived for semidiscrete approximations, when the initial condition is in L2 L2. Due to the presence of the integral term, it is, further, observed that a negative norm estimate plays a crucial role in our error analysis. Moreover, the proposed analysis follows the spirit of the proof techniques used in deriving optimal error estimates for finite element approximations to PIDE with smooth data and therefore, it unifies both the theories, i.e., one for smooth data and other for nonsmooth data. Finally, we extend the proposed analysis to the standard mixed method for PIDE with rough initial data and provide an optimal error estimate in L2, L 2, which improves upon the results available in the literature. © 2013 Springer Science+Business Media New York.

  13. A New Numerical Method for Fast Solution of Partial Integro-Differential Equations

    OpenAIRE

    Dourbal, Pavel; Pekker, Mikhail

    2016-01-01

    A new method of numerical solution for partial differential equations is proposed. The method is based on a fast matrix multiplication algorithm. Two-dimensional Poison equation is used for comparison of the proposed method with conventional numerical methods. It was shown that the new method allows for linear growth in the number of elementary addition and multiplication operations with the growth of grid size, as contrasted with quadratic growth necessitated by the standard numerical method...

  14. A semigroup approach to an integro-differential equation modeling slow erosion

    Science.gov (United States)

    Bressan, Alberto; Shen, Wen

    2014-10-01

    The paper is concerned with a scalar conservation law with nonlocal flux, providing a model for granular flow with slow erosion and deposition. While the solution u=u(t,x) can have jumps, the inverse function x=x(t,u) is always Lipschitz continuous; its derivative has bounded variation and satisfies a balance law with measure-valued sources. Using a backward Euler approximation scheme combined with a nonlinear projection operator, we construct a continuous semigroup whose trajectories are the unique entropy weak solutions to this balance law. Going back to the original variables, this yields the global well-posedness of the Cauchy problem for the granular flow model.

  15. Reliability of difference analogues to preserve stability properties of stochastic Volterra integro-differential equations

    Directory of Open Access Journals (Sweden)

    Roberts Jason A

    2006-01-01

    Full Text Available We consider the reliability of some numerical methods in preserving the stability properties of the linear stochastic functional differential equation , where α, β, σ, τ ≥ 0 are real constants, and W(t is a standard Wiener process. The areas of the regions of asymptotic stability for the class of methods considered, indicated by the sufficient conditions for the discrete system, are shown to be equal in size to each other and we show that an upper bound can be put on the time-step parameter for the numerical method for which the system is asymptotically mean-square stable. We illustrate our results by means of numerical experiments and various stability diagrams. We examine the extent to which the continuous system can tolerate stochastic perturbations before losing its stability properties and we illustrate how one may accurately choose a numerical method to preserve the stability properties of the original problem in the numerical solution. Our numerical experiments also indicate that the quality of the sufficient conditions is very high.

  16. A problem with inverse time for a singularly perturbed integro-differential equation with diagonal degeneration of the kernel of high order

    Science.gov (United States)

    Bobodzhanov, A. A.; Safonov, V. F.

    2016-04-01

    We consider an algorithm for constructing asymptotic solutions regularized in the sense of Lomov (see [1], [2]). We show that such problems can be reduced to integro-differential equations with inverse time. But in contrast to known papers devoted to this topic (see, for example, [3]), in this paper we study a fundamentally new case, which is characterized by the absence, in the differential part, of a linear operator that isolates, in the asymptotics of the solution, constituents described by boundary functions and by the fact that the integral operator has kernel with diagonal degeneration of high order. Furthermore, the spectrum of the regularization operator A(t) (see below) may contain purely imaginary eigenvalues, which causes difficulties in the application of the methods of construction of asymptotic solutions proposed in the monograph [3]. Based on an analysis of the principal term of the asymptotics, we isolate a class of inhomogeneities and initial data for which the exact solution of the original problem tends to the limit solution (as \\varepsilon\\to+0) on the entire time interval under consideration, also including a boundary-layer zone (that is, we solve the so-called initialization problem). The paper is of a theoretical nature and is designed to lead to a greater understanding of the problems in the theory of singular perturbations. There may be applications in various applied areas where models described by integro-differential equations are used (for example, in elasticity theory, the theory of electrical circuits, and so on).

  17. The optimal control of a new class of impulsive stochastic neutral evolution integro-differential equations with infinite delay

    Science.gov (United States)

    Yan, Zuomao; Lu, Fangxia

    2016-08-01

    In this paper, we introduce the optimal control problems governed by a new class of impulsive stochastic partial neutral evolution equations with infinite delay in Hilbert spaces. First, by using stochastic analysis, the analytic semigroup theory, fractional powers of closed operators, and suitable fixed point theorems, we prove an existence result of mild solutions for the control systems in the α-norm without the assumptions of compactness. Next, we derive the existence conditions of optimal pairs of these systems. Finally, application to a nonlinear impulsive stochastic parabolic optimal control system is considered.

  18. Superconvergence of Finite Element Approximations to Parabolic and Hyperbolic Integro-Differential Equations%抛物型和双曲型积分-微分方程有限元逼近的超收敛性质

    Institute of Scientific and Technical Information of China (English)

    张铁; 李长军

    2001-01-01

    The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.

  19. Modern nonlinear equations

    CERN Document Server

    Saaty, Thomas L

    1981-01-01

    Covers major types of classical equations: operator, functional, difference, integro-differential, and more. Suitable for graduate students as well as scientists, technologists, and mathematicians. "A welcome contribution." - Math Reviews. 1964 edition.

  20. Periodic Solutions of Scalar Neutral Integro-Differential Equation%中立型标量积分微分方程的周期解

    Institute of Scientific and Technical Information of China (English)

    陈凤德; 孙德献; 陈晓星

    2003-01-01

    本文考虑中立型标量方程x′(t)=a(t)x(t)+∫t-∞g(t,s,x(s))ds+∫t-∞h(t,s,x′(s))ds+f(t,x(t))的周期的存在唯一性问题. 其中a是连续函数,f是R×R上的连续函数,g(t,s,x)和h(t,s,x)是R×R×R上的连续函数,以及a(t+T)=a(t), g(t+T, s+T, x)=g(t,s,x), h(t+T, s+T, x)=h(t,s,x), f(t+T, x)=f(t,x). 通过利用线性系统解的估计式和泛函分析的方法,我们得到保证上述系统周期解存在和唯一的充分性条件.%This paper deals with the existence and uniqueness of periodic solutions of scalar neutral integro-differential equation with infinite delay of the form x′(t)=a(t)x(t)+∫t-∞g(t,s,x(s))ds+∫t-∞h(t,s,x′(s))ds+f(t,x(t))where a is continuous function, f is continuous function on R×R, g(t,s,x) and h(t,s,x) are continuous functions on R×R×R, also a(t+T)=a(t), g(t+T, s+T, x)=g(t,s,x), h(t+T, s+T, x)=h(t,s,x), f(t+T, x)=f(t,x). The sufficient conditions for the existing unique periodic solution of the equation are obtained by using functional analysis method and the estimated formulas of solutions of the linear scalar system.

  1. NONLOCAL INITIAL PROBLEM FOR NONLINEAR NONAUTONOMOUS DIFFERENTIAL EQUATIONS IN A BANACH SPACE

    Institute of Scientific and Technical Information of China (English)

    M.I.Gil'

    2004-01-01

    The nonlocal initial problem for nonlinear nonautonomous evolution equations in a Banach space is considered. It is assumed that the nonlinearities have the local Lipschitz properties. The existence and uniqueness of mild solutions are proved. Applications to integro-differential equations are discussed. The main tool in the paper is the normalizing mapping (the generalized norm).

  2. An H1-Galerkin Nonconforming Mixed Finite Element Method for Integro-Differential Equation of Parabolic Type%抛物型积分微分方程的非协调H1-Galerkin混合有限元方法

    Institute of Scientific and Technical Information of China (English)

    石东洋; 王海红

    2009-01-01

    H1-Galerkin nonconforming mixed finite element methods are analyzed for integro-differential equation of parabolic type.By use of the typical characteristic of the elements,we obtain that the Galerkin mixed approximations have the same rates of convergence as in the classical mixed method,but without LBB stability condition.

  3. Solutions to systems of partial differential equations with weighted self-reference and heredity

    Directory of Open Access Journals (Sweden)

    Pham Ky Anh

    2012-07-01

    Full Text Available This article studies the existence of solutions to systems of nonlinear integro-differential self-referred and heredity equations. We show the existence of a global solution and the uniqueness of a local solution to a system of integro-differential equations with given initial conditions.

  4. A Simple Quantum Integro-Differential Solver (SQuIDS)

    CERN Document Server

    Delgado, Carlos Alberto Arguelles; Weaver, Christopher N

    2014-01-01

    Simple Quantum Integro-Differential Solver (SQuIDS) is a C++ code designed to solve semi-analytically the evolution of a set of density matrices and scalar functions. This is done efficiently by expressing all operators in an SU(N) basis. SQuIDS provides a base class from which users can derive new classes to include new non-trivial terms from the right hand sides of density matrix equations. The code was designed in the context of solving neutrino oscillation problems, but can be applied to any problem that involves solving the quantum evolution of a collection of particles with Hilbert space of dimension up to six.

  5. Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach spaces

    Institute of Scientific and Technical Information of China (English)

    LI Shoufu

    2005-01-01

    A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.

  6. A novel coupled system of non-local integro-differential equations modelling Young's modulus evolution, nutrients' supply and consumption during bone fracture healing

    Science.gov (United States)

    Lu, Yanfei; Lekszycki, Tomasz

    2016-10-01

    During fracture healing, a series of complex coupled biological and mechanical phenomena occurs. They include: (i) growth and remodelling of bone, whose Young's modulus varies in space and time; (ii) nutrients' diffusion and consumption by living cells. In this paper, we newly propose to model these evolution phenomena. The considered features include: (i) a new constitutive equation for growth simulation involving the number of sensor cells; (ii) an improved equation for nutrient concentration accounting for the switch between Michaelis-Menten kinetics and linear consumption regime; (iii) a new constitutive equation for Young's modulus evolution accounting for its dependence on nutrient concentration and variable number of active cells. The effectiveness of the model and its predictive capability are qualitatively verified by numerical simulations (using COMSOL) describing the healing of bone in the presence of damaged tissue between fractured parts.

  7. NEW ALTERNATING DIRECTION FINITE ELEMENT SCHEME FOR NONLINEAR PARABOLIC EQUATION

    Institute of Scientific and Technical Information of China (English)

    崔霞

    2002-01-01

    A new alternating direction (AD) finite element (FE) scheme for 3-dimensional nonlinear parabolic equation and parabolic integro-differential equation is studied. By using AD,the 3-dimensional problem is reduced to a family of single space variable problems, calculation work is simplified; by using FE, high accuracy is kept; by using various techniques for priori estimate for differential equations such as inductive hypothesis reasoning, the difficulty arising from the nonlinearity is treated. For both FE and ADFE schemes, the convergence properties are rigorously demonstrated, the optimal H1- and L2-norm space estimates and the O((△t)2) estimate for time variable are obtained.

  8. A Finite Volume Backward Euler Difference Method for Nonlinear Parabolic Integral-differential Equation%非线性抛物型积分-微分方程的向后Euler差分有限体积元方法

    Institute of Scientific and Technical Information of China (English)

    王波; 王强

    2009-01-01

    The Finite volume backward Euler difference method is established to discuss two-dimensional parabolic integro-differential equations.These results are new for finite volume element methods for parabolic integro-differential equations.

  9. On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation

    Directory of Open Access Journals (Sweden)

    Said Mesloub

    2008-03-01

    Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.

  10. On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation

    Directory of Open Access Journals (Sweden)

    Mesloub Said

    2008-01-01

    Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.

  11. A Nonconforming Arbitrary Quadrilateral H1-Galerkin Mixed Finite Element Method for Hyperbolic Type Integro-differential Equation%双曲型积分微分方程的非协调任意四边形H1-Galerkin混合有限元方法

    Institute of Scientific and Technical Information of China (English)

    王海红; 郭城

    2012-01-01

    针对双曲型积分微分方程问题,研究了非协调任意四边形H1-Galerkin混合有限元方法.在半离散格式下,利用所选单元本身的特点,在不需要Ritz-Volterra投影的情况下得到了与传统协调混合有限元方法相同的误差估计.%A nonconforming arbitrary quadrilateral H1 -Galerkin mixed finite element method for hyperbolic type integro-differential equations problem was studied. By use of the characteristic of the chosen finite elements, the same error estimates as in the traditional conforming mixed finite elements methods were derived in semi-discrete formulation without using Ritz-Volterra projection.

  12. Uniform Stability of Damped Nonlinear Vibrations of an Elastic String

    Indian Academy of Sciences (India)

    Ganesh C Gorain; Sujit K Bose

    2003-11-01

    Here we are concerned about uniform stability of damped nonlinear transverse vibrations of an elastic string fixed at its two ends. The vibrations governed by nonlinear integro-differential equation of Kirchoff type, is shown to possess energy uniformly bounded by exponentially decaying function of time. The result is achieved by considering an energy-like Lyapunov functional for the system.

  13. Regularity for solutions of non local, non symmetric equations

    CERN Document Server

    Lara, Hector Chang

    2011-01-01

    We study the regularity for solutions of fully nonlinear integro differential equations with respect to nonsymmetric kernels. More precisely, we assume that our operator is elliptic with respect to a family of integro differential linear operators where the symmetric part of the kernels have a fixed homogeneity $\\sigma$ and the skew symmetric part have strictly smaller homogeneity $\\tau$. We prove a weak ABP estimate and $C^{1,\\alpha}$ regularity. Our estimates remain uniform as we take $\\sigma \\to 2$ and $\\tau \\to 1$ so that this extends the regularity theory for elliptic differential equations with dependence on the gradient.

  14. A review of theoretical and numerical analysis for nonlinear stiff Volterrafunctional differential equations

    Institute of Scientific and Technical Information of China (English)

    Shoufu LI

    2009-01-01

    In this review,we present the recent work of the author in comparison with various related results obtained by other authors in literature.We first recall the stability,contractivity and asymptotic stability results of the true solution to nonlinear stiff Volterra functional differential equations (VFDEs),then a series of stability,contractivity,asymptotic stability and B-convergence results of Runge-Kutta methods for VFDEs is presented in detail.This work provides a unified theoretical foundation for the theoretical and numerical analysis of nonlinear stiff problems in delay differential equations (DDEs),integro-differential equations (IDEs),delayintegro-differential equations (DIDEs) and VFDEs of other type which appear in practice.

  15. Generic Properties of an Integro-Differential Equation.

    Science.gov (United States)

    1980-06-01

    Let T (t): C * C, t > 0, be the semigroup operatora,g by (1.1); that is, T a,g(t)o(e) x(o)(t+0), -1 < o < 0. 2. Nongeneric Hopf bifurcation. To prove...in a sufficiently small neigtborhood V of a0 (s) - 492(1-s). From the results in Cooperman [11 (see also Hale (14]), the semigroup T t) has aag

  16. Comparison of two definitions of lower and upper functions associated to nonlinear second order differential equations

    Directory of Open Access Journals (Sweden)

    Vrkoč Ivo

    2001-01-01

    Full Text Available The notions of lower and upper functions of the second order differential equations take their beginning from the classical work by C. Scorza-Dragoni and have been investigated till now because they play an important role in the theory of nonlinear boundary value problems. Most of them define lower and upper functions as solutions of the corresponding second order differential inequalities. The aim of this paper is to compare two more general approaches. One is due to Rachůnková and Tvrdý (Nonlinear systems of differential inequalities and solvability of certain boundary value problems (J. of Inequal. & Appl. (to appear who defined the lower and upper functions of the given equation as solutions of associated systems of two differential inequalities with solutions possibly not absolutely continuous. The second belongs to Fabry and Habets (Nonlinear Analysis, TMA 10 (1986, 985–1007 and requires the monotonicity of certain integro-differential expressions.

  17. Approximate self-similar solutions to a nonlinear diffusion equation with time-fractional derivative

    Science.gov (United States)

    Płociniczak, Łukasz; Okrasińska, Hanna

    2013-10-01

    In this paper, we consider a fractional nonlinear problem for anomalous diffusion. The diffusion coefficient we use is of power type, and hence the investigated problem generalizes the porous-medium equation. A generalization is made by introducing a fractional time derivative. We look for self-similar solutions for which the fractional setting introduces other than classical space-time scaling. The resulting similarity equations are of nonlinear integro-differential type. We approximate these equations by an expansion of the integral operator and by looking for solutions in a power function form. Our method can be easily adapted to solve various problems in self-similar diffusion. The approximations obtained give very good results in numerical analysis. Their simplicity allows for easy use in applications, as our fitting with experimental data shows. Moreover, our derivation justifies theoretically some previously used empirical models for anomalous diffusion.

  18. On the spectra of certain integro-differential-delay problems with applications in neurodynamics

    Science.gov (United States)

    Grindrod, P.; Pinotsis, D. A.

    2011-01-01

    We investigate the spectrum of certain integro-differential-delay equations (IDDEs) which arise naturally within spatially distributed, nonlocal, pattern formation problems. Our approach is based on the reformulation of the relevant dispersion relations with the use of the Lambert function. As a particular application of this approach, we consider the case of the Amari delay neural field equation which describes the local activity of a population of neurons taking into consideration the finite propagation speed of the electric signal. We show that if the kernel appearing in this equation is symmetric around some point a≠0 or consists of a sum of such terms, then the relevant dispersion relation yields spectra with an infinite number of branches, as opposed to finite sets of eigenvalues considered in previous works. Also, in earlier works the focus has been on the most rightward part of the spectrum and the possibility of an instability driven pattern formation. Here, we numerically survey the structure of the entire spectra and argue that a detailed knowledge of this structure is important within neurodynamical applications. Indeed, the Amari IDDE acts as a filter with the ability to recognise and respond whenever it is excited in such a way so as to resonate with one of its rightward modes, thereby amplifying such inputs and dampening others. Finally, we discuss how these results can be generalised to the case of systems of IDDEs.

  19. Integral and integrable algorithms for a nonlinear shallow-water wave equation

    Science.gov (United States)

    Camassa, Roberto; Huang, Jingfang; Lee, Long

    2006-08-01

    An asymptotic higher-order model of wave dynamics in shallow water is examined in a combined analytical and numerical study, with the aim of establishing robust and efficient numerical solution methods. Based on the Hamiltonian structure of the nonlinear equation, an algorithm corresponding to a completely integrable particle lattice is implemented first. Each "particle" in the particle method travels along a characteristic curve. The resulting system of nonlinear ordinary differential equations can have solutions that blow-up in finite time. We isolate the conditions for global existence and prove l1-norm convergence of the method in the limit of zero spatial step size and infinite particles. The numerical results show that this method captures the essence of the solution without using an overly large number of particles. A fast summation algorithm is introduced to evaluate the integrals of the particle method so that the computational cost is reduced from O( N2) to O( N), where N is the number of particles. The method possesses some analogies with point vortex methods for 2D Euler equations. In particular, near singular solutions exist and singularities are prevented from occurring in finite time by mechanisms akin to those in the evolution of vortex patches. The second method is based on integro-differential formulations of the equation. Two different algorithms are proposed, based on different ways of extracting the time derivative of the dependent variable by an appropriately defined inverse operator. The integro-differential formulations reduce the order of spatial derivatives, thereby relaxing the stability constraint and allowing large time steps in an explicit numerical scheme. In addition to the Cauchy problem on the infinite line, we include results on the study of the nonlinear equation posed in the quarter (space-time) plane. We discuss the minimum number of boundary conditions required for solution uniqueness and illustrate this with numerical

  20. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  1. Multipoint problem for intehrodyferentsialnyh partial differential equations, not solvable on higher derivatives

    Directory of Open Access Journals (Sweden)

    І.С. Клюс

    2007-01-01

    Full Text Available  The correctness of a problem with multi–point conditions on temporary variable of  linear partial differential equations not solved as to the highest derivative with respect to time, perturbed by the nonlinear integro-differential operator is investigated

  2. Application of Reproducing Kernel Method for Solving Nonlinear Fredholm-Volterra Integrodifferential Equations

    Directory of Open Access Journals (Sweden)

    Omar Abu Arqub

    2012-01-01

    Full Text Available This paper investigates the numerical solution of nonlinear Fredholm-Volterra integro-differential equations using reproducing kernel Hilbert space method. The solution ( is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximate solution ( is obtained and it is proved to converge to the exact solution (. Furthermore, the proposed method has an advantage that it is possible to pick any point in the interval of integration and as well the approximate solution and its derivative will be applicable. Numerical examples are included to demonstrate the accuracy and applicability of the presented technique. The results reveal that the method is very effective and simple.

  3. B-Theory of Runge-Kutta methods for stiff Volterra functional differential equations

    Institute of Scientific and Technical Information of China (English)

    LI; Shoufu(李寿佛)

    2003-01-01

    B-stability and B-convergence theories of Runge-Kutta methods for nonlinear stiff Volterra func-tional differential equations (VFDEs) are established which provide unified theoretical foundation for the studyof Runge-Kutta methods when applied to nonlinear stiff initial value problems (IVPs) in ordinary differentialequations (ODEs), delay differential equations (DDEs), integro-differential equations (IDEs) and VFDEs ofother type which appear in practice.

  4. On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity

    Directory of Open Access Journals (Sweden)

    Nikolai N. Bogoliubov (Jr.

    2007-01-01

    Full Text Available A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed.

  5. Controllability of Fractional Neutral Stochastic Integro-Differential Systems with Infinite Delay

    Directory of Open Access Journals (Sweden)

    Xichao Sun

    2013-01-01

    Full Text Available This paper is concerned with the controllability of a class of fractional neutral stochastic integro-differential systems with infinite delay in an abstract space. By employing fractional calculus and Sadovskii's fixed point principle without assuming severe compactness condition on the semigroup, a set of sufficient conditions are derived for achieving the controllability result.

  6. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  7. Asymptotics for dissipative nonlinear equations

    CERN Document Server

    Hayashi, Nakao; Kaikina, Elena I; Shishmarev, Ilya A

    2006-01-01

    Many of problems of the natural sciences lead to nonlinear partial differential equations. However, only a few of them have succeeded in being solved explicitly. Therefore different methods of qualitative analysis such as the asymptotic methods play a very important role. This is the first book in the world literature giving a systematic development of a general asymptotic theory for nonlinear partial differential equations with dissipation. Many typical well-known equations are considered as examples, such as: nonlinear heat equation, KdVB equation, nonlinear damped wave equation, Landau-Ginzburg equation, Sobolev type equations, systems of equations of Boussinesq, Navier-Stokes and others.

  8. Collsionless tearing instability in a non-Maxwellian neutral sheet - An integro-differential formulation

    Science.gov (United States)

    Chen, J.; Lee, Y. C.

    1985-01-01

    In the present investigation, a general integro-differential formalism is derived for the study of the collisionless tearing mode in a highly non-Maxwellian neutral sheet in which both electrons and ions are treated kinetically. The obtained formalism is applied to a specific non-Maxwellian distribution. The dispersion relation for the considered system is determined, taking into account the fundamental harmonic of the orbital frequency. It is found that the dispersion relation is dominated by the electrons. The results are presented in a number of graphs. The growth rates of non-Maxwellian distributions are generally much greater than the growth rate of the conventional isotropic tearing instability.

  9. Existence of minimal and maximal solutions to RL fractional integro-differential initial value problems

    Directory of Open Access Journals (Sweden)

    Z. Denton

    2017-01-01

    Full Text Available In this work we investigate integro-differential initial value problems with Riemann Liouville fractional derivatives where the forcing function is a sum of an increasing function and a decreasing function. We will apply the method of lower and upper solutions and develop two monotone iterative techniques by constructing two sequences that converge uniformly and monotonically to minimal and maximal solutions. In the first theorem we will construct two natural sequences and in the second theorem we will construct two intertwined sequences. Finally, we illustrate our results with an example.

  10. A novel technique to solve nonlinear higher-index Hessenberg differential-algebraic equations by Adomian decomposition method.

    Science.gov (United States)

    Benhammouda, Brahim

    2016-01-01

    Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.

  11. Solving Nonlinear Wave Equations by Elliptic Equation

    Institute of Scientific and Technical Information of China (English)

    FU Zun-Tao; LIU Shi-Da; LIU Shi-Kuo

    2003-01-01

    The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.

  12. The nonlinear evolution of modes on unstable stratified shear layers

    Science.gov (United States)

    Blackaby, Nicholas; Dando, Andrew; Hall, Philip

    1993-06-01

    The nonlinear development of disturbances in stratified shear flows (having a local Richardson number of value less than one quarter) is considered. Such modes are initially fast growing but, like related studies, we assume that the viscous, non-parallel spreading of the shear layer results in them evolving in a linear fashion until they reach a position where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. Four different basic integro-differential amplitude equations are possible, including one due to a novel mechanism; the relevant choice of amplitude equation, at a particular instance, being dependent on the relative sizes of the disturbance amplitude, the growth rate of the disturbance, its wavenumber, and the viscosity of the fluid. This richness of choice of possible nonlinearities arises mathematically from the indicial Frobenius roots of the governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential amplitude equations with a cubic nonlinearity but the resulting significant increase in the size of the disturbance's amplitude leads on to the next stage of the evolution process where the evolution of the mode is governed by an integro-differential amplitude equations with a quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which time the flow has become fully nonlinear.

  13. Superconvergence Analysis of Quasi-carey Element for Nonlinear Pseudo-hyperbolic Integro-differential Equations%非线性伪双曲积分微分方程的类Carey元超收敛分析

    Institute of Scientific and Technical Information of China (English)

    李永献; 李先枝

    2015-01-01

    将非协调三角形类Carey元应用于非线性伪双曲积分微分方程进行了超收敛分析.利用该元在能量模意义下非协调误差比插值误差高一阶的特殊性质,线性三角形元的高精度分析结果及平均值技巧,在抛弃传统的Ritz-Volterra投影的情形下,得到了半离散格式能量模意义下的超逼近性质.进一步地,借助插值后处理技术,导出了相应的整体超收敛结果.

  14. Introduction to nonlinear dispersive equations

    CERN Document Server

    Linares, Felipe

    2015-01-01

    This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introdu...

  15. Nonlinear evolution equations in QCD

    OpenAIRE

    Stasto, A. M.

    2004-01-01

    The following lectures are an introduction to the phenomena of partonic saturation and nonlinear evolution equations in Quantum Chromodynamics. After a short introduction to the linear evolution, the problems of unitarity bound and parton saturation are discussed. The nonlinear Balitsky-Kovchegov evolution equation in the high energy limit is introduced, and the progress towards the understanding of the properties of its solution is reviewed. We discuss the concepts of the saturation scale, g...

  16. 非线性粘弹性梁的混沌运动%Chaotic Motions of Nonlinear Viscoelastic Beams

    Institute of Scientific and Technical Information of China (English)

    陈立群; 程昌; 张能辉

    2000-01-01

    The integro-partial-differential equation that governs the dynamical behavior of homogeneous viscoelastic beams with geometric and material nonlinearities is established. The material of the beams obeys the Leaderman nonlinear constitutive relation. In the case of simple supported ends, the Galerkin method is applied to simplify the integro-partial-differential equation to a integro -differential equation. The equation is further simplified to a set of ordinary differential equations by introducing an additional variable. Finally, the numerical method is applied to investigate the dynamical behavior of the beam, and results show that chaos occurs in the motion of the beam.

  17. 非线性粘弹性梁的混沌运动%Chaotic Motions of Nonlinear Viscoelastic Beams

    Institute of Scientific and Technical Information of China (English)

    陈立群; 程昌; 张能辉

    2001-01-01

    The integro-partial-differential equation that governs the dynamical behavior of homogeneous viscoelastic beams with geometric and material nonlinearities is established. The material of the beams obeys the Leaderman nonlinear constitutive relation. In the case of simple supported ends, the Galerkin method is applied to simplify the integro-partial-differential equation to a integro -differential equation. The equation is further simplified to a set of ordinary differential equations by introducing an additional variable. Finally, the numerical method is applied to investigate the dynamical behavior of the beam, and results show that chaos occurs in the motion of the beam.

  18. Nonlinear waves on the free surface of a dielectric liquid in an oblique electric field

    Energy Technology Data Exchange (ETDEWEB)

    Gashkov, M. A.; Zubarev, N. M., E-mail: nick@iep.uran.ru; Kochurin, E. A., E-mail: kochurin@iep.uran.ru [Ural Branch, Russian Academy of Sciences, Institute of Electrophysics (Russian Federation)

    2015-09-15

    The nonlinear dynamics of the free surface of an ideal dielectric liquid that is exposed to an external oblique electric field has been studied theoretically. In the framework of the Hamiltonian formalism, a system of nonlinear integro-differential equations has been derived that describes the dynamics of nonlinear waves in the small-angle approximation. It is established that for a liquid with high dielectric permittivity, these equations have a solution in the form of plane waves of arbitrary shape that propagate without distortion in the direction of the horizontal component of the external field.

  19. Stochastic nonlinear differential equations. I

    NARCIS (Netherlands)

    Heilmann, O.J.; Kampen, N.G. van

    1974-01-01

    A solution method is developed for nonlinear differential equations having the following two properties. Their coefficients are stochastic through their dependence on a Markov process. The magnitude of the fluctuations, multiplied with their auto-correlation time, is a small quantity. Under these co

  20. SINGULAR SOLUTIONS OF AN INTEGRO-DIFFERENTIAL EQUATION IN RADIATIVE TRANSFER

    Science.gov (United States)

    infinite for finite values of the parameter T. Some of these singular solutions first come close to the desired solution and then diverge to infinity...The nearness of approach of these singular solutions is proportional to a quantity which measures the nearness of local scattering to the conservative

  1. Qualitative analysis of an integro-differential equation model of periodic chemotherapy

    KAUST Repository

    Jain, Harsh Vardhan

    2012-12-01

    An existing model of tumor growth that accounts for cell cycle arrest and cell death induced by chemotherapy is extended to simulate the response to treatment of a tumor growing in vivo. The tumor is assumed to undergo logistic growth in the absence of therapy, and treatment is administered periodically rather than continuously. Necessary and sufficient conditions for the global stability of the cancer-free equilibrium are derived and conditions under which the system evolves to periodic solutions are determined. © 2012 Elsevier Ltd. All rights reserved.

