WorldWideScience

Sample records for nonlinear insolation forcing

  1. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa

    Directory of Open Access Journals (Sweden)

    R. R. Kuechler

    2018-01-01

    Full Text Available The Pliocene is regarded as a potential analogue for future climate with conditions generally warmer-than-today and higher-than-preindustrial atmospheric CO2 levels. Here we present the first orbitally resolved records of continental hydrology and vegetation changes from West Africa for two Pliocene time intervals (5.0–4.6 Ma, 3.6–3.0 Ma, which we compare with records from the last glacial cycle (Kuechler et al., 2013. Our results indicate that changes in local insolation alone are insufficient to explain the full degree of hydrologic variations. Generally two modes of interacting insolation forcings are observed: during eccentricity maxima, when precession was strong, the West African monsoon was driven by summer insolation; during eccentricity minima, when precession-driven variations in local insolation were minimal, obliquity-driven changes in the summer latitudinal insolation gradient became dominant. This hybrid monsoonal forcing concept explains orbitally controlled tropical climate changes, incorporating the forcing mechanism of latitudinal gradients for the Pliocene, which probably increased in importance during subsequent Northern Hemisphere glaciations.

  2. Orbital forcing and role of the latitudinal insolation/temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Basil A.S. [University of Newcastle, School of Geography, Politics and Sociology, Newcastle upon Tyne (United Kingdom); ARVE Group, ISTE, EPFL, Lausanne (Switzerland); Brewer, Simon [CEREGE, Europole de l' Arbois, Aix-en-Provence (France)

    2009-02-15

    Orbital forcing of the climate system is clearly shown in the Earths record of glacial-interglacial cycles, but the mechanism underlying this forcing is poorly understood. Traditional Milankovitch theory suggests that these cycles are driven by changes in high latitude summer insolation, yet this forcing is dominated by precession, and cannot account for the importance of obliquity in the Ice Age record. Here, we investigate an alternative forcing based on the latitudinal insolation gradient (LIG), which is dominated by both obliquity (in summer) and precession (in winter). The insolation gradient acts on the climate system through differential solar heating, which creates the Earths latitudinal temperature gradient (LTG) that drives the atmospheric and ocean circulation. A new pollen-based reconstruction of the LTG during the Holocene is used to demonstrate that the LTG may be much more sensitive to changes in the LIG than previously thought. From this, it is shown how LIG forcing of the LTG may help explain the propagation of orbital signatures throughout the climate system, including the Monsoon, Arctic Oscillation and ocean circulation. These relationships are validated over the last (Eemian) Interglacial, which occurred under a different orbital configuration to the Holocene. We conclude that LIG forcing of the LTG explains many criticisms of classic Milankovitch theory, while being poorly represented in climate models. (orig.)

  3. Analysis of Landing in Ski Jumping by Means of Inertial Sensors and Force Insoles

    Directory of Open Access Journals (Sweden)

    Veronica Bessone

    2018-02-01

    Full Text Available Landing and its preparation are important phases for performance and safety of ski jumpers. A correct ski positioning could influence the jump length as also the cushioning effect of the aerodynamic forces that permits the reduction of landing impacts. Consequently, the detection of ski angles during landing preparation could allow for analyzing landing techniques that result in reduced impact forces for the athletes. In this study, two athletes performed with force insoles and inertial sensors positioned on the ski during training conditions on the ski jumping hill. The results confirmed previous studies, showing that impact forces can reach more than four times body weight. In the analyzed cases, the force distribution resulted to be more concentrated on the forefoot and the main movement influencing the impact was the pitch. The combination of inertial sensors, in particular gyroscopes, plus force insoles demonstrated to be an interesting set up for ski jumping movement analysis.

  4. Estimation of Foot Plantar Center of Pressure Trajectories with Low-Cost Instrumented Insoles Using an Individual-Specific Nonlinear Model

    Directory of Open Access Journals (Sweden)

    Xinyao Hu

    2018-02-01

    Full Text Available Postural control is a complex skill based on the interaction of dynamic sensorimotor processes, and can be challenging for people with deficits in sensory functions. The foot plantar center of pressure (COP has often been used for quantitative assessment of postural control. Previously, the foot plantar COP was mainly measured by force plates or complicated and expensive insole-based measurement systems. Although some low-cost instrumented insoles have been developed, their ability to accurately estimate the foot plantar COP trajectory was not robust. In this study, a novel individual-specific nonlinear model was proposed to estimate the foot plantar COP trajectories with an instrumented insole based on low-cost force sensitive resistors (FSRs. The model coefficients were determined by a least square error approximation algorithm. Model validation was carried out by comparing the estimated COP data with the reference data in a variety of postural control assessment tasks. We also compared our data with the COP trajectories estimated by the previously well accepted weighted mean approach. Comparing with the reference measurements, the average root mean square errors of the COP trajectories of both feet were 2.23 mm (±0.64 (left foot and 2.72 mm (±0.83 (right foot along the medial–lateral direction, and 9.17 mm (±1.98 (left foot and 11.19 mm (±2.98 (right foot along the anterior–posterior direction. The results are superior to those reported in previous relevant studies, and demonstrate that our proposed approach can be used for accurate foot plantar COP trajectory estimation. This study could provide an inexpensive solution to fall risk assessment in home settings or community healthcare center for the elderly. It has the potential to help prevent future falls in the elderly.

  5. Estimation of Foot Plantar Center of Pressure Trajectories with Low-Cost Instrumented Insoles Using an Individual-Specific Nonlinear Model.

    Science.gov (United States)

    Hu, Xinyao; Zhao, Jun; Peng, Dongsheng; Sun, Zhenglong; Qu, Xingda

    2018-02-01

    Postural control is a complex skill based on the interaction of dynamic sensorimotor processes, and can be challenging for people with deficits in sensory functions. The foot plantar center of pressure (COP) has often been used for quantitative assessment of postural control. Previously, the foot plantar COP was mainly measured by force plates or complicated and expensive insole-based measurement systems. Although some low-cost instrumented insoles have been developed, their ability to accurately estimate the foot plantar COP trajectory was not robust. In this study, a novel individual-specific nonlinear model was proposed to estimate the foot plantar COP trajectories with an instrumented insole based on low-cost force sensitive resistors (FSRs). The model coefficients were determined by a least square error approximation algorithm. Model validation was carried out by comparing the estimated COP data with the reference data in a variety of postural control assessment tasks. We also compared our data with the COP trajectories estimated by the previously well accepted weighted mean approach. Comparing with the reference measurements, the average root mean square errors of the COP trajectories of both feet were 2.23 mm (±0.64) (left foot) and 2.72 mm (±0.83) (right foot) along the medial-lateral direction, and 9.17 mm (±1.98) (left foot) and 11.19 mm (±2.98) (right foot) along the anterior-posterior direction. The results are superior to those reported in previous relevant studies, and demonstrate that our proposed approach can be used for accurate foot plantar COP trajectory estimation. This study could provide an inexpensive solution to fall risk assessment in home settings or community healthcare center for the elderly. It has the potential to help prevent future falls in the elderly.

  6. Orbital-scale nonlinear response of East Asian summer monsoon to its potential driving forces in the late Quaternary

    Science.gov (United States)

    Yi, Liang; Shi, Zhengguo; Tan, Liangcheng; Deng, Chenglong

    2018-03-01

    We conducted a statistical study to characterize the nonlinear response of the East Asian summer monsoon (EASM) to its potential forcing factors over the last 260 ka on orbital timescales. We find that both variation in solar insolation and global ice volume were responsible for the nonlinear forcing of orbital-scale monsoonal variations, accounting for 80% of the total variance. Specifically, EASM records with dominated precession variance exhibit a more sensitive response to changes in solar insolation during intervals of enhanced monsoon strength, but are less sensitive during intervals of reduced monsoon strength. In the case of global ice volume with 100-ka variance, this difference is not one of sensitivity but rather a difference in baseline conditions, such as the relative areas of land and sea which affected the land-sea thermal gradient. We therefore suggest that EASM records with dominated precession variance recorded the signal of a shift in the location of the Inter-tropical Convergence Zone, and the associated changes in the incidence of torrential rainfall; while for proxies with dominated 100-ka variance, it recorded changes in the land-sea thermal gradient via its effects on non-torrential precipitation.

  7. Firm insoles effectively reduce hemolysis in runners during long distance running - a comparative study.

    Science.gov (United States)

    Janakiraman, Kamal; Shenoy, Shweta; Sandhu, Jaspal Singh

    2011-06-09

    Shock absorbing insoles are effective in reducing the magnitude and rate of loading of peak impact forces generated at foot strike during running, whereas the foot impact force during running has been considered to be an important cause of intravascular hemolysis in long distance runners. Objective of this study was to evaluate the intravascular hemolysis during running and compare the effect of two different types of insoles (Soft and Firm) on hemolysis. Twenty male long and middle distance runners volunteered to participate in this study. We selected two insoles (Soft and Firm) according to their hardness level (SHORE 'A' scale). Participants were randomly assigned to the soft insole (group 1) and firm insole (group 2) group with ten athletes in each group. Each athlete completed one hour of running at the calculated target heart rate (60-70%). Venous blood samples were collected before and immediately after running. We measured unconjucated bilirubin (mg/dl), lactate dehydrogenase (μ/ml), hemoglobin (g/l) and serum ferritin (ng/ml) as indicators of hemolysis. Our study revealed a significant increase in the mean values of unconjucated bilirubin (P firm insoles effectively reduces the amount of hemolysis in runners compared to soft insoles.

  8. Biomechanical analysis of running in military boots with new and degraded insoles.

    Science.gov (United States)

    Dixon, Sharon J; Waterworth, Claire; Smith, Calum V; House, Carol M

    2003-03-01

    The purpose of the present study was to investigate the influence of degradation using repeated impacts on the ability of different shock-absorbing insoles to reduce peak impact loading during running in military boots. Four insole types were degraded mechanically to simulate typical running loads that occur during approximately 100 km of running. The influence of insole mechanical degradation on stiffness and impact-absorbing ability was assessed using standard test procedures. The ability of new and degraded insole samples to reduce peak impact loading during running was assessed by monitoring peak impact force and rate of loading. In addition, the influence of insoles on sagittal plane kinematics was quantified by measurement of hip, knee, and ankle joint flexion. Insole mechanical degradation resulted in an increase in mechanical stiffness and a decrease in ability to reduce mechanical impacts for all test insoles. Measurements taken during running indicated that only one insole type reduced peak impact loading when new, as indicated by a significant (P< 0.05) reduction in peak rate of loading. The ability of this insole type to reduce peak rate of loading during running was maintained after mechanical degradation. This insole was also found to significantly (P< 0.05) reduce peak ankle dorsiflexion. The present study identifies an insole type that reduces peak rate of loading during running both when new and when mechanically degraded. It is suggested that this indicates an insole that could potentially reduce the frequency of overuse injuries. Based on these results, this insole is recommended for use in the investigation of the practical use of insoles by military recruits, particularly for study of the influence on injury occurrence.

  9. The forced nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Kaup, D.J.; Hansen, P.J.

    1985-01-01

    The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)

  10. Comparison Of Medial Arch-Supporting Insoles And Heel Pads In The Treatment Of Plantar Fasciitis

    Directory of Open Access Journals (Sweden)

    Malkoc Melih

    2015-03-01

    Full Text Available Plantar fasciitis is a disorder caused by inflammation of the insertion point of the plantar fascia over the medial tubercle of the calcaneus. Foot orthotics are used to treat plantar fasciitis. Heel pads medialise the centre of force, whereas medial arch supporting insoles lateralise the force. We assessed the clinical results of the treatment of plantar fasciitis with silicone heel pads and medial arch-supported silicone insoles.

  11. Insole optical fiber Bragg grating sensors network for dynamic vertical force monitoring.

    Science.gov (United States)

    Domingues, Maria Fátima; Tavares, Cátia; Leitão, Cátia; Frizera-Neto, Anselmo; Alberto, Nélia; Marques, Carlos; Radwan, Ayman; Rodriguez, Jonathan; Postolache, Octavian; Rocon, Eduardo; André, Paulo; Antunes, Paulo

    2017-09-01

    In an era of unprecedented progress in technology and increase in population age, continuous and close monitoring of elder citizens and patients is becoming more of a necessity than a luxury. Contributing toward this field and enhancing the life quality of elder citizens and patients with disabilities, this work presents the design and implementation of a noninvasive platform and insole fiber Bragg grating sensors network to monitor the vertical ground reaction forces distribution induced in the foot plantar surface during gait and body center of mass displacements. The acquired measurements are a reliable indication of the accuracy and consistency of the proposed solution in monitoring and mapping the vertical forces active on the foot plantar sole, with a sensitivity up to 11.06 ?? pm / N . The acquired measurements can be used to infer the foot structure and health condition, in addition to anomalies related to spine function and other pathologies (e.g., related to diabetes); also its application in rehabilitation robotics field can dramatically reduce the computational burden of exoskeletons’ control strategy. The proposed technology has the advantages of optical fiber sensing (robustness, noninvasiveness, accuracy, and electromagnetic insensitivity) to surpass all drawbacks verified in traditionally used sensing systems (fragility, instability, and inconsistent feedback).

  12. Insole optical fiber Bragg grating sensors network for dynamic vertical force monitoring

    Science.gov (United States)

    Domingues, Maria Fátima; Tavares, Cátia; Leitão, Cátia; Frizera-Neto, Anselmo; Alberto, Nélia; Marques, Carlos; Radwan, Ayman; Rodriguez, Jonathan; Postolache, Octavian; Rocon, Eduardo; André, Paulo; Antunes, Paulo

    2017-09-01

    In an era of unprecedented progress in technology and increase in population age, continuous and close monitoring of elder citizens and patients is becoming more of a necessity than a luxury. Contributing toward this field and enhancing the life quality of elder citizens and patients with disabilities, this work presents the design and implementation of a noninvasive platform and insole fiber Bragg grating sensors network to monitor the vertical ground reaction forces distribution induced in the foot plantar surface during gait and body center of mass displacements. The acquired measurements are a reliable indication of the accuracy and consistency of the proposed solution in monitoring and mapping the vertical forces active on the foot plantar sole, with a sensitivity up to 11.06 pm/N. The acquired measurements can be used to infer the foot structure and health condition, in addition to anomalies related to spine function and other pathologies (e.g., related to diabetes); also its application in rehabilitation robotics field can dramatically reduce the computational burden of exoskeletons' control strategy. The proposed technology has the advantages of optical fiber sensing (robustness, noninvasiveness, accuracy, and electromagnetic insensitivity) to surpass all drawbacks verified in traditionally used sensing systems (fragility, instability, and inconsistent feedback).

  13. Unexpected weak seasonal climate in the western Mediterranean region during MIS 31, a high-insolation forced interglacial

    Science.gov (United States)

    Oliveira, Dulce; Sánchez Goñi, Maria Fernanda; Naughton, Filipa; Polanco-Martínez, J. M.; Jimenez-Espejo, Francisco J.; Grimalt, Joan O.; Martrat, Belen; Voelker, Antje H. L.; Trigo, Ricardo; Hodell, David; Abrantes, Fátima; Desprat, Stéphanie

    2017-04-01

    Marine Isotope Stage 31 (MIS 31) is an important analogue for ongoing and projected global warming, yet key questions remain about the regional signature of its extreme orbital forcing and intra-interglacial variability. Based on a new direct land-sea comparison in SW Iberian margin IODP Site U1385 we examine the climatic variability between 1100 and 1050 ka including the ;super interglacial; MIS 31, a period dominated by the 41-ky obliquity periodicity. Pollen and biomarker analyses at centennial-scale-resolution provide new insights into the regional vegetation, precipitation regime and atmospheric and oceanic temperature variability on orbital and suborbital timescales. Our study reveals that atmospheric and SST warmth during MIS 31 was not exceptional in this region highly sensitive to precession. Unexpectedly, this warm stage stands out as a prolonged interval of a temperate and humid climate regime with reduced seasonality, despite the high insolation (precession minima values) forcing. We find that the dominant forcing on the long-term temperate forest development was obliquity, which may have induced a decrease in summer dryness and associated reduction in seasonal precipitation contrast. Moreover, this study provides the first evidence for persistent atmospheric millennial-scale variability during this interval with multiple forest decline events reflecting repeated cooling and drying episodes in SW Iberia. Our direct land-sea comparison shows that the expression of the suborbital cooling events on SW Iberian ecosystems is modulated by the predominance of high or low-latitude forcing depending on the glacial/interglacial baseline climate states. Severe dryness and air-sea cooling is detected under the larger ice volume during glacial MIS 32 and MIS 30. The extreme episodes, which in their climatic imprint are similar to the Heinrich events, are likely related to northern latitude ice-sheet instability and a disruption of the Atlantic Meridional Overturning

  14. Correlative analysis of shoe insoles acting in moist and cold/warm environment

    Directory of Open Access Journals (Sweden)

    Braun Barbu

    2017-01-01

    Full Text Available Insoles represent a mean by which humans can improve postural comfort or existence and manifestation of posture static and dynamic. The variety of materials and sizes for different kinds of foot insoles are for manufacturers a challenge in terms of getting products flexible, versatile and easily adaptable to a larger range of subjects. Biomechanical foot dysfunction influences plantar load distribution and mechanical tissue stress. Greater influence over plantar loads and tissue stress may lead to optimize the insole design to improve foot biomechanics. Some investigations founded that the use of cushioned insoles reduces the risk of stress fractures and injuries; other research has shown no protective effect. The use of cushioned or shock-absorbing insoles invoked reducing the impact forces associated with running, protecting against injuries. The paper emphasizes a new method for analysis of the insoles materials behavior in different alkalis and acids, similar to those encountered in real situations when walking and standing. The behavior study of composite structure insoles started to establish constructive variants and the modality of exposure of these samples at different degrees of softening in simple water, in water with salinity and under negative and positive temperature, also to mechanical stress.

  15. Effects of textured insoles on balance in people with Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    Full Text Available BACKGROUND: Degradation of the somatosensory system has been implicated in postural instability and increased falls risk for older people and Parkinson's disease (PD patients. Here we demonstrate that textured insoles provide a passive intervention that is an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. METHODS: 20 healthy older adults (controls and 20 participants with PD were recruited for the study. We evaluated effects of manipulating somatosensory information from the plantar surface of the feet using textured insoles. Participants performed standing tests, on two different surfaces (firm and foam, under three footwear conditions: 1 barefoot; 2 smooth insoles; and 3 textured insoles. Standing balance was evaluated using a force plate yielding data on the range of anterior-posterior and medial-lateral sway, as well as standard deviations for anterior-posterior and medial-lateral sway. RESULTS: On the firm surface with eyes open both the smooth and textured insoles reduced medial-lateral sway in the PD group to a similar level as the controls. Only the textured insole decreased medial-lateral sway and medial-lateral sway standard deviation in the PD group on both surfaces, with and without visual input. Greatest benefits were observed in the PD group while wearing the textured insoles, and when standing on the foam surface with eyes closed. CONCLUSIONS: Data suggested that textured insoles may provide a low-cost means of improving postural stability in high falls-risk groups, such as people with PD.

  16. Lunar fingerprints in the modulated incoming solar radiation: In situ insolation and latitudinal insolation gradients as two important interpretative metrics for paleoclimatic data records and theoretical climate modeling

    Science.gov (United States)

    Cionco, Rodolfo Gustavo; Valentini, José Ernesto; Quaranta, Nancy Esther; Soon, Willie W.-H.

    2018-01-01

    We present a new set of solar radiation forcing that now incorporated not only the gravitational perturbation of the Sun-Earth-Moon geometrical orbits but also the intrinsic solar magnetic modulation of the total solar irradiance (TSI). This new dataset, covering the past 2000 years as well as a forward projection for about 100 years based on recent result by Velasco-Herrera et al. (2015), should provide a realistic basis to examine and evaluate the role of external solar forcing on Earth climate on decadal, multidecadal to multicentennial timescales. A second goal of this paper is to propose both in situ insolation forcing variable and the latitudinal insolation gradients (LIG) as two key metrics that are subjected to a deterministic modulation by lunar nodal cycle which are often confused with tidal forcing impacts as assumed and interpreted in previous studies of instrumental and paleoclimatic records. Our new results and datasets are made publicly available for all at PANGAEA site.

  17. NONLINEAR DYNAMICS OF CARBON NANOTUBES UNDER LARGE ELECTROSTATIC FORCE

    KAUST Repository

    Xu, Tiantian

    2015-06-01

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.

  18. Nonlinear Dynamics of Carbon Nanotubes Under Large Electrostatic Force

    KAUST Repository

    Xu, Tiantian

    2015-06-01

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools typically used to analyze the behavior of complicated nonlinear systems undergoing large motion, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. Then, we utilize this form along with an Euler-Bernoulli beam model to study for the first time the dynamic behavior of CNTs when excited by large electrostatic force. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. Several results are generated demonstrating softening and hardening behavior of the CNTs near their primary and secondary resonances. The effects of the DC and AC voltage loads on the behavior have been studied. The impacts of the initial slack level and CNT diameter are also demonstrated.

  19. Validation of Moticon?s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements

    OpenAIRE

    St?ggl, Thomas; Martiner, Alex

    2016-01-01

    ABSTRACT The purpose of this study was the experimental validation of the OpenGo sensor insole system compared to PedarX sensor insole and AMTI force-plate systems. Sixteen healthy participants performed trials in walking, running, jumping (drop and counter movement jumps), imitation drills and balance, with simultaneous measures of all three systems. Detected ground contact and flight times with OpenGo during walking, running and jumping were similar to those of AMTI. Force?time curves revea...

  20. New methods for evaluating physical and thermal comfort properties of orthotic materials used in insoles for patients with diabetes.

    Science.gov (United States)

    Lo, Wai Ting; Yick, Kit Lun; Ng, Sun Pui; Yip, Joanne

    2014-01-01

    Orthotic insoles are commonly used in the treatment of the diabetic foot to prevent ulcerations. Choosing suitable insole material is vital for effective foot orthotic treatment. We examined seven types of orthotic materials. In consideration of the key requirements and end uses of orthotic insoles for the diabetic foot, including accommodation, cushioning, and control, we developed test methods for examining important physical properties, such as force reduction and compression properties, insole-skin friction, and shear properties, as well as thermal comfort properties of fabrication materials. A novel performance index that combines various material test results together was also proposed to quantify the overall performance of the insole materials. The investigation confirms that the insole-sock interface has a lower coefficient of friction and shearing stress than those of the insole-skin interface. It is also revealed that material brand and the corresponding density and cell volume, as well as thickness, are closely associated with the performance of moisture absorption and thermal comfort. On the basis of the proposed performance index, practitioners can better understand the properties and performance of various insole materials, thus prescribing suitable orthotic insoles for patients with diabetic foot.

  1. A COMPARISON OF GROUND REACTION FORCES DETERMINED BY PORTABLE FORCE-PLATE AND PRESSURE-INSOLE SYSTEMS IN ALPINE SKIING

    Directory of Open Access Journals (Sweden)

    Kosuke Nakazato

    2011-12-01

    Full Text Available For the determination of ground reaction forces in alpine skiing, pressure insole (PI systems and portable force plate (FP systems are well known and widely used in previous studies. The purposes of this study were 1 to provide reference data for the vertical component of the ground reaction forces (vGRF during alpine skiing measured by the PI and FP systems, and 2 to analyze whether the differences in the vGRF measured by the PI and the FP depend on a skier's level, skiing mode and pitch. Ten expert and ten intermediate level skiers performed 10 double turns with the skiing technique "Carving in Short Radii" as High Dynamic Skiing mode and "Parallel Ski Steering in Long Radii" as Low Dynamic Skiing mode on both the steep (23 ° and the flat (15 ° slope twice. All subjects skied with both the PI and the FP system simultaneously. During the outside phase, the mean vGRF and the maximum vGRF determined by the FP are greater than the PI (p < 0.01. Additionally during the inside phase, the mean vGRF determined by the FP were greater than the PI (p < 0.01. During the edge changing phases, the mean vGRF determined by the FP were greater than the PI (p < 0.01. However, the minimum vGRF during the edge changing phases determined by the FP were smaller than the PI (p < 0.01 in the High-Steep skiing modes of Experts and Intermediates (p < 0.001. We have found that generally, the PI system underestimates the total vGRF compared to the FP system. However, this difference depends not only the phase in the turn (inside, outside, edge changing, but also is affected by the skier's level, the skiing mode performed and pitch.

  2. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.

    2000-01-01

    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  3. A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.

    Science.gov (United States)

    Kostadinov, Tihomir; Gilb, Roy

    2013-04-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry

  4. Nonlinear effects in the radiation force generated by amplitude-modulated focused beams

    Science.gov (United States)

    González, Nuria; Jiménez, Noé; Redondo, Javier; Roig, Bernardino; Picó, Rubén; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.; Camarena, Francisco

    2012-10-01

    Harmonic Motion Imaging (HMI) uses an amplitude-modulated (AM) beam to induce an oscillatory radiation force before, during and after ablation. In this paper, the findings from a numerical analysis of the effects related with the nonlinear propagation of AM focused ultrasonic beams in water on the radiation force and the location of its maxima will be presented. The numerical modeling is performed using the KZK nonlinear parabolic equation. The radiation force is generated by a focused transducer with a gain of 18, a carrier frequency of 1 MHz and a modulation frequency of 25 kHz. The modulated excitation generates a spatially-invariant force proportional to the intensity. Regarding the nonlinear wave propagation, the force is no longer proportional to the intensity, reaching a factor of eight between the nonlinear and linear estimations. Also, a 9 mm shift in the on-axis force peak occurs when the initial pressure increased from 1 to 300 kPa. This spatial shift, due to the nonlinear effects, becomes dynamic in AM focused beams, as the different signal periods have different amplitudes. This study shows that both the value and the spatial position of the force peak are affected by the nonlinear propagation of the ultrasonic waves.

  5. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    Science.gov (United States)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  6. Textured insoles reduce vertical loading rate and increase subjective plantar sensation in overground running.

    Science.gov (United States)

    Wilkinson, Michael; Ewen, Alistair; Caplan, Nicholas; O'leary, David; Smith, Neil; Stoneham, Richard; Saxby, Lee

    2018-05-01

    The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23 ± 5 yrs; stature 1.78 ± 0.06 m; mass 72.6 ± 9.2 kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (F peak ) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (-25 to -9.3 BW s -1 ; 60% likely beneficial reduction) and plantar sensation was increased (46-58 mm) with the insole. F peak (-0.1 to 0.14 BW) and velocity (-0.02 to 0.06 m s -1 ) were similar. Stride length, flight and contact time were lower (-0.13 to -0.01 m; -0.02 to-0.01 s; -0.016 to -0.006 s) and stride rate was higher (0.01-0.07 steps s -1 ) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.

  7. The Effect of Shoe Insole Stiffness on Leg Stiffness during Stance Phase of Running in Two Different Speeds ‎among Active Men

    Directory of Open Access Journals (Sweden)

    Zeinab Tazike-Lemeski

    2016-08-01

    Full Text Available Introduction: The effect of shoe insoles with different characteristics and in different running speeds on lower-limb stiffness is still ‎controversial. The aim of this study was to investigate the effect of two types of insoles (soft and semi-rigid in two ‎different running speeds on leg stiffness during stance phase of running among active men.‎ Materials and Methods: ‎15 male students without any background of lower extremity injury were selected. Subjects were asked to run with ‎two controlled velocities of 3.0 ± 0.2 and 5.0 ± 0.1 m/s in control and insole conditions (soft and semi-rigid on a ‎force plate, placed on the middle of 15-meter runway. The cinematics and cinetics of motion were measured and ‎calculated using 5 video cameras and one force plate. The leg stiffness was achieved via dividing the vertical ‎ground reaction force by leg compression. Two-factor repeated measures ANOVA was used to test the hypothesis at ‎the significance level of P £ 0.050.‎ Results: There was a significant difference between the two types of insoles on leg stiffness. In fact, semi-rigid insole significantly increased leg stiffness (P < 0.001. However, this discrepancy was not related to the running speed (P = 0.999. In addition, there was no significant difference between the two different speeds on leg stiffness (P = 0.632. Conclusion: It seems that the increase in shoe insole stiffness may increase the leg stiffness. Furthermore, the effect of insole ‎stiffness is not related to the running speed, and leg stiffness will remains constant in low to medium running speeds.‎

  8. Nonlinear wave forces on large ocean structures

    Science.gov (United States)

    Huang, Erick T.

    1993-04-01

    This study explores the significance of second-order wave excitations on a large pontoon and tests the feasibility of reducing a nonlinear free surface problem by perturbation expansions. A simulation model has been developed based on the perturbation expansion technique to estimate the wave forces. The model uses a versatile finite element procedure for the solution of the reduced linear boundary value problems. This procedure achieves a fair compromise between computation costs and physical details by using a combination of 2D and 3D elements. A simple hydraulic model test was conducted to observe the wave forces imposed on a rectangle box by Cnoidal waves in shallow water. The test measurements are consistent with the numerical predictions by the simulation model. This result shows favorable support to the perturbation approach for estimating the nonlinear wave forces on shallow draft vessels. However, more sophisticated model tests are required for a full justification. Both theoretical and experimental results show profound second-order forces that could substantially impact the design of ocean facilities.

  9. The Effect of a Textured Insole on Symmetry of Turning

    Directory of Open Access Journals (Sweden)

    Etem Curuk

    2018-01-01

    Full Text Available Turning while walking is a common daily activity. Individuals with unilateral impairment frequently perform turns asymmetrically. The purpose of the study was to investigate the effect of a discomfort-inducing textured insole on symmetry of turning. Nine healthy individuals performed turns to the right while walking with no insole, immediately after the insole was inserted in the right shoe, and after walking for six minutes with the insole. The duration of turning, displacements of pelvic markers, and perceived level of discomfort were evaluated. Utilizing the insole was associated with the increased level of perceived discomfort (p<0.05. Moreover, using the insole was linked to changes in the displacement of two pelvic markers and larger asymmetry index while turning immediately after the insole was inserted in the right shoe as compared to no insole condition (p<0.05. The duration of right turning increased immediately after the insole was inserted (p<0.05 and after walking with the insole for six minutes. The results indicate that the textured insole creates asymmetry of turning in healthy individuals. The outcome provides a background for future studies focused on using a textured insole to minimize the asymmetry of turning commonly seen in individuals with unilateral impairment.

  10. Influence of forced respiration on nonlinear dynamics in heart rate variability

    DEFF Research Database (Denmark)

    Kanters, J K; Højgaard, M V; Agner, E

    1997-01-01

    Although it is doubtful whether the normal sinus rhythm can be described as low-dimensional chaos, there is evidence for inherent nonlinear dynamics and determinism in time series of consecutive R-R intervals. However, the physiological origin for these nonlinearities is unknown. The aim...... with a metronome set to 12 min(-1). Nonlinear dynamics were measured as the correlation dimension and the nonlinear prediction error. Complexity expressed as correlation dimension was unchanged from normal respiration, 9.1 +/- 0.5, compared with forced respiration, 9.3 +/- 0.6. Also, nonlinear determinism...... expressed as the nonlinear prediction error did not differ between spontaneous respiration, 32.3 +/- 3.4 ms, and forced respiration, 31.9 +/- 5.7. It is concluded that the origin of the nonlinear dynamics in heart rate variability is not a nonlinear input from the respiration into the cardiovascular...

  11. Nonlinear Analysis of Renal Autoregulation Under Broadband Forcing Conditions

    DEFF Research Database (Denmark)

    Marmarelis, V Z; Chon, K H; Chen, Y M

    1994-01-01

    Linear analysis of renal blood flow fluctuations, induced experimentally in rats by broad-band (pseudorandom) arterial blood pressure forcing at various power levels, has been unable to explain fully the dynamics of renal autoregulation at low frequencies. This observation has suggested...... the possibility of nonlinear mechanisms subserving renal autoregulation at frequencies below 0.2 Hz. This paper presents results of 3rd-order Volterra-Wiener analysis that appear to explain adequately the nonlinearities in the pressure-flow relation below 0.2 Hz in rats. The contribution of the 3rd-order kernel...... in describing the dynamic pressure-flow relation is found to be important. Furthermore, the dependence of 1st-order kernel waveforms on the power level of broadband pressure forcing indicates the presence of nonlinear feedback (of sigmoid type) based on previously reported analysis of a class of nonlinear...

  12. Simulating last interglacial climate with NorESM: role of insolation and greenhouse gases in the timing of peak warmth

    Directory of Open Access Journals (Sweden)

    P.M. Langebroek

    2014-07-01

    Full Text Available The last interglacial (LIG, ~130–116 ka, ka = 1000 yr ago is characterized by high-latitude warming and is therefore often considered as a possible analogue for future warming. However, in contrast to predicted future greenhouse warming, the LIG climate is largely governed by variations in insolation. Greenhouse gas (GHG concentrations were relatively stable and similar to pre-industrial values, with the exception of the early LIG when, on average, GHGs were slightly lower. We performed six time-slice simulations with the low-resolution version of the Norwegian Earth System Model covering the LIG. In four simulations only the orbital forcing was changed. In two other simulations, representing the early LIG, additionally the GHG forcing was reduced. With these simulations we investigate (1 the different effects of GHG versus insolation forcing on the temperatures during the LIG; (2 whether reduced GHGs can explain the low temperatures reconstructed for the North Atlantic; and (3 the timing of the observed LIG peak warmth. Our simulations show that the insolation forcing results in seasonal and hemispheric differences in temperature. In contrast, a reduction in the GHG forcing causes a global and seasonal-independent cooling. Furthermore, we compare modelled temperatures with proxy-based LIG sea-surface temperatures along a transect in the North Atlantic. The modelled North Atlantic summer sea-surface temperatures capture the general trend of the reconstructed summer temperatures, with low values in the early LIG, a peak around 125 ka, and a steady decrease towards the end of the LIG. Simulations with reduced GHG forcing improve the model–data fit as they show lower temperatures in the early LIG. Furthermore we show that the timing of maximum summer and winter surface temperatures is in line with the local summer and winter insolation maximum at most latitudes. Two regions where the maximum local insolation and temperature do not occur at the

  13. Nonlinear Dynamics of Carbon Nanotubes Under Large Electrostatic Force

    KAUST Repository

    Xu, Tiantian; Younis, Mohammad I.

    2015-01-01

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction

  14. Nonlinear dynamic analysis of piping systems using the pseudo force method

    International Nuclear Information System (INIS)

    Prachuktam, S.; Bezler, P.; Hartzman, M.

    1979-01-01

    Simple piping systems are composed of linear elastic elements and can be analyzed using conventional linear methods. The introduction of constraint springs separated from the pipe with clearance gaps to such systems to cope with the pipe whip or other extreme excitation conditions introduces nonlinearities to the system, the nonlinearities being associated with the gaps. Since these spring-damper constraints are usually limited in number, descretely located, and produce only weak nonlinearities, the analysis of linear systems including these nonlinearities can be carried out by using modified linear methods. In particular, the application of pseudo force methods wherein the nonlinearities are treated as displacement dependent forcing functions acting on the linear system were investigated. The nonlinearities induced by the constraints are taken into account as generalized pseudo forces on the right-hand side of the governing dynamic equilibrium equations. Then an existing linear elastic finite element piping code, EPIPE, was modified to permit application of the procedure. This option was inserted such that the analyses could be performed using either the direct integration method or via a modal superposition method, the Newmark-Beta integration procedure being employed in both methods. The modified code was proof tested against several problems taken from the literature or developed with the nonlinear dynamics code OSCIL. The problems included a simple pipe loop, cantilever beam, and lumped mass system subjected to pulsed and periodic forcing functions. The problems were selected to gage the overall accuracy of the method and to insure that it properly predicted the jump phenomena associated with nonlinear systems. (orig.)

  15. Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy

    Science.gov (United States)

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.

  16. Theory of nonlinear acoustic forces acting on fluids and particles in microsystems

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias

    fundamentally new capabilities in chemical, biomedical, or clinical studies of single cells and bioparticles. This thesis, entitled Theory of nonlinear acoustic forces acting on fluids and particles in microsystems, advances the fundamental understanding of acoustofluidics by addressing the origin...... of the nonlinear acoustic forces acting on fluids and particles. Classical results in nonlinear acoustics for the non-dissipative acoustic radiation force acting on a particle or an interface, as well as the dissipative acoustic force densities driving acoustic streaming, are derived and discussed in terms...... in the continuous fluid parameters of density and compressibility, e.g., due to a solute concentration field, the thesis presents novel analytical results on the acoustic force density acting on inhomogeneous fluids in acoustic fields. This inhomogeneity-induced acoustic force density is non-dissipative in origin...

  17. FreeWalker: a smart insole for longitudinal gait analysis.

    Science.gov (United States)

    Wang, Baitong; Rajput, Kuldeep Singh; Tam, Wing-Kin; Tung, Anthony K H; Yang, Zhi

    2015-08-01

    Gait analysis is an important diagnostic measure to investigate the pattern of walking. Traditional gait analysis is generally carried out in a gait lab, with equipped force and body tracking sensors, which needs a trained medical professional to interpret the results. This procedure is tedious, expensive, and unreliable and makes it difficult to track the progress across multiple visits. In this paper, we present a smart insole called FreeWalker, which provides quantitative gait analysis outside the confinement of traditional lab, at low- cost. The insole consists of eight pressure sensors and two motion tracking sensors, i.e. 3-axis accelerometer and 3-axis gyroscope. This enables measurement of under-foot pressure distribution and motion sequences in real-time. The insole is enabled with onboard SD card as well as wireless data transmission, which help in continuous gait-cycle analysis. The data is then sent to a gateway, for analysis and interpretation of data, using a user interface where gait features are graphically displayed. We also present validation result of a subject's left foot, who was asked to perform a specific task. Experiment results show that we could achieve a data-sampling rate of over 1 KHz, transmitting data up to a distance of 20 meter and maintain a battery life of around 24 hours. Taking advantage of these features, FreeWalker can be used in various applications, like medical diagnosis, rehabilitation, sports and entertainment.

  18. Forced vibration of nonlinear system with symmetrical piecewise-linear characteristics

    International Nuclear Information System (INIS)

    Watanabe, Takeshi

    1983-01-01

    It is fairly difficult to treat exactly the analysis of a vibrating system including some play because it is accompanied by a strong nonlinear phenomenon of collision. The author attempted the theoretical analysis by the exact solution using series solution and the approximate solution, treating the forced vibration of a system having some play as the forced vibration of a continuous system with nonlinear boundary condition or the colliding vibration of a continuum. In this report, the problem of such system with play is treated as a nonlinear system having the symmetrical, piecewise linear characteristics of one degree of freedom. That is, it is considered that at the time of collision due to play, the collided body causes the deformation accompanied by triangular hystersis elastically and plastically, and the spring characteristics of restitution force change piecewise by the collision. The exact solution using series solution and the approximate solution are performed, and the effectiveness of these theoretical solutions is confirmed by comparing with the solution using an analog computer. The relation between the accuracy of two analysis methods and nonlinear parameters is shown by the examples of numerical calculation. (Kako, I.)

  19. Effect of Full-Length Carbon Fiber Insoles on Lower Limb Kinetics in Patients With Midfoot Osteoarthritis: A Pilot Study.

    Science.gov (United States)

    Yi, Taeim; Kim, Jung Hyun; Oh-Park, Mooyeon; Hwang, Ji Hye

    2018-03-01

    We investigated the effects of full-length carbon fiber (FCF) insoles on gait, muscle activity, kinetics, and pain in patients with midfoot osteoarthritis (OA). We enrolled 13 patients with unilateral midfoot OA (mild: Visual Analog Scale [VAS] range, 1-3; moderate, VAS range, 4-7) and healthy controls. All participants were asked to walk under two conditions: with and without FCF insole. The outcome measures were ground reaction force, quantitative gait parameters, electromyography activities and pain severity (VAS). In the patients with moderate midfoot OA, significantly longer gait cycle and higher muscle activity of lower limb during loading-response phase were observed while walking without FCF insoles. In the mild midfoot OA group, there was no significant difference in VAS score (without, 2.0 ± 1.0 vs. with, 2.0 ± 0.5) with FCF insole use. However, significantly reduced VAS score (without, 5.5 ± 1.4 vs. with, 2.0 ± 0.5) and muscle activity of the tibialis anterior and increased muscle activity of gastrocnemius were observed in the moderate midfoot OA group by using an FCF insole (P < 0.05). Full-length carbon fiber insoles can improve pain in individuals with moderate midfoot OA, which might be associated with changes in the kinetics and muscle activities of the lower limb. Taken together, the results of the present study suggest that FCF insoles may be used as a helpful option for midfoot OA.

  20. Nonlinear FE analysis of reinforced concrete panels subjected to in-plane force

    International Nuclear Information System (INIS)

    Lee, H. P.; Lee, S. J.; Jun, Y. S.; Su, J. M.

    2003-01-01

    Reinforced concrete structures subjected to in-plane force exhibit strong nonlinear behaviour due to complex material properties, cracks, interactions between concrete and steel and shear transfer exists in crack surface. Especially if there is crack formations, nonlinear behaviour increases. Thus the prediction of nonlinear behaviour of reinforced concrete includes failure or crushing is very difficult task. Various constitutive equations for concrete stress-strain relationship to predict nonlinear behaviour of reinforced concrete have been proposed. But the study for reinforced concrete analysis model using plastic material model is still demanded. So the purpose of this research is to formulate standard 8-node shell element using plasticity material model for concrete and to analyze nonlinear behaviour of RC panel subjected to in-plane force

  1. The Principal Components of Adult Female Insole Shape Align Closely with Two of Its Classic Indicators

    OpenAIRE

    Bookstein, Fred L.; Domjanic, Jacqueline

    2015-01-01

    The plantar surface of the human foot transmits the weight and dynamic force of the owner's lower limbs to the ground and the reaction forces back to the musculoskeletal system. Its anatomical variation is intensely studied in such fields as sports medicine and orthopedic dysmorphology. Yet, strangely, the shape of the insole that accommodates this surface and elastically buffers these forces is neither an aspect of the conventional anthropometrics of feet nor an informative label on the pack...

  2. Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.

    Science.gov (United States)

    Song, Xuegang; Zhang, Yuexin; Liang, Dakai

    2017-10-10

    This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.

  3. Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Xuegang Song

    2017-10-01

    Full Text Available This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.

  4. Forced oscillation of hyperbolic equations with mixed nonlinearities

    Directory of Open Access Journals (Sweden)

    Yutaka Shoukaku

    2012-04-01

    Full Text Available In this paper, we consider the mixed nonlinear hyperbolic equations with forcing term via Riccati inequality. Some sufficient conditions for the oscillation are derived by using Young inequality and integral averaging method.

  5. Nonlinear aspects of acoustic radiation force in biomedical applications

    International Nuclear Information System (INIS)

    Ostrovsky, Lev; Tsyuryupa, Sergey; Sarvazyan, Armen

    2015-01-01

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual “finger” for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams

  6. Nonlinear aspects of acoustic radiation force in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovsky, Lev, E-mail: Lev.A.Ostrovsky@noaa.gov [NOAA Earth System Research Laboratory, 325 Broadway, Boulder, Colorado 80305 (United States); Tsyuryupa, Sergey; Sarvazyan, Armen, E-mail: armen@artannlabs.com [Artann Laboratories, Inc., 1459 Lower Ferry Rd., West Trenton, New Jersey,08618 (United States)

    2015-10-28

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual “finger” for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.

  7. Nonlinear aspects of acoustic radiation force in biomedical applications

    Science.gov (United States)

    Ostrovsky, Lev; Tsyuryupa, Sergey; Sarvazyan, Armen

    2015-10-01

    In the past decade acoustic radiation force (ARF) became a powerful tool in numerous biomedical applications. ARF from a focused ultrasound beam acts as a virtual "finger" for remote probing of internal anatomical structures and obtaining diagnostic information. This presentation deals with generation of shear waves by nonlinear focused beams. Albeit the ARF has intrinsically nonlinear origin, in most cases the primary ultrasonic wave was considered in the linear approximation. In this presentation, we consider the effects of nonlinearly distorted beams on generation of shear waves by such beams.

  8. The Principal Components of Adult Female Insole Shape Align Closely with Two of Its Classic Indicators.

    Directory of Open Access Journals (Sweden)

    Fred L Bookstein

    Full Text Available The plantar surface of the human foot transmits the weight and dynamic force of the owner's lower limbs to the ground and the reaction forces back to the musculoskeletal system. Its anatomical variation is intensely studied in such fields as sports medicine and orthopedic dysmorphology. Yet, strangely, the shape of the insole that accommodates this surface and elastically buffers these forces is neither an aspect of the conventional anthropometrics of feet nor an informative label on the packet that markets supplementary insoles. In this paper we pursue an earlier suggestion that insole form in vertical view be quantified in terms of the shape of the foot not at the plane of support (the "footprint" but some two millimeters above that level. Using such sections extracted from laser scans of 158 feet of adult women from the University of Zagreb, in conjunction with an appropriate modification of today's standard geometric morphometrics (GMM, we find that the sectioned form can be described by its size together with two meaningful relative warps of shape. The pattern of this shape variation is not novel. It is closely aligned with two of the standard footprint measurements, the Chippaux-Šmiřák arch index and the Clarke arch angle, whose geometrical foci (the former in the ball of the foot, the latter in the arch it apparently combines. Thus a strong contemporary analysis complements but does not supplant the simpler anthropometric analyses of half a century ago, with implications for applied anthropology.

  9. The Principal Components of Adult Female Insole Shape Align Closely with Two of Its Classic Indicators.

    Science.gov (United States)

    Bookstein, Fred L; Domjanic, Jacqueline

    2015-01-01

    The plantar surface of the human foot transmits the weight and dynamic force of the owner's lower limbs to the ground and the reaction forces back to the musculoskeletal system. Its anatomical variation is intensely studied in such fields as sports medicine and orthopedic dysmorphology. Yet, strangely, the shape of the insole that accommodates this surface and elastically buffers these forces is neither an aspect of the conventional anthropometrics of feet nor an informative label on the packet that markets supplementary insoles. In this paper we pursue an earlier suggestion that insole form in vertical view be quantified in terms of the shape of the foot not at the plane of support (the "footprint") but some two millimeters above that level. Using such sections extracted from laser scans of 158 feet of adult women from the University of Zagreb, in conjunction with an appropriate modification of today's standard geometric morphometrics (GMM), we find that the sectioned form can be described by its size together with two meaningful relative warps of shape. The pattern of this shape variation is not novel. It is closely aligned with two of the standard footprint measurements, the Chippaux-Šmiřák arch index and the Clarke arch angle, whose geometrical foci (the former in the ball of the foot, the latter in the arch) it apparently combines. Thus a strong contemporary analysis complements but does not supplant the simpler anthropometric analyses of half a century ago, with implications for applied anthropology.

  10. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.

    Science.gov (United States)

    Ostaszewski, Michal; Pauk, Jolanta

    2018-05-16

    Gait analysis is a useful tool medical staff use to support clinical decision making. There is still an urgent need to develop low-cost and unobtrusive mobile health monitoring systems. The goal of this study was twofold. Firstly, a wearable sensor system composed of plantar pressure insoles and wearable sensors for joint angle measurement was developed. Secondly, the accuracy of the system in the measurement of ground reaction forces and joint moments was examined. The measurements included joint angles and plantar pressure distribution. To validate the wearable sensor system and examine the effectiveness of the proposed method for gait analysis, an experimental study on ten volunteer subjects was conducted. The accuracy of measurement of ground reaction forces and joint moments was validated against the results obtained from a reference motion capture system. Ground reaction forces and joint moments measured by the wearable sensor system showed a root mean square error of 1% for min. GRF and 27.3% for knee extension moment. The correlation coefficient was over 0.9, in comparison with the stationary motion capture system. The study suggests that the wearable sensor system could be recommended both for research and clinical applications outside a typical gait laboratory.

  11. The effect of nonlinear forces on coherently oscillating space-charge-dominated beams

    International Nuclear Information System (INIS)

    Celata, C.M.

    1987-03-01

    A particle-in-cell computer simulation code has been used to study the transverse dynamics of nonrelativistic misaligned space-charge-dominated coasting beams in an alternating gradient focusing channel. In the presence of nonlinear forces due to dodecapole or octupole imperfections of the focusing fields or to image forces, the transverse rms emittance grows in a beat pattern. Analysis indicates that this emittance dilution is due to the driving of coherent modes of the beam near their resonant frequencies by the nonlinear force. The effects of the dodecapole and images forces can be made to effectively cancel for some boundary conditions, but the mechanism is not understood at this time

  12. Impact of nonlinear distortion on acoustic radiation force elastography.

    Science.gov (United States)

    Draudt, Andrew B; Cleveland, Robin O

    2011-11-01

    High-intensity focused ultrasound (HIFU) produces an acoustic radiation force that induces tissue displacement, which can be measured by monitoring time shifts in the backscattered signals from interrogation pulses. If the pulse occurs simultaneously with the HIFU, the arrival time of the backscatter will be biased because nonlinearity associated with the HIFU changes the local sound speed. Measurements of the pressure field using 1.1 MHz HIFU and a 7.5 MHz pulse in water exhibited a nonlinearly induced apparent displacement (NIAD) that varied with the HIFU pressure, propagation distance and the timing of the pulse relative to the HIFU. Nonlinear simulations employing the KZK equation predicted NIADs that agreed with measurements. Experiments with chicken breast demonstrated a NIAD with magnitude similar to that expected from the radiation force. Finally it was shown that if two pulses were fired with different phases relative to the HIFU, then upon averaging, the NIAD could be mitigated. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Altering gait by way of stimulation of the plantar surface of the foot: the immediate effect of wearing textured insoles in older fallers

    Directory of Open Access Journals (Sweden)

    Hatton Anna L

    2012-04-01

    Full Text Available Abstract Background Evidence suggests that textured insoles can alter gait and standing balance by way of enhanced plantar tactile stimulation. However, to date, this has not been explored in older people at risk of falling. This study investigated the immediate effect of wearing textured insoles on gait and double-limb standing balance in older fallers. Methods Thirty older adults >65 years (21 women, mean [SD] age 79.0 [7.1], with self-reported history of ≥2 falls in the previous year, conducted tests of level-ground walking over 10 m (GAITRite system, and double-limb standing with eyes open and eyes closed over 30 seconds (Kistler force platform under two conditions: wearing textured insoles (intervention and smooth (control insoles in their usual footwear. Results Wearing textured insoles caused significantly lower gait velocity (P = 0.02, step length (P = 0.04 and stride length (P = 0.03 compared with wearing smooth insoles. No significant differences were found in any of the balance parameters (P > 0.05. Conclusions A textured insole worn by older adults with a history of falls significantly lowers gait velocity, step length and stride length, suggesting that this population may not have an immediate benefit from this type of intervention. The effects of prolonged wear remain to be investigated.

  14. Plantar pressure with and without custom insoles in patients with common foot complaints.

    NARCIS (Netherlands)

    Stolwijk, N.M.; Louwerens, J.W.; Nienhuis, B.; Duysens, J.E.J.; Keijsers, N.L.

    2011-01-01

    BACKGROUND: Although many patients with foot complaints receive customized insoles, the choice for an insole design can vary largely among foot experts. To investigate the variety of insole designs used in daily practice, the insole design and its effect on plantar pressure distribution were

  15. Free vibration of geometrically nonlinear micro-switches under electrostatic and Casimir forces

    International Nuclear Information System (INIS)

    Jia, X L; Kitipornchai, S; Lim, C W; Yang, J

    2010-01-01

    This paper investigates the free vibration characteristics of micro-switches under combined electrostatic, intermolecular forces and axial residual stress, with an emphasis on the effect of geometric nonlinear deformation due to mid-plane stretching and the influence of Casimir force. The micro-switch considered in this study is made of either homogeneous material or non-homogeneous functionally graded material with two material phases. The Euler–Bernoulli beam theory with von Karman type nonlinear kinematics is applied in the theoretical formulation. The principle of virtual work is used to derive the nonlinear governing differential equation. The eigenvalue problem which describes free vibration of the micro-beam at its statically deflected state is then solved using the differential quadrature method. The natural frequencies and mode shapes of micro-switches for four different boundary conditions (i.e. clamped–clamped, clamped–simply supported, simply supported and clamped–free) are obtained. The solutions are validated through direct comparisons with experimental and other existing results reported in previous studies. A parametric study is conducted to show the significant effects of geometric nonlinearity, Casimir force, axial residual stress and material composition for the natural frequencies

  16. A meta-analysis into the effect of lateral-wedged insoles with subtalar strapping versus traditional insoles in adults with medial knee osteoarthritis.

    Directory of Open Access Journals (Sweden)

    L. Duvenhage

    2011-02-01

    Full Text Available To  systematically  identify,  collate,  and  analyze  the  current available evidence  for  the  effectiveness  of  lateral-wedged  insoles,  with subtalar strapping,  on  reducing  pain,  improving  function  and  improving  the femoral-tibial  angle  (FTA,  in  adults  with  medial  knee osteoarthritis compared to traditional insoles without subtalar strapping.Six computerised databases, namely Cochrane Library, CiNAHL, PEDro, BIOMED central,  PubMed  and  ScienceDirect  were  searched. The  included articles were  then  all  rated  using  the  PEDro  scale  to  determine  their meth-odological quality.  Homogeneous data were pooled in a meta-analysis using Review Manager (REVMAN software.  Where statistical pooling of the results was not possible, findings were summarised in narrative form. Three randomised controlled trials were selected for this review. The average PEDro score was 5.7. A meta-analysis demonstrated that lateral-wedged insoles with subtalar strapping significantly reduced pain in the short-term (p=0.004. The review found that lateral-wedge insoles with subtalar strapping significantly decreased pain in the short-term and seemed to have a positive effect on the FTA in the long-term, when compared to traditional insoles without  subtalar strapping. The lateral-wedge insole with subtalar strapping may provide a financially feasible adjunctive self-management treatment for knee OA and should be considered before invasive procedures such as surgery.

  17. Amplification of obliquity forcing through mean annual and seasonal atmospheric feedbacks

    Directory of Open Access Journals (Sweden)

    S.-Y. Lee

    2008-10-01

    Full Text Available Pleistocene benthic δ18O records exhibit strong spectral power at ~41 kyr, indicating that global ice volume has been modulated by Earth's axial tilt. This feature, and weak spectral power in the precessional band, has been attributed to the influence of obliquity on mean annual and seasonal insolation gradients at high latitudes. In this study, we use a coupled ocean-atmosphere general circulation model to quantify changes in continental snowfall associated with mean annual and seasonal insolation forcing due to a change in obliquity. Our model results indicate that insolation changes associated with a decrease in obliquity amplify continental snowfall in three ways: (1 Local reductions in air temperature enhance precipitation as snowfall. (2 An intensification of the winter meridional insolation gradient strengthens zonal circulation (e.g. the Aleutian low, promoting greater vapor transport from ocean to land and snow precipitation. (3 An increase in the summer meridional insolation gradient enhances summer eddy activity, increasing vapor transport to high-latitude regions. In our experiments, a decrease in obliquity leads to an annual snowfall increase of 25.0 cm; just over one-half of this response (14.1 cm is attributed to seasonal changes in insolation. Our results indicate that the role of insolation gradients is important in amplifying the relatively weak insolation forcing due to a change in obliquity. Nonetheless, the total snowfall response to obliquity is similar to that due to a shift in Earth's precession, suggesting that obliquity forcing alone can not account for the spectral characteristics of the ice-volume record.

  18. A Self-Powered Insole for Human Motion Recognition

    Directory of Open Access Journals (Sweden)

    Yingzhou Han

    2016-09-01

    Full Text Available Biomechanical energy harvesting is a feasible solution for powering wearable sensors by directly driving electronics or acting as wearable self-powered sensors. A wearable insole that not only can harvest energy from foot pressure during walking but also can serve as a self-powered human motion recognition sensor is reported. The insole is designed as a sandwich structure consisting of two wavy silica gel film separated by a flexible piezoelectric foil stave, which has higher performance compared with conventional piezoelectric harvesters with cantilever structure. The energy harvesting insole is capable of driving some common electronics by scavenging energy from human walking. Moreover, it can be used to recognize human motion as the waveforms it generates change when people are in different locomotion modes. It is demonstrated that different types of human motion such as walking and running are clearly classified by the insole without any external power source. This work not only expands the applications of piezoelectric energy harvesters for wearable power supplies and self-powered sensors, but also provides possible approaches for wearable self-powered human motion monitoring that is of great importance in many fields such as rehabilitation and sports science.

  19. The effect of textured ballet shoe insoles on ankle proprioception in dancers.

    Science.gov (United States)

    Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren

    2016-01-01

    Impaired ankle inversion movement discrimination (AIMD) can lead to ankle sprain injuries. The aim of this study was to explore whether wearing textured insoles improved AIMD compared with barefoot, ballet shoes and smooth insoles, among dancers. Forty-four adolescent male and female dancers, aged 13-19, from The Australian Ballet School were tested for AIMD while barefoot, wearing ballet shoes, smooth insoles, and textured insoles. No interaction was found between the four different footwear conditions, the two genders, or the two levels of dancers in AIMD (p > .05). An interaction was found between the four different footwear conditions and the three tertiles when tested in ballet shoes (p = .006). Although significant differences were found between the upper tertiles and the lower tertiles when tested with ballet shoes, barefoot and with smooth insoles (p < .001; p < .001; p = .047, respectively), when testing with textured insoles dancers in the lower tertile obtained similar scores to those obtained by dancers in the upper tertile (p = .911). Textured insoles improved the discrimination scores of dancers with low AIMD, suggesting that textured insoles may trigger the cutaneous receptors in the plantar surface, increasing the awareness of ankle positioning, which in turn might decrease the chance of ankle injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Realising traceable electrostatic forces despite non-linear balance motion

    International Nuclear Information System (INIS)

    Stirling, Julian; Shaw, Gordon A

    2017-01-01

    Direct realisation of force, traceable to fundamental constants via electromagnetic balances, is a key goal of the proposed redefinition of the international system of units (SI). This will allow small force metrology to be performed using an electrostatic force balance (EFB) rather than subdivision of larger forces. Such a balance uses the electrostatic force across a capacitor to balance an external force. In this paper we model the capacitance of a concentric cylinder EFB design as a function of the displacement of its free electrode, accounting for the arcuate motion produced by parallelogram linkages commonly used in EFB mechanisms. From this model we suggest new fitting procedures to reduce uncertainties arising from non-linear motion as well as methods to identify misalignment of the mechanism. Experimental studies on both a test capacitor and the NIST EFB validate the model. (paper)

  1. Novel nonlinear knowledge-based mean force potentials based on machine learning.

    Science.gov (United States)

    Dong, Qiwen; Zhou, Shuigeng

    2011-01-01

    The prediction of 3D structures of proteins from amino acid sequences is one of the most challenging problems in molecular biology. An essential task for solving this problem with coarse-grained models is to deduce effective interaction potentials. The development and evaluation of new energy functions is critical to accurately modeling the properties of biological macromolecules. Knowledge-based mean force potentials are derived from statistical analysis of proteins of known structures. Current knowledge-based potentials are almost in the form of weighted linear sum of interaction pairs. In this study, a class of novel nonlinear knowledge-based mean force potentials is presented. The potential parameters are obtained by nonlinear classifiers, instead of relative frequencies of interaction pairs against a reference state or linear classifiers. The support vector machine is used to derive the potential parameters on data sets that contain both native structures and decoy structures. Five knowledge-based mean force Boltzmann-based or linear potentials are introduced and their corresponding nonlinear potentials are implemented. They are the DIH potential (single-body residue-level Boltzmann-based potential), the DFIRE-SCM potential (two-body residue-level Boltzmann-based potential), the FS potential (two-body atom-level Boltzmann-based potential), the HR potential (two-body residue-level linear potential), and the T32S3 potential (two-body atom-level linear potential). Experiments are performed on well-established decoy sets, including the LKF data set, the CASP7 data set, and the Decoys “R”Us data set. The evaluation metrics include the energy Z score and the ability of each potential to discriminate native structures from a set of decoy structures. Experimental results show that all nonlinear potentials significantly outperform the corresponding Boltzmann-based or linear potentials, and the proposed discriminative framework is effective in developing knowledge

  2. Impact of soft and hard insole density on postural stability in older adults.

    Science.gov (United States)

    Losa Iglesias, Marta Elena; Becerro de Bengoa Vallejo, Ricardo; Palacios Peña, Domingo

    2012-01-01

    A significant predictor of falls in the elderly population is attributed to postural instability. Thus, it is important to identify and implement practical clinical interventions to enhance postural stability in older adults. Shoe insoles have been identified as a mechanism to enhance postural control, and our study aimed to evaluate the impact of 2 shoe insoles on static standing balance in healthy, older adults compared with standing posture while barefoot. We hypothesized that both hard and soft shoe insoles would decrease postural sway compared with the barefoot condition. Indeed, excursion distances and sway areas were reduced, and sway velocity was decreased when wearing insoles. The hard insole was also effective when visual feedback was removed, suggesting that the more rigid an insole, the greater potential reduction in fall risk. Thus, shoe insoles may be a cost-effective, clinical intervention that is easy to implement to reduce the risk of falling in the elderly population. Copyright © 2012 Mosby, Inc. All rights reserved.

  3. A novel method for non-parametric identification of nonlinear restoring forces in nonlinear vibrations from noisy response data: A conservative system

    International Nuclear Information System (INIS)

    Jang, T. S.; Kwon, S. H.; Han, S. L.

    2009-01-01

    A novel procedure is proposed to identify the functional form of nonlinear restoring forces in the nonlinear oscillatory motion of a conservative system. Although the problem of identification has a unique solution, formulation results in a Volterra-type of integral equation of the 'first' kind: the solution lacks stability because the integral equation is the 'first' kind. Thus, the new problem at hand is ill-posed. Inevitable small errors during the identification procedure can make the prediction of nonlinear restoring forces useless. We overcome the difficulty by using a stabilization technique of Landweber's regularization in this study. The capability of the proposed procedure is investigated through numerical examples

  4. Non-linear vibrations induced by fluidelastic forces in tube bundles

    International Nuclear Information System (INIS)

    Langre, E. de; Hadj-Sadok, C.; Beaufils, B.

    1992-01-01

    We present in this paper computations of the response of a loosely supported tube to fluid elastic forces. Several models of forces are considered, including negative damping, coupling forces and Price and Paidoussis' model. Unidirectional and bidirectional motions are studied, special attention being paid to the evolution of dynamic parameters influencing wear and to the changes in the dynamic regimes. The influence of the coefficient of friction is also analysed. A corrective methodology is proposed for the use of the negative damping model in non-linear computations

  5. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics

    Science.gov (United States)

    Güntürkün, Ulaş

    2010-07-01

    This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.

  6. Virtually optimized insoles for offloading the diabetic foot: A randomized crossover study.

    Science.gov (United States)

    Telfer, S; Woodburn, J; Collier, A; Cavanagh, P R

    2017-07-26

    Integration of objective biomechanical measures of foot function into the design process for insoles has been shown to provide enhanced plantar tissue protection for individuals at-risk of plantar ulceration. The use of virtual simulations utilizing numerical modeling techniques offers a potential approach to further optimize these devices. In a patient population at-risk of foot ulceration, we aimed to compare the pressure offloading performance of insoles that were optimized via numerical simulation techniques against shape-based devices. Twenty participants with diabetes and at-risk feet were enrolled in this study. Three pairs of personalized insoles: one based on shape data and subsequently manufactured via direct milling; and two were based on a design derived from shape, pressure, and ultrasound data which underwent a finite element analysis-based virtual optimization procedure. For the latter set of insole designs, one pair was manufactured via direct milling, and a second pair was manufactured through 3D printing. The offloading performance of the insoles was analyzed for forefoot regions identified as having elevated plantar pressures. In 88% of the regions of interest, the use of virtually optimized insoles resulted in lower peak plantar pressures compared to the shape-based devices. Overall, the virtually optimized insoles significantly reduced peak pressures by a mean of 41.3kPa (p<0.001, 95% CI [31.1, 51.5]) for milled and 40.5kPa (p<0.001, 95% CI [26.4, 54.5]) for printed devices compared to shape-based insoles. The integration of virtual optimization into the insole design process resulted in improved offloading performance compared to standard, shape-based devices. ISRCTN19805071, www.ISRCTN.org. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. New approaches and solutions of the nonlinear force-free field

    International Nuclear Information System (INIS)

    Xie Baisong; Yin Xintao; Luo Xia

    2006-01-01

    New approaches to nonlinear force-free field equations are presented and new exact solutions are found analytically. Examples are given and some implications of the results to astrophysical solar plasmas as well as tokamak plasmas are discussed

  8. Parameter sensitivity analysis of nonlinear piezoelectric probe in tapping mode atomic force microscopy for measurement improvement

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Rachael; Nima Mahmoodi, S., E-mail: nmahmoodi@eng.ua.edu [Department of Mechanical Engineering, The University of Alabama, Box 870276, Tuscaloosa, Alabama 35487 (United States)

    2014-02-21

    The equations of motion for a piezoelectric microcantilever are derived for a nonlinear contact force. The analytical expressions for natural frequencies and mode shapes are obtained. Then, the method of multiple scales is used to analyze the analytical frequency response of the piezoelectric probe. The effects of nonlinear excitation force on the microcantilever beam's frequency and amplitude are analytically studied. The results show a frequency shift in the response resulting from the force nonlinearities. This frequency shift during contact mode is an important consideration in the modeling of AFM mechanics for generation of more accurate imaging. Also, a sensitivity analysis of the system parameters on the nonlinearity effect is performed. The results of a sensitivity analysis show that it is possible to choose parameters such that the frequency shift minimizes. Certain parameters such as tip radius, microcantilever beam dimensions, and modulus of elasticity have more influence on the nonlinearity of the system than other parameters. By changing only three parameters—tip radius, thickness, and modulus of elasticity of the microbeam—a more than 70% reduction in nonlinearity effect was achieved.

  9. Oscillation criteria for first-order forced nonlinear difference equations

    OpenAIRE

    Grace Said R; Agarwal Ravi P; Smith Tim

    2006-01-01

    Some new criteria for the oscillation of first-order forced nonlinear difference equations of the form Δx(n)+q1(n)xμ(n+1) = q2(n)xλ(n+1)+e(n), where λ, μ are the ratios of positive odd integers 0 <μ < 1 and λ > 1, are established.

  10. Shoe-Insole Technology for Injury Prevention in Walking

    Directory of Open Access Journals (Sweden)

    Hanatsu Nagano

    2018-05-01

    Full Text Available Impaired walking increases injury risk during locomotion, including falls-related acute injuries and overuse damage to lower limb joints. Gait impairments seriously restrict voluntary, habitual engagement in injury prevention activities, such as recreational walking and exercise. There is, therefore, an urgent need for technology-based interventions for gait disorders that are cost effective, willingly taken-up, and provide immediate positive effects on walking. Gait control using shoe-insoles has potential as an effective population-based intervention, and new sensor technologies will enhance the effectiveness of these devices. Shoe-insole modifications include: (i ankle joint support for falls prevention; (ii shock absorption by utilising lower-resilience materials at the heel; (iii improving reaction speed by stimulating cutaneous receptors; and (iv preserving dynamic balance via foot centre of pressure control. Using sensor technology, such as in-shoe pressure measurement and motion capture systems, gait can be precisely monitored, allowing us to visualise how shoe-insoles change walking patterns. In addition, in-shoe systems, such as pressure monitoring and inertial sensors, can be incorporated into the insole to monitor gait in real-time. Inertial sensors coupled with in-shoe foot pressure sensors and global positioning systems (GPS could be used to monitor spatiotemporal parameters in real-time. Real-time, online data management will enable ‘big-data’ applications to everyday gait control characteristics.

  11. Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems

    Science.gov (United States)

    Razzak, M. A.; Alam, M. Z.; Sharif, M. N.

    2018-03-01

    In this paper, modified multiple time scale (MTS) method is employed to solve strongly nonlinear forced vibration systems. The first-order approximation is only considered in order to avoid complexicity. The formulations and the determination of the solution procedure are very easy and straightforward. The classical multiple time scale (MS) and multiple scales Lindstedt-Poincare method (MSLP) do not give desire result for the strongly damped forced vibration systems with strong damping effects. The main aim of this paper is to remove these limitations. Two examples are considered to illustrate the effectiveness and convenience of the present procedure. The approximate external frequencies and the corresponding approximate solutions are determined by the present method. The results give good coincidence with corresponding numerical solution (considered to be exact) and also provide better result than other existing results. For weak nonlinearities with weak damping effect, the absolute relative error measures (first-order approximate external frequency) in this paper is only 0.07% when amplitude A = 1.5 , while the relative error gives MSLP method is surprisingly 28.81%. Furthermore, for strong nonlinearities with strong damping effect, the absolute relative error found in this article is only 0.02%, whereas the relative error obtained by MSLP method is 24.18%. Therefore, the present method is not only valid for weakly nonlinear damped forced systems, but also gives better result for strongly nonlinear systems with both small and strong damping effect.

  12. Nonlinear force feedback control of piezoelectric-hydraulic pump actuator for automotive transmission shift control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2008-03-01

    In recent years, researchers have investigated the feasibility of utilizing piezoelectric-hydraulic pump based actuation systems for automotive transmission controls. This new concept could eventually reduce the complexity, weight, and fuel consumption of the current transmissions. In this research, we focus on how to utilize this new approach on the shift control of automatic transmissions (AT), which generally requires pressure profiling for friction elements during the operation. To illustrate the concept, we will consider the 1--> 2 up shift control using band brake friction elements. In order to perform the actuation force tracking for AT shift control, nonlinear force feedback control laws are designed based on the sliding mode theory for the given nonlinear system. This paper will describe the modeling of the band brake actuation system, the design of the nonlinear force feedback controller, and simulation and experimental results for demonstration of the new concept.

  13. Topological and statistical properties of nonlinear force-free fields

    Science.gov (United States)

    Mangalam, A.; Prasad, A.

    2018-01-01

    We use our semi-analytic solution of the nonlinear force-free field equation to construct three-dimensional magnetic fields that are applicable to the solar corona and study their statistical properties for estimating the degree of braiding exhibited by these fields. We present a new formula for calculating the winding number and compare it with the formula for the crossing number. The comparison is shown for a toy model of two helices and for realistic cases of nonlinear force-free fields; conceptually the formulae are nearly the same but the resulting distributions calculated for a given topology can be different. We also calculate linkages, which are useful topological quantities that are independent measures of the contribution of magnetic braiding to the total free energy and relative helicity of the field. Finally, we derive new analytical bounds for the free energy and relative helicity for the field configurations in terms of the linking number. These bounds will be of utility in estimating the braided energy available for nano-flares or for eruptions.

  14. Assessing Walking Strategies Using Insole Pressure Sensors for Stroke Survivors.

    Science.gov (United States)

    Munoz-Organero, Mario; Parker, Jack; Powell, Lauren; Mawson, Susan

    2016-10-01

    Insole pressure sensors capture the different forces exercised over the different parts of the sole when performing tasks standing up such as walking. Using data analysis and machine learning techniques, common patterns and strategies from different users to achieve different tasks can be automatically extracted. In this paper, we present the results obtained for the automatic detection of different strategies used by stroke survivors when walking as integrated into an Information Communication Technology (ICT) enhanced Personalised Self-Management Rehabilitation System (PSMrS) for stroke rehabilitation. Fourteen stroke survivors and 10 healthy controls have participated in the experiment by walking six times a distance from chair to chair of approximately 10 m long. The Rivermead Mobility Index was used to assess the functional ability of each individual in the stroke survivor group. Several walking strategies are studied based on data gathered from insole pressure sensors and patterns found in stroke survivor patients are compared with average patterns found in healthy control users. A mechanism to automatically estimate a mobility index based on the similarity of the pressure patterns to a stereotyped stride is also used. Both data gathered from stroke survivors and healthy controls are used to evaluate the proposed mechanisms. The output of trained algorithms is applied to the PSMrS system to provide feedback on gait quality enabling stroke survivors to self-manage their rehabilitation.

  15. Assessing Walking Strategies Using Insole Pressure Sensors for Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Mario Munoz-Organero

    2016-10-01

    Full Text Available Insole pressure sensors capture the different forces exercised over the different parts of the sole when performing tasks standing up such as walking. Using data analysis and machine learning techniques, common patterns and strategies from different users to achieve different tasks can be automatically extracted. In this paper, we present the results obtained for the automatic detection of different strategies used by stroke survivors when walking as integrated into an Information Communication Technology (ICT enhanced Personalised Self-Management Rehabilitation System (PSMrS for stroke rehabilitation. Fourteen stroke survivors and 10 healthy controls have participated in the experiment by walking six times a distance from chair to chair of approximately 10 m long. The Rivermead Mobility Index was used to assess the functional ability of each individual in the stroke survivor group. Several walking strategies are studied based on data gathered from insole pressure sensors and patterns found in stroke survivor patients are compared with average patterns found in healthy control users. A mechanism to automatically estimate a mobility index based on the similarity of the pressure patterns to a stereotyped stride is also used. Both data gathered from stroke survivors and healthy controls are used to evaluate the proposed mechanisms. The output of trained algorithms is applied to the PSMrS system to provide feedback on gait quality enabling stroke survivors to self-manage their rehabilitation.

  16. Measurement agreement between a newly developed sensing insole and traditional laboratory-based method for footstrike pattern detection in runners

    OpenAIRE

    Cheung, Roy T. H.; An, Winko W.; Au, Ivan P. H.; Zhang, Janet H.; Chan, Zoe Y. S.; Man, Alfred; Lau, Fannie O. Y.; Lam, Melody K. Y.; Lau, K. K.; Leung, C. Y.; Tsang, N. W.; Sze, Louis K. Y.; Lam, Gilbert W. K.

    2017-01-01

    This study introduced a novel but simple method to continuously measure footstrike patterns in runners using inexpensive force sensors. Two force sensing resistors were firmly affixed at the heel and second toe of both insoles to collect the time signal of foot contact. A total of 109 healthy young adults (42 males and 67 females) were recruited in this study. They ran on an instrumented treadmill at 0°, +10°, and -10° inclinations and attempted rearfoot, midfoot, and forefoot landings using ...

  17. Studying Maximum Plantar Stress per Insole Design Using Foot CT-Scan Images of Hyperelastic Soft Tissues

    Directory of Open Access Journals (Sweden)

    Ali Sarikhani

    2016-01-01

    Full Text Available The insole shape and the resulting plantar stress distribution have a pivotal impact on overall health. In this paper, by Finite Element Method, maximum stress value and stress distribution of plantar were studied for different insoles designs, which are the flat surface and the custom-molded (conformal surface. Moreover, insole thickness, heel’s height, and different materials were used to minimize the maximum stress and achieve the most uniform stress distribution. The foot shape and its details used in this paper were imported from online CT-Scan images. Results show that the custom-molded insole reduced maximum stress 40% more than the flat surface insole. Upon increase of thickness in both insole types, stress distribution becomes more uniform and maximum stress value decreases up to 10%; however, increase of thickness becomes ineffective above a threshold of 1 cm. By increasing heel height (degree of insole, maximum stress moves from heel to toes and becomes more uniform. Therefore, this scenario is very helpful for control of stress in 0.2° to 0.4° degrees for custom-molded insole and over 1° for flat insole. By changing the material of the insole, the value of maximum stress remains nearly constant. The custom-molded (conformal insole which has 0.5 to 1 cm thickness and 0.2° to 0.4° degrees is found to be the most compatible form for foot.

  18. Equatorial insolation: from precession harmonics to eccentricity frequencies

    Directory of Open Access Journals (Sweden)

    A. Berger

    2006-01-01

    Full Text Available Since the paper by Hays et al. (1976, spectral analyses of climate proxy records provide substantial evidence that a fraction of the climatic variance is driven by insolation changes in the frequency ranges of obliquity and precession variations. However, it is the variance components centered near 100 kyr which dominate most Upper Pleistocene climatic records, although the amount of insolation perturbation at the eccentricity driven periods close to 100-kyr (mainly the 95 kyr- and 123 kyr-periods is much too small to cause directly a climate change of ice-age amplitude. Many attempts to find an explanation to this 100-kyr cycle in climatic records have been made over the last decades. Here we show that the double maximum which characterizes the daily irradiation received in tropical latitudes over the course of the year is at the origin in equatorial insolation of not only strong 95 kyr and 123 kyr periods related to eccentricity, but also of a 11-kyr and a 5.5-kyr periods related to precession.

  19. The Precession Index and a Nonlinear Energy Balance Climate Model

    Science.gov (United States)

    Rubincam, David

    2004-01-01

    A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold

  20. Analysis on Forced Vibration of Thin-Wall Cylindrical Shell with Nonlinear Boundary Condition

    Directory of Open Access Journals (Sweden)

    Qiansheng Tang

    2016-01-01

    Full Text Available Forced vibration of thin-wall cylindrical shell under nonlinear boundary condition was discussed in this paper. The nonlinear boundary was modeled as supported clearance in one end of shell and the restraint was assumed as linearly elastic in the radial direction. Based on Sanders’ shell theory, Lagrange equation was utilized to derive the nonlinear governing equations of cylindrical shell. The displacements in three directions were represented by beam functions and trigonometric functions. In the study of nonlinear dynamic responses of thin-wall cylindrical shell with supported clearance under external loads, the Newmark method is used to obtain time history, frequency spectrum plot, phase portraits, Poincare section, bifurcation diagrams, and three-dimensional spectrum plot with different parameters. The effects of external loads, supported clearance, and support stiffness on nonlinear dynamics behaviors of cylindrical shell with nonlinear boundary condition were discussed.

  1. Effect of custom-made and prefabricated insoles on plantar loading parameters during running with and without fatigue.

    Science.gov (United States)

    Lucas-Cuevas, Angel Gabriel; Pérez-Soriano, Pedro; Llana-Belloch, Salvador; Macián-Romero, Cecili; Sánchez-Zuriaga, Daniel

    2014-01-01

    Controversy exists whether custom-made insoles are more effective in reducing plantar loading compared to prefabricated insoles. Forty recreational athletes ran using custom-made, prefabricated, and the original insoles of their running shoes, at rest and after a fatigue run. Contact time, stride rate, and plantar loading parameters were measured. Neither the insole conditions nor the fatigue state modified contact time and stride rate. Addressing prevention of running injuries, post-fatigue loading values are of great interest. Custom-made insoles reduced the post-fatigue loading under the hallux (92 vs. 130 kPa, P heel compared to the prefabricated insoles. Finally, fatigue state did not influence plantar loading regardless the insole condition. In long-distance races, even a slight reduction in plantar loading at each foot strike may suppose a significant decrease in the overall stress experienced by the foot, and therefore the use of insoles may be an important protective mechanism for plantar overloading.

  2. Force Control and Nonlinear Master-Slave Force Profile to Manage an Admittance Type Multi-Fingered Haptic User Interface

    Energy Technology Data Exchange (ETDEWEB)

    Anthony L. Crawford

    2012-08-01

    Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in remote and/or hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space to name a few. In order to achieve this end the research presented in this paper has developed an admittance type exoskeleton like multi-fingered haptic hand user interface that secures the user’s palm and provides 3-dimensional force feedback to the user’s fingertips. Atypical to conventional haptic hand user interfaces that limit themselves to integrating the human hand’s characteristics just into the system’s mechanical design this system also perpetuates that inspiration into the designed user interface’s controller. This is achieved by manifesting the property differences of manipulation and grasping activities as they pertain to the human hand into a nonlinear master-slave force relationship. The results presented in this paper show that the admittance-type system has sufficient bandwidth that it appears nearly transparent to the user when the user is in free motion and when the system is subjected to a manipulation task, increased performance is achieved using the nonlinear force relationship compared to the traditional linear scaling techniques implemented in the vast majority of systems.

  3. Using an optimization approach to design an insole for lowering plantar fascia stress--a finite element study.

    Science.gov (United States)

    Hsu, Yu-Chun; Gung, Yih-Wen; Shih, Shih-Liang; Feng, Chi-Kuang; Wei, Shun-Hwa; Yu, Chung-Huang; Chen, Chen-Sheng

    2008-08-01

    Plantar heel pain is a commonly encountered orthopedic problem and is most often caused by plantar fasciitis. In recent years, different shapes of insole have been used to treat plantar fasciitis. However, little research has been focused on the junction stress between the plantar fascia and the calcaneus when wearing different shapes of insole. Therefore, this study aimed to employ a finite element (FE) method to investigate the relationship between different shapes of insole and the junction stress, and accordingly design an optimal insole to lower fascia stress.A detailed 3D foot FE model was created using ANSYS 9.0 software. The FE model calculation was compared to the Pedar device measurements to validate the FE model. After the FE model validation, this study conducted parametric analysis of six different insoles and used optimization analysis to determine the optimal insole which minimized the junction stress between plantar fascia and calcaneus. This FE analysis found that the plantar fascia stress and peak pressure when using the optimal insole were lower by 14% and 38.9%, respectively, than those when using the flat insole. In addition, the stress variation in plantar fascia was associated with the different shapes of insole.

  4. Nonlinear dynamic analysis of atomic force microscopy under deterministic and random excitation

    International Nuclear Information System (INIS)

    Pishkenari, Hossein Nejat; Behzad, Mehdi; Meghdari, Ali

    2008-01-01

    The atomic force microscope (AFM) system has evolved into a useful tool for direct measurements of intermolecular forces with atomic-resolution characterization that can be employed in a broad spectrum of applications. This paper is devoted to the analysis of nonlinear behavior of amplitude modulation (AM) and frequency modulation (FM) modes of atomic force microscopy. For this, the microcantilever (which forms the basis for the operation of AFM) is modeled as a single mode approximation and the interaction between the sample and cantilever is derived from a van der Waals potential. Using perturbation methods such as averaging, and Fourier transform nonlinear equations of motion are analytically solved and the advantageous results are extracted from this nonlinear analysis. The results of the proposed techniques for AM-AFM, clearly depict the existence of two stable and one unstable (saddle) solutions for some of exciting parameters under deterministic vibration. The basin of attraction of two stable solutions is different and dependent on the exciting frequency. From this analysis the range of the frequency which will result in a unique periodic response can be obtained and used in practical experiments. Furthermore the analytical responses determined by perturbation techniques can be used to detect the parameter region where the chaotic motion is avoided. On the other hand for FM-AFM, the relation between frequency shift and the system parameters can be extracted and used for investigation of the system nonlinear behavior. The nonlinear behavior of the oscillating tip can easily explain the observed shift of frequency as a function of tip sample distance. Also in this paper we have investigated the AM-AFM system response under a random excitation. Using two different methods we have obtained the statistical properties of the tip motion. The results show that we can use the mean square value of tip motion to image the sample when the excitation signal is random

  5. Nonlinear dynamic analysis of atomic force microscopy under deterministic and random excitation

    Energy Technology Data Exchange (ETDEWEB)

    Pishkenari, Hossein Nejat [Center of Excellence in Design, Robotics and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Behzad, Mehdi [Center of Excellence in Design, Robotics and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: m_behzad@sharif.edu; Meghdari, Ali [Center of Excellence in Design, Robotics and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2008-08-15

    The atomic force microscope (AFM) system has evolved into a useful tool for direct measurements of intermolecular forces with atomic-resolution characterization that can be employed in a broad spectrum of applications. This paper is devoted to the analysis of nonlinear behavior of amplitude modulation (AM) and frequency modulation (FM) modes of atomic force microscopy. For this, the microcantilever (which forms the basis for the operation of AFM) is modeled as a single mode approximation and the interaction between the sample and cantilever is derived from a van der Waals potential. Using perturbation methods such as averaging, and Fourier transform nonlinear equations of motion are analytically solved and the advantageous results are extracted from this nonlinear analysis. The results of the proposed techniques for AM-AFM, clearly depict the existence of two stable and one unstable (saddle) solutions for some of exciting parameters under deterministic vibration. The basin of attraction of two stable solutions is different and dependent on the exciting frequency. From this analysis the range of the frequency which will result in a unique periodic response can be obtained and used in practical experiments. Furthermore the analytical responses determined by perturbation techniques can be used to detect the parameter region where the chaotic motion is avoided. On the other hand for FM-AFM, the relation between frequency shift and the system parameters can be extracted and used for investigation of the system nonlinear behavior. The nonlinear behavior of the oscillating tip can easily explain the observed shift of frequency as a function of tip sample distance. Also in this paper we have investigated the AM-AFM system response under a random excitation. Using two different methods we have obtained the statistical properties of the tip motion. The results show that we can use the mean square value of tip motion to image the sample when the excitation signal is random.

  6. Dynamics of excited instantons in the system of forced Gursey nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Aydogmus, F., E-mail: fatma.aydogmus@gmail.com [Istanbul University, Department of Physics, Faculty of Science (Turkey)

    2015-02-15

    The Gursey model is a 4D conformally invariant pure fermionic model with a nonlinear spinor self-coupled term. Gursey proposed his model as a possible basis for a unitary description of elementary particles following the “Heisenberg dream.” In this paper, we consider the system of Gursey nonlinear differential equations (GNDEs) formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey instantons can be affected by excitations. For this, the regular and chaotic numerical solutions of forced GNDEs are investigated by constructing their Poincaré sections in phase space. A hierarchical cluster analysis method for investigating the forced GNDEs is also presented.

  7. Nonlinear force propagation, anisotropic stiffening and non-affine relaxation in a model cytoskeleton

    Science.gov (United States)

    Mizuno, Daisuke; Head, David; Ikebe, Emi; Nakamasu, Akiko; Kinoshita, Suguru; Peijuan, Zhang; Ando, Shoji

    2013-03-01

    Forces are generated heterogeneously in living cells and transmitted through cytoskeletal networks that respond highly non-linearly. Here, we carry out high-bandwidth passive microrheology on vimentin networks reconstituted in vitro, and observe the nonlinear mechanical response due to forces propagating from a local source applied by an optical tweezer. Since the applied force is constant, the gel becomes equilibrated and the fluctuation-dissipation theorem can be employed to deduce the viscoelasticity of the local environment from the thermal fluctuations of colloidal probes. Our experiments unequivocally demonstrate the anisotropic stiffening of the cytoskeletal network behind the applied force, with greater stiffening in the parallel direction. Quantitative agreement with an affine continuum model is obtained, but only for the response at certain frequency ~ 10-1000 Hz which separates the high-frequency power law and low-frequency elastic behavior of the network. We argue that the failure of the model at lower frequencies is due to the presence of non-affinity, and observe that zero-frequency changes in particle separation can be fitted when an independently-measured, empirical nonaffinity factor is applied.

  8. Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.

    Science.gov (United States)

    Ovesy, Marzieh; Nazari, Mohammad Ali; Mahdavian, Mohammad

    2016-02-01

    In the current research, the muscle equivalent linear damping coefficient which is introduced as the force-velocity relation in a muscle model and the corresponding time constant are investigated. In order to reach this goal, a 1D skeletal muscle model was used. Two characterizations of this model using a linear force-stiffness relationship (Hill-type model) and a nonlinear one have been implemented. The OpenSim platform was used for verification of the model. The isometric activation has been used for the simulation. The equivalent linear damping and the time constant of each model were extracted by using the results obtained from the simulation. The results provide a better insight into the characteristics of each model. It is found that the nonlinear models had a response rate closer to the reality compared to the Hill-type models.

  9. Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation.

    Science.gov (United States)

    He, Feng; Shakun, Jeremy D; Clark, Peter U; Carlson, Anders E; Liu, Zhengyu; Otto-Bliesner, Bette L; Kutzbach, John E

    2013-02-07

    According to the Milankovitch theory, changes in summer insolation in the high-latitude Northern Hemisphere caused glacial cycles through their impact on ice-sheet mass balance. Statistical analyses of long climate records supported this theory, but they also posed a substantial challenge by showing that changes in Southern Hemisphere climate were in phase with or led those in the north. Although an orbitally forced Northern Hemisphere signal may have been transmitted to the Southern Hemisphere, insolation forcing can also directly influence local Southern Hemisphere climate, potentially intensified by sea-ice feedback, suggesting that the hemispheres may have responded independently to different aspects of orbital forcing. Signal processing of climate records cannot distinguish between these conditions, however, because the proposed insolation forcings share essentially identical variability. Here we use transient simulations with a coupled atmosphere-ocean general circulation model to identify the impacts of forcing from changes in orbits, atmospheric CO(2) concentration, ice sheets and the Atlantic meridional overturning circulation (AMOC) on hemispheric temperatures during the first half of the last deglaciation (22-14.3 kyr BP). Although based on a single model, our transient simulation with only orbital changes supports the Milankovitch theory in showing that the last deglaciation was initiated by rising insolation during spring and summer in the mid-latitude to high-latitude Northern Hemisphere and by terrestrial snow-albedo feedback. The simulation with all forcings best reproduces the timing and magnitude of surface temperature evolution in the Southern Hemisphere in deglacial proxy records. AMOC changes associated with an orbitally induced retreat of Northern Hemisphere ice sheets is the most plausible explanation for the early Southern Hemisphere deglacial warming and its lead over Northern Hemisphere temperature; the ensuing rise in atmospheric CO(2

  10. Ocean-atmosphere forcing of South American tropical paleoclimate, LGM to present

    Science.gov (United States)

    Baker, P. A.; Fritz, S. C.; Dwyer, G. S.; Rigsby, C. A.; Silva, C. G.; Burns, S. J.

    2012-12-01

    Because of many recent terrestrial paleoclimatic and marine paleoceanographic records, late Quaternary South American tropical paleoclimate is as well understood as that anywhere in the world. While lessons learned from the recent instrumental record of climate are informative, this record is too short to capture much of the lower frequency variability encountered in the paleoclimate records and much of the observed paleoclimate is without modern analogue. This paleoclimate is known to be regionally variable with significant differences both north and south of the equator and between the western high Andes and eastern lowlands of the Amazon and Nordeste Brazil. Various extrinsic forcing mechanisms affected climate throughout the period, including global concentrations of GHGs, Northern Hemisphere ice sheet forcing, seasonal insolation forcing of the South American summer monsoon (SASM), millennial-scale Atlantic forcing, and Pacific forcing of the large-scale Walker circulation. The magnitude of the climate response to these forcings varied temporally, largely because of the varying amplitude of the forcing itself. For example, during the last glacial, large-amplitude north Atlantic forcing during Heinrich 1 and the LGM itself, led to wet (dry) conditions south (north) of the equator. During the Holocene, Atlantic forcing was lower amplitude, thus seasonal insolation forcing generally predominated with a weaker-than-normal SASM during the early Holocene resulting in dry conditions in the south-western tropics and wet conditions in the eastern lowlands and Nordeste; in the late Holocene seasonal insolation reached a maximum in the southern tropics and climate conditions reversed.

  11. Reflections on the nature of non-linear responses of the climate to forcing

    Science.gov (United States)

    Ditlevsen, Peter

    2017-04-01

    On centennial to multi-millennial time scales the paleoclimatic record shows that climate responds in a very non-linear way to the external forcing. Perhaps most puzzling is the change in glacial period duration at the Middle Pleistocene Transition. From a dynamical systems perspective, this could be a change in frequency locking between the orbital forcing and the climatic response or it could be a non-linear resonance phenomenon. In both cases the climate system shows a non-trivial oscillatory behaviour. From the records it seems that this behaviour can be described by an effective dynamics on a low-dimensional slow manifold. These different possible dynamical behaviours will be discussed. References: Arianna Marchionne, Peter Ditlevsen, and Sebastian Wieczorek, "Three types of nonlinear resonances", arXiv:1605.00858 Peter Ashwin and Peter Ditlevsen, "The middle Pleistocene transition as a generic bifurcation on a slow manifold", Climate Dynamics, 45, 2683, 2015. Peter D. Ditlevsen, "The bifurcation structure and noise assisted transitions in the Pleistocene glacial cycles", Paleoceanography, 24, PA3204, 2009

  12. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    Science.gov (United States)

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  13. Nonlinear vibration of rectangular atomic force microscope cantilevers by considering the Hertzian contact theory

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, A., E-mail: a_sadeghi@srbiau.ac.ir [Islamic Azad Univ., Dept. of Mechanical and Aerospace Engineering, Science and Research Branch, Tehran (Iran, Islamic Republic of); Zohoor, H. [Sharif Univ. of Technology, Center of Excellence in Design, Robotics and Automation, Tehran (Iran, Islamic Republic of); The Academy of Sciences if I.R. Iran (Iran, Islamic Republic of)

    2010-05-15

    The nonlinear flexural vibration for a rectangular atomic force microscope cantilever is investigated by using Timoshenko beam theory. In this paper, the normal and tangential tip-sample interaction forces are found from a Hertzian contact model and the effects of the contact position, normal and lateral contact stiffness, tip height, thickness of the beam, and the angle between the cantilever and the sample surface on the nonlinear frequency to linear frequency ratio are studied. The differential quadrature method is employed to solve the nonlinear differential equations of motion. The results show that softening behavior is seen for most cases and by increasing the normal contact stiffness, the frequency ratio increases for the first mode, but for the second mode, the situation is reversed. The nonlinear-frequency to linear-frequency ratio increases by increasing the Timoshenko beam parameter, but decreases by increasing the contact position for constant amplitude for the first and second modes. For the first mode, the frequency ratio decreases by increasing both of the lateral contact stiffness and the tip height, but increases by increasing the angle α between the cantilever and sample surface. (author)

  14. The Effect of Arch Height and Material Hardness of Personalized Insole on Correction and Tissues of Flatfoot

    Directory of Open Access Journals (Sweden)

    Shonglun Su

    2017-01-01

    Full Text Available Flat foot is one of the common deformities in the youth population, seriously affecting the weight supporting and daily exercising. However, there is lacking of quantitative data relative to material selection and shape design of the personalized orthopedic insole. This study was to evaluate the biomechanical effects of material hardness and support height of personalized orthopedic insole on foot tissues, by in vivo experiment and finite element modeling. The correction of arch height increased with material hardness and support height. The peak plantar pressure increased with the material hardness, and these values by wearing insoles of 40° were apparently higher than the bare feet condition. Harder insole material results in higher stress in the joint and ligament stress than softer material. In the calcaneocuboid joint, the stress increased with the arch height of insoles. The material hardness did not apparently affect the stress in the ankle joints, but the support heights of insole did. In general, insole material and support design are positively affecting the correction of orthopedic insole, but negatively resulting in unreasonable stress on the stress in the joint and ligaments. There should be an integration of improving correction and reducing stress in foot tissues.

  15. Nonlinear 2D arm dynamics in response to continuous and pulse-shaped force perturbations.

    Science.gov (United States)

    Happee, Riender; de Vlugt, Erwin; van Vliet, Bart

    2015-01-01

    Ample evidence exists regarding the nonlinearity of the neuromuscular system but linear models are widely applied to capture postural dynamics. This study quantifies the nonlinearity of human arm postural dynamics applying 2D continuous force perturbations (0.2-40 Hz) inducing three levels of hand displacement (5, 15, 45 mm RMS) followed by force-pulse perturbations inducing large hand displacements (up to 250 mm) in a position task (PT) and a relax task (RT) recording activity of eight shoulder and elbow muscles. The continuous perturbation data were used to analyze the 2D endpoint dynamics in the frequency domain and to identify reflexive and intrinsic parameters of a linear neuromuscular shoulder-elbow model. Subsequently, it was assessed to what extent the large displacements in response to force pulses could be predicted from the 'small amplitude' linear neuromuscular model. Continuous and pulse perturbation responses with varying amplitudes disclosed highly nonlinear effects. In PT, a larger continuous perturbation induced stiffening with a factor of 1.5 attributed to task adaptation evidenced by increased co-contraction and reflexive activity. This task adaptation was even more profound in the pulse responses where reflexes and displacements were strongly affected by the presence and amplitude of preceding continuous perturbations. In RT, a larger continuous perturbation resulted in yielding with a factor of 3.8 attributed to nonlinear mechanical properties as no significant reflexive activity was found. Pulse perturbations always resulted in yielding where a model fitted to the preceding 5-mm continuous perturbations predicted only 37% of the recorded peak displacements in RT and 79% in PT. This demonstrates that linear neuromuscular models, identified using continuous perturbations with small amplitudes, strongly underestimate displacements in pulse-shaped (e.g., impact) loading conditions. The data will be used to validate neuromuscular models including

  16. Effects of long-term stimulation of textured insoles on postural control in health elderly.

    Science.gov (United States)

    Annino, Giuseppe; Palazzo, Francesco; Alwardat, Mohammad S; Manzi, Vincenzo; Lebone, Pietro; Tancredi, Virginia; Sinibaldi Salimei, Paola; Caronti, Alfio; Panzarino, Michele; Padua, Elvira

    2018-04-01

    The aim of this study was to confirm the effects of long term (chronic) stimulating surface (textured insole) on body balance of elderly people. Twenty-four healthy elderly individuals were randomly distributed in two groups: control and experimental (67.75±6.04 years, 74.55±12.14 kg, 163.7±8.55 cm, 27.75±3.04 kg/m2). Over one month, control group (CG) used smooth insoles and the experimental group (ExG) used textured insoles every day. Velocity net (Vnet), anteroposterior (VA/P), mediolateral (VM/L) and sway path of CoP were assessed in different eye conditions before and after the experimental procedure. A mixed between-within subject ANOVA was conducted to assess the impact of soft and textured insoles and two visual conditions (vision vs. no vision) across two time periods (α≤0.05). The results showed any statistical difference between groups in each parameter assessed in this study. CoP, Vnet and VM/L in the experimental group showed a statistically significant effect of textured insoles only without vision (CoP: P=0.002; η2=0.35), Vnet P=0.02; η2=0.24, VM/L P=0.04; η2=0.177) whereas VA/P showed no statistically significant effect in the same group and condition. There was no significant effect in Vnet, VA/P, VM/L and COP in control group that used smooth insole for both eye conditions. The results confirm that postural stability improved in healthy elderly individuals, increasing somatosensory information's from feet plantar mechanoreceptors. Long term stimulation with textured insoles decreased CoP, Vnet and VM/L with eyes closed.

  17. Estimating method for insolation installed to the north side; Kitagawa keishamen nissharyo no suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, H; Matsuda, N [Yazaki Corp., Tokyo (Japan)

    1996-10-27

    So as to deal with the trend of installing photovoltaic modules on the north side, a study was made for an expanded application of the insolation data published by Japan Weather Association (which do not include data of insolation on the north side). On the basis of the Association data of the daily amount of insolation on the horizontal plane for the same month and spot, insolation quantity was calculated for every hour for a given azimuth (including the north plane) and angle of inclination by use of a program that had already been developed. With the angle of inclination serving as the parameter, insolation quantities were plotted on the ordinate and azimuths on the abscissa. Although there was difference in absolute value between the Association data and calculated data, supposition was made that the two curves were alike, and this enabled estimation based on the Association data to be expanded to apply to the north side inclined surfaces. It was verified that there was excellent agreement between the Association data curve and calculated data curve in the case of observation for angles not larger than 60{degree} at Kochi, Shizuoka, and Kyoto. Larger angles accompany some error in insolation quantities on inclined surfaces, but this was not so serious as to impede the application of the method. North plane coefficients were determined for the above three spots and insolation quantities on north side inclined surfaces (30{degree} and 60{degree}) were measured. Results of calculations to be carried out for all the 225 spots will be released. 1 ref., 8 figs., 2 tabs.