  2. Standing waves for discrete nonlinear Schrodinger equations

    OpenAIRE

    Ming Jia

    2016-01-01

    The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.

  3. Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, Kim Ø; Salerno, M.

    2006-01-01

    A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowi......-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated....

  4. Quasi self-adjoint nonlinear wave equations

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, N H [Department of Mathematics and Science, Blekinge Institute of Technology, SE-371 79 Karlskrona (Sweden); Torrisi, M; Tracina, R, E-mail: nib@bth.s, E-mail: torrisi@dmi.unict.i, E-mail: tracina@dmi.unict.i [Dipartimento di Matematica e Informatica, University of Catania (Italy)

    2010-11-05

    In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation. (fast track communication)

  5. Auxiliary equation method for solving nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Sirendaoreji,; Jiong, Sun

    2003-03-31

    By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation.

  6. The myth about nonlinear differential equations

    OpenAIRE

    Radhakrishnan, C.

    2002-01-01

    Taking the example of Koretweg--de Vries equation, it is shown that soliton solutions need not always be the consequence of the trade-off between the nonlinear terms and the dispersive term in the nonlinear differential equation. Even the ordinary one dimensional linear partial differential equation can produce a soliton.

  7. The nonlinear evolution of inviscid Goertler vortices in three-dimensional boundary layers

    Science.gov (United States)

    Blackaby, Nicholas; Dando, Andrew; Hall, Philip

    1995-09-01

    The nonlinear development of inviscid Gortler vortices in a three-dimensional boundary layer is considered. We do not follow the classical approach of weakly nonlinear stability problems and consider a mode which has just become unstable. Instead we extend the method of Blackaby, Dando, and Hall (1992), which considered the closely related nonlinear development of disturbances in stratified shear flows. The Gortler modes we consider are initially fast growing and we assume, following others, that boundary-layer spreading results in them evolving in a linear fashion until they reach a stage where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. From the work of Blackaby, Dando and Hall (1993) is apparent, given the range of parameters for the Gortler problem, that there are three possible nonlinear integro-differential evolution equations for the disturbance amplitude. These are a cubic due to viscous effects, a cubic which corresponds to the novel mechanism investigated in this previous paper, and a quintic. In this paper we shall concentrate on the two cubic integro-differential equations and in particular, on the one due to the novel mechanism as this will be the first to affect a disturbance. It is found that the consideration of a spatial evolution problem as opposed to temporal (as was considered in Blackaby, Dando, and Hall, 1992) causes a number of significant changes to the evolution equations.

  8. Nonlinear wave propagation through a ferromagnet with damping in (2+1) dimensions

    Indian Academy of Sciences (India)

    S G Bindu; V C Kuriakose

    2000-02-01

    We investigate how dissipation and nonlinearity can affect the electromagnetic wave propagating through a saturated ferromagnet in the presence of an external magnetic field in (2+1) dimensions. The propagation of electromagnetic waves through a ferromagnet under an external magnetic field in the presence of dissipative effect has been studied using reductive perturbation method. It is found that to the lowest order of perturbation the system of equations for the electromagnetic waves in a ferromagnet can be reduced to an integro-differential equation.

  9. Standing waves for discrete nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Ming Jia

    2016-07-01

    Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.

  10. Numerical solution of the Kolmogorov-Feller equation with singularities

    Science.gov (United States)

    Baranov, N. A.; Turchak, L. I.

    2010-02-01

    A method is proposed for solving the Kolmogorov-Feller integro-differential equation with kernels containing delta function singularities. The method is based on a decomposition of the solution into regular and singular parts.

  11. Integro-differential inequality and stability of BAM FCNNs with time delays in the leakage terms and distributed delays

    Directory of Open Access Journals (Sweden)

    Zhang Xinhua

    2011-01-01

    Full Text Available Abstract In this paper, a class of impulsive bidirectional associative memory (BAM fuzzy cellular neural networks (FCNNs with time delays in the leakage terms and distributed delays is formulated and investigated. By establishing an integro-differential inequality with impulsive initial conditions and employing M-matrix theory, some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM FCNNs with time delays in the leakage terms and distributed delays are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on the delay kernel functions and system parameters. It is believed that these results are significant and useful for the design and applications of BAM FCNNs. An example is given to show the effectiveness of the results obtained here.

  12. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    Antonella Fiacca; Nikolaos Matzakos; Nikolaos S Papageorgiou; Raffaella Servadei

    2001-11-01

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all $\\mathbb{R}$. Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper and lower solutions. Then we drop the requirement that the monotone nonlinearity is defined on all of $\\mathbb{R}$. This case is important because it covers variational inequalities. Using the theory of operators of monotone type we show that the problem has a solution. Finally in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth locally Lipschitz functionals we prove the existence of at least two nontrivial solutions (multiplicity theorem).

  13. Symmetrized solutions for nonlinear stochastic differential equations

    Directory of Open Access Journals (Sweden)

    G. Adomian

    1981-01-01

    Full Text Available Solutions of nonlinear stochastic differential equations in series form can be put into convenient symmetrized forms which are easily calculable. This paper investigates such forms for polynomial nonlinearities, i.e., equations of the form Ly+ym=x where x is a stochastic process and L is a linear stochastic operator.

  14. The Generalized Projective Riccati Equations Method for Solving Nonlinear Evolution Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    E. M. E. Zayed

    2014-01-01

    Full Text Available We apply the generalized projective Riccati equations method to find the exact traveling wave solutions of some nonlinear evolution equations with any-order nonlinear terms, namely, the nonlinear Pochhammer-Chree equation, the nonlinear Burgers equation and the generalized, nonlinear Zakharov-Kuznetsov equation. This method presents wider applicability for handling many other nonlinear evolution equations in mathematical physics.

  15. Generalized solutions of nonlinear partial differential equations

    CERN Document Server

    Rosinger, EE

    1987-01-01

    During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research.The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concernin

  16. Thermoviscous Model Equations in Nonlinear Acoustics

    DEFF Research Database (Denmark)

    Rasmussen, Anders Rønne

    Four nonlinear acoustical wave equations that apply to both perfect gasses and arbitrary fluids with a quadratic equation of state are studied. Shock and rarefaction wave solutions to the equations are studied. In order to assess the accuracy of the wave equations, their solutions are compared...... to solutions of the basic equations from which the wave equations are derived. A straightforward weakly nonlinear equation is the most accurate for shock modeling. A higher order wave equation is the most accurate for modeling of smooth disturbances. Investigations of the linear stability properties...... of solutions to the wave equations, reveal that the solutions may become unstable. Such instabilities are not found in the basic equations. Interacting shocks and standing shocks are investigated....

  17. Elliptic Equation and New Solutions to Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    FU Zun-Tao; LIU Shi-Kuo; LIU Shi-Da

    2004-01-01

    The new solutions to elliptic equation are shown, and then the elliptic equation is taken as a transformationand is applied to solve nonlinear wave equations. It is shown that more kinds of solutions are derived, such as periodicsolutions of rational form, solitary wave solutions of rational form, and so on.

  18. Difference equations in normed spaces stability and oscillations

    CERN Document Server

    Gil, Michael

    2007-01-01

    Difference equations appear as natural descriptions of observed evolution phenomena because most measurements of time evolving variables are discrete. They also appear in the applications of discretization methods for differential, integral and integro-differential equations. The application of the theory of difference equations is rapidly increasing to various fields, such as numerical analysis, control theory, finite mathematics, and computer sciences. This book is devoted to linear and nonlinear difference equations in a normed space. The main methodology presented in this book is based on a combined use of recent norm estimates for operator-valued functions with the following methods and results: The freezing methodThe Liapunov type equationThe method of majorantsThe multiplicative representation of solutionsDeals systematically with difference equations in normed spaces Considers new classes of equations that could not be studied in the frameworks of ordinary and partial difference equationsDevelops ...

  19. Explicit Traveling Wave Solutions to Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    Linghai ZHANG

    2011-01-01

    First of all,some technical tools are developed. Then the author studies explicit traveling wave solutions to nonlinear dispersive wave equations,nonlinear dissipative dispersive wave equations,nonlinear convection equations,nonlinear reaction diffusion equations and nonlinear hyperbolic equations,respectively.

  20. EXACT SOLUTIONS TO NONLINEAR WAVE EQUATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,we use an invariant set to construct exact solutions to a nonlinear wave equation with a variable wave speed. Moreover,we obtain conditions under which the equation admits a nonclassical symmetry. Several different nonclassical symmetries for equations with different diffusion terms are presented.

  1. ANALYTICAL SOLUTION OF NONLINEAR BAROTROPIC VORTICITY EQUATION

    Institute of Scientific and Technical Information of China (English)

    WANG Yue-peng; SHI Wei-hui

    2008-01-01

    The stability of nonlinear barotropic vorticity equation was proved. The necessary and sufficient conditions for the initial value problem to be well-posed were presented. Under the conditions of well-posedness, the corresponding analytical solution was also gained.

  2. GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Ye Yaojun

    2005-01-01

    In this paper we study the existence of global solutions to the Cauchy problem of nonlinear Schrodinger equation by establishing time weight function spaces and using the contraction mapping principle.

  3. Some geometrical iteration methods for nonlinear equations

    Institute of Scientific and Technical Information of China (English)

    LU Xing-jiang; QIAN Chun

    2008-01-01

    This paper describes geometrical essentials of some iteration methods (e.g. Newton iteration,secant line method,etc.) for solving nonlinear equations and advances some geomet-rical methods of iteration that are flexible and efficient.

  4. Homogenization of a nonlinear degenerate parabolic equation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The homogenization of one kind of nonlinear parabolic equation is studied. The weak convergence and corrector results are obtained by combining carefully the compactness method and two-scale convergence method in the homogenization theory.

  5. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  6. Nonlinear elliptic equations of the second order

    CERN Document Server

    Han, Qing

    2016-01-01

    Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler-Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge-Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and "elementary" proofs for results in important special cases. This book will serve as a valuable resource for graduate stu...

  7. The Nonlinear Analytical Envelope Equation in quadratic nonlinear crystals

    CERN Document Server

    Bache, Morten

    2016-01-01

    We here derive the so-called Nonlinear Analytical Envelope Equation (NAEE) inspired by the work of Conforti et al. [M. Conforti, A. Marini, T. X. Tran, D. Faccio, and F. Biancalana, "Interaction between optical fields and their conjugates in nonlinear media," Opt. Express 21, 31239-31252 (2013)], whose notation we follow. We present a complete model that includes $\\chi^{(2)}$ terms [M. Conforti, F. Baronio, and C. De Angelis, "Nonlinear envelope equation for broadband optical pulses in quadratic media," Phys. Rev. A 81, 053841 (2010)], $\\chi^{(3)}$ terms, and then extend the model to delayed Raman effects in the $\\chi^{(3)}$ term. We therefore get a complete model for ultrafast pulse propagation in quadratic nonlinear crystals similar to the Nonlinear Wave Equation in Frequency domain [H. Guo, X. Zeng, B. Zhou, and M. Bache, "Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media," J. Opt. Soc. Am. B 30, 494-504 (2013)], but where the envelope is...

  8. Nonlinear Schrodinger equation with chaotic, random, and nonperiodic nonlinearity

    CERN Document Server

    Cardoso, W B; Avelar, A T; Bazeia, D; Hussein, M S

    2009-01-01

    In this paper we deal with a nonlinear Schr\\"{o}dinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Comparing with a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein Condensates and their collective excitations and transport.

  9. Extended Trial Equation Method for Nonlinear Partial Differential Equations

    Science.gov (United States)

    Gepreel, Khaled A.; Nofal, Taher A.

    2015-04-01

    The main objective of this paper is to use the extended trial equation method to construct a series of some new solutions for some nonlinear partial differential equations (PDEs) in mathematical physics. We will construct the solutions in many different functions such as hyperbolic function solutions, trigonometric function solutions, Jacobi elliptic function solutions, and rational functional solutions for the nonlinear PDEs when the balance number is a real number via the Zhiber-Shabat nonlinear differential equation. The balance number of this method is not constant as we shown in other methods, but it is changed by changing the trial equation derivative definition. This method allowed us to construct many new types of solutions. It is shown by using the Maple software package that all obtained solutions satisfy the original PDEs.

  10. Wave equation with concentrated nonlinearities

    OpenAIRE

    Noja, Diego; Posilicano, Andrea

    2004-01-01

    In this paper we address the problem of wave dynamics in presence of concentrated nonlinearities. Given a vector field $V$ on an open subset of $\\CO^n$ and a discrete set $Y\\subset\\RE^3$ with $n$ elements, we define a nonlinear operator $\\Delta_{V,Y}$ on $L^2(\\RE^3)$ which coincides with the free Laplacian when restricted to regular functions vanishing at $Y$, and which reduces to the usual Laplacian with point interactions placed at $Y$ when $V$ is linear and is represented by an Hermitean m...

  11. The Homoclinic Orbits in Nonlinear Schroedinger Equation

    Institute of Scientific and Technical Information of China (English)

    PengchengXU; BolingGUO; 等

    1998-01-01

    The persistence of Homoclinic orbits for perturbed nonlinear Schroedinger equation with five degree term under een periodic boundary conditions is considered.The exstences of the homoclinic orbits for the truncation equation is established by Melnikov's analysis and geometric singular perturbation theory.

  12. Linearization of Systems of Nonlinear Diffusion Equations

    Institute of Scientific and Technical Information of China (English)

    KANG Jing; QU Chang-Zheng

    2007-01-01

    We investigate the linearization of systems of n-component nonlinear diffusion equations; such systems have physical applications in soil science, mathematical biology and invariant curve flows. Equivalence transformations of their auxiliary systems are used to identify the systems that can be linearized. We also provide several examples of systems with two-component equations, and show how to linearize them by nonlocal mappings.

  13. The approximate solutions of nonlinear Boussinesq equation

    Science.gov (United States)

    Lu, Dianhen; Shen, Jie; Cheng, Yueling

    2016-04-01

    The homotopy analysis method (HAM) is introduced to solve the generalized Boussinesq equation. In this work, we establish the new analytical solution of the exponential function form. Applying the homotopy perturbation method to solve the variable coefficient Boussinesq equation. The results indicate that this method is efficient for the nonlinear models with variable coefficients.

  14. SEMICLASSICAL LIMIT OF NONLINEAR SCHRODINGER EQUATION (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    张平

    2002-01-01

    In this paper, we use the Wigner measure approach to study the semiclassical limit of nonlinear Schrodinger equation in small time. We prove that: the limits of the quantum density: pε =: |ψε|2, and the quantum momentum: Jε =: εIm(ψεψε) satisfy the compressible Euler equations before the formation of singularities in the limit system.

  15. Nonlinear second order elliptic equations involving measures

    CERN Document Server

    Marcus, Moshe

    2013-01-01

    This book presents a comprehensive study of boundary value problems for linear and semilinear second order elliptic equations with measure data,especially semilinear equations with absorption. The interactions between the diffusion operator and the absorption term give rise to a large class of nonlinear phenomena in the study of which singularities and boundary trace play a central role.

  16. Nonlinear differentiation equation and analytic function spaces

    OpenAIRE

    Li, Hao; Li, Songxiao

    2015-01-01

    In this paper we consider the nonlinear complex differential equation $$(f^{(k)})^{n_{k}}+A_{k-1}(z)(f^{(k-1)})^{n_{k-1}}+\\cdot\\cdot\\cdot+A_{1}(z)(f')^{n_{1}}+A_{0}(z)f^{n_{0}}=0, $$where $ A_{j}(z)$, $ j=0, \\cdots, k-1 $, are analytic in the unit disk $ \\mathbb{D} $, $ n_{j}\\in R^{+} $ for all $ j=0, \\cdots, k $. We investigate this nonlinear differential equation from two aspects. On one hand, we provide some sufficient conditions on coefficients such that all solutions of this equation bel...

  17. Advances in iterative methods for nonlinear equations

    CERN Document Server

    Busquier, Sonia

    2016-01-01

    This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations...

  18. Exponential Attractor for a Nonlinear Boussinesq Equation

    Institute of Scientific and Technical Information of China (English)

    Ahmed Y. Abdallah

    2006-01-01

    This paper is devoted to prove the existence of an exponential attractor for the semiflow generated by a nonlinear Boussinesq equation. We formulate the Boussinesq equation as an abstract equation in the Hilbert space H20(0, 1) × L2(0, 1). The main step in this research is to show that there exists an absorbing set for the solution semiflow in the Hilbert space H03(0, 1) × H10(0, 1).

  19. The Nonlinear Convection—Reaction—Diffusion Equation

    Institute of Scientific and Technical Information of China (English)

    ShiminTANG; MaochangCUI; 等

    1996-01-01

    A nonlinear convection-reaction-diffusion equation is used as a model equation of the El Nino events.In this model,the effects of convection,turbulent diffusion,linear feed-back and nolinear radiation on the anomaly of Sea Surface Temperature(SST) are considered.In the case of constant convection,this equation has exact kink-like travelling wave solutions,which can be used to explain the history of an El Nino event.

  20. Asymptotic and spectral analysis of the gyrokinetic-waterbag integro-differential operator in toroidal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Besse, Nicolas, E-mail: Nicolas.Besse@oca.eu [Laboratoire J.-L. Lagrange, UMR CNRS/OCA/UCA 7293, Université Côte d’Azur, Observatoire de la Côte d’Azur, Bd de l’Observatoire CS 34229, 06304 Nice Cedex 4 (France); Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex (France); Coulette, David, E-mail: David.Coulette@ipcms.unistra.fr [Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex (France); Institut de Physique et Chimie des Matériaux de Strasbourg, UMR CNRS/US 7504, Université de Strasbourg, 23 Rue du Loess, 67034 Strasbourg (France)

    2016-08-15

    Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov–Poisson and Vlasov–Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to the VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, “Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry” (submitted)] and were found to be surprisingly close to those for the original

  1. Asymptotic and spectral analysis of the gyrokinetic-waterbag integro-differential operator in toroidal geometry

    Science.gov (United States)

    Besse, Nicolas; Coulette, David

    2016-08-01

    Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov-Poisson and Vlasov-Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to the VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, "Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry" (submitted)] and were found to be surprisingly close to those for the original gyrokinetic

  2. Hadamard-type fractional differential equations, inclusions and inequalities

    CERN Document Server

    Ahmad, Bashir; Ntouyas, Sotiris K; Tariboon, Jessada

    2017-01-01

    This book focuses on the recent development of fractional differential equations, integro-differential equations, and inclusions and inequalities involving the Hadamard derivative and integral. Through a comprehensive study based in part on their recent research, the authors address the issues related to initial and boundary value problems involving Hadamard type differential equations and inclusions as well as their functional counterparts. The book covers fundamental concepts of multivalued analysis and introduces a new class of mixed initial value problems involving the Hadamard derivative and Riemann-Liouville fractional integrals. In later chapters, the authors discuss nonlinear Langevin equations as well as coupled systems of Langevin equations with fractional integral conditions. Focused and thorough, this book is a useful resource for readers and researchers interested in the area of fractional calculus.

  3. Numerical methods for nonlinear partial differential equations

    CERN Document Server

    Bartels, Sören

    2015-01-01

    The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.

  4. On implicit abstract neutral nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Eduardo, E-mail: lalohm@ffclrp.usp.br [Universidade de São Paulo, Departamento de Computação e Matemática, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (Brazil); O’Regan, Donal, E-mail: donal.oregan@nuigalway.ie [National University of Ireland, School of Mathematics, Statistics and Applied Mathematics (Ireland)

    2016-04-15

    In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.

  5. TAYLOR EXPANSION METHOD FOR NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    HE Yin-nian

    2005-01-01

    A new numerical method of integrating the nonlinear evolution equations, namely the Taylor expansion method, was presented. The standard Galerkin method can be viewed as the 0-th order Taylor expansion method; while the nonlinear Galerkin method can be viewed as the 1-st order modified Taylor expansion method. Moreover, the existence of the numerical solution and its convergence rate were proven. Finally, a concrete example,namely, the two-dimensional Navier-Stokes equations with a non slip boundary condition,was provided. The result is that the higher order Taylor expansion method is of the higher convergence rate under some assumptions about the regularity of the solution.

  6. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian

    2014-10-08

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

  7. Explicit solutions of nonlinear wave equation systems

    Institute of Scientific and Technical Information of China (English)

    Ahmet Bekir; Burcu Ayhan; M.Naci (O)zer

    2013-01-01

    We apply the (G'/G)-expansion method to solve two systems of nonlinear differential equations and construct traveling wave solutions expressed in terms of hyperbolic functions,trigonometric functions,and rational functions with arbitrary parameters.We highlight the power of the (G'/G)-expansion method in providing generalized solitary wave solutions of different physical structures.It is shown that the (G'/G)-expansion method is very effective and provides a powerful mathematical tool to solve nonlinear differential equation systems in mathematical physics.

  8. Exact solutions for nonlinear foam drainage equation

    Science.gov (United States)

    Zayed, E. M. E.; Al-Nowehy, Abdul-Ghani

    2016-09-01

    In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the Riccati equation expansion method and the ( G^' }/G) -expansion method are used to construct exact solutions with parameters of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential equations in mathematical physics. We compare our results together with each other yielding from these integration tools. Also, our results have been compared with the well-known results of others.

  9. Exact solutions for nonlinear foam drainage equation

    Science.gov (United States)

    Zayed, E. M. E.; Al-Nowehy, Abdul-Ghani

    2017-02-01

    In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the Riccati equation expansion method and the ( G^' }/G)-expansion method are used to construct exact solutions with parameters of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential equations in mathematical physics. We compare our results together with each other yielding from these integration tools. Also, our results have been compared with the well-known results of others.

  10. Global attractivity in a nonlinear difference equation

    Directory of Open Access Journals (Sweden)

    Chuanxi Qian

    2007-02-01

    Full Text Available In this paper, we study the asymptotic behavior of positive solutions of the nonlinear difference equation $$ x_{n+1}=x_n f(x_{n-k}, $$ where $f:[0,inftyo(0, infty$ is a unimodal function, and $k$ is a nonnegative integer. Sufficient conditions for the positive equilibrium to be a global attractor of all positive solutions are established. Our results can be applied to to some difference equations derived from mathematical biology.

  11. Approximating parameters in nonlinear reaction diffusion equations

    Directory of Open Access Journals (Sweden)

    Robert R. Ferdinand

    2001-07-01

    Full Text Available We present a model describing population dynamics in an environment. The model is a nonlinear, nonlocal, reaction diffusion equation with Neumann boundary conditions. An inverse method, involving minimization of a least-squares cost functional, is developed to identify unknown model parameters. Finally, numerical results are presented which display estimates of these parameters using computationally generated data.

  12. Exact solutions for nonlinear partial fractional differential equations

    Institute of Scientific and Technical Information of China (English)

    Khaled A.Gepreel; Saleh Omran

    2012-01-01

    In this article,we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations.We use the improved (G’/G)-expansion function method to calculate the exact solutions to the time-and space-fractional derivative foam drainage equation and the time-and space-fractional derivative nonlinear KdV equation.This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.

  13. Integro-differential equation analysis and radioisotope imaging systems. Research proposal. [Testing of radioisotope imaging system in phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Hart, H.

    1976-03-09

    Design modifications of a five-probe focusing collimator coincidence radioisotope scanning system are described. Clinical applications of the system were tested in phantoms using radioisotopes with short biological half-lives, including /sup 75/Se, /sup 192/Ir, /sup 43/K, /sup 130/I, and /sup 82/Br. Data processing methods are also described. (CH)

  14. A New Integro-Differential Equation for Rossby Solitary Waves with Topography Effect in Deep Rotational Fluids

    Directory of Open Access Journals (Sweden)

    Hongwei Yang

    2013-01-01

    solitary waves generated by topography, especially in the resonant case; a large amplitude nonstationary disturbance is generated in the forcing region. This condition may explain the blocking phenomenon which exists in the atmosphere and ocean and generated by topographic forcing.

  15. Nonlinear Acoustics -- Perturbation Theory and Webster's Equation

    CERN Document Server

    Jorge, Rogério

    2013-01-01

    Webster's horn equation (1919) offers a one-dimensional approximation for low-frequency sound waves along a rigid tube with a variable cross-sectional area. It can be thought as a wave equation with a source term that takes into account the nonlinear geometry of the tube. In this document we derive this equation using a simplified fluid model of an ideal gas. By a simple change of variables, we convert it to a Schr\\"odinger equation and use the well-known variational and perturbative methods to seek perturbative solutions. As an example, we apply these methods to the Gabriel's Horn geometry, deriving the first order corrections to the linear frequency. An algorithm to the harmonic modes in any order for a general horn geometry is derived.

  16. Solution of stochastic nonlinear PDEs using Wiener-Hermite expansion of high orders

    KAUST Repository

    El Beltagy, Mohamed

    2016-01-06

    In this work, the Wiener-Hermite Expansion (WHE) is used to solve stochastic nonlinear PDEs excited with noise. The generation of the equivalent set of deterministic integro-differential equations is automated and hence allows for high order terms of WHE. The automation difficulties are discussed, solved and implemented to output the final system to be solved. A numerical Pikard-like algorithm is suggested to solve the resulting deterministic system. The automated WHE is applied to the 1D diffusion equation and to the heat equation. The results are compared with previous solutions obtained with WHEP (WHE with perturbation) technique. The solution obtained using the suggested WHE technique is shown to be the limit of the WHEP solutions with infinite number of corrections. The automation is extended easily to account for white-noise of higher dimension and for general nonlinear PDEs.

  17. On the dynamics of mean-field equations for stochastic neural fields with delays

    CERN Document Server

    Touboul, Jonathan

    2011-01-01

    The cortex is composed of large-scale cell assemblies sharing the same individual properties and receiving the same input, in charge of certain functions, and subject to noise. Such assemblies are characterized by specific space locations and space-dependent delayed interactions. The mean-field equations for such systems were rigorously derived in a recent paper for general models, under mild assumptions on the network, using probabilistic methods. We summarize and investigate general implications of this result. We then address the dynamics of these stochastic neural field equations in the case of firing-rate neurons. This is a unique case where the very complex stochastic mean-field equations exactly reduce to a set of delayed differential or integro-differential equations on the two first moments of the solutions, this reduction being possible due to the Gaussian nature of the solutions. The obtained equations differ from more customary approaches in that it incorporates intrinsic noise levels nonlinearly ...

  18. The Lie algebra of infinitesimal symmetries of nonlinear diffusion equations

    NARCIS (Netherlands)

    Kersten, Paul H.M.; Gragert, Peter K.H.

    1983-01-01

    By using developed software for solving overdetermined systems of partial differential equations, the authors establish the complete Lie algebra of infinitesimal symmetries of nonlinear diffusion equations.

  19. Lattice Boltzmann model for nonlinear convection-diffusion equations.

    Science.gov (United States)

    Shi, Baochang; Guo, Zhaoli

    2009-01-01

    A lattice Boltzmann model for convection-diffusion equation with nonlinear convection and isotropic-diffusion terms is proposed through selecting equilibrium distribution function properly. The model can be applied to the common real and complex-valued nonlinear evolutionary equations, such as the nonlinear Schrödinger equation, complex Ginzburg-Landau equation, Burgers-Fisher equation, nonlinear heat conduction equation, and sine-Gordon equation, by using a real and complex-valued distribution function and relaxation time. Detailed simulations of these equations are performed, and it is found that the numerical results agree well with the analytical solutions and the numerical solutions reported in previous studies.

  20. Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2013-01-01

    Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.

  1. Nonsmooth analysis of doubly nonlinear evolution equations

    CERN Document Server

    Mielke, Alexander; Savare', Giuseppe

    2011-01-01

    In this paper we analyze a broad class of abstract doubly nonlinear evolution equations in Banach spaces, driven by nonsmooth and nonconvex energies. We provide some general sufficient conditions, on the dissipation potential and the energy functional,for existence of solutions to the related Cauchy problem. We prove our main existence result by passing to the limit in a time-discretization scheme with variational techniques. Finally, we discuss an application to a material model in finite-strain elasticity.

  2. Probabilistic density function method for nonlinear dynamical systems driven by colored noise

    Energy Technology Data Exchange (ETDEWEB)

    Barajas-Solano, David A.; Tartakovsky, Alexandre M.

    2016-05-01

    We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integro-differential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified Large-Eddy-Diffusivity-type closure. Additionally, we introduce the generalized local linearization (LL) approximation for deriving a computable PDF equation in the form of the second-order partial differential equation (PDE). We demonstrate the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary auto-correlation time. We apply the proposed PDF method to the analysis of a set of Kramers equations driven by exponentially auto-correlated Gaussian colored noise to study the dynamics and stability of a power grid.

  3. Solving Nonlinear Euler Equations with Arbitrary Accuracy

    Science.gov (United States)

    Dyson, Rodger W.

    2005-01-01

    A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.