  18. Increased insolation threshold for runaway greenhouse processes on Earth-like planets.

    Science.gov (United States)

    Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée

    2013-12-12

    The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can 'run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m(-2), which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.

  19. The Relationship between Stature and Insolation: Evidence from Soldiers and Prisoners

    OpenAIRE

    Scott A. Carson

    2009-01-01

    Nineteenth century white US statures varied with nutrition, disease exposure, and the physical environment. An additional explanation for stature growth is vitamin D production. Vitamin D is produced internally by the synthesis of cholesterol and sunlight in the epidermis. However, studies that link stature to insolation and vitamin D production rely on only one comprehensive data set. To test the relationship between insolation and stature further, this study broadens the sample to include b...

  20. Effects of orthopedic insoles on static balance of older adults wearing thick socks.

    Science.gov (United States)

    Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun

    2018-06-01

    The wearing of socks and insoles may affect the ability of the foot to detect tactile input influencing postural balance. The aim of this study was to investigate whether (1) thick socks adversely affected the elderly postural balance and (2) orthopedic insoles could improve the elderly postural balance while wearing thick socks. Repeated-measures study design. In total, 14 healthy older adults were recruited. A monofilament test was conducted to evaluate foot plantar sensation with and without thick socks. Subjects then performed the Romberg tests under three conditions: (1) barefoot, (2) with socks only, and (3) with both socks and insoles. Postural balance was assessed by measuring the center of pressure movement during standing in each experimental condition. Thick socks significantly decreased the monofilament score ( p thick socks ( p thick socks reduces plantar pressure sensitivity and increases postural sway which may increase risk of falls. Orthopedic insoles and footwear with similar design could potentially be a cost-effective method in maintaining postural balance when wearing thick socks.

  1. Growth and wall-transpiration control of nonlinear unsteady Görtler vortices forced by free-stream vortical disturbances

    Science.gov (United States)

    Marensi, Elena; Ricco, Pierre

    2017-11-01

    The generation, nonlinear evolution, and wall-transpiration control of unsteady Görtler vortices in an incompressible boundary layer over a concave plate is studied theoretically and numerically. Görtler rolls are initiated and driven by free-stream vortical perturbations of which only the low-frequency components are considered because they penetrate the most into the boundary layer. The formation and development of the disturbances are governed by the nonlinear unsteady boundary-region equations with the centrifugal force included. These equations are subject to appropriate initial and outer boundary conditions, which account for the influence of the upstream and free-stream forcing in a rigorous and mutually consistent manner. Numerical solutions show that the stabilizing effect on nonlinearity, which also occurs in flat-plate boundary layers, is significantly enhanced in the presence of centrifugal forces. Sufficiently downstream, the nonlinear vortices excited at different free-stream turbulence intensities Tu saturate at the same level, proving that the initial amplitude of the forcing becomes unimportant. At low Tu, the disturbance exhibits a quasi-exponential growth with the growth rate being intensified for more curved plates and for lower frequencies. At higher Tu, in the typical range of turbomachinery applications, the Görtler vortices do not undergo a modal stage as nonlinearity saturates rapidly, and the wall curvature does not affect the boundary-layer response. Good quantitative agreement with data from direct numerical simulations and experiments is obtained. Steady spanwise-uniform and spanwise-modulated zero-mass-flow-rate wall transpiration is shown to attenuate the growth of the Görtler vortices significantly. A novel modified version of the Fukagata-Iwamoto-Kasagi identity, used for the first time to study a transitional flow, reveals which terms in the streamwise momentum balance are mostly affected by the wall transpiration, thus

  2. Does Wearing Textured Insoles during Non-class Time Improve Proprioception in Professional Dancers?

    Science.gov (United States)

    Steinberg, N; Tirosh, O; Adams, R; Karin, J; Waddington, G

    2015-11-01

    This study sought to determine whether textured insoles inserted in the sports shoes of young dancers improved their inversion and eversion ankle movement discrimination. 26 ballet dancers (14 female, 12 male) from the Australian Ballet School, ages 14-19 years, were divided into 2 groups according to sex and class levels. During the first 4 weeks, the first intervention group (GRP1) was asked to wear textured insoles in their sports shoes during non-class periods, and the second intervention group (GRP2) followed standard practice. In the next 4 weeks, GRP2 was asked to wear the textured insoles and GRP1 did not wear the textured insoles. Participants were tested pre-intervention, after 4 weeks, and at 8 weeks for both inversion and eversion ankle discrimination. In both inversion and eversion testing positions, interaction was found between the 2 groups and the 3 testing times (p<0.001), with significant differences between the first testing and the second testing (p=0.038 and p=0.019, respectively), and between the third testing and the second testing (p=0.003 and p=0.029, respectively). In conclusion, the stimulation to the proprioceptive system arising from textured insoles worn for 4 weeks was sufficient to improve the ankle proprioception of ballet dancers, in both inversion and eversion movements. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Geostationary Surface and Insolation Products (GSIP), Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Geostationary Surface and Insolation Products (GSIP) Version 3 contains upwelling and downwelling shortwave (0.2-4.0 um) and visible (0.4-0.7 um) radiative...

  4. Response statistics of rotating shaft with non-linear elastic restoring forces by path integration

    Science.gov (United States)

    Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael

    2017-07-01

    Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.

  5. GOES Surface and Insolation Products (GSIP), Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Version 2 of the GOES Surface and Insolation Products (GSIP) is a high spatial resolution (1/8 x 1/8 degrees) solar radiation product estimated from the GOES-East...

  6. Analytical Model of the Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions for Various Acoustic-Atomic Force Microscopies

    Science.gov (United States)

    Cantrell, John H., Jr.; Cantrell, Sean A.

    2008-01-01

    A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.

  7. Numerical simulation of nonlinear wave force on a quasi-ellipse caisson

    Science.gov (United States)

    Wang, Yongxue; Ren, Xiaozhong; Wang, Guoyu

    2011-09-01

    A three dimensional numerical model of nonlinear wave action on a quasi-ellipse caisson in a time domain was developed in this paper. Navier-Stokes equations were solved by the finite difference method, and the volume of fluid (VOF) method was employed to trace the free surface. The partial cell method was used to deal with the irregular boundary typical of this type of problem during first-time wave interaction with the structure, and a satisfactory result was obtained. The numerical model was verified and used to investigate the effects of the relative wave height H/d, relative caisson width kD, and relative length-width ratio B/D on the wave forces of the quasi-ellipse caisson. It was shown that the relative wave height H/d has a significant effect on the wave forces of the caisson. Compared with the non-dimensional inline wave force, the relative length-width ratio B/D was shown to have significant influence on the non-dimensional transverse wave force.

  8. A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forces

    International Nuclear Information System (INIS)

    Eslami, Sohrab; Jalili, Nader

    2012-01-01

    Precise and accurate representation of an Atomic Force Microscopy (AFM) system is essential in studying the effects of boundary interaction forces present between the probe's tip and the sample. In this paper, a comprehensive analytical model for the AFM system utilizing a distributed-parameters based approach is proposed. More specifically, we consider two important attributes of these systems; namely the rotary inertia and shear deformation when compared with the Euler–Bernoulli beam theory. Moreover, a comprehensive nonlinear interaction force is assumed between probe's and sample in order to reveal the response of the system more realistically. This nanoscale interaction force is based on a general form consisting of both attractive and repulsive components as well as a function of the tip-sample distance and the microcantilever's base and sample oscillations. Mechanical properties of the sample could interact with the nanomechanical coupling field between the probe' tip and sample and be implemented in studying the composition information of the sample and the ultra-small features inside it. Therefore, by modulating the dynamics of the AFM system such as the driving amplitude of the microcantilever the procedure for the subsurface imaging is described. The presented approach here could be implemented for designing the AFM probes by examining the tip-sample interaction forces dominant by the van der Waals forces. Several numerical case studies are presented and the force–distance diagram reveals that the proposed nonlinear nanomechanical force along with the distributed-parameters model for the microcantilever is able to fulfill the mechanics of the Lennard–Jones potential. -- Highlights: ► We present a comprehensive distributed-parameters model for AFM microcantilever. ► Assuming a nonlinear and implicit interaction force between tip and sample. ► Timoshenko beam is compared with the Euler–Bernoulli having the same force model. ► Frequency

  9. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    Science.gov (United States)

    González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José

    2015-01-01

    A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences. PMID:26184199

  10. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    Directory of Open Access Journals (Sweden)

    Iván González

    2015-07-01

    Full Text Available A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences.

  11. Development of inexpensive prosthetic feet for high-heeled shoes using simple shoe insole model.

    Science.gov (United States)

    Meier, Margrit R; Tucker, Kerice A; Hansen, Andrew H

    2014-01-01

    The large majority of prosthetic feet are aimed at low-heeled shoes, with a few models allowing a heel height of up to 5 cm. However, a survey by the American Podiatric Medical Association indicates that most women wear heels over 5 cm; thus, current prosthetic feet limit most female prosthesis users in their choice. Some prosthetic foot components are heel-height adjustable; however, their plantar surface shapes do not change to match the insole shapes of the shoes with different heel heights. The aims of the study were therefore (1) to develop a model that allows prediction of insole shape for various heel height shoes in combination with different shoe sizes and (2) to develop and field-test low-cost prototypes of prosthetic feet whose insole shapes were based on the new model. An equation was developed to calculate insole shapes independent of shoe size. Field testing of prototype prosthetic feet fabricated based on the equation was successful and demonstrated the utility of the equation.

  12. Robust approach to maximize the range and accuracy of force application in atomic force microscopes with nonlinear position-sensitive detectors

    International Nuclear Information System (INIS)

    Silva, E C C M; Vliet, K J van

    2006-01-01

    The atomic force microscope is used increasingly to investigate the mechanical properties of materials via sample displacement under an applied force. However, both the extent of forces attainable and the accuracy of those forces measurements are significantly limited by the optical lever configuration that is commonly used to infer nanoscale deflection of the cantilever. We present a robust and general approach to characterize and compensate for the nonlinearity of the position-sensitive optical device via data processing, requiring no modification of existing instrumentation. We demonstrate that application of this approach reduced the maximum systematic error on the gradient of a force-displacement response from 50% to 5%, and doubled the calibrated force application range. Finally, we outline an experimental protocol that optimizes the use of the quasi-linear range of the most commonly available optical feedback configurations and also accounts for the residual systematic error, allowing the user to benefit from the full detection range of these indirect force sensors

  13. Nonlinear Modeling of Forced Magnetic Reconnection with Transient Perturbations

    Science.gov (United States)

    Beidler, Matthew T.; Callen, James D.; Hegna, Chris C.; Sovinec, Carl R.

    2017-10-01

    Externally applied 3D magnetic fields in tokamaks can penetrate into the plasma and lead to forced magnetic reconnection, and hence magnetic islands, on resonant surfaces. Analytic theory has been reasonably successful in describing many aspects of this paradigm with regard to describing the time asymptotic-steady state. However, understanding the nonlinear evolution into a low-slip, field-penetrated state, especially how MHD events such as sawteeth and ELMs precipitate this transition, is in its early development. We present nonlinear computations employing the extended-MHD code NIMROD, building on previous work by incorporating a temporally varying external perturbation as a simple model for an MHD event that produces resonant magnetic signals. A parametric series of proof-of-principle computations and accompanying analytical theory characterize the transition into a mode-locked state with an emphasis on detailing the temporal evolution properties. Supported by DOE OFES Grants DE-FG02-92ER54139, DE-FG02-86ER53218, and the U.S. DOE FES Postdoctoral Research program administered by ORISE and managed by ORAU under DOE contract DE-SC0014664.

  14. A calibrated, high-resolution goes satellite solar insolation product for a climatology of Florida evapotranspiration

    Science.gov (United States)

    Paech, S.J.; Mecikalski, J.R.; Sumner, D.M.; Pathak, C.S.; Wu, Q.; Islam, S.; Sangoyomi, T.

    2009-01-01

    Estimates of incoming solar radiation (insolation) from Geostationary Operational Environmental Satellite observations have been produced for the state of Florida over a 10-year period (1995-2004). These insolation estimates were developed into well-calibrated half-hourly and daily integrated solar insolation fields over the state at 2 km resolution, in addition to a 2-week running minimum surface albedo product. Model results of the daily integrated insolation were compared with ground-based pyranometers, and as a result, the entire dataset was calibrated. This calibration was accomplished through a three-step process: (1) comparison with ground-based pyranometer measurements on clear (noncloudy) reference days, (2) correcting for a bias related to cloudiness, and (3) deriving a monthly bias correction factor. Precalibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m-2/day (13%). Calibration reduced errors to 1.7 MJ m -2/day (10%), and also removed temporal-related, seasonal-related, and satellite sensor-related biases. The calibrated insolation dataset will subsequently be used by state of Florida Water Management Districts to produce statewide, 2-km resolution maps of estimated daily reference and potential evapotranspiration for water management-related activities. ?? 2009 American Water Resources Association.

  15. Higher order terms of the nonlinear forces in plasmas with collisions at laser interaction

    International Nuclear Information System (INIS)

    Kentwell, G.W.; Hora, H.

    1980-01-01

    The evaluation of the general expression of the nonlinear force of laser-plasma interaction showed discrepancies depending on the assumptions of the phase and collisions in the expressions used for E and H. While the first order terms of the derivations are remaining unchanged, new third order terms are found for the case of perpendicular incidence without collisions. With collisions, the additional non-pondermotive terms are derived to be more general than known before. It is then possible to evaluate the forces for oblique incidence with collisions and find an absorption caused force in the plane of the plasma surface. (author)

  16. Nonlinear dynamic response of cantilever beam tip during atomic force microscopy (AFM) nanolithography of copper surface

    International Nuclear Information System (INIS)

    Yeh, Y-L; Jang, M-J; Wang, C-C; Lin, Y-P; Chen, K-S

    2008-01-01

    This paper investigates the nonlinear dynamic response of an atomic force microscope (AFM) cantilever beam tip during the nanolithography of a copper (Cu) surface using a high-depth feed. The dynamic motion of the tip is modeled using a combined approach based on Newton's law and empirical observations. The cutting force is determined from experimental observations of the piling height on the Cu surface and the rotation angle of the cantilever beam tip. It is found that the piling height increases linearly with the cantilever beam carrier velocity. Furthermore, the cantilever beam tip is found to execute a saw tooth motion. Both this motion and the shear cutting force are nonlinear. The elastic modulus in the y direction is variable. Finally, the velocity of the cantilever beam tip as it traverses the specimen surface has a discrete characteristic rather than a smooth, continuous profile

  17. Nonlinear adaptive robust back stepping force control of hydraulic load simulator: Theory and experiments

    International Nuclear Information System (INIS)

    Yao, Jianyong; Jiao, Zongxia; Yao, Bin

    2014-01-01

    High performance robust force control of hydraulic load simulator with constant but unknown hydraulic parameters is considered. In contrast to the linear control based on hydraulic linearization equations, hydraulic inherent nonlinear properties and uncertainties make the conventional feedback proportional-integral-derivative (PID) control not yield to high performance requirements. Furthermore, the hydraulic system may be subjected to non-smooth and discontinuous nonlinearities due to the directional change of valve opening. In this paper, based on a nonlinear system model of hydraulic load simulator, a discontinuous projection-based nonlinear adaptive robust back stepping controller is developed with servo valve dynamics. The proposed controller constructs a novel stable adaptive controller and adaptation laws with additional pressure dynamic related unknown parameters, which can compensate for the system nonlinearities and uncertain parameters, meanwhile a well-designed robust controller is also synthesized to dominate the model uncertainties coming from both parametric uncertainties and uncertain nonlinearities including unmodeled and ignored system dynamics. The controller theoretically guarantee a prescribed transient performance and final tracking accuracy in presence of both parametric uncertainties and uncertain nonlinearities; while achieving asymptotic output tracking in the absence of unstructured uncertainties. The implementation issues are also discussed for controller simplification. Some comparative results are obtained to verify the high-performance nature of the proposed controller.

  18. Nonlinear adaptive robust back stepping force control of hydraulic load simulator: Theory and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianyong [Nanjing University of Science and Technology, Nanjing (China); Jiao, Zongxia [Beihang University, Beijing (China); Yao, Bin [Purdue University, West Lafayette (United States)

    2014-04-15

    High performance robust force control of hydraulic load simulator with constant but unknown hydraulic parameters is considered. In contrast to the linear control based on hydraulic linearization equations, hydraulic inherent nonlinear properties and uncertainties make the conventional feedback proportional-integral-derivative (PID) control not yield to high performance requirements. Furthermore, the hydraulic system may be subjected to non-smooth and discontinuous nonlinearities due to the directional change of valve opening. In this paper, based on a nonlinear system model of hydraulic load simulator, a discontinuous projection-based nonlinear adaptive robust back stepping controller is developed with servo valve dynamics. The proposed controller constructs a novel stable adaptive controller and adaptation laws with additional pressure dynamic related unknown parameters, which can compensate for the system nonlinearities and uncertain parameters, meanwhile a well-designed robust controller is also synthesized to dominate the model uncertainties coming from both parametric uncertainties and uncertain nonlinearities including unmodeled and ignored system dynamics. The controller theoretically guarantee a prescribed transient performance and final tracking accuracy in presence of both parametric uncertainties and uncertain nonlinearities; while achieving asymptotic output tracking in the absence of unstructured uncertainties. The implementation issues are also discussed for controller simplification. Some comparative results are obtained to verify the high-performance nature of the proposed controller.

  19. The Comparison of Forces Applied to the Knee Extensor Mechanism during Stance Phase of Gait in Flat Footed Females Three Different in-Shoe Orthotics

    Directory of Open Access Journals (Sweden)

    Mohsen Razeghi

    2012-01-01

    Full Text Available Objective: It has been postulated that subtalar position and movement would influence the function of the foot and the lower limb’s biomechanical alignment as a whole. The aim of this study was to compare the changes of force applied to the knee extensor mechanism of the female subjects while applying three different in-shoe orthotic appliances. Materials & Methods: Feiss Line test was used to assign a group of 10 healthy female subjects aged at 19-25 years as flat foot group. Retro reflective calibration and tracking markers were placed on the subjects over anatomically relevant locations. Kinematic and kinetic data were collected by employing a three dimensional motion capture system (Qualisys®Ltd, Sweden and a force platform (Kistler®, Switzerland respectively, while subjects walked at their preferred speed with 3 different in-shoe orthotics: simple insole, insole with medial arch support, insole with medial arch support and medial heel wedge, and insole with medial arch support and lateral forefoot wedge. Results: A statistically significant lower amount of the force applied to the extensor mechanism was found while applying medial arch support combined with lateral wedge (P=0.005. Conclusion: It could be concluded that changes of the different foot insoles would alter the force applied to the knee extensor mechanism. Results of this study emphasize the immediate effect of applying a medial arch support combined lateral wedge on reduction of the force applied to the extensor mechanism through which decrease a tendency towards musculoskeletal injuries.

  20. Nonlinear Dynamical Analysis for the Cable Excited with Parametric and Forced Excitation

    Directory of Open Access Journals (Sweden)

    C. Z. Qian

    2014-01-01

    Full Text Available Considering the deck vibration effect on the cable in cable-stayed bridge, using nonlinear structure dynamics theory, the nonlinear dynamical equation for the stayed cable excited with deck vibration is proposed. Research shows that the vertical vibration of the deck has a combined parametric and forced excitation effect on the cable when the angle of the cable is taken into consideration. Using multiscale method, the 1/2 principle parametric resonance is studied and the bifurcation equation is obtained. Despite the parameters analysis, the bifurcation characters of the dynamical system are studied. At last, by means of numerical method and software MATHMATIC, the effect rules of system parameters to the dynamical behavior of the system are studied, and some useful conclusions are obtained.

  1. Effects from fully nonlinear irregular wave forcing on the fatigue life of an offshore wind turbine and its monopile foundation

    DEFF Research Database (Denmark)

    Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.

    2013-01-01

    The effect from fully nonlinear irregular wave forcing on the fatigue life of the foundation and tower of an offshore wind turbine is investigated through aeroelastic calculations. Five representative sea states with increasing significant wave height are considered in a water depth of 40 m....... The waves are both linear and fully nonlinear irregular 2D waves. The wind turbine is the NREL 5-MW reference wind turbine. Fatigue analysis is performed in relation to analysis of the sectional forces in the tower and monopile. Impulsive excitation of the sectional force at the bottom of the tower is seen...

  2. Effect of flat insoles with different shore A values on posture stability in diabetic neuropathy

    NARCIS (Netherlands)

    Van Geffen, J.A.; Dijkstra, P.U.; Hof, A.L.; Halbertsma, J.P.K.; Postema, K.

    The objective of the study was to determine whether insoles with a low Shore A value (15 degrees) as prescribed for patients with a diabetic neuropathy have a negative effect on posture stability because these insoles may reduce somatosensory input under the feet. It was conducted in the Center for

  3. Broadband piezoelectric energy harvesting using nonlinear magnetic forces; Bandbreitensteigerung von piezoelektrischen Energy Harvesting Systemen durch Magnetkraefte

    Energy Technology Data Exchange (ETDEWEB)

    Westermann, Henrik; Neubauer, Marcus; Wallaschek, Joerg [Hannover Univ. (Germany). Inst. fuer Dynamik und Schwingungen

    2012-07-15

    Using ambient energy by piezoelectric energy harvesting systems received much attention over the last years. Most vibration-based generators produce a sufficient power only if the transducer is excited in its resonance frequency. The use of magnetic forces suggests a promising strategy to increase the efficiency. This paper presents different ways for broadband piezoelectric energy harvesting using nonlinear magnetic forces. (orig.)

  4. Parabolized Stability Equations analysis of nonlinear interactions with forced eigenmodes to control subsonic jet instabilities

    International Nuclear Information System (INIS)

    Itasse, Maxime; Brazier, Jean-Philippe; Léon, Olivier; Casalis, Grégoire

    2015-01-01

    Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m 1 , n 1 ), (m 2 , n 2 ), such that the difference in azimuth and in frequency matches the desired “target” mode (m 1 − m 2 , n 1 − n 2 ). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes

  5. Parabolized Stability Equations analysis of nonlinear interactions with forced eigenmodes to control subsonic jet instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Itasse, Maxime, E-mail: Maxime.Itasse@onera.fr; Brazier, Jean-Philippe, E-mail: Jean-Philippe.Brazier@onera.fr; Léon, Olivier, E-mail: Olivier.Leon@onera.fr; Casalis, Grégoire, E-mail: Gregoire.Casalis@onera.fr [Onera - The French Aerospace Lab, F-31055 Toulouse (France)

    2015-08-15

    Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m{sub 1}, n{sub 1}), (m{sub 2}, n{sub 2}), such that the difference in azimuth and in frequency matches the desired “target” mode (m{sub 1} − m{sub 2}, n{sub 1} − n{sub 2}). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes.

  6. Stability Control of Force-Reflected Nonlinear Multilateral Teleoperation System under Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Da Sun

    2016-01-01

    Full Text Available A novel control algorithm based on the modified wave-variable controllers is proposed to achieve accurate position synchronization and reasonable force tracking of the nonlinear single-master-multiple-slave teleoperation system and simultaneously guarantee overall system’s stability in the presence of large time-varying delays. The system stability in different scenarios of human and environment situations has been analyzed. The proposed method is validated through experimental work based on the 3-DOF trilateral teleoperation system consisting of three different manipulators. The experimental results clearly demonstrate the feasibility of the proposed algorithm to achieve high transparency and robust stability in nonlinear single-master-multiple-slave teleoperation system in the presence of time-varying delays.

  7. Geometrically Nonlinear Transient Response of Laminated Plates with Nonlinear Elastic Restraints

    Directory of Open Access Journals (Sweden)

    Shaochong Yang

    2017-01-01

    Full Text Available To investigate the dynamic behavior of laminated plates with nonlinear elastic restraints, a varied constraint force model and a systematic numerical procedure are presented in this work. Several kinds of typical relationships of force-displacement for spring are established to simulate the nonlinear elastic restraints. In addition, considering the restraining moments of flexible pads, the pads are modeled by translational and rotational springs. The displacement- dependent constraint forces are added to the right-hand side of equations of motion and treated as additional applied loads. These loads can be explicitly defined, via an independent set of nonlinear load functions. The time histories of transverse displacements at typical points of the laminated plate are obtained through the transient analysis. Numerical examples show that the present method can effectively treat the geometrically nonlinear transient response of plates with nonlinear elastic restraints.

  8. Solar microclimatology. [tables (data) on insolation for application to solar energy conversion by electric power plants

    Science.gov (United States)

    Mckenney, D. B.; Beauchamp, W. T.

    1975-01-01

    It has become apparent in recent years that solar energy can be used for electric power production by several methods. Because of the diffuse nature of the solar insolation, the area involved in any central power plant design can encompass several square miles. A detailed design of these large area collection systems will require precise knowledge of the local solar insolation. Detailed information will also be needed concerning the temporal nature of the insolation and the local spatial distribution. Therefore, insolation data was collected and analyzed for a network of sensors distributed over an area of several square kilometers in Arizona. The analyses of this data yielded probability distributions of cloud size, velocity, and direction of motion which were compared with data obtained from the National Weather Service. Microclimatological analyses were also performed for suitable modeling parameters pertinent to large scale electric power plant design. Instrumentation used to collect the data is described.

  9. Approximations for Large Deflection of a Cantilever Beam under a Terminal Follower Force and Nonlinear Pendulum

    Directory of Open Access Journals (Sweden)

    H. Vázquez-Leal

    2013-01-01

    Full Text Available In theoretical mechanics field, solution methods for nonlinear differential equations are very important because many problems are modelled using such equations. In particular, large deflection of a cantilever beam under a terminal follower force and nonlinear pendulum problem can be described by the same nonlinear differential equation. Therefore, in this work, we propose some approximate solutions for both problems using nonlinearities distribution homotopy perturbation method, homotopy perturbation method, and combinations with Laplace-Padé posttreatment. We will show the high accuracy of the proposed cantilever solutions, which are in good agreement with other reported solutions. Finally, for the pendulum case, the proposed approximation was useful to predict, accurately, the period for an angle up to 179.99999999∘ yielding a relative error of 0.01222747.

  10. NONLINEAR FORCE PROFILE USED TO INCREASE THE PERFORMANCE OF A HAPTIC USER INTERFACE FOR TELEOPERATING A ROBOTIC HAND

    Energy Technology Data Exchange (ETDEWEB)

    Anthony L. Crawford

    2012-07-01

    MODIFIED PAPER TITLE AND ABSTRACT DUE TO SLIGHTLY MODIFIED SCOPE: TITLE: Nonlinear Force Profile Used to Increase the Performance of a Haptic User Interface for Teleoperating a Robotic Hand Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space. The research associated with this paper hypothesizes that a user interface and complementary radiation compatible robotic hand that integrates the human hand’s anthropometric properties, speed capability, nonlinear strength profile, reduction of active degrees of freedom during the transition from manipulation to grasping, and just noticeable difference force sensation characteristics will enhance a user’s teleoperation performance. The main contribution of this research is in that a system that concisely integrates all these factors has yet to be developed and furthermore has yet to be applied to a hazardous environment as those referenced above. In fact, the most prominent slave manipulator teleoperation technology in use today is based on a design patented in 1945 (Patent 2632574) [1]. The robotic hand/user interface systems of similar function as the one being developed in this research limit their design input requirements in the best case to only complementing the hand’s anthropometric properties, speed capability, and linearly scaled force application relationship (e.g. robotic force is a constant, 4 times that of the user). In this paper a nonlinear relationship between the force experienced between the user interface and the robotic hand was devised based on property differences of manipulation and grasping activities as they pertain to the human hand. The results show that such a relationship when subjected to a manipulation task and grasping task produces increased performance compared to the

  11. Two-Polarisation Physical Model of Bowed Strings with Nonlinear Contact and Friction Forces, and Application to Gesture-Based Sound Synthesis

    Directory of Open Access Journals (Sweden)

    Charlotte Desvages

    2016-05-01

    Full Text Available Recent bowed string sound synthesis has relied on physical modelling techniques; the achievable realism and flexibility of gestural control are appealing, and the heavier computational cost becomes less significant as technology improves. A bowed string sound synthesis algorithm is designed, by simulating two-polarisation string motion, discretising the partial differential equations governing the string’s behaviour with the finite difference method. A globally energy balanced scheme is used, as a guarantee of numerical stability under highly nonlinear conditions. In one polarisation, a nonlinear contact model is used for the normal forces exerted by the dynamic bow hair, left hand fingers, and fingerboard. In the other polarisation, a force-velocity friction curve is used for the resulting tangential forces. The scheme update requires the solution of two nonlinear vector equations. The dynamic input parameters allow for simulating a wide range of gestures; some typical bow and left hand gestures are presented, along with synthetic sound and video demonstrations.

  12. The effect of flat and textured insoles on the balance of primary care elderly people: a randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    de Morais Barbosa C

    2018-02-01

    Full Text Available Cecília de Morais Barbosa,1 Manoel Barros Bértolo,2 Juliana Zonzini Gaino,2 Michael Davitt,3 Zoraida Sachetto,2 Eduardo de Paiva Magalhães3 1Department of Internal Medicine, Gerontology, Faculty of Medical Sciences, State University of Campinas – Unicamp, Campinas, SP, Brazil; 2Department of Internal Medicine, Rheumatology, Faculty of Medical Sciences, State University of Campinas – Unicamp, Campinas, SP, Brazil; 3Orthoses and Prostheses Unit, Clinical Hospital, State University of Campinas – Unicamp, Campinas, SP, Brazil Background: Aging is associated with reduced postural stability and increased fall risk. Foot orthoses have been reported as an adjuvant intervention to improve balance by stimulating foot plantar mechanical receptors and thus increasing somatosensory input. Purpose: The aim of this study is to evaluate the effect of flat and textured insoles on the balance of primary care elderly people. Design: Prospective, parallel, randomized, and single-blind trial. Methods: A total of 100 subjects from a primary care unit, aged ≥65 years, were randomly assigned to intervention groups with flat insoles (n=33, textured insoles (n=33, or control group (n=34 without insoles. The Berg Balance Scale and the Timed Up and Go test were assessed at baseline and after 4 weeks. Results: Improvements in the Berg Balance Scale and the Timed Up and Go test were noted only in intervention groups with insoles but not in control group. No significant difference was found between flat and textured insoles. Minor adverse effects were noted only in the group with textured insoles. Conclusion: The results suggest that foot orthoses (both flat and textured insoles are effective in improving balance in primary care elderly people. They may represent a low-cost and high-availability adjuvant strategy to improve balance and prevent falls in this population. Keywords: balance, elderly, orthoses, insole

  13. Pressure relief and load redistribution by custom-made insoles in diabetic patients with neuropathy and foot deformity

    NARCIS (Netherlands)

    Bus, Sicco A.; Ulbrecht, Jan S.; Cavanagh, Peter R.

    2004-01-01

    Objective. To study the effects of custom-made insoles on plantar pressures and load redistribution in neuropathic diabetic patients with foot deformity. Design. Cross-sectional. Background. Although custom-made insoles are commonly prescribed to diabetic patients, little quantitative data on their

  14. A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.

  15. Nonlinear dynamics of a thin liquid film on an axially oscillating cylindrical surface subjected to double-frequency forcing.

    Science.gov (United States)

    Haimovich, Ory; Oron, Alexander

    2013-05-01

    The nonlinear dynamics of a thin axisymmetric liquid film on a horizontal cylindrical substrate subjected to an axial double-frequency forcing that consists of two components of different amplitudes and frequencies and a possible phase shift is considered in this paper. A nonlinear evolution equation governing the spatiotemporal dynamics of the film interface has been derived in the long-wave limit. Similar to the case of a single-frequency forcing considered in our earlier work, there exists a critical forcing amplitude below which the film undergoes a long-time capillary rupture typical for a static cylinder, whereas above it the film remains continuous. We find that it is possible to arrest the rupture even if the forcing parameters of each of the two components correspond separately to the domain where rupture takes place. It is shown that the critical forcing amplitude is easily determined via a single-frequency case when the two forcing frequencies are equal. In the case of different forcing amplitudes and frequencies, the variation of the critical forcing amplitude as a function of the frequency ratio exhibits a unique behavior displaying the emergence of spikes. A related case of an amplitude-modulated single-frequency forcing is also addressed here. For a sufficiently small frequency of the amplitude modulation, a significant increase of the pattern amplitude is observed. In the case of commensurate forcing frequencies, the flow is found to be quasiperiodic.

  16. Nonlinear Force-free Coronal Magnetic Stereoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chifu, Iulia; Wiegelmann, Thomas; Inhester, Bernd, E-mail: chifu@mps.mpg.de [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-03-01

    Insights into the 3D structure of the solar coronal magnetic field have been obtained in the past by two completely different approaches. The first approach are nonlinear force-free field (NLFFF) extrapolations, which use photospheric vector magnetograms as boundary condition. The second approach uses stereoscopy of coronal magnetic loops observed in EUV coronal images from different vantage points. Both approaches have their strengths and weaknesses. Extrapolation methods are sensitive to noise and inconsistencies in the boundary data, and the accuracy of stereoscopy is affected by the ability of identifying the same structure in different images and by the separation angle between the view directions. As a consequence, for the same observational data, the 3D coronal magnetic fields computed with the two methods do not necessarily coincide. In an earlier work (Paper I) we extended our NLFFF optimization code by including stereoscopic constrains. The method was successfully tested with synthetic data, and within this work, we apply the newly developed code to a combined data set from SDO /HMI, SDO /AIA, and the two STEREO spacecraft. The extended method (called S-NLFFF) contains an additional term that monitors and minimizes the angle between the local magnetic field direction and the orientation of the 3D coronal loops reconstructed by stereoscopy. We find that when we prescribe the shape of the 3D stereoscopically reconstructed loops, the S-NLFFF method leads to a much better agreement between the modeled field and the stereoscopically reconstructed loops. We also find an appreciable decrease by a factor of two in the angle between the current and the magnetic field. This indicates the improved quality of the force-free solution obtained by S-NLFFF.

  17. Nonlinear Waves In A Stenosed Elastic Tube Filled With Viscous Fluid: Forced Perturbed Korteweg-De Vries Equation

    Science.gov (United States)

    Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee

    In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.

  18. Modeling and forecasting monthly movement of annual average solar insolation based on the least-squares Fourier-model

    International Nuclear Information System (INIS)

    Yang, Zong-Chang

    2014-01-01

    Highlights: • Introduce a finite Fourier-series model for evaluating monthly movement of annual average solar insolation. • Present a forecast method for predicting its movement based on the extended Fourier-series model in the least-squares. • Shown its movement is well described by a low numbers of harmonics with approximately 6-term Fourier series. • Predict its movement most fitting with less than 6-term Fourier series. - Abstract: Solar insolation is one of the most important measurement parameters in many fields. Modeling and forecasting monthly movement of annual average solar insolation is of increasingly importance in areas of engineering, science and economics. In this study, Fourier-analysis employing finite Fourier-series is proposed for evaluating monthly movement of annual average solar insolation and extended in the least-squares for forecasting. The conventional Fourier analysis, which is the most common analysis method in the frequency domain, cannot be directly applied for prediction. Incorporated with the least-square method, the introduced Fourier-series model is extended to predict its movement. The extended Fourier-series forecasting model obtains its optimums Fourier coefficients in the least-square sense based on its previous monthly movements. The proposed method is applied to experiments and yields satisfying results in the different cities (states). It is indicated that monthly movement of annual average solar insolation is well described by a low numbers of harmonics with approximately 6-term Fourier series. The extended Fourier forecasting model predicts the monthly movement of annual average solar insolation most fitting with less than 6-term Fourier series

  19. Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms

    Science.gov (United States)

    Lu, Fuzhi; Ma, Chunmei; Zhu, Cheng; Lu, Huayu; Zhang, Xiaojian; Huang, Kangyou; Guo, Tianhong; Li, Kaifeng; Li, Lan; Li, Bing; Zhang, Wenqing

    2018-03-01

    Projecting how the East Asian summer monsoon (EASM) rainfall will change with global warming is essential for human sustainability. Reconstructing Holocene climate can provide critical insight into its forcing and future variability. However, quantitative reconstructions of Holocene summer precipitation are lacking for tropical and subtropical China, which is the core region of the EASM influence. Here we present high-resolution annual and summer rainfall reconstructions covering the whole Holocene based on the pollen record at Xinjie site from the lower Yangtze region. Summer rainfall was less seasonal and 30% higher than modern values at 10-6 cal kyr BP and gradually declined thereafter, which broadly followed the Northern Hemisphere summer insolation. Over the last two millennia, however, the summer rainfall has deviated from the downward trend of summer insolation. We argue that greenhouse gas forcing might have offset summer insolation forcing and contributed to the late Holocene rainfall anomaly, which is supported by the TraCE-21 ka transient simulation. Besides, tropical sea-surface temperatures could modulate summer rainfall by affecting evaporation of seawater. The rainfall pattern concurs with stalagmite and other proxy records from southern China but differs from mid-Holocene rainfall maximum recorded in arid/semiarid northern China. Summer rainfall in northern China was strongly suppressed by high-northern-latitude ice volume forcing during the early Holocene in spite of high summer insolation. In addition, the El Niño/Southern Oscillation might be responsible for droughts of northern China and floods of southern China during the late Holocene. Furthermore, quantitative rainfall reconstructions indicate that the Paleoclimate Modeling Intercomparison Project (PMIP) simulations underestimate the magnitude of Holocene precipitation changes. Our results highlight the spatial and temporal variability of the Holocene EASM precipitation and potential forcing

  20. Plantar pressure relief under the metatarsal heads: therapeutic insole design using three-dimensional finite element model of the foot.

    Science.gov (United States)

    Chen, Wen-Ming; Lee, Sung-Jae; Lee, Peter Vee Sin

    2015-02-26

    Therapeutic footwear with specially-made insoles is often used in people with diabetes and rheumatoid arthritis to relieve ulcer risks and pain due to high pressures from areas beneath bony prominences of the foot, in particular to the metatarsal heads (MTHs). In a three-dimensional finite element study of the foot and footwear with sensitivity analysis, effects of geometrical variations of a therapeutic insole, in terms of insole thicknesses and metatarsal pad (MP) placements, on local peak plantar pressure under MTHs and stress/strain states within various forefoot tissues, were determined. A validated musculoskeletal finite element model of the human foot was employed. Analyses were performed in a simulated muscle-demanding instant in gait. For many design combinations, increasing insole thicknesses consistently reduce peak pressures and internal tissue strain under MTHs, but the effects reach a plateau when insole becomes very thick (e.g., a value of 12.7mm or greater). Altering MP placements, however, showed a proximally- and a distally-placed MP could result in reverse effects on MTH pressure-relief. The unsuccessful outcome due to a distally-placed MP may attribute to the way it interacts with plantar tissue (e.g., plantar fascia) adjacent to the MTH. A uniform pattern of tissue compression under metatarsal shaft is necessary for a most favorable pressure-relief under MTHs. The designated functions of an insole design can best be achieved when the insole is very thick, and when the MP can achieve a uniform tissue compression pattern adjacent to the MTH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs

    Science.gov (United States)

    Bosmans, J. H. C.; Erb, M. P.; Dolan, A. M.; Drijfhout, S. S.; Tuenter, E.; Hilgen, F. J.; Edge, D.; Pope, J. O.; Lourens, L. J.

    2018-05-01

    We examine the response of the Indian and East Asian summer monsoons to separate precession and obliquity forcing, using a set of fully coupled high-resolution models for the first time: EC-Earth, GFDL CM2.1, CESM and HadCM3. We focus on the effect of insolation changes on monsoon precipitation and underlying circulation changes, and find strong model agreement despite a range of model physics, parameterization, and resolution. Our results show increased summer monsoon precipitation at times of increased summer insolation, i.e. minimum precession and maximum obliquity, accompanied by a redistribution of precipitation and convection from ocean to land. Southerly monsoon winds over East Asia are strengthened as a consequence of an intensified land-sea pressure gradient. The response of the Indian summer monsoon is less straightforward. Over south-east Asia low surface pressure is less pronounced and winds over the northern Indian Ocean are directed more westward. An Indian Ocean Dipole pattern emerges, with increased precipitation and convection over the western Indian Ocean. Increased temperatures occur during minimum precession over the Indian Ocean, but not during maximum obliquity when insolation is reduced over the tropics and southern hemisphere during northern hemisphere summer. Evaporation is reduced over the northern Indian Ocean, which together with increased precipitation over the western Indian Ocean dampens the increase of monsoonal precipitation over the continent. The southern tropical Indian Ocean as well as the western tropical Pacific (for precession) act as a moisture source for enhanced monsoonal precipitation. The models are in closest agreement for precession-induced changes, with more model spread for obliquity-induced changes, possibly related to a smaller insolation forcing. Our results indicate that a direct response of the Indian and East Asian summer monsoons to insolation forcing is possible, in line with speleothem records but in

  2. Forced phase-locked response of a nonlinear system with time delay after Hopf bifurcation

    International Nuclear Information System (INIS)

    Ji, J.C.; Hansen, Colin H.

    2005-01-01

    The trivial equilibrium of a nonlinear autonomous system with time delay may become unstable via a Hopf bifurcation of multiplicity two, as the time delay reaches a critical value. This loss of stability of the equilibrium is associated with two coincident pairs of complex conjugate eigenvalues crossing the imaginary axis. The resultant dynamic behaviour of the corresponding nonlinear non-autonomous system in the neighbourhood of the Hopf bifurcation is investigated based on the reduction of the infinite-dimensional problem to a four-dimensional centre manifold. As a result of the interaction between the Hopf bifurcating periodic solutions and the external periodic excitation, a primary resonance can occur in the forced response of the system when the forcing frequency is close to the Hopf bifurcating periodic frequency. The method of multiple scales is used to obtain four first-order ordinary differential equations that determine the amplitudes and phases of the phase-locked periodic solutions. The first-order approximations of the periodic solutions are found to be in excellent agreement with those obtained by direct numerical integration of the delay-differential equation. It is also found that the steady state solutions of the nonlinear non-autonomous system may lose their stability via either a pitchfork or Hopf bifurcation. It is shown that the primary resonance response may exhibit symmetric and asymmetric phase-locked periodic motions, quasi-periodic motions, chaotic motions, and coexistence of two stable motions

  3. A Non-Linear Force-Free Field Model for the Evolving Magnetic Structure of Solar Filaments

    Science.gov (United States)

    Mackay, Duncan H.; van Ballegooijen, A. A.

    2009-12-01

    In this paper the effect of a small magnetic element approaching the main body of a solar filament is considered through non-linear force-free field modeling. The filament is represented by a series of magnetic dips. Once the dips are calculated, a simple hydrostatic atmosphere model is applied to determine which structures have sufficient column mass depth to be visible in Hα. Two orientations of the bipole are considered, either parallel or anti-parallel to the overlying arcade. The magnetic polarity that lies closest to the filament is then advected towards the filament. Initially for both the dominant and minority polarity advected elements, right/left bearing barbs are produced for dextral/sinsitral filaments. The production of barbs due to dominant polarity elements is a new feature. In later stages the filament breaks into two dipped sections and takes a highly irregular, non-symmetrical form with multiple pillars. The two sections are connected by field lines with double dips even though the twist of the field is less than one turn. Reconnection is not found to play a key role in the break up of the filament. The non-linear force-free fields produce very different results to extrapolated linear-force free fields. For the cases considered here the linear force-free field does not produce the break up of the filament nor the production of barbs as a result of dominant polarity elements.

  4. Suppression of insolation heating induced by electromagnetic scatteringdue to fine spheres

    Science.gov (United States)

    Horie, J.; Mikada, H.; Goto, T.; Takekawa, J.; Manaka, Y.; Taniguchi, K.; Ashida, Y.

    2013-12-01

    The 2011 off the Pacific coast of Tohoku Earthquake, i.e., the greatest earthquake in the Japanese history, and the successive disaster at the Fukushima Daiichi Nuclear Power Plant have caused a fatal electric power shortage problem in summer in 2011. It is of key importance to reduce electricity demand and to save the energy. About one third of the total electricity demand at the peak consumption in summer is for the air-conditioning in the household and office sectors in Japan. It is, therefore, necessary to think deliberately of the reduction of electric power demand for air-conditioning. In fact, the temperature of materials rises when they are exposed to the sunlight (insolation heating) in particular in summer and the air-conditioning would become necessary for restoring the comfort in insolated housings. The energy for the air-conditioning is spent to pump out the heat changed in the materials of the insolated housings and would be proportional to the temperature to lower down. It is, therefore, clear that the reduction of the energy for the air-conditioning would strongly depend on relaxation of temperature rise or the insulation of insolated materials. Insolation heating could be suppressed when the materials are coated with paint admixed with fine silica spheres (insulating paint). By coating buildings' walls and roofs with such paint, the temperature of interior rooms could be kept lower without air-conditioning. These insulation effects are well known and have been utilized in the past, but have hardly been analyzed theoretically yet. Theoretical analysis would greatly enhance the effects of the suppression of insolation heating. In preceding studies, Ohkawa et al.(2009; 2011) and Mikada et al.(2011) focused on the electromagnetic wave scattering induced by fine spheres and developed the analytical method using superposition of scattered waves from each sphere (the first Born approximation), and indicated that the size of the spheres is one of the

  5. Forced-circulation solar water heater using a solar battery; Taiyo denchi wo mochiita kyosei junkahshiki taiyonetsu onsuiki

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S; Mizuno, T [Yazaki Corp., Tokyo (Japan)

    1997-11-25

    Optimal operation control was discussed on a forced-circulation solar water heater using solar cells not only as the power supply of a heat collecting pump, but also for controlling operation of the heat collecting pump. With this system, when the amount of power generated by solar cells reaches a sufficient level for operating the heat collecting pump, the heat collecting pump starts operation, wherein the heat collecting medium circulates in the system. The discussion was given by using simulation based on experimental expressions such as the relation expression between insolation and heat collecting medium flow rate as derived from the result of the system`s heat collecting performance test. As a result, the following conclusions were obtained: optimal insolation for activating the discussed system is from 50 to 100 W/m {sup 2}, and the heat collected within this range is within -1.5% of the collected heat amount at an optimum value; optimal activating insolation for the case of 1000 to 2000 W/m {sup 2} with low daily cumulative insolation is from 0 to 50 W/m {sup 2}, whereas the optimal activating insolation amount increases as the daily cumulative insolation amount increases; and the optimal activating insolation amount increases as water to be supplied requires higher temperature. 1 ref., 17 figs., 2 tabs.

  6. Designing an Orthotic Insole by Using Kinect® XBOX Gaming Sensor Scanner and Computer Aided Engineering Software

    Science.gov (United States)

    Hafiz Burhan, Mohd; Nor, Nik Hisyamudin Muhd; Yarwindran, Mogan; Ibrahim, Mustaffa; Fahrul Hassan, Mohd; Azwir Azlan, Mohd; Turan, Faiz Mohd; Johan, Kartina

    2017-08-01

    Healthcare and medical is one of the most expensive field in the modern world. In order to fulfil medical requirement, this study aimed to design an orthotic insole by using Kinect Xbox Gaming Sensor Scanner and CAE softwares. The accuracy of the Kinect® XBOX 360 gaming sensor is capable of producing 3D reconstructed geometry with the maximum and minimum error of 3.78% (2.78mm) and 1.74% (0.46mm) respectively. The orthotic insole design process had been done by using Autodesk Meshmixer 2.6 and Solidworks 2014 software. Functionality of the orthotic insole designed was capable of reducing foot pressure especially in the metatarsal area. Overall, the proposed method was proved to be highly potential in the design of the insole where it promises low cost, less time consuming, and efficiency in regards that the Kinect® XBOX 360 device promised low price compared to other digital 3D scanner since the software needed to run the device can be downloaded for free.

  7. Analysis of adjusting effects of mounting force on frequency conversion of mounted nonlinear optics.

    Science.gov (United States)

    Su, Ruifeng; Liu, Haitao; Liang, Yingchun; Lu, Lihua

    2014-01-10

    Motivated by the need to increase the second harmonic generation (SHG) efficiency of nonlinear optics with large apertures, a novel mounting configuration with active adjusting function on the SHG efficiency is proposed and mechanically and optically studied. The adjusting effects of the mounting force on the distortion and stress are analyzed by the finite element methods (FEM), as well as the contribution of the distortion and stress to the change in phase mismatch, and the SHG efficiency are theoretically stated. Further on, the SHG efficiency is calculated as a function of the mounting force. The changing trends of the distortion, stress, and the SHG efficiency with the varying mounting force are obtained, and the optimal ones are figured out. Moreover, the mechanism of the occurrence of the optimal values is studied and the adjusting strategy is put forward. Numerical results show the robust adjustment of the mounting force, as well as the effectiveness of the mounting configuration, in increasing the SHG efficiency.

  8. A study on the decontamination of insoles colonized by Trichophyton rubrum: effect of terbinafine spray powder 1% and terbinafine spray solution 1%.

    Science.gov (United States)

    Feuilhade de Chauvin, M

    2012-07-01

    Shoes worn with bare feet function as a fungal reservoir and lead to persistent dermatophytosis. This study was designed to evaluate two formulations of terbinafine (1% spray powder or solution) to treat the insoles of shoes colonized by skin scales infected with Trichophyton rubrum and to determine the contact time necessary to achieve decontamination. Infected skin scales weighing 0.5 g, taken from the feet of patients with confirmed T. rubrum infection, was dispersed onto insoles pre-moistened with sterile saline solution (to mimic perspiration). Three types of insole were tested (felt, latex, leather). After inoculation, insoles were placed separately in new cardboard boxes at ambient temperature, and re-humidified with sterile normal saline solution for 48 h before being treated; untreated insoles served as controls. Scales were scraped off at 48 h or 96 h, and dropped into tubes of Sabouraud agar, incubated at 27°C and examined at 3 and 6 weeks. Cultures from all control insoles showed numerous T. rubrum colonies. In contrast, cultures from all insoles treated with a single application of terbinafine 1% spray solution or powder, and taken after 48 h or 96 h contact with the product, remained sterile at 3 weeks and 6 weeks. This study demonstrated the successful treatment of insoles colonized by T. rubrum-infected skin scales. Terbinafine 1% spray solution and powder showed good efficacy; the dermatophyte could no longer be cultured 48 h after a single application of terbinafine. © 2011 The Author. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  9. Actuation of atomic force microscopy microcantilevers using contact acoustic nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Torello, D.; Degertekin, F. Levent, E-mail: levent.degertekin@me.gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2013-11-15

    A new method of actuating atomic force microscopy (AFM) cantilevers is proposed in which a high frequency (>5 MHz) wave modulated by a lower frequency (∼300 kHz) wave passes through a contact acoustic nonlinearity at the contact interface between the actuator and the cantilever chip. The nonlinearity converts the high frequency, modulated signal to a low frequency drive signal suitable for actuation of tapping-mode AFM probes. The higher harmonic content of this signal is filtered out mechanically by the cantilever transfer function, providing for clean output. A custom probe holder was designed and constructed using rapid prototyping technologies and off-the-shelf components and was interfaced with an Asylum Research MFP-3D AFM, which was then used to evaluate the performance characteristics with respect to standard hardware and linear actuation techniques. Using a carrier frequency of 14.19 MHz, it was observed that the cantilever output was cleaner with this actuation technique and added no significant noise to the system. This setup, without any optimization, was determined to have an actuation bandwidth on the order of 10 MHz, suitable for high speed imaging applications. Using this method, an image was taken that demonstrates the viability of the technique and is compared favorably to images taken with a standard AFM setup.

  10. A new method for estimating insolation based on PV-module currents in a cluster of stand-alone solar systems

    NARCIS (Netherlands)

    Nieuwenhout, F; van der Borg, N; van Sark, W.G.J.H.M.; Turkenburg, W.C.

    2007-01-01

    In order to evaluate the performance of solar home systems (SHSs), data on local insolation is a prerequisite. We present a new method to estimate insolation if direct measurements are unavailable. This method comprises estimation of daily irradiation by correlating photovoltaic (PV) module currents

  11. Effects of experimental insoles on body posture, mandibular kinematics and masticatory muscles activity. A pilot study in healthy volunteers.

    Science.gov (United States)

    Marini, Ida; Alessandri Bonetti, Giulio; Bortolotti, Francesco; Bartolucci, Maria Lavinia; Gatto, Maria Rosaria; Michelotti, Ambra

    2015-06-01

    It has been hypothesized that different plantar sensory inputs could influence the whole body posture and dental occlusion but there is a lack of evidence on this possible association. To investigate the effects of experimental insoles redistributing plantar pressure on body posture, mandibular kinematics and electromyographic (EMG) activity of masticatory muscles on healthy subjects. A pilot study was conducted on 19 healthy volunteers that wore custom-made insoles normalizing the plantar pressure distribution for 2 weeks. Body posture parameters were measured by means of an optoelectronic stereophotogrammetric analysis; mandibular kinematics was analyzed by means of gothic arch tracings; superficial EMG activity of head and neck muscles was performed. Measurements were carried out 10 days before the insertion of the insoles, immediately before the insertion, the day after, 7 and 14 days after, in four different exteroceptive conditions. The outcomes of the present study show that insoles do not modify significantly over time the parameters of body posture, SEMG activity of head and neck muscles and mandibular kinematics. In this pilot study the experimental insoles did not significantly influence the body posture, the mandibular kinematics and the activity of masticatory muscles during a 14-day follow up period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A vigorous Mesoamerican monsoon during the Last Glacial Maximum driven by orbital and oceanic forcing

    Science.gov (United States)

    Lachniet, M. S.; Asmerom, Y.; Bernal, J. P.; Polyak, V.; Vazquez-Selem, L. V.

    2012-12-01

    The external forcings on global monsoon strength include summer orbital insolation and ocean circulation changes, both of which are key control knobs on Earth's climate. However, few records of the North American Monsoon (NAM) are available to test its sensitivity to variations in the precession-dominated insolation signal and Atlantic Meridional Overturning Circulation (AMOC) for the Last Glacial Maximum (LGM; 21 ± 3 cal ka BP) and deglacial periods. In particular, well-dated and high-resolution records from the southern sector of the NAM, referred to informally as the Mesoamerican monsoon to distinguish it from the more northerly 'core' NAM, are needed to better elucidate paleoclimate change in North America. Here, we present a 22 ka (ka = kilo years) rainfall history from absolutely-dated speleothems from tropical southwestern Mexico that documents a vigorous LGM summer monsoon, in contradiction to previous interpretations, and that the monsoon collapsed during the Heinrich stadial 1 and Younger Dryas cold events. We conclude that a strong Mesoamerican monsoon requires both a large ocean-to-land temperature contrast, driven as today by summer insolation, and a proximal latitudinal position of the Intertropical Convergence Zone, forced by active AMOC.

  13. Modeling and analysis of Galfenol cantilever vibration energy harvester with nonlinear magnetic force

    Science.gov (United States)

    Cao, Shuying; Sun, Shuaishuai; Zheng, Jiaju; Wang, Bowen; Wan, Lili; Pan, Ruzheng; Zhao, Ran; Zhang, Changgeng

    2018-05-01

    Galfenol traditional cantilever energy harvesters (TCEHs) have bigger electrical output only at resonance and exhibit nonlinear mechanical-magnetic-electric coupled (NMMEC) behaviors. To increase low-frequency broadband performances of a TCEH, an improved CEH (ICEH) with magnetic repulsive force is studied. Based on the magnetic dipole model, the nonlinear model of material, the Faraday law and the dynamic principle, a lumped parameter NMMEC model of the devices is established. Comparisons between the calculated and measured results show that the proposed model can provide reasonable data trends of TCEH under acceleration, bias field and different loads. Simulated results show that ICEH exhibits low-frequency resonant, hard spring and bistable behaviors, thus can harvest more low-frequency broadband vibration energy than TCEH, and can elicit snap-through and generate higher voltage even under weak noise. The proposed structure and model are useful for improving performances of the devices.

  14. Power Flow Simulations of a More Renewable California Grid Utilizing Wind and Solar Insolation Forecasting

    Science.gov (United States)

    Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.

    2008-12-01

    Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.

  15. Nonlinear gravitational self-force: Field outside a small body

    Science.gov (United States)

    Pound, Adam

    2012-10-01

    A small extended body moving through an external spacetime gαβ creates a metric perturbation hαβ, which forces the body away from geodesic motion in gαβ. The foundations of this effect, called the gravitational self-force, are now well established, but concrete results have mostly been limited to linear order. Accurately modeling the dynamics of compact binaries requires proceeding to nonlinear orders. To that end, I show how to obtain the metric perturbation outside the body at all orders in a class of generalized wave gauges. In a small buffer region surrounding the body, the form of the perturbation can be found analytically as an expansion for small distances r from a representative worldline. Given only a specification of the body’s multipole moments, the field obtained in the buffer region suffices to find the metric everywhere outside the body via a numerical puncture scheme. Following this procedure at first and second order, I calculate the field in the buffer region around an arbitrarily structured compact body at sufficiently high order in r to numerically implement a second-order puncture scheme, including effects of the body’s spin. I also define nth-order (local) generalizations of the Detweiler-Whiting singular and regular fields and show that in a certain sense, the body can be viewed as a skeleton of multipole moments.

  16. Effect of nonlinear electrostatic forces on the dynamic behaviour of a capacitive ring-based Coriolis Vibrating Gyroscope under severe shock

    Science.gov (United States)

    Chouvion, B.; McWilliam, S.; Popov, A. A.

    2018-06-01

    This paper investigates the dynamic behaviour of capacitive ring-based Coriolis Vibrating Gyroscopes (CVGs) under severe shock conditions. A general analytical model is developed for a multi-supported ring resonator by describing the in-plane ring response as a finite sum of modes of a perfect ring and the electrostatic force as a Taylor series expansion. It is shown that the supports can induce mode coupling and that mode coupling occurs when the shock is severe and the electrostatic forces are nonlinear. The influence of electrostatic nonlinearity is investigated by numerically simulating the governing equations of motion. For the severe shock cases investigated, when the electrode gap reduces by ∼ 60 % , it is found that three ring modes of vibration (1 θ, 2 θ and 3 θ) and a 9th order force expansion are needed to obtain converged results for the global shock behaviour. Numerical results when the 2 θ mode is driven at resonance indicate that electrostatic nonlinearity introduces mode coupling which has potential to reduce sensor performance under operating conditions. Under some circumstances it is also found that severe shocks can cause the vibrating response to jump to another stable state with much lower vibration amplitude. This behaviour is mainly a function of shock amplitude and rigid-body motion damping.

  17. December insolation and ultraviolet B radiation are associated with multiple sclerosis mortality in Poland

    Directory of Open Access Journals (Sweden)

    Wojciech Cendrowski

    2013-06-01

    Full Text Available Background: The role of environmental factors (EF determining the occurrence of multiple sclerosis (SM is the subject of current investigations. Objective: To establish association between duration of insolation along with intensity of ultraviolet B (UVB radiation and mortality rates for SM in Poland. Method: The study was based on assemblage of 2172 SM persons (M – 878, F – 1294 who died in Poland in the years 2004–2008. Regional previous duration of insolation was measured in hours, intensity of UVB radiation was monitored in minimal erythema dose units (MED, ozone concentration in the ground layer of atmosphere was recorded in µg/m3 . Measurements of insolation, UVB radiation and ozone concentration were performed at provincial stations and territorial sites of the State Environmental Monitoring. EF were correlated to provincial crude mortality rates (CMR for MS. Correlational test by Pearson was used in the study. Demographic data were obtained from the Central Statistical Office, information on EF was received from the Institute of Meteorology and the Institute of Environmental Protection. Results: Annual, average, crude MR for MS per 100,000 inhabitants in Poland was 1.12 (SD 0.14. In northern part it amounted to 1.20 (SD 0.18 and in southern part reached 1.03 (SD 0.11. Significant inverse correlation was found between previous minimal duration of insolation in December and CMR for SM in the country: r = -0.518, p = 0.044. Borderline significance of inverse correlation was established between minimal intensity of UVB radiation in December and crude death rates for SM in Poland: r = -0.478, p = 0.060. CMR for SM in northern Poland was accompanied not only by lower UVB radiation level, but also by slower spring increase and autumn faster decrease of radiation. No significant correlation was ascertained between the ground atmospheric ozone concentration or the annual number of days with ozone concentration above 120 µg/m3 and MS

  18. Solar radiation estimation based on the insolation

    International Nuclear Information System (INIS)

    Assis, F.N. de; Steinmetz, S.; Martins, S.R.; Mendez, M.E.G.

    1998-01-01

    A series of daily global solar radiation data measured by an Eppley pyranometer was used to test PEREIRA and VILLA NOVA’s (1997) model to estimate the potential of radiation based on the instantaneous values measured at solar noon. The model also allows to estimate the parameters of PRESCOTT’s equation (1940) assuming a = 0,29 cosj. The results demonstrated the model’s validity for the studied conditions. Simultaneously, the hypothesis of generalizing the use of the radiation estimative formulas based on insolation, and using K = Ko (0,29 cosj + 0,50 n/N), was analysed and confirmed [pt

  19. Foot model for tracking temperature of safety boot insoles: application to different insole materials in firefighter boots.

    Science.gov (United States)

    García-Hernández, César; Sánchez-Álvarez, Eduardo J; Huertas-Talón, José-Luis

    2016-01-01

    This research is based on the development of a human foot model to study the temperature conditions of a foot bottom surface under extreme external conditions. This foot model is made by combining different manufacturing techniques to enable the simulation of bones and tissues, allowing the placement of sensors on its surface to track the temperature values of different points inside a shoe. These sensors let researchers capture valuable data during a defined period of time, making it possible to compare the features of different safety boots, socks or soles, among others. In this case, it has been applied to compare different plantar insole materials, placed into safety boots on a high-temperature surface.

  20. Full nonlinear treatment of the global thermospheric wind system. Part 1: Mathematical method and analysis of forces

    Science.gov (United States)

    Blum, P. W.; Harris, I.

    1973-01-01

    The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all the nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In part 1 the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analysed.

  1. Estimating insolation based on PV-module currents in a cluster of stand-alone solar systems: Introduction of a new method

    NARCIS (Netherlands)

    Nieuwenhout, F; van den Borg, N.; van Sark, W.G.J.H.M.; Turkenburg, W.C.

    In order to evaluate the performance of solar home systems (SHS), data on local insolation is a prerequisite. We present the outline of a new method to estimate insolation if direct measurements are unavailable. This method comprises estimation of daily irradiation by correlating photovoltaic

  2. Weight-bearing recommendations after operative fracture treatment-fact or fiction? Gait results with and feasibility of a dynamic, continuous pedobarography insole.

    Science.gov (United States)

    Braun, Benedikt J; Veith, Nils T; Rollmann, Mika; Orth, Marcel; Fritz, Tobias; Herath, Steven C; Holstein, Jörg H; Pohlemann, Tim

    2017-08-01

    Rehabilitation after lower-extremity fractures is based on the physicians' recommendation for non-, partial-, or full weight-bearing. Clinical studies rely on this assumption, but continuous compliance or objective loading rates are unknown. The purpose of this study was to determine the compliance to weight-bearing recommendations by introducing a novel, pedobarography system continuously registering postoperative ground forces into ankle, tibial shaft and proximal femur fracture aftercare and test its feasibility for this purpose. In this prospective, observational study, a continuously measuring pedobarography insole was placed in the patients shoe during the immediate post-operative aftercare after ankle, tibial shaft and intertrochanteric femur fractures. Weight-bearing was ordered as per the institutional standard and controlled by physical therapy. The insole was retrieved after a maximum of six weeks (28 days [range 5-42 days]). Non-compliance was defined as a failure to maintain, or reach the ordered weight-bearing within 30%. Overall 30 patients were included in the study. Fourteen (47%) of the patients were compliant to the weight-bearing recommendations. Within two weeks after surgery patients deviated from the recommendation by over 50%. Sex, age and weight did not influence the performance (p > 0.05). Ankle fracture patients (partial weight-bearing) showed a significantly increased deviation from the recommendation (p = 0.01). Our study results show that, despite physical therapy training, weight-bearing compliance to recommended limits was low. Adherence to the partial weight-bearing task was further decreased over time. Uncontrolled weight-bearing recommendations should thus be viewed with caution and carefully considered as fiction. The presented insole is feasible to determine weight bearing continuously, could immediately help define real-time patient behaviour and establish realistic, individual weight-bearing recommendations.

  3. Driving forces of Indian summer monsoon on Milankovitch and sub-Milankovitch time scales: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    A scientific consensus exists that tectonic evolution of Himalaya is the main cause of monsoon initiation and evolution in southeast Asia. Several forcing factors such as tectonic, solar insolation, latent heat transport, albedo of the earth surface...

  4. Sensitivity of the Greenland Ice Sheet to Interglacial Climate Forcing: MIS 5e Versus MIS 11

    Science.gov (United States)

    Rachmayani, Rima; Prange, Matthias; Lunt, Daniel J.; Stone, Emma J.; Schulz, Michael

    2017-11-01

    The Greenland Ice Sheet (GrIS) is thought to have contributed substantially to high global sea levels during the interglacials of Marine Isotope Stage (MIS) 5e and 11. Geological evidence suggests that the mass loss of the GrIS was greater during the peak interglacial of MIS 11 than MIS 5e, despite a weaker boreal summer insolation. We address this conundrum by using the three-dimensional thermomechanical ice sheet model Glimmer forced by Community Climate System Model version 3 output for MIS 5e and MIS 11 interglacial time slices. Our results suggest a stronger sensitivity of the GrIS to MIS 11 climate forcing than to MIS 5e forcing. Besides stronger greenhouse gas radiative forcing, the greater MIS 11 GrIS mass loss relative to MIS 5e is attributed to a larger oceanic heat transport toward high latitudes by a stronger Atlantic meridional overturning circulation. The vigorous MIS 11 ocean overturning, in turn, is related to a stronger wind-driven salt transport from low to high latitudes promoting North Atlantic Deep Water formation. The orbital insolation forcing, which causes the ocean current anomalies, is discussed.

  5. A new symmetry-based scoring method for posture assessment: evaluation of the effect of insoles with mineral derivatives.

    Science.gov (United States)

    Masse, M; Gaillardetz, C; Cron, C; Abribat, T

    2000-01-01

    There is a need for a validated rapid procedure for the evaluation of posture, defined as lateral balance/imbalance at the pelvic, shoulder, and neck levels. This would enable clinicians to determine the importance of symmetry in the pathophysiology of musculoskeletal disorders and to assess the efficacy of devices and treatments claiming to normalize or improve posture. In this investigation, the efficacy of such a device, a set of insoles with a hypothesized proprioceptive-like action, was evaluated through use of the described procedure. To develop a new scoring system to evaluate body posture on the basis of symmetry and to use this scoring system to investigate the efficacy of insoles containing a combination of mineral derivatives designed to balance posture through a neurophysiological effect. The posture score was based on the evaluation of 4 postural parameters: pelvic and shoulder lateral balance/imbalance, static shoulder rotation, and amplitude of head rotation. In the placebo-controlled study, 32 patients were tested in a double-blind fashion, either with placebo insoles or with insoles containing mineral derivatives. The same study was repeated in unblind conditions in 137 patients selected from 2 chiropractic clinics in an open-label protocol. A crossover placebo-controlled, double-blind study and a multicenter, large-scale, open-label study in patients selected from chiropractic clinics. A basal postural evaluation in 137 patients revealed that no patient had a perfect symmetry-ie, a perfectly or nearly perfectly balanced posture. The insoles with mineral derivatives induced a highly significant and similar improvement in the postural score in both the crossover double-blind study (32 patients; 56.7% improvement) and the open-label study (137 patients; 60.7% improvement, P postural imbalances according to the newly developed scoring method, and this method was successful in assessing the efficacy of insoles exerting a profound and immediate postural

  6. Optimization of significant insolation distribution parameters - A new approach towards BIPV system design

    Energy Technology Data Exchange (ETDEWEB)

    Paul, D. [SSBB and Senior Member-ASQ, Kolkata (India); Mandal, S.N. [Kalyani Govt Engg College, Kalyani (India); Mukherjee, D.; Bhadra Chaudhuri, S.R. [Dept of E. and T. C. Engg, B.E.S.U., Shibpur (India)

    2010-10-15

    System efficiency and payback time are yet to attain a commercially viable level for solar photovoltaic energy projects. Despite huge development in prediction of solar radiation data, there is a gap in extraction of pertinent information from such data. Hence the available data cannot be effectively utilized for engineering application. This is acting as a barrier for the emerging technology. For making accurate engineering and financial calculations regarding any solar energy project, it is crucial to identify and optimize the most significant statistic(s) representing insolation availability by the Photovoltaic setup at the installation site. Quality Function Deployment (QFD) technique has been applied for identifying the statistic(s), which are of high significance from a project designer's point of view. A MATLAB trademark program has been used to build the annual frequency distribution of hourly insolation over any module plane at a given location. Descriptive statistical analysis of such distributions is done through MINITAB trademark. For Building Integrated Photo Voltaic (BIPV) installation, similar statistical analysis has been carried out for the composite frequency distribution, which is formed by weighted summation of insolation distributions for different module planes used in the installation. Vital most influential statistic(s) of the composite distribution have been optimized through Artificial Neural Network computation. This approach is expected to open up a new horizon in BIPV system design. (author)

  7. Full non-linear treatment of the global thermospheric wind system. I - Mathematical method and analysis of forces. II - Results and comparison with observations

    Science.gov (United States)

    Blum, P. W.; Harris, I.

    1975-01-01

    The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In Part I the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analyzed. Results of the method given in Part I are presented with comparison with previous calculations and observations of upper atmospheric winds. Conclusions are that nonlinear effects are only significant in the equatorial region, especially at solstice conditions and that nonlinear effects do not produce any superrotation.

  8. Measurement agreement between a newly developed sensing insole and traditional laboratory-based method for footstrike pattern detection in runners

    Science.gov (United States)

    Cheung, Roy T. H.; An, Winko W.; Au, Ivan P. H.; Zhang, Janet H.; Chan, Zoe Y. S.; Man, Alfred; Lau, Fannie O. Y.; Lam, Melody K. Y.; Lau, K. K.; Leung, C. Y.; Tsang, N. W.; Sze, Louis K. Y.; Lam, Gilbert W. K.

    2017-01-01

    This study introduced a novel but simple method to continuously measure footstrike patterns in runners using inexpensive force sensors. Two force sensing resistors were firmly affixed at the heel and second toe of both insoles to collect the time signal of foot contact. A total of 109 healthy young adults (42 males and 67 females) were recruited in this study. They ran on an instrumented treadmill at 0°, +10°, and -10° inclinations and attempted rearfoot, midfoot, and forefoot landings using real time visual biofeedback. Intra-step strike index and onset time difference between two force sensors were measured and analyzed with univariate linear regression. We analyzed 25,655 footfalls and found that onset time difference between two sensors explained 80–84% of variation in the prediction model of strike index (R-squared = 0.799–0.836, p<0.001). However, the time windows to detect footstrike patterns on different surface inclinations were not consistent. These findings may allow laboratory-based gait retraining to be implemented in natural running environments to aid in both injury prevention and performance enhancement. PMID:28599003

  9. Measurement agreement between a newly developed sensing insole and traditional laboratory-based method for footstrike pattern detection in runners.

    Directory of Open Access Journals (Sweden)

    Roy T H Cheung

    Full Text Available This study introduced a novel but simple method to continuously measure footstrike patterns in runners using inexpensive force sensors. Two force sensing resistors were firmly affixed at the heel and second toe of both insoles to collect the time signal of foot contact. A total of 109 healthy young adults (42 males and 67 females were recruited in this study. They ran on an instrumented treadmill at 0°, +10°, and -10° inclinations and attempted rearfoot, midfoot, and forefoot landings using real time visual biofeedback. Intra-step strike index and onset time difference between two force sensors were measured and analyzed with univariate linear regression. We analyzed 25,655 footfalls and found that onset time difference between two sensors explained 80-84% of variation in the prediction model of strike index (R-squared = 0.799-0.836, p<0.001. However, the time windows to detect footstrike patterns on different surface inclinations were not consistent. These findings may allow laboratory-based gait retraining to be implemented in natural running environments to aid in both injury prevention and performance enhancement.

  10. Cubication of conservative nonlinear oscillators

    International Nuclear Information System (INIS)

    Belendez, Augusto; Alvarez, Mariela L; Fernandez, Elena; Pascual, Inmaculada

    2009-01-01

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  11. Investigation on atmospheric transmittance based on spectral and total direct insolation data; Nissha data ni motozuku taiki tokaritsu no kento

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H; Kanayama, K; Endo, N [Kitami Institute of Technology, Hokkaido (Japan)

    1997-11-25

    Spectral insolation values measured at Kitami since 1994 by using a multi-purpose spectral radiometer, and direct insolation data collected at seven locations are available. Based on these data, effects of sun`s altitude and atmospheric condition on atmospheric transmittance were discussed. Spectra of insolation received on the ground are subjected to scattering and absorption by gas and particulates, and show complex shapes while they transmit from the sun, reach the atmosphere of the earth and pass through the atmosphere. The Bird`s model is shown. Impact of the sun`s altitude on the spectra of insolation directly reaching the ground is small if the altitude is higher than 45 degrees. The impact grows suddenly large when it is lower than 30 degrees. Atmospheric turbidity (caused by aerosols generated by volcanic eruption or exhaust gases) affects the spectral transmittance over the whole wavelength region. Amount of steam in the atmosphere has a strong effect on the spectral transmittance in the steam absorption band. Total transmittance of the atmosphere was sought based on the measurement data of insolation directly reaching the ground at eight locations from Kitami to Shiono-misaki. The transmittance at each location is in a range from 0.75 to 0.83 showing close proximity. These data agreed well also with the average transmittance surveyed by the Meteorological Agency. 7 refs., 8 figs.

  12. Air content and O2/N2 tuned chronologies on local insolation signatures in the Vostok ice core are similar

    Science.gov (United States)

    Lipenkov, V.; Raynaud, D.; Loutre, M.-F.; Duval, P.; Lemieux-Dudon, B.

    2009-04-01

    An accurate chronology of ice cores is needed for interpreting the paleoclimatic record and understanding the relation between insolation and climate. A new domain of research in this area has been initially stimulated by the work of M. Bender (2002) linking the record of O2/N2 ratio in the air trapped in the Vostok ice with the local insolation. More recently, it has been proposed that the long-term changes in air content, V, recorded in ice from the high Antarctic plateau is also dominantly imprinted by the local summer insolation (Raynaud et al., 2007). The present paper presents a new V record from Vostok, which is compared with the published Vostok O2/N2 record for the same period of time (150-400 ka BP) by using the same spectral analysis methods. The spectral differences between the two properties and the possible mechanisms linking them with insolation through the surface snow structure and the close-off processes are discussed. The main result of our study is that the two experimentally independent local insolation proxies lead to absolute (orbital) time scales, which agree together within a standard deviation of 0.6 ka. This result strongly adds credibility to the air content of ice and the O2 to N2 ratio of the air trapped in ice as equally reliable and complementary tools for accurate dating of existing and future deep ice cores. References: M. Bender, Orbital tuning chronology for the Vostok climate record supported by trapped gas composition, Earth and Planetary Science Letters 204(2002) 275-289. D. Raynaud, V. Lipenkov, B. Lemieux-Dudon, P. Duval, M.F. Loutre, N. Lhomme, The local insolation signature of air content in Antarctic ice: a new step toward an absolute dating of ice records, Earth and Planetary Science Letters 261(2007) 337-349.

  13. A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio [Kogakuin University, Tokyo 163-8677 (Japan)

    2006-11-23

    A photovoltaic (PV) array shows relatively low output power density, and has a greatly drooping current-voltage (I-V) characteristic. Therefore, maximum power point tracking (MPPT) control is used to maximize the output power of the PV array. Many papers have been reported in relation to MPPT. However, the current-power (I-P) curve sometimes shows multi-local maximum point mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However, most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. (author)

  14. Extreme nonlinear energy exchanges in a geometrically nonlinear lattice oscillating in the plane

    Science.gov (United States)

    Zhang, Zhen; Manevitch, Leonid I.; Smirnov, Valeri; Bergman, Lawrence A.; Vakakis, Alexander F.

    2018-01-01

    We study the in-plane damped oscillations of a finite lattice of particles coupled by linear springs under distributed harmonic excitation. Strong nonlinearity in this system is generated by geometric effects due to the in-plane stretching of the coupling spring elements. The lattice has a finite number of nonlinear transverse standing waves (termed nonlinear normal modes - NNMs), and an equal number of axial linear modes which are nonlinearly coupled to the transverse ones. Nonlinear interactions between the transverse and axial modes under harmonic excitation give rise to unexpected and extreme nonlinear energy exchanges in the lattice. In particular, we directly excite a transverse NNM by harmonic forcing (causing simulataneous indirect excitation of a corresponding axial linear mode due to nonlinear coupling), and identify three energy transfer mechanisms in the lattice. First, we detect the stable response of the directly excited transverse NNM (despite its instability in the absence of forcing), with simultaneous stability of the indirectly excited axial linear mode. Second, by changing the system and forcing parameters we report extreme nonlinear "energy explosions," whereby, after an initial regime of stability, the directly excited transverse NNM loses stability, leading to abrupt excitation of all transverse and axial modes of the lattice, at all possible wave numbers. This strong instability is triggered by the parametric instability of an indirectly excited axial mode which builds energy until the explosion. This is proved through theoretical analysis. Finally, in other parameter ranges we report intermittent, intense energy transfers from the directly excited transverse NNM to a small set of transverse NNMs with smaller wavelengths, and from the indirectly excited axial mode to a small set of axial modes, but with larger wavelengths. These intermittent energy transfers resemble energy cascades occurring in turbulent flows. Our results show that

  15. Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals.

    Science.gov (United States)

    Bakunov, M I; Maslov, A V; Bodrov, S B

    2007-11-16

    We show that the usual Fresnel formulas for a free-propagating pulse are not applicable for a forced terahertz electromagnetic pulse supported by an optical pulse at the end of a nonlinear crystal. The correct linear reflection and transmission coefficients that we derive show that such pulses can experience a gain or loss at the boundary. This energy change depends on linear dielectric constants only. We also predict a regime where a complete disappearance of the forced pulse under oblique incidence occurs, an effect that has no counterpart for free-propagating pulses.

  16. Short-term effects of customized arch support insoles on symptomatic flexible flatfoot in children: A randomized controlled trial.

    Science.gov (United States)

    Hsieh, Ru-Lan; Peng, Hui-Ling; Lee, Wen-Chung

    2018-05-01

    Limited evidence is available regarding the effects of insoles on pediatric flexible flatfoot because of the heterogeneity and low methodological quality of previous studies. The purpose of this prospective trial is to examine the short-term effects of customized arch support insoles on symptomatic flexible flatfoot in children by using the International Classification of Functioning, randomized controlled Disability, and Health (ICF) framework. This study was conducted in a rehabilitation outpatient clinic of a teaching hospital. Fifty-two children with symptomatic flexible flatfoot were included. The children in the treatment group wore customized arch support insoles for 12 weeks, whereas those in the control group did not wear the insoles. Both clinical and radiographic measurements, including the navicular drop, foot posture index, Beighton hypermobility score, talonavicular coverage angle, calcaneal inclination angle, and calcaneal-first metatarsal angle, were used for diagnosing flexible flatfoot. Physical activity (10-m normal and fast walking, stair ascent, stair descent, and chair rising), physical function, and psychometric properties (Pediatric Outcome Data Collection Instrument and Pediatric Quality of Life Inventory) were evaluated at the baseline and 12 weeks after the intervention. Compared with the control group, the treatment group exhibited significant improvement in pain/comfort (P = .048), physical health (P = .035), stair ascent time (P = .015), upper extremity and physical function (P = .016), and transfer and basic mobility (P = .042) during the intervention period. Children with flexible flatfoot who wore customized arch support insoles for 12 weeks exhibited significantly improved pain/comfort, physical health, stair ascent time, upper extremity and physical function, and transfer and basic mobility. These variables belong to the domains of body functions and structures and activity and participation in the ICF

  17. Conflitos morais insolúveis e teorias normativas: uma abordagem preliminar sobre consistência moral

    Directory of Open Access Journals (Sweden)

    Lauren de Lacerda Nunes

    2012-04-01

    Full Text Available O presente artigo aborda dois tópicos específicos em ética: o problema dos conflitos morais em filosofia e a questáo da consistência em teorias morais. A relaçáo entre conflitos morais e consistência moral estabelecida neste trabalho foi realizada graças à natureza de alguns tipos de conflitos morais, a saber: os insolúveis ou genuínos - que seráo explicados ao longo do trabalho. Conflitos desse tipo sáo capazes de causar inconsistências nas normas de certos sistemas morais, como por exemplo, os preponderantemente racionalistas. Partindo desse problema, os autores que se dispõe a trabalhar este tema demonstram opiniões divididas: alguns optam por defender a genuinidade dos conflitos morais insolúveis e consideram as eventuais inconsistências na teoria moral como secundárias, enquanto outros optam por salvaguardar a lógica do pensamento e das teorias morais, negando os conflitos morais insolúveis. Este artigo busca esboçar tal “divisáo” entre os autores, ao explorar brevemente as argumentações de ambas as partes. Por fim, fica demonstrado que uma discussáo sobre consistência e conflitos morais precisa considerar tanto a esfera metaética quanto a esfera normativa da ética.

  18. Analytical modeling of soliton interactions in a nonlocal nonlinear medium analogous to gravitational force

    Science.gov (United States)

    Zeng, Shihao; Chen, Manna; Zhang, Ting; Hu, Wei; Guo, Qi; Lu, Daquan

    2018-01-01

    We illuminate an analytical model of soliton interactions in lead glass by analogizing to a gravitational force system. The orbits of spiraling solitons under a long-range interaction are given explicitly and demonstrated to follow Newton's second law of motion and the Binet equation by numerical simulations. The condition for circular orbits is obtained and the oscillating orbits are proved not to be closed. We prove the analogy between the nonlocal nonlinear optical system and gravitational system and specify the quantitative relation of the quantity between the two models.

  19. Influence of a Viscoelastic Insole on Foot, Knee and Back Pain among Members of the United States Army Band

    Science.gov (United States)

    2010-07-13

    Attenuation of spinal transients at heel strike using viscoelastic heel insoles: an in vivo study. Preventive Medicine. 2004;39:351-354. 30...2009 – March 2010 A-4 35. Bender JA, Pierson JK, Kaplan HM, Johnson AJ. Factors affecting the occurrence of knee injuries . Journal of the...EPIDEMIOLOGICAL REPORT NO. 12-HF-97G010-09 INFLUENCE OF A VISCOELASTIC INSOLE ON FOOT, KNEE AND BACK PAIN AMONG MEMBERS

  20. Corrigendum to "Upper ocean climate of the Eastern Mediterranean Sea during the Holocene Insolation Maximum – a model study" published in Clim. Past, 7, 1103–1122, 2011

    Directory of Open Access Journals (Sweden)

    G. Schmiedl

    2011-11-01

    Full Text Available Nine thousand years ago (9 ka BP, the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before

  1. One size fits all electronics for insole-based activity monitoring.

    Science.gov (United States)

    Hegde, Nagaraj; Bries, Matthew; Melanson, Edward; Sazonov, Edward

    2017-07-01

    Footwear based wearable sensors are becoming prominent in many areas of monitoring health and wellness, such as gait and activity monitoring. In our previous research we introduced an insole based wearable system SmartStep, which is completely integrated in a socially acceptable package. From a manufacturing perspective, SmartStep's electronics had to be custom made for each shoe size, greatly complicating the manufacturing process. In this work we explore the possibility of making a universal electronics platform for SmartStep - SmartStep 3.0, which can be used in the most common insole sizes without modifications. A pilot human subject experiments were run to compare the accuracy between the one-size fits all (SmartStep 3.0) and custom size SmartStep 2.0. A total of ~10 hours of data was collected in the pilot study involving three participants performing different activities of daily living while wearing SmartStep 2.0 and SmartStep 3.0. Leave one out cross validation resulted in a 98.5% average accuracy from SmartStep 2.0, while SmartStep 3.0 resulted in 98.3% accuracy, suggesting that the SmartStep 3.0 can be as accurate as SmartStep 2.0, while fitting most common shoe sizes.

  2. A Study of a Two Stage Maximum Power Point Tracking Control of a Photovoltaic System under Partially Shaded Insolation Conditions

    Science.gov (United States)

    Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio

    A photovoltaic array shows relatively low output power density, and has a greatly drooping Current-Voltage (I-V) characteristic. Therefore, Maximum Power Point Tracking (MPPT) control is used to maximize the output power of the array. Many papers have been reported in relation to MPPT. However, the Current-Power (I-P) curve sometimes shows multi-local maximum points mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. In addition, simulated experiment confirms fundament al operation of the two stage MPPT control.

  3. Multistable Microactuators Functioning on the Basis of Electromagnetic Lorentz Force: Nonlinear Structural and Electrothermal Analyses

    International Nuclear Information System (INIS)

    Han, Jeong Sam

    2010-01-01

    In this paper, the design and nonlinear simulation of a multistable electromagnetic microactuator, which provides four stable equilibrium positions within its operating range, have been discussed. Quadstable actuator motion has been made possible by using both X- and Y-directional bistable structures with snapping curved beams. Two pairs of the curved beams are attached to an inner frame in both X- and Y-directions to realize independent bistable behavior in each direction. For the actuation of the actuator at the micrometer scale, an electromagnetic actuation method in which Lorentz force is taken into consideration was used. By using this method, micrometer-stroke quadstability in a plane parallel to a substrate was possible. The feasibility of designing an actuator that can realize quadstable motion by using the electromagnetic actuation method has been thoroughly clarified by performing nonlinear static and dynamic analyses and electrothermal coupled-field analysis of the multistable microactuator

  4. Shock-absorbing insoles reduce the incidence of lower limb overuse injuries sustained during Royal Marine training.

    Science.gov (United States)

    House, Carol; Reece, Allyson; Roiz de Sa, Dan

    2013-06-01

    This study was undertaken to determine whether the incidence of lower limb overuse injuries (LLOIs) sustained during Royal Marine training could be reduced by issuing the recruits with shock-absorbing insoles (SAIs) to wear in their military boots. This was a retrospective longitudinal trial conducted in two phases. Injury data from 1,416 recruits issued with standard Saran insoles and 1,338 recruits issued with SAI were compared. The recruits in the two groups were of similar height, body mass, and aerobic fitness and followed the same training course. The incidence of LLOI sustained by the recruits was lower (p tibial periostitis, tenosynovitis of foot, achilles tendonopathy, other tendonopathy and anterior knee pain were lower (p Tibial stress fracture incidence was lower (p < 0.05) in the SAI Group but metatarsal and femoral stress fracture incidences were the same for the two insole groups. Thus, issuing SAIs to military recruits undertaking a sustained, arduous physical training program with a high incidence of LLOI would provide a beneficial reduction in the incidence of LLOI. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  5. A NEW CODE FOR NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF THE GLOBAL CORONA

    International Nuclear Information System (INIS)

    Jiang Chaowei; Feng Xueshang; Xiang Changqing

    2012-01-01

    Reliable measurements of the solar magnetic field are still restricted to the photosphere, and our present knowledge of the three-dimensional coronal magnetic field is largely based on extrapolations from photospheric magnetograms using physical models, e.g., the nonlinear force-free field (NLFFF) model that is usually adopted. Most of the currently available NLFFF codes have been developed with computational volume such as a Cartesian box or a spherical wedge, while a global full-sphere extrapolation is still under development. A high-performance global extrapolation code is in particular urgently needed considering that the Solar Dynamics Observatory can provide a full-disk magnetogram with resolution up to 4096 × 4096. In this work, we present a new parallelized code for global NLFFF extrapolation with the photosphere magnetogram as input. The method is based on the magnetohydrodynamics relaxation approach, the CESE-MHD numerical scheme, and a Yin-Yang spherical grid that is used to overcome the polar problems of the standard spherical grid. The code is validated by two full-sphere force-free solutions from Low and Lou's semi-analytic force-free field model. The code shows high accuracy and fast convergence, and can be ready for future practical application if combined with an adaptive mesh refinement technique.

  6. Detectability of the impacts of ozone-depleting substances and greenhouse gases upon stratospheric ozone accounting for nonlinearities in historical forcings

    Science.gov (United States)

    Bandoro, Justin; Solomon, Susan; Santer, Benjamin D.; Kinnison, Douglas E.; Mills, Michael J.

    2018-01-01

    We perform a formal attribution study of upper- and lower-stratospheric ozone changes using observations together with simulations from the Whole Atmosphere Community Climate Model. Historical model simulations were used to estimate the zonal-mean response patterns (fingerprints) to combined forcing by ozone-depleting substances (ODSs) and well-mixed greenhouse gases (GHGs), as well as to the individual forcing by each factor. Trends in the similarity between the searched-for fingerprints and homogenized observations of stratospheric ozone were compared to trends in pattern similarity between the fingerprints and the internally and naturally generated variability inferred from long control runs. This yields estimated signal-to-noise (S/N) ratios for each of the three fingerprints (ODS, GHG, and ODS + GHG). In both the upper stratosphere (defined in this paper as 1 to 10 hPa) and lower stratosphere (40 to 100 hPa), the spatial fingerprints of the ODS + GHG and ODS-only patterns were consistently detectable not only during the era of maximum ozone depletion but also throughout the observational record (1984-2016). We also develop a fingerprint attribution method to account for forcings whose time evolutions are markedly nonlinear over the observational record. When the nonlinearity of the time evolution of the ODS and ODS + GHG signals is accounted for, we find that the S/N ratios obtained with the stratospheric ODS and ODS + GHG fingerprints are enhanced relative to standard linear trend analysis. Use of the nonlinear signal detection method also reduces the detection time - the estimate of the date at which ODS and GHG impacts on ozone can be formally identified. Furthermore, by explicitly considering nonlinear signal evolution, the complete observational record can be used in the S/N analysis, without applying piecewise linear regression and introducing arbitrary break points. The GHG-driven fingerprint of ozone changes was not statistically identifiable in either

  7. Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities

    Directory of Open Access Journals (Sweden)

    Y. N. Pavlov

    2015-01-01

    Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic

  8. Investigating the Influence of Prefabricated Insole with Medial Flange on Forefoot and Rearfoot Alignment Changes at Females with Flexible Flat Foot

    Directory of Open Access Journals (Sweden)

    Fatemeh Dehghani

    2015-01-01

    Full Text Available Objective: Flexible flat foot is one the most common extremities diseases happen among adults, this causes change in foot, tibia, and higher joints alignment, pain and certain complications in upper joints and soft tissues. This study aimed to investigate differences in foot direction among patients with flexible flat feet as so called foot static response to a certain prefabricated insole. Materials & Methods: It was a quasi-experimental study and patients were consisted of 32 female with flat feet in range of 18 to 28 years old and to measure differences a laser device was used. The rear foot angle amount which is calculated by investigating the heel valgus angle and the forefoot angle amount which is calculated by investigating leg angle and forefoot, both assessed at barefoot condition and with medial flange insole mode. Results: Results showed that by using the insole there is a significant decrease in direction of anterior line angle (P<0.001. At mean, by using medial flange insole 3.5 degrees decrease at forefoot angle and 2.5 degrees decrease at heel angle was observed (P<0.001. Conclusion: This study showed that the prefabricated insole with high internal septum could normalize the direction of foot. Namely, it corrected the heel angle and leg deviations. Moreover, the NAS line despite of specifying the leg changes, it represents the influence of orthoses on this section.

  9. Astronomically forced western African (21°N-20°S) rainfall variations during the Last Interglacial

    Science.gov (United States)

    Govin, Aline; Varma, Vidya; Prange, Matthias

    2013-04-01

    Many studies document an intensified NW African monsoon during the African Humid Period (11.5-5.5 ka) in response to increased summer insolation. Similarly, the particularly high summer insolation during the Last Interglacial (LIG, 129-116 ka) led to enhanced North African rainfall and a "green Sahara". Although this pluvial period seemed to facilitate the migration of modern humans out of Africa, the precise evolution of African wet conditions during the LIG remains unknown. Here we aim to document the evolution of western African precipitation during the LIG and identify the climate forcing associated. We use the major element compositions of nine marine sediment cores located along the W African margin (21°N-20°S) in order to characterize the terrestrial climatic conditions in the region where terrigenous material originates and infer past western African precipitation changes. Geochemical data are compared to results from a transient simulation (130-115 ka) performed with the coupled ocean - atmosphere Community Climate System Model CCSM3 and forced by insolation variations only. Both geochemical and model data indicate humid conditions in NW Africa (9-21°N) between 127 and 122 ka, in response to the high summer insolation. The period of intensified NW African monsoon starts ~3 ka later in geochemical data (127 ka) than in the simulation (130 ka). This result suggests that the persistent melting of northern ice sheets and associated cooling at the beginning of the LIG delayed the orbitally-induced intensification of the NW African monsoon. In addition, geochemical and model data indicate a slight precipitation increase in equatorial Africa throughout the LIG, in response to the small increase in annual insolation induced by the obliquity decrease. At ~5-10°S, sediment cores and model results document a small decrease in annual precipitation that is consistent with increasing sea level pressure in southern Africa during the LIG. This pattern seems to follow

  10. Comparison of plantar pressure in three types of insole given to patients with diabetes at risk of developing foot ulcers – A two-year, randomized trial

    Directory of Open Access Journals (Sweden)

    Ulla Hellstrand Tang

    2014-12-01

    Conclusions: Custom-made insoles used in combination with stable walking shoes gave lower pressures at the heel region. The variation makes it difficult to detect a systematic difference in plantar pressure for the 6 ROI, if such a difference indeed exists. The levels of satisfaction and usage for all the insoles tested were high. The insoles maintained their pressure redistribution properties over long periods, and few adjustments were needed.

  11. Handbook of solar energy data for south-facing surfaces in the United States. Volume I. An insolation, array shadowing, and reflector augmentation model

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.H.

    1980-01-15

    This handbook provides estimates of average available solar insolation to fixed, flat-plate, south-facing collector surfaces at various array tilt angles at numerous sites in the US. This first volume contains average daily, total insolation estimates, by month, and annual totals for 235 locations. A model that estimates the direct, diffuse, and reflected components of total insolation on an hourly, daily, and monthly basis is presented. A shadow loss model and a reflector augmentation model providing estimates of the losses and gains associated with various fixed array geometries are also described. These models can be used with the insolation model provided or with other recorded data. A FORTRAN computer program with user's guide is presented. The program can be used to generate additional handbook values or to examine the effects of array shadowing and fixed reflector augmentation effects on a daily, monthly, or annual basis. Array shadowing depends on location, array size, array tilt, array separation, and time. The program can be used to examine trade-offs between array spacing and insolation losses due to shadowing. The reflector augmentation program can be used to examine trade-offs among array size and tilt, separation, and reflector tilt to determine the combination of design values that optimize the economic objectives or technical criteria of the system.

  12. Decompression with the aid of insoles in the treatment of diabetic neuropathic ulcers

    DEFF Research Database (Denmark)

    Holstein, P; Larsen, K; Sager, P

    1976-01-01

    Thirty-seven out of 38 neuropathic ulcers in 21 diabetic patients healed during relief of external pressure obtained by properly fitted interchangeable insoles. The time required for healing was 1 to 12 months (mean 3.6 months). The presence of mild occlussive arterial disease did not influence...

  13. Reduced knee joint loading with lateral and medial wedge insoles for management of knee osteoarthritis: a protocol for a randomized controlled trial.

    Science.gov (United States)

    Lewinson, Ryan T; Collins, Kelsey H; Vallerand, Isabelle A; Wiley, J Preston; Woodhouse, Linda J; Reimer, Raylene A; Worobets, Jay T; Herzog, Walter; Stefanyshyn, Darren J

    2014-12-03

    Knee osteoarthritis (OA) progression has been linked to increased peak external knee adduction moments (KAMs). Although some trials have attempted to reduce pain and improve function in OA by reducing KAMs with a wedged footwear insole intervention, KAM reduction has not been specifically controlled for in trial designs, potentially explaining the mixed results seen in the literature. Therefore, the primary purpose of this trial is to identify the effects of reduced KAMs on knee OA pain and function. Forty-six patients with radiographically confirmed diagnosis medial knee OA will be recruited for this 3 month randomized controlled trial. Recruitment will be from Alberta and surrounding areas. Eligibility criteria include being between the ages of 40 and 85 years, have knee OA primarily localized to the medial tibiofemoral compartment, based on the American College of Rheumatology diagnostic criteria and be classified as having a Kellgren-Lawrence grade of 1 to 3. Patients will visit the laboratory at baseline for testing that includes dual x-ray absorptiometry, biomechanical testing, and surveys (KOOS, PASE activity scale, UCLA activity scale, comfort visual analog scale). At baseline, patients will be randomized to either a wedged insole group to reduce KAMs, or a waitlist control group where no intervention is provided. The survey tests will be repeated at 3 months, and response to wedged insoles over 3 months will be evaluated. This study represents the first step in systematically evaluating the effects of reduced KAMs on knee OA management by using a patient-specific wedged insole prescription procedure rather than providing the same insole to all patients. The results of this trial will provide indications as to whether reduced KAMs are an effective strategy for knee OA management, and whether a personalized approach to footwear insole prescription is warranted. NCT02067208.

  14. A variational numerical method based on finite elements for the nonlinear solution characteristics of the periodically forced Chen system

    Science.gov (United States)

    Khan, Sabeel M.; Sunny, D. A.; Aqeel, M.

    2017-09-01

    Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.

  15. Monsoonal response to mid-holocene orbital forcing in a high resolution GCM

    Directory of Open Access Journals (Sweden)

    J. H. C. Bosmans

    2012-04-01

    Full Text Available In this study, we use a sophisticated high-resolution atmosphere-ocean coupled climate model, EC-Earth, to investigate the effect of Mid-Holocene orbital forcing on summer monsoons on both hemispheres. During the Mid-Holocene (6 ka, there was more summer insolation on the Northern Hemisphere than today, which intensified the meridional temperature and pressure gradients. Over North Africa, monsoonal precipitation is intensified through increased landward monsoon winds and moisture advection as well as decreased moisture convergence over the oceans and more convergence over land compared to the pre-industrial simulation. Precipitation also extends further north as the ITCZ shifts northward in response to the stronger poleward gradient of insolation. This increase and poleward extent is stronger than in most previous ocean-atmosphere GCM simulations. In north-westernmost Africa, precipitation extends up to 35° N. Over tropical Africa, internal feedbacks completely overcome the direct warming effect of increased insolation. We also find a weakened African Easterly Jet. Over Asia, monsoonal precipitation during the Mid-Holocene is increased as well, but the response is different than over North-Africa. There is more convection over land at the expense of convection over the ocean, but precipitation does not extend further northward, monsoon winds over the ocean are weaker and the surrounding ocean does not provide more moisture. On the Southern Hemisphere, summer insolation and the poleward insolation gradient were weaker during the Mid-Holocene, resulting in a reduced South American monsoon through decreased monsoon winds and less convection, as well as an equatorward shift in the ITCZ. This study corroborates the findings of paleodata research as well as previous model studies, while giving a more detailed account of Mid-Holocene monsoons.