  4. A nonlinear Schroedinger wave equation with linear quantum behavior

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Chris D.; Schlagheck, Peter; Martin, John; Vandewalle, Nicolas; Bastin, Thierry [Departement de Physique, University of Liege, 4000 Liege (Belgium)

    2014-07-01

    We show that a nonlinear Schroedinger wave equation can reproduce all the features of linear quantum mechanics. This nonlinear wave equation is obtained by exploring, in a uniform language, the transition from fully classical theory governed by a nonlinear classical wave equation to quantum theory. The classical wave equation includes a nonlinear classicality enforcing potential which when eliminated transforms the wave equation into the linear Schroedinger equation. We show that it is not necessary to completely cancel this nonlinearity to recover the linear behavior of quantum mechanics. Scaling the classicality enforcing potential is sufficient to have quantum-like features appear and is equivalent to scaling Planck's constant.

  5. First regularized trace of integro-differential Sturm-Liouville operator on a segment with punctured points at generalized conditions of bonding in deleted points

    Science.gov (United States)

    Sarsenbi, Abdisalam A.; Zhumanova, Lyazzat K.

    2016-12-01

    The present work is devoted to calculating a first regularized trace of one integro-differential operator with the main part of the Sturm-Liouville type on a segment with punctured points at integral perturbation of "transmission" conditions. The integro-differential Sturm-Liouville operator -y″(x )+q (x )y (x )+γ ∫0πy (t )d t =λ y (x ) given on the segments π/n (k -1 )type: y(0) = 0, y(π) = 0 are given on the left-hand and right-hand ends of the segment [0, π]. The functions continuous on [0, π], the first derivatives of which have jumps at the points x =π/n k , are solutions. The value of jumps is expressed by the formula y'(π/k n -0 )=y'(π/k n +0 )-βk∫0πy (t )d t , k =1 ,n -1 ¯ . The basic result of the paper is the exact formula of the first regularized trace of the considered differential operator.

  6. Explicit Integration of Friedmann's Equation with Nonlinear Equations of State

    CERN Document Server

    Chen, Shouxin; Yang, Yisong

    2015-01-01

    This paper is a continuation of our earlier study on the integrability of the Friedmann equations in the light of the Chebyshev theorem. Our main focus will be on a series of important, yet not previously touched, problems when the equation of state for the perfect-fluid universe is nonlinear. These include the generalized Chaplygin gas, two-term energy density, trinomial Friedmann, Born--Infeld, and two-fluid models. We show that some of these may be integrated using Chebyshev's result while other are out of reach by the theorem but may be integrated explicitly by other methods. With the explicit integration, we are able to understand exactly the roles of the physical parameters in various models play in the cosmological evolution. For example, in the Chaplygin gas universe, it is seen that, as far as there is a tiny presence of nonlinear matter, linear matter makes contribution to the dark matter, which becomes significant near the phantom divide line. The Friedmann equations also arise in areas of physics ...

  7. The tanh-coth method combined with the Riccati equation for solving non-linear equation

    Energy Technology Data Exchange (ETDEWEB)

    Bekir, Ahmet [Dumlupinar University, Art-Science Faculty, Department of Mathematics, Kuetahya (Turkey)], E-mail: abekir@dumlupinar.edu.tr

    2009-05-15

    In this work, we established abundant travelling wave solutions for some non-linear evolution equations. This method was used to construct solitons and traveling wave solutions of non-linear evolution equations. The tanh-coth method combined with Riccati equation presents a wider applicability for handling non-linear wave equations.

  8. ACCELERATION METHODS OF NONLINEAR ITERATION FOR NONLINEAR PARABOLIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Guang-wei Yuan; Xu-deng Hang

    2006-01-01

    This paper discusses the accelerating iterative methods for solving the implicit scheme of nonlinear parabolic equations. Two new nonlinear iterative methods named by the implicit-explicit quasi-Newton (IEQN) method and the derivative free implicit-explicit quasi-Newton (DFIEQN) method are introduced, in which the resulting linear equations from the linearization can preserve the parabolic characteristics of the original partial differential equations. It is proved that the iterative sequence of the iteration method can converge to the solution of the implicit scheme quadratically. Moreover, compared with the Jacobian Free Newton-Krylov (JFNK) method, the DFIEQN method has some advantages, e.g., its implementation is easy, and it gives a linear algebraic system with an explicit coefficient matrix, so that the linear (inner) iteration is not restricted to the Krylov method. Computational results by the IEQN, DFIEQN, JFNK and Picard iteration meth-ods are presented in confirmation of the theory and comparison of the performance of these methods.

  9. General Symmetry Approach to Solve Variable-Coefficient Nonlinear Equations

    Institute of Scientific and Technical Information of China (English)

    RUAN HangYu; CHEN YiXin; LOU SenYue

    2001-01-01

    After considering the variable coefficient of a nonlinear equation as a new dependent variable, some special types of variable-coefficient equation can be solved from the corresponding constant-coefficient equations by using the general classical Lie approach. Taking the nonlinear Schrodinger equation as a concrete example, the method is recommended in detail.``

  10. DYNAMIC BIFURCATION OF NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    MA TIAN; WANG SHOUHONG

    2005-01-01

    The authors introduce a notion of dynamic bifurcation for nonlinear evolution equations, which can be called attractor bifurcation. It is proved that as the control parameter crosses certain critical value, the system bifurcates from a trivial steady state solution to an attractor with dimension between m and m + 1, where m + 1 is the number of eigenvalues crossing the imaginary axis. The attractor bifurcation theory presented in this article generalizes the existing steady state bifurcations and the Hopf bifurcations. It provides a unified point of view on dynamic bifurcation and can be applied to many problems in physics and mechanics.

  11. REITERATED HOMOGENIZATION OF DEGENERATE NONLINEAR ELLIPTIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The authors study homogenization of some nonlinear partial differential equations of the form -div (a (hx,h2x,Duh)) = f,where a is periodic in the first two arguments and monotone in the third.In particular the case where a satisfies degenerated structure conditions is studied.It is proved that uh converges weakly in Wo1.1 (Ω) to the unique solution of a limit problem as h →∞.Moreover,explicit expressions for the limit problem are obtained.

  12. Coupled Nonlinear Schr\\"{o}dinger equation and Toda equation (the Root of Integrability)

    OpenAIRE

    Hisakado, Masato

    1997-01-01

    We consider the relation between the discrete coupled nonlinear Schr\\"{o}dinger equation and Toda equation. Introducing complex times we can show the intergability of the discrete coupled nonlinear Schr\\"{o}dinger equation. In the same way we can show the integrability in coupled case of dark and bright equations. Using this method we obtain several integrable equations.

  13. Exact Solution of a Generalized Nonlinear Schrodinger Equation Dimer

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Maniadis, P.; Tsironis, G.P.

    1998-01-01

    We present exact solutions for a nonlinear dimer system defined throught a discrete nonlinear Schrodinger equation that contains also an integrable Ablowitz-Ladik term. The solutions are obtained throught a transformation that maps the dimer into a double Sine-Gordon like ordinary nonlinear...... differential equation....

  14. Soliton states of Maxwell’s equations and nonlinear Schrodinger equation

    Institute of Scientific and Technical Information of China (English)

    陈翼强

    1997-01-01

    Similarities and fundamental differences between Maxwell’s equations and nonlinear Schrodinger equation in predicting a soliton evolution in a uniform nonlinear anisotropic medium are analyzed.It is found that in some cases,the soliton solutions to the nonlinear Schrodinger equation cannot be recovered from Maxwell’s equations while in others the soliton solutions to Maxwell’s equations are lost from the nonlinear Schrodinger equation through approximation,although there are cases where the soliton solutions to the two sets of the equations demonstrate only quantitative difference.The origin of the differences is also discussed.

  15. A new application of Riccati equation to some nonlinear evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Geng Tao [School of Science, PO Box 122, Beijing University of Posts and Telecommunications, Beijing 100876 (China)], E-mail: taogeng@yahoo.com.cn; Shan Wenrui [School of Science, PO Box 122, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2008-03-03

    By means of symbolic computation, a new application of Riccati equation is presented to obtain novel exact solutions of some nonlinear evolution equations, such as nonlinear Klein-Gordon equation, generalized Pochhammer-Chree equation and nonlinear Schroedinger equation. Comparing with the existing tanh methods and the proposed modifications, we obtain the exact solutions in the form as a non-integer power polynomial of tanh (or tan) functions by using this method, and the availability of symbolic computation is demonstrated.

  16. Trial Equation Method to Nonlinear Evolution Equations with Rank Inhomogeneous:Mathematical Discussions and Its Applications

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As applications, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation,generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.

  17. The first regularized trace of integro-differential Sturm-Liouville operator on the segment with punctured points at integral perturbation of transmission conditions

    Science.gov (United States)

    Aimakhanova, Aizat Sh.; Shalginbayeva, Saltanat Kh.; Zhumanova, Lyazzat K.

    2016-08-01

    The paper is devoted to calculation of a first regularized trace of one integro-differential operator with the main part of the Sturm-Liouville type on a segment with punctured points at integral perturbation of "transmission" conditions. The Sturm-Liouville operator -y″(x )+q (x )y (x )+γ ∫0πy (t ) d t =λ y (x ) given on the segments π/n (k -1 )right-hand ends of the segment [0, π]. The functions are continuous on [0, π], the first derivatives of which have jumps at the points x =π/n k are solutions. The value of jumps is expressed by the formula y'(π/k n -0 ) =y'(π/k n +0 ) -βk∫0πy (t )d t , k =1 , n -1 ¯. The basic result of the paper is the exact formula of the first regularized trace of the considered differential operator.

  18. Hyperbolic function method for solving nonlinear differential-different equations

    Institute of Scientific and Technical Information of China (English)

    Zhu Jia-Min

    2005-01-01

    An algorithm is devised to obtained exact travelling wave solutions of differential-different equations by means of hyperbolic function. For illustration, we apply the method to solve the discrete nonlinear (2+1)-dimensional Toda lattice equation and the discretized nonlinear mKdV lattice equation, and successfully constructed some explicit and exact travelling wave solutions.

  19. Extension of Variable Separable Solutions for Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    JIA Hua-Bing; ZHANG Shun-Li; XU Wei; ZHU Xiao-Ning; WANG Yong-Mao; LOU Sen-Yue

    2008-01-01

    We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional separablecation, we classify the generalized nonlinear diffusion equations that admit special functional separable solutions and obtain some exact solutions to the resulting equations.

  20. Almost Periodic Viscosity Solutions of Nonlinear Parabolic Equations

    Directory of Open Access Journals (Sweden)

    Zhang Shilin

    2009-01-01

    Full Text Available We generalize the comparison result 2007 on Hamilton-Jacobi equations to nonlinear parabolic equations, then by using Perron's method to study the existence and uniqueness of time almost periodic viscosity solutions of nonlinear parabolic equations under usual hypotheses.

  1. Positive periodic solutions for third-order nonlinear differential equations

    Directory of Open Access Journals (Sweden)

    Jingli Ren

    2011-05-01

    Full Text Available For several classes of third-order constant coefficient linear differential equations we obtain existence and uniqueness of periodic solutions utilizing explicit Green's functions. We discuss an iteration method for constant coefficient nonlinear differential equations and provide new conditions for the existence of periodic positive solutions for third-order time-varying nonlinear and neutral differential equations.

  2. Exact periodic wave solutions for some nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    El-Wakil, S.A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Elgarayhi, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: elgarayhi@yahoo.com; Elhanbaly, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)

    2006-08-15

    The periodic wave solutions for some nonlinear partial differential equations, including generalized Klein-Gordon equation, Kadomtsev-Petviashvili (KP) equation and Boussinesq equations, are obtained by using the solutions of Jacobi elliptic equation. Under limit conditions, exact solitary wave solutions, shock wave solutions and triangular periodic wave solutions have been recovered.

  3. Exact solitary wave solutions of nonlinear wave equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The hyperbolic function method for nonlinear wave equations ispresented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. The method is based on the fact that the solitary wave solutions are essentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear system of algebraic equations. The system can be solved via Wu Elimination or Grbner base method. The exact solitary wave solutions of the nonlinear wave equation are obtained including many new exact solitary wave solutions.

  4. Some new solutions of nonlinear evolution equations with variable coefficients

    Science.gov (United States)

    Virdi, Jasvinder Singh

    2016-05-01

    We construct the traveling wave solutions of nonlinear evolution equations (NLEEs) with variable coefficients arising in physics. Some interesting nonlinear evolution equations are investigated by traveling wave solutions which are expressed by the hyperbolic functions, the trigonometric functions and rational functions. The applied method will be used in further works to establish more entirely new solutions for other kinds of such nonlinear evolution equations with variable coefficients arising in physics.

  5. Logarithmic singularities of solutions to nonlinear partial differential equations

    CERN Document Server

    Tahara, Hidetoshi

    2007-01-01

    We construct a family of singular solutions to some nonlinear partial differential equations which have resonances in the sense of a paper due to T. Kobayashi. The leading term of a solution in our family contains a logarithm, possibly multiplied by a monomial. As an application, we study nonlinear wave equations with quadratic nonlinearities. The proof is by the reduction to a Fuchsian equation with singular coefficients.

  6. New travelling wave solutions for nonlinear stochastic evolution equations

    Indian Academy of Sciences (India)

    Hyunsoo Kim; Rathinasamy Sakthivel

    2013-06-01

    The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the (′/)-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic Broer–Kaup equation and stochastic coupled Korteweg–de Vries (KdV) equation. The study highlights the significant features of the method employed and its capability of handling nonlinear stochastic problems.

  7. Nonclassical Symmetries for Nonlinear Partial Differential Equations via Compatibility

    Institute of Scientific and Technical Information of China (English)

    Mostafa F. El-Sabbagh; Ahmad T. Ali

    2011-01-01

    The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the invariant surface conditions. The (2+1)-dimensional shallow water wave equation, Boussinesq equation, and the dispersive wave equations in shallow water serve as examples i11ustrating how compatibility leads quickly and easily to the determining equations for their nonclassical symmetries.

  8. Steen-Ermakov-Pinney equation and integrable nonlinear deformation of one-dimensional Dirac equation

    OpenAIRE

    Prykarpatskyy, Yarema

    2017-01-01

    The paper deals with nonlinear one-dimensional Dirac equation. We describe its invariants set by means of the deformed linear Dirac equation, using the fact that two ordinary differential equations are equivalent if their sets of invariants coincide.

  9. Homoclinic orbits of second-order nonlinear difference equations

    Directory of Open Access Journals (Sweden)

    Haiping Shi

    2015-06-01

    Full Text Available We establish existence criteria for homoclinic orbits of second-order nonlinear difference equations by using the critical point theory in combination with periodic approximations.

  10. Bifurcation and stability for a nonlinear parabolic partial differential equation

    Science.gov (United States)

    Chafee, N.

    1973-01-01

    Theorems are developed to support bifurcation and stability of nonlinear parabolic partial differential equations in the solution of the asymptotic behavior of functions with certain specified properties.

  11. On the exact controllability of a nonlinear stochastic heat equation

    Directory of Open Access Journals (Sweden)

    Bui An Ton

    2006-01-01

    Full Text Available The exact controllability of a nonlinear stochastic heat equation with null Dirichlet boundary conditions, nonzero initial and target values, and an interior control is established.

  12. SOLVABILITY FOR NONLINEAR ELLIPTIC EQUATION WITH BOUNDARY PERTURBATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The solvability of nonlinear elliptic equation with boundary perturbation is considered. The perturbed solution of original problem is obtained and the uniformly valid expansion of solution is proved.

  13. OSCILLATION OF NONLINEAR IMPULSIVE PARABOLIC DIFFERENTIAL EQUATIONS WITH SEVERAL DELAYS

    Institute of Scientific and Technical Information of China (English)

    CuiChenpei; ZouMin; LiuAnping; XiaoLi

    2005-01-01

    In this paper, oscillatory properties for solutions of certain nonlinear impulsive parabolic equations with several delays are investigated and a series of new sufficient conditions for oscillations of the equation are established.

  14. ALMOST PERIODIC SOLUTIONS TO SOME NONLINEAR DELAY DIFFERENTIAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The existence of an almost periodic solutions to a nonlinear delay diffierential equation is considered in this paper. A set of sufficient conditions for the existence and uniqueness of almost periodic solutions to some delay diffierential equations is obtained.

  15. Nonlinear static and dynamic responses of an electrically actuated viscoelastic microbeam

    Institute of Scientific and Technical Information of China (English)

    Y. M. Fu; J. Zhang

    2009-01-01

    On the basis of the Euler-Bernoulli hypothesis,nonlinear static and dynamic responses of a viscoelastic microbeam under two kinds of electric forces [a purely direct current (DC) and a combined current composed of a DC and an alternating current] are studied. By using Taylor series expansion, a governing equation of nonlinear integro-differential type is derived, and numerical analyses are performed.When a purely DC is applied, there exist an instantaneous pull-in voltage and a durable pull-in voltage of which the physical meanings are also given, whereas under an applied combined current, the effect of the element relaxation coefficient on the dynamic pull-in phenomenon is observed where the largest Lyapunov exponent is taken as a criterion for the dynamic pull-in instability of viscoelastic microbeams.

  16. Generalized Nonlinear Proca Equation and its Free-Particle Solutions

    CERN Document Server

    Nobre, F D

    2016-01-01

    We introduce a non-linear extension of Proca's field theory for massive vector (spin $1$) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schroedinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter $q$ (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit $q \\rightarrow 1$. We derive the nonlinear Proca equation from a Lagrangian that, besides the usual vectorial field $\\Psi^{\\mu}(\\vec{x},t)$, involves an additional field $\\Phi^{\\mu}(\\vec{x},t)$. We obtain exact time dependent soliton-like solutions for these fields having the...

  17. The Riccati Equation Mapping Method for Solving Nonlinear Partial Differential Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Elsayed Mohamed Elsayed ZAYED

    2014-07-01

    Full Text Available In this article, many new exact solutions of the (2+1-dimensional nonlinear Boussinesq-Kadomtsev-Petviashvili equation and the (1+1-dimensional nonlinear heat conduction equation are constructed using the Riccati equation mapping method. By means of this method, many new exact solutions are successfully obtained. This method can be applied to many other nonlinear evolution equations in mathematical physics.doi:10.14456/WJST.2014.14

  18. A nonlinear wave equation with a nonlinear integral equation involving the boundary value

    Directory of Open Access Journals (Sweden)

    Thanh Long Nguyen

    2004-09-01

    Full Text Available We consider the initial-boundary value problem for the nonlinear wave equation $$displaylines{ u_{tt}-u_{xx}+f(u,u_{t}=0,quad xin Omega =(0,1,; 0nonlinear integral equation $$ P(t=g(t+H(u(0,t-int_0^t K(t-s,u(0,sds, $$ where $g$, $K$, $H$ are given functions. We prove the existence and uniqueness of weak solutions to this problem, and discuss the stability of the solution with respect to the functions $g$, $K$, and $H$. For the proof, we use the Galerkin method.

  19. Fuzzy Modeling for Uncertainty Nonlinear Systems with Fuzzy Equations

    Directory of Open Access Journals (Sweden)

    Raheleh Jafari

    2017-01-01

    Full Text Available The uncertain nonlinear systems can be modeled with fuzzy equations by incorporating the fuzzy set theory. In this paper, the fuzzy equations are applied as the models for the uncertain nonlinear systems. The nonlinear modeling process is to find the coefficients of the fuzzy equations. We use the neural networks to approximate the coefficients of the fuzzy equations. The approximation theory for crisp models is extended into the fuzzy equation model. The upper bounds of the modeling errors are estimated. Numerical experiments along with comparisons demonstrate the excellent behavior of the proposed method.

  20. Power Series Solution for Solving Nonlinear Burgers-Type Equations

    Directory of Open Access Journals (Sweden)

    E. López-Sandoval

    2015-01-01

    Full Text Available Power series solution method has been traditionally used to solve ordinary and partial linear differential equations. However, despite their usefulness the application of this method has been limited to this particular kind of equations. In this work we use the method of power series to solve nonlinear partial differential equations. The method is applied to solve three versions of nonlinear time-dependent Burgers-type differential equations in order to demonstrate its scope and applicability.

  1. A NONLINEAR LAVRENTIEV-BITSADZE MIXED TYPE EQUATION

    Institute of Scientific and Technical Information of China (English)

    Chen Shuxing

    2011-01-01

    In this paper the Tricomi problem for a nonlinear mixed type equation is studied.The coefficients of the mixed type equation are discontinuous on the line,where the equation changes its type.The existence of solution to this problem is proved.The method developed in this paper can be applied to study more difficult problems for nonlinear mixed type equations arising in gas dynamics.

  2. Power Series Solution for Solving Nonlinear Burgers-Type Equations

    OpenAIRE

    López-Sandoval, E.; Mello, A.; Godina-Nava, J. J.; Samana, A. R.

    2015-01-01

    Power series solution method has been traditionally used to solve ordinary and partial linear differential equations. However, despite their usefulness the application of this method has been limited to this particular kind of equations. In this work we use the method of power series to solve nonlinear partial differential equations. The method is applied to solve three versions of nonlinear time-dependent Burgers-type differential equations in order to demonstrate its scope and applicability.

  3. Solution and Positive Solution to Nonlinear Cantilever Beam Equations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using the decomposition technique of equation and the fixed point theorem, the existence of solution and positive solution is studied for a nonlinear cantilever beam equation. The equation describes the deformation of the elastic beam with a fixed end and a free end. The main results show that the equation has at least one solution or positive solution, provided that the "height" of nonlinear term is appropriate on a bounded set.

  4. Exact solutions for some nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yan-Ze

    2003-08-11

    Exact solutions to some nonlinear partial differential equations, including (2+1)-dimensional breaking soliton equation, sine-Gordon equation and double sine-Gordon equation, are studied by means of the mapping method proposed by the author recently. Many new results are presented. A simple review of the method is finally given.

  5. On nonlocal symmetries of some shallow water equations

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Enrique G [Departamento de Matematicas y Ciencia de la Computacion, Universidad de Santiago de Chile, Casilla 307 Correo 2 Santiago (Chile)

    2007-04-27

    A recent construction of nonlocal symmetries for the Korteweg-de Vries, Camassa-Holm and Hunter-Saxton equations is reviewed, and it is pointed out that-in the Camassa-Holm and Hunter-Saxton case-these symmetries can be considered as (nonlocal) symmetries of integro-differential equations.

  6. Simple equation method for nonlinear partial differential equations and its applications

    Directory of Open Access Journals (Sweden)

    Taher A. Nofal

    2016-04-01

    Full Text Available In this article, we focus on the exact solution of the some nonlinear partial differential equations (NLPDEs such as, Kodomtsev–Petviashvili (KP equation, the (2 + 1-dimensional breaking soliton equation and the modified generalized Vakhnenko equation by using the simple equation method. In the simple equation method the trial condition is the Bernoulli equation or the Riccati equation. It has been shown that the method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering problems.

  7. ANALYTICAL SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    胡建兰; 张汉林

    2003-01-01

    The following partial differential equations are studied: generaliz ed fifth-orderKdV equation, water wave equation, Kupershmidt equation, couples KdV equation. Theanalytical solutions to these problems via using various ansaiz es by introducing a second-order ordinary differential equation are found out.

  8. DIFFERENCE METHODS FOR A NON-LINEAR ELLIPTIC SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS,

    Science.gov (United States)

    DIFFERENCE EQUATIONS, ITERATIONS), (*ITERATIONS, DIFFERENCE EQUATIONS), (* PARTIAL DIFFERENTIAL EQUATIONS , BOUNDARY VALUE PROBLEMS), EQUATIONS, FUNCTIONS(MATHEMATICS), SEQUENCES(MATHEMATICS), NONLINEAR DIFFERENTIAL EQUATIONS

  9. Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation[

    Institute of Scientific and Technical Information of China (English)

    HUANGDing-Jiang; ZHANGHong-Qing

    2004-01-01

    By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.

  10. Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation

    Institute of Scientific and Technical Information of China (English)

    HUANG Ding-Jiang; ZHANG Hong-Qing

    2004-01-01

    By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.

  11. A variational approach to nonlinear evolution equations in optics

    Indian Academy of Sciences (India)

    D Anderson; M Lisak; A Berntson

    2001-11-01

    A tutorial review is presented of the use of direct variational methods based on RayleighRitz optimization for finding approximate solutions to various nonlinear evolution equations. The practical application of the approach is demonstrated by some illustrative examples in connection with the nonlinear Schrödinger equation.

  12. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.

    2000-01-01

    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  13. Prolongation Structure of Semi-discrete Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on noncommutative differential calculus, we present a theory of prolongation structure for semi-discrete nonlinear evolution equations. As an illustrative example, a semi-discrete model of the nonlinear Schr(o)dinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.

  14. Exact solutions for some nonlinear systems of partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, A.A. [Department of Mathematics, Faculty of Science, Helwan University (Egypt)], E-mail: profdarwish@yahoo.com; Ramady, A. [Department of Mathematics, Faculty of Science, Beni-Suef University (Egypt)], E-mail: aramady@yahoo.com

    2009-04-30

    A direct and unified algebraic method for constructing multiple travelling wave solutions of nonlinear systems of partial differential equations (PDEs) is used and implemented in a computer algebraic system. New solutions for some nonlinear partial differential equations (NLPDEs) are obtained. Graphs of the solutions are displayed.

  15. Alternative Forms of Enhanced Boussinesq Equations with Improved Nonlinearity

    Directory of Open Access Journals (Sweden)

    Kezhao Fang

    2013-01-01

    Full Text Available We propose alternative forms of the Boussinesq equations which extend the equations of Madsen and Schäffer by introducing extra nonlinear terms during enhancement. Theoretical analysis shows that nonlinear characteristics are considerably improved. A numerical implementation of one-dimensional equations is described. Three tests involving strongly nonlinear evolution, namely, regular waves propagating over an elevated bar feature in a tank with an otherwise constant depth, wave group transformation over constant water depth, and nonlinear shoaling of unsteady waves over a sloping beach, are simulated by the model. The model is found to be effective.

  16. Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media

    DEFF Research Database (Denmark)

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin

    2013-01-01

    We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...

  17. Marchenko Equation for the Derivative Nonlinear Schr(o)dinger Equation

    Institute of Scientific and Technical Information of China (English)

    HUANG Nian-Ning

    2007-01-01

    A simple derivation of the Marchenko equation is given for the derivative nonlinear Schr(o)dinger equation.The kernel of the Marchenko equation is demanded to satisfy the conditions given by the compatibility equations.the soliton solutions to the Marchenko equation are verified.The derivation is not concerned with the revisions of Kaup and Newell.

  18. Estimation of saturation and coherence effects in the KGBJS equation - a non-linear CCFM equation

    CERN Document Server

    Deak, Michal

    2012-01-01

    We solve the modified non-linear extension of the CCFM equation - KGBJS equation - numerically for certain initial conditions and compare the resulting gluon Green functions with those obtained from solving the original CCFM equation and the BFKL and BK equations for the same initial conditions. We improve the low transversal momentum behaviour of the KGBJS equation by a small modification.

  19. Exploring the Nonlinear Cloud and Rain Equation

    CERN Document Server

    Koren, Ilan; Feingold, Graham

    2016-01-01

    Marine stratocumulus cloud decks are regarded as the reflectors of the climate system, returning back to space a significant part of the income solar radiation, thus cooling the atmosphere. Such clouds can exist in two stable modes, open and closed cells, for a wide range of environmental conditions. This emergent behavior of the system, and its sensitivity to aerosol and environmental properties, is captured by a set of nonlinear equations. Here, using linear stability analysis, we express the transition from steady to a limit-cycle state analytically, showing how it depends on the model parameters. We show that the control of the droplet concentration (N) the environmental carrying-capacity (H0) and the cloud recovery parameter (tau) can be linked by a single nondimensional parameter mu=N/(alfa*tau*H0), suggesting that for deeper clouds the transition from open (oscillating) to closed (stable fixed point) cells will occur for higher droplet concentration (i.e. higher aerosol loading). The analytical calcula...

  20. Lienard Equation and Exact Solutions for Some Soliton-Producing Nonlinear Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Guo; CHANG Qian-Shun; ZHANG Qi-Ren

    2004-01-01

    In this paper, we first consider exact solutions for Lienard equation with nonlinear terms of any order. Then,explicit exact bell and kink profile solitary-wave solutions for many nonlinear evolution equations are obtained by means of results of the Lienard equation and proper deductions, which transform original partial differential equations into the Lienard one. These nonlinear equations include compound KdV, compound KdV-Burgers, generalized Boussinesq,generalized KP and Ginzburg-Landau equation. Some new solitary-wave solutions are found.

  1. Smoothing and Decay Estimates for Nonlinear Diffusion Equations Equations of Porous Medium Type

    CERN Document Server

    Vázquez, Juan Luis

    2006-01-01

    This text is concerned with the quantitative aspects of the theory of nonlinear diffusion equations; equations which can be seen as nonlinear variations of the classical heat equation. They appear as mathematical models in different branches of Physics, Chemistry, Biology, and Engineering, and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on estimates and functional analysis.Concentrating on a class of equations with nonlinearities of power type that lead to degenerate or singular parabolicity ("equations of porou

  2. Asymptotic behavior of solutions to nonlinear parabolic equation with nonlinear boundary conditions

    Directory of Open Access Journals (Sweden)

    Diabate Nabongo

    2008-01-01

    Full Text Available We show that solutions of a nonlinear parabolic equation of second order with nonlinear boundary conditions approach zero as t approaches infinity. Also, under additional assumptions, the solutions behave as a function determined here.

  3. Techniques in Linear and Nonlinear Partial Differential Equations

    Science.gov (United States)

    1991-10-21

    nonlinear partial differential equations , elliptic 15. NUMBER OF PAGES hyperbolic and parabolic. Variational methods. Vibration problems. Ordinary Five...NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS FINAL TECHNICAL REPORT PROFESSOR LOUIS NIRENBERG OCTOBER 21, 1991 NT)S CRA&I D FIC ,- U.S. ARMY RESEARCH OFFICE...Analysis and partial differential equations . ed. C. Sadowsky. Marcel Dekker (1990) 567-619. [7] Lin, Fanghua, Asymptotic behavior of area-minimizing

  4. Linear and nonlinear degenerate abstract differential equations with small parameter

    OpenAIRE

    Shakhmurov, Veli B.