  16. EMG and force production of the flexor hallucis longus muscle in isometric plantarflexion and the push-off phase of walking.

    Science.gov (United States)

    Péter, Annamária; Hegyi, András; Stenroth, Lauri; Finni, Taija; Cronin, Neil J

    2015-09-18

    Large forces are generated under the big toe in the push-off phase of walking. The largest flexor muscle of the big toe is the flexor hallucis longus (FHL), which likely contributes substantially to these forces. This study examined FHL function at different levels of isometric plantarflexion torque and in the push-off phase at different speeds of walking. FHL and calf muscle activity were measured with surface EMG and plantar pressure was recorded with pressure insoles. FHL activity was compared to the activity of the calf muscles. Force and impulse values were calculated under the big toe, and were compared to the entire pressed area of the insole to determine the relative contribution of big toe flexion forces to the ground reaction force. FHL activity increased with increasing plantarflexion torque level (F=2.8, P=0.024) and with increasing walking speed (F=11.608, Ppush-off phase of walking, peak force under the big toe increased at a higher rate than force under the other areas of the plantar surface (F=3.801, P=0.018), implying a greater relative contribution to total force at faster speeds. Moreover, substantial differences were found between isometric plantarflexion and walking concerning FHL activity relative to that of the calf muscles, highlighting the task-dependant behaviour of FHL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    Science.gov (United States)

    Latta, A. F.; Bowyer, J. M.; Fujita, T.

    1979-01-01

    This paper presents the performance and cost of four 10-MWe advanced solar thermal electric power plants sited in various regions of the continental United States. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs, and energy costs. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrator (CPC) comprise the advanced concepts studied. This paper contains a discussion of the regional insolation data base, a description of the solar systems' performances and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades.

  18. THE INFLUENCE OF SPATIAL RESOLUTION ON NONLINEAR FORCE-FREE MODELING

    Energy Technology Data Exchange (ETDEWEB)

    DeRosa, M. L.; Schrijver, C. J. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover St. B/252, Palo Alto, CA 94304 (United States); Wheatland, M. S.; Gilchrist, S. A. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Leka, K. D.; Barnes, G. [NorthWest Research Associates, 3380 Mitchell Ln., Boulder, CO 80301 (United States); Amari, T.; Canou, A. [CNRS, Centre de Physique Théorique de l’École Polytechnique, F-91128, Palaiseau Cedex (France); Thalmann, J. K. [Institute of Physics/IGAM, University of Graz, Universitätsplatz 5, A-8010 Graz (Austria); Valori, G. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Wiegelmann, T. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077, Göttingen (Germany); Malanushenko, A. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Sun, X. [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States); Régnier, S. [Department of Mathematics and Information Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle-Upon-Tyne, NE1 8ST (United Kingdom)

    2015-10-01

    The nonlinear force-free field (NLFFF) model is often used to describe the solar coronal magnetic field, however a series of earlier studies revealed difficulties in the numerical solution of the model in application to photospheric boundary data. We investigate the sensitivity of the modeling to the spatial resolution of the boundary data, by applying multiple codes that numerically solve the NLFFF model to a sequence of vector magnetogram data at different resolutions, prepared from a single Hinode/Solar Optical Telescope Spectro-Polarimeter scan of NOAA Active Region 10978 on 2007 December 13. We analyze the resulting energies and relative magnetic helicities, employ a Helmholtz decomposition to characterize divergence errors, and quantify changes made by the codes to the vector magnetogram boundary data in order to be compatible with the force-free model. This study shows that NLFFF modeling results depend quantitatively on the spatial resolution of the input boundary data, and that using more highly resolved boundary data yields more self-consistent results. The free energies of the resulting solutions generally trend higher with increasing resolution, while relative magnetic helicity values vary significantly between resolutions for all methods. All methods require changing the horizontal components, and for some methods also the vertical components, of the vector magnetogram boundary field in excess of nominal uncertainties in the data. The solutions produced by the various methods are significantly different at each resolution level. We continue to recommend verifying agreement between the modeled field lines and corresponding coronal loop images before any NLFFF model is used in a scientific setting.

  19. Climate and carbon-cycle response to astronomical forcing over the last 35 Ma.

    Science.gov (United States)

    De Vleeschouwer, D.; Palike, H.; Vahlenkamp, M.; Crucifix, M.

    2017-12-01

    On a million-year time scale, the characteristics of insolation forcing caused by cyclical variations in the astronomical parameters of the Earth remain stable. Nevertheless, Earth's climate responded very differently to this forcing during different parts of the Cenozoic. The recently-published ∂18Obenthic megasplice (De Vleeschouwer et al., 2017) allowed for a clear visualization of these changes in global climate response to astronomical forcing. However, many open questions remain regarding how carbon-cycle dynamics influence Earth's climate sensitivity to astronomical climate forcing. To provide insight into the interaction between the carbon cycle and astronomical insolation forcing, we built a benthic carbon isotope (∂13Cbenthic) megasplice for the last 35 Ma, employing the same technique used to build the ∂18Obenthic megasplice. The ∂13Cbenthic megasplice exhibits a strong imprint of the 405 and 100-kyr eccentricity cycles throughout the last 35 Ma. This is intriguing, as the oxygen isotope megasplice looses its eccentricity imprint after the mid-Miocene climatic transition (MMCT; see Fig. 1 in De Vleeschouwer et al., 2017). In other words, the carbon cycle responded completely differently to astronomical forcing, compared to global climate during the late Miocene. We visualize this difference in response by the application of a Gaussian process, which renders the dependence of one variable (here ∂18Obenthic or ∂13Cbenthic) in a multidimensional space (here precession, obliquity and eccentricity). Together, the ∂13Cbenthic and ∂18Obenthic megasplices thus provide a unique tool for paleoclimatology, allowing for the quantification and visualization of the changing paleoclimate and carbon-cycle response to astronomical forcing throughout geologic time. References De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., Pälike, H., 2017. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m

  20. Force-controlled absorption in a fully-nonlinear numerical wave tank

    International Nuclear Information System (INIS)

    Spinneken, Johannes; Christou, Marios; Swan, Chris

    2014-01-01

    An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes

  1. Weakly nonlinear electron plasma waves in collisional plasmas

    DEFF Research Database (Denmark)

    Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.

    1986-01-01

    The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...

  2. Effects of laterally wedged insoles on symptoms and disease progression in medial knee osteoarthritis: a protocol for a randomised, double-blind, placebo controlled trial

    Directory of Open Access Journals (Sweden)

    Osborne Richard

    2007-09-01

    Full Text Available Abstract Background Whilst laterally wedged insoles, worn inside the shoes, are advocated as a simple, inexpensive, non-toxic self-administered intervention for knee osteoarthritis (OA, there is currently limited evidence to support their use. The aim of this randomised, double-blind controlled trial is to determine whether laterally wedges insoles lead to greater improvements in knee pain, physical function and health-related quality of life, and slower structural disease progression as well as being more cost-effective, than control flat insoles in people with medial knee OA. Methods/Design Two hundred participants with painful radiographic medial knee OA and varus malalignment will be recruited from the community and randomly allocated to lateral wedge or control insole groups using concealed allocation. Participants will be blinded as to which insole is considered therapeutic. Blinded follow up assessment will be conducted at 12 months after randomisation. The outcome measures are valid and reliable measures recommended for OA clinical trials. Questionnaires will assess changes in pain, physical function and health-related quality-of-life. Magnetic resonance imaging will measure changes in tibial cartilage volume. To evaluate cost-effectiveness, participants will record the use of all health-related treatments in a log-book returned to the assessor on a monthly basis. To test the effect of the intervention using an intention-to-treat analysis, linear regression modelling will be applied adjusting for baseline outcome values and other demographic characteristics. Discussion Results from this trial will contribute to the evidence regarding the effectiveness of laterally wedged insoles for the management of medial knee OA. Trial registration ACTR12605000503628; NCT00415259.

  3. Teaching nonlinear dynamics through elastic cords

    International Nuclear Information System (INIS)

    Chacon, R; Galan, C A; Sanchez-Bajo, F

    2011-01-01

    We experimentally studied the restoring force of a length of stretched elastic cord. A simple analytical expression for the restoring force was found to fit all the experimental results for different elastic materials. Remarkably, this analytical expression depends upon an elastic-cord characteristic parameter which exhibits two limiting values corresponding to two nonlinear springs with different Hooke's elastic constants. Additionally, the simplest model of elastic cord dynamics is capable of exhibiting a great diversity of nonlinear phenomena, including bifurcations and chaos, thus providing a suitable alternative model system for discussing the basic essentials of nonlinear dynamics in the context of intermediate physics courses at university level.

  4. Evaluation of the clamping force in high tension bolt by using the ultrasonic nonlinearity

    International Nuclear Information System (INIS)

    Jang, Kyung Young; Cheon, Hae Wha; Ha, Hob; Park, Man Sick; Kim, No You

    2005-01-01

    High tension bolts have been used widely for the clamping of many kinds of large structure. Therefore, its estimation has been regarded as main issue in the maintenance of high tension bolts. This paper proposes a novel method using the ultrasonic nonlinearity, which is based on the dependency of sound speed on the stress. For this we introduce nonlinear elastic constants in the stress-strain relationship, and derive the sound speed as a linear function of stress. In order to verify the usefulness of the proposed method, two kinds of experiments are carried out: The first one is to measure the sound speed when the bolt is stressed by the tension tester. The result showed good agreement with the expected linear relationship between the sound speed and the axial stress. The second one is to measure the sound speed when the bolt is stressed by the torque wrench. The results showed that the sound speed was decreased when the torque was increased. From these results we can say that the proposed method is enough useful to evaluate the clamping force in the high tension bolt.

  5. A novel tool for continuous fracture aftercare - Clinical feasibility and first results of a new telemetric gait analysis insole.

    Science.gov (United States)

    Braun, Benedikt J; Bushuven, Eva; Hell, Rebecca; Veith, Nils T; Buschbaum, Jan; Holstein, Joerg H; Pohlemann, Tim

    2016-02-01

    Weight bearing after lower extremity fractures still remains a highly controversial issue. Even in ankle fractures, the most common lower extremity injury no standard aftercare protocol has been established. Average non weight bearing times range from 0 to 7 weeks, with standardised, radiological healing controls at fixed time intervals. Recent literature calls for patient-adapted aftercare protocols based on individual fracture and load scenarios. We show the clinical feasibility and first results of a new, insole embedded gait analysis tool for continuous monitoring of gait, load and activity. Ten patients were monitored with a new, independent gait analysis insole for up to 3 months postoperatively. Strict 20 kg partial weight bearing was ordered for 6 weeks. Overall activity, load spectrum, ground reaction forces, clinical scoring and general health data were recorded and correlated. Statistical analysis with power analysis, t-test and Spearman correlation was performed. Only one patient completely adhered to the set weight bearing limit. Average time in minutes over the limit was 374 min. Based on the parameters load, activity, gait time over 20 kg weight bearing and maximum ground reaction force high and low performers were defined after 3 weeks. Significant difference in time to painless full weight bearing between high and low performers was shown. Correlation analysis revealed a significant correlation between weight bearing and clinical scoring as well as pain (American Orthopaedic Foot and Ankle Society (AOFAS) Score rs=0.74; Olerud-Molander Score rs=0.93; VAS pain rs=-0.95). Early, continuous gait analysis is able to define aftercare performers with significant differences in time to full painless weight bearing where clinical or radiographic controls could not. Patient compliance to standardised weight bearing limits and protocols is low. Highly individual rehabilitation patterns were seen in all patients. Aftercare protocols should be adjusted to real

  6. An Efficient Reduced-Order Model for the Nonlinear Dynamics of Carbon Nanotubes

    KAUST Repository

    Xu, Tiantian

    2014-08-17

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction of their cylindrical shape, forming upper electrodes, to lower electrodes poises serious computational challenges. This presents an obstacle against applying and using several nonlinear dynamics tools that typically used to analyze the behavior of complicated nonlinear systems, such as shooting, continuation, and integrity analysis techniques. This works presents an attempt to resolve this issue. We present an investigation of the nonlinear dynamics of carbon nanotubes when actuated by large electrostatic forces. We study expanding the complicated form of the electrostatic force into enough number of terms of the Taylor series. We plot and compare the expanded form of the electrostatic force to the exact form and found that at least twenty terms are needed to capture accurately the strong nonlinear form of the force over the full range of motion. Then, we utilize this form along with an Euler–Bernoulli beam model to study the static and dynamic behavior of CNTs. The geometric nonlinearity and the nonlinear electrostatic force are considered. An efficient reduced-order model (ROM) based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the CNTs. We found that the use of the new expanded form of the electrostatic force enables avoiding the cumbersome evaluation of the spatial integrals involving the electrostatic force during the modal projection procedure in the Galerkin method, which needs to be done at every time step. Hence, the new method proves to be much more efficient computationally.

  7. A new approach to implement a customized anatomic insole in orthopaedic footwear of lower limb orthosis

    Science.gov (United States)

    Peixoto, J.; Flores, P.; Souto, A. P.

    2017-10-01

    This paper concerns the development of a new approach for orthopaedic footwear to apply in KAFO orthosis (acronym for Knee Ankle Foot Orthosis). This procedure starts with full characterization of the problem with the purpose to characterize a plantar of a patient’s foot with polio. A 3D Scanner was used to collect their feet’s data to produce an anatomic insole. After this step, the patient performs a study of his gait using a static and dynamic study with the aim of characterizing the parameters to improve quality in the footwear. The insole was produced using a 3D printing technology. It was essential to optimize manufacturing processes and it was developed a footwear prototype with innovative characteristics, which is 25% lighter, allowing the user to consume less energy in daily routines.

  8. Comparison of bacterial DNA profiles of footwear insoles and soles of feet for the forensic discrimination of footwear owners.

    Science.gov (United States)

    Goga, Haruhisa

    2012-09-01

    It is crucial to identify the owner of unattended footwear left at a crime scene. However, retrieving enough DNA for DNA profiling from the owner's foot skin (plantar skin) cells from inside the footwear is often unsuccessful. This is sometimes because footwear that is used on a daily basis contains an abundance of bacteria that degrade DNA. Further, numerous other factors related to the inside of the shoe, such as high humidity and temperature, can encourage bacterial growth inside the footwear and enhance DNA degradation. This project sought to determine if bacteria from inside footwear could be used for footwear trace evidence. The plantar skins and insoles of shoes of volunteers were swabbed for bacteria, and their bacterial community profiles were compared using bacterial 16S rRNA terminal restriction fragment length polymorphism analysis. Sufficient bacteria were recovered from both footwear insoles and the plantar skins of the volunteers. The profiling identified that each volunteer's plantar skins harbored unique bacterial communities, as did the individuals' footwear insoles. In most cases, a significant similarity in the bacterial community was identified for the matched foot/insole swabs from each volunteer, as compared with those profiles from different volunteers. These observations indicate the probability to discriminate the owner of footwear by comparing the microbial DNA fingerprint from inside footwear with that of the skin from the soles of the feet of the suspected owner. This novel strategy will offer auxiliary forensic footwear evidence for human DNA identification, although further investigations into this technique are required.

  9. Nonlinear effects on mode-converted lower-hybrid waves

    International Nuclear Information System (INIS)

    Kuehl, H.H.

    1976-01-01

    Nonlinear ponderomotive force effects on mode-converted lower-hybrid waves are considered. The nonlinear distortion of these waves is shown to be governed by the cubic nonlinear Schroedinger equation. The threshold condition for self-focusing and filamentation is derived

  10. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    Energy Technology Data Exchange (ETDEWEB)

    Bosse, J. L.; Huey, B. D. [Department of Materials Science and Engineering, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269-3136 (United States); Tovee, P. D.; Kolosov, O. V., E-mail: o.kolosov@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-04-14

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing μs time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few μm{sup 2} unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the

  11. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    International Nuclear Information System (INIS)

    Bosse, J. L.; Huey, B. D.; Tovee, P. D.; Kolosov, O. V.

    2014-01-01

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing μs time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few μm 2 unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the particular

  12. A nonlinear eigenvalue problem for self-similar spherical force-free magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. [Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther Universität, D-06099 Halle (Germany); Low, B. C. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80307 (United States)

    2014-10-15

    An axisymmetric force-free magnetic field B(r, θ) in spherical coordinates is defined by a function r sin θB{sub φ}=Q(A) relating its azimuthal component to its poloidal flux-function A. The power law r sin θB{sub φ}=aA|A|{sup 1/n}, n a positive constant, admits separable fields with A=(A{sub n}(θ))/(r{sup n}) , posing a nonlinear boundary-value problem for the constant parameter a as an eigenvalue and A{sub n}(θ) as its eigenfunction [B. C. Low and Y. Q Lou, Astrophys. J. 352, 343 (1990)]. A complete analysis is presented of the eigenvalue spectrum for a given n, providing a unified understanding of the eigenfunctions and the physical relationship between the field's degree of multi-polarity and rate of radial decay via the parameter n. These force-free fields, self-similar on spheres of constant r, have basic astrophysical applications. As explicit solutions they have, over the years, served as standard benchmarks for testing 3D numerical codes developed to compute general force-free fields in the solar corona. The study presented includes a set of illustrative multipolar field solutions to address the magnetohydrodynamics (MHD) issues underlying the observation that the solar corona has a statistical preference for negative and positive magnetic helicities in its northern and southern hemispheres, respectively; a hemispherical effect, unchanging as the Sun's global field reverses polarity in successive eleven-year cycles. Generalizing these force-free fields to the separable form B=(H(θ,φ))/(r{sup n+2}) promises field solutions of even richer topological varieties but allowing for φ-dependence greatly complicates the governing equations that have remained intractable. The axisymmetric results obtained are discussed in relation to this generalization and the Parker Magnetostatic Theorem. The axisymmetric solutions are mathematically related to a family of 3D time-dependent ideal MHD solutions for a polytropic fluid of index γ = 4

  13. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    Science.gov (United States)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  14. Periodic solutions of nonlinear vibrating beams

    Directory of Open Access Journals (Sweden)

    J. Berkovits

    2003-01-01

    Full Text Available The aim of this paper is to prove new existence and multiplicity results for periodic semilinear beam equation with a nonlinear time-independent perturbation in case the period is not prescribed. Since the spectrum of the linear part varies with the period, the solvability of the equation depends crucially on the period which can be chosen as a free parameter. Since the period of the external forcing is generally unknown a priori, we consider the following natural problem. For a given time-independent nonlinearity, find periods T for which the equation is solvable for any T-periodic forcing. We will also deal with the existence of multiple solutions when the nonlinearity interacts with the spectrum of the linear part. We show that under certain conditions multiple solutions do exist for any small forcing term with suitable period T. The results are obtained via generalized Leray-Schauder degree and reductions to invariant subspaces.

  15. Banking risk 51: INSOL International (the solvency risk

    Directory of Open Access Journals (Sweden)

    Matić Vesna

    2016-01-01

    Full Text Available Solvency preservation of economic and financial subjects in the context of their functional connectedness has been in the focus of attention and consideration of professional circles last decades. The solvency risk of important economic entities is specific because it can result in broader consequences in the sense of a chain expansion on the wider range of economic and financial subjects. The movement of economic cycles which enter the stage of global economic crises in specific periods has an important influence on the systemic character of the solvency risk. In order to prevent and harmonize solvency risk management in the wider geographic area, INSOL International has been formed, as a worldwide federation of national associations for accountants and lawyers who are specialized in turnaround and insolvency.

  16. On nonlinear changes of the reflection coefficient of the fast wave at LH frequencies due to ponderomotive forces

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1991-09-01

    The nonlinear changes of the reflection coefficient R of fast waves launched by waveguide arrays may be significant even for power densities S in the range of 3 or 4 kW/cm 2 . For the input parameters chosen in the computations, the effects of ponderomotive forces lead to an increase in plasma density in front of the grill , whereas for the slow wave the plasma density always decreases with growing S. For small plasma density in front of the grill, ponderomotive forces thus lead to the decrease of R, whereas for high plasma densities R grows with growing power density S. The heating of the edge plasma by the wave tends to weaken these changes. (Z.S.) 6 figs., 17 refs

  17. Solving Nonlinear Coupled Differential Equations

    Science.gov (United States)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  18. Effects of Lateral Heel Wedges and Lateral Forefoot Wedge on the Knee Adduction Moment in Healthy Male Students

    Directory of Open Access Journals (Sweden)

    Fatemeh Shamsi

    2012-01-01

    Full Text Available Objective: Lateral wedged insoles have been designed to decrease the force applied on the medial knee compartment. The aim of this study was to assess the effects of laterally wedged insoles regarding to the placement of the wedge under the sole (under the heel or under the forefoot on the knee adduction moment and the ground reaction forces. Material & Methods: In this pretest-posttest study, three-dimensional gait analysis was performed on 20 healthy men between 18-30 years old. Knee adduction moment and ground reaction forces were compared among following three types of insoles: a flat insole, a 6˚ laterally inclined heel wedged insole and a 6˚ laterally- inclined forefoot wedged insole. Results: there was no difference between three conditions (flat insole (9.72±1.501, lateral heel wedge (9.866±2.141 and lateral forefoot wedge (9.952±1.986 in peak knee adduction moment (P>0.05. Ground reaction forces and spatiotemporal parameters of gait were not affected by any types of these insoles (P>0.05. Conclusion: Based on the current finding, placement of the lateral wedge under the sole, that is, under the heel or under the forefoot has no effect on the efficacy of these insoles on the adduction moment of the knee and ground reaction forces.

  19. NONLINEAR FORCE-FREE MAGNETIC FIELD FITTING TO CORONAL LOOPS WITH AND WITHOUT STEREOSCOPY

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.

    2013-01-01

    We developed a new nonlinear force-free magnetic field (NLFFF) forward-fitting algorithm based on an analytical approximation of force-free and divergence-free NLFFF solutions, which requires as input a line-of-sight magnetogram and traced two-dimensional (2D) loop coordinates of coronal loops only, in contrast to stereoscopically triangulated three-dimensional loop coordinates used in previous studies. Test results of simulated magnetic configurations and from four active regions observed with STEREO demonstrate that NLFFF solutions can be fitted with equal accuracy with or without stereoscopy, which relinquishes the necessity of STEREO data for magnetic modeling of active regions (on the solar disk). The 2D loop tracing method achieves a 2D misalignment of μ 2 = 2.°7 ± 1.°3 between the model field lines and observed loops, and an accuracy of ≈1.0% for the magnetic energy or free magnetic energy ratio. The three times higher spatial resolution of TRACE or SDO/AIA (compared with STEREO) also yields a proportionally smaller misalignment angle between model fit and observations. Visual/manual loop tracings are found to produce more accurate magnetic model fits than automated tracing algorithms. The computation time of the new forward-fitting code amounts to a few minutes per active region.

  20. A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors.

    Science.gov (United States)

    Guo, Yuzhu; Storm, Fabio; Zhao, Yifan; Billings, Stephen A; Pavic, Aleksandar; Mazzà, Claudia; Guo, Ling-Zhong

    2017-09-22

    Measurement of the ground reaction forces (GRF) during walking is typically limited to laboratory settings, and only short observations using wearable pressure insoles have been reported so far. In this study, a new proxy measurement method is proposed to estimate the vertical component of the GRF (vGRF) from wearable accelerometer signals. The accelerations are used as the proxy variable. An orthogonal forward regression algorithm (OFR) is employed to identify the dynamic relationships between the proxy variables and the measured vGRF using pressure-sensing insoles. The obtained model, which represents the connection between the proxy variable and the vGRF, is then used to predict the latter. The results have been validated using pressure insoles data collected from nine healthy individuals under two outdoor walking tasks in non-laboratory settings. The results show that the vGRFs can be reconstructed with high accuracy (with an average prediction error of less than 5.0%) using only one wearable sensor mounted at the waist (L5, fifth lumbar vertebra). Proxy measures with different sensor positions are also discussed. Results show that the waist acceleration-based proxy measurement is more stable with less inter-task and inter-subject variability than the proxy measures based on forehead level accelerations. The proposed proxy measure provides a promising low-cost method for monitoring ground reaction forces in real-life settings and introduces a novel generic approach for replacing the direct determination of difficult to measure variables in many applications.

  1. A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Yuzhu Guo

    2017-09-01

    Full Text Available Measurement of the ground reaction forces (GRF during walking is typically limited to laboratory settings, and only short observations using wearable pressure insoles have been reported so far. In this study, a new proxy measurement method is proposed to estimate the vertical component of the GRF (vGRF from wearable accelerometer signals. The accelerations are used as the proxy variable. An orthogonal forward regression algorithm (OFR is employed to identify the dynamic relationships between the proxy variables and the measured vGRF using pressure-sensing insoles. The obtained model, which represents the connection between the proxy variable and the vGRF, is then used to predict the latter. The results have been validated using pressure insoles data collected from nine healthy individuals under two outdoor walking tasks in non-laboratory settings. The results show that the vGRFs can be reconstructed with high accuracy (with an average prediction error of less than 5.0% using only one wearable sensor mounted at the waist (L5, fifth lumbar vertebra. Proxy measures with different sensor positions are also discussed. Results show that the waist acceleration-based proxy measurement is more stable with less inter-task and inter-subject variability than the proxy measures based on forehead level accelerations. The proposed proxy measure provides a promising low-cost method for monitoring ground reaction forces in real-life settings and introduces a novel generic approach for replacing the direct determination of difficult to measure variables in many applications.

  2. Reconciliation of the Devils Hole climate record with orbital forcing.

    Science.gov (United States)

    Moseley, Gina E; Edwards, R Lawrence; Wendt, Kathleen A; Cheng, Hai; Dublyansky, Yuri; Lu, Yanbin; Boch, Ronny; Spötl, Christoph

    2016-01-08

    The driving force behind Quaternary glacial-interglacial cycles and much associated climate change is widely considered to be orbital forcing. However, previous versions of the iconic Devils Hole (Nevada) subaqueous calcite record exhibit shifts to interglacial values ~10,000 years before orbitally forced ice age terminations, and interglacial durations ~10,000 years longer than other estimates. Our measurements from Devils Hole 2 replicate virtually all aspects of the past 204,000 years of earlier records, except for the timing during terminations, and they lower the age of the record near Termination II by ~8000 years, removing both ~10,000-year anomalies. The shift to interglacial values now broadly coincides with the rise in boreal summer insolation, the marine termination, and the rise in atmospheric CO2, which is consistent with mechanisms ultimately tied to orbital forcing. Copyright © 2016, American Association for the Advancement of Science.

  3. A dynamic load estimation method for nonlinear structures with unscented Kalman filter

    Science.gov (United States)

    Guo, L. N.; Ding, Y.; Wang, Z.; Xu, G. S.; Wu, B.

    2018-02-01

    A force estimation method is proposed for hysteretic nonlinear structures. The equation of motion for the nonlinear structure is represented in state space and the state variable is augmented by the unknown the time history of external force. Unscented Kalman filter (UKF) is improved for the force identification in state space considering the ill-condition characteristic in the computation of square roots for the covariance matrix. The proposed method is firstly validated by a numerical simulation study of a 3-storey nonlinear hysteretic frame excited by periodic force. Each storey is supposed to follow a nonlinear hysteretic model. The external force is identified and the measurement noise is considered in this case. Then a case of a seismically isolated building subjected to earthquake excitation and impact force is studied. The isolation layer performs nonlinearly during the earthquake excitation. Impact force between the seismically isolated structure and the retaining wall is estimated with the proposed method. Uncertainties such as measurement noise, model error in storey stiffness and unexpected environmental disturbances are considered. A real-time substructure testing of an isolated structure is conducted to verify the proposed method. In the experimental study, the linear main structure is taken as numerical substructure while the one of the isolations with additional mass is taken as the nonlinear physical substructure. The force applied by the actuator on the physical substructure is identified and compared with the measured value from the force transducer. The method proposed in this paper is also validated by shaking table test of a seismically isolated steel frame. The acceleration of the ground motion as the unknowns is identified by the proposed method. Results from both numerical simulation and experimental studies indicate that the UKF based force identification method can be used to identify external excitations effectively for the nonlinear

  4. The Characteristics of Vibration Isolation System with Damping and Stiffness Geometrically Nonlinear

    Science.gov (United States)

    Lu, Ze-Qi; Chen, Li-Qun; Brennan, Michael J.; Li, Jue-Ming; Ding, Hu

    2016-09-01

    The paper concerns an investigation into the use of both stiffness and damping nonlinearity in the vibration isolator to improve its effectiveness. The nonlinear damping and nonlinear stiffness are both achieved by horizontal damping and stiffness as the way of the geometrical nonlinearity. The harmonic balance method is used to analyze the force transmissibility of such vibration isolation system. It is found that as the horizontal damping increasing, the height of the force transmissibility peak is decreased and the high-frequency force transmissibility is almost the same. The results are also validated by some numerical method. Then the RMS of transmissibility under Gaussian white noise is calculated numerically, the results demonstrate that the beneficial effects of the damping nonlinearity can be achieved under random excitation.

  5. GUIDING NONLINEAR FORCE-FREE MODELING USING CORONAL OBSERVATIONS: FIRST RESULTS USING A QUASI-GRAD-RUBIN SCHEME

    Energy Technology Data Exchange (ETDEWEB)

    Malanushenko, A. [Department of Physics, Montana State University, Bozeman, MT (United States); Schrijver, C. J.; DeRosa, M. L. [Lockheed Martin Advanced Technology Center, Palo Alto, CA (United States); Wheatland, M. S.; Gilchrist, S. A. [Sydney Institute for Astronomy, School of Physics, University of Sydney (Australia)

    2012-09-10

    At present, many models of the coronal magnetic field rely on photospheric vector magnetograms, but these data have been shown to be problematic as the sole boundary information for nonlinear force-free field extrapolations. Magnetic fields in the corona manifest themselves in high-energy images (X-rays and EUV) in the shapes of coronal loops, providing an additional constraint that is not at present used as constraints in the computational domain, directly influencing the evolution of the model. This is in part due to the mathematical complications of incorporating such input into numerical models. Projection effects, confusion due to overlapping loops (the coronal plasma is optically thin), and the limited number of usable loops further complicate the use of information from coronal images. We develop and test a new algorithm to use images of coronal loops in the modeling of the solar coronal magnetic field. We first fit projected field lines with those of constant-{alpha} force-free fields to approximate the three-dimensional distribution of currents in the corona along a sparse set of trajectories. We then apply a Grad-Rubin-like iterative technique, which uses these trajectories as volume constraints on the values of {alpha}, to obtain a volume-filling nonlinear force-free model of the magnetic field, modifying a code and method presented by Wheatland. We thoroughly test the technique on known analytical and solar-like model magnetic fields previously used for comparing different extrapolation techniques and compare the results with those obtained by currently available methods relying only on the photospheric data. We conclude that we have developed a functioning method of modeling the coronal magnetic field by combining the line-of-sight component of the photospheric magnetic field with information from coronal images. Whereas we focus on the use of coronal loop information in combination with line-of-sight magnetograms, the method is readily extended to

  6. GUIDING NONLINEAR FORCE-FREE MODELING USING CORONAL OBSERVATIONS: FIRST RESULTS USING A QUASI-GRAD-RUBIN SCHEME

    International Nuclear Information System (INIS)

    Malanushenko, A.; Schrijver, C. J.; DeRosa, M. L.; Wheatland, M. S.; Gilchrist, S. A.

    2012-01-01

    At present, many models of the coronal magnetic field rely on photospheric vector magnetograms, but these data have been shown to be problematic as the sole boundary information for nonlinear force-free field extrapolations. Magnetic fields in the corona manifest themselves in high-energy images (X-rays and EUV) in the shapes of coronal loops, providing an additional constraint that is not at present used as constraints in the computational domain, directly influencing the evolution of the model. This is in part due to the mathematical complications of incorporating such input into numerical models. Projection effects, confusion due to overlapping loops (the coronal plasma is optically thin), and the limited number of usable loops further complicate the use of information from coronal images. We develop and test a new algorithm to use images of coronal loops in the modeling of the solar coronal magnetic field. We first fit projected field lines with those of constant-α force-free fields to approximate the three-dimensional distribution of currents in the corona along a sparse set of trajectories. We then apply a Grad-Rubin-like iterative technique, which uses these trajectories as volume constraints on the values of α, to obtain a volume-filling nonlinear force-free model of the magnetic field, modifying a code and method presented by Wheatland. We thoroughly test the technique on known analytical and solar-like model magnetic fields previously used for comparing different extrapolation techniques and compare the results with those obtained by currently available methods relying only on the photospheric data. We conclude that we have developed a functioning method of modeling the coronal magnetic field by combining the line-of-sight component of the photospheric magnetic field with information from coronal images. Whereas we focus on the use of coronal loop information in combination with line-of-sight magnetograms, the method is readily extended to incorporate

  7. Effect of Insoles with a Toe-Grip Bar on Toe Function and Standing Balance in Healthy Young Women: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Hideki Nakano

    2017-01-01

    Full Text Available Objective. The aim of this randomized controlled study was to investigate the effects of insoles with a toe-grip bar on toe function and standing balance in healthy young women. Methods. Thirty female subjects were randomly assigned to an intervention group or a control group. The intervention group wore shoes with insoles with a toe-grip bar. The control group wore shoes with general insoles. Both groups wore the shoes for 4 weeks, 5 times per week, 9 hours per day. Toe-grip strength, toe flexibility, static balance (total trajectory length and envelope area of the center of pressure, and dynamic balance (functional reach test were measured before and after the intervention. Results. Significant interactions were observed for toe-grip strength and toe flexibility (F=12.53, p<0.01; F=5.84, p<0.05, resp., with significant improvement in the intervention group compared with that in the control group. Post hoc comparisons revealed that both groups showed significant improvement in toe-grip strength (p<0.01 and p<0.05, resp., with higher benefits observed for the intervention group (p<0.01. Conversely, no significant interaction was observed in the total trajectory length, envelope area, and functional reach test. Conclusions. This study suggests that insoles with a toe-grip bar contribute to improvements in toe-grip strength and toe flexibility in healthy young women.

  8. The Immediate Effect of a Textured Insole in Nonparetic Lower Limb Symmetry of Weight Bearing and Gait Parameters in Patients with Chronic Stroke

    Directory of Open Access Journals (Sweden)

    Mehdi Hassan Abadi

    2016-04-01

    Conclusion The current study showed that obligatory use of affected limb side could improve symmetry of weight bearing in walking and standing position of patients with chronic stroke by overcoming the phenomenon of learned lack of using and correcting the failure of sending sensory signals to centers of movement controls. The results of this study showed that unilateral use of textured insole with shore A-80 in the unaffected side could immediately improve weight bearing symmetry and step length symmetry in patients with hemiparesis, but it has no effect on their walking speed and step length. Using insole with A-60 hardness did not significantly change any variables of tests. Considering the results of this study, these insoles can be used in balance exercises and walking of hemiparetic patients.

  9. A Smart Insole to Promote Healthy Aging for Frail Elderly Individuals: Specifications, Design, and Preliminary Results.

    Science.gov (United States)

    Piau, Antoine; Charlon, Yoann; Campo, Eric; Vellas, Bruno; Nourhashemi, Fati

    2015-05-25

    Older individuals frequently experience reversible "frailty syndrome,", increasing incidence of disability. Although physical exercise interventions may delay functional decline, there are difficulties in implementing them and performing seamless follow-up at home. Very few technological solutions attempt to address this challenge and improve individual participation. Our objectives are to (1) develop a technological solution designed to support active aging of frail older persons, (2) conduct a first laboratory evaluation of the device, and (3) design a multidimensional clinical trial to validate our solution. We conducted a first phase of multidisciplinary meetings to identify real end users and health professional's unmet needs, and to produce specifications for the architecture of the solution. In a second phase, we performed laboratory tests of the first proposed prototype (a smart insole) with 3 healthy volunteers. We then designed an ongoing clinical trial to finalize the multidimensional evaluation and improvement of the solution. To respond to the needs expressed by the stakeholders (frailty monitoring and adherence improvement), we developed a prototype of smart shoe insole to monitor key parameters of frailty during daily life and promote walking. It is a noninvasive wireless insole, which automatically measures gait parameters and transmits information to a remote terminal via a secure Internet connection. To ensure the solution's autonomy and transparency, we developed an original energy harvesting system, which transforms mechanical energy produced by the user's walking movement into electrical energy. The first laboratory tests of this technological solution showed good reliability measures and also a good acceptability for the users. We have planned an original iterative medical research protocol to validate our solution in real life. Our smart insole could support preventive strategies against disability in primary care by empowering the older

  10. Comparison of a nonlinear dynamic model of a piping system to test data

    International Nuclear Information System (INIS)

    Blakely, K.D.; Howard, G.E.; Walton, W.B.; Johnson, B.A.; Chitty, D.E.

    1983-01-01

    Response of a nonlinear finite element model of the Heissdampfreaktor recirculation piping loop (URL) was compared to measured data, representing the physical benchmarking of a nonlinear model. Analysis-test comparisons of piping response are presented for snapback tests that induced extreme nonlinear behavior of the URL system. Nonlinearities in the system are due to twelve swaybraces (pipe supports) that possessed nonlinear force-deflection characteristics. These nonlinearities distorted system damping estimates made by using the half-power bandwidth method on Fourier transforms of measured accelerations, with the severity of distortion increasing with increasing degree of nonlinearity. Time domain methods, which are not so severely affected by the presence of nonlinearities, were used to compute system damping ratios. Nonlinear dynamic analyses were accurately and efficiently performed using the pseudo-force technique and the finite element program MSC/NASTRAN. Measured damping was incorporated into the model for snapback simulations. Acceleration time histories, acceleration Fourier transforms, and swaybrace force time histories of the nonlinear model, plus several linear models, were compared to test measurements. The nonlinear model predicted three-fourths of the measured peak accelerations to within 50%, half of the accelerations to within 25%, and one-fifth of the accelerations to within 10%. This nonlinear model predicted accelerations (in the time and frequency domains) and swaybrace forces much better than did any of the linear models, demonstrating the increased accuracy resulting from properly simulating nonlinear support behavior. In addition, earthquake response comparisons were made between the experimentally validated nonlinear model and a linear model. Significantly lower element stresses were predicted for the nonlinear model, indicating the potential usefulness of nonlinear simulations in piping design assessments. (orig.)

  11. IHT: Tools for Computing Insolation Absorption by Particle Laden Flows

    Energy Technology Data Exchange (ETDEWEB)

    Grout, R. W.

    2013-10-01

    This report describes IHT, a toolkit for computing radiative heat exchange between particles. Well suited for insolation absorption computations, it is also has potential applications in combustion (sooting flames), biomass gasification processes and similar processes. The algorithm is based on the 'Photon Monte Carlo' approach and implemented in a library that can be interfaced with a variety of computational fluid dynamics codes to analyze radiative heat transfer in particle-laden flows. The emphasis in this report is on the data structures and organization of IHT for developers seeking to use the IHT toolkit to add Photon Monte Carlo capabilities to their own codes.

  12. Nonlinear structural analysis using integrated force method

    Indian Academy of Sciences (India)

    A new formulation termed the Integrated Force Method (IFM) was proposed by Patnaik ... nated ``Structure (nY m)'' where (nY m) are the force and displacement degrees of ..... Patnaik S N, Yadagiri S 1976 Frequency analysis of structures.

  13. Gradient-based optimization in nonlinear structural dynamics

    DEFF Research Database (Denmark)

    Dou, Suguang

    The intrinsic nonlinearity of mechanical structures can give rise to rich nonlinear dynamics. Recently, nonlinear dynamics of micro-mechanical structures have contributed to developing new Micro-Electro-Mechanical Systems (MEMS), for example, atomic force microscope, passive frequency divider......, frequency stabilization, and disk resonator gyroscope. For advanced design of these structures, it is of considerable value to extend current optimization in linear structural dynamics into nonlinear structural dynamics. In this thesis, we present a framework for modelling, analysis, characterization......, and optimization of nonlinear structural dynamics. In the modelling, nonlinear finite elements are used. In the analysis, nonlinear frequency response and nonlinear normal modes are calculated based on a harmonic balance method with higher-order harmonics. In the characterization, nonlinear modal coupling...

  14. Forced response of the East Asian summer rainfall over the past millennium: results from a coupled model simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Wang, Hongli; Ti, Ruyuan [Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, State Key Laboratory of Lake Science and Environment, Nanjing (China); Wang, Bin [University of Hawaii at Manoa, Department of Meteorology and IPRC, Honolulu, HI (United States); Kuang, Xueyuan [Nanjing University, School of Atmospheric Sciences, Nanjing (China)

    2011-01-15

    The centennial-millennial variation of the East Asian summer monsoon (EASM) precipitation over the past 1000 years was investigated through the analysis of a millennium simulation of the coupled ECHO-G model. The model results indicate that the centennial-millennial variation of the EASM is essentially a forced response to the external radiative forcing (insolation, volcanic aerosol, and green house gases). The strength of the response depends on latitude; and the spatial structure of the centennial-millennial variation differs from the interannual variability that arises primarily from the internal feedback processes within the climate system. On millennial time scale, the extratropical and subtropical precipitation was generally strong during Medieval Warm Period (MWP) and weak during Little Ice Age (LIA). The tropical rainfall is insensitive to the effective solar radiation forcing (insolation plus radiative effect of volcanic aerosols) but significantly responds to the modern anthropogenic radiative forcing. On centennial time scale, the variation of the extratropical and subtropical rainfall also tends to follow the effective solar radiation forcing closely. The forced response features in-phase rainfall variability between the extratropics and subtropics, which is in contrast to the anti-correlation on the interannual time scale. Further, the behavior of the interannual-decadal variation in the extratropics is effectively modulated by change of the mean states on the millennial time scale, suggesting that the structure of the internal mode may vary with significant changes in the external forcing. These findings imply that on the millennial time scale, (a) the proxy data in the extratropical EA may more sensitively reflect the EASM rainfall variations, and (b) the Meiyu and the northern China rainfall provide a consistent measure for the EASM strength. (orig.)

  15. Coronal Jet Collimation by Nonlinear Induced Flows

    Energy Technology Data Exchange (ETDEWEB)

    Vasheghani Farahani, S.; Hejazi, S. M. [Department of Physics, Tafresh University, Tafresh 39518 79611 (Iran, Islamic Republic of)

    2017-08-01

    Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale of influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma- β . As the shear flow and plasma- β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.

  16. A data mining approach: Analyzing wind speed and insolation period data in Turkey for installations of wind and solar power plants

    International Nuclear Information System (INIS)

    Colak, Ilhami; Sagiroglu, Seref; Demirtas, Mehmet; Yesilbudak, Mehmet

    2013-01-01

    Highlights: ► Wind speed and insolation period data were analyzed using a data mining approach. ► Most of the studies in the literature were based on Weibull and Rayleigh models. ► Nearest and farest neighbor algorithms were used with different distance metrics. ► Many inferences were achieved in efficient limits for wind and solar farm analyses. - Abstract: Wind and solar power plant installations have been recently increased rapidly with respect to the depletion of fossil-based fuels all over the world. Due to stochastic nature of meteorological conditions, wind and solar energies have a non-schedulable nature and they require several installation analyses to determine the location and the capacities of wind and solar power to be produced. This paper focuses on the similarity, feasibility and numerical analyses of 75 cities in Turkey based on the monthly average wind speed and insolation period data. The nearest and the farest neighbor algorithms are used as agglomerative hierarchical clustering methods with Euclidean, Manhattan and Minkowski distance metrics in the stage of making the similarity and feasibility analyses. The maximum cophenetic correlation coefficient is achieved by the nearest neighbor algorithm with the Minkowski distance metric in the similarity and feasibility analyses. On the other hand, graphical representations of the monthly average wind speed and insolation period data are utilized for making the numerical analysis. The highest annual average wind speed and insolation period are obtained as 3.88 m/s and 8.45 h/day, respectively. Overall, many inferences were achieved in acceptable and efficient limits for wind and solar energy.

  17. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    Science.gov (United States)

    Hocking, Erica G.; Wereley, Norman M.

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30-80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible.

  18. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    International Nuclear Information System (INIS)

    Hocking, Erica G; Wereley, Norman M

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30–80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible. (paper)

  19. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    Directory of Open Access Journals (Sweden)

    Di Chen

    2007-05-01

    Full Text Available Electrostatic micro-electro-mechanical system (MEMS is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  20. Use of ready-made insoles in the treatment of lesser metatarsalgia: a prospective randomized controlled trial.

    Science.gov (United States)

    Kelly, A; Winson, I

    1998-04-01

    Two insoles designed to treat primary lesser metatarsalgia were compared in terms of their effect on plantar pressures and the subjective symptom relief. A prospective single blind randomized trial of 8 weeks' treatment in 46 feet in 33 patients was performed. Subjective outcome measures were visual analogue pain scores and estimated compliance. Objective outcome measures were dynamic plantar pressures using the Musgrave Footprint System. In group 1 (Viscoped), 6 of 18 patients rated themselves much improved or somewhat improved, and in group 2 (Langer) the proportion was 12 of 15 (P = 0.02). Reported mean compliance was 16% higher in the Langer group. Plantar forefoot pressure was lowered by the insoles in all cases. The reduction was significantly greater (P < 0.001) in group 2, both in absolute pressure and as a percentage of initial pressure. Group 2 (Langer) was significantly better in terms of reduction of peak metatarsal pressure. All the subjective outcome measures were better for the group 2 (Langer).

  1. Nonlinear crack mechanics

    International Nuclear Information System (INIS)

    Khoroshun, L.P.

    1995-01-01

    The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero

  2. Variability of temperature, evaporation, insolation and sea level pressure in East Malaysia

    International Nuclear Information System (INIS)

    Camerlengo, A.L.; Mohd Nasir Saadon; Lim You Rang; Nhakhorn Somchit; Mohd Mahatir Osman

    1999-01-01

    The interrelation between global warming and certain meteorological parameters - temperature, evaporation, sea level pressure and isolation (hours of sunshine) - in East Malaysia is addressed in this study. The inter-annual climatic variability mainly due to ENSO warm events, is also investigated. The study of the monthly distribution of both evaporation and insolation in East Malaysia (i.e., the Malaysian states of Sabah and Sarawak, both of them situated in the northern part of the island of Borneo) is also covered in this paper (author)

  3. Forced convective heat transfer in boundary layer flow of Sisko fluid over a nonlinear stretching sheet.

    Science.gov (United States)

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2014-01-01

    The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.

  4. Nonlinear nonresonant forces by radio-frequency waves in plasmas

    International Nuclear Information System (INIS)

    Gao Zhe; Fisch, Nathaniel J.; Qin, Hong; Myra, J. R.

    2007-01-01

    Nonresonant forces by applied rf waves in plasmas are analyzed. Along the background dc magnetic field, the force arises from the gradient of the ponderomotive potential. Only when the dc magnetic field is straight, however, is this parallel force completely consistent with that from the single particle picture, where the ponderomotive force depends on the gradients of rf fields only. Across the dc magnetic field, besides the ponderomotive force from the particle picture, additional Reynolds stress and polarization stress contribute to the total force. For waves with frequency much lower than the cyclotron frequency, the perpendicular forces from the particle and fluid pictures can have opposite signs. In plasmas with a symmetry angle (e.g., toroidal systems), nonresonant forces cannot drive net flow or current in the flux surface, but the radial force may influence macroscopic behavior of plasma. Moreover, nonresonant forces may drive flow or current in linear plasmas or in a localized region of toroidal plasmas

  5. Novel Pressure-Sensing Smart Insole System Used for the Prevention of Pressure Ulceration in the Insensate Foot

    Directory of Open Access Journals (Sweden)

    Allyson R. Alfonso, BS, BA

    2017-12-01

    Full Text Available Summary:. Wounds of the foot challenge reconstructive surgeons to manage multiple factors: sensibility, stability, and durability. In this article, we focus on the insensate foot, which poses challenges to wound prevention with its propensity to develop pressure ulceration. The authors present the innovative use of a pressure-sensing smart insole system (SurroSense Rx, Orpyx Medical Technologies Inc., Calgary, Canada in the management of the insensate foot in a patient following foot reconstruction. The pressure-sensing smart insole system provided unique feedback to both patient and provider in ways that contributed to the prevention of pressure ulcer recurrence, as well as highlight the importance of prescribed footwear in both the affected and unaffected foot. Wearable real-time monitoring and feedback faces the challenge of patient adherence. Future studies are indicated to examine the specific behaviors that are associated with favorable outcomes and long-term behavior changes.

  6. Nonlinear dynamic characterization of two-dimensional materials

    NARCIS (Netherlands)

    Davidovikj, D.; Alijani, F.; Cartamil Bueno, S.J.; van der Zant, H.S.J.; Amabili, M.; Steeneken, P.G.

    2017-01-01

    Owing to their atomic-scale thickness, the resonances of two-dimensional (2D) material membranes show signatures of nonlinearities at forces of only a few picoNewtons. Although the linear dynamics of membranes is well understood, the exact relation between the nonlinear response and the resonator's

  7. Nonlinear response and bistability of driven ion acoustic waves

    Science.gov (United States)

    Akbari-Moghanjoughi, M.

    2017-08-01

    The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.

  8. Nonlinear Phononic Periodic Structures and Granular Crystals

    Science.gov (United States)

    2012-02-10

    and boron-nitride nanotubes, and attributed the rectification to nonlinear processes [21]. Based on these studies, several following works have...nonlinear mass-spring lattices by E. Fermi, J. Pasta , and S. Ulam in 1955 [27], there has been a wealth of interest in the dynamics of nonlinear...lattices. Using one of the first modern computers, Fermi, Pasta , and Ulam (FPU) studied a system where the restoring (spring) force between two adjacent

  9. Varying Influence of Different Forcings on the Indo-Pacific Warm Pool Climate

    Science.gov (United States)

    Mohtadi, M.; Huang, E.; Hollstein, M.; Chen, Y.; Schefuß, E.; Rosenthal, Y.; Prange, M.; Oppo, D.; Liu, J.; Steinke, S.; Martinez-Mendez, G.; Tian, J.; Moffa-Sanchez, P.; Lückge, A.

    2017-12-01

    Proxy records of rainfall in marine archives from the eastern and western parts of the Indo-Pacific Warm Pool (IPWP) vary at precessional band and suggest a dominant role of orbital forcing by modulating monsoon rainfall and the position of the Inter Tropical Convergence Zone. Rainfall changes recorded in marine archives from the northern South China Sea reveal a more complex history. They are largely consistent with those recorded in the Chinese cave speleothems during glacial periods, but show opposite changes during interglacial peaks that coincide with strong Northern Hemisphere summer insolation maxima. During glacial periods, the establishment of massive Northern Hemisphere ice sheets and the exposure of broad continental shelves in East and Southeast Asia alter the large-scale routes and amounts of water vapor transport onto land relative to interglacials. Precipitation over China during glacials varies at precessional band and is dominated by water vapor transport from the nearby tropical and northwest Pacific, resulting in consistent changes in precipitation over large areas. In the absence of ice forcing during peak interglacials with a strong summer insolation, the low-level southerly monsoonal winds mainly of the Indian Ocean origin penetrate further landward and rainout along their path over China. Subsurface temperatures from the IPWP lack changes on glacial-interglacial timescales but follow the obliquity cycle, and suggest that obliquity-paced climate variations at mid-latitudes remotely control subsurface temperatures in the IPWP. Temperature and rainfall in the IPWP respond primarily to abrupt climate changes in the North Atlantic on millennial timescales, and to ENSO and solar forcing on interannual to decadal timescales. In summary, results from marine records reveal that the IPWP climate is sensitive to changes in spatial and temporal distribution of heat by many types of forcing, the influence of which seems to vary in time and space.

  10. Analysis of nonlinear behavior of loudspeakers using the instantaneous frequency

    DEFF Research Database (Denmark)

    Huang, Hai; Jacobsen, Finn

    2003-01-01

    on the Fourier transform. In this work, a new method using the instantaneous frequency is introduced for describing and characterizing loudspeaker nonlinearities. First, numerical integration is applied to simulate the nonlinearities of loudspeakers caused by two nonlinear parameters, force factor and stiffness...

  11. Pescara benchmarks: nonlinear identification

    Science.gov (United States)

    Gandino, E.; Garibaldi, L.; Marchesiello, S.

    2011-07-01

    Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled "Monitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing", financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.

  12. Pescara benchmarks: nonlinear identification

    International Nuclear Information System (INIS)

    Gandino, E; Garibaldi, L; Marchesiello, S

    2011-01-01

    Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled M onitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing , financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.

  13. A Hybrid Interpolation Method for Geometric Nonlinear Spatial Beam Elements with Explicit Nodal Force

    Directory of Open Access Journals (Sweden)

    Huiqing Fang

    2016-01-01

    Full Text Available Based on geometrically exact beam theory, a hybrid interpolation is proposed for geometric nonlinear spatial Euler-Bernoulli beam elements. First, the Hermitian interpolation of the beam centerline was used for calculating nodal curvatures for two ends. Then, internal curvatures of the beam were interpolated with a second interpolation. At this point, C1 continuity was satisfied and nodal strain measures could be consistently derived from nodal displacement and rotation parameters. The explicit expression of nodal force without integration, as a function of global parameters, was founded by using the hybrid interpolation. Furthermore, the proposed beam element can be degenerated into linear beam element under the condition of small deformation. Objectivity of strain measures and patch tests are also discussed. Finally, four numerical examples are discussed to prove the validity and effectivity of the proposed beam element.

  14. Nonlinearity induced synchronization enhancement in mechanical oscillators

    Science.gov (United States)

    Czaplewski, David A.; Lopez, Omar; Guest, Jeffrey R.; Antonio, Dario; Arroyo, Sebastian I.; Zanette, Damian H.

    2018-05-08

    An autonomous oscillator synchronizes to an external harmonic force only when the forcing frequency lies within a certain interval, known as the synchronization range, around the oscillator's natural frequency. Under ordinary conditions, the width of the synchronization range decreases when the oscillation amplitude grows, which constrains synchronized motion of micro- and nano-mechanical resonators to narrow frequency and amplitude bounds. The present invention shows that nonlinearity in the oscillator can be exploited to manifest a regime where the synchronization range increases with an increasing oscillation amplitude. The present invention shows that nonlinearities in specific configurations of oscillator systems, as described herein, are the key determinants of the effect. The present invention presents a new configuration and operation regime that enhances the synchronization of micro- and nano-mechanical oscillators by capitalizing on their intrinsic nonlinear dynamics.

  15. On the real-time estimation of the wheel-rail contact force by means of a new nonlinear estimator design model

    Science.gov (United States)

    Strano, Salvatore; Terzo, Mario

    2018-05-01

    The dynamics of the railway vehicles is strongly influenced by the interaction between the wheel and the rail. This kind of contact is affected by several conditioning factors such as vehicle speed, wear, adhesion level and, moreover, it is nonlinear. As a consequence, the modelling and the observation of this kind of phenomenon are complex tasks but, at the same time, they constitute a fundamental step for the estimation of the adhesion level or for the vehicle condition monitoring. This paper presents a novel technique for the real time estimation of the wheel-rail contact forces based on an estimator design model that takes into account the nonlinearities of the interaction by means of a fitting model functional to reproduce the contact mechanics in a wide range of slip and to be easily integrated in a complete model based estimator for railway vehicle.

  16. NONLINEAR DYNAMO IN A ROTATING ELECTRICALLY CONDUCTING FLUID

    Directory of Open Access Journals (Sweden)

    M. I. Kopp

    2017-05-01

    Full Text Available We found a new large-scale instability, which arises in the rotating conductive fluid with small-scale turbulence. Turbulence is generated by small-scale external force with a low Reynolds number. The theory is built simply by the method of multiscale asymptotic expansions. Nonlinear equations for vortex and magnetic perturbations obtained in the third order for small Reynolds number. It is shown that the combined effects of the Coriolis force and the small external forces in a rotating conducting fluid possible large-scale instability. The large-scale increments of the instability, correspond to generation as the vortex and magnetic disturbances. This type of instability is classified as hydrodynamic and MHD alpha-effect. We studied the stationary regimes of nonlinear equations of magneto-vortex dynamo. In the limit of weakly conducting fluid found stationary solutions in the form of helical kinks. In the limit of high conductivity fluid was obtained stationary solutions in the form of nonlinear periodic waves and kinks.

  17. Nonlinear seismic analysis of a large sodium pump

    International Nuclear Information System (INIS)

    Huang, S.N.

    1985-01-01

    The bearings and seismic bumpers used in a large sodium pump of a typical breeder reactor plant may need to be characterized by nonlinear springs and gaps. Then, nonlinear seismic analysis utilizing the time-history method is an effective way to predict the pump behaviors during seismic events, especially at those bearing and seismic bumper areas. In this study, synthesized time histories were developed based on specified seismic response spectra. A nonlinear seismic analysis was then conducted and results were compared with those obtained by linear seismic analysis using the response spectrum method. In contrast to some previous nonlinear analysis trends, the bearing impact forces predicted by nonlinear analysis were higher than those obtained by the response spectrum method. This might be due to the larger gaps and stiffer bearing supports used in this specific pump. However, at locations distant from the impact source, the nonlinear seismic analysis has predicted slightly less responses than those obtained by linear seismic analysis. The seismically induced bearing impact forces were used to study the friction induced thermal stresses on the hydrostatic bearing and to predict the coastdown time of the pump. Results and discussions are presented

  18. Nonlinear seismic analysis of a large sodium pump

    International Nuclear Information System (INIS)

    Huang, S.N.

    1985-01-01

    The bearings and seismic bumpers used in a large sodium pump of a typical breeder reactor plant may need to be characterized by nonlinear springs and gaps. Then, nonlinear seismic analysis utilizing the time-history method is an effective way to predict the pump behaviors during seismic events - especially at those bearing and seismic bumper areas. In this study, synthesized time histories were developed based on specified seismic response spectra. A nonlinear seismic analysis was then conducted and results were compared with those obtained by linear seismic analysis using the response spectrum method. In contrast to some previous nonlinear analysis trends, the bearing impact forces predicted by nonlinear analysis were higher than those obtained by the response spectrum method. This might be due to the larger gaps and stiffer bearing supports used in this specific pump. However, at locations distant from the impact source, the nonlinear seismic analysis has predicted slightly less responses than those obtained by linear seismic analysis. The seismically induced bearing impact forces were used to study the friction induced thermal stresses on the hydrostatic bearing and to predict the coastdown time of the pump. Results and discussions are presented

  19. Linear and nonlinear piezoelectric shunting strategies for vibration mitigation

    Directory of Open Access Journals (Sweden)

    Soltani P.

    2014-01-01

    Full Text Available This paper studies linear and nonlinear piezoelectric vibration absorbers that are designed based on the equal-peak method. A comparison between the performance of linear mechanical and electrical tuned vibration absorbers coupled to a linear oscillator is first performed. Nonlinearity is then introduced in the primary oscillator to which a new nonlinear electrical tuned vibration absorber is attached. Despite the frequency-energy dependence of nonlinear oscillations, we show that the nonlinear absorber is capable of effectively mitigating the vibrations of the nonlinear primary system in a large range of forcing amplitudes.

  20. Screening fifth forces in k-essence and DBI models

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Théorique, CEA, IPhT, CNRS, URA2306, F-91191 Gif-sur-Yvette cédex (France); Burrage, Clare [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Davis, Anne-Christine, E-mail: Philippe.Brax@cea.fr, E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: A.C.Davis@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Cambridge CB3 0WA (United Kingdom)

    2013-01-01

    New fifth forces have not yet been detected in the laboratory or in the solar system, hence it is typically difficult to introduce new light scalar fields that would mediate such forces. In recent years it has been shown that a number of non-linear scalar field theories allow for a dynamical mechanism, such as the Vainshtein and chameleon ones, that suppresses the strength of the scalar fifth force in experimental environments. This is known as screening, however it is unclear how common screening is within non-linear scalar field theories. k-essence models are commonly studied examples of non-linear models, with DBI as the best motivated example, and so we ask whether these non-linearities are able to screen a scalar fifth force. We find that a Vainshtein-like screening mechanism exists for such models although with limited applicability. For instance, we cannot find a screening mechanism for DBI models. On the other hand, we construct a large class of k-essence models which lead to the acceleration of the Universe in the recent past for which the fifth force mediated by the scalar can be screened.

  1. A metric study of insole foot impressions in footwear of identical twins.

    Science.gov (United States)

    Nirenberg, Michael S; Krishan, Kewal; Kanchan, Tanuj

    2017-11-01

    Foot impressions are of utmost importance in crime scene investigations. Foot impressions are available in the form of barefoot prints, sock-clad footprints, and as impressions within footwear. Sometimes suspects leave their footwear at the crime scene, and the insole of this footwear may contain the foot impression of the suspect which may be important evidence linking him or her to the crime. The task of identification based on the analysis of footprints can be challenging when the footprints belonging to one of the identical twin is available for examination. The present study is based on the quantitative measures of the foot impressions in the footwear of adult identical twins. The study was conducted on four sets of female monozygotic twins from the United States of America. A total of 17 length and breadth measurements were taken on each foot impression. A combination of Reel Method and Extended Gunn Method was utilized to produce the measurements. The measurements of the foot impressions were compared among the twins on the right and the left side. Differences were found in the various footprint measurements among the twins. The study's sample size was not large enough to apply robust statistical tests, but the study is significant in that it presents the first detailed comparative analysis of a large number of measurements of insole foot impressions of adult twins. The observations derived from the study are likely to assist forensic investigations in cases involving the foot impressions of the twins. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  2. Preliminary evaluation of prototype footwear and insoles to optimise balance and gait in older people.

    Science.gov (United States)

    Menz, Hylton B; Auhl, Maria; Munteanu, Shannon E

    2017-09-11

    Footwear has the potential to influence balance in either a detrimental or beneficial manner, and is therefore an important consideration in relation to falls prevention. The objective of this study was to evaluate balance ability and gait patterns in older women while wearing prototype footwear and insoles designed to improve balance. Older women (n = 30) aged 65 - 83 years (mean 74.4, SD 5.6) performed a series of laboratory tests of balance ability (postural sway on a foam rubber mat, limits of stability and tandem walking, measured with the Neurocom® Balance Master) and gait patterns (walking speed, cadence, step length and step width at preferred speed, measured with the GAITRite® walkway) while wearing (i) flexible footwear (Dunlop Volley™), (ii) their own footwear, and (iii) prototype footwear and insoles designed to improve dynamic balance. Perceptions of the footwear were also documented using a structured questionnaire. There was no difference in postural sway, limits of stability or gait patterns between the footwear conditions. However, when performing the tandem walking test, there was a significant reduction in step width and end sway when wearing the prototype footwear compared to both the flexible footwear and participants' own footwear. Participants perceived their own footwear to be more attractive, comfortable, well-fitted and easier to put on and off compared to the prototype footwear. Despite this, most participants (n = 18, 60%) reported that they would consider wearing the prototype footwear to reduce their risk of falling. The prototype footwear and insoles used in this study improve balance when performing a tandem walk test, as evidenced by a narrower step width and decreased sway at completion of the task. However, further development of the design is required to make the footwear acceptable to older women from the perspective of aesthetics and comfort. Australian New Zealand Clinical Trials Registry. ACTRN12617001128381 , 01

  3. Nonlinear vibrations of thin arbitrarily laminated composite plates subjected to harmonic excitations using DKT elements

    Science.gov (United States)

    Chiang, C. K.; Xue, David Y.; Mei, Chuh

    1993-04-01

    A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.

  4. Role of statistical linearization in the solution of nonlinear stochastic equations

    International Nuclear Information System (INIS)

    Budgor, A.B.

    1977-01-01

    The solution of a generalized Langevin equation is referred to as a stochastic process. If the external forcing function is Gaussian white noise, the forward Kolmogarov equation yields the transition probability density function. Nonlinear problems must be handled by approximation procedures e.g., perturbation theories, eigenfunction expansions, and nonlinear optimization procedures. After some comments on the first two of these, attention is directed to the third, and the method of statistical linearization is used to demonstrate a relation to the former two. Nonlinear stochastic systems exhibiting sustained or forced oscillations and the centered nonlinear Schroedinger equation in the presence of Gaussian white noise excitation are considered as examples. 5 figures, 2 tables

  5. Nonlinear mathematical modeling of vibrating motion of nanomechanical cantilever active probe

    Directory of Open Access Journals (Sweden)

    Reza Ghaderi

    Full Text Available Nonlinear vibration response of nanomechanical cantilever (NMC active probes in atomic force microscope (AFM application has been studied in the amplitude mode. Piezoelectric layer is placed piecewise and as an actuator on NMC. Continuous beam model has been chosen for analysis with regard to the geometric discontinuities of piezoelectric layer attachment and NMC's cross section. The force between the tip and the sample surface is modeled using Leonard-Jones potential. Assuming that cantilever is inclined to the sample surface, the effect of nonlinear force on NMC is considered as a shearing force and the concentrated bending moment is regarded at the end. Nonlinear frequency response of NMC is obtained close to the sample surface using the dynamic modeling. It is then become clear that the distance and angle of NMC, the probe length, and the geometric dimensions of piezoelectric layer can affect frequency response bending of the curve.

  6. On nonlinear periodic drift waves

    International Nuclear Information System (INIS)

    Kauschke, U.; Schlueter, H.

    1990-09-01

    Nonlinear periodic drift waves are investigated on the basis of a simple perturbation scheme for both the amplitude and inverse frequency. The coefficients for the generation of the forced harmonics are derived, a nonlinear dispersion relation is suggested and a criterion for the onset of the modulational instability is obtained. The results are compared with the ones obtained with the help of a standard KBM-treatment. Moreover cnoidal drift waves are suggested and compared to an experimental observation. (orig.)

  7. Nonlinear Dynamics of Electrostatically Actuated MEMS Arches

    KAUST Repository

    Al Hennawi, Qais M.

    2015-05-01

    In this thesis, we present theoretical and experimental investigation into the nonlinear statics and dynamics of clamped-clamped in-plane MEMS arches when excited by an electrostatic force. Theoretically, we first solve the equation of motion using a multi- mode Galarkin Reduced Order Model (ROM). We investigate the static response of the arch experimentally where we show several jumps due to the snap-through instability. Experimentally, a case study of in-plane silicon micromachined arch is studied and its mechanical behavior is measured using optical techniques. We develop an algorithm to extract various parameters that are needed to model the arch, such as the induced axial force, the modulus of elasticity, and the initially induced initial rise. After that, we excite the arch by a DC electrostatic force superimposed to an AC harmonic load. A softening spring behavior is observed when the excitation is close to the first resonance frequency due to the quadratic nonlinearity coming from the arch geometry and the electrostatic force. Also, a hardening spring behavior is observed when the excitation is close to the third (second symmetric) resonance frequency due to the cubic nonlinearity coming from mid-plane stretching. Then, we excite the arch by an electric load of two AC frequency components, where we report a combination resonance of the summed type. Agreement is reported among the theoretical and experimental work.

  8. Forced magnetic reconnection

    Science.gov (United States)

    Vekstein, G.

    2017-10-01

    This is a tutorial-style selective review explaining basic concepts of forced magnetic reconnection. It is based on a celebrated model of forced reconnection suggested by J. B. Taylor. The standard magnetohydrodynamic (MHD) theory of this process has been pioneered by Hahm & Kulsrud (Phys. Fluids, vol. 28, 1985, p. 2412). Here we also discuss several more recent developments related to this problem. These include energetics of forced reconnection, its Hall-mediated regime, and nonlinear effects with the associated onset of the secondary tearing (plasmoid) instability.

  9. Identification of the nonlinear excitation force acting on a bowed string using the dynamical responses at remote locations

    International Nuclear Information System (INIS)

    Debut, V.; Antunes, J.; Delaune, X.

    2010-01-01

    For achieving realistic numerical simulations of bowed string instruments, based on physical modeling, a good understanding of the actual friction interaction phenomena is of great importance. Most work published in the field including our own has assumed that bow/string frictional forces behave according to the classical Coulomb stick-slip model, with an empirical velocity-dependent sliding friction coefficient. Indeed, the basic self-excited string motions (such as the Helmholtz regime) are well captured using such friction model. However, recent work has shown that the tribological behavior of the bow/string rosin interface is rather complex, therefore the basic velocity-dependent Coulomb model may be an over-simplistic representation of the friction force. More specifically, it was suggested that a more accurate model of the interaction force can be achieved by coupling the system dynamical equations with a thermal model which encapsulates the complex interface phenomena. In spite of the interesting work performed by Askenfelt, a direct measurement of the actual dynamical friction forces without disturbing the string motion is quite difficult. Therefore, in this work we develop a modal-based identification technique making use of inverse methods and optimization techniques, which enables the identification of the interface force, as well as the string self-excited motion, from the dynamical reactions measured at the string end supports. The method gives convincing results using simulated data originated from nonlinear computations of a bowed string. Furthermore, in cases where the force identifications are very sensitive to errors in the transfer function modal parameters, we suggest a method to improve the modal frequencies used for the identifications. Preliminary experimental results obtained using a basic bowing device, by which the string is excited with the stick of the bow, are then presented. Our identifications, from the two dynamical string reactions

  10. Study of direct beam radiation and standardization of (Engineering) insolation data in korea. 4

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H S; Auh, C M; Lee, T K; Kim, E I; Jo, D K; Kim, H J; Kim, D H; Jeon, M S; Lee, S M; Chun, I S [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    Owing to the world-wide environmental issue and the unbalance on energy demands-offers, it is inevitable to conduct the research and development on clean alternative energy resource. The solar energy resource is recognized as one of the alternatives. A preparation for basic data should, therefore, arise for the extensive utilization of solar energy. Engineering solar (weather) data measured for at least a 30-year period should be needed for solar energy and energy conservation applications. These data should contain hourly averages of global horizontal, direct normal, and diffuse horizontal irradiation with hourly observations of other meteorological parameters such as sky cover, temperature, humidity, and wind speed. Normals, means, and extremes serving as system design data are to be selected from the 30 years basic data. However, collection of reasonable solar data has merely been carried out for global horizontal insolation since 1882 and direct normal insolation since 1991 in Korea. It still requires the considerable effort and time to square the reliability and to standardize the solar data. In parallel, the related techniques are to be developed such as data quality assessments and control, missing data and inconsistent data treatments, inter- and extra-potation techniques for the intermediate region among the weather stations. The R and D on these subject should be done advancing the practical applications. (author). 43 refs., 31 figs., 16 tabs.

  11. Active and Nonlinear Microrheology of Dense Colloidal Suspensions

    OpenAIRE

    Harrer, Christian Josef

    2013-01-01

    In this work, we have investigated active and nonlinear microrheology of dense colloidal suspensions, i.e., the forced motion of a singled-out tracer particle by an external force, both in the framework of MCT and via event-driven Brownian Dynamics simulations.

  12. Development of inexpensive prosthetic feet for high-heeled shoes using simple shoe insole model

    OpenAIRE

    Margrit R. Meier, PhD; Kerice A. Tucker, BSc; Andrew H. Hansen, PhD

    2014-01-01

    The large majority of prosthetic feet are aimed at low-heeled shoes, with a few models allowing a heel height of up to 5 cm. However, a survey by the American Podiatric Medical Association indicates that most women wear heels over 5 cm; thus, current prosthetic feet limit most female prosthesis users in their choice. Some prosthetic foot components are heel-height adjustable; however, their plantar surface shapes do not change to match the insole shapes of the shoes with different heel height...

  13. Applicability of linear and non-linear potential flow models on a Wavestar float

    DEFF Research Database (Denmark)

    Bozonnet, Pauline; Dupin, Victor; Tona, Paolino

    2017-01-01

    as a model based on non-linear potential flow theory and weakscatterer hypothesis are successively considered. Simple tests, such as dip tests, decay tests and captive tests enable to highlight the improvements obtained with the introduction of nonlinearities. Float motion under wave actions and without...... control action, limited to small amplitude motion with a single float, is well predicted by the numerical models, including the linear one. Still, float velocity is better predicted by accounting for non-linear hydrostatic and Froude-Krylov forces.......Numerical models based on potential flow theory, including different types of nonlinearities are compared and validated against experimental data for the Wavestar wave energy converter technology. Exact resolution of the rotational motion, non-linear hydrostatic and Froude-Krylov forces as well...

  14. MEMS linear and nonlinear statics and dynamics

    CERN Document Server

    Younis, Mohammad I

    2011-01-01

    MEMS Linear and Nonlinear Statics and Dynamics presents the necessary analytical and computational tools for MEMS designers to model and simulate most known MEMS devices, structures, and phenomena. This book also provides an in-depth analysis and treatment of the most common static and dynamic phenomena in MEMS that are encountered by engineers. Coverage also includes nonlinear modeling approaches to modeling various MEMS phenomena of a nonlinear nature, such as those due to electrostatic forces, squeeze-film damping, and large deflection of structures. The book also: Includes examples of nume

  15. Nonlinear Control of Heartbeat Models

    Directory of Open Access Journals (Sweden)

    Witt Thanom

    2011-02-01

    Full Text Available This paper presents a novel application of nonlinear control theory to heartbeat models. Existing heartbeat models are investigated and modified by incorporating the control input as a pacemaker to provide the control channel. A nonlinear feedback linearization technique is applied to force the output of the systems to generate artificial electrocardiogram (ECG signal using discrete data as the reference inputs. The synthetic ECG may serve as a flexible signal source to assess the effectiveness of a diagnostic ECG signal-processing device.

  16. Altering Knee Abduction Angular Impulse Using Wedged Insoles for Treatment of Patellofemoral Pain in Runners: A Six-Week Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Ryan T Lewinson

    Full Text Available Determine if a change in internal knee abduction angular impulse (KAAI is related to pain reduction for runners with patellofemoral pain (PFP by comparing lateral and medial wedge insole interventions, and increased KAAI and decreased KAAI groups.Randomized controlled clinical trial (ClinicalTrials.gov ID# NCT01332110.Biomechanics laboratory and community.Thirty-six runners with physician-diagnosed PFP enrolled in the trial, and 27 were analyzed.Runners with PFP were randomly assigned to either an experimental 3 mm lateral wedge or control 6 mm medial wedge group. Participants completed a biomechanical gait analysis to quantify KAAIs with their assigned insole, and then used their assigned insole for six-weeks during their regular runs. Usual pain during running was measured at baseline and at six-week follow-up using a visual analog scale. Statistical tests were performed to identify differences between wedge types, differences between biomechanical response types (i.e. increase or decrease KAAI, as well as predictors of pain reduction.Percent change in KAAI relative to neutral, and % change in pain over six weeks.Clinically meaningful reductions in pain (>33% were measured for both footwear groups; however, no significant differences between footwear groups were found (p = 0.697. When participants were regrouped based on KAAI change (i.e., increase or decrease, again, no significant differences in pain reduction were noted (p = 0.146. Interestingly, when evaluating absolute change in KAAI, a significant relationship between absolute % change in KAAI and % pain reduction was observed (R2 = 0.21; p = 0.030, after adjusting for baseline pain levels.The greater the absolute % change in KAAI during running, the greater the % reduction in pain over six weeks, regardless of wedge type, and whether KAAIs increased or decreased. Lateral and medial wedge insoles were similar in effectiveness for treatment of PFP.Altering KAAI should be a focus of future

  17. Estimation of spectral solar radiation based on global insolation and characteristics of spectral solar radiation on a tilt surface; Zenten nissharyo ni motozuku zenten nissha supekutoru no suitei to keishamen bunko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H; Kanayama, K; Endo, N; Koromohara, K; Takayama, H [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-27

    Use of global insolation for estimating the corresponding spectral distribution is proposed. Measurements of global insolation spectrum throughout a year were compiled for clear days and cloudy days, ranked by 100W/m{sup 2}, for the clarification of spectral distribution. Global insolation quantity for a clear day was subject mainly to sun elevation. The global insolation spectral distribution with the sun elevation not lower than 15{degree} was similar to Bird`s model. Under the cloudy sky, energy density was lower in the region of wavelengths longer than the peak wavelength of 0.46{mu}m, and the distribution curve was sharper than that under the clear sky. Values given by Bird`s model were larger than measured values in the wavelength range of 0.6-1.8{mu}m, which was attributed to absorption by vapor. From the standard spectral distribution charts for the clear sky and cloudy sky, and from the dimensionless spectral distributions obtained by dividing them by the peak values, spectral distributions could be estimated of insolation quantities for the clear sky, cloudy sky, etc. As for the characteristics of spectral solar radiation on a tilt surface obtained from Bird`s model, they agreed with actually measured values at an angle of inclination of 60{degree} or smaller. 6 refs., 10 figs., 1 tab.

  18. A nonsmooth nonlinear conjugate gradient method for interactive contact force problems

    DEFF Research Database (Denmark)

    Silcowitz, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny

    2010-01-01

    of a nonlinear complementarity problem (NCP), which can be solved using an iterative splitting method, such as the projected Gauss–Seidel (PGS) method. We present a novel method for solving the NCP problem by applying a Fletcher–Reeves type nonlinear nonsmooth conjugate gradient (NNCG) type method. We analyze...... and present experimental convergence behavior and properties of the new method. Our results show that the NNCG method has at least the same convergence rate as PGS, and in many cases better....

  19. Predicting human chronically paralyzed muscle force: a comparison of three mathematical models.

    Science.gov (United States)

    Frey Law, Laura A; Shields, Richard K

    2006-03-01

    Chronic spinal cord injury (SCI) induces detrimental musculoskeletal adaptations that adversely affect health status, ranging from muscle paralysis and skin ulcerations to osteoporosis. SCI rehabilitative efforts may increasingly focus on preserving the integrity of paralyzed extremities to maximize health quality using electrical stimulation for isometric training and/or functional activities. Subject-specific mathematical muscle models could prove valuable for predicting the forces necessary to achieve therapeutic loading conditions in individuals with paralyzed limbs. Although numerous muscle models are available, three modeling approaches were chosen that can accommodate a variety of stimulation input patterns. To our knowledge, no direct comparisons between models using paralyzed muscle have been reported. The three models include 1) a simple second-order linear model with three parameters and 2) two six-parameter nonlinear models (a second-order nonlinear model and a Hill-derived nonlinear model). Soleus muscle forces from four individuals with complete, chronic SCI were used to optimize each model's parameters (using an increasing and decreasing frequency ramp) and to assess the models' predictive accuracies for constant and variable (doublet) stimulation trains at 5, 10, and 20 Hz in each individual. Despite the large differences in modeling approaches, the mean predicted force errors differed only moderately (8-15% error; P=0.0042), suggesting physiological force can be adequately represented by multiple mathematical constructs. The two nonlinear models predicted specific force characteristics better than the linear model in nearly all stimulation conditions, with minimal differences between the two nonlinear models. Either nonlinear mathematical model can provide reasonable force estimates; individual application needs may dictate the preferred modeling strategy.

  20. Extracting Leading Nonlinear Modes of Changing Climate From Global SST Time Series

    Science.gov (United States)

    Mukhin, D.; Gavrilov, A.; Loskutov, E. M.; Feigin, A. M.; Kurths, J.

    2017-12-01

    Data-driven modeling of climate requires adequate principal variables extracted from observed high-dimensional data. For constructing such variables it is needed to find spatial-temporal patterns explaining a substantial part of the variability and comprising all dynamically related time series from the data. The difficulties of this task rise from the nonlinearity and non-stationarity of the climate dynamical system. The nonlinearity leads to insufficiency of linear methods of data decomposition for separating different processes entangled in the observed time series. On the other hand, various forcings, both anthropogenic and natural, make the dynamics non-stationary, and we should be able to describe the response of the system to such forcings in order to separate the modes explaining the internal variability. The method we present is aimed to overcome both these problems. The method is based on the Nonlinear Dynamical Mode (NDM) decomposition [1,2], but takes into account external forcing signals. An each mode depends on hidden, unknown a priori, time series which, together with external forcing time series, are mapped onto data space. Finding both the hidden signals and the mapping allows us to study the evolution of the modes' structure in changing external conditions and to compare the roles of the internal variability and forcing in the observed behavior. The method is used for extracting of the principal modes of SST variability on inter-annual and multidecadal time scales accounting the external forcings such as CO2, variations of the solar activity and volcanic activity. The structure of the revealed teleconnection patterns as well as their forecast under different CO2 emission scenarios are discussed.[1] Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J. (2016

  1. Nonlinear effects in dynamic analysis and design of nuclear power plant components: research status and needs

    Energy Technology Data Exchange (ETDEWEB)

    Stoykovich, M [Burns and Roe, Inc., New York (USA)

    1978-10-01

    This paper encompasses nonlinear effects in dynamic analysis and design of nuclear power plant facilities. The history of plasticity as a science is briefly discussed, and nonlinear cases of special interest are described. Approaches to some of the nonlinear problems are presented. These include the nonlinearity due to foundation-structure interaction associated with the base slab uplift during seismic disturbances, the nonlinear base-isolation system for the reduction of earthquake-generated forces and deformations of superstructures, nonlinear systems having restoring-force functions in case of gaps and liift-off conditions, and nonlinearity of viscoelastic systems due to inelastic deformations. Available computer programs information for the solution of various types of nonlinear problems are provided. Advantages and disadvantages of some of the nonlinear and linear analyses are discussed. Comparison of some nonlinear and linear results of analyses are presented. Conclusions are reached with regard to research status and recommendations for further studies and for performing non-linear analyses associated with the problems of nonlinearity are presented.

  2. Nonlinear effects in dynamic analysis and design of nuclear power plant components: research status and needs

    International Nuclear Information System (INIS)

    Stoykovich, M.

    1978-01-01

    This paper encompasses nonlinear effects in dynamic analysis and design of nuclear power plant facilities. The history of plasticity as a science is briefly discussed, and nonlinear cases of special interest are described. Approaches to some of the nonlinear problems are presented. These include the nonlinearity due to foundation-structure interaction associated with the base slab uplift during seismic disturbances, the nonlinear base-isolation system for the reduction of earthquake-generated forces and deformations of superstructures, nonlinear systems having restoring-force functions in case of gaps and liift-off conditions, and nonlinearity of viscoelastic systems due to inelastic deformations. Available computer programs information for the solution of various types of nonlinear problems are provided. Advantages and disadvantages of some of the nonlinear and linear analyses are discussed. Comparison of some nonlinear and linear results of analyses are presented. Conclusions are reached with regard to research status and recommendations for further studies and for performing non-linear analyses associated with the problems of nonlinearity are presented. (Auth.)

  3. On the Boundary between Nonlinear Jump Phenomenon and Linear Response of Hypoid Gear Dynamics

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2011-01-01

    Full Text Available A nonlinear time-varying (NLTV dynamic model of a hypoid gear pair system with time-dependent mesh point, line-of-action vector, mesh stiffness, mesh damping, and backlash nonlinearity is formulated to analyze the transitional phase between nonlinear jump phenomenon and linear response. It is found that the classical jump discontinuity will occur if the dynamic mesh force exceeds the mean value of tooth mesh force. On the other hand, the propensity for the gear response to jump disappears when the dynamic mesh force is lower than the mean mesh force. Furthermore, the dynamic analysis is able to distinguish the specific tooth impact types from analyzing the behaviors of the dynamic mesh force. The proposed theory is general and also applicable to high-speed spur, helical and spiral bevel gears even though those types of gears are not the primary focus of this paper.

  4. A simulation of atomic force microscope microcantilever in the tapping mode utilizing couple stress theory.

    Science.gov (United States)

    Abbasi, Mohammad

    2018-04-01

    The nonlinear vibration behavior of a Tapping mode atomic force microscopy (TM-AFM) microcantilever under acoustic excitation force has been modeled and investigated. In dynamic AFM, the tip-surface interactions are strongly nonlinear, rapidly changing and hysteretic. First, the governing differential equation of motion and boundary conditions for dynamic analysis are obtained using the modified couple stress theory. Afterwards, closed-form expressions for nonlinear frequency and effective nonlinear damping ratio are derived utilizing perturbation method. The effect of tip connection position on the vibration behavior of the microcantilever are also analyzed. The results show that nonlinear frequency is size dependent. According to the results, an increase in the equilibrium separation between the tip and the sample surface reduces the overall effect of van der Waals forces on the nonlinear frequency, but its effect on the effective nonlinear damping ratio is negligible. The results also indicate that both the change in the distance between tip and cantilever free end and the reduction of tip radius have significant effects on the accuracy and sensitivity of the TM-AFM in the measurement of surface forces. The hysteretic behavior has been observed in the near resonance frequency response due to softening and hardening of the forced vibration response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Global Format for Conservative Time Integration in Nonlinear Dynamics

    DEFF Research Database (Denmark)

    Krenk, Steen

    2014-01-01

    The widely used classic collocation-based time integration procedures like Newmark, Generalized-alpha etc. generally work well within a framework of linear problems, but typically may encounter problems, when used in connection with essentially nonlinear structures. These problems are overcome....... In the present paper a conservative time integration algorithm is developed in a format using only the internal forces and the associated tangent stiffness at the specific time integration points. Thus, the procedure is computationally very similar to a collocation method, consisting of a series of nonlinear...... equivalent static load steps, easily implemented in existing computer codes. The paper considers two aspects: representation of nonlinear internal forces in a form that implies energy conservation, and the option of an algorithmic damping with the purpose of extracting energy from undesirable high...

  6. Nonlinear space charge effect of bunched beam in linac

    International Nuclear Information System (INIS)

    Chen Yinbao

    1992-02-01

    The nonlinear space charge effect due to the nonuniform particle density distribution in bunched beam of a linac is discussed. The formulae of nonlinear space charge effect and nonlinear focusing forces were derived for the bunched beam with Kapchinskij-Vladimirskij (K-V) distribution, waterbag (WB) distribution, parabolic (PA) distribution, and Gauss (GA) distribution in both of the space charge disk model and space charge cylinder model in the waveguide of a linac

  7. A theoretical model and experiments on the nonlinear dynamics of parallel plates subjected to laminar/turbulent squeeze-film forces

    International Nuclear Information System (INIS)

    Piteau, Philippe; Antunes, Jose

    2012-01-01

    Squeeze film dynamical effects are relevant in many industrial contexts, bearings and seals being the most conspicuous applications, but also in other industrial contexts, for instance when dealing with the seismic excitation of spent fuel racks. The significant nonlinearity of the squeeze-film forces which arise prevents the use of linearized flow models, and a fully nonlinear formulation must be used for adequate computational predictions. Because it can easily accommodate both laminar and turbulence flow effects, a simplified bulk-flow model based on gap-averaged Navier-Stokes equations, incorporating all relevant inertial and dissipative terms was previously developed by the authors, assuming a constant skin-friction coefficient. In this paper we develop an improved theoretical formulation, where the dependence of the friction coefficient on the local flow velocity is explicitly accounted for, such that it can be applied to laminar, turbulent and mixed flows. Numerical solutions for both the basic and improved nonlinear one-dimensional time-domain formulations are presented in the paper. Furthermore, we present and discuss the results of an extensive series of experiments performed at CEA/Saclay, which were performed on a test rig consisting on a long gravity-driven instrumented plate of rectangular shape colliding with a planar surface. Theoretical results stemming from both theoretical flow models are confronted with the experimental measurements, in order to assert the strengths and drawbacks of the simpler original model, as well as the improvements brought by the new but more involved flow formulation. (authors)

  8. Design optimization of ideal non-imaging concentrators for solar collectors by use of yearly insolation model with frequency distribution; Dosu bunpu wo koryoshita nenkan nissha model ni yoru shunetsuyo riso hikessho shukoki no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, A [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    1996-10-27

    Optimization was carried out for the 2D-CPC (compound parabolic concentrator) known as an ideal 2-dimensional non-imaging concentrator for its application to stationary solar heat concentrators. A non-imaging optical system is a system that has an angle for incident light called an acceptance angle, and is treated as an effective tool in the field of solar energy application. Analysis was conducted from the viewpoint of energy and exergy on the presumption of constant temperature operation. For the analysis of constant temperature heat concentration, it needs to be presumed that heat concentrators are in operation only in the presence of insolation that is more than a specified level (critical insolation). When the acceptance angle is fixed for optimization, energy efficiency does not have a peak with respect to the critical probability insolation intensity (in a probability model considering frequency distribution). On the other hand, for the optimization of exergy efficiency, the half-acceptance angle should be within a 35-40{degree} range (agreeing with the optimum angle cost-wise), and the critical probability insolation should be set at 250-300W/m{sup 2} (1/4 of the maximum insolation intensity). The obtained results are low in model dependency and are sufficiently reliable. 14 refs., 4 figs.

  9. Monsoonal Responses to External Forcings over the Past Millennium: A Model Study (Invited)

    Science.gov (United States)

    Liu, J.; Wang, B.

    2009-12-01

    The climate variations related to Global Monsoon (GM) and East Asian summer monsoon (EASM) rainfall over the past 1000 years were investigated by analysis of a pair of millennium simulations with the coupled climate model named ECHO-G. The free run was generated using fixed external (annual cycle) forcing, while the forced run was obtained using time-varying solar irradiance variability, greenhouse gases (CO2 and CH4) concentration and estimated radiative effect of volcanic aerosols. The model results indicate that the centennial-millennial variation of the GM and EASM is essentially a forced response to the external radiative forcings (insolation, volcanic aerosols, and greenhouse gases). The GM strength responds more directly to the effective solar forcing (insolation plus radiative effect of the volcanoes) when compared to responses of the global mean surface temperature on centennial timescale. The simulated GM precipitation in the forced run exhibits a significant quasi-bi-centennial oscillation. Weak GM precipitation was simulated during the Little Ice Age (1450-1850) with three weakest periods concurring with the Spörer, Maunder, and Dalton Minimum of solar activity. Conversely, strong GM was simulated during the model Medieval Warm Period (ca. 1030-1240). Before the industrial period, the natural variation in effective solar forcing reinforces the thermal contrasts both between the ocean and continent and between the northern and southern hemispheres, resulting in millennium-scale variation and the quasi-bi-centennial oscillation of the GM. The prominent upward trend in the GM precipitation occurring in the last century and the remarkably strengthening of the global monsoon in the period of 1961-1990 appear unprecedented and owed possibly in part to the increase of atmospheric carbon dioxide concentration. The EASM has the largest meridional extent (5oN-55oN) among all the regional monsoons on globe. Thus, the EASM provides an unique opportunity for

  10. A new analytical approach for limit cycles and quasi-periodic solutions of nonlinear oscillators: the example of the forced Van der Pol Duffing oscillator

    International Nuclear Information System (INIS)

    Shukla, Anant Kant; Ramamohan, T R; Srinivas, S

    2014-01-01

    In this paper we propose a technique to obtain limit cycles and quasi-periodic solutions of forced nonlinear oscillators. We apply this technique to the forced Van der Pol oscillator and the forced Van der Pol Duffing oscillator and obtain for the first time their limit cycles (periodic) and quasi-periodic solutions analytically. We introduce a modification of the homotopy analysis method to obtain these solutions. We minimize the square residual error to obtain accurate approximations to these solutions. The obtained analytical solutions are convergent and agree well with numerical solutions even at large times. Time trajectories of the solution, its first derivative and phase plots are presented to confirm the validity of the proposed approach. We also provide rough criteria for the determination of parameter regimes which lead to limit cycle or quasi-periodic behaviour. (papers)

  11. Nonlinear effects on bremsstrahlung emission in dusty plasmas

    International Nuclear Information System (INIS)

    Kim, Young-Woo; Jung, Young-Dae

    2004-01-01

    Nonlinear effects on the bremsstrahlung process due to ion-dust grain collisions are investigated in dusty plasmas. The nonlinear screened interaction potential is applied to obtain the Fourier coefficients of the force acting on the dust grain. The classical trajectory analysis is applied to obtain the differential bremsstrahlung radiation cross section as a function of the scaled impact parameter, projectile energy, photon energy, and Debye length. The result shows that the nonlinear effects suppress the bremsstrahlung radiation cross section due to collisions of ions with positively charged dust grains. These nonlinear effects decrease with increasing Debye length and temperature, and increase with increasing radiation photon energy

  12. Analysis of Nonlinear Dynamics in Linear Compressors Driven by Linear Motors

    Science.gov (United States)

    Chen, Liangyuan

    2018-03-01

    The analysis of dynamic characteristics of the mechatronics system is of great significance for the linear motor design and control. Steady-state nonlinear response characteristics of a linear compressor are investigated theoretically based on the linearized and nonlinear models. First, the influence factors considering the nonlinear gas force load were analyzed. Then, a simple linearized model was set up to analyze the influence on the stroke and resonance frequency. Finally, the nonlinear model was set up to analyze the effects of piston mass, spring stiffness, driving force as an example of design parameter variation. The simulating results show that the stroke can be obtained by adjusting the excitation amplitude, frequency and other adjustments, the equilibrium position can be adjusted by adjusting the DC input, and to make the more efficient operation, the operating frequency must always equal to the resonance frequency.

  13. Halo Mitigation Using Nonlinear Lattices

    CERN Document Server

    Sonnad, Kiran G

    2005-01-01

    This work shows that halos in beams with space charge effects can be controlled by combining nonlinear focusing and collimation. The study relies on Particle-in-Cell (PIC) simulations for a one dimensional, continuous focusing model. The PIC simulation results show that nonlinear focusing leads to damping of the beam oscillations thereby reducing the mismatch. It is well established that reduced mismatch leads to reduced halo formation. However, the nonlinear damping is accompanied by emittance growth causing the beam to spread in phase space. As a result, inducing nonlinear damping alone cannot help mitigate the halo. To compensate for this expansion in phase space, the beam is collimated in the simulation and further evolution of the beam shows that the halo is not regenerated. The focusing model used in the PIC is analysed using the Lie Transform perturbation theory showing that by averaging over a lattice period, one can reuduce the focusing force to a form that is identical to that used in the PIC simula...

  14. Estimation of Handgrip Force from SEMG Based on Wavelet Scale Selection.

    Science.gov (United States)

    Wang, Kai; Zhang, Xianmin; Ota, Jun; Huang, Yanjiang

    2018-02-24

    This paper proposes a nonlinear correlation-based wavelet scale selection technology to select the effective wavelet scales for the estimation of handgrip force from surface electromyograms (SEMG). The SEMG signal corresponding to gripping force was collected from extensor and flexor forearm muscles during the force-varying analysis task. We performed a computational sensitivity analysis on the initial nonlinear SEMG-handgrip force model. To explore the nonlinear correlation between ten wavelet scales and handgrip force, a large-scale iteration based on the Monte Carlo simulation was conducted. To choose a suitable combination of scales, we proposed a rule to combine wavelet scales based on the sensitivity of each scale and selected the appropriate combination of wavelet scales based on sequence combination analysis (SCA). The results of SCA indicated that the scale combination VI is suitable for estimating force from the extensors and the combination V is suitable for the flexors. The proposed method was compared to two former methods through prolonged static and force-varying contraction tasks. The experiment results showed that the root mean square errors derived by the proposed method for both static and force-varying contraction tasks were less than 20%. The accuracy and robustness of the handgrip force derived by the proposed method is better than that obtained by the former methods.

  15. A Novel Nonlinear Parameter Estimation Method of Soft Tissues

    Directory of Open Access Journals (Sweden)

    Qianqian Tong

    2017-12-01

    Full Text Available The elastic parameters of soft tissues are important for medical diagnosis and virtual surgery simulation. In this study, we propose a novel nonlinear parameter estimation method for soft tissues. Firstly, an in-house data acquisition platform was used to obtain external forces and their corresponding deformation values. To provide highly precise data for estimating nonlinear parameters, the measured forces were corrected using the constructed weighted combination forecasting model based on a support vector machine (WCFM_SVM. Secondly, a tetrahedral finite element parameter estimation model was established to describe the physical characteristics of soft tissues, using the substitution parameters of Young’s modulus and Poisson’s ratio to avoid solving complicated nonlinear problems. To improve the robustness of our model and avoid poor local minima, the initial parameters solved by a linear finite element model were introduced into the parameter estimation model. Finally, a self-adapting Levenberg–Marquardt (LM algorithm was presented, which is capable of adaptively adjusting iterative parameters to solve the established parameter estimation model. The maximum absolute error of our WCFM_SVM model was less than 0.03 Newton, resulting in more accurate forces in comparison with other correction models tested. The maximum absolute error between the calculated and measured nodal displacements was less than 1.5 mm, demonstrating that our nonlinear parameters are precise.

  16. Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration?

    KAUST Repository

    Gadelha, H.; Gaffney, E. A.; Smith, D. J.; Kirkman-Brown, J. C.

    2010-01-01

    . We study the effect of geometrical nonlinearity, focusing on the spermatozoon flagellum. For a wide range of physiologically relevant parameters, the nonlinear model predicts that flagellar compression by the internal forces initiates an effective

  17. Nonlinear vibration of a traveling belt with non-homogeneous boundaries

    Science.gov (United States)

    Ding, Hu; Lim, C. W.; Chen, Li-Qun

    2018-06-01

    Free and forced nonlinear vibrations of a traveling belt with non-homogeneous boundary conditions are studied. The axially moving materials in operation are always externally excited and produce strong vibrations. The moving materials with the homogeneous boundary condition are usually considered. In this paper, the non-homogeneous boundaries are introduced by the support wheels. Equilibrium deformation of the belt is produced by the non-homogeneous boundaries. In order to solve the equilibrium deformation, the differential and integral quadrature methods (DIQMs) are utilized to develop an iterative scheme. The influence of the equilibrium deformation on free and forced nonlinear vibrations of the belt is explored. The DIQMs are applied to solve the natural frequencies and forced resonance responses of transverse vibration around the equilibrium deformation. The Galerkin truncation method (GTM) is utilized to confirm the DIQMs' results. The numerical results demonstrate that the non-homogeneous boundary conditions cause the transverse vibration to deviate from the straight equilibrium, increase the natural frequencies, and lead to coexistence of square nonlinear terms and cubic nonlinear terms. Moreover, the influence of non-homogeneous boundaries can be exacerbated by the axial speed. Therefore, non-homogeneous boundary conditions of axially moving materials especially should be taken into account.

  18. A Modal-Based Substructure Method Applied to Nonlinear Rotordynamic Systems

    Directory of Open Access Journals (Sweden)

    Helmut J. Holl

    2009-01-01

    Full Text Available The discretisation of rotordynamic systems usually results in a high number of coordinates, so the computation of the solution of the equations of motion is very time consuming. An efficient semianalytic time-integration method combined with a substructure technique is given, which accounts for nonsymmetric matrices and local nonlinearities. The partitioning of the equation of motion into two substructures is performed. Symmetric and linear background systems are defined for each substructure. The excitation of the substructure comes from the given excitation force, the nonlinear restoring force, the induced force due to the gyroscopic and circulatory effects of the substructure under consideration and the coupling force of the substructures. The high effort for the analysis with complex numbers, which is necessary for nonsymmetric systems, is omitted. The solution is computed by means of an integral formulation. A suitable approximation for the unknown coordinates, which are involved in the coupling forces, has to be introduced and the integration results in Green's functions of the considered substructures. Modal analysis is performed for each linear and symmetric background system of the substructure. Modal reduction can be easily incorporated and the solution is calculated iteratively. The numerical behaviour of the algorithm is discussed and compared to other approximate methods of nonlinear structural dynamics for a benchmark problem and a representative example.