    2016-01-01

    The boundary value problems for linear and nonlinear regular degenerate abstract differential equations are studied. The equations have the principal variable coefficients and a small parameter. The linear problem is considered on a parameter-dependent domain (i.e., on a moving domain). The maximal regularity properties of linear problems and the optimal regularity of the nonlinear problem are obtained. In application, the well-posedness of the Cauchy problem for degenerate parabolic equation...

  5. Travelling wave solutions for ( + 1)-dimensional nonlinear evolution equations

    Indian Academy of Sciences (India)

    Jonu Lee; Rathinasamy Sakthivel

    2010-10-01

    In this paper, we implement the exp-function method to obtain the exact travelling wave solutions of ( + 1)-dimensional nonlinear evolution equations. Four models, the ( + 1)-dimensional generalized Boussinesq equation, ( + 1)-dimensional sine-cosine-Gordon equation, ( + 1)-double sinh-Gordon equation and ( + 1)-sinh-cosinh-Gordon equation, are used as vehicles to conduct the analysis. New travelling wave solutions are derived.

  6. RAZUMIKHIN-TYPE THEOREM FOR NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS WITH UNBOUNDED DELAY

    Institute of Scientific and Technical Information of China (English)

    Wu Fuke; Hu Shigeng; Mao Xuerong

    2011-01-01

    This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay.To overcome difficulties from unbounded delay,we develop several different techniques to investigate stability.To show our idea clearly,we examine neutral stochastic delay differential equations with unbounded delay and linear neutral stochastic Volterra unbounded-delay-integro-differential equations.

  7. International Conference on Differential Equations and Nonlinear Mechanics

    CERN Document Server

    2001-01-01

    The International Conference on Differential Equations and Nonlinear Mechanics was hosted by the University of Central Florida in Orlando from March 17-19, 1999. One of the conference days was dedicated to Professor V. Lakshmikantham in th honor of his 75 birthday. 50 well established professionals (in differential equations, nonlinear analysis, numerical analysis, and nonlinear mechanics) attended the conference from 13 countries. Twelve of the attendees delivered hour long invited talks and remaining thirty-eight presented invited forty-five minute talks. In each of these talks, the focus was on the recent developments in differential equations and nonlinear mechanics and their applications. This book consists of 29 papers based on the invited lectures, and I believe that it provides a good selection of advanced topics of current interest in differential equations and nonlinear mechanics. I am indebted to the Department of Mathematics, College of Arts and Sciences, Department of Mechanical, Materials and Ae...

  8. The effect of nonlinearity on unstable zones of Mathieu equation

    Indian Academy of Sciences (India)

    M GH SARYAZDI

    2017-03-01

    Mathieu equation is a well-known ordinary differential equation in which the excitation term appears as the non-constant coefficient. The mathematical modelling of many dynamic systems leads to Mathieu equation. The determination of the locus of unstable zone is important for the control of dynamic systems. In this paper, the stable and unstable regions of Mathieu equation are determined for three cases of linear and nonlinear equations using the homotopy perturbation method. The effect of nonlinearity is examined in the unstable zone. The results show that the transition curves of linear Mathieu equation depend on the frequency of the excitation term. However, for nonlinear equations, the curves depend also on initial conditions. In addition, increasing the amplitude of response leads to an increase in the unstable zone.

  9. REDUCTION OF NONLINEAR PARTIAL DIFFERENTIAL EQUATION AND EXACT SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    YeCaier; PanZuliang

    2003-01-01

    Nonlinear partial differetial equation(NLPDE)is converted into ordinary differential equation(ODE)via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.

  10. EXACT SOLITARY WAVE SOLUTIONS OF THETWO NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    ZhuYanjuan; ZhangChunhua

    2005-01-01

    The solitary wave solutions of the combined KdV-mKdV-Burgers equation and the Kolmogorov-Petrovskii-Piskunov equation are obtained by means of the direct algebra method, which can be generalized to deal with high dimensional nonlinear evolution equations.

  11. A Family of Exact Solutions for the Nonlinear Schrodinger Equation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the nonlinear Schrodinger (NLS) equation was analytically solved. Firstly, the stationary solutions of NLSequation were explicitly given by the elliptic functions. Then a family of exact solutions of NLS equation were obtained from these sta-tionary solutions by a method for finding new exact solutions from the stationary solutions of integrable evolution equations.

  12. Boundary controllability for a nonlinear beam equation

    Directory of Open Access Journals (Sweden)

    Xiao-Min Cao

    2015-09-01

    Full Text Available This article concerns a nonlinear system modeling the bending vibrations of a nonlinear beam of length $L>0$. First, we derive the existence of long time solutions near an equilibrium. Then we prove that the nonlinear beam is locally exact controllable around the equilibrium in $H^4(0,L$ and with control functions in $H^2(0,T$. The approach we used are open mapping theorem, local controllability established by linearization, and the induction.

  13. Lectures on nonlinear evolution equations initial value problems

    CERN Document Server

    Racke, Reinhard

    2015-01-01

    This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...

  14. Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations

    Energy Technology Data Exchange (ETDEWEB)

    Mancas, Stefan C. [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, SLP (Mexico)

    2013-09-02

    We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential equations and the Abel equations which in their first-kind form have only cubic and quadratic terms. Then, employing an old integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers–Huxley type equations which are obtained in this way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second order nonlinear equations.

  15. Analytic solutions of a class of nonlinear partial differential equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-qing; DING Qi

    2008-01-01

    An approach is presented for computing the adjoint operator vector of a class of nonlinear (that is,partial-nonlinear) operator matrices by using the properties of conjugate operators to generalize a previous method proposed by the author.A unified theory is then given to solve a class of nonlinear (partial-nonlinear and including all linear)and non-homogeneous differential equations with a mathematical mechanization method.In other words,a transformation is constructed by homogenization and triangulation,which reduces the original system to a simpler diagonal system.Applications are given to solve some elasticity equations.

  16. Solutions to nonlinear Schrodinger equations for special initial data

    Directory of Open Access Journals (Sweden)

    Takeshi Wada

    2015-11-01

    Full Text Available This article concerns the solvability of the nonlinear Schrodinger equation with gauge invariant power nonlinear term in one space dimension. The well-posedness of this equation is known only for $H^s$ with $s\\ge 0$. Under some assumptions on the nonlinearity, this paper shows that this equation is uniquely solvable for special but typical initial data, namely the linear combinations of $\\delta(x$ and p.v. (1/x, which belong to $H^{-1/2-0}$. The proof in this article allows $L^2$-perturbations on the initial data.

  17. Global existence and uniqueness of nonlinear evolutionary fluid equations

    CERN Document Server

    Qin, Yuming; Wang, Taige

    2015-01-01

    This book presents recent results on nonlinear evolutionary fluid equations such as the compressible (radiative) magnetohydrodynamics (MHD) equations, compressible viscous micropolar fluid equations, the full non-Newtonian fluid equations and non-autonomous compressible Navier-Stokes equations. These types of partial differential equations arise in many fields of mathematics, but also in other branches of science such as physics and fluid dynamics. This book will be a valuable resource for graduate students and researchers interested in partial differential equations, and will also benefit practitioners in physics and engineering.

  18. Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics

    Indian Academy of Sciences (India)

    Yusuf Gurefe; Abdullah Sonmezoglu; Emine Misirli

    2011-12-01

    In this paper some exact solutions including soliton solutions for the KdV equation with dual power law nonlinearity and the (, ) equation with generalized evolution are obtained using the trial equation method. Also a more general trial equation method is proposed.

  19. SPHERICAL NONLINEAR PULSES FOR THE SOLUTIONS OF NONLINEAR WAVE EQUATIONS Ⅱ, NONLINEAR CAUSTIC

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows that the nonlinearities have a strong effect at the focal point. Scattering operator is introduced to describe the caustic crossing. With the aid of the L∞ norms, it analyzes the relative errors in approximate solutions.

  20. Kinetic equation for nonlinear resonant wave-particle interaction

    Science.gov (United States)

    Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.

    2016-09-01

    We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.

  1. Linearized oscillation theory for a nonlinear delay impulsive equation

    Science.gov (United States)

    Berezansky, Leonid; Braverman, Elena

    2003-12-01

    For a scalar nonlinear impulsive delay differential equationwith rk(t)≥0,hk(t)≤t, limj-->∞ τj=∞, such an auxiliary linear impulsive delay differential equationis constructed that oscillation (nonoscillation) of the nonlinear equation can be deduced from the corresponding properties of the linear equation. Coefficients rk(t) and delays are not assumed to be continuous. Explicit oscillation and nonoscillation conditions are established for some nonlinear impulsive models of population dynamics, such as the impulsive logistic equation and the impulsive generalized Lasota-Wazewska equation which describes the survival of red blood cells. It is noted that unlike nonimpulsive delay logistic equations a solution of a delay impulsive logistic equation may become negative.

  2. Painlevé analysis for nonlinear partial differential equations

    CERN Document Server

    Musette, M

    1998-01-01

    The Painlevé analysis introduced by Weiss, Tabor and Carnevale (WTC) in 1983 for nonlinear partial differential equations (PDE's) is an extension of the method initiated by Painlevé and Gambier at the beginning of this century for the classification of algebraic nonlinear differential equations (ODE's) without movable critical points. In these lectures we explain the WTC method in its invariant version introduced by Conte in 1989 and its application to solitonic equations in order to find algorithmically their associated so-called ``integrable'' equations but they are generically no more valid for equations modelising physical phenomema. Belonging to this second class, some equations called ``partially integrable'' sometimes keep remnants of integrability. In that case, the singularity analysis may also be useful for building closed form analytic solutions, which necessarily % Conte agree with the singularity structure of the equations. We display the privileged role played by the Riccati equation and syste...

  3. Nonlinear propagation and decay of intense regular and random waves in relaxing media

    Science.gov (United States)

    Gurbatov, S. N.; Rudenko, O. V.; Demin, I. Yu.

    2015-10-01

    An integro-differential equation is written down that contains terms responsible for nonlinear absorption, visco-heat-conducting dissipation, and relaxation processes in a medium. A general integral expression is obtained for calculating energy losses of the wave with arbitrary characteristics—intensity, profile (frequency spectrum), and kernel describing the internal dynamics of the medium. Profiles of stationary solutions are constructed both for an exponential relaxation kernel and for other types of kernels. Energy losses at the front of week shock waves are calculated. General integral formulas are obtained for energy losses of intense noise, which are determined by the form of the kernel, the structure of the noise correlation function, and the mean square of the derivative of realization of a random process.

  4. New Exact Solutions for New Model Nonlinear Partial Differential Equation

    Directory of Open Access Journals (Sweden)

    A. Maher

    2013-01-01

    Full Text Available In this paper we propose a new form of Padé-II equation, namely, a combined Padé-II and modified Padé-II equation. The mapping method is a promising method to solve nonlinear evaluation equations. Therefore, we apply it, to solve the combined Padé-II and modified Padé-II equation. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions, trigonometric functions, rational functions, and elliptic functions.

  5. Singularity analysis of a new discrete nonlinear Schrodinger equation

    OpenAIRE

    Sakovich, Sergei

    2001-01-01

    We apply the Painleve test for integrability to a new discrete (differential-difference) nonlinear Schrodinger equation introduced by Leon and Manna. Since the singular expansions of solutions of this equation turn out to contain nondominant logarithmic terms, we conclude that the studied equation is nonintegrable. This result supports the observation of Levi and Yamilov that the Leon-Manna equation does not admit high-order generalized symmetries. As a byproduct of the singularity analysis c...

  6. Subcritical localization in the discrete nonlinear Schrödinger equation with arbitrary power nonlinearity

    DEFF Research Database (Denmark)

    Bang, O.; Juul Rasmussen, J.; Christiansen, P.L.

    1994-01-01

    Discretizing the continuous nonlinear Schrodinger equation with arbitrary power nonlinearity influences the time evolution of its ground state solitary solution. In the subcritical case, for grid resolutions above a certain transition value, depending on the degree of nonlinearity, the solution w...

  7. Fractional evolution equation nonlocal problems with noncompact semigroups

    Directory of Open Access Journals (Sweden)

    Xuping Zhang

    2016-01-01

    Full Text Available This paper is concerned with the existence results of mild solutions to the nonlocal problem of fractional semilinear integro-differential evolution equations. New existence theorems are obtained by means of the fixed point theorem for condensing maps. The results extend and improve some related results in this direction.

  8. High-Dimensional Nonlinear Envelope Equations and Nonlinear Localized Excitations in Photonic Crystals

    Institute of Scientific and Technical Information of China (English)

    HANG Chao; HUANG Guo-Xiang

    2006-01-01

    We investigate the nonlinear localized structures of optical pulses propagating in a one-dimensional photonic crystal with a quadratic nonlinearity. Using a method of multiple scales we show that the nonlinear evolution of a wave packet, formed by the superposition of short-wavelength excitations, and long-wavelength mean fields, generated by the self-interaction of the wave packet, are governed by a set of coupled high-dimensional nonlinear envelope equations, which can be reduced to Davey-Stewartson equations and thus support dromionlike high-dimensional nonlinear excitations in the system.

  9. Bifurcation methods of dynamical systems for handling nonlinear wave equations

    Indian Academy of Sciences (India)

    Dahe Feng; Jibin Li

    2007-05-01

    By using the bifurcation theory and methods of dynamical systems to construct the exact travelling wave solutions for nonlinear wave equations, some new soliton solutions, kink (anti-kink) solutions and periodic solutions with double period are obtained.

  10. Comparative study of homotopy continuation methods for nonlinear algebraic equations

    Science.gov (United States)

    Nor, Hafizudin Mohamad; Ismail, Ahmad Izani Md.; Majid, Ahmad Abd.

    2014-07-01

    We compare some recent homotopy continuation methods to see which method has greater applicability and greater accuracy. We test the methods on systems of nonlinear algebraic equations. The results obtained indicate the superior accuracy of Newton Homotopy Continuation Method (NHCM).

  11. Lipschitz regularity results for nonlinear strictly elliptic equations and applications

    Science.gov (United States)

    Ley, Olivier; Nguyen, Vinh Duc

    2017-10-01

    Most of Lipschitz regularity results for nonlinear strictly elliptic equations are obtained for a suitable growth power of the nonlinearity with respect to the gradient variable (subquadratic for instance). For equations with superquadratic growth power in gradient, one usually uses weak Bernstein-type arguments which require regularity and/or convex-type assumptions on the gradient nonlinearity. In this article, we obtain new Lipschitz regularity results for a large class of nonlinear strictly elliptic equations with possibly arbitrary growth power of the Hamiltonian with respect to the gradient variable using some ideas coming from Ishii-Lions' method. We use these bounds to solve an ergodic problem and to study the regularity and the large time behavior of the solution of the evolution equation.

  12. Hamiltonian Formalism of the Derivative Nonlinear Schrodinger Equation

    Institute of Scientific and Technical Information of China (English)

    CAI Hao; LIU Feng-Min; HUANG Nian-Ning

    2003-01-01

    A particular form of poisson bracket is introduced for the derivative nonlinear Schrodinger (DNLS) equation.And its Hamiltonian formalism is developed by a linear combination method. Action-angle variables are found.

  13. Nonlinear damped Schrodinger equation in two space dimensions

    Directory of Open Access Journals (Sweden)

    Tarek Saanouni

    2015-04-01

    Full Text Available In this article, we study the initial value problem for a semi-linear damped Schrodinger equation with exponential growth nonlinearity in two space dimensions. We show global well-posedness and exponential decay.

  14. IDENTIFICATION OF PARAMETERS IN PARABOLIC EQUATIONS WITH NONLINEARITY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, we consider the identification of parameters in parabolic equations with nonlinearity. Some approximation processes for the identification problem are given. Our results improve and generalize the previous results.

  15. Differentiability at lateral boundary for fully nonlinear parabolic equations

    Science.gov (United States)

    Ma, Feiyao; Moreira, Diego R.; Wang, Lihe

    2017-09-01

    For fully nonlinear uniformly parabolic equations, the first derivatives regularity of viscosity solutions at lateral boundary is studied under new Dini type conditions for the boundary, which is called Reifenberg Dini conditions and is weaker than usual Dini conditions.

  16. Analysis of Nonlinear Fractional Nabla Difference Equations

    Directory of Open Access Journals (Sweden)

    Jagan Mohan Jonnalagadda

    2015-01-01

    Full Text Available In this paper, we establish sufficient conditions on global existence and uniqueness of solutions of nonlinear fractional nabla difference systems and investigate the dependence of solutions on initial conditions and parameters.

  17. The theorem on existence of singular solutions to nonlinear equations

    Directory of Open Access Journals (Sweden)

    Prusinska А.

    2005-01-01

    Full Text Available The aim of this paper is to present some applications of pregularity theory to investigations of nonlinear multivalued mappings. The main result addresses to the problem of existence of solutions to nonlinear equations in the degenerate case when the linear part is singular at the considered initial point. We formulate conditions for existence of solutions of equation F(x = 0 when first p - 1 derivatives of F are singular.

  18. MULTISCALE HOMOGENIZATION OF NONLINEAR HYPERBOLIC EQUATIONS WITH SEVERAL TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    Jean Louis Woukeng; David Dongo

    2011-01-01

    We study the multiscale homogenization of a nonlinear hyperbolic equation in a periodic setting. We obtain an accurate homogenization result. We also show that as the nonlinear term depends on the microscopic time variable, the global homogenized problem thus obtained is a system consisting of two hyperbolic equations. It is also shown that in spite of the presence of several time scales, the global homogenized problem is not a reiterated one.

  19. Modified Homotopy Analysis Method for Nonlinear Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    D. Ziane

    2017-05-01

    Full Text Available In this paper, a combined form of natural transform with homotopy analysis method is proposed to solve nonlinear fractional partial differential equations. This method is called the fractional homotopy analysis natural transform method (FHANTM. The FHANTM can easily be applied to many problems and is capable of reducing the size of computational work. The fractional derivative is described in the Caputo sense. The results show that the FHANTM is an appropriate method for solving nonlinear fractional partial differentia equation.

  20. Ehrenfest theorem, Galilean invariance and nonlinear Schr"odinger equations

    CERN Document Server

    Kälbermann, G

    2003-01-01

    Galilean invariant Schr"odinger equations possessing nonlinear terms coupling the amplitude and the phase of the wave function can violate the Ehrenfest theorem. An example of this kind is provided. The example leads to the proof of the theorem: A Galilean invariant Schr"odinger equation derived from a lagrangian density obeys the Ehrenfest theorem. The theorem holds for any linear or nonlinear lagrangian.

  1. NONLINEAR BOUNDARY STABILIZATION OF WAVE EQUATIONS WITH VARIABLE C OEFFICIENTS

    Institute of Scientific and Technical Information of China (English)

    冯绍继; 冯德兴

    2003-01-01

    The wave equation with variable coefficients with a nonlinear dissipative boundary feedbackis studied. By the Riemannian geometry method and the multiplier technique, it is shown thatthe closed loop system decays exponentially or asymptotically, and hence the relation betweenthe decay rate of the system energy and the nonlinearity behavior of the feedback function isestablished.

  2. Applications of Elliptic Equation to Nonlinear Coupled Systems

    Institute of Scientific and Technical Information of China (English)

    FUZun-Tao; LIUShi-Da; LIUShi-Kuo

    2003-01-01

    The elliptic equation is taken as a transformation and applied to solve nonlinear coupled systems. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions, periodic wave solutions and so on, so this method can be taken as a unified method in solving nonlinear coupled systems.

  3. Applications of Elliptic Equation to Nonlinear Coupled Systems

    Institute of Scientific and Technical Information of China (English)

    FU Zun-Tao; LIU Shi-Da; LIU Shi-Kuo

    2003-01-01

    The elliptic equation is taken as a transformation and applied to solve nonlinear coupled systems. Itis shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wavesolutions, periodic wave solutions and so on, so this method can be taken as a unified method in solving nonlinear coupled systems.

  4. Approximate solution of a nonlinear partial differential equation

    NARCIS (Netherlands)

    Vajta, M.

    2007-01-01

    Nonlinear partial differential equations (PDE) are notorious to solve. In only a limited number of cases can we find an analytic solution. In most cases, we can only apply some numerical scheme to simulate the process described by a nonlinear PDE. Therefore, approximate solutions are important for t

  5. A NEW SMOOTHING EQUATIONS APPROACH TO THE NONLINEAR COMPLEMENTARITY PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Chang-feng Ma; Pu-yan Nie; Guo-ping Liang

    2003-01-01

    The nonlinear complementarity problem can be reformulated as a nonsmooth equation. In this paper we propose a new smoothing Newton algorithm for the solution of the nonlinear complementarity problem by constructing a new smoothing approximation function. Global and local superlinear convergence results of the algorithm are obtained under suitable conditions. Numerical experiments confirm the good theoretical properties of the algorithm.

  6. Nonlinear Kramers equation associated with nonextensive statistical mechanics.

    Science.gov (United States)

    Mendes, G A; Ribeiro, M S; Mendes, R S; Lenzi, E K; Nobre, F D

    2015-05-01

    Stationary and time-dependent solutions of a nonlinear Kramers equation, as well as its associated nonlinear Fokker-Planck equations, are investigated within the context of Tsallis nonextensive statistical mechanics. Since no general analytical time-dependent solutions are found for such a nonlinear Kramers equation, an ansatz is considered and the corresponding asymptotic behavior is studied and compared with those known for the standard linear Kramers equation. The H-theorem is analyzed for this equation and its connection with Tsallis entropy is investigated. An application is discussed, namely the motion of Hydra cells in two-dimensional cellular aggregates, for which previous measurements have verified q-Gaussian distributions for velocity components and superdiffusion. The present analysis is in quantitative agreement with these experimental results.

  7. A New Regularization Mechanism for the Boltzmann Equation Without Cut-Off

    Science.gov (United States)

    Silvestre, Luis

    2016-11-01

    We apply recent results on regularity for general integro-differential equations to derive a priori estimates in Hölder spaces for the space homogeneous Boltzmann equation in the non cut-off case. We also show an a priori estimate in {L^∞} which applies in the space inhomogeneous case as well, provided that the macroscopic quantities remain bounded.

  8. Analytical exact solution of the non-linear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Fisica. Grupo de Fisica e Matematica

    2011-07-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  9. Nonlinear ordinary differential equations analytical approximation and numerical methods

    CERN Document Server

    Hermann, Martin

    2016-01-01

    The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...

  10. Nonlinear Parabolic Equations with Singularities in Colombeau Vector Spaces

    Institute of Scientific and Technical Information of China (English)

    Mirjana STOJANOVI(C)

    2006-01-01

    We consider nonlinear parabolic equations with nonlinear non-Lipschitz's term and singular initial data like Dirac measure, its derivatives and powers. We prove existence-uniqueness theorems in Colombeau vector space gC1,w2,2([O,T),Rn),n ≤ 3. Due to high singularity in a case of parabolic equation with nonlinear conservative term we employ the regularized derivative for the conservative term, in order to obtain the global existence-uniqueness result in Colombeau vector space gC1,L2([O,T),Rn),n ≤ 3.

  11. The nonlinear Schroedinger equation on a disordered chain

    Energy Technology Data Exchange (ETDEWEB)

    Scharf, R.; Bishop, A.R.

    1990-01-01

    The integrable lattice nonlinear Schroedinger equation is a unique model with which to investigate the effects of disorder on a discrete integrable dynamics, and its interplay with nonlinearity. We first review some features of the lattice nonlinear Schroedinger equation in the absence of disorder and introduce a 1- and 2-soliton collective variable approximation. Then we describe the effect of different types of disorder: attractive and repulsive isolated impurities, spatially periodic potentials, random potentials, and time dependent (kicked) long wavelength perturbations. 18 refs., 15 figs.

  12. GHM method for obtaining rationalsolutions of nonlinear differential equations.

    Science.gov (United States)

    Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo

    2015-01-01

    In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.

  13. Derivation of an Applied Nonlinear Schroedinger Equation.

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, Todd Alan; Laine, Mark Richard; Schwarz, Jens; Rambo, Patrick K.; Karelitz, David B.

    2015-01-01

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  14. Derivation of an applied nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, Todd Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Laine, Mark Richard [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schwarz, Jens [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rambo, Patrick K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  15. Reduction of the equation for lower hybrid waves in a plasma to a nonlinear Schroedinger equation

    Science.gov (United States)

    Karney, C. F. F.

    1977-01-01

    Equations describing the nonlinear propagation of waves in an anisotropic plasma are rarely exactly soluble. However it is often possible to make approximations that reduce the exact equations into a simpler equation. The use of MACSYMA to make such approximations, and so reduce the equation describing lower hybrid waves into the nonlinear Schrodinger equation which is soluble by the inverse scattering method is demonstrated. MACSYMA is used at several stages in the calculation only because there is a natural division between calculations that are easiest done by hand, and those that are easiest done by machine.

  16. Extended Riccati Equation Rational Expansion Method and Its Application to Nonlinear Stochastic Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    WANG Mei-Jiao; WANG Qi

    2006-01-01

    In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solutions and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.

  17. NEW EXACT TRAVELLING WAVE SOLUTIONS TO THREE NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Sirendaoreji

    2004-01-01

    Based on the computerized symbolic computation, some new exact travelling wave solutions to three nonlinear evolution equations are explicitly obtained by replacing the tanhξ in tanh-function method with the solutions of a new auxiliary ordinary differential equation.

  18. Exact solutions for the cubic-quintic nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jiamin [Department of Physics, Zhejiang Lishui University, Lishui 323000 (China)]. E-mail: zjm64@163.com; Ma Zhengyi [Department of Physics, Zhejiang Lishui University, Lishui 323000 (China); Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072 (China)

    2007-08-15

    In this paper, the cubic-quintic nonlinear Schroedinger equation is solved through the extended elliptic sub-equation method. As a consequence, many types of exact travelling wave solutions are obtained which including bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions.

  19. Nonlinear partial differential equations: Integrability, geometry and related topics

    Science.gov (United States)

    Krasil'shchik, Joseph; Rubtsov, Volodya

    2017-03-01

    Geometry and Differential Equations became inextricably entwined during the last one hundred fifty years after S. Lie and F. Klein's fundamental insights. The two subjects go hand in hand and they mutually enrich each other, especially after the "Soliton Revolution" and the glorious streak of Symplectic and Poisson Geometry methods in the context of Integrability and Solvability problems for Non-linear Differential Equations.

  20. An analysis of the nonlinear equation = (, ) + (, )$u^2_$ + ℎ(, ) + (, )$

    Indian Academy of Sciences (India)

    R M Edelstein; K S Govinder

    2011-01-01

    We use the method of preliminary group classification to analyse a particular form of the nonlinear diffusion equation in which the inhomogeneity is quadratic in . The method yields an optimal system of one-dimensional subalgebras. As a result we obtain those explicit forms of the unknown functions , , ℎ and for which the equation admits additional point symmetries.

  1. Multiple solutions to some singular nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Monica Lazzo

    2001-01-01

    Full Text Available We consider the equation $$ - h^2 Delta u + V_varepsilon(x u = |u|^{p-2} u $$ which arises in the study of standing waves of a nonlinear Schrodinger equation. We allow the potential $V_varepsilon$ to be unbounded below and prove existence and multiplicity results for positive solutions.

  2. Several Dynamical Properties for a Nonlinear Shallow Water Equation

    Directory of Open Access Journals (Sweden)

    Ls Yong

    2014-01-01

    Full Text Available A nonlinear third order dispersive shallow water equation including the Degasperis-Procesi model is investigated. The existence of weak solutions for the equation is proved in the space L1(R∩BV (R under certain assumptions. The Oleinik type estimate and L2N(R  (N is a natural number estimate for the solution are obtained.

  3. Nonlinear eigenvalue approach to differential Riccati equations for contraction analysis

    NARCIS (Netherlands)

    Kawano, Yu; Ohtsuka, Toshiyuki

    2017-01-01

    In this paper, we extend the eigenvalue method of the algebraic Riccati equation to the differential Riccati equation (DRE) in contraction analysis. One of the main results is showing that solutions to the DRE can be expressed as functions of nonlinear eigenvectors of the differential Hamiltonian ma

  4. Structure of Dirac matrices and invariants for nonlinear Dirac equations

    OpenAIRE

    2004-01-01

    We present invariants for nonlinear Dirac equations in space-time ${\\mathbb R}^{n+1}$, by which we prove that a special choice of the Cauchy data yields free solutions. Our argument works for Klein-Gordon-Dirac equations with Yukawa coupling as well. Related problems on the structure of Dirac matrices are studied.

  5. LIMITED MEMORY BFGS METHOD FOR NONLINEAR MONOTONE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Weijun Zhou; Donghui Li

    2007-01-01

    In this paper, we propose an algorithm for solving nonlinear monotone equations by combining the limited memory BFGS method (L-BFGS) with a projection method. We show that the method is globally convergent if the equation involves a Lipschitz continuous monotone function. We also present some preliminary numerical results.

  6. STABILITY OF NONLINEAR NEUTRAL DIFFERENTIAL EQUATION VIA FIXED POINT

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper,a nonlinear neutral differential equation is considered.By a fixed point theory,we give some conditions to ensure that the zero solution to the equation is asymptotically stable.Some existing results are improved and generalized.

  7. Entropy and convexity for nonlinear partial differential equations.

    Science.gov (United States)

    Ball, John M; Chen, Gui-Qiang G

    2013-12-28

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.

  8. The numerical dynamic for highly nonlinear partial differential equations

    Science.gov (United States)

    Lafon, A.; Yee, H. C.