  19. Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities

    International Nuclear Information System (INIS)

    Hedrih, K

    2008-01-01

    This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of 'an open a spiral form' of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task

  20. Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities

    Science.gov (United States)

    Stevanović Hedrih, K.

    2008-02-01

    This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of "an open a spiral form" of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task

  1. Nonlinear Resonance Analysis of Slender Portal Frames under Base Excitation

    Directory of Open Access Journals (Sweden)

    Luis Fernando Paullo Muñoz

    2017-01-01

    Full Text Available The dynamic nonlinear response and stability of slender structures in the main resonance regions are a topic of importance in structural analysis. In complex problems, the determination of the response in the frequency domain indirectly obtained through analyses in time domain can lead to huge computational effort in large systems. In nonlinear cases, the response in the frequency domain becomes even more cumbersome because of the possibility of multiple solutions for certain forcing frequencies. Those solutions can be stable and unstable, in particular saddle-node bifurcation at the turning points along the resonance curves. In this work, an incremental technique for direct calculation of the nonlinear response in frequency domain of plane frames subjected to base excitation is proposed. The transformation of equations of motion to the frequency domain is made through the harmonic balance method in conjunction with the Galerkin method. The resulting system of nonlinear equations in terms of the modal amplitudes and forcing frequency is solved by the Newton-Raphson method together with an arc-length procedure to obtain the nonlinear resonance curves. Suitable examples are presented, and the influence of the frame geometric parameters and base motion on the nonlinear resonance curves is investigated.

  2. Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.

    Science.gov (United States)

    Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C

    2015-05-21

    In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.

  3. Nonlinear modeling of magnetorheological energy absorbers under impact conditions

    Science.gov (United States)

    Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M.; Browne, Alan L.; Ulicny, John; Johnson, Nancy

    2013-11-01

    Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s-1. Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R&D Center for nominal drop speeds of up to 6 m s-1.

  4. Nonlinear tension-bending deformation of a shape memory alloy rod

    International Nuclear Information System (INIS)

    Shang, Zejin; Wang, Zhongmin

    2012-01-01

    Based on the measured shape memory alloy (SMA) stress–strain curve and the nonlinear large deformation theory of extensible beams (or rods), the first-order nonlinear governing equations of a SMA cantilever straight rod are established. They consist of a boundary-value problem of ordinary differential equations with a strong nonlinearity, in which seven unknown functions are contained and the arc length of the deformed axis is considered as one of the basic unknown functions. The shooting method combining with the Newton–Raphson iteration method is applied to solve the equations numerically. For a SMA cantilever rod subjected to a transverse uniformly distributed force, the deformation characteristics curves, the maximum strain and the maximum stress distribution curves along the longitudinal direction of rod, and the relation curves between deformation characteristic parameters and transverse uniformly force under different slenderness ratios are obtained. The effects of material nonlinearity, geometrical nonlinearity and slenderness ratio on the tension-bending deformation of the SMA cantilever rod are investigated. The numerical simulation results are in good agreement with the experimental data from the literature, verifying the soundness of the entire numerical simulation scheme. (paper)

  5. Stress Induced in Periodontal Ligament under Orthodontic Loading (Part II): A Comparison of Linear Versus Non-Linear Fem Study.

    Science.gov (United States)

    Hemanth, M; Deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-09-01

    Simulation of periodontal ligament (PDL) using non-linear finite element method (FEM) analysis gives better insight into understanding of the biology of tooth movement. The stresses in the PDL were evaluated for intrusion and lingual root torque using non-linear properties. A three-dimensional (3D) FEM model of the maxillary incisors was generated using Solidworks modeling software. Stresses in the PDL were evaluated for intrusive and lingual root torque movements by 3D FEM using ANSYS software. These stresses were compared with linear and non-linear analyses. For intrusive and lingual root torque movements, distribution of stress over the PDL was within the range of optimal stress value as proposed by Lee, but was exceeding the force system given by Proffit as optimum forces for orthodontic tooth movement with linear properties. When same force load was applied in non-linear analysis, stresses were more compared to linear analysis and were beyond the optimal stress range as proposed by Lee for both intrusive and lingual root torque. To get the same stress as linear analysis, iterations were done using non-linear properties and the force level was reduced. This shows that the force level required for non-linear analysis is lesser than that of linear analysis.

  6. Non-linear finite element model to assess the effect of tendon forces on the foot-ankle complex.

    Science.gov (United States)

    Morales-Orcajo, Enrique; Souza, Thales R; Bayod, Javier; Barbosa de Las Casas, Estevam

    2017-11-01

    A three-dimensional foot finite element model with actual geometry and non-linear behavior of tendons is presented. The model is intended for analysis of the lower limb tendon forces effect in the inner foot structure. The geometry of the model was obtained from computational tomographies and magnetic resonance images. Tendon tissue was characterized with the first order Ogden material model based on experimental data from human foot tendons. Kinetic data was employed to set the load conditions. After model validation, a force sensitivity study of the five major foot extrinsic tendons was conducted to evaluate the function of each tendon. A synergic work of the inversion-eversion tendons was predicted. Pulling from a peroneus or tibialis tendon stressed the antagonist tendons while reducing the stress in the agonist. Similar paired action was predicted for the Achilles tendon with the tibialis anterior. This behavior explains the complex control motion performed by the foot. Furthermore, the stress state at the plantar fascia, the talocrural joint cartilage, the plantar soft tissue and the tendons were estimated in the early and late midstance phase of walking. These estimations will help in the understanding of the functional role of the extrinsic muscle-tendon-units in foot pronation-supination. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Nonlinear chaos control in a permanent magnet reluctance machine

    International Nuclear Information System (INIS)

    Harb, Ahmad M.

    2004-01-01

    The dynamics of a permanent magnet synchronous machine (PMSM) is analyzed. The study shows that under certain conditions the PMSM is experiencing chaotic behavior. To control these unwanted chaotic oscillations, a nonlinear controller based on the backstepping nonlinear control theory is designed. The objective of the designed control is to stabilize the output chaotic trajectory by forcing it to the nearest constant solution in the basin of attraction. The result is compared with a nonlinear sliding mode controller. The designed controller that based on backstepping nonlinear control was able to eliminate the chaotic oscillations. Also the study shows that the designed controller is mush better than the sliding mode control

  8. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    International Nuclear Information System (INIS)

    Kim, Hyo-gon; Han, Changsoo; Lee, Jong-won; Park, Sangdeok

    2015-01-01

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program

  9. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2015-02-15

    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  10. An Efficient Reduced-Order Model for the Nonlinear Dynamics of Carbon Nanotubes

    KAUST Repository

    Xu, Tiantian; Younis, Mohammad I.

    2014-01-01

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction

  11. A geometric criterion for the stability of forced oscillations in non-linear mechanics (1961); Un critere geometrique de stabilite des oscillations forcees en mecanique non lineaire (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Blaquiere, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The author completes the two-parameter diagram theory which he has previously explained, by giving a geometric criterion of stability for a non-linear system under forced conditions. After two simple geometric transformations of the diagram he obtains the separators which are the boundary conditions for the zones of stability. (author) [French] L'auteur complete la theorie du diagramme a deux parametres, qu'il a anterieurement exposee, par l'enonce d'un critere geometrique de stabilite, relatif aux regimes forces d'un systeme non lineaire. Il obtient, par deux transformations geometriques simples du diagramme, les separatrices qui delimitent les zones de stabilite. (auteur)

  12. Chaos as an intermittently forced linear system.

    Science.gov (United States)

    Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kaiser, Eurika; Kutz, J Nathan

    2017-05-30

    Understanding the interplay of order and disorder in chaos is a central challenge in modern quantitative science. Approximate linear representations of nonlinear dynamics have long been sought, driving considerable interest in Koopman theory. We present a universal, data-driven decomposition of chaos as an intermittently forced linear system. This work combines delay embedding and Koopman theory to decompose chaotic dynamics into a linear model in the leading delay coordinates with forcing by low-energy delay coordinates; this is called the Hankel alternative view of Koopman (HAVOK) analysis. This analysis is applied to the Lorenz system and real-world examples including Earth's magnetic field reversal and measles outbreaks. In each case, forcing statistics are non-Gaussian, with long tails corresponding to rare intermittent forcing that precedes switching and bursting phenomena. The forcing activity demarcates coherent phase space regions where the dynamics are approximately linear from those that are strongly nonlinear.The huge amount of data generated in fields like neuroscience or finance calls for effective strategies that mine data to reveal underlying dynamics. Here Brunton et al.develop a data-driven technique to analyze chaotic systems and predict their dynamics in terms of a forced linear model.

  13. Study on Nonlinear Vibration and Crack Fault of Rotor-bearing-seal Coupling System

    Directory of Open Access Journals (Sweden)

    Yuegang LUO

    2014-02-01

    Full Text Available The nonlinear dynamic model of rotor-bearing-seal system with crack in shaft is set up based on the coupling model of nonlinear oil-film force and Muszyska’s nonlinear seal fluid force. The dynamic vibration characteristics of the rotor-bearing-seal system and the effects of physical and structural parameters of labyrinth seal and crack fault on movement character of the rotor were analyzed. The increases of seal length, seal pressure differential, seal radius and axial velocity are in favor of the stability of the system, and it of seal gap and crack depth are not in favor of the stability of the system.

  14. Three-sphere swimmer in a nonlinear viscoelastic medium

    KAUST Repository

    Curtis, Mark P.

    2013-04-10

    A simple model for a swimmer consisting of three colinearly linked spheres attached by rods and oscillating out of phase to break reciprocal motion is analyzed. With a prescribed forcing of the rods acting on the three spheres, the swimming dynamics are determined analytically in both a Newtonian Stokes fluid and a zero Reynolds number, nonlinear, Oldroyd-B viscoelastic fluid with Deborah numbers of order one (or less), highlighting the effects of viscoelasticity on the net displacement of swimmer. For instance, the model predicts that the three-sphere swimmer with a sinusoidal, but nonreciprocal, forcing cycle within an Oldroyd-B representation of a polymeric Boger fluid moves a greater distance with enhanced efficiency in comparison with its motility in a Newtonian fluid of the same viscosity. Furthermore, the nonlinear contributions to the viscoelastic constitutive relation, while dynamically nontrivial, are predicted a posteriori to have no effect on swimmer motility at leading order, given a prescribed forcing between spheres. © 2013 American Physical Society.

  15. Differential quadrature method of nonlinear bending of functionally graded beam

    Science.gov (United States)

    Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You

    2018-02-01

    Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.

  16. Nonlinear Modeling by Assembling Piecewise Linear Models

    Science.gov (United States)

    Yao, Weigang; Liou, Meng-Sing

    2013-01-01

    To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.

  17. How to Make Eccentricity Cycles in Stratigraphy: the Role of Compaction

    Science.gov (United States)

    Liu, W.; Hinnov, L.; Wu, H.; Pas, D.

    2017-12-01

    Milankovitch cycles from astronomically driven climate variations have been demonstrated as preserved in cyclostratigraphy throughout geologic time. These stratigraphic cycles have been identified in many types of proxies, e.g., gamma ray, magnetic susceptibility, oxygen isotopes, carbonate content, grayscale, etc. However, the commonly prominent spectral power of orbital eccentricity cycles in stratigraphy is paradoxical to insolation, which is dominated by precession index power. How is the spectral power transferred from precession to eccentricity in stratigraphy? Nonlinear sedimentation and bioturbation have long been identified as players in this transference. Here, we propose that in the absence of bioturbation differential compaction can generate the transference. Using insolation time series, we trace the steps by which insolation is transformed into stratigraphy, and how differential compaction of lithology acts to transfer spectral power from precession to eccentricity. Differential compaction is applied to unique values of insolation, which is assumed to control the type of deposited sediment. High compaction is applied to muds, and progressively lower compaction is applied to silts and sands, or carbonate. Linear differential compaction promotes eccentricity spectral power, but nonlinear differential compaction elevates eccentricity spectral power to dominance and precession spectral power to near collapse as is often observed in real stratigraphy. Keywords: differential compaction, cyclostratigraphy, insolation, eccentricity

  18. Nonlinear Dynamics of Electrostatically Actuated MEMS Arches

    KAUST Repository

    Al Hennawi, Qais M.

    2015-01-01

    In this thesis, we present theoretical and experimental investigation into the nonlinear statics and dynamics of clamped-clamped in-plane MEMS arches when excited by an electrostatic force. Theoretically, we first solve the equation of motion using

  19. A new algebraic growth of nonlinear tearing mode

    International Nuclear Information System (INIS)

    Li, D.

    1995-01-01

    It is found that the quasilinear modification of magnetic field produces a nonlinear Lorentz force opposing the linear driving force and slowing down the vortex flow. A new algebraic growth appears due to this damping mechanism to oppose the linear growth of the tearing mode. This effect was eliminated in Rutherford's model [Phys. Fluids 16, 1903 (1973)] under the flux average operation and the assumption ∂/∂t much-lt η/δ 2 (here η is the resistivity, δ is the resistive layer width). A unified analytical model is developed by using standard perturbation theory for the linear and nonlinear growth of the tearing mode. The inertia effect and quasilinear effects of both the current density and the magnetic field have been included. A nonlinear evolution equation is analytically derived for the tearing mode to describe the linear growth, Rutherford's behavior, and the new behavior. The classical linear result is exactly recovered as the quasilinear effects are negligible. It is shown that a more slowly algebraic growth like Ψ 1 ∝t can become dominant in the nonlinear phase instead of Rutherford behavior like Ψ 1 ∝t 2 , provided the tearing mode in the linear phase is strongly unstable. Here Ψ 1 is the magnetic flux perturbation. copyright 1995 American Institute of Physics

  20. Influence of Lorentz force, Cattaneo-Christov heat flux and viscous dissipation on the flow of micropolar fluid past a nonlinear convective stretching vertical surface

    Science.gov (United States)

    Gnaneswara Reddy, Machireddy

    2017-12-01

    The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.

  1. High-Rise Construction in Densely Dwelled Cities: Requirements for Premises Insolation and Consequences of their Violation in Russian Law and Jurisprudence

    Science.gov (United States)

    Gongalo, Boris; Gudovicheva, Lubov; Gubareva, Anna; Dobrynina, Larisa

    2018-03-01

    The issues of constructing high-rise, primarily residential, buildings have a great social significance. Not every plot of land, acquired in the Russian Federation is suitable for high-rise construction. Therefore, every construction company that plans to erect a multi-apartment building, a high-rise office building, or a skyscraper must take into account not only technical norms but as well sanitary legislation regulations that set obligatory requirements about insolation of apartments. The article includes a short study of several norms in the Russian legislation regarding insolation of dwellings; analises the problems of judicial interpretation of the statutory limitations. In this aspect it researches the debatable questions arising in practice of state arbitration courts dealing with the lawsuits on allocation of land-plots by the local administration. The analysis of the judicial practice is followed by description of the difficulties facing the developers of land-plots, concerning the project and territorial planning documentation.

  2. Nonlinear modeling and identification of a DC motor for bidirectional operation with real time experiments

    International Nuclear Information System (INIS)

    Kara, Tolgay; Eker, Ilyas

    2004-01-01

    Modeling and identification of mechanical systems constitute an essential stage in practical control design and applications. Controllers commanding systems that operate at varying conditions or require high precision operation raise the need for a nonlinear approach in modeling and identification. Most mechanical systems used in industry are composed of masses moving under the action of position and velocity dependent forces. These forces exhibit nonlinear behavior in certain regions of operation. For a multi-mass rotational system, the nonlinearities, like Coulomb friction and dead zone, significantly influence the system operation when the rotation changes direction. The paper presents nonlinear modeling and identification of a DC motor rotating in two directions together with real time experiments. Linear and nonlinear models for the system are obtained for identification purposes, and the major nonlinearities in the system, such as Coulomb friction and dead zone, are investigated and integrated in the nonlinear model. The Hammerstein nonlinear system approach is used for identification of the nonlinear system model. Online identification of the linear and nonlinear system models is performed using the recursive least squares method. Results of the real time experiments are graphically and numerically presented, and the advantages of the nonlinear identification approach are revealed

  3. Drag reduction in channel flow using nonlinear control

    Science.gov (United States)

    Keefe, Laurence R.

    1993-01-01

    Two nonlinear control schemes have been applied to the problem of drag reduction in channel flow. Both schemes have been tested using numerical simulations at a mass flux Reynolds numbers of 4408, utilizing 2D nonlinear neutral modes for goal dynamics. The OGY-method, which requires feedback, reduces drag to 60-80 percent of the turbulent value at the same Reynolds number, and employs forcing only within a thin region near the wall. The H-method, or model-based control, fails to achieve any drag reduction when starting from a fully turbulent initial condition, but shows potential for suppressing or retarding laminar-to-turbulent transition by imposing instead a transition to a low drag, nonlinear traveling wave solution to the Navier-Stokes equation. The drag in this state corresponds to that achieved by the OGY-method. Model-based control requires no feedback, but in experiments to date has required the forcing be imposed within a thicker layer than the OGY-method. Control energy expenditures in both methods are small, representing less than 0.1 percent of the uncontrolled flow's energy.

  4. Large amplitude forced vibration analysis of cross-beam system ...

    African Journals Online (AJOL)

    Large amplitude forced vibration behaviour of cross-beam system under harmonic excitation is studied, incorporating the effect of geometric non-linearity. The forced vibration analysis is carried out in an indirect way, in which the dynamic system is assumed to satisfy the force equilibrium condition at peak load value, thus ...

  5. Nonlinear modeling of magnetorheological energy absorbers under impact conditions

    International Nuclear Information System (INIS)

    Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M; Browne, Alan L; Ulicny, John; Johnson, Nancy

    2013-01-01

    Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s −1 . Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R and D Center for nominal drop speeds of up to 6 m s −1 . (paper)

  6. Nonlinear dynamics of a magnetically driven Duffing-type spring–magnet oscillator in the static magnetic field of a coil

    International Nuclear Information System (INIS)

    Donoso, Guillermo; Ladera, Celso L

    2012-01-01

    We study the nonlinear oscillations of a forced and weakly dissipative spring–magnet system moving in the magnetic fields of two fixed coaxial, hollow induction coils. As the first coil is excited with a dc current, both a linear and a cubic magnet-position dependent force appear on the magnet–spring system. The second coil, located below the first, excited with an ac current, provides the oscillating magnetic driving force on the system. From the magnet–coil interactions, we obtain, analytically, the nonlinear motion equation of the system, found to be a forced and damped cubic Duffing oscillator moving in a quartic potential. The relative strengths of the coefficients of the motion equation can be easily set by varying the coils’ dc and ac currents. We demonstrate, theoretically and experimentally, the nonlinear behaviour of this oscillator, including its oscillation modes and nonlinear resonances, the fold-over effect, the hysteresis and amplitude jumps, and its chaotic behaviour. It is an oscillating system suitable for teaching an advanced experiment in nonlinear dynamics both at senior undergraduate and graduate levels. (paper)

  7. Analytical treatment of the nonlinear electron cloud effect and the combined effects with beam-beam and space charge nonlinear forces in storage rings

    International Nuclear Information System (INIS)

    Gao Jie

    2009-01-01

    In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC II. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations. (author)

  8. Dynamic nonlinear interaction of elastic plates on discrete supports

    International Nuclear Information System (INIS)

    Coutinho, A.L.G.A.; Landau, L.; Lima, E.C.P. de; Ebecken, N.F.F.

    1984-01-01

    A study on the dynamic nonlinear interaction of elastic plates using the finite element method is presented. The elastic plate is discretized by 4-node isoparametric Mindlin elements. The constitutive relation of the discrete supports can be any nonlinear curve given by pairs of force-displacement points. The nonlinear behaviour is represented by the overlay approach. This model also allows the simulation of a progressive decrease on the supports stiffnesses during load cycles. The dynamic nonlinear incremental movement equations are integrated by the Newmark implicit operator. Two alternatives for the incremental-iterative formulation are compared. The paper ends with a discussion of the advantages and limitations of the presented numerical models. (Author) [pt

  9. Nonlinear friction dynamics on polymer surface under accelerated movement

    Directory of Open Access Journals (Sweden)

    Yuuki Aita

    2017-04-01

    Full Text Available Nonlinear phenomena on the soft material surface are one of the most exciting topics of chemical physics. However, only a few reports exist on the friction phenomena under accelerated movement, because friction between two solid surfaces is considered a linear phenomenon in many cases. We aim to investigate how nonlinear accelerated motion affects friction on solid surfaces. In the present study, we evaluate the frictional forces between two polytetrafluoroethylene (PTFE resins using an advanced friction evaluation system. On PTFE surfaces, the normalized delay time δ, which is the time lag in the response of the friction force to the accelerated movement, is observed in the pre-sliding friction process. Under high-velocity conditions, kinetic friction increases with velocity. Based on these experimental results, we propose a two-phase nonlinear model including a pre-sliding process (from the beginning of sliding of a contact probe to the establishment of static friction and a kinetic friction process. The present model consists of several factors including velocity, acceleration, stiffness, viscosity, and vertical force. The findings reflecting the viscoelastic properties of soft material is useful for various fields such as in the fabrication of clothes, cosmetics, automotive materials, and virtual reality systems as well as for understanding friction phenomena on soft material surfaces.

  10. Concurrent validation of an index to estimate fall risk in community dwelling seniors through a wireless sensor insole system: A pilot study.

    Science.gov (United States)

    Di Rosa, Mirko; Hausdorff, Jeff M; Stara, Vera; Rossi, Lorena; Glynn, Liam; Casey, Monica; Burkard, Stefan; Cherubini, Antonio

    2017-06-01

    Falls are a major health problem for older adults with immediate effects, such as fractures and head injuries, and longer term effects including fear of falling, loss of independence, and disability. The goals of the WIISEL project were to develop an unobtrusive, self-learning and wearable system aimed at assessing gait impairments and fall risk of older adults in the home setting; assessing activity and mobility in daily living conditions; identifying decline in mobility performance and detecting falls in the home setting. The WIISEL system was based on a pair of electronic insoles, able to transfer data to a commercially available smartphone, which was used to wirelessly collect data in real time from the insoles and transfer it to a backend computer server via mobile internet connection and then onwards to a gait analysis tool. Risk of falls was calculated by the system using a novel Fall Risk Index (FRI) based on multiple gait parameters and gait pattern recognition. The system was tested by twenty-nine older users and data collected by the insoles were compared with standardized functional tests with a concurrent validity approach. The results showed that the FRI captures the risk of falls with accuracy that is similar to that of conventional performance-based tests of fall risk. These preliminary findings support the idea that theWIISEL system can be a useful research tool and may have clinical utility for long-term monitoring of fall risk at home and in the community setting. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Nonlinear Dynamic Behavior of a Bi-Axial Torsional MEMS Mirror with Sidewall Electrodes

    Directory of Open Access Journals (Sweden)

    Mehmet Ozdogan

    2016-03-01

    Full Text Available Nonlinear dynamic responses of a Micro-Electro-Mechanical Systems (MEMS mirror with sidewall electrodes are presented that are in close agreement with previously-reported experimental data. An analysis of frequency responses reveals softening behavior, and secondary resonances originated from the dominant quadratic nonlinearity. The quadratic nonlinearity is an electromechanical coupling effect caused by the electrostatic force. This effect is reflected in our mathematical model used to simulate the dynamic response of the micro-mirror. The effects of increased forcing and decreased damping on the frequency response are investigated as the mirrors are mostly used in vacuum packages. The results can predict MEMS mirror behaviors in optical devices better than previously-reported models.

  12. Transient Vibration Prediction for Rotors on Ball Bearings Using Load-dependent Non-linear Bearing Stiffness

    Science.gov (United States)

    Fleming, David P.; Poplawski, J. V.

    2002-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for non-linear speed and load dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis - Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running 5 degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller beatings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.

  13. On the nucleon-nucleon potential obtained from non-linear coupling

    International Nuclear Information System (INIS)

    El Ghabaty, S.S.

    1975-07-01

    The static limit of a pseudoscalar symmetric meson theory of nuclear forces is examined. The Born-Oppenheimer potential is determined for the case of two very heavy nucleons exchanging pseudoscalar isovector pions with non-linear coupling. It is found that the non-linear terms induced by the γ 5 coupling are cancelled by the additional pion-nucleon coupling of the non-linear sigma model. The nucleon-nucleon potential thus obtained is the same as the Yukava potential except for strength at different separations between the two nucleons

  14. Exact solutions for oscillators with quadratic damping and mixed-parity nonlinearity

    International Nuclear Information System (INIS)

    Lai, S K; Chow, K W

    2012-01-01

    Exact vibration modes of a nonlinear oscillator, which contains both quadratic friction and a mixed-parity restoring force, are derived analytically. Two families of exact solutions are obtained in terms of rational expressions for classical Jacobi elliptic functions. The present solutions allow the investigation of the dynamical behaviour of the system in response to changes in physical parameters that concern nonlinearity. The physical significance of the signs (i.e. attractive or repulsive nature) of the linear, quadratic and cubic restoring forces is discussed. A qualitative analysis is also conducted to provide valuable physical insight into the nature of the system. (paper)

  15. Nonlinear dynamic behaviour of a rotor-foundation system coupled through passive magnetic bearings with magnetic anisotropy - Theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar F.

    2016-01-01

    In this work, the nonlinear dynamic behaviour of a vertical rigid rotor interacting with a flexible foundation by means of two passive magnetic bearings is quantified and evaluated. The quantification is based on theoretical and experimental investigation of the non-uniformity (anisotropy......) of the magnetic field and the weak nonlinearity of the magnetic forces. Through mathematical modelling the nonlinear equations of motion are established for describing the shaft and bearing housing lateral dynamics coupled via the nonlinear and non-uniform magnetic forces. The equations of motion are solved...

  16. Digital-Control-Based Approximation of Optimal Wave Disturbances Attenuation for Nonlinear Offshore Platforms

    Directory of Open Access Journals (Sweden)

    Xiao-Fang Zhong

    2017-12-01

    Full Text Available The irregular wave disturbance attenuation problem for jacket-type offshore platforms involving the nonlinear characteristics is studied. The main contribution is that a digital-control-based approximation of optimal wave disturbances attenuation controller (AOWDAC is proposed based on iteration control theory, which consists of a feedback item of offshore state, a feedforward item of wave force and a nonlinear compensated component with iterative sequences. More specifically, by discussing the discrete model of nonlinear offshore platform subject to wave forces generated from the Joint North Sea Wave Project (JONSWAP wave spectrum and linearized wave theory, the original wave disturbances attenuation problem is formulated as the nonlinear two-point-boundary-value (TPBV problem. By introducing two vector sequences of system states and nonlinear compensated item, the solution of introduced nonlinear TPBV problem is obtained. Then, a numerical algorithm is designed to realize the feasibility of AOWDAC based on the deviation of performance index between the adjacent iteration processes. Finally, applied the proposed AOWDAC to a jacket-type offshore platform in Bohai Bay, the vibration amplitudes of the displacement and the velocity, and the required energy consumption can be reduced significantly.

  17. Static aeroelastic analysis including geometric nonlinearities based on reduced order model

    Directory of Open Access Journals (Sweden)

    Changchuan Xie

    2017-04-01

    Full Text Available This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model (ROM. The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities; meanwhile, the non-planar effects of aerodynamics and follower force effect have been considered. ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method (FEM especially in aeroelastic solutions. The approach for structure modeling presented here is on the basis of combined modal/finite element (MFE method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis. Moreover, the non-planar aerodynamic force is computed by the non-planar vortex lattice method (VLM. Structure and aerodynamics can be coupled with the surface spline method. The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.

  18. Resonant driving of a nonlinear Hamiltonian system

    International Nuclear Information System (INIS)

    Palmisano, Carlo; Gervino, Gianpiero; Balma, Massimo; Devona, Dorina; Wimberger, Sandro

    2013-01-01

    As a proof of principle, we show how a classical nonlinear Hamiltonian system can be driven resonantly over reasonably long times by appropriately shaped pulses. To keep the parameter space reasonably small, we limit ourselves to a driving force which consists of periodic pulses additionally modulated by a sinusoidal function. The main observables are the average increase of kinetic energy and of the action variable (of the non-driven system) with time. Applications of our scheme aim for driving high frequencies of a nonlinear system with a fixed modulation signal.

  19. MD1405: Demonstration of forced dynamic aperture measurements at injection

    CERN Document Server

    Carlier, Felix Simon; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2017-01-01

    Accurate measurements of dynamic aperture become more important for the LHC as it advances into increasingly nonlinear regimes of operations, as well as for the High Luminosity LHC where machine nonlinearities will have a significantly larger impact. Direct dynamic aperture measurements at top energy in the LHC are challenging, and conventional single kick methods are not viable. Dynamic aperture measurements under forced oscillation of AC dipoles have been proposed as s possible alternative observable. A first demonstration of forced DA measurements at injections energy is presented.

  20. Research Paper: Effect of Custom-Molded Insole With New Technique on Pain and Function in Females With Flexible Flat Foot: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Fateme Bahramian

    2017-02-01

    Conclusion According to our findings, there was a significant difference in pain and function in patients with a flat foot through medial heel skive technique. Therefore, it seems that the insoles can be an effective prescription for subjects with a flat foot.

  1. Effect of Perturbations in Coriolis and Centrifugal Forces on the Nonlinear Stability of Equilibrium Point in Robe's Restricted Circular Three-Body Problem

    Directory of Open Access Journals (Sweden)

    P. P. Hallan

    2008-01-01

    Full Text Available The effect of perturbations in Coriolis and cetrifugal forces on the nonlinear stability of the equilibrium point of the Robe's (1977 restricted circular three-body problem has been studied when the density parameter K is zero. By applying Kolmogorov-Arnold-Moser (KAM theory, it has been found that the equilibrium point is stable for all mass ratios μ in the range of linear stability 8/9+(2/3((43/25ϵ1−(10/3ϵ<μ<1, where ϵ and ϵ1 are, respectively, the perturbations in Coriolis and centrifugal forces, except for five mass ratios μ1=0.93711086−1.12983217ϵ+1.50202694ϵ1, μ2 = 0.9672922−0.5542091ϵ+ 1.2443968ϵ1, μ3=0.9459503−0.70458206ϵ+ 1.28436549ϵ1, μ4=0.9660792−0.30152273ϵ + 1.11684064ϵ1, μ5=0.893981−2.37971679ϵ + 1.22385421ϵ1, where the theory is not applicable.

  2. Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking

    Science.gov (United States)

    Takahashi, Kota Z.; Gross, Michael T.; van Werkhoven, Herman; Piazza, Stephen J.; Sawicki, Gregory S.

    2016-07-01

    Previous studies of human locomotion indicate that foot and ankle structures can interact in complex ways. The structure of the foot defines the input and output lever arms that influences the force-generating capacity of the ankle plantar flexors during push-off. At the same time, deformation of the foot may dissipate some of the mechanical energy generated by the plantar flexors during push-off. We investigated this foot-ankle interplay during walking by adding stiffness to the foot through shoes and insoles, and characterized the resulting changes in in vivo soleus muscle-tendon mechanics using ultrasonography. Added stiffness decreased energy dissipation at the foot (p < 0.001) and increased the gear ratio (i.e., ratio of ground reaction force and plantar flexor muscle lever arms) (p < 0.001). Added foot stiffness also altered soleus muscle behaviour, leading to greater peak force (p < 0.001) and reduced fascicle shortening speed (p < 0.001). Despite this shift in force-velocity behaviour, the whole-body metabolic cost during walking increased with added foot stiffness (p < 0.001). This increased metabolic cost is likely due to the added force demand on the plantar flexors, as walking on a more rigid foot/shoe surface compromises the plantar flexors’ mechanical advantage.

  3. Theory of weakly nonlinear self-sustained detonations

    KAUST Repository

    Faria, Luiz; Kasimov, Aslan R.; Rosales, Rodolfo R.

    2015-01-01

    We propose a theory of weakly nonlinear multidimensional self-sustained detonations based on asymptotic analysis of the reactive compressible Navier-Stokes equations. We show that these equations can be reduced to a model consisting of a forced

  4. Nonlinear (Anharmonic Casimir Oscillator

    Directory of Open Access Journals (Sweden)

    Habibollah Razmi

    2011-01-01

    Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.

  5. Three-dimensional Force and Kinematic Interactions in V1 Skating at High Speeds.

    Science.gov (United States)

    Stöggl, Thomas; Holmberg, Hans-Christer

    2015-06-01

    To describe the detailed kinetics and kinematics associated with use of the V1 skating technique at high skiing speeds and to identify factors that predict performance. Fifteen elite male cross-country skiers performed an incremental roller-skiing speed test (Vpeak) on a treadmill using the V1 skating technique. Pole and plantar forces and whole-body kinematics were monitored at four submaximal speeds. The propulsive force of the "strong side" pole was greater than that of the "weak side" (P skating at high speeds. The faster skiers exhibit more symmetric leg motion on the "strong" and "weak" sides, as well as more synchronized poling. With respect to methods, the pressure insoles and three-dimensional kinematics in combination with the leg push-off model described here can easily be applied to all skating techniques, aiding in the evaluation of skiing techniques and comparison of effectiveness.

  6. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid

    2016-12-01

    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces. In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates. In the final part of the dissertation, we investigate the mechanical behavior of

  7. Nonlinear structure formation with the environmentally dependent dilaton

    International Nuclear Information System (INIS)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Shaw, Douglas J.; Li, Baojiu

    2011-01-01

    We have studied the nonlinear structure formation of the environmentally dependent dilaton model using N-body simulations. We find that the mechanism of suppressing the scalar fifth force in high-density regions works very well. Within the parameter space allowed by the solar-system tests, the dilaton model predicts small deviations of the matter power spectrum and the mass function from their ΛCDM counterparts. The importance of taking full account of the nonlinearity of the model is also emphasized.

  8. Nonlinear dissipative devices in structural vibration control: A review

    Science.gov (United States)

    Lu, Zheng; Wang, Zixin; Zhou, Ying; Lu, Xilin

    2018-06-01

    Structural vibration is a common phenomenon existing in various engineering fields such as machinery, aerospace, and civil engineering. It should be noted that the effective suppression of structural vibration is conducive to enhancing machine performance, prolonging the service life of devices, and promoting the safety and comfort of structures. Conventional linear energy dissipative devices (linear dampers) are largely restricted for wider application owing to their low performance under certain conditions, such as the detuning effect of tuned mass dampers subjected to nonstationary excitations and the excessively large forces generated in linear viscous dampers at high velocities. Recently, nonlinear energy dissipative devices (nonlinear dampers) with broadband response and high robustness are being increasingly used in practical engineering. At the present stage, nonlinear dampers can be classified into three groups, namely nonlinear stiffness dampers, nonlinear-stiffness nonlinear-damping dampers, and nonlinear damping dampers. Corresponding to each nonlinear group, three types of nonlinear dampers that are widely utilized in practical engineering are reviewed in this paper: the nonlinear energy sink (NES), particle impact damper (PID), and nonlinear viscous damper (NVD), respectively. The basic concepts, research status, engineering applications, and design approaches of these three types of nonlinear dampers are summarized. A comparison between their advantages and disadvantages in practical engineering applications is also conducted, to provide a reference source for practical applications and new research.

  9. Nonlinear analysis of a rotor-bearing system using describing functions

    Science.gov (United States)

    Maraini, Daniel; Nataraj, C.

    2018-04-01

    This paper presents a technique for modelling the nonlinear behavior of a rotor-bearing system with Hertzian contact, clearance, and rotating unbalance. The rotor-bearing system is separated into linear and nonlinear components, and the nonlinear bearing force is replaced with an equivalent describing function gain. The describing function captures the relationship between the amplitude of the fundamental input to the nonlinearity and the fundamental output. The frequency response is constructed for various values of the clearance parameter, and the results show the presence of a jump resonance in bearings with both clearance and preload. Nonlinear hardening type behavior is observed in the case with clearance and softening behavior is observed for the case with preload. Numerical integration is also carried out on the nonlinear equations of motion showing strong agreement with the approximate solution. This work could easily be extended to include additional nonlinearities that arise from defects, providing a powerful diagnostic tool.

  10. An estimation of impact of anthropogenic aerosols in atmosphere of Tirana on solar insolation. Part II: Modification of solar energy potential

    Energy Technology Data Exchange (ETDEWEB)

    Buzra, Urim, E-mail: rimibuzra@yahoo.com; Berberi, Pellumb; Mitrushi, Driada; Muda, Valbona [Department of Engineering Physics, FIMIF, PUT, Tirana (Albania); Halili, Daniela [Department of physics, FNS, AXHU, Elbasan (Albania); Berdufi, Irma [Institute of Nuclear Physics, INP, TU, Tirana (Albania)

    2016-03-25

    Change of irradiative properties of the atmosphere during clear days is an indicator, among others, of existence of atmospheric aerosols and can be used as an indicator for assessment both air pollution and local modifications of solar energy potentials. The main objective of this study is estimation of influence of anthropogenic aerosols on solar energy falling in a horizontal surface during a cloudless day. We have analyzed and quantified the effect of aerosols on reducing the amount of solar energy that falls on the horizontal ground surface in cloudless sky conditions, estimating temporal evolution, both in daily and hour scale, considering also, side effects caused by relative humidity of the air wind speed and geometric factor. As an indicator of concentration of aerosols in atmosphere, we agreed to use the attenuation of solar radiation after the last rainy day. All data were corrected by factors such as, variations of relative humidity, wind speed and daily change of incident angle of solar radiation. We studied the change of solar insolation in three sites with different traffic intensity, one in city of Shkodra and two in city of Tirana. Fifteen days after last rainy day, approximate time needed to achieve saturation, the insolation drops only 3.1% in the city of Shkodra, while in two sites in city of Tirana are 8.5 % and 18.4%. These data show that reduction of solar insolation is closely related with anthropogenic activity, mainly traffic around the site of the meteorological station. The day to day difference tends to decrease with increasing of number of days passed from the last rainy day, which is an evidence of a trend toward a dynamic equilibrium between decantation process of aerosols during the night and their generation during the day.

  11. Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems

    International Nuclear Information System (INIS)

    Mikhlin, Yu V; Perepelkin, N V; Klimenko, A A; Harutyunyan, E

    2012-01-01

    Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.

  12. Chaotic synchronization of two complex nonlinear oscillators

    International Nuclear Information System (INIS)

    Mahmoud, Gamal M.; Mahmoud, Emad E.; Farghaly, Ahmed A.; Aly, Shaban A.

    2009-01-01

    Synchronization is an important phenomenon commonly observed in nature. It is also often artificially induced because it is desirable for a variety of applications in physics, applied sciences and engineering. In a recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors and chaos control in periodically forced complex Duffing's oscillators. Physica A 2001;292:193-206], a system of periodically forced complex Duffing's oscillators was introduced and shown to display chaotic behavior and possess strange attractors. Such complex oscillators appear in many problems of physics and engineering, as, for example, nonlinear optics, deep-water wave theory, plasma physics and bimolecular dynamics. Their connection to solutions of the nonlinear Schroedinger equation has also been pointed out. In this paper, we study the remarkable phenomenon of chaotic synchronization on these oscillator systems, using active control and global synchronization techniques. We derive analytical expressions for control functions and show that the dynamics of error evolution is globally stable, by constructing appropriate Lyapunov functions. This means that, for a relatively large set initial conditions, the differences between the drive and response systems vanish exponentially and synchronization is achieved. Numerical results are obtained to test the validity of the analytical expressions and illustrate the efficiency of these techniques for inducing chaos synchronization in our nonlinear oscillators.

  13. Evolution of wave turbulence under "gusty" forcing.

    Science.gov (United States)

    Annenkov, S Y; Shrira, V I

    2011-09-09

    We consider nonlinear evolution of a random wave field under gusty forcing, fluctuating around a constant mean. Here the classical wave turbulence theory that assumes a proximity to stationarity is not applicable. We show by direct numerical simulation that the self-similarity of wave field evolution survives under fluctuating forcing. The wave field statistical characteristics averaged over fluctuations of forcing evolve as if there were a certain constant "effective wind." The results justify the use of the kinetic equations with forcing averaged over gusts as a good first approximation.

  14. Wideband quin-stable energy harvesting via combined nonlinearity

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2017-04-01

    Full Text Available In this work, we propose a wideband quintuple-well potential piezoelectric-based vibration energy harvester using a combined nonlinearity: the magnetic nonlinearity induced by magnetic force and the piecewise-linearity produced by mechanical impact. With extra stable states compared to other multi-stable harvesters, the quin-stable harvester can distribute its potential energy more uniformly, which provides shallower potential wells and results in lower excitation threshold for interwell motion. The mathematical model of this quin-stable harvester is derived and its equivalent piecewise-nonlinear restoring force is measured in the experiment and identified as piecewise polynomials. Numerical simulations and experimental verifications are performed in different levels of sinusoid excitation ranging from 1 to 25 Hz. The results demonstrate that, with lower potential barriers compared with tri-stable counterpart, the quin-stable arrangement can escape potential wells more easily for doing high-energy interwell motion over a wider band of frequencies. Moreover, by utilizing the mechanical stoppers, this harvester can produce significant output voltage under small tip deflections, which results in a high power density and is especially suitable for a compact MEMS approach.

  15. Parametric model of servo-hydraulic actuator coupled with a nonlinear system: Experimental validation

    Science.gov (United States)

    Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.

    2018-05-01

    Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.

  16. Experiments in nonlinear dynamics using control-based continuation: Tracking stable and unstable response curves

    DEFF Research Database (Denmark)

    Bureau, Emil; Schilder, Frank; Santos, Ilmar

    2014-01-01

    We show how to implement control-based continuation in a nonlinear experiment using existing and freely available software. We demonstrate that it is possible to track the complete frequency response, including the unstable branches, for a harmonically forced impact oscillator.......We show how to implement control-based continuation in a nonlinear experiment using existing and freely available software. We demonstrate that it is possible to track the complete frequency response, including the unstable branches, for a harmonically forced impact oscillator....

  17. Genuine two-fluid computations of laser-plasma interaction for generation of nonlinear force driven plasma blocks

    International Nuclear Information System (INIS)

    Nafari, F.; Yazdani, E.; Malekynia, B.; Ghoranneviss, M.

    2010-01-01

    Complete text of publication follows. Anomalous interaction of picosecond laser pulses of terawatt to petawatt power is due to suppression of relativistic self-focusing if prepulses are cut-off by a contrast ratio higher than 10 8 . Resulting non-linear ponderomotive forces induced at the skin-layer interaction of a short laser-pulse with a proper preplasma layer produced by the laser prepulse in front of a solid target accelerate two thin (a few μm) quasi-neutral plasma blocks, propagating in forward and backward directions, backward moving against the laser light (ablation) and forward moving into the target. This compressed block produces an ion current density of above 10 11 A/cm 2 . This may support the requirement to produce a fast ignition deuterium tritium fusion at densities not much higher than the solid state by a single shot pw-ps laser pulse. With studying skin-layer subrelativistic interaction of a short (≤ 1 ps) laser pulse with an initial Rayleigh density profile in genuine two-fluid hydrodynamic model, time and spatial distributions of ion block temperature are presented.

  18. Nonlinear analysis of renal autoregulation in rats using principal dynamic modes

    DEFF Research Database (Denmark)

    Marmarelis, V Z; Chon, K H; Holstein-Rathlou, N H

    1999-01-01

    This article presents results of the use of a novel methodology employing principal dynamic modes (PDM) for modeling the nonlinear dynamics of renal autoregulation in rats. The analyzed experimental data are broadband (0-0.5 Hz) blood pressure-flow data generated by pseudorandom forcing and colle......This article presents results of the use of a novel methodology employing principal dynamic modes (PDM) for modeling the nonlinear dynamics of renal autoregulation in rats. The analyzed experimental data are broadband (0-0.5 Hz) blood pressure-flow data generated by pseudorandom forcing...... and collected in normotensive and hypertensive rats for two levels of pressure forcing (as measured by the standard deviation of the pressure fluctuation). The PDMs are computed from first-order and second-order kernel estimates obtained from the data via the Laguerre expansion technique. The results...

  19. Texture-induced modulations of friction force: the fingerprint effect.

    Science.gov (United States)

    Wandersman, E; Candelier, R; Debrégeas, G; Prevost, A

    2011-10-14

    Modulations of the friction force in dry solid friction are usually attributed to macroscopic stick-slip instabilities. Here we show that a distinct, quasistatic mechanism can also lead to nearly periodic force oscillations during sliding contact between an elastomer patterned with parallel grooves, and abraded glass slides. The dominant oscillation frequency is set by the ratio between the sliding velocity and the grooves period. A model is derived which quantitatively captures the dependence of the force modulations amplitude with the normal load, the grooves period, and the slides roughness characteristics. The model's main ingredient is the nonlinearity of the friction law. Since such nonlinearity is ubiquitous for soft solids, this "fingerprint effect" should be relevant to a large class of frictional configurations and have important consequences in human digital touch.

  20. Inference of a Nonlinear Stochastic Model of the Cardiorespiratory Interaction

    Science.gov (United States)

    Smelyanskiy, V. N.; Luchinsky, D. G.; Stefanovska, A.; McClintock, P. V.

    2005-03-01

    We reconstruct a nonlinear stochastic model of the cardiorespiratory interaction in terms of a set of polynomial basis functions representing the nonlinear force governing system oscillations. The strength and direction of coupling and noise intensity are simultaneously inferred from a univariate blood pressure signal. Our new inference technique does not require extensive global optimization, and it is applicable to a wide range of complex dynamical systems subject to noise.

  1. Adaptive, Small-Rotation-Based, Corotational Technique for Analysis of 2D Nonlinear Elastic Frames

    Directory of Open Access Journals (Sweden)

    Jaroon Rungamornrat

    2014-01-01

    Full Text Available This paper presents an efficient and accurate numerical technique for analysis of two-dimensional frames accounted for both geometric nonlinearity and nonlinear elastic material behavior. An adaptive remeshing scheme is utilized to optimally discretize a structure into a set of elements where the total displacement can be decomposed into the rigid body movement and one possessing small rotations. This, therefore, allows the force-deformation relationship for the latter part to be established based on small-rotation-based kinematics. Nonlinear elastic material model is integrated into such relation via the prescribed nonlinear moment-curvature relationship. The global force-displacement relation for each element can be derived subsequently using corotational formulations. A final system of nonlinear algebraic equations along with its associated gradient matrix for the whole structure is obtained by a standard assembly procedure and then solved numerically by Newton-Raphson algorithm. A selected set of results is then reported to demonstrate and discuss the computational performance including the accuracy and convergence of the proposed technique.

  2. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2016-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries

  3. Nonlinear analysis for dual-frequency concurrent energy harvesting

    Science.gov (United States)

    Yan, Zhimiao; Lei, Hong; Tan, Ting; Sun, Weipeng; Huang, Wenhu

    2018-05-01

    The dual-frequency responses of the hybrid energy harvester undergoing the base excitation and galloping were analyzed numerically. In this work, an approximate dual-frequency analytical method is proposed for the nonlinear analysis of such a system. To obtain the approximate analytical solutions of the full coupled distributed-parameter model, the forcing interactions is first neglected. Then, the electromechanical decoupled governing equation is developed using the equivalent structure method. The hybrid mechanical response is finally separated to be the self-excited and forced responses for deriving the analytical solutions, which are confirmed by the numerical simulations of the full coupled model. The forced response has great impacts on the self-excited response. The boundary of Hopf bifurcation is analytically determined by the onset wind speed to galloping, which is linearly increased by the electrical damping. Quenching phenomenon appears when the increasing base excitation suppresses the galloping. The theoretical quenching boundary depends on the forced mode velocity. The quenching region increases with the base acceleration and electrical damping, but decreases with the wind speed. Superior to the base-excitation-alone case, the existence of the aerodynamic force protects the hybrid energy harvester at resonance from damages caused by the excessive large displacement. From the view of the harvested power, the hybrid system surpasses the base-excitation-alone system or the galloping-alone system. This study advances our knowledge on intrinsic nonlinear dynamics of the dual-frequency energy harvesting system by taking advantage of the analytical solutions.

  4. A real time study of the human equilibrium using an instrumented insole with 3 pressure sensors.

    Science.gov (United States)

    Abou Ghaida, Hussein; Mottet, Serge; Goujon, Jean-Marc

    2014-01-01

    The present work deals with the study of the human equilibrium using an ambulatory e-health system. One of the point on which we focus is the fall risk, when losing equilibrium control. A specific postural learning model is presented, and an ambulatory instrumented insole is developed using 3 pressures sensors per foot, in order to determine the real-time displacement and the velocity of the centre of pressure (CoP). The increase of these parameters signals a loss of physiological sensation, usually of vision or of the inner ear. The results are compared to those obtained from classical more complex systems.

  5. Dynamic modeling of geometrically nonlinear electrostatically actuated microbeams (Corotational Finite Element formulation and analysis)

    Energy Technology Data Exchange (ETDEWEB)

    Borhan, H; Ahmadian, M T [Sharif University of Technology, Center of Excellence for Design, Robotics and Automation, School of Mechanical Engineering, PO Box 11365-9567, Tehran (Iran, Islamic Republic of)

    2006-04-01

    In this paper, a complete nonlinear finite element model for coupled-domain MEMS devices with electrostatic actuation and squeeze film effect is developed. For this purpose, a corotational finite element formulation for the dynamic analysis of planer Euler beams is employed. In this method, the internal nodal forces due to deformation and intrinsic residual stresses, the inertial nodal forces, and the damping effect of squeezed air film are systematically derived by consistent linearization of the fully geometrically nonlinear beam theory using d'Alamber and virtual work principles. An incremental-iterative method based on the Newmark direct integration procedure and the Newton-Raphson algorithm is used to solve the nonlinear dynamic equilibrium equations. Numerical examples are presented and compared with experimental findings which indicate properly good agreement.