    1992-01-01

    Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

  9. Relations between nonlinear Riccati equations and other equations in fundamental physics

    Science.gov (United States)

    Schuch, Dieter

    2014-10-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract "quantizations" such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown.

  10. Exact solutions of some coupled nonlinear diffusion-reaction equations using auxiliary equation method

    Indian Academy of Sciences (India)

    Ranjit Kumar

    2012-09-01

    Travelling and solitary wave solutions of certain coupled nonlinear diffusion-reaction equations have been constructed using the auxiliary equation method. These equations arise in a variety of contexts not only in biological, chemical and physical sciences but also in ecological and social sciences.

  11. The Duffing Equation Nonlinear Oscillators and their Behaviour

    CERN Document Server

    Kovacic, Ivana

    2011-01-01

    The Duffing Equation: Nonlinear Oscillators and their Behaviour brings together the results of a wealth of disseminated research literature on the Duffing equation, a key engineering model with a vast number of applications in science and engineering, summarizing the findings of this research. Each chapter is written by an expert contributor in the field of nonlinear dynamics and addresses a different form of the equation, relating it to various oscillatory problems and clearly linking the problem with the mathematics that describe it. The editors and the contributors explain the mathematical

  12. Exact solutions of certain nonlinear chemotaxis diffusion reaction equations

    Indian Academy of Sciences (India)

    MISHRA AJAY; KAUSHAL R S; PRASAD AWADHESH

    2016-05-01

    Using the auxiliary equation method, we obtain exact solutions of certain nonlinear chemotaxis diffusion reaction equations in the presence of a stimulant. In particular, we account for the nonlinearities arising not only from the density-dependent source terms contributed by the particles and the stimulant but also from the coupling term of the stimulant. In addition to this, the diffusion of the stimulant and the effect of long-range interactions are also accounted for in theconstructed coupled differential equations. The results obtained here could be useful in the studies of several biological systems and processes, e.g., in bacterial infection, chemotherapy, etc.

  13. Generalized nonlinear Proca equation and its free-particle solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, F.D. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil); Plastino, A.R. [Universidad Nacional Buenos Aires-Noreoeste, CeBio y Secretaria de Investigacion, Junin (Argentina)

    2016-06-15

    We introduce a nonlinear extension of Proca's field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schroedinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q → 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ{sup μ}(vector x,t), involves an additional field Φ{sup μ}(vector x,t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E{sup 2} = p{sup 2}c{sup 2} + m{sup 2}c{sup 4} for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed. (orig.)

  14. Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations.

    Science.gov (United States)

    Baranwal, Vipul K; Pandey, Ram K; Singh, Om P

    2014-01-01

    We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.

  15. Stochastic nonlinear differential equation generating 1/f noise.

    Science.gov (United States)

    Kaulakys, B; Ruseckas, J

    2004-08-01

    Starting from the simple point process model of 1/f noise, we derive a stochastic nonlinear differential equation for the signal exhibiting 1/f noise, in any desirably wide range of frequency. A stochastic differential equation (the general Langevin equation with a multiplicative noise) that gives 1/f noise is derived. The solution of the equation exhibits the power-law distribution. The process with 1/f noise is demonstrated by the numerical solution of the derived equation with the appropriate restriction of the diffusion of the signal in some finite interval.

  16. Exact travelling wave solutions of nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish) Suez Canal University, AL-Arish 45111 (Egypt)]. E-mail: asoliman_99@yahoo.com; Abdou, M.A. [Theoretical Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: m_abdou_eg@yahoo.com

    2007-04-15

    An extended Fan-sub equation method is developed for searching exact travelling wave solutions of nonlinear partial differential equations. The key idea of this method is to take full advantage of the general elliptic equation, involving five parameters, which has more new solutions and whose degeneracies can lead to special sub equation involving three parameters. As an illustration of the extended Fan method, more new solutions are obtained for three models namely, generalized KdV, Drinfeld-Sokolov system and RLW equation.

  17. The Swift-Hohenberg equation with a nonlocal nonlinearity

    OpenAIRE

    2013-01-01

    It is well known that aspects of the formation of localised states in a one-dimensional Swift--Hohenberg equation can be described by Ginzburg--Landau-type envelope equations. This paper extends these multiple scales analyses to cases where an additional nonlinear integral term, in the form of a convolution, is present. The presence of a kernel function introduces a new lengthscale into the problem, and this results in additional complexity in both the derivation of envelope equations and in ...

  18. Adomian solution of a nonlinear quadratic integral equation

    Directory of Open Access Journals (Sweden)

    E.A.A. Ziada

    2013-04-01

    Full Text Available We are concerned here with a nonlinear quadratic integral equation (QIE. The existence of a unique solution will be proved. Convergence analysis of Adomian decomposition method (ADM applied to these type of equations is discussed. Convergence analysis is reliable enough to estimate the maximum absolute truncated error of Adomian’s series solution. Two methods are used to solve these type of equations; ADM and repeated trapezoidal method. The obtained results are compared.

  19. Iterative Solution for Systems of Nonlinear Two Binary Operator Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANGZhi-hong; LIWen-feng

    2004-01-01

    Using the cone and partial ordering theory and mixed monotone operator theory, the existence and uniqueness of solutions for some classes of systems of nonlinear two binary operator equations in a Banach space with a partial ordering are discussed. And the error estimates that the iterative sequences converge to solutions are also given. Some relevant results of solvability of two binary operator equations and systems of operator equations are imnroved and generalized.

  20. Scalable nonlinear iterative methods for partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Cai, X-C

    2000-10-29

    We conducted a six-month investigation of the design, analysis, and software implementation of a class of singularity-insensitive, scalable, parallel nonlinear iterative methods for the numerical solution of nonlinear partial differential equations. The solutions of nonlinear PDEs are often nonsmooth and have local singularities, such as sharp fronts. Traditional nonlinear iterative methods, such as Newton-like methods, are capable of reducing the global smooth nonlinearities at a nearly quadratic convergence rate but may become very slow once the local singularities appear somewhere in the computational domain. Even with global strategies such as line search or trust region the methods often stagnate at local minima of {parallel}F{parallel}, especially for problems with unbalanced nonlinearities, because the methods do not have built-in machinery to deal with the unbalanced nonlinearities. To find the same solution u* of F(u) = 0, we solve, instead, an equivalent nonlinearly preconditioned system G(F(u*)) = 0 whose nonlinearities are more balanced. In this project, we proposed and studied a nonlinear additive Schwarz based parallel nonlinear preconditioner and showed numerically that the new method converges well even for some difficult problems, such as high Reynolds number flows, when a traditional inexact Newton method fails.

  1. Quantum theory of nonlocal nonlinear Schrodinger equation

    CERN Document Server

    Vyas, Vivek M

    2015-01-01

    Nonlocal nonlinear Schrodinger model is quantised and exactly solved using the canonical framework. It is found that the usual canonical quantisation of the model leads to a theory with pathological inner product. This problem is resolved by constructing another inner product over the vector space of the theory. The resultant theory is found to be identical to that of nonrelativistic bosons with delta function interaction potential, devoid of any nonlocality. The exact eigenstates are found using the Bethe ansatz technique.

  2. Extended trial equation method for nonlinear coupled Schrodinger Boussinesq partial differential equations

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2016-07-01

    Full Text Available In this paper, we improve the extended trial equation method to construct the exact solutions for nonlinear coupled system of partial differential equations in mathematical physics. We use the extended trial equation method to find some different types of exact solutions such as the Jacobi elliptic function solutions, soliton solutions, trigonometric function solutions and rational, exact solutions to the nonlinear coupled Schrodinger Boussinesq equations when the balance number is a positive integer. The performance of this method is reliable, effective and powerful for solving more complicated nonlinear partial differential equations in mathematical physics. The balance number of this method is not constant as we have in other methods. This method allows us to construct many new types of exact solutions. By using the Maple software package we show that all obtained solutions satisfy the original partial differential equations.

  3. Nonlinear Biharmonic Equations with Critical Potential

    Institute of Scientific and Technical Information of China (English)

    Hui XIONG; Yao Tian SHEN

    2005-01-01

    In this paper, we study two semilinear singular biharmonic equations: one with subcritical exponent and critical potential, another with sub-critical potential and critical exponent. By Pohozaev identity for singular solution, we prove there is no nontrivial solution for equations with critical exponent and critical potential. And by using the concentrate compactness principle and Mountain Pass theorem, respectively, we get two existence results for the two problems. Meanwhile,we have compared the changes of the critical dimensions in singular and non-singular cases, and we get an interesting result.

  4. The Jeffcott equations in nonlinear rotordynamics

    Science.gov (United States)

    Zalik, R. A.

    1989-01-01

    The solutions of the Jeffcott equations describing the behavior of a rotating shaft are investigated analytically, with a focus on the case where deadband is taken into account. Bounds on the solutions are obtained from those for the linearized equations, and the onset of destructive vibrations is predicted by analyzing the Fourier transforms of the solutions; good agreement with numerical solutions and power-spectrum density plots is demonstrated. It is suggested that the present analytical approach could be applied to determine cryogenic-pump stability margins in flight and hot-fire ground testing of launch vehicles such as the Space Shuttle.

  5. A generalized new auxiliary equation method and its applications to nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sheng [Department of Mathematics, Bohai University, Jinzhou 121000 (China)]. E-mail: zhshaeng@yahoo.com.cn; Xia, Tiecheng [Department of Mathematics, Bohai University, Jinzhou 121000 (China); Department of Mathematics, Shanghai University, Shanghai 200444 (China)

    2007-04-09

    In this Letter, a generalized new auxiliary equation method is proposed for constructing more general exact solutions of nonlinear partial differential equations. With the aid of symbolic computation, we choose the combined KdV-mKdV equation and the (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations to illustrate the validity and advantages of the method. As a result, many new and more general exact solutions are obtained.

  6. New expansion algorithm of three Riccati equations and its applications in nonlinear mathematical physics equations

    Institute of Scientific and Technical Information of China (English)

    Zhi Hong-Yan; Zhao Xue-Qin; Zhang Hong-Qing

    2005-01-01

    Based on the study of tanh function method and the coupled projective Riccati equation method, we propose a new algorithm to search for explicit exact solutions of nonlinear evolution equations. We use the higher-order Schrodinger equation and mKdV equation to illustrate this algorithm. As a result, more new solutions are obtained, which include new solitary solutions, periodic solutions, and singular solutions. Some new solutions are illustrated in figures.

  7. Backward stochastic differential equations from linear to fully nonlinear theory

    CERN Document Server

    Zhang, Jianfeng

    2017-01-01

    This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

  8. Multi-diffusive nonlinear Fokker-Planck equation

    Science.gov (United States)

    Ribeiro, Mauricio S.; Casas, Gabriela A.; Nobre, Fernando D.

    2017-02-01

    Nonlinear Fokker-Planck equations, characterized by more than one diffusion term, have appeared recently in literature. Here, it is shown that these equations may be derived either from approximations in a master equation, or from a Langevin-type approach. An H-theorem is proven, relating these Fokker-Planck equations to an entropy composed by a sum of contributions, each of them associated with a given diffusion term. Moreover, the stationary state of the Fokker-Planck equation is shown to coincide with the equilibrium state, obtained by extremization of the entropy, in the sense that both procedures yield precisely the same equation. Due to the nonlinear character of this equation, the equilibrium probability may be obtained, in most cases, only by means of numerical approaches. Some examples are worked out, where the equilibrium probability distribution is computed for nonlinear Fokker-Planck equations presenting two diffusion terms, corresponding to an entropy characterized by a sum of two contributions. It is shown that the resulting equilibrium distribution, in general, presents a form that differs from a sum of the equilibrium distributions that maximizes each entropic contribution separately, although in some cases one may construct such a linear combination as a good approximation for the equilibrium distribution.

  9. EXACT EXPLICIT SOLUTIONS OF THE NONLINEAR SCHR(O)DINGER EQUATION COUPLED TO THE BOUSSINESQ EQUATION

    Institute of Scientific and Technical Information of China (English)

    姚若侠; 李忠斌

    2003-01-01

    A system comprised of the nonlinear Schrodinger equation coupled to theBoussinesq equation (S-B equations) which dealing with the stationary propagation of cou-pled non-linear upper-hybrid and magnetosonic waves in magnetized plasma is proposed.To examine its solitary wave solutions, a reduced set of ordinary differential equations areconsidered by a simple traveling wave transformation. It is then shown that several newsolutions (either functional or parametrical) can be obtained systematically, in addition torederiving all known ones by means of our simple and direct algebra method with the helpof the computer algebra system Maple.

  10. Residual models for nonlinear partial differential equations

    Directory of Open Access Journals (Sweden)

    Garry Pantelis

    2005-11-01

    Full Text Available Residual terms that appear in nonlinear PDEs that are constructed to generate filtered representations of the variables of the fully resolved system are examined by way of a consistency condition. It is shown that certain commonly used empirical gradient models for the residuals fail the test of consistency and therefore cannot be validated as approximations in any reliable sense. An alternate method is presented for computing the residuals. These residual models are independent of free or artificial parameters and there direct link with the functional form of the system of PDEs which describe the fully resolved system are established.

  11. The Modified Rational Jacobi Elliptic Functions Method for Nonlinear Differential Difference Equations

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2012-01-01

    Full Text Available We modified the rational Jacobi elliptic functions method to construct some new exact solutions for nonlinear differential difference equations in mathematical physics via the lattice equation, the discrete nonlinear Schrodinger equation with a saturable nonlinearity, the discrete nonlinear Klein-Gordon equation, and the quintic discrete nonlinear Schrodinger equation. Some new types of the Jacobi elliptic solutions are obtained for some nonlinear differential difference equations in mathematical physics. The proposed method is more effective and powerful to obtain the exact solutions for nonlinear differential difference equations.

  12. Algebraic calculation of stroboscopic maps of ordinary, nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Wackerbauer, R. (Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany)); Huebler, A. (Illinois Univ., Urbana, IL (United States). Center for Complex Systems Research); Mayer-Kress, G. (Los Alamos National Lab., NM (United States) California Univ., Santa Cruz, CA (United States). Dept. of Mathematics)

    1991-07-25

    The relation between the parameters of a differential equation and corresponding discrete maps are becoming increasingly important in the study of nonlinear dynamical systems. Maps are well adopted for numerical computation and several universal properties of them are known. Therefore some perturbation methods have been proposed to deduce them for physical systems, which can be modeled by an ordinary differential equation (ODE) with a small nonlinearity. A new iterative, rigorous algebraic method for the calculation of the coefficients of a Taylor expansion of a stroboscopic map from ODE's with not necessarily small nonlinearities is presented. It is shown analytically that most of the coefficients are small for a small integration time and grow slowly in the course of time if the flow vector field of the ODE is polynomial and if the ODE has fixed point in the origin. Approximations of different orders respectively of the rest term are investigated for several nonlinear systems. 31 refs., 16 figs.

  13. On the Cauchy problem for a doubly nonlinear degenerate parabolic equation with strongly nonlinear sources

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this article, we consider the existence of local and global solution to the Cauchy problem of a doubly nonlinear equation. By introducing the norms |||f|||h and h, we give the suffcient and necessary conditions on the initial value to the existence of local solution of doubly nonlinear equation. Moreover some results on the global existence and nonexistence of solutions are considered.

  14. Stochasticity in numerical solutions of the nonlinear Schroedinger equation

    Science.gov (United States)

    Shen, Mei-Mei; Nicholson, D. R.

    1987-01-01

    The cubically nonlinear Schroedinger equation is an important model of nonlinear phenomena in fluids and plasmas. Numerical solutions in a spatially periodic system commonly involve truncation to a finite number of Fourier modes. These solutions are found to be stochastic in the sense that the largest Liapunov exponent is positive. As the number of modes is increased, the size of this exponent appears to converge to zero, in agreement with the recent demonstration of the integrability of the spatially periodic case.

  15. Symmetric and asymmetric bound states for the nonlinear Schroedinger equation with inhomogeneous nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte-Beitia, Juan [Departamento de Matematicas, E. T. S. de Ingenieros Industriales and Instituto de Matematica Aplicada a la Ciencia y la IngenierIa (IMACI), E. T. S. I. Industriales, Avda. Camilo Jose Cela, s/n Universidad de Castilla-La Mancha 13071 Ciudad Real (Spain)

    2009-01-23

    We introduce a model of a Bose-Einstein condensate based on the one-dimensional nonlinear Schroedinger equation, in which the nonlinear term depends on the domain. The nonlinear term changes a cubic term into a quintic term, according to the domain considered. We study the existence, stability and bifurcation of solutions, and use the qualitative theory of dynamical systems to study certain properties of such solutions.

  16. On the exact solutions of nonlinear diffusion-reaction equations with quadratic and cubic nonlinearities

    Indian Academy of Sciences (India)

    R S Kaushal; Ranjit Kumar; Awadhesh Prasad

    2006-08-01

    Attempts have been made to look for the soliton content in the solutions of the recently studied nonlinear diffusion-reaction equations [R S Kaushal, J. Phys. 38, 3897 (2005)] involving quadratic or cubic nonlinearities in addition to the convective flux term which renders the system nonconservative and the corresponding Hamiltonian non-Hermitian.

  17. Exact solutions for the quintic nonlinear Schroedinger equation with time and space modulated nonlinearities and potentials

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte-Beitia, Juan [Departamento de Matematicas, E.T.S. de Ingenieros Industriales and Instituto de Matematica Aplicada a la Ciencia y la Ingenieria (IMACI), Avda. Camilo Jose Cela 3, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: juan.belmonte@uclm.es; Calvo, Gabriel F. [Departamento de Matematicas, E.T.S. de Ingenieros Industriales and Instituto de Matematica Aplicada a la Ciencia y la Ingenieria (IMACI), Avda. Camilo Jose Cela 3, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: gabriel.fernandez@uclm.es

    2009-01-19

    In this Letter, by means of similarity transformations, we construct explicit solutions to the quintic nonlinear Schroedinger equation with potentials and nonlinearities depending both on time and on the spatial coordinates. We present the general approach and use it to study some examples and find nontrivial explicit solutions such as periodic (breathers), quasiperiodic and bright and dark soliton solutions.

  18. Analytic treatment of nonlinear evolution equations using first integral method

    Indian Academy of Sciences (India)

    Ahmet Bekir; Ömer Ünsal

    2012-07-01

    In this paper, we show the applicability of the first integral method to combined KdV-mKdV equation, Pochhammer–Chree equation and coupled nonlinear evolution equations. The power of this manageable method is confirmed by applying it for three selected nonlinear evolution equations. This approach can also be applied to other nonlinear differential equations.

  19. Solitonlike solutions of the generalized discrete nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Henning, D.; Gabriel, H.

    1996-01-01

    We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interest...... nonlinear Schrodinger equation. In this way eve are able to construct coherent solitonlike structures of profile determined by the map parameters....

  20. AD GALERKIN ANALYSIS FOR NONLINEAR PSEUDO-HYPERBOLIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Xia Cui

    2003-01-01

    AD (Alternating direction) Galerkin schemes for d-dimensional nonlinear pseudo-hyperbolic equations are studied. By using patch approximation technique, AD procedure is realized,and calculation work is simplified. By using Galerkin approach, highly computational accuracy is kept. By using various priori estimate techniques for differential equations,difficulty coming from non-linearity is treated, and optimal H1 and L2 convergence properties are demonstrated. Moreover, although all the existed AD Galerkin schemes using patch approximation are limited to have only one order accuracy in time increment, yet the schemes formulated in this paper have second order accuracy in it. This implies an essential advancement in AD Galerkin analysis.

  1. New traveling wave solutions for nonlinear evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    El-Wakil, S.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Madkour, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt)]. E-mail: m_abdou_eg@yahoo.com

    2007-06-11

    The generalized Jacobi elliptic function expansion method is used with a computerized symbolic computation for constructing the new exact traveling wave solutions. The validity and reliability of the method is tested by its applications on a class of nonlinear evolution equations of special interest in mathematical physics. As a result, many exact traveling wave solutions are obtained which include the kink-shaped solutions, bell-shaped solutions, singular solutions and periodic solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.

  2. THE MORTAR ELEMENT METHOD FOR A NONLINEAR BIHARMONIC EQUATION

    Institute of Scientific and Technical Information of China (English)

    Zhong-ci Shi; Xue-jun Xu

    2005-01-01

    The mortar element method is a new domain decomposition method(DDM) with nonoverlapping subdomains. It can handle the situation where the mesh on different subdomains need not align across interfaces, and the matching of discretizations on adjacent subdomains is only enforced weakly. But until now there has been very little work for nonlinear PDEs. In this paper, we will present a mortar-type Morley element method for a nonlinear biharmonic equation which is related to the well-known Navier-Stokes equation. Optimal energy and H1-norm estimates are obtained under a reasonable elliptic regularity assumption.

  3. Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms

    KAUST Repository

    Carrillo, José A.

    2016-09-22

    In this paper we present a numerical scheme for nonlinear continuity equations, which is based on the gradient flow formulation of an energy functional with respect to the quadratic transportation distance. It can be applied to a large class of nonlinear continuity equations, whose dynamics are driven by internal energies, given external potentials and/or interaction energies. The solver is based on its variational formulation as a gradient flow with respect to the Wasserstein distance. Positivity of solutions as well as energy decrease of the semi-discrete scheme are guaranteed by its construction. We illustrate this property with various examples in spatial dimension one and two.

  4. Solving Nonlinear Partial Differential Equations with Maple and Mathematica

    CERN Document Server

    Shingareva, Inna K

    2011-01-01

    The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple an

  5. Critical Exponents for Fast Diffusion Equations with Nonlinear Boundary Sources

    Institute of Scientific and Technical Information of China (English)

    WANG LU-SHENG; WANG ZE-JIA

    2011-01-01

    In this paper, we study the large time behavior of solutions to a class of fast diffusion equations with nonlinear boundary sources on the exterior domain of the unit ball. We are interested in the critical global exponent q0 and the critical Fujita exponent qc for the problem considered, and show that q0 = qc for the multidimensional Non-Newtonian polytropic filtration equation with nonlinear boundary sources, which is quite different from the known results that q0 < qc for the onedimensional case; moreover, the value is different from the slow case.

  6. Properties of some nonlinear Schroedinger equations motivated through information theory

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Liew Ding; Parwani, Rajesh R, E-mail: parwani@nus.edu.s [Department of Physics, National University of Singapore, Kent Ridge (Singapore)

    2009-06-01

    We update our understanding of nonlinear Schroedinger equations motivated through information theory. In particular we show that a q-deformation of the basic nonlinear equation leads to a perturbative increase in the energy of a system, thus favouring the simplest q = 1 case. Furthermore the energy minimisation criterion is shown to be equivalent, at leading order, to an uncertainty maximisation argument. The special value eta = 1/4 for the interpolation parameter, where leading order energy shifts vanish, implies the preservation of existing supersymmetry in nonlinearised supersymmetric quantum mechanics. Physically, eta might be encoding relativistic effects.

  7. Direct Perturbation Method for Derivative Nonlinear Schrodinger Equation

    Institute of Scientific and Technical Information of China (English)

    CHENG Xue-Ping; LIN Ji; HAN Ping

    2008-01-01

    We extend Lou's direct perturbation method for solving the nonlinear SchrSdinger equation to the case of the derivative nonlinear Schrodinger equation (DNLSE). By applying this method, different types of perturbation solutions axe obtained. Based on these approximate solutions, the analytical forms of soliton parameters, such as the velocity, the width and the initial position, are carried out and the effects of perturbation on solitons are analyzed at the same time. A numerical simulation of perturbed DNLSE finally verifies the results of the perturbation method.

  8. A nonlinear viscoelastic constitutive equation - Yield predictions in multiaxial deformations

    Science.gov (United States)

    Shay, R. M., Jr.; Caruthers, J. M.

    1987-01-01

    Yield stress predictions of a nonlinear viscoelastic constitutive equation for amorphous polymer solids have been obtained and are compared with the phenomenological von Mises yield criterion. Linear viscoelasticity theory has been extended to include finite strains and a material timescale that depends on the instantaneous temperature, volume, and pressure. Results are presented for yield and the correct temperature and strain-rate dependence in a variety of multiaxial deformations. The present nonlinear viscoelastic constitutive equation can be formulated in terms of either a Cauchy or second Piola-Kirchhoff stress tensor, and in terms of either atmospheric or hydrostatic pressure.

  9. BIHARMONIC EQUATIONS WITH ASYMPTOTICALLY LINEAR NONLINEARITIES

    Institute of Scientific and Technical Information of China (English)

    Liu Yue; Wang Zhengping

    2007-01-01

    This article considers the equation △2u = f(x, u)with boundary conditions either u|(a)Ω = (a)u/(a)n|(a)Ω = 0 or u|(a)Ω = △u|(a)Ω = 0, where f(x,t) is asymptotically linear with respect to t at infinity, and Ω is a smooth bounded domain in RN, N > 4. By a variant version of Mountain Pass Theorem, it is proved that the above problems have a nontrivial solution under suitable assumptions of f(x, t).

  10. Weakly nonlinear Schr\\"odinger equation with random initial data

    CERN Document Server

    Lukkarinen, Jani

    2009-01-01

    There is wide interest in weakly nonlinear wave equations with random initial data. A common approach is the approximation through a kinetic transport equation, which clearly poses the issue of understanding its validity in the kinetic limit. While for the general case a proof of the kinetic limit remains open, we report here on first progress. As wave equation we consider the nonlinear Schrodinger equation discretized on a hypercubic lattice. Since this is a Hamiltonian system, a natural choice of random initial data is distributing them according to a Gibbs measure with a chemical potential chosen so that the Gibbs field has exponential mixing. The solution psi_t(x) of the nonlinear Schrodinger equation yields then a stochastic process stationary in x in Z^d and t in R. If lambda denotes the strength of the nonlinearity, we prove that the space-time covariance of psi_t(x) has a limit as lambda -> 0 for t=lambda^{-2} tau, with tau fixed and |tau| sufficiently small. The limit agrees with the prediction from ...

  11. Nonlinear electrostatic wave equations for magnetized plasmas - II

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.

    1985-01-01

    For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....

  12. Multisymplectic five-point scheme for the nonlinear wave equation

    Institute of Scientific and Technical Information of China (English)

    WANG Yushun; WANG Bin; YANG Hongwei; WANG Yunfeng

    2003-01-01

    In this paper, we introduce the multisymplectic structure of the nonlinear wave equation, and prove that the classical five-point scheme for the equation is multisymplectic. Numerical simulations of this multisymplectic scheme on highly oscillatory waves of the nonlinear Klein-Gordon equation and the collisions between kink and anti-kink solitons of the sine-Gordon equation are also provided. The multisymplectic schemes do not need to discrete PDEs in the space first as the symplectic schemes do and preserve not only the geometric structure of the PDEs accurately, but also their first integrals approximately such as the energy, the momentum and so on. Thus the multisymplectic schemes have better numerical stability and long-time numerical behavior than the energy-conserving scheme and the symplectic scheme.

  13. Inverse Coefficient Problems for Nonlinear Parabolic Differential Equations

    Institute of Scientific and Technical Information of China (English)

    Yun Hua OU; Alemdar HASANOV; Zhen Hai LIU

    2008-01-01

    This paper is devoted to a class of inverse problems for a nonlinear parabolic differential equation.The unknown coefficient of the equation depends on the gradient of the solution and belongs to a set of admissible coefficients.It is proved that the convergence of solutions for the corresponding direct problems continuously depends on the coefficient convergence.Based on this result the existence of a quasisolution of the inverse problem is obtained in the appropriate class of admissible coefficients.

  14. Intermittency and solitons in the driven dissipative nonlinear Schroedinger equation

    Science.gov (United States)

    Moon, H. T.; Goldman, M. V.

    1984-01-01

    The cubic nonlinear Schroedinger equation, in the presence of driving and Landau damping, is studied numerically. As the pump intensity is increased, the system exhibits a transition from intermittency to a two-torus to chaos. The laminar phase of the intermittency is also a two-torus motion which corresponds in physical space to two identical solitons of amplitude determined by a power-balance equation.

  15. Conservation laws of inviscid Burgers equation with nonlinear damping

    Science.gov (United States)

    Abdulwahhab, Muhammad Alim

    2014-06-01

    In this paper, the new conservation theorem presented in Ibragimov (2007) [14] is used to find conservation laws of the inviscid Burgers equation with nonlinear damping ut+g(u)ux+λh(u)=0. We show that this equation is both quasi self-adjoint and self-adjoint, and use these concepts to simplify conserved quantities for various choices of g(u) and h(u).

  16. Oscillation criteria for nonlinear fractional differential equation with damping term

    Directory of Open Access Journals (Sweden)

    Bayram Mustafa

    2016-01-01

    Full Text Available In this paper, we study the oscillation of solutions to a non-linear fractional differential equation with damping term. The fractional derivative is defined in the sense of the modified Riemann-Liouville derivative. By using a variable transformation, a generalized Riccati transformation, inequalities, and integration average techniquewe establish new oscillation criteria for the fractional differential equation. Several illustrative examples are also given.

  17. Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection

    OpenAIRE

    Goudenège, Ludovic

    2008-01-01

    International audience; We consider a stochastic partial differential equation with logarithmic (or negative power) nonlinearity, with one reflection at 0 and with a constraint of conservation of the space average. The equation, driven by the derivative in space of a space-time white noise, contains a bi-Laplacian in the drift. The lack of the maximum principle for the bi-Laplacian generates difficulties for the classical penalization method, which uses a crucial monotonicity property. Being ...

  18. SINGULAR AND RAREFACTIVE SOLUTIONS TO A NONLINEAR VARIATIONAL WAVE EQUATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Following a recent paper of the authors in Communications in Partial Differential Equations, this paper establishes the global existence of weak solutions to a nonlinear variational wave equation under relaxed conditions on the initial data so that the solutions can contain singularities (blow-up). Propagation of local oscillations along one family of characteristics remains under control despite singularity formation in the other family of characteristics.

  19. Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations

    Directory of Open Access Journals (Sweden)

    E. Messina

    2008-01-01

    Full Text Available We consider nonlinear difference equations of unbounded order of the form xi=bi−∑j=0iai,jfi−j(xj,  i=0,1,2,…, where fj(x  (j=0,…,i are suitable functions. We establish sufficient conditions for the boundedness and the convergence of xi as i→+∞. Some of these conditions are interesting mainly for studying stability of numerical methods for Volterra integral equations.

  20. APPROXIMATION TO NONLINEAR SCHR(O)DINGER EQUATION OF THE COMPLEX GENERALIZED GINZBURG-LANDAU EQUATION

    Institute of Scientific and Technical Information of China (English)

    杨灵娥

    2003-01-01

    In this paper, we prove that in the inviscid limit the solution of the gen eralized derivative Ginzburg-Landau equations converges to the solution of derivative nonlinear Schrodinger equation, we also give the convergence rates for the difference of the solution.

  1. An hp-adaptive strategy for the solution of the exact kernel curved wire Pocklington equation

    NARCIS (Netherlands)

    Lahaye, D.; Hemker, P.W.

    2007-01-01

    In this paper we introduce an adaptive method for the numerical solution of the Pocklington integro-differential equation with exact kernel for the current induced in a smoothly curved thin wire antenna. The hp-adaptive technique is based on the representation of the discrete solution, which is expa

  2. The chaotic effects in a nonlinear QCD evolution equation

    Science.gov (United States)

    Zhu, Wei; Shen, Zhenqi; Ruan, Jianhong

    2016-10-01

    The corrections of gluon fusion to the DGLAP and BFKL equations are discussed in a united partonic framework. The resulting nonlinear evolution equations are the well-known GLR-MQ-ZRS equation and a new evolution equation. Using the available saturation models as input, we find that the new evolution equation has the chaos solution with positive Lyapunov exponents in the perturbative range. We predict a new kind of shadowing caused by chaos, which blocks the QCD evolution in a critical small x range. The blocking effect in the evolution equation may explain the Abelian gluon assumption and even influence our expectations to the projected Large Hadron Electron Collider (LHeC), Very Large Hadron Collider (VLHC) and the upgrade (CppC) in a circular e+e- collider (SppC).

  3. The modified simple equation method for solving some fractional-order nonlinear equations

    Indian Academy of Sciences (India)

    KAPLAN MELIKE; BEKIR AHMET

    2016-07-01

    Nonlinear fractional differential equations are encountered in various fields of mathematics, physics, chemistry, biology, engineering and in numerous other applications. Exact solutions of these equations play a crucial role in the proper understanding of the qualitative features of many phenomena and processes in various areas of natural science. Thus, many effective and powerful methods have been established and improved. In this study, we establish exact solutions of the time fractional biological population model equation and nonlinearfractional Klein–Gordon equation by using the modified simple equation method.

  4. Elimination and nonlinear equations of Rees algebra

    CERN Document Server

    Busé, Laurent; Simis, Aron

    2009-01-01

    A new approach is established to computing the image of a rational map, whereby the use of approximation complexes is complemented with a detailed analysis of the torsion of the symmetric algebra in certain degrees. In the case the map is everywhere defined this analysis provides free resolutions of graded parts of the Rees algebra of the base ideal in degrees where it does not coincide with the corresponding symmetric algebra. A surprising fact is that the torsion in those degrees only contributes to the first free module in the resolution of the symmetric algebra modulo torsion. An additional point is that this contribution -- which of course corresponds to non linear equations of the Rees algebra -- can be described in these degrees in terms of non Koszul syzygies via certain upgrading maps in the vein of the ones introduced earlier by J. Herzog, the third named author and W. Vasconcelos. As a measure of the reach of this torsion analysis we could say that, in the case of a general everywhere defined map, ...

  5. SOME DISCRETE NONLINEAR INEQUALITIES AND APPLICATIONS TO DIFFERENCE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Cheung Wing-Sum; Ma Qing-Hua; Josip Pe(c)ari(c)

    2008-01-01

    In this article, the authors establish some new nonlinear difference inequalities in two independent variables, which generalize some existing results and can be used as handy tools in the study of qualitative as well as quantitative properties of solutions of certain classes of difference equations.

  6. BOUNDARY LAYER AND VANISHING DIFFUSION LIMIT FOR NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    彭艳

    2014-01-01

    In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as the diffusion parameterαgoes to zero.

  7. The Peridic Wave Solutions for Two Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Liang; WANG Ming-Liang; CHENG Dong-Ming; FANG Zong-De

    2003-01-01

    By using the F-expansion method proposed recently, the periodic wave solutions expressed by Jacobielliptic functions for two nonlinear evolution equations are derived. In the limit cases, the solitary wave solutions andthe other type of traveling wave solutions for the system are obtained.

  8. The Local Stability of Solutions for a Nonlinear Equation

    Directory of Open Access Journals (Sweden)

    Haibo Yan

    2014-01-01

    Full Text Available The approach of Kruzkov’s device of doubling the variables is applied to establish the local stability of strong solutions for a nonlinear partial differential equation in the space L1(R by assuming that the initial value only lies in the space L1(R∩L∞(R.

  9. Further studies of a simple gyrotron equation: nonlinear theory

    Energy Technology Data Exchange (ETDEWEB)

    Shi Meixuan, E-mail: meixuan@cims.nyu.ed [Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012-1185 (United States)

    2010-11-05

    A nonlinear version of a standard system of gyrotron model equations is studied using asymptotic analysis and variational methods. The condition for obtaining a high-amplitude wave is achieved in the study. A simple method for obtaining the patterns and amplitude of the wave based on the given free-space wave-number pattern is shown.

  10. Oscillation criteria for first-order forced nonlinear difference equations

    OpenAIRE

    Grace Said R; Agarwal Ravi P.; Smith Tim

    2006-01-01

    Some new criteria for the oscillation of first-order forced nonlinear difference equations of the form Δx(n)+q1(n)xμ(n+1) = q2(n)xλ(n+1)+e(n), where λ, μ are the ratios of positive odd integers 0 <μ < 1 and λ > 1, are established.

  11. Oscillation Theorems for Nonlinear Second Order Elliptic Equations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Some oscillation theorems are given for the nonlinear second order elliptic equation N ∑i,j=1 Di[aij(x)Ψ(y)||(△)y||p-2Djy]+c(x)f(y)=0. The results are extensions of modified Riccati techniques and include recent results of Usami.

  12. Exact controllability for a nonlinear stochastic wave equation

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The exact controllability for a semilinear stochastic wave equation with a boundary control is established. The target and initial spaces are L 2 ( G × H −1 ( G with G being a bounded open subset of R 3 and the nonlinear terms having at most a linear growth.

  13. Exact periodic solution in coupled nonlinear Schrodinger equations

    Institute of Scientific and Technical Information of China (English)

    Li Qi-Liang; Chen Jun-Lang; Sun Li-Li; Yu Shu-Yi; Qian Sheng

    2007-01-01

    The coupled nonlinear Schrodinger equations (CNLSEs) of two symmetrical optical fibres are nonintegrable, however the transformed CNLSEs have integrability. Integrability of the transformed CNLSEs is proved by the Hamilton dynamics theory and Galilei transform. Making use of a transform for CNLSEs and using the ansatz with Jacobi elliptic function form, this paper obtains the exact optical pulse solutions.

  14. EXISTENCE OF SOLUTIONS OF NONLINEAR FRACTIONAL PANTOGRAPH EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    K. BALACHANDRAN; S. KIRUTHIKA; J.J. TRUJILLO

    2013-01-01

    This article deals with the existence of solutions of nonlinear fractional pantograph equations.Such model can be considered suitable to be applied when the corresponding process occurs through strongly anomalous media.The results are obtained using fractional calculus and fixed point theorems.An example is provided to illustrate the main result obtained in this article.

  15. Advances in nonlinear partial differential equations and stochastics

    CERN Document Server

    Kawashima, S

    1998-01-01

    In the past two decades, there has been great progress in the theory of nonlinear partial differential equations. This book describes the progress, focusing on interesting topics in gas dynamics, fluid dynamics, elastodynamics etc. It contains ten articles, each of which discusses a very recent result obtained by the author. Some of these articles review related results.

  16. Nonlocal Cauchy problem for nonlinear mixed integrodifferential equations

    Directory of Open Access Journals (Sweden)

    H.L. Tidke

    2010-12-01

    Full Text Available The present paper investigates the existence and uniqueness of mild and strong solutions of a nonlinear mixed Volterra-Fredholm integrodifferential equation with nonlocal condition. The results obtained by using Schauder fixed point theorem and the theory of semigroups.

  17. An Orthogonal Residual Procedure for Nonlinear Finite Element Equations

    DEFF Research Database (Denmark)

    Krenk, S.

    A general and robust solution procedure for nonlinear finite element equations with limit points is developed. At each equilibrium iteration the magnitude of the load is adjusted such that the residual force is orthogonal to the current displacement increment from the last equilibrium state...

  18. Maximum Likelihood Estimation of Nonlinear Structural Equation Models.

    Science.gov (United States)

    Lee, Sik-Yum; Zhu, Hong-Tu

    2002-01-01

    Developed an EM type algorithm for maximum likelihood estimation of a general nonlinear structural equation model in which the E-step is completed by a Metropolis-Hastings algorithm. Illustrated the methodology with results from a simulation study and two real examples using data from previous studies. (SLD)

  19. Case-Deletion Diagnostics for Nonlinear Structural Equation Models

    Science.gov (United States)

    Lee, Sik-Yum; Lu, Bin

    2003-01-01

    In this article, a case-deletion procedure is proposed to detect influential observations in a nonlinear structural equation model. The key idea is to develop the diagnostic measures based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm. An one-step pseudo approximation is proposed to reduce the…

  20. Local Influence Analysis of Nonlinear Structural Equation Models

    Science.gov (United States)

    Lee, Sik-Yum; Tang, Nian-Sheng

    2004-01-01

    By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…

  1. Probabilistic methods for discrete nonlinear Schr\\"odinger equations

    CERN Document Server

    Chatterjee, Sourav

    2010-01-01

    Using techniques from probability theory, we show that the thermodynamics of the focusing cubic discrete nonlinear Schrodinger equation (NLS) are exactly solvable in dimensions three and higher. A number of explicit formulas are derived. The probabilistic results, combined with dynamical information, prove the existence and typicality of solutions to the discrete NLS with highly stable localized modes that are sometimes called discrete breathers.

  2. An inhomogeneous wave equation and non-linear Diophantine approximation

    DEFF Research Database (Denmark)

    Beresnevich, V.; Dodson, M. M.; Kristensen, S.;

    2008-01-01

    A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...... is studied. Both the Lebesgue and Hausdorff measures of this set are obtained....

  3. Tensor methods for large sparse systems of nonlinear equations

    Energy Technology Data Exchange (ETDEWEB)

    Bouaricha, A. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.; Schnabel, R.B. [Colorado Univ., Boulder, CO (United States). Dept. of Computer Science

    1996-12-31

    This paper introduces censor methods for solving, large sparse systems of nonlinear equations. Tensor methods for nonlinear equations were developed in the context of solving small to medium- sized dense problems. They base each iteration on a quadratic model of the nonlinear equations. where the second-order term is selected so that the model requires no more derivative or function information per iteration than standard linear model-based methods, and hardly more storage or arithmetic operations per iteration. Computational experiments on small to medium-sized problems have shown censor methods to be considerably more efficient than standard Newton-based methods, with a particularly large advantage on singular problems. This paper considers the extension of this approach to solve large sparse problems. The key issue that must be considered is how to make efficient use of sparsity in forming and solving the censor model problem at each iteration. Accomplishing this turns out to require an entirely new way of solving the tensor model that successfully exploits the sparsity of the Jacobian, whether the Jacobian is nonsingular or singular. We develop such an approach and, based upon it, an efficient tensor method for solving large sparse systems of nonlinear equations. Test results indicate that this tensor method is significantly more efficient and robust than an efficient sparse Newton-based method. in terms of iterations, function evaluations. and execution time.

  4. Large Time Asymptotics for Solutions of Nonlinear Partial Differential Equations

    CERN Document Server

    Sachdev, PL

    2010-01-01

    A large number of physical phenomena are modeled by nonlinear partial differential equations, subject to appropriate initial/boundary conditions. This title presents the constructive mathematical techniques. It deals with the asymptotic methods which include self-similarity, balancing argument, and matched asymptotic expansions

  5. A Dual Orthogonality Procedure for Nonlinear Finite Element Equations

    DEFF Research Database (Denmark)

    Krenk, S.; Hededal, O.

    In the orthogonal residual procedure for solution of nonlinear finite element equations the load is adjusted in each equilibrium iteration to satisfy an orthogonality condition to the current displacement increment. It is here shown that the quasi-newton formulation of the orthogonal residual...

  6. An Efficient Numerical Approach for Nonlinear Fokker-Planck equations

    Science.gov (United States)

    Otten, Dustin; Vedula, Prakash

    2009-03-01

    Fokker-Planck equations which are nonlinear with respect to their probability densities that occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, classical fermions and bosons can be challenging to solve numerically. To address some underlying challenges in obtaining numerical solutions, we propose a quadrature based moment method for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations. In this approach the distribution function is represented as a collection of Dirac delta functions with corresponding quadrature weights and locations, that are in turn determined from constraints based on evolution of generalized moments. Properties of the distribution function can be obtained by solution of transport equations for quadrature weights and locations. We will apply this computational approach to study a wide range of problems, including the Desai-Zwanzig Model (for nonlinear muscular contraction) and multivariate nonlinear Fokker-Planck equations describing classical fermions and bosons, and will also demonstrate good agreement with results obtained from Monte Carlo and other standard numerical methods.

  7. ON THE NONLINEAR TIMOSHENKO-KIRCHHOFF BEAM EQUATION

    Institute of Scientific and Technical Information of China (English)

    A.AROSIO

    1999-01-01

    When an elastic string with fixed ends is subjected to transverse vibrations, its length vaxiewith the time: this introduces chvages of the tension in the string. Thls induced Kirchoffto propose a nonlinear correction of the classical D'Alembert equation. Later on, Wolnowsky-

  8. Numerical treatments for solving nonlinear mixed integral equation

    Directory of Open Access Journals (Sweden)

    M.A. Abdou

    2016-12-01

    Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.

  9. Mapping deformation method and its application to nonlinear equations

    Institute of Scientific and Technical Information of China (English)

    李画眉

    2002-01-01

    An extended mapping deformation method is proposed for finding new exact travelling wave solutions of nonlinearpartial differential equations (PDEs). The key idea of this method is to take full advantage of the simple algebraicmapping relation between the solutions of the PDEs and those of the cubic nonlinear Klein-Gordon equation. This isapplied to solve a system of variant Boussinesq equations. As a result, many explicit and exact solutions are obtained,including solitary wave solutions, periodic wave solutions, Jacobian elliptic function solutions and other exact solutions.

  10. A procedure to construct exact solutions of nonlinear evolution equations

    Indian Academy of Sciences (India)

    Adem Cengiz Çevikel; Ahmet Bekir; Mutlu Akar; Sait San

    2012-09-01

    In this paper, we implemented the functional variable method for the exact solutions of the Zakharov-Kuznetsov-modified equal-width (ZK-MEW), the modified Benjamin-Bona-Mohany (mBBM) and the modified kdV-Kadomtsev-Petviashvili (kdV-KP) equation. By using this scheme, we found some exact solutions of the above-mentioned equation. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions. The functional variable method presents a wider-applicability for handling nonlinear wave equations.

  11. An Efficient Series Solution for Nonlinear Multiterm Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Moh’d Khier Al-Srihin

    2017-01-01

    Full Text Available In this paper, we introduce an efficient series solution for a class of nonlinear multiterm fractional differential equations of Caputo type. The approach is a generalization to our recent work for single fractional differential equations. We extend the idea of the Taylor series expansion method to multiterm fractional differential equations, where we overcome the difficulty of computing iterated fractional derivatives, which are difficult to be computed in general. The terms of the series are obtained sequentially using a closed formula, where only integer derivatives have to be computed. Several examples are presented to illustrate the efficiency of the new approach and comparison with the Adomian decomposition method is performed.

  12. A granular computing method for nonlinear convection-diffusion equation

    Directory of Open Access Journals (Sweden)

    Tian Ya Lan

    2016-01-01

    Full Text Available This paper introduces a method of solving nonlinear convection-diffusion equation (NCDE, based on the combination of granular computing (GrC and characteristics finite element method (CFEM. The key idea of the proposed method (denoted as GrC-CFEM is to reconstruct the solution from coarse-grained layer to fine-grained layer. It first gets the nonlinear solution on the coarse-grained layer, and then the function (Taylor expansion is applied to linearize the NCDE on the fine-grained layer. Switch to the fine-grained layer, the linear solution is directly derived from the nonlinear solution. The full nonlinear problem is solved only on the coarse-grained layer. Numerical experiments show that the GrC-CFEM can accelerate the convergence and improve the computational efficiency without sacrificing the accuracy.

  13. The First Integral Method to the Nonlinear Schrodinger Equations in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Shoukry Ibrahim Atia El-Ganaini

    2013-01-01

    Full Text Available The first integral method introduced by Feng is adopted for solving some important nonlinear partial differential equations, including the (2 + 1-dimensional hyperbolic nonlinear Schrodinger (HNLS equation, the generalized nonlinear Schrodinger (GNLS equation with a source, and the higher-order nonlinear Schrodinger equation in nonlinear optical fibers. This method provides polynomial first integrals for autonomous planar systems. Through the established first integrals, exact traveling wave solutions are formally derived in a concise manner.

  14. A mixed finite element method for nonlinear diffusion equations

    KAUST Repository

    Burger, Martin

    2010-01-01

    We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.

  15. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    Science.gov (United States)

    Indekeu, Joseph O.; Smets, Ruben

    2017-08-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.

  16. Modelling of nonlinear shoaling based on stochastic evolution equations

    DEFF Research Database (Denmark)

    Kofoed-Hansen, Henrik; Rasmussen, Jørgen Hvenekær

    1998-01-01

    A one-dimensional stochastic model is derived to simulate the transformation of wave spectra in shallow water including generation of bound sub- and super-harmonics, near-resonant triad wave interaction and wave breaking. Boussinesq type equations with improved linear dispersion characteristics...... are recast into evolution equations for the complex amplitudes, and serve as the underlying deterministic model. Next, a set of evolution equations for the cumulants is derived. By formally introducing the well-known Gaussian closure hypothesis, nonlinear evolution equations for the power spectrum...... and bispectrum are derived. A simple description of depth-induced wave breaking is incorporated in the model equations, assuming that the total rate of dissipation may be distributed in proportion to the spectral energy density on each discrete frequency. The proposed phase-averaged model is compared...

  17. Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory

    Science.gov (United States)

    Ansari, R.; Faraji Oskouie, M.; Gholami, R.

    2016-01-01

    In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.

  18. Stability of planar diffusion wave for nonlinear evolution equation

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    It is known that the one-dimensional nonlinear heat equation ut = f(u)x1x1,f'(u) 0,u(±∞,t) = u±,u+ = u_ has a unique self-similar solution u(x1/1+t).In multi-dimensional space,u(x1/1+t) is called a planar diffusion wave.In the first part of the present paper,it is shown that under some smallness conditions,such a planar diffusion wave is nonlinearly stable for the nonlinear heat equation:ut-△f(u) = 0,x ∈ Rn.The optimal time decay rate is obtained.In the second part of this paper,it is further shown that this planar diffusion wave is still nonlinearly stable for the quasilinear wave equation with damping:utt + utt+ △f(u) = 0,x ∈ Rn.The time decay rate is also obtained.The proofs are given by an elementary energy method.

  19. Jacobian-free Newton-Krylov methods with GPU acceleration for computing nonlinear ship wave patterns

    CERN Document Server

    Pethiyagoda, Ravindra; Moroney, Timothy J; Back, Julian M

    2014-01-01

    The nonlinear problem of steady free-surface flow past a submerged source is considered as a case study for three-dimensional ship wave problems. Of particular interest is the distinctive wedge-shaped wave pattern that forms on the surface of the fluid. By reformulating the governing equations with a standard boundary-integral method, we derive a system of nonlinear algebraic equations that enforce a singular integro-differential equation at each midpoint on a two-dimensional mesh. Our contribution is to solve the system of equations with a Jacobian-free Newton-Krylov method together with a banded preconditioner that is carefully constructed with entries taken from the Jacobian of the linearised problem. Further, we are able to utilise graphics processing unit acceleration to significantly increase the grid refinement and decrease the run-time of our solutions in comparison to schemes that are presently employed in the literature. Our approach provides opportunities to explore the nonlinear features of three-...

  20. Modulational instability in fractional nonlinear Schrödinger equation

    Science.gov (United States)

    Zhang, Lifu; He, Zenghui; Conti, Claudio; Wang, Zhiteng; Hu, Yonghua; Lei, Dajun; Li, Ying; Fan, Dianyuan

    2017-07-01

    Fractional calculus is entering the field of nonlinear optics to describe unconventional regimes, as disorder biological media and soft-matter. Here we investigate spatiotemporal modulational instability (MI) in a fractional nonlinear Schrödinger equation. We derive the MI gain spectrum in terms of the Lévy indexes and a varying number of spatial dimensions. We show theoretically and numerically that the Lévy indexes affect fastest growth frequencies and MI bandwidth and gain. Our results unveil a very rich scenario that may occur in the propagation of ultrashort pulses in random media and metamaterials, and may sustain novel kinds of propagation invariant optical bullets.

  1. On nonlinear equation of Schrödinger type

    Science.gov (United States)

    Soltanov, Kamal N.

    2012-11-01

    In this paper we study a mixed problem for the nonlinear Schrödinger equation that have a nonlinear adding, in which the coefficient is a generalized function. Here is proved a solvability theorem of the considered problem with use of the general solvability theorem of the article [28]. Furthermore here is investigated also the behaviour of the solution of the studied problem. aipproc class produce a paper with the correct layout for AIP Conference Proceedings 8.5in × 11in double column.

  2. Quasi-periodic solutions of nonlinear beam equations with quintic quasi-periodic nonlinearities

    Directory of Open Access Journals (Sweden)

    Qiuju Tuo

    2015-01-01

    Full Text Available In this article, we consider the one-dimensional nonlinear beam equations with quasi-periodic quintic nonlinearities $$ u_{tt}+u_{xxxx}+(B+ \\varepsilon\\phi(tu^5=0 $$ under periodic boundary conditions, where B is a positive constant, $\\varepsilon$ is a small positive parameter, $\\phi(t$ is a real analytic quasi-periodic function in t with frequency vector $\\omega=(\\omega_1,\\omega_2,\\dots,\\omega_m$. It is proved that the above equation admits many quasi-periodic solutions by KAM theory and partial Birkhoff normal form.

  3. Charged anisotropic matter with linear or nonlinear equation of state

    CERN Document Server

    Varela, Victor; Ray, Saibal; Chakraborty, Kaushik; Kalam, Mehedi

    2010-01-01

    Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplification achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua's method to include pressure anisotropy and linear or non-linear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the...

  4. Nonlinear electromagnetic gyrokinetic equation for plasmas with large mean flows

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan); Horton, W.

    1998-02-01

    A new nonlinear electromagnetic gyrokinetic equation is derived for plasmas with large flow velocities on the order of the ion thermal speed. The gyrokinetic equation derived here is given in the form which is valid for general magnetic geometries including the slab, cylindrical and toroidal configurations. The source term for the anomalous viscosity arising through the Reynolds stress is identified in the gyrokinetic equation. For the toroidally rotating plasma, particle, energy and momentum balance equations as well as the detailed definitions of the anomalous transport fluxes and the anomalous entropy production are shown. The quasilinear anomalous transport matrix connecting the conjugate pairs of the anomalous fluxes and the forces satisfies the Onsager symmetry. (author)

  5. Generalized creation and annihilation operators via complex nonlinear Riccati equations

    Science.gov (United States)

    Schuch, Dieter; Castaños, Octavio; Rosas-Ortiz, Oscar

    2013-06-01

    Based on Gaussian wave packet solutions of the time-dependent Schrödinger equation, a generalization of the conventional creation and annihilation operators and the corresponding coherent states can be obtained. This generalization includes systems where also the width of the coherent states is time-dependent as they occur for harmonic oscillators with time-dependent frequency or systems in contact with a dissipative environment. The key point is the replacement of the frequency ω0 that occurs in the usual definition of the creation/annihilation operator by a complex time-dependent function that fulfils a nonlinear Riccati equation. This equation and its solutions depend on the system under consideration and on the (complex) initial conditions. Formal similarities also exist with supersymmetric quantum mechanics. The generalized creation and annihilation operators also allow to construct exact analytic solutions of the free motion Schrödinger equation in terms of Hermite polynomials with time-dependent variable.

  6. Multi-soliton rational solutions for some nonlinear evolution equations

    Directory of Open Access Journals (Sweden)

    Osman Mohamed S.

    2016-01-01

    Full Text Available The Korteweg-de Vries equation (KdV and the (2+ 1-dimensional Nizhnik-Novikov-Veselov system (NNV are presented. Multi-soliton rational solutions of these equations are obtained via the generalized unified method. The analysis emphasizes the power of this method and its capability of handling completely (or partially integrable equations. Compared with Hirota’s method and the inverse scattering method, the proposed method gives more general exact multi-wave solutions without much additional effort. The results show that, by virtue of symbolic computation, the generalized unified method may provide us with a straightforward and effective mathematical tool for seeking multi-soliton rational solutions for solving many nonlinear evolution equations arising in different branches of sciences.

  7. Numerical solution of control problems governed by nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Heinkenschloss, M. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1994-12-31

    In this presentation the author investigates an iterative method for the solution of optimal control problems. These problems are formulated as constrained optimization problems with constraints arising from the state equation and in the form of bound constraints on the control. The method for the solution of these problems uses the special structure of the problem arising from the bound constraint and the state equation. It is derived from SQP methods and projected Newton methods and combines the advantages of both methods. The bound constraint is satisfied by all iterates using a projection, the nonlinear state equation is satisfied in the limit. Only a linearized state equation has to be solved in every iteration. The solution of the linearized problems are done using multilevel methods and GMRES.

  8. Nonlinear physics of shear Alfvén waves

    Energy Technology Data Exchange (ETDEWEB)

    Zonca, Fulvio [Associazione EURATOM-ENEA sulla Fusione, C.P. 65-00044 Frascati, Italy and Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007 (China); Chen, Liu [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007, P.R.C. and Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

    2014-02-12

    Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.

  9. Radial selfsimilar solutions of a nonlinear Ornstein-Uhlenbeck equation

    Directory of Open Access Journals (Sweden)

    Arij Bouzelmate

    2007-05-01

    Full Text Available This paper concerns the existence, uniqueness and asymptotic properties (as $r=|x|oinfty$ of radial self-similar solutions to the nonlinear Ornstein-Uhlenbeck equation [ v_t=Delta_p v+xcdot abla (|v|^{q-1}v ] in $mathbb{R}^Nimes (0, +infty$. Here $q>p-1>1$, $Ngeq 1$, and $Delta_p$ denotes the $p$-Laplacian operator. These solutions are of the form [ v(x,t=t^{-gamma} U(cxt^{-sigma}, ] where $gamma$ and $sigma$ are fixed powers given by the invariance properties of differential equation, while $U$ is a radial function, $U(y=u(r$, $r=|y|$. With the choice $c=(q-1^{-1/p}$, the radial profile $u$ satisfies the nonlinear ordinary differential equation $$ (|u'|^{p-2}u''+frac{N-1}r |u'|^{p-2}u'+frac{q+1-p}{p} r u'+(q-1 r(|u|^{q-1}u'+u=0 $$in $mathbb{R}_+$. We carry out a careful analysis of this equation anddeduce the corresponding consequences for the Ornstein-Uhlenbeck equation.

  10. On the Amplitude Equations for Weakly Nonlinear Surface Waves

    Science.gov (United States)

    Benzoni-Gavage, Sylvie; Coulombel, Jean-François

    2012-09-01

    Nonlocal generalizations of Burgers' equation were derived in earlier work by Hunter (Contemp Math, vol 100, pp 185-202. AMS, 1989), and more recently by Benzoni-Gavage and Rosini (Comput Math Appl 57(3-4):1463-1484, 2009), as weakly nonlinear amplitude equations for hyperbolic boundary value problems admitting linear surface waves. The local-in-time well-posedness of such equations in Sobolev spaces was proved by Benzoni-Gavage (Differ Integr Equ 22(3-4):303-320, 2009) under an appropriate stability condition originally pointed out by Hunter. The same stability condition has also been shown to be necessary for well-posedness in Sobolev spaces in a previous work of the authors in collaboration with Tzvetkov (Benzoni-Gavage et al. in Adv Math 227(6):2220-2240, 2011). In this article, we show how the verification of Hunter's stability condition follows from natural stability assumptions on the original hyperbolic boundary value problem, thus avoiding lengthy computations in each particular situation. We also show that the resulting amplitude equation has a Hamiltonian structure when the original boundary value problem has a variational origin. Our analysis encompasses previous equations derived for nonlinear Rayleigh waves in elasticity.

  11. Singular solutions of fully nonlinear elliptic equations and applications

    CERN Document Server

    Armstrong, Scott N; Smart, Charles K

    2011-01-01

    We study the properties of solutions of fully nonlinear, positively homogeneous elliptic equations near boundary points of Lipschitz domains at which the solution may be singular. We show that these equations have two positive solutions in each cone of $\\mathbb{R}^n$, and the solutions are unique in an appropriate sense. We introduce a new method for analyzing the behavior of solutions near certain Lipschitz boundary points, which permits us to classify isolated boundary singularities of solutions which are bounded from either above or below. We also obtain a sharp Phragm\\'en-Lindel\\"of result as well as a principle of positive singularities in certain Lipschitz domains.

  12. Nonlinear Terms of MHD Equations for Homogeneous Magnetized Shear Flow

    CERN Document Server

    Dimitrov, Z D; Hristov, T S; Mishonov, T M

    2011-01-01

    We have derived the full set of MHD equations for incompressible shear flow of a magnetized fluid and considered their solution in the wave-vector space. The linearized equations give the famous amplification of slow magnetosonic waves and describe the magnetorotational instability. The nonlinear terms in our analysis are responsible for the creation of turbulence and self-sustained spectral density of the MHD (Alfven and pseudo-Alfven) waves. Perspectives for numerical simulations of weak turbulence and calculation of the effective viscosity of accretion disks are shortly discussed in k-space.

  13. Critical exponent for damped wave equations with nonlinear memory

    CERN Document Server

    Fino, Ahmad

    2010-01-01

    We consider the Cauchy problem in $\\mathbb{R}^n,$ $n\\geq 1,$ for a semilinear damped wave equation with nonlinear memory. Global existence and asymptotic behavior as $t\\to\\infty$ of small data solutions have been established in the case when $1\\leq n\\leq3.$ Moreover, we derive a blow-up result under some positive data for in any dimensional space. It turns out that the critical exponent indeed coincides with the one to the corresponding semilinear heat equation.

  14. Nonzero solutions of nonlinear integral equations modeling infectious disease

    Energy Technology Data Exchange (ETDEWEB)

    Williams, L.R. (Indiana Univ., South Bend); Leggett, R.W.

    1982-01-01

    Sufficient conditions to insure the existence of periodic solutions to the nonlinear integral equation, x(t) = ..integral../sup t//sub t-tau/f(s,x(s))ds, are given in terms of simple product and product integral inequalities. The equation can be interpreted as a model for the spread of infectious diseases (e.g., gonorrhea or any of the rhinovirus viruses) if x(t) is the proportion of infectives at time t and f(t,x(t)) is the proportion of new infectives per unit time.

  15. Various Newton-type iterative methods for solving nonlinear equations

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2013-10-01

    Full Text Available The aim of the present paper is to introduce and investigate new ninth and seventh order convergent Newton-type iterative methods for solving nonlinear equations. The ninth order convergent Newton-type iterative method is made derivative free to obtain seventh-order convergent Newton-type iterative method. These new with and without derivative methods have efficiency indices 1.5518 and 1.6266, respectively. The error equations are used to establish the order of convergence of these proposed iterative methods. Finally, various numerical comparisons are implemented by MATLAB to demonstrate the performance of the developed methods.

  16. Comparison Criteria for Nonlinear Functional Dynamic Equations of Higher Order

    Directory of Open Access Journals (Sweden)

    Taher S. Hassan

    2016-01-01

    Full Text Available We will consider the higher order functional dynamic equations with mixed nonlinearities of the form xnt+∑j=0Npjtϕγjxφjt=0, on an above-unbounded time scale T, where n≥2, xi(t≔ri(tϕαixi-1Δ(t,  i=1,…,n-1,   with  x0=x,  ϕβ(u≔uβsgn⁡u, and α[i,j]≔αi⋯αj. The function φi:T→T is a rd-continuous function such that limt→∞φi(t=∞ for j=0,1,…,N. The results extend and improve some known results in the literature on higher order nonlinear dynamic equations.

  17. Quasi-periodic Solutions of the General Nonlinear Beam Equations

    Institute of Scientific and Technical Information of China (English)

    GAO YI-XIAN

    2012-01-01

    In this paper,one-dimensional (1D) nonlinear beam equations of the form utt - uxx + uxxxx + mu = f(u)with Dirichlet boundary conditions are considered,where the nonlinearity f is an analytic,odd function and f(u) = O(u3).It is proved that for all m ∈ (0,M*] (∈) R(M* is a fixed large number),but a set of small Lebesgue measure,the above equations admit small-amplitude quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dimensional dynamical system.The proof is based on an infinite dimensional KAM theory and a partial Birkhoff normal form technique.

  18. An Explicit High Resolution Scheme for Nonlinear Shallow Water Equations

    Institute of Scientific and Technical Information of China (English)

    FANG Ke-zhao; ZOU Zhi-li; WANG Yan

    2005-01-01

    The present study develops a numerical model of the two-dimensional fully nonlinear shallow water equations (NSWE) for the wave run-up on a beach. The finite volume method (FVM) is used to solve the equations, and a second-order explicit scheme is developed to improve the computation efficiency. The numerical fluxes are obtained by the two dimensional Roe's flux function to overcome the errors caused by the use of one dimensional fluxes in dimension splitting methods. The high-resolution Godunov-type TVD upwind scheme is employed and a second-order accuracy is achieved based on monotonic upstream schemes for conservation laws (MUSCL) variable extrapolation; a nonlinear limiter is applied to prevent unwanted spurious oscillation. A simple but efficient technique is adopted to deal with the moving shoreline boundary. The verification of the solution technique is carried out by comparing the model output with documented results and it shows that the solution technique is robust.

  19. RESTRICTED NONLINEAR APPROXIMATION AND SINGULAR SOLUTIONS OF BOUNDARY INTEGRAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Reinhard Hochmuth

    2002-01-01

    This paper studies several problems, which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1 ] are chosen as a starting point for characterizations of functions in Besov spaces B , (0,1) with 0<σ<∞ and (1+σ)-1<τ<∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results.

  20. Nonlinear partial differential equations for scientists and engineers

    CERN Document Server

    Debnath, Lokenath

    1997-01-01

    "An exceptionally complete overview. There are numerous examples and the emphasis is on applications to almost all areas of science and engineering. There is truly something for everyone here. This reviewer feels that it is a very hard act to follow, and recommends it strongly. [This book] is a jewel." ---Applied Mechanics Review (Review of First Edition) This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. Methods and properties of solutions are presented, along with their physical significance, making the book more useful for a diverse readership. Topics and key features: * Thorough coverage of derivation and methods of soluti...

  1. Nonlinear Self-Adjoint Classification of a Burgers-KdV Family of Equations

    Directory of Open Access Journals (Sweden)

    Júlio Cesar Santos Sampaio

    2014-01-01

    Full Text Available The concepts of strictly, quasi, weak, and nonlinearly self-adjoint differential equations are revisited. A nonlinear self-adjoint classification of a class of equations with second and third order is carried out.

  2. Periodic Wave Solutions of Generalized Derivative Nonlinear Schr(o)dinger Equation

    Institute of Scientific and Technical Information of China (English)

    ZHA Qi-Lao; LI Zhi-Bin

    2008-01-01

    A Darboux transformation of the generalized derivative nonlinear Schr(o)dinger equation is derived. As an application, some new periodic wave solutions of the generalized derivative nonlinear Schr(o)dinger equation are explicitly given.

  3. A Hierarchy of New Nonlinear Evolution Equations Associated with a 3 × 3 Matrix Spectral Problem

    Institute of Scientific and Technical Information of China (English)

    GENG Xian-Guo; LI Fang

    2009-01-01

    A 3 × 3 matrix spectral problem with three potentials and the corresponding hierarchy of new nonlinear evolution equations are proposed. Generalized Hamiltonian structures for the hierarchy of nonlinear evolution equations are derived with the aid of trace identity.

  4. Local H\\"older continuity for doubly nonlinear parabolic equations

    CERN Document Server

    Kuusi, Tuomo; Urbano, José Miguel

    2010-01-01

    We give a proof of the H\\"older continuity of weak solutions of certain degenerate doubly nonlinear parabolic equations in measure spaces. We only assume the measure to be a doubling non-trivial Borel measure which supports a Poincar\\'e inequality. The proof discriminates between large scales, for which a Harnack inequality is used, and small scales, that require intrinsic scaling methods.

  5. Solitary wave solutions to nonlinear evolution equations in mathematical physics

    Indian Academy of Sciences (India)

    Anwar Ja’afar Mohamad Jawad; M Mirzazadeh; Anjan Biswas

    2014-10-01

    This paper obtains solitons as well as other solutions to a few nonlinear evolution equations that appear in various areas of mathematical physics. The two analytical integrators that are applied to extract solutions are tan–cot method and functional variable approaches. The soliton solutions can be used in the further study of shallow water waves in (1+1) as well as (2+1) dimensions.

  6. Parallel Evolutionary Modeling for Nonlinear Ordinary Differential Equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We introduce a new parallel evolutionary algorithm in modeling dynamic systems by nonlinear higher-order ordinary differential equations (NHODEs). The NHODEs models are much more universal than the traditional linear models. In order to accelerate the modeling process, we propose and realize a parallel evolutionary algorithm using distributed CORBA object on the heterogeneous networking. Some numerical experiments show that the new algorithm is feasible and efficient.

  7. Symmetries and Similarity Reductions of Nonlinear Diffusion Equation

    Institute of Scientific and Technical Information of China (English)

    LI Hui-Jun; RUAN Hang-Yu

    2004-01-01

    The inverse recursion operator, three new sets of symmetries, and infinite-dimensional Lie algebras for the nonlinear diffusion equation are given. Some nonlocal symmetries related to eigenvectors of the recursion operator Ф with the eigenvalue λi are also obtained with the help of the recursion operator Фi = Ф - λi. Using a part of these symmetries we get twelve types of nontrivial new similarity reduction.

  8. Symmetries and Similarity Reductions of Nonlinear Diffusion Equation

    Institute of Scientific and Technical Information of China (English)

    LIHui-Jun; RUANHang-Yu

    2004-01-01

    The inverse recursion operator, three new sets of symmetries, and infinite-dimensional Lie algebras for the nonlinear diffusion equation are given. Some nonlocal symmetries related to eigenvectors of the recursion operator with the eigenvalue λi are also obtained with the help of the recursion operator φi=φ-λi. Using a part of these symmetries we get twelve types of nontrivial new similarity reduction.

  9. ANALYTIC INVARIANT CURVES OF A NONLINEAR SECOND ORDER DIFFERENCE EQUATION

    Institute of Scientific and Technical Information of China (English)

    Wang Wusheng

    2009-01-01

    This article studies the existence of analytic invariant curves for a nonlinear second order difference equation which was modeled from macroeconomics of the business cycle. The author not only discusses the case of the eigenvalue off the unit circle S1 and the case on S1 with the Diophantine condition but also considers the case of the eigenvalue at a root of the unity, which obviously violates the Diophantine condition.

  10. Symposium on Nonlinear Semigroups, Partial Differential Equations and Attractors

    CERN Document Server

    Zachary, Woodford

    1987-01-01

    The original idea of the organizers of the Washington Symposium was to span a fairly narrow range of topics on some recent techniques developed for the investigation of nonlinear partial differential equations and discuss these in a forum of experts. It soon became clear, however, that the dynamical systems approach interfaced significantly with many important branches of applied mathematics. As a consequence, the scope of this resulting proceedings volume is an enlarged one with coverage of a wider range of research topics.

  11. New Efficient Fourth Order Method for Solving Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    Farooq Ahmad

    2013-12-01

    Full Text Available In a paper [Appl. Math. Comput., 188 (2 (2007 1587--1591], authors have suggested and analyzed a method for solving nonlinear equations. In the present work, we modified this method by using the finite difference scheme, which has a quintic convergence. We have compared this modified Halley method with some other iterative of fifth-orders convergence methods, which shows that this new method having convergence of fourth order, is efficient.

  12. Chaoticons described by nonlocal nonlinear Schrödinger equation

    Science.gov (United States)

    Zhong, Lanhua; Li, Yuqi; Chen, Yong; Hong, Weiyi; Hu, Wei; Guo, Qi

    2017-01-01

    It is shown that the unstable evolutions of the Hermite-Gauss-type stationary solutions for the nonlocal nonlinear Schrödinger equation with the exponential-decay response function can evolve into chaotic states. This new kind of entities are referred to as chaoticons because they exhibit not only chaotic properties (with positive Lyapunov exponents and spatial decoherence) but also soliton-like properties (with invariant statistic width and interaction of quasi-elastic collisions). PMID:28134268

  13. Nonlocal and nonlinear dispersion in a nonlinear Schrodinger-type equation: exotic solitons and short-wavelength instabilities

    DEFF Research Database (Denmark)

    Oster, Michael; Gaididei, Yuri B.; Johansson, Magnus

    2004-01-01

    We study the continuum limit of a nonlinear Schrodinger lattice model with both on-site and inter-site nonlinearities, describing weakly coupled optical waveguides or Bose-Einstein condensates. The resulting continuum nonlinear Schrodinger-type equation includes both nonlocal and nonlinear...

  14. Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations

    Science.gov (United States)

    Lu, Bin

    2012-06-01

    In this Letter, the fractional derivatives in the sense of modified Riemann-Liouville derivative and the Bäcklund transformation of fractional Riccati equation are employed for constructing the exact solutions of nonlinear fractional partial differential equations. The power of this manageable method is presented by applying it to several examples. This approach can also be applied to other nonlinear fractional differential equations.

  15. Solution behaviors in coupled Schrödinger equations with full-modulated nonlinearities

    Science.gov (United States)

    Pınar, Zehra; Deliktaş, Ekin

    2017-02-01

    The nonlinear partial differential equations have an important role in real life problems. To obtain the exact solutions of the nonlinear partial differential equations, a number of approximate methods are known in the literature. In this work, a time- space modulated nonlinearities of coupled Schrödinger equations are considered. We provide a large class of Jacobi-elliptic solutions via the auxiliary equation method with sixth order nonlinearity and the Chebyshev approximation.

  16. Periodic and Chaotic Breathers in the Nonlinear Schr(o)dinger Equation

    Institute of Scientific and Technical Information of China (English)

    LIU Xue-Shen; QI Yue-Ying; DING Pei-Zhu

    2004-01-01

    @@ The breathers in the cubic nonlinear Schrodinger equation are investigated numerically by using the symplectic method. We show that the solitonlike wave, the periodic, quasiperiodic and chaotic breathers can be observed with the increase of cubic nonlinear perturbation. Finally, we discuss the breathers in the cubic-quintic nonlinear Schrodinger equation with the increase of quintic nonlinear perturbation.

  17. Extended Mapping Transformation Method and Its Applications to Nonlinear Partial Differential Equation(s)

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In this paper, we extend the mapping transformation method through introducing variable coefficients.By means of the extended mapping transformation method, many explicit and exact general solutions with arbitrary functions for some nonlinear partial differential equations, which contain solitary wave solutions, trigonometric function solutions, and rational solutions, are obtained.

  18. Extended Elliptic Mild Slope Equation Incorporating the Nonlinear Shoaling Effect

    Directory of Open Access Journals (Sweden)

    Xiao Qian-lu

    2016-10-01

    Full Text Available The transformation during wave propagation is significantly important for the calculations of hydraulic and coastal engineering, as well as the sediment transport. The exact wave height deformation calculation on the coasts is essential to near-shore hydrodynamics research and the structure design of coastal engineering. According to the wave shoaling results gained from the elliptical cosine wave theory, the nonlinear wave dispersion relation is adopted to develop the expression of the corresponding nonlinear wave shoaling coefficient. Based on the extended elliptic mild slope equation, an efficient wave numerical model is presented in this paper for predicting wave deformation across the complex topography and the surf zone, incorporating the nonlinear wave dispersion relation, the nonlinear wave shoaling coefficient and other energy dissipation factors. Especially, the phenomenon of wave recovery and second breaking could be shown by the present model. The classical Berkhoff single elliptic topography wave tests, the sinusoidal varying topography experiment, and complex composite slopes wave flume experiments are applied to verify the accuracy of the calculation of wave heights. Compared with experimental data, good agreements are found upon single elliptical topography and one-dimensional beach profiles, including uniform slope and step-type profiles. The results indicate that the newly-developed nonlinear wave shoaling coefficient improves the calculated accuracy of wave transformation in the surf zone efficiently, and the wave breaking is the key factor affecting the wave characteristics and need to be considered in the nearshore wave simulations.

  19. Focusing of Spherical Nonlinear Pulses for Nonlinear Wave Equations Ⅲ. Subcritical Case

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper studied spherical pulses of solutions of the system of semilinear wave equations with the pulses focusing at a point in three space variables. It is shown that there is no nonlinear effect at leading terms of pulses, when the initial data is subcritical.

  20. Algebraic dynamics solution to and algebraic dynamics algorithm for nonlinear advection equation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Algebraic dynamics approach and algebraic dynamics algorithm for the solution of nonlinear partial differential equations are applied to the nonlinear advection equa-tion. The results show that the approach is effective for the exact analytical solu-tion and the algorithm has higher precision than other existing algorithms in nu-merical computation for the nonlinear advection equation.

  1. On localization in the discrete nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Bang, O.; Juul Rasmussen, J.; Christiansen, P.L.

    1993-01-01

    For some values of the grid resolution, depending on the nonlinearity, the discrete nonlinear Schrodinger equation with arbitrary power nonlinearity can be approximated by the corresponding continuum version of the equation. When the discretization becomes too coarse, the discrete equation exhibits...

  2. An efficient algorithm for solving nonlinear system of differential equations and applications

    Directory of Open Access Journals (Sweden)

    Mustafa GÜLSU

    2015-10-01

    Full Text Available In this article, we apply Chebyshev collocation method to obtain the numerical solutions of nonlinear systems of differential equations. This method transforms the nonlinear systems of differential equation to nonlinear systems of algebraic equations. The convergence of the numerical method are given and their applicability is illustrated with some examples.

  3. Rogue wave solutions for a generalized nonautonomous nonlinear equation in a nonlinear inhomogeneous fiber

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xi-Yang; Tian, Bo, E-mail: tian_bupt@163.com; Wang, Yu-Feng; Sun, Ya; Jiang, Yan

    2015-11-15

    In this paper, we investigate a generalized nonautonomous nonlinear equation which describes the ultrashort optical pulse propagating in a nonlinear inhomogeneous fiber. By virtue of the generalized Darboux transformation, the first- and second-order rogue-wave solutions for the generalized nonautonomous nonlinear equation are obtained, under some variable–coefficient constraints. Properties of the first- and second-order rogue waves are graphically presented and analyzed: When the coefficients are all chosen as the constants, we can observe the some functions, the shapes of wave crests and troughs for the first- and second-order rogue waves change. Oscillating behaviors of the first- and second-order rogue waves are observed when the coefficients are the trigonometric functions.

  4. Nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions

    Directory of Open Access Journals (Sweden)

    Ahmet Batal

    2016-08-01

    Full Text Available In this article, we study the initial boundary value problem for nonlinear Schrodinger equations on the half-line with nonlinear boundary conditions $$ u_x(0,t+\\lambda|u(0,t|^ru(0,t=0,\\quad \\lambda\\in\\mathbb{R}-\\{0\\},\\; r> 0. $$ We discuss the local well-posedness when the initial data $u_0=u(x,0$ belongs to an $L^2$-based inhomogeneous Sobolev space $H^s(\\mathbb{R}_+$ with $s\\in (\\frac{1}{2},\\frac{7}{2}-\\{\\frac{3}{2}\\}$. We deal with the nonlinear boundary condition by first studying the linear Schrodinger equation with a time-dependent inhomogeneous Neumann boundary condition $u_x(0,t=h(t$ where $h\\in H^{\\frac{2s-1}{4}}(0,T$.

  5. Workshop on Numerical Methods for Ordinary Differential Equations

    CERN Document Server

    Gear, Charles; Russo, Elvira

    1989-01-01

    Developments in numerical initial value ode methods were the focal topic of the meeting at L'Aquila which explord the connections between the classical background and new research areas such as differental-algebraic equations, delay integral and integro-differential equations, stability properties, continuous extensions (interpolants for Runge-Kutta methods and their applications, effective stepsize control, parallel algorithms for small- and large-scale parallel architectures). The resulting proceedings address many of these topics in both research and survey papers.

  6. Dynamic behavior of a nonlinear rational difference equation and generalization

    Directory of Open Access Journals (Sweden)

    Shi Qihong

    2011-01-01

    Full Text Available Abstract This paper is concerned about the dynamic behavior for the following high order nonlinear difference equation x n = (x n-k + x n-m + x n-l /(x n-k x n-m + x n-m x n-l +1 with the initial data { x - l , x - l + 1 , … , x - 1 } ∈ ℝ + l and 1 ≤ k ≤ m ≤ l. The convergence of solution to this equation is investigated by introducing a new sequence, which extends and includes corresponding results obtained in the references (Li in J Math Anal Appl 312:103-111, 2005; Berenhaut et al. Appl. Math. Lett. 20:54-58, 2007; Papaschinopoulos and Schinas J Math Anal Appl 294:614-620, 2004 to a large extent. In addition, some propositions for generalized equations are reported.

  7. On the Nonlinear Evolution of a Stationary Cross-Flow Vortex in a Fully Three-Dimensional Boundary Layer Flow

    Science.gov (United States)

    Gajjar, J. S. B.

    1995-01-01

    We consider the nonlinear stability of a fully three-dimensional boundary layer flow in an incompressible fluid and derive an equation governing the nonlinear development of a stationary cross-flow vortex. The amplitude equation is a novel integro-differential equation which has spatial derivatives of the amplitude occurring in the kernal function. It is shown that the evolution of the cross-flow vortex is strongly coupled to the properties of an unsteady wall layer which is in fact driven by an unknown slip velocity, proportional to the amplitude of the cross-flow vortex. The work is extended to obtain the corresponding equation for rotating disk flow. A number of special cases are examined and the numerical solution for one of cases, and further analysis, demonstrates the existence of finite-distance as well as focussing type singularities. The numerical solutions also indicate the presence of a new type of nonlinear wave solution for a certain set of parameter values.

  8. The fractional complex transformation for nonlinear fractional partial differential equations in the mathematical physics

    Directory of Open Access Journals (Sweden)

    Elsayed M.E. Zayed

    2016-02-01

    Full Text Available In this article, the modified extended tanh-function method is employed to solve fractional partial differential equations in the sense of the modified Riemann–Liouville derivative. Based on a nonlinear fractional complex transformation, certain fractional partial differential equations can be turned into nonlinear ordinary differential equations of integer orders. For illustrating the validity of this method, we apply it to four nonlinear equations namely, the space–time fractional generalized nonlinear Hirota–Satsuma coupled KdV equations, the space–time fractional nonlinear Whitham–Broer–Kaup equations, the space–time fractional nonlinear coupled Burgers equations and the space–time fractional nonlinear coupled mKdV equations.

  9. Jacobi Elliptic Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2012-01-01

    Full Text Available We put a direct new method to construct the rational Jacobi elliptic solutions for nonlinear differential difference equations which may be called the rational Jacobi elliptic functions method. We use the rational Jacobi elliptic function method to construct many new exact solutions for some nonlinear differential difference equations in mathematical physics via the lattice equation and the discrete nonlinear Schrodinger equation with a saturable nonlinearity. The proposed method is more effective and powerful to obtain the exact solutions for nonlinear differential difference equations.

  10. Evaluation of model fit in nonlinear multilevel structural equation modeling

    Directory of Open Access Journals (Sweden)

    Karin eSchermelleh-Engel

    2014-03-01

    Full Text Available Evaluating model fit in nonlinear multilevel structural equation models (MSEM presents a challenge as no adequate test statistic is available. Nevertheless, using a product indicator approach a likelihood ratio test for linear models is provided which may also be useful for nonlinear MSEM. The main problem with nonlinear models is that product variables are nonnormally distributed. Although robust test statistics have been developed for linear SEM to ensure valid results under the condition of nonnormality, they were not yet investigated for nonlinear MSEM. In a Monte Carlo study, the performance of the robust likelihood ratio test was investigated for models with single-level latent interaction effects using the unconstrained product indicator approach. As overall model fit evaluation has a potential limitation in detecting the lack of fit at a single level even for linear models, level-specific model fit evaluation was also investigated using partially saturated models. Four population models were considered: a model with interaction effects at both levels, an interaction effect at the within-group level, an interaction effect at the between-group level, and a model with no interaction effects at both levels. For these models the number of groups, predictor correlation, and model misspecification was varied. The results indicate that the robust test statistic performed sufficiently well. Advantages of level-specific model fit evaluation for the detection of model misfit are demonstrated.

  11. Evaluation of model fit in nonlinear multilevel structural equation modeling.

    Science.gov (United States)

    Schermelleh-Engel, Karin; Kerwer, Martin; Klein, Andreas G

    2014-01-01

    Evaluating model fit in nonlinear multilevel structural equation models (MSEM) presents a challenge as no adequate test statistic is available. Nevertheless, using a product indicator approach a likelihood ratio test for linear models is provided which may also be useful for nonlinear MSEM. The main problem with nonlinear models is that product variables are non-normally distributed. Although robust test statistics have been developed for linear SEM to ensure valid results under the condition of non-normality, they have not yet been investigated for nonlinear MSEM. In a Monte Carlo study, the performance of the robust likelihood ratio test was investigated for models with single-level latent interaction effects using the unconstrained product indicator approach. As overall model fit evaluation has a potential limitation in detecting the lack of fit at a single level even for linear models, level-specific model fit evaluation was also investigated using partially saturated models. Four population models were considered: a model with interaction effects at both levels, an interaction effect at the within-group level, an interaction effect at the between-group level, and a model with no interaction effects at both levels. For these models the number of groups, predictor correlation, and model misspecification was varied. The results indicate that the robust test statistic performed sufficiently well. Advantages of level-specific model fit evaluation for the detection of model misfit are demonstrated.

  12. Domain decomposition solvers for nonlinear multiharmonic finite element equations

    KAUST Repository

    Copeland, D. M.

    2010-01-01

    In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This is true for linear problems, but not for nonlinear problems. However, due to the periodicity of the solution, we can expand the solution in a Fourier series. Truncating this Fourier series and approximating the Fourier coefficients by finite elements, we arrive at a large-scale coupled nonlinear system for determining the finite element approximation to the Fourier coefficients. The construction of fast solvers for such systems is very crucial for the efficiency of this multiharmonic approach. In this paper we look at nonlinear, time-harmonic potential problems as simple model problems. We construct and analyze almost optimal solvers for the Jacobi systems arising from the Newton linearization of the large-scale coupled nonlinear system that one has to solve instead of performing the expensive time-integration procedure. © 2010 de Gruyter.

  13. The constructive technique and its application in solving a nonlinear reaction diffusion equation

    Institute of Scientific and Technical Information of China (English)

    Lai Shao-Yong; Guo Yun-Xi; Qing Yin; Wu Yong-Hong

    2009-01-01

    A mathematical technique based on the consideration of a nonlinear partial differential equation together with an additional condition in the form of an ordinary differential equation is employed to study a nonlinear reaction diffusion equation which describes a real process in physics and in chemistry. Several exact solutions for the equation are acquired under certain circumstances.

  14. A Master Equation for Multi-Dimensional Non-Linear Field Theories

    CERN Document Server

    Park, Q H

    1992-01-01

    A master equation ( $n$ dimensional non--Abelian current conservation law with mutually commuting current components ) is introduced for multi-dimensional non-linear field theories. It is shown that the master equation provides a systematic way to understand 2-d integrable non-linear equations as well as 4-d self-dual equations and, more importantly, their generalizations to higher dimensions.

  15. Nonlinear evolution operators and semigroups applications to partial differential equations

    CERN Document Server

    Pavel, Nicolae H

    1987-01-01

    This research monograph deals with nonlinear evolution operators and semigroups generated by dissipative (accretive), possibly multivalued operators, as well as with the application of this theory to partial differential equations. It shows that a large class of PDE's can be studied via the semigroup approach. This theory is not available otherwise in the self-contained form provided by these Notes and moreover a considerable part of the results, proofs and methods are not to be found in other books. The exponential formula of Crandall and Liggett, some simple estimates due to Kobayashi and others, the characterization of compact semigroups due to Brézis, the proof of a fundamental property due to Ursescu and the author and some applications to PDE are of particular interest. Assuming only basic knowledge of functional analysis, the book will be of interest to researchers and graduate students in nonlinear analysis and PDE, and to mathematical physicists.

  16. 时滞积微分系统最优参数选择问题的一致算法%A Unified Computational Approach to Optimal Parameter Selection Problems with Delay Integro-Differential Systems

    Institute of Scientific and Technical Information of China (English)

    孙文兵; 杨立君

    2012-01-01

    文章讨论了带时滞项的积微分系统最优参数选择问题,并利用变分法推导出目标函数的梯度公式,将最优参数选择问题当成最优化问题利用逐步二次规划法(SQP)进行数值求解,并给出具体的算法.%In this paper, an optimal parameter selection problem with delay integro-differential systems was considered.Gradient formulae for the objective function was derived by using variational calculus. With the gradient formulae, the optimal parameter selec- tion problem can be treated as mathematical programming problem applying sequential quadratic programming algorithm (SQP), and a unified computational approach to the problem was given.

  17. Some remarks on singular solutions of nonlinear elliptic equations. III: viscosity solutions, including parabolic operators

    CERN Document Server

    Caffarelli, Luis; Nirenberg, Louis

    2011-01-01

    The paper concerns singular solutions of nonlinear elliptic equations, which include removable singularities for viscosity solutions, a strengthening of the Hopf Lemma including parabolic equations, Strong maximum principle and Hopf Lemma for viscosity solutions including also parabolic equations.

  18. Picone-type inequalities for nonlinear elliptic equations and their applications

    Directory of Open Access Journals (Sweden)

    Takaŝi Kusano

    2001-01-01

    Full Text Available Picone-type inequalities are derived for nonlinear elliptic equations, and Sturmian comparison theorems are established as applications. Oscillation theorems for forced super-linear elliptic equations and superlinear-sublinear elliptic equations are also obtained.

  19. Method of the Logistic Function for Finding Analytical Solutions of Nonlinear Differential Equations

    OpenAIRE

    Kudryashov, N. A.

    2015-01-01

    The method of the logistic function is presented for finding exact solutions of nonlinear differential equations. The application of the method is illustrated by using the nonlinear ordinary differential equation of the fourth order. Analytical solutions obtained by this method are presented. These solutions are expressed via exponential functions.logistic function, nonlinear wave, nonlinear ordinary differential equation, Painlev´e test, exact solution

  20. Multiplicity of ground state solutions for discrete nonlinear Schrodinger equations with unbounded potentials

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2017-02-01

    Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. In this article, we consider a class of discrete nonlinear Schrodinger equations with unbounded potentials. We obtain some new sufficient conditions on the multiplicity results of ground state solutions for the equations by using the symmetric mountain pass lemma. Recent results in the literature are greatly improved.

  1. Modified extended tanh-function method for solving nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    El-Wakil, S.A. [Department of Physics, Faculty of Science, Theoretical Research Group, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Department of Physics, Faculty of Science, Theoretical Research Group, Mansoura University, 35516 Mansoura (Egypt)]. E-mail: m_abdou_eg@yahoo.com

    2007-03-15

    Based on computerized symbolic computation, modified extended tanh-method for constructing multiple travelling wave solutions of nonlinear evolution equations is presented and implemented in a computer algebraic system. Applying this method, with the aid of Maple, we consider some nonlinear evolution equations in mathematical physics such as the nonlinear partial differential equation, nonlinear Fisher-type equation, ZK-BBM equation, generalized Burgers-Fisher equation and Drinfeld-Sokolov system. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods.

  2. Superposition of elliptic functions as solutions for a large number of nonlinear equations

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Avinash [Raja Ramanna Fellow, Indian Institute of Science Education and Research (IISER), Pune 411021 (India); Saxena, Avadh [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-03-15

    For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ{sup 4}, the discrete MKdV as well as for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn{sup 2}(x, m), it also admits solutions in terms of dn {sup 2}(x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations.

  3. Nonlinear Allometric Equation for Crop Response to Soil Salinity

    Directory of Open Access Journals (Sweden)

    E. Misle

    2015-06-01

    Full Text Available Crop response to soil salinity has been extensively studied, from empirical works to modelling approach, being described by different equations, first as a piecewise linear model. The equation employed can differ with actual response, causing miscalculation in practical situations, particularly at the higher extremes of the curve. The aim of this work is to propose a new equation, which allows determining the full response to salinity of plant species and to provide a verification using different experimental data sets. A new nonlinear equation is exposed supported by the allometric approach, in which the allometric exponent is salinity-dependent and decreases with the increase in relative salinity. A conversion procedure of parameters of the threshold-slope model is presented; also, a simple procedure for estimating the maximum salinity (zero-yield point when data sets are incomplete is exposed. The equation was tested in a wide range of experimental situations, using data sets from published works, as well as new measurements on seed germination. The statistical indicators of quality (R2, absolute sum of squares and standard deviation of residuals showed that the equation accurately fits the tested empirical results. The new equation for determining crop response to soil salinity is able to follow the response curve of any crop with remarkable accuracy and flexibility. Remarkable characteristics are: a maximum at minimum salinity, a maximum salinity point can be found (zero-yield depending on the data sets, and a meaningful inflection point, as well as the two points at which the slope of the curve equals unity, can be found.

  4. Computational uncertainty principle in nonlinear ordinary differential equations

    Institute of Scientific and Technical Information of China (English)

    LI; Jianping

    2001-01-01

    [1]Li Jianping, Zeng Qingcun, Chou Jifan, Computational Uncertainty Principle in Nonlinear Ordinary Differential Equations I. Numerical Results, Science in China, Ser. E, 2000, 43(5): 449[2]Henrici, P., Discrete Variable Methods in Ordinary Differential Equations, New York: John Wiley, 1962, 1; 187.[3]Henrici, P., Error Propagation for Difference Methods, New York: John Whiley, 1963.[4]Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations, Englewood Cliffs, NJ: Prentice-Hall, 1971, 1; 72.[5]Hairer, E., Nrsett, S. P., Wanner, G., Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd ed., Berlin-Heidelberg-New York: Springer-Verlag, 1993, 130.[6]Stoer, J., Bulirsch, R., Introduction to Numerical Analysis, 2nd ed., Vol. 1, Berlin-Heidelberg-New York: Springer-Verlag (reprinted in China by Beijing Wold Publishing Corporation), 1998, 428.[7]Li Qingyang, Numerical Methods in Ordinary Differential Equations (Stiff Problems and Boundary Value Problems), in Chinese Beijing: Higher Education Press, 1991, 1.[8]Li Ronghua, Weng Guochen, Numerical Methods in Differential Equations (in Chinese), 3rd ed., Beijing: Higher Education Press, 1996, 1.[9]Dahlquist, G., Convergence and stability in the numerical integration of ordinary differential equations, Math. Scandinavica, 1956, 4: 33.[10]Dahlquist, G., 33 years of numerical instability, Part I, BIT, 1985, 25: 188.[11]Heisenberg, W., The Physical Principles of Quantum Theory, Chicago: University of Chicago Press, 1930.[12]McMurry, S. M., Quantum Mechanics, London: Addison-Wesley Longman Ltd (reprined in China by Beijing World Publishing Corporation), 1998.

  5. Some existence results on nonlinear fractional differential equations.

    Science.gov (United States)

    Baleanu, Dumitru; Rezapour, Shahram; Mohammadi, Hakimeh

    2013-05-13

    In this paper, by using fixed-point methods, we study the existence and uniqueness of a solution for the nonlinear fractional differential equation boundary-value problem D(α)u(t)=f(t,u(t)) with a Riemann-Liouville fractional derivative via the different boundary-value problems u(0)=u(T), and the three-point boundary condition u(0)=β(1)u(η) and u(T)=β(2)u(η), where T>0, t∈I=[0,T], 0<α<1, 0<η

  6. Fourth order wave equations with nonlinear strain and source terms

    Science.gov (United States)

    Liu, Yacheng; Xu, Runzhang

    2007-07-01

    In this paper we study the initial boundary value problem for fourth order wave equations with nonlinear strain and source terms. First we introduce a family of potential wells and prove the invariance of some sets and vacuum isolating of solutions. Then we obtain a threshold result of global existence and nonexistence. Finally we discuss the global existence of solutions for the problem with critical initial condition I(u0)[greater-or-equal, slanted]0, E(0)=d. So the Esquivel-Avila's results are generalized and improved.

  7. TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR DISPERSIVE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical systems to do qualitative analysis,all possible phase portraits in the parametric space for the traveling wave systems are obtained.It can be shown that the existence of a singular straight line in the traveling wave system is the reason why smooth solitary wave solutions converge to solitary cusp wave solution when parameters are varied.The different parameter conditions for the existence of solitary and periodic wave solutions of different kinds are rigorously determined.

  8. LOCAL DISCONTINUOUS GALERKIN METHODS FOR THREE CLASSES OF NONLINEAR WAVE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Yan Xu; Chi-wang Shu

    2004-01-01

    In this paper, we further develop the local discontinuous Galerkin method to solve three classes of nonlinear wave equations formulated by the general KdV-Burgers type equations, the general fifth-order KdV type equations and the fully nonlinear K(n, n, n)equations, and prove their stability for these general classes of nonlinear equations. The schemes we present extend the previous work of Yan and Shu [30, 31] and of Levy, Shu and Yan [24] on local discontinuous Galerkin method solving partial differential equations with higher spatial derivatives. Numerical examples for nonlinear problems are shown to illustrate the accuracy and capability of the methods. The numerical experiments include stationary solitons, soliton interactions and oscillatory solitary wave solutions.The numerical experiments also include the compacton solutions of a generalized fifthorder KdV equation in which the highest order derivative term is nonlinear and the fully nonlinear K(n, n, n) equations.

  9. Multiple scales analysis and travelling wave solutions for KdV type nonlinear evolution equations

    Science.gov (United States)

    Ayhan, Burcu; Ozer, M. Naci; Bekir, Ahmet

    2017-01-01

    Nonlinear evolution equations are the mathematical models of problems that arise in many field of science. These equations has become an important field of study in applied mathematics in recent years. We apply exact solution methods and multiple scale method which is known as a perturbation method to nonlinear evolution equations. Using exact solution methods we get travelling wave solutions expressed by hyperbolic functions, trigonometric functions and rational functions. Also we derive Nonlinear Schrödinger (NLS) type equations from Korteweg-de Vries (KdV) type nonlinear evolution equations and we get approximate solutions for KdV type equations using multiple scale method. The proposed methods are direct and effective and can be used for many nonlinear evolution equations. It is shown that these methods provide a powerful mathematical tool to solve nonlinear evolution equations in mathematical physics.

  10. A Class of Traveling Wave Solutions to Some Nonlinear Partial Differential Equations

    Institute of Scientific and Technical Information of China (English)

    BAI Cheng-Lin

    2003-01-01

    For the Noyes-Fields equations, two-dimensional hyperbolic equations of conversation laws, and theBurgers-KdV equation, a class of traveling wave solutions has been obtained by constructing appropriate functiontransformations. The main idea of solving the equations is that nonlinear partial differential equations are changed intosolving algebraic equations. This method has a wide-rangingpracticability.

  11. A Class of Traveling Wave Solutions to Some Nonlinear Partial Differential Equations

    Institute of Scientific and Technical Information of China (English)

    BAICheng-Lin

    2003-01-01

    For the Noyes-Fields equations, two-dimenslonal hyperbolic equations of conversation laww and the Burgers-KdV equation, a class of travellng wave solutions has been obtained by constructhag appropriate function transformations. The main idea of solving the equations is that nonlinear partial differential equations are changed into solving algebraic equations. This method has a wide-ranging practicability.

  12. A direct algebraic method applied to obtain complex solutions of some nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Huiqun [College of Mathematical Science, Qingdao University, Qingdao, Shandong 266071 (China)], E-mail: hellozhq@yahoo.com.cn

    2009-02-15

    By using some exact solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact complex solutions for nonlinear partial differential equations. The method is implemented for the NLS equation, a new Hamiltonian amplitude equation, the coupled Schrodinger-KdV equations and the Hirota-Maccari equations. New exact complex solutions are obtained.

  13. A procedure to construct exact solutions of nonlinear fractional differential equations.

    Science.gov (United States)

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  14. On invariant analysis of some time fractional nonlinear systems of partial differential equations. I

    Science.gov (United States)

    Singla, Komal; Gupta, R. K.

    2016-10-01

    An investigation of Lie point symmetries for systems of time fractional partial differential equations including Ito system, coupled Burgers equations, coupled Korteweg de Vries equations, Hirota-Satsuma coupled KdV equations, and coupled nonlinear Hirota equations has been done. Using the obtained symmetries, each one of the systems is reduced to the nonlinear system of fractional ordinary differential equations involving Erdélyi-Kober fractional differential operator depending on a parameter α.

  15. CONSTITUTIVE RELATION OF UNSATURATED SOIL BY USE OF THE MIXTURE THEORY(I)—NONLINEAR CONSTITUTIVE EQUATIONS AND FIELD EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    HUANGYi; ZHANGYin-ke

    2003-01-01

    The nonlinear constitutive equations and field equations of unsaturated soils were constructed on the basis of mixture theory.The soils were treated as the mixture composed of three constituents.First ,from the researches of soil mechanics,some basic assumptions about the unsaturated soil mixture were mode,and the entropy inequality unsaturated soil mixture was derived.Then,with the common method usually used to deal with the constitutive problems in mixture theory,the nonlinear constitutive equations were obtained.Finally,putting the constiutive equtions of constituents into the balance equations of momentum,the nonlinear field equations of constitutents into the balance equations of momentum,the nonliear field equations of constitutents were set up.The balance equation of energy of unsaturated soil was also given,and thus the complete equations for solving the thermodynamic process of unsaturated soil was formed.

  16. Generalized multiscale finite element methods. nonlinear elliptic equations

    KAUST Repository

    Efendiev, Yalchin R.

    2013-01-01

    In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press.

  17. New variable separation solutions for the generalized nonlinear diffusion equations

    Science.gov (United States)

    Fei-Yu, Ji; Shun-Li, Zhang

    2016-03-01

    The functionally generalized variable separation of the generalized nonlinear diffusion equations ut = A(u,ux)uxx + B(u,ux) is studied by using the conditional Lie-Bäcklund symmetry method. The variant forms of the considered equations, which admit the corresponding conditional Lie-Bäcklund symmetries, are characterized. To construct functionally generalized separable solutions, several concrete examples defined on the exponential and trigonometric invariant subspaces are provided. Project supported by the National Natural Science Foundation of China (Grant Nos. 11371293, 11401458, and 11501438), the National Natural Science Foundation of China, Tian Yuan Special Foundation (Grant No. 11426169), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2015JQ1014).

  18. Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations

    Institute of Scientific and Technical Information of China (English)

    Junaid Ali Khan; Muhammad Asif Zahoor Raja; Ijaz Mansoor Qureshi

    2011-01-01

    @@ We present an evolutionary computational approach for the solution of nonlinear ordinary differential equations (NLODEs).The mathematical modeling is performed by a feed-forward artificial neural network that defines an unsupervised error.The training of these networks is achieved by a hybrid intelligent algorithm, a combination of global search with genetic algorithm and local search by pattern search technique.The applicability of this approach ranges from single order NLODEs, to systems of coupled differential equations.We illustrate the method by solving a variety of model problems and present comparisons with solutions obtained by exact methods and classical numerical methods.The solution is provided on a continuous finite time interval unlike the other numerical techniques with comparable accuracy.With the advent of neuroprocessors and digital signal processors the method becomes particularly interesting due to the expected essential gains in the execution speed.%We present an evolutionary computational approach for the solution of nonlinear ordinary differential equations (NLODEs). The mathematical modeling is performed by a feed-forward artificial neural network that defines an unsupervised error. The training of these networks is achieved by a hybrid intelligent algorithm, a combination of global search with genetic algorithm and local search by pattern search technique. The applicability of this approach ranges from single order NLODEs, to systems of coupled differential equations. We illustrate the method by solving a variety of model problems and present comparisons with solutions obtained by exact methods and classical numerical methods. The solution is provided on a continuous finite time interval unlike the other numerical techniques with comparable accuracy. With the advent of neuroprocessors and digital signal processors the method becomes particularly interesting due to the expected essential gains in the execution speed.

  19. Application of He’s Variational Iteration Method to Nonlinear Helmholtz Equation and Fifth-Order KDV Equation

    DEFF Research Database (Denmark)

    Miansari, Mo; Miansari, Me; Barari, Amin

    2009-01-01

    In this article, He’s variational iteration method (VIM), is implemented to solve the linear Helmholtz partial differential equation and some nonlinear fifth-order Korteweg-de Vries (FKdV) partial differential equations with specified initial conditions. The initial approximations can be freely...... and nonlinear problems. It is predicted that VIM can be widely applied in engineering....

  20. Exact solutions and maximal dimension of invariant subspaces of time fractional coupled nonlinear partial differential equations

    Science.gov (United States)

    Sahadevan, R.; Prakash, P.

    2017-01-01

    We show how invariant subspace method can be extended to time fractional coupled nonlinear partial differential equations and construct their exact solutions. Effectiveness of the method has been illustrated through time fractional Hunter-Saxton equation, time fractional coupled nonlinear diffusion system, time fractional coupled Boussinesq equation and time fractional Whitman-Broer-Kaup system. Also we explain how maximal dimension of the time fractional coupled nonlinear partial differential equations can be estimated.

  1. Generalized Extended tanh-function Metho d for Traveling Wave Solutions of Nonlinear Physical Equations

    Institute of Scientific and Technical Information of China (English)

    Chang Jing; Gao Yi-xian; Cai Hua

    2014-01-01

    In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher’s equation, the nonlinear schr¨odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.

  2. Non-linear equation: energy conservation and impact parameter dependence

    CERN Document Server

    Kormilitzin, Andrey

    2010-01-01

    In this paper we address two questions: how energy conservation affects the solution to the non-linear equation, and how impact parameter dependence influences the inclusive production. Answering the first question we solve the modified BK equation which takes into account energy conservation. In spite of the fact that we used the simplified kernel, we believe that the main result of the paper: the small ($\\leq 40%$) suppression of the inclusive productiondue to energy conservation, reflects a general feature. This result leads us to believe that the small value of the nuclear modification factor is of a non-perturbative nature. In the solution a new scale appears $Q_{fr} = Q_s \\exp(-1/(2 \\bas))$ and the production of dipoles with the size larger than $2/Q_{fr}$ is suppressed. Therefore, we can expect that the typical temperature for hadron production is about $Q_{fr}$ ($ T \\approx Q_{fr}$). The simplified equation allows us to obtain a solution to Balitsky-Kovchegov equation taking into account the impact pa...

  3. Link between travelling waves and first order nonlinear ordinary differential equation with a sixth-degree nonlinear term

    Energy Technology Data Exchange (ETDEWEB)

    Huang Dingjiang [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)]. E-mail: hdj8116@163.com; Zhang Hongqing [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)

    2006-08-15

    Many travelling wave solutions of nonlinear evolution equations can be written as a polynomial in several elementary or special functions which satisfy a first order nonlinear ordinary differential equation with a sixth-degree nonlinear term. From that property, we deduce an algebraic method for constructing those solutions by determining only a finite number of coefficients. Being concise and straightforward, the method is applied to three nonlinear evolution equations. As a result, many exact travelling wave solutions are obtained which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions.

  4. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Estrada, R.F.

    1979-08-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly.

  5. Asymptotic behavior for a quadratic nonlinear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Pavel I. Naumkin

    2008-02-01

    Full Text Available We study the initial-value problem for the quadratic nonlinear Schrodinger equation $$displaylines{ iu_{t}+frac{1}{2}u_{xx}=partial _{x}overline{u}^{2},quad xin mathbb{R},; t>1, cr u(1,x=u_{1}(x,quad xin mathbb{R}. }$$ For small initial data $u_{1}in mathbf{H}^{2,2}$ we prove that there exists a unique global solution $uin mathbf{C}([1,infty ;mathbf{H}^{2,2}$ of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region $|x|leq Csqrt{t}$ by the self-similar solution $frac{1}{sqrt{t}}MS(frac{x}{sqrt{t}}$ such that the total mass $$ frac{1}{sqrt{t}}int_{mathbb{R}}MS(frac{x}{sqrt{t}} dx=int_{mathbb{R}}u_{1}(xdx, $$ and in the far region $|x|>sqrt{t}$ the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schrodinger equations.

  6. Nonlinear subelliptic Schrodinger equations with external magnetic field

    Directory of Open Access Journals (Sweden)

    Kyril Tintarev

    2004-10-01

    Full Text Available To account for an external magnetic field in a Hamiltonian of a quantum system on a manifold (modelled here by a subelliptic Dirichlet form, one replaces the the momentum operator $frac 1i d$ in the subelliptic symbol by $frac 1i d-alpha$, where $alphain TM^*$ is called a magnetic potential for the magnetic field $eta=dalpha$. We prove existence of ground state solutions (Sobolev minimizers for nonlinear Schrodinger equation associated with such Hamiltonian on a generally, non-compact Riemannian manifold, generalizing the existence result of Esteban-Lions [5] for the nonlinear Schrödinger equation with a constant magnetic field on $mathbb{R}^N$ and the existence result of [6] for a similar problem on manifolds without a magnetic field. The counterpart of a constant magnetic field is the magnetic field, invariant with respect to a subgroup of isometries. As an example to the general statement we calculate the invariant magnetic fields in the Hamiltonians associated with the Kohn Laplacian and for the Laplace-Beltrami operator on the Heisenberg group.

  7. Nonlinear differential equations with exact solutions expressed via the Weierstrass function

    NARCIS (Netherlands)

    Kudryashov, NA

    2004-01-01

    A new problem is studied, that is to find nonlinear differential equations with special solutions expressed via the Weierstrass function. A method is discussed to construct nonlinear ordinary differential equations with exact solutions. The main step of our method is the assumption that nonlinear di

  8. CONSTITUTIVE RELATION OF UNSATURATED SOIL BY USE OF THE MIXTURE THEORY(Ⅰ)-NONLINEAR CONSTITUTIVE EQUATIONS AND FIELD EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    黄义; 张引科

    2003-01-01

    The nonlinear constitutive equations and field equations of unsaturated soils were cons tructed on the basis of mixture theory. The soils were treated as the mixture composed of three constituents. First, from the researches of soil mechanics, some basic assumptions about the unsaturated soil mixture were made, and the entropy inequality of unsaturated soil mixture was derived. Then, with the common method usually used to deal with the constitutive problems in mixture theory, the nonlinear constitutive equations were obtained. Finally, putting the constitutive equations of constituents into the balance equations of momentum, the nonlinear field equations of constituents were set up. The balance equation of energy of unsaturated soil was also given, and thus the complete equations for solving the thermodynamic process of unsaturated soil was formed.

  9. Numerical solution of the nonlinear Schrödinger equation with wave operator on unbounded domains.

    Science.gov (United States)

    Li, Hongwei; Wu, Xiaonan; Zhang, Jiwei

    2014-09-01

    In this paper, we generalize the unified approach proposed in Zhang et al. [J. Zhang, Z. Xu, and X. Wu, Phys. Rev. E 78, 026709 (2008)] to design the nonlinear local absorbing boundary conditions (LABCs) for the nonlinear Schrödinger equation with wave operator on unbounded domains. In fact, based on the methodology underlying the unified approach, we first split the original equation into two parts-the linear equation and the nonlinear equation-then achieve a one-way operator to approximate the linear equation to make the wave outgoing, and finally combine the one-way operator with the nonlinear equation to achieve the nonlinear LABCs. The stability of the equation with the nonlinear LABCs is also analyzed by introducing some auxiliary variables, and some numerical examples are presented to verify the accuracy and effectiveness of our proposed method.

  10. An effective analytic approach for solving nonlinear fractional partial differential equations

    Science.gov (United States)

    Ma, Junchi; Zhang, Xiaolong; Liang, Songxin

    2016-08-01

    Nonlinear fractional differential equations are widely used for modelling problems in applied mathematics. A new analytic approach with two parameters c1 and c2 is first proposed for solving nonlinear fractional partial differential equations. These parameters are used to improve the accuracy of the resulting series approximations. It turns out that much more accurate series approximations are obtained by choosing proper values of c1 and c2. To demonstrate the applicability and effectiveness of the new method, two typical fractional partial differential equations, the nonlinear gas dynamics equation and the nonlinear KdV-Burgers equation, are solved.

  11. Nonpoint Symmetry and Reduction of Nonlinear Evolution and Wave Type Equations

    Directory of Open Access Journals (Sweden)

    Ivan Tsyfra

    2015-01-01

    Full Text Available We study the symmetry reduction of nonlinear partial differential equations with two independent variables. We propose new ansätze reducing nonlinear evolution equations to system of ordinary differential equations. The ansätze are constructed by using operators of nonpoint classical and conditional symmetry. Then we find solution to nonlinear heat equation which cannot be obtained in the framework of the classical Lie approach. By using operators of Lie-Bäcklund symmetries we construct the solutions of nonlinear hyperbolic equations depending on arbitrary smooth function of one variable too.

  12. Solitons for the cubic-quintic nonlinear Schroedinger equation with time- and space-modulated coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte-Beitia, J [Departamento de Matematicas, E T S de Ingenieros Industriales and Instituto de Matematica Aplicada a la Ciencia y la IngenierIa (IMACI), Avda Camilo Jose Cela, 3 Universidad de Castilla-La Mancha 13071 Ciudad Real (Spain); Cuevas, J [Grupo de Fisica No Lineal, Departamento de Fisica Aplicada I, Escuela Universitaria Politecnica, C/Virgen de Africa, 7, 41011 Sevilla (Spain)], E-mail: juan.belmonte@uclm.es, E-mail: jcuevas@us.es

    2009-04-24

    In this paper, we construct, by means of similarity transformations, explicit solutions to the cubic-quintic nonlinear Schroedinger equation with potentials and nonlinearities depending on both time and spatial coordinates. We present the general approach and use it to calculate bright and dark soliton solutions for nonlinearities and potentials of physical interest in applications to Bose-Einstein condensates and nonlinear optics.

  13. Chaos in the fractional order nonlinear Bloch equation with delay

    Science.gov (United States)

    Baleanu, Dumitru; Magin, Richard L.; Bhalekar, Sachin; Daftardar-Gejji, Varsha

    2015-08-01

    The Bloch equation describes the dynamics of nuclear magnetization in the presence of static and time-varying magnetic fields. In this paper we extend a nonlinear model of the Bloch equation to include both fractional derivatives and time delays. The Caputo fractional time derivative (α) in the range from 0.85 to 1.00 is introduced on the left side of the Bloch equation in a commensurate manner in increments of 0.01 to provide an adjustable degree of system memory. Time delays for the z component of magnetization are inserted on the right side of the Bloch equation with values of 0, 10 and 100 ms to balance the fractional derivative with delay terms that also express the history of an earlier state. In the absence of delay, τ = 0 , we obtained results consistent with the previously published bifurcation diagram, with two cycles appearing at α = 0.8548 with subsequent period doubling that leads to chaos at α = 0.9436 . A periodic window is observed for the range 0.962 chaos arising again as α nears 1.00. The bifurcation diagram for the case with a 10 ms delay is similar: two cycles appear at the value α = 0.8532 , and the transition from two to four cycles at α = 0.9259 . With further increases in the fractional order, period doubling continues until at α = 0.9449 chaos ensues. In the case of a 100 millisecond delay the transitions from one cycle to two cycles and two cycles to four cycles are observed at α = 0.8441 , and α = 0.8635 , respectively. However, the system exhibits chaos at much lower values of α (α = 0.8635). A periodic window is observed in the interval 0.897 chaos again appearing for larger values of α . In general, as the value of α decreased the system showed transitions from chaos to transient chaos, and then to stability. Delays naturally appear in many NMR systems, and pulse programming allows the user control over the process. By including both the fractional derivative and time delays in the Bloch equation, we have developed a

  14. OSCILLATION FOR NONLINEAR SECOND-ORDER DYNAMIC EQUATIONS ON TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Through the use of generalized Riccati transformation techniques, we establish some oscillation criteria for one type of nonlinear dynamic equation on time scales. Several examples, including a semilinear dynamic equation and a nonlinear Emden-Fowler dynamic equation, are also given to illustrate these criteria and to improve the results obtained in some references.

  15. The repeated homogeneous balance method and its applications to nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xiqiang [Department of Mathematics, Ocean University of China, Qingdao Shandong 266071 (China)] e-mail: zhaodss@yahoo.com.cn; Wang Limin [Shandong University of Technology, Zibo Shandong 255049 (China); Sun Weijun [Shandong University of Technology, Zibo Shandong 255049 (China)

    2006-04-01

    In this letter, a new method, called the repeated homogeneous balance method, is proposed for seeking the traveling wave solutions of nonlinear partial differential equations. The Burgers-KdV equation is chosen to illustrate our method. It has been confirmed that more traveling wave solutions of nonlinear partial differential equations can be effectively obtained by using the repeated homogeneous balance method.

  16. Contractivity and Exponential Stability of Solutions to Nonlinear Neutral Functional Differential Equations in Banach Spaces

    Institute of Scientific and Technical Information of China (English)

    Wan-sheng WANG; Shou-fu LI; Run-sheng YANG

    2012-01-01

    A series of contractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained,which provide unified theoretical foundation for the contractivity analysis of solutions to nonlinear problems in functional differential equations (FDEs),neutral delay differential equations (NDDEs) and NFDEs of other types which appear in practice.

  17. A Microscopic Convexity Principle for Spacetime Convex Solutions of Fully Nonlinear Parabolic Equations

    Institute of Scientific and Technical Information of China (English)

    Chuan Qiang CHEN; Bo Wen HU

    2013-01-01

    We study microscopic spacetime convexity properties of fully nonlinear parabolic partial differential equations.Under certain general structure condition,we establish a constant rank theorem for the spacetime convex solutions of fully nonlinear parabolic equations.At last,we consider the parabolic convexity of solutions to parabolic equations and the convexity of the spacetime second fundamental form of geometric flows.

  18. Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves

    DEFF Research Database (Denmark)

    Eldeberky, Y.; Madsen, Per A.

    1999-01-01

    This paper presents a new and more accurate set of deterministic evolution equations for the propagation of fully dispersive, weakly nonlinear, irregular, multidirectional waves. The equations are derived directly from the Laplace equation with leading order nonlinearity in the surface boundary c...

  19. Traveling wave solutions of density-dependent nonlinear reaction-diffusion equation via the extended generalized Riccati equation mapping method

    Science.gov (United States)

    Kengne, Emmanuel; Saydé, Michel; Ben Hamouda, Fathi; Lakhssassi, Ahmed

    2013-11-01

    Analytical entire traveling wave solutions to the 1+1 density-dependent nonlinear reaction-diffusion equation via the extended generalized Riccati equation mapping method are presented in this paper. This equation can be regarded as an extension case of the Fisher-Kolmogoroff equation, which is used for studying insect and animal dispersal with growth dynamics. The analytical solutions are then used to investigate the effect of equation parameters on the population distribution.

  20. Nonlinear unified equations for water waves propagating over uneven bottoms in the nearshore region

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Considering the continuous characteristics for water waves propagating over complex topography in the nearshore region, the unified nonlinear equations, based on the hypothesis for a typical uneven bottom, are presented by employing the Hamiltonian variational principle for water waves. It is verified that the equations include the following special cases: the extension of Airy's nonlinear shallow-water equations, the generalized mild-slope equation, the dispersion relation for the second-order Stokes waves and the higher order Boussinesq-type equations.