  6. Dynamic modeling of moment wheel assemblies with nonlinear rolling bearing supports

    Science.gov (United States)

    Wang, Hong; Han, Qinkai; Luo, Ruizhi; Qing, Tao

    2017-10-01

    Moment wheel assemblies (MWA) have been widely used in spacecraft attitude control and large angle slewing maneuvers over the years. Understanding and controlling vibration of MWAs is a crucial factor to achieving the desired level of payload performance. Dynamic modeling of a MWA with nonlinear rolling bearing supports is conducted. An improved load distribution analysis is proposed to more accurately obtain the contact deformations and angles between the rolling balls and raceways. Then, the bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. The effects of preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication could all be reflected in the nonlinear bearing forces. Considering the mass imbalances of the flywheel, flexibility of supporting structures and rolling bearing nonlinearity, the dynamic model of a typical MWA is established based upon the energy theorem. Dynamic tests are conducted to verify the nonlinear dynamic model. The influences of flywheel mass eccentricity and inner/outer waviness amplitudes on the dynamic responses are discussed in detail. The obtained results would be useful for the design and vibration control of the MWA system.

  7. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  8. Nonlinear characterization of a single-axis acoustic levitator.

    Science.gov (United States)

    Andrade, Marco A B; Ramos, Tiago S; Okina, Fábio T A; Adamowski, Julio C

    2014-04-01

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  9. Nonlinear characterization of a single-axis acoustic levitator

    International Nuclear Information System (INIS)

    Andrade, Marco A. B.; Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C.

    2014-01-01

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed

  10. Nonlinear characterization of a single-axis acoustic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)

    2014-04-15

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  11. Exercise therapy and custom-made insoles are effective in patients with excessive pronation and chronic foot pain

    DEFF Research Database (Denmark)

    Andreasen, Jane; Mølgaard, Carsten; Christensen, Marianne

    2013-01-01

    Background: Excessive foot pronation is a causal mechanisms described in relation to injuries of the lower extremities. Evidence to support an effective treatment is insufficient. Objective: To investigate the effect of exercise and custom-made insoles to patients with excessive pronation...... and posted. Pain was measured during walking, resting and running. Static and dynamic foot postures were measured as calcaneal angle, navicular drift, drop and height. Results: The average duration of foot pain was 7.3 years. There was a significant pain reduction during walking within all groups at 4 and 12...

  12. Improved algorithm for solving nonlinear parabolized stability equations

    International Nuclear Information System (INIS)

    Zhao Lei; Zhang Cun-bo; Liu Jian-xin; Luo Ji-sheng

    2016-01-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. (paper)

  13. Gait Phases Recognition from Accelerations and Ground Reaction Forces: Application of Neural Networks

    Directory of Open Access Journals (Sweden)

    S. Rafajlović

    2009-06-01

    Full Text Available The goal of this study was to test the applicability of accelerometer as the sensor for assessment of the walking. We present here the comparison of gait phases detected from the data recorded by force sensing resistors mounted in the shoe insoles, non-processed acceleration and processed acceleration perpendicular to the direction of the foot. The gait phases in all three cases were detected by means of a neural network. The output from the neural network was the gait phase, while the inputs were data from the sensors. The results show that the errors were in the ranges: 30 ms (2.7% – force sensors; 150 ms (13.6% – nonprocessed acceleration, and 120 ms (11% – processed acceleration data. This result suggests that it is possible to use the accelerometer as the gait phase detector, however, with the knowledge that the gait phases are time shifted for about 100 ms with respect the neural network predicted times.

  14. Nonlinear aspects of quantum plasma physics

    International Nuclear Information System (INIS)

    Shukla, Padma K; Eliasson, B

    2010-01-01

    Dense quantum plasmas are ubiquitous in planetary interiors and in compact astrophysical objects (e.g., the interior of white dwarf stars, in magnetars, etc.), in semiconductors and micromechanical systems, as well as in the next-generation intense laser-solid density plasma interaction experiments and in quantum X-ray free-electron lasers. In contrast to classical plasmas, quantum plasmas have extremely high plasma number densities and low temperatures. Quantum plasmas are composed of electrons, positrons and holes, which are degenerate. Positrons (holes) have the same (slightly different) mass as electrons, but opposite charge. The degenerate charged particles (electrons, positrons, and holes) obey the Fermi-Dirac statistics. In quantum plasmas, there are new forces associated with (i) quantum statistical electron and positron pressures, (ii) electron and positron tunneling through the Bohm potential, and (iii) electron and positron angular momentum spin. Inclusion of these quantum forces allows the existence of very high-frequency dispersive electrostatic and electromagnetic waves (e.g., in the hard X-ray and gamma-ray regimes) with extremely short wavelengths. In this review paper, we present theoretical backgrounds for some important nonlinear aspects of wave-wave and wave-electron interactions in dense quantum plasmas. Specifically, we focus on nonlinear electrostatic electron and ion plasma waves, novel aspects of three-dimensional quantum electron fluid turbulence, as well as nonlinearly coupled intense electromagnetic waves and localized plasma wave structures. Also discussed are the phase-space kinetic structures and mechanisms that can generate quasistationary magnetic fields in dense quantum plasmas. The influence of the external magnetic field and the electron angular momentum spin on the electromagnetic wave dynamics is discussed. Finally, future perspectives of the nonlinear quantum plasma physics are highlighted. (reviews of topical problems)

  15. Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet

    Science.gov (United States)

    Khan, Mair; Malik, M. Y.; Salahuddin, T.; Hussian, Arif.

    2018-03-01

    The present analysis is devoted to explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet. Variable viscosity is assumed to vary as a linear function of temperature. The basic mathematical modelled problem i.e. system of PDE's is converted nonlinear into ODE's via applying suitable transformations. Computational solutions of the problem is also achieved via efficient numerical technique shooting. Characteristics of controlling parameters i.e. stretching index, inclined angle, Hartmann number, Weissenberg number, variable viscosity parameter, mixed convention parameter, Brownian motion parameter, Prandtl number, Lewis number, thermophoresis parameter and chemical reactive species on concentration, temperature and velocity gradient. Additionally, friction factor coefficient, Nusselt number and Sherwood number are describe with the help of graphics as well as tables verses flow controlling parameters.

  16. LINEAR AND NON-LINEAR ANALYSES OF CABLE-STAYED STEEL FRAME SUBJECTED TO SEISMIC ACTIONS

    Directory of Open Access Journals (Sweden)

    Marko Đuran

    2017-01-01

    Full Text Available In this study, linear and non-linear dynamic analyses of a cable-stayed steel frame subjected to seismic actions are performed. The analyzed cable-stayed frame is the main supporting structure of a wide-span sports hall. Since the complex dynamic behavior of cable-stayed structures results in significant geometric nonlinearity, a nonlinear time history analysis is conducted. As a reference, an analysis using the European standard approach, the so-called linear modal response spectrum method, is also performed. The analyses are conducted for different seismic actions considering dependence on the response spectrums for various ground types and the corresponding artificially generated accelerograms. Despite fundamental differences between the two analyses, results indicate that the modal response spectrum analysis is surprisingly consistent with the internal forces and bending moment distributions of the nonlinear time history analysis. However, significantly smaller values of bending moments, internal forces, and displacements are obtained with the response spectrum analysis.

  17. Self-induced dipole force and filamentation instability of a matter wave

    DEFF Research Database (Denmark)

    Saffman, M.

    1998-01-01

    The interaction of copropagating electromagnetic and matter waves is described with a set of coupled higher-order nonlinear Schrodinger equations. Optical self-focusing modulates an initially planar wave leading to the generation of dipole forces on the atoms. Atomic channeling due to the dipole...... forces leads, in the nonlinear regime, to filamentation of the atomic beam. Instability growth rates are calculated for atomic beams with both low and high phase space densities. In one transverse dimension an exact solution is found that describes a coupled optical and atomic soliton....

  18. Homotopy analysis approach for nonlinear piezoelectric vibration energy harvesting

    Directory of Open Access Journals (Sweden)

    Shahlaei-Far Shahram

    2016-01-01

    Full Text Available Piezoelectric energy harvesting from a vertical geometrically nonlinear cantilever beam with a tip mass subject to transverse harmonic base excitations is analyzed. One piezoelectric patch is placed on the slender beam to convert the tension and compression into electrical voltage. Applying the homotopy analysis method to the coupled electromechanical governing equations, we derive analytical solutions for the horizontal displacement of the tip mass and consequently the output voltage from the piezoelectric patch. Analytical approximation for the frequency response and phase of the geometrically forced nonlinear vibration system are also obtained. The research aims at a rigorous analytical perspective on a nonlinear problem which has previously been solely investigated by numerical and experimental methods.

  19. Nonlinear acceleration of SN transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fichtl, Erin D [Los Alamos National Laboratory; Warsa, James S [Los Alamos National Laboratory; Calef, Matthew T [Los Alamos National Laboratory

    2010-12-20

    The use of nonlinear iterative methods, Jacobian-Free Newton-Krylov (JFNK) in particular, for solving eigenvalue problems in transport applications has recently become an active subject of research. While JFNK has been shown to be effective for k-eigenvalue problems, there are a number of input parameters that impact computational efficiency, making it difficult to implement efficiently in a production code using a single set of default parameters. We show that different selections for the forcing parameter in particular can lead to large variations in the amount of computational work for a given problem. In contrast, we present a nonlinear subspace method that sits outside and effectively accelerates nonlinear iterations of a given form and requires only a single input parameter, the subspace size. It is shown to consistently and significantly reduce the amount of computational work when applied to fixed-point iteration, and this combination of methods is shown to be more efficient than JFNK for our application.

  20. Nonlinear dynamic analysis of high energy line pipe whip

    International Nuclear Information System (INIS)

    Hsu, L.C.; Kuo, A.Y.; Tang, H.T.

    1983-01-01

    To facilitate potential cost savings in pipe whip protection design, TVA conducted a 1'' high pressure line break test to investigate the pipe whip behavior. The test results are available to EPRI as a data base for a generic study on nonlinear dynamic behavior of piping systems and pipe whip phenomena. This paper describes a nonlinear dynamic analysis of the TVA high energy line tests using ABAQUS-EPGEN code. The analysis considers the effects of large deformation and high strain rate on resisting moment and energy absorption capability of the analyzed piping system. The numerical results of impact forces, impact velocities, and reaction forces at pipe supports are compared to the TVA test data. The pipe whip impact time and forces have also been calculated per the current NRC guidelines and compared. The calculated pipe support reaction forces prior to impact have been found to be in good agreement with the TVA test data except for some peak values at the very beginning of the pipe break. These peaks are believed to be due to stress wave propagation which cannot be addressed by the ABAQUS code. Both the effects of elbow crushing and strain rate have been approximately simulated. The results are found to be important on pipe whip impact evaluation. (orig.)

  1. On the asymptotic stability of nonlinear mechanical switched systems

    Science.gov (United States)

    Platonov, A. V.

    2018-05-01

    Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.

  2. Inheritance of Cell-Cycle Duration in the Presence of Periodic Forcing

    Science.gov (United States)

    Mosheiff, Noga; Martins, Bruno M. C.; Pearl-Mizrahi, Sivan; Grünberger, Alexander; Helfrich, Stefan; Mihalcescu, Irina; Kohlheyer, Dietrich; Locke, James C. W.; Glass, Leon; Balaban, Nathalie Q.

    2018-04-01

    Periodic forcing of nonlinear oscillators leads to a large number of dynamic behaviors. The coupling of the cell cycle to the circadian clock provides a biological realization of such forcing. A previous model of forcing leads to nontrivial relations between correlations along cell lineages. Here, we present a simplified two-dimensional nonlinear map for the periodic forcing of the cell cycle. Using high-throughput single-cell microscopy, we have studied the correlations between cell-cycle duration in discrete lineages of several different organisms, including those with known coupling to a circadian clock and those without known coupling to a circadian clock. The model reproduces the paradoxical correlations and predicts new features that can be compared with the experimental data. By fitting the model to the data, we extract the important parameters that govern the dynamics. Interestingly, the model reproduces bimodal distributions for cell-cycle duration, as well as the gating of cell division by the phase of the clock, without having been explicitly fed into the model. In addition, the model predicts that circadian coupling may increase cell-to-cell variability in a clonal population of cells. In agreement with this prediction, deletion of the circadian clock reduces variability. Our results show that simple correlations can identify systems under periodic forcing and that studies of nonlinear coupling of biological oscillators provide insight into basic cellular processes of growth.

  3. An enhanced nonlinear damping approach accounting for system constraints in active mass dampers

    Science.gov (United States)

    Venanzi, Ilaria; Ierimonti, Laura; Ubertini, Filippo

    2015-11-01

    Active mass dampers are a viable solution for mitigating wind-induced vibrations in high-rise buildings and improve occupants' comfort. Such devices suffer particularly when they reach force saturation of the actuators and maximum extension of their stroke, which may occur in case of severe loading conditions (e.g. wind gust and earthquake). Exceeding actuators' physical limits can impair the control performance of the system or even lead to devices damage, with consequent need for repair or substitution of part of the control system. Controllers for active mass dampers should account for their technological limits. Prior work of the authors was devoted to stroke issues and led to the definition of a nonlinear damping approach, very easy to implement in practice. It consisted of a modified skyhook algorithm complemented with a nonlinear braking force to reverse the direction of the mass before reaching the stroke limit. This paper presents an enhanced version of this approach, also accounting for force saturation of the actuator and keeping the simplicity of implementation. This is achieved by modulating the control force by a nonlinear smooth function depending on the ratio between actuator's force and saturation limit. Results of a numerical investigation show that the proposed approach provides similar results to the method of the State Dependent Riccati Equation, a well-established technique for designing optimal controllers for constrained systems, yet very difficult to apply in practice.

  4. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

    DEFF Research Database (Denmark)

    Neumeyer, Stefan; Sorokin, Vladislav; Thomsen, Jon Juel

    2016-01-01

    We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing–Mathieu equation with appended quadratic nonlinearity is considered as the model system......, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic...... nonlinearities may generate additional amplitude–frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi...

  5. Dynamic nonlinear elasticity in geo materials

    International Nuclear Information System (INIS)

    Ostrovsky, L.A.; Johnson, P.A.

    2001-01-01

    The nonlinear elastic behaviour of earth materials is an extremely rich topic, one that has broad implications to earth and materials sciences, including strong ground motion, rock physics, nondestructive evaluation and materials science. The mechanical properties of rock appear to place it in a broader class of materials, it can be named the Structural nonlinear elasticity class (also Mesoscopic/nano scale elasticity, or MS/NSE class). These terms are in contrast to materials that display classical, Atomic Elasticity, such as most fluids and monocrystalline solids. The difference between these two categories of materials is both in intensity and origin of their nonlinear response. The nonlinearity of atomic elastic materials is due to the atomic/molecular lattice anharmonicity. The latter is relatively small because the intermolecular forces are extremely strong. In contrast, the materials considered below contain small soft features that it is called the bond system (cracks, grain contacts, dislocations, etc.) within a hard matrix and relaxation (slow dynamical effects) are characteristic, non of which appear in atomic elastic materials. The research begins with a brief historical background from nonlinear acoustics to the recent developments in rock nonlinearity. This is followed by an overview of some representative laboratory measurements which serve as primary indicators of nonlinear behaviour, followed by theoretical development, and finally, mention a variety of observations of nonlinearity under field conditions and applications to nondestructive testing of materials. The goal is not to survey all papers published in the are but to demonstrate some experimental and theoretical results and ideas that will the reader to become oriented in this broad and rapidly growing area bridging macro-, meso- and microscale (nano scale) phenomena in physics, materials science, and geophysics

  6. Nonlinear Disturbance Observer Based Robust Tracking Control of Pneumatic Muscle

    Directory of Open Access Journals (Sweden)

    Youssif Mohamed Toum Elobaid

    2014-01-01

    Full Text Available Presently pneumatic muscles (PMs are used in various applications due to their simple construction, lightweight, and high force-to-weight ratio. However, pneumatic muscles are facing various problems due to their nonlinear characteristics and various uncertainties in real applications. To cope with the uncertainties and strong nonlinearity of a PM model, a nonlinear disturbance observer (NDO is designed to estimate the lumped disturbance. Based on the disturbance observer, the tracking control of PM is studied. Stability analysis based on Lyapunov method with respect to our proposed control law is discussed. The simulation results show the validity, effectiveness, and enhancing robustness of the proposed methods.

  7. A nonlinear analysis of the EHF booster

    International Nuclear Information System (INIS)

    Colton, E.P.; Shi, D.

    1987-01-01

    We have analyzed particle motion at 1.2 GeV with assumption of nonlinearities arising from non-linear space charge forces and from the lattice sextupoles which are tuned to cancel the machine chromaticity. In the first case the motion is as expected and there are no problems as long as the x and y betatron tunes are separated by an integer or more. In the second case the motion is stable so long as the betatron amplitudes do not exceed values corresponding to beam normalized emittance of 100 mm-mr; when this occurs the effects of fifth-order betatron resonances are observed. 3 refs

  8. Localized excitations in a nonlinearly coupled magnetic drift wave-zonal flow system

    International Nuclear Information System (INIS)

    Shukla, Nitin; Shukla, P.K.

    2010-01-01

    We consider the amplitude modulation of the magnetic drift wave (MDW) by zonal flows (ZFs) in a nonuniform magnetoplasma. For this purpose, we use the two-fluid model to derive a nonlinear Schroedinger equation for the amplitude modulated MDWs in the presence of the ZF potential, and an evolution equation for the ZF potential which is reinforced by the nonlinear Lorentz force of the MDWs. Our nonlinearly coupled MDW-ZFs system of equations admits stationary solutions in the form of a localized MDW envelope and a shock-like ZF potential profile.

  9. Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration?

    KAUST Repository

    Gadelha, H.

    2010-05-12

    Throughout biology, cells and organisms use flagella and cilia to propel fluid and achieve motility. The beating of these organelles, and the corresponding ability to sense, respond to and modulate this beat is central to many processes in health and disease. While the mechanics of flagellum-fluid interaction has been the subject of extensive mathematical studies, these models have been restricted to being geometrically linear or weakly nonlinear, despite the high curvatures observed physiologically. We study the effect of geometrical nonlinearity, focusing on the spermatozoon flagellum. For a wide range of physiologically relevant parameters, the nonlinear model predicts that flagellar compression by the internal forces initiates an effective buckling behaviour, leading to a symmetry-breaking bifurcation that causes profound and complicated changes in the waveform and swimming trajectory, as well as the breakdown of the linear theory. The emergent waveform also induces curved swimming in an otherwise symmetric system, with the swimming trajectory being sensitive to head shape-no signalling or asymmetric forces are required. We conclude that nonlinear models are essential in understanding the flagellar waveform in migratory human sperm; these models will also be invaluable in understanding motile flagella and cilia in other systems.

  10. MODELING MAGNETIC FIELD STRUCTURE OF A SOLAR ACTIVE REGION CORONA USING NONLINEAR FORCE-FREE FIELDS IN SPHERICAL GEOMETRY

    International Nuclear Information System (INIS)

    Guo, Y.; Ding, M. D.; Liu, Y.; Sun, X. D.; DeRosa, M. L.; Wiegelmann, T.

    2012-01-01

    We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry using an analytical solution from Low and Lou. Several tests are run, ranging from idealized cases where exact vector field data are provided on all boundaries, to cases where noisy vector data are provided on only the lower boundary (approximating the solar problem). Analytical tests also show that the NLFFF code in the spherical geometry performs better than that in the Cartesian one when the field of view of the bottom boundary is large, say, 20° × 20°. Additionally, we apply the NLFFF model to an active region observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) both before and after an M8.7 flare. For each observation time, we initialize the models using potential field source surface (PFSS) extrapolations based on either a synoptic chart or a flux-dispersal model, and compare the resulting NLFFF models. The results show that NLFFF extrapolations using the flux-dispersal model as the boundary condition have slightly lower, therefore better, force-free, and divergence-free metrics, and contain larger free magnetic energy. By comparing the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the Atmospheric Imaging Assembly on board SDO, we find that the NLFFF performs better than the PFSS not only for the core field of the flare productive region, but also for large EUV loops higher than 50 Mm.

  11. Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams.

    Science.gov (United States)

    Camarena, Francisco; Adrián-Martínez, Silvia; Jiménez, Noé; Sánchez-Morcillo, Víctor

    2013-08-01

    The phenomenon of the displacement of the position along the axis of the pressure, intensity, and radiation force maxima of focused acoustic beams under increasing driving voltages (nonlinear focal shift) is studied for the case of a moderately focused beam. The theoretical and experimental results show the existence of this shift along the axis when the initial pressure in the transducer increases until the acoustic field reaches the fully developed nonlinear regime of propagation. Experimental data show that at high amplitudes and for moderate focusing, the position of the on-axis pressure maximum and radiation force maximum can surpass the geometrical focal length. On the contrary, the on-axis pressure minimum approaches the transducer under increasing driving voltages, increasing the distance between the positive and negative peak pressure in the beam. These results are in agreement with numerical KZK model predictions and the existed data of other authors and can be explained according to the effect of self-refraction characteristic of the nonlinear regime of propagation.

  12. Nonlinear vibration analysis of a rotor supported by magnetic bearings using homotopy perturbation method

    Directory of Open Access Journals (Sweden)

    Aboozar Heydari

    2017-09-01

    Full Text Available In this paper, the effects of nonlinear forces due to the electromagnetic field of bearing and the unbalancing force on nonlinear vibration behavior of a rotor is investigated. The rotor is modeled as a rigid body that is supported by two magnetic bearings with eight-polar structures. The governing dynamics equations of the system that are coupled nonlinear second order ordinary differential equations (ODEs are derived, and for solving these equations, the homotopy perturbation method (HPM is used. By applying HPM, the possibility of presenting a harmonic semi-analytical solution, is provided. In fact, with equality the coefficient of auxiliary parameter (p, the system of coupled nonlinear second order and non-homogenous differential equations are obtained so that consists of unbalancing effects. By considering some initial condition for displacement and velocity in the horizontal and vertical directions, free vibration analysis is done and next, the forced vibration analysis under the effect of harmonic forces also is investigated. Likewise, various parameters on the vibration behavior of rotor are studied. Changes in amplitude and response phase per excitation frequency are investigated. Results show that by increasing excitation frequency, the motion amplitude is also increases and by passing the critical speed, it decreases. Also it shows that the magnetic bearing system performance is in stable maintenance of rotor. The parameters affecting on vibration behavior, has been studied and by comparison the results with the other references, which have a good precision up to 2nd order of embedding parameter, it implies the accuracy of this method in current research.

  13. Modeling and boundary force control of microcantilevers utilized in atomic force microscopy for cellular imaging and characterization

    Science.gov (United States)

    Eslami, Sohrab

    This dissertation undertakes the theoretical and experimental developments microcantilevers utilized in Atomic Force Microscopy (AFM) with applications to cellular imaging and characterization. The capability of revealing the inhomogeneties or interior of ultra-small materials has been of most interest to many researchers. However, the fundamental concept of signal and image formation remains unexplored and not fully understood. For his, a semi-empirical nonlinear force model is proposed to show that virtual frequency generation, regarded as the simplest synthesized subsurface probe, occurs optimally when the force is tuned to the van der Waals form. This is the first-time observation of a novel theoretical dynamic multi-frequency force microscopy that has not been already reported. Owing to the broad applications of microcantilevers in the nanoscale imaging and microscopic techniques, there is an essential feeling to study and propose a comprehensive model of such systems. Therefore, in the theoretical part of this dissertation, a distributed-parameters representation modeling of the microcantilever along with a general interaction force comprising of two attractive and repulsive components with general amplitude and power terms is studied. This model is investigated in a general 2D Cartesian coordinate to consider the motions of the probe with a tip mass. There is an excitation at the microcantilever's base such that the end of the beam is subject to the proposed general force. These forces are very sensitive to the amplitude and power terms of these parts; on the other hand, atomic intermolecular force is a function of the distance such that this distance itself is also a function of the interaction force that will result in a nonlinear implicit equation. From a parametric study in the probe-sample excitation, it is shown that the predicted behavior of the generated difference-frequency oscillation amplitude agrees well with experimental measurements. Following

  14. Nonlinear model of a rotating hub-beams structure: Equations of motion

    Science.gov (United States)

    Warminski, Jerzy

    2018-01-01

    Dynamics of a rotating structure composed of a rigid hub and flexible beams is presented in the paper. A nonlinear model of a beam takes into account bending, extension and nonlinear curvature. The influence of geometric nonlinearity and nonconstant angular velocity on dynamics of the rotating structure is presented. The exact equations of motion and associated boundary conditions are derived on the basis of the Hamilton's principle. The simplification of the exact nonlinear mathematical model is proposed taking into account the second order approximation. The reduced partial differential equations of motion together with associated boundary conditions can be used to study natural or forced vibrations of a rotating structure considering constant or nonconstant angular speed of a rigid hub and an arbitrary number of flexible blades.

  15. Picone-type inequalities for nonlinear elliptic equations and their applications

    Directory of Open Access Journals (Sweden)

    Takaŝi Kusano

    2001-01-01

    Full Text Available Picone-type inequalities are derived for nonlinear elliptic equations, and Sturmian comparison theorems are established as applications. Oscillation theorems for forced super-linear elliptic equations and superlinear-sublinear elliptic equations are also obtained.

  16. Evaluation of time integration methods for transient response analysis of nonlinear structures

    International Nuclear Information System (INIS)

    Park, K.C.

    1975-01-01

    Recent developments in the evaluation of direct time integration methods for the transient response analysis of nonlinear structures are presented. These developments, which are based on local stability considerations of an integrator, show that the interaction between temporal step size and nonlinearities of structural systems has a pronounced effect on both accuracy and stability of a given time integration method. The resulting evaluation technique is applied to a model nonlinear problem, in order to: 1) demonstrate that it eliminates the present costly process of evaluating time integrator for nonlinear structural systems via extensive numerical experiments; 2) identify the desirable characteristics of time integration methods for nonlinear structural problems; 3) develop improved stiffly-stable methods for application to nonlinear structures. Extension of the methodology for examination of the interaction between a time integrator and the approximate treatment of nonlinearities (such as due to pseudo-force or incremental solution procedures) is also discussed. (Auth.)

  17. Non-Linear Dynamics of Saturn’s Rings

    Science.gov (United States)

    Esposito, Larry W.

    2015-11-01

    Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects

  18. The effect of Coriolis force on nonlinear convection in a porous medium

    Directory of Open Access Journals (Sweden)

    D. H. Riahi

    1994-01-01

    Full Text Available Nonlinear convection in a porous medium and rotating about vertical axis is studied in this paper. An upper bound to the heat flux is calculated by the method initiated first by Howard [6] for the case of infinite Prandtl number.

  19. Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2015-06-01

    Full Text Available This paper investigates a passive control method of a point absorbing wave energy converter by considering the displacement and velocity constraints under irregular waves in the time domain. A linear generator is used as a power take-off unit, and the equivalent damping force is optimized to improve the power production of the wave energy converter. The results from nonlinear and linear passive control methods are compared, and indicate that the nonlinear passive control method leads to the excitation force in phase with the velocity of the converter that can significantly improve the energy production of the converter.

  20. Improved algorithm for solving nonlinear parabolized stability equations

    Science.gov (United States)

    Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

    2016-08-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

  1. Self-focusing of electron bunches in a nonlinear plasma

    International Nuclear Information System (INIS)

    Krasovitskii, V.B.; Osmolovsky, S.I.

    1994-01-01

    The phenomena of self-focusing of previously bunched electron beam in hot nonlinear plasma with the frequency which less than the plasma one is studied. It is established that influence of the Miller's force nonlinearity of the plasma don't leads to self-focusing breaking. However in the case of a dense beam, the appearance strong resonant electric field is followed by the change of the sign of the plasma dielectric constant to positive at the beam axis. But the dielectric constant remain negative at the outer of the beam

  2. The influence of fully nonlinear wave forces on aero-hydro-elastic calculations of monopile wind turbines

    DEFF Research Database (Denmark)

    Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.

    2016-01-01

    The response of an offshore wind turbine tower and its monopile foundation has been investigated when exposed to linear and fully nonlinear irregular waves on four different water depths. The investigation focuses on the consequences of including full nonlinearity in the wave kinematics. The line...

  3. A systematic review and meta-analysis into the effect of lateral wedge arch support insoles for reducing knee joint load in patients with medial knee osteoarthritis

    Science.gov (United States)

    Xing, Fei; Lu, Bin; Kuang, Ming-jie; Wang, Ying; Zhao, Yun-long; Zhao, Jie; Sun, Lei; Wang, Yan; Ma, Jian-xiong; Ma, Xin-long

    2017-01-01

    Abstract Objective: The aim of this study was to evaluate the immediate effects of lateral wedge arch support insoles (LWAS) on reducing the knee joint load in patients with medial knee osteoarthritis (OA) compared with an appropriate control. Methods: Databases including Medline, EMBASE, Web of Science, Wiley Online Library, Cochrane library, and Google Scholar were searched with no limits on study date or language, from the earliest available date to October 31, 2016. The included studies had to have the aim of reducing knee load and have an appropriate control. The main measured values were the first and second peak external knee adduction moments (EKAM) and the knee adduction angular impulse (KAAI). The random-effects model was used for analyzing the eligible studies. Results: Nine studies met the inclusion criteria with a total of 356 participants of whom 337 received LWAS treatment. The risk of methodological bias scores (quality index) ranged from 21 to 27 of 32. Treatment with LWAS resulted in statistically significant reductions in the first peak EKAM (P = .005), the second peak EKAM (P = .01), and the KAAI (P = .03). However, among trials in which the control treatment was control shoes, the LWAS showed no associations on the first peak EKAM (P = .10) or the KAAI (P =  .06); among trials in which the control treatment was neutral insoles, the LWAS showed no associations on the second peak EKAM (P = .21) or the KAAI (P = .23). At the same time, the LWAS showed no statistically significant reduction on the first peak EKAM (P = .39) when compared with flat insoles. Conclusion: Although meta-analysis outcomes of all studies indicated statistically significant associations between LWAS and reductions of the first peak EKAM, second peak EKAM and KAAI in people with medial knee OA while walking, different results existed in subgroups using various control conditions for comparison. These findings do not support the use of LWAS

  4. The geometry of generalized force matching and related information metrics in coarse-graining of molecular systems

    International Nuclear Information System (INIS)

    Kalligiannaki, Evangelia; Harmandaris, Vagelis; Katsoulakis, Markos A.; Plecháč, Petr

    2015-01-01

    Using the probabilistic language of conditional expectations, we reformulate the force matching method for coarse-graining of molecular systems as a projection onto spaces of coarse observables. A practical outcome of this probabilistic description is the link of the force matching method with thermodynamic integration. This connection provides a way to systematically construct a local mean force and to optimally approximate the potential of mean force through force matching. We introduce a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (e.g., reaction coordinates, end-to-end length of chains). Furthermore, we study the equivalence of force matching with relative entropy minimization which we derive for general non-linear coarse graining maps. We present in detail the generalized force matching condition through applications to specific examples in molecular systems

  5. The geometry of generalized force matching and related information metrics in coarse-graining of molecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Kalligiannaki, Evangelia, E-mail: ekalligian@tem.uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete, 70013 Heraklion (Greece); Harmandaris, Vagelis, E-mail: harman@uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete, 70013 Heraklion (Greece); Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), IACM/FORTH, GR-71110 Heraklion (Greece); Katsoulakis, Markos A., E-mail: markos@math.umass.edu [Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Plecháč, Petr, E-mail: plechac@math.udel.edu [Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716 (United States)

    2015-08-28

    Using the probabilistic language of conditional expectations, we reformulate the force matching method for coarse-graining of molecular systems as a projection onto spaces of coarse observables. A practical outcome of this probabilistic description is the link of the force matching method with thermodynamic integration. This connection provides a way to systematically construct a local mean force and to optimally approximate the potential of mean force through force matching. We introduce a generalized force matching condition for the local mean force in the sense that allows the approximation of the potential of mean force under both linear and non-linear coarse graining mappings (e.g., reaction coordinates, end-to-end length of chains). Furthermore, we study the equivalence of force matching with relative entropy minimization which we derive for general non-linear coarse graining maps. We present in detail the generalized force matching condition through applications to specific examples in molecular systems.

  6. Stochastic Erosion of Fractal Structure in Nonlinear Dynamical Systems

    Science.gov (United States)

    Agarwal, S.; Wettlaufer, J. S.

    2014-12-01

    We analyze the effects of stochastic noise on the Lorenz-63 model in the chaotic regime to demonstrate a set of general issues arising in the interpretation of data from nonlinear dynamical systems typical in geophysics. The model is forced using both additive and multiplicative, white and colored noise and it is shown that, through a suitable choice of the noise intensity, both additive and multiplicative noise can produce similar dynamics. We use a recently developed measure, histogram distance, to show the similarity between the dynamics produced by additive and multiplicative forcing. This phenomenon, in a nonlinear fractal structure with chaotic dynamics can be explained by understanding how noise affects the Unstable Periodic Orbits (UPOs) of the system. For delta-correlated noise, the UPOs erode the fractal structure. In the presence of memory in the noise forcing, the time scale of the noise starts to interact with the period of some UPO and, depending on the noise intensity, stochastic resonance may be observed. This also explains the mixing in dissipative dynamical systems in presence of white noise; as the fractal structure is smoothed, the decay of correlations is enhanced, and hence the rate of mixing increases with noise intensity.

  7. Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores.

    Science.gov (United States)

    McMullen, Angus; de Haan, Hendrick W; Tang, Jay X; Stein, Derek

    2018-02-16

    Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.

  8. Biology-Inspired Robust Dive Plane Control of Non-Linear AUV Using Pectoral-Like Fins

    Directory of Open Access Journals (Sweden)

    Subramanian Ramasamy

    2010-01-01

    Full Text Available The development of a control system for the dive plane control of non-linear biorobotic autonomous underwater vehicles, equipped with pectoral-like fins, is the subject of this paper. Marine animals use pectoral fins for swimming smoothly. The fins are assumed to be oscillating with a combined pitch and heave motion and therefore produce unsteady control forces. The objective is to control the depth of the vehicle. The mean angle of pitch motion of the fin is used as a control variable. A computational-fluid-dynamics-based parameterisation of the fin forces is used for control system design. A robust servo regulator for the control of the depth of the vehicle, based on the non-linear internal model principle, is derived. For the control law derivation, an exosystem of third order is introduced, and the non-linear time-varying biorobotic autonomous underwater vehicle model, including the fin forces, is represented as a non-linear autonomous system in an extended state space. The control system includes the internal model of a k-fold exosystem, where k is a positive integer chosen by the designer. It is shown that in the closed-loop system, all the harmonic components of order up to k of the tracking error are suppressed. Simulation results are presented which show that the servo regulator accomplishes accurate depth control despite uncertainties in the model parameters.

  9. Multi-cracks identification based on the nonlinear vibration response of beams subjected to moving harmonic load

    Directory of Open Access Journals (Sweden)

    Chouiyakh H.

    2016-01-01

    Full Text Available The aim of this work is to investigate the nonlinear forced vibration of beams containing an arbitrary number of cracks and to perform a multi-crack identification procedure based on the obtained signals. Cracks are assumed to be open and modelled trough rotational springs linking two adjacent sub-beams. Forced vibration analysis is performed by a developed time differential quadrature method. The obtained nonlinear vibration responses are analyzed by Huang Hilbert Transform. The instantaneous frequency is used as damage index tool for cracks detection.

  10. Model-based analysis of nonstationary thermal mode in premises with an insolation passive heating system with a three-layer translucent shield

    International Nuclear Information System (INIS)

    Avezova, N.R.; Avezov, R.R.; Rashidov, Y.K. et al.

    2014-01-01

    The results of the model-based study of nonstationary thermal mode in premises with an insolation passive heating system with a three-layer translucent shield are presented. The article is aimed at determining daily variations in the air temperature of the heated premise on typical heating season days and analyzing the optimization of the thermal capacity of the short-term (daily) thermal battery of the heating system on this basis. (author)

  11. Chaotic dynamics with high complexity in a simplified new nonautonomous nonlinear electronic circuit

    International Nuclear Information System (INIS)

    Arulgnanam, A.; Thamilmaran, K.; Daniel, M.

    2009-01-01

    A two dimensional nonautonomous dissipative forced series LCR circuit with a simple nonlinear element exhibiting an immense variety of dynamical features is proposed for the first time. Unlike the usual cases of nonlinear element, the nonlinear element used here possesses three segment piecewise linear character with one positive and one negative slope. This nonlinearity is verified to be sufficient to produce chaos with high complexity in many established nonautonomous nonlinear circuits, such as MLC, MLCV, driven Chua, etc., thus indicating an universal behavior similar to the familiar Chua's diode. The dynamics of the proposed circuit is studied experimentally, confirmed numerically, simulated through PSPICE and proved mathematically. An important feature of the circuit is its ability to show dual chaotic behavior.

  12. Nonlinear propagation of intense electromagnetic waves in weakly-ionized plasmas

    International Nuclear Information System (INIS)

    Shukla, P.K.

    1993-01-01

    The nonlinear propagation of intense electromagnetic waves in weakly-ionized plasmas is considered. Stimulated scattering mechanisms involving electromagnetic and acoustic waves in an unmagnetized plasma are investigated. The growth rate and threshold for three-wave decay interactions as well as modulational and filamentation instabilities are presented. Furthermore, the electromagnetic wave modulation theory is generalized for weakly ionized collisional magnetoplasmas. Here, the radiation envelope is generally governed by a nonlinear Schroedinger equation. Accounting for the dependence of the attachment frequency on the radiation intensity, ponderomotive force, as well as the differential Joule heating nonlinearity, the authors derive the equations for the nonthermal electron density and temperature perturbations. The various nonlinear terms in the electron motion are compared. The problems of self-focusing and wave localization are discussed. The relevance of the investigation to ionospheric modification by powerful electromagnetic waves is pointed out

  13. Study on the Nonlinear Characteristics of a Rotating Flexible Blade with Dovetail Interface Feature

    Directory of Open Access Journals (Sweden)

    Chaofeng Li

    2018-01-01

    Full Text Available A dynamic model is proposed in this paper for analyzing the nonlinear characteristics of a flexible blade. The dynamical equation of motion for a rotational flexible blade in a centrifugal force field is established based on the finite element method. A macro-stick-slip mechanical model of dry friction is established to simulate the constraint condition of the flexible blade. The combined motion of the external excitation and friction produces a piecewise linear vibration which is actually nonlinear. The numerical integration method is employed to calculate the vibration reduction characteristics of the nonlinear constrained rotating blade. The results show that the nonlinear dry friction force produced by the dovetail interface plays an important role in vibration reduction. And the effect of dry friction vibration reduction is significant when the rotating speed is slow or the friction coefficient is small. Besides, the magnitude of external excitation also has a great impact on the state of the friction. Therefore, some relevant experimental researches should be done in the future.

  14. Travelling solitons in the parametrically driven nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Zemlyanaya, E.V.; Baer, M.

    2000-01-01

    We show that the parametrically driven nonlinear Schroedinger equation has wide classes of travelling soliton solutions, some of which are stable. For small driving strengths stable nonpropagating and moving solitons co-exist while strongly forced solitons can only be stable when moving sufficiently fast

  15. Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site

    DEFF Research Database (Denmark)

    Stevens, T.; Buylaert, J.-P.; Thiel, C.

    2018-01-01

    propose a new independent age model and reconstruct monsoon climate and desert expansion/contraction for the last similar to 250 ka. Our record demonstrates the dominant influence of ice volume on desert expansion, dust dynamics and sediment preservation, and further shows that East Asian Summer Monsoon...... chronology for the Quaternary terrestrial type section at Jingbian, desert marginal Chinese Loess Plateau, is inaccurate. There are large hiatuses and depositional changes expressed across a dynamic gully landform at the site, which demonstrates rapid environmental shifts at the East Asian desert margin. We...... (EASM) variation closely matches that of ice volume, but lags insolation by similar to 5 ka. These observations show that the EASM at the monsoon margin does not respond directly to precessional forcing....

  16. Bottom boundary layer forced by finite amplitude long and short surface waves motions

    Science.gov (United States)

    Elsafty, H.; Lynett, P.

    2018-04-01

    A multiple-scale perturbation approach is implemented to solve the Navier-Stokes equations while including bottom boundary layer effects under a single wave and under two interacting waves. In this approach, fluid velocities and the pressure field are decomposed into two components: a potential component and a rotational component. In this study, the two components are exist throughout the entire water column and each is scaled with appropriate length and time scales. A one-way coupling between the two components is implemented. The potential component is assumed to be known analytically or numerically a prior, and the rotational component is forced by the potential component. Through order of magnitude analysis, it is found that the leading-order coupling between the two components occurs through the vertical convective acceleration. It is shown that this coupling plays an important role in the bottom boundary layer behavior. Its effect on the results is discussed for different wave-forcing conditions: purely harmonic forcing and impurely harmonic forcing. The approach is then applied to derive the governing equations for the bottom boundary layer developed under two interacting wave motions. Both motions-the shorter and the longer wave-are decomposed into two components, potential and rotational, as it is done in the single wave. Test cases are presented wherein two different wave forcings are simulated: (1) two periodic oscillatory motions and (2) short waves interacting with a solitary wave. The analysis of the two periodic motions indicates that nonlinear effects in the rotational solution may be significant even though nonlinear effects are negligible in the potential forcing. The local differences in the rotational velocity due to the nonlinear vertical convection coupling term are found to be on the order of 30% of the maximum boundary layer velocity for the cases simulated in this paper. This difference is expected to increase with the increase in wave

  17. Nonlinear Klein-Gordon soliton mechanics

    International Nuclear Information System (INIS)

    Reinisch, G.

    1992-01-01

    Nonlinear Klein-Gordon solitary waves - or solitons in a loose sense - in n+1 dimensions, driven by very general external fields which must only satisfy continuity - together with regularity conditions at the boundaries of the system, obey a quite simple equation of motion. This equation is the exact generalization to this dynamical system of infinite number of degrees of freedom - which may be conservative or not - of the second Newton's law setting the basis of material point mechanics. In the restricted case of conservative nonlinear Klein-Gordon systems, where the external driving force is derivable from a potential energy, we recover the generalized Ehrenfest theorem which was itself the extension to such systems of the well-known Ehrenfest theorem in quantum mechanics. This review paper first displays a few (of one-dimensional sine-Gordon type) typical examples of the basic difficulties related to the trial construction of solitary-waves is proved and the derivation of the previous sine-Gordon examples from this theorem is displayed. Two-dimensional nonlinear solitary-wave patterns are considered, as well as a special emphasis is put on the applications to space-time complexity of 1-dim. sine-Gordon systems

  18. Advanced non-linear flow-induced vibration and fretting-wear analysis capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Toorani, M.; Pan, L.; Li, R.; Idvorian, N. [Babcock and Wilcox Canada Ltd., Cambridge, Ontario (Canada); Vincent, B.

    2009-07-01

    Fretting wear is a potentially significant degradation mechanism in nuclear steam generators and other shell and tube heat transfer equipment as well. This paper presents an overview of the recently developed code FIVDYNA which is used for the non-linear flow-induced vibration and fretting wear analysis for operating steam generators (OTSG and RSG) and shell-and-tube heat exchangers. FIVDYNA is a non-linear time-history Flow-Induced Vibration (FIV) analysis computer program that has been developed by Babcock and Wilcox Canada to advance the understanding of tube vibration and tube to tube-support interaction. In addition to the dynamic fluid induced forces the program takes into account other tube static forces due to axial and lateral tube preload and thermal interaction loads. The program is capable of predicting the location where the fretting wear is most likely to occur and its magnitude taking into account the support geometry including gaps. FIVDYNA uses the general purpose finite element computer code ABAQUS as its solver. Using ABAQUS gives the user the flexibility to add additional forces to the tube ranging from tube preloads and the support offsets to thermal loads. The forces currently being modeled in FIVDYNA are the random turbulence, steady drag force, fluid-elastic forces, support offset and pre-strain force (axial loads). This program models the vibration of tubes and calculates the structural dynamic characteristics, and interaction forces between the tube and the tube supports. These interaction forces are then used to calculate the work rate at the support and eventually the predicted depth of wear scar on the tube. A very good agreement is found with experiments and also other computer codes. (author)

  19. Quantum-mechanical Green's functions and nonlinear superposition law

    International Nuclear Information System (INIS)

    Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P. de T.S.

    1986-01-01

    The quantum-mechanical Green's function is derived for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field. (Author) [pt

  20. Quantum-mechanical Green's function and nonlinear superposition law

    International Nuclear Information System (INIS)

    Nassar, A.B.; Bassalo, J.M.F.; Antunes Neto, H.S.; Alencar, P.T.S.

    1986-01-01

    It is derived the quantum-mechanical Green's function for the problem of a time-dependent variable mass particle subject to a time-dependent forced harmonic-oscillator potential by taking direct recourse of the corresponding Schroedinger equation. Through the usage of the nonlinear superposition law of Ray and Reid, it is shown that such a Green's function can be obtained from that for the problem of a particle with unit (constant) mass subject to either a forced harmonic potential with constant frequency or only to a time-dependent linear field

  1. Sonic excitation by means of ultrasound; an experimental illustration of acoustic radiation forces

    NARCIS (Netherlands)

    Roozen, N.B.; Nuij, P.W.J.M.

    2011-01-01

    Ultrasonic acoustic waves are known to induce a vibration of particles around an equilibrium position. However, for large acoustic amplitudes, due to non-linear acoustic effects, a rectified, net acoustic radiation force can occur. Experimental work is performed in which the non-linear behavior is

  2. Global investigation of the nonlinear dynamics of carbon nanotubes

    KAUST Repository

    Xu, Tiantian

    2016-11-17

    Understanding the complex nonlinear dynamics of carbon nanotubes (CNTs) is essential to enable utilization of these structures in devices and practical applications. We present in this work an investigation of the global nonlinear dynamics of a slacked CNT when actuated by large electrostatic and electrodynamic excitations. The coexistence of several attractors is observed. The CNT is modeled as an Euler–Bernoulli beam. A reduced-order model based on the Galerkin method is developed and utilized to simulate the static and dynamic responses. Critical computational challenges are posed due to the complicated form of the electrostatic force, which describes the interaction between the upper electrode, consisting of the cylindrically shaped CNT, and the lower electrode. Toward this, we approximate the electrostatic force using the Padé expansion. We explore the dynamics near the primary and superharmonic resonances. The nanostructure exhibits several attractors with different characteristics. To achieve deep insight and describe the complexity and richness of the behavior, we analyze the nonlinear response from an attractor-basins point of view. The competition of attractors is highlighted. Compactness and/or fractality of their basins are discussed. Both the effects of varying the excitation frequency and amplitude are examined up to the dynamic pull-in instability.

  3. Nonlinear Dynamic Response of Compliant Journal Bearings

    Directory of Open Access Journals (Sweden)

    Glavatskih S.

    2012-07-01

    Full Text Available This paper investigates the dynamic response of the compliant tilting pad journal bearings subjected to synchronous excitation. Bearing compliance is affected by the properties of pad liner and pad support geometry. Different unbalance eccentricities are considered. It is shown that bearing dynamic response is non-linear. Journal orbit complexity increases with pad compliance though the orbit amplitudes are marginally affected at low loads. At high loads, the journal is forced to operate outside the bearing clearance. The polymer liner reduces the maximum oil film pressure by a factor of 2 when compared to the white metal liner. The nonlinear dynamic response of compliant tilting pad journal bearings is thoroughly discussed.

  4. Nonlinear damping for vibration isolation of microsystems using shear thickening fluid

    Science.gov (United States)

    Iyer, S. S.; Vedad-Ghavami, R.; Lee, H.; Liger, M.; Kavehpour, H. P.; Candler, R. N.

    2013-06-01

    This work reports the measurement and analysis of nonlinear damping of micro-scale actuators immersed in shear thickening fluids (STFs). A power-law damping term is added to the linear second-order model to account for the shear-dependent viscosity of the fluid. This nonlinear model is substantiated by measurements of oscillatory motion of a torsional microactuator. At high actuation forces, the vibration velocity amplitude saturates. The model accurately predicts the nonlinear damping characteristics of the STF using a power-law index extracted from independent rheology experiments. This result reveals the potential to use STFs as adaptive, passive dampers for vibration isolation of microelectromechanical systems.

  5. Orbitally forced sedimentary rhythms in the stratigraphic record: is there room for tidal forcing?

    NARCIS (Netherlands)

    Boer, P.L. de; Trabucho Alexandre, J.

    2011-01-01

    The imprint of orbital cycles, which result from the varying eccentricity of the Earth’s orbit and changes in the orientation of its axis, have been recognised throughout the Phanerozoic rock record. Variations in insolation and their effect on climate are generally considered to be the sole

  6. Nonlinear acceleration of S_n transport calculations

    International Nuclear Information System (INIS)

    Fichtl, Erin D.; Warsa, James S.; Calef, Matthew T.

    2011-01-01

    The use of nonlinear iterative methods, Jacobian-Free Newton-Krylov (JFNK) in particular, for solving eigenvalue problems in transport applications has recently become an active subject of research. While JFNK has been shown to be effective for k-eigenvalue problems, there are a number of input parameters that impact computational efficiency, making it difficult to implement efficiently in a production code using a single set of default parameters. We show that different selections for the forcing parameter in particular can lead to large variations in the amount of computational work for a given problem. In contrast, we employ a nonlinear subspace method that sits outside and effectively accelerates nonlinear iterations of a given form and requires only a single input parameter, the subspace size. It is shown to consistently and significantly reduce the amount of computational work when applied to fixed-point iteration, and this combination of methods is shown to be more efficient than JFNK for our application. (author)

  7. Heat and mass transfer of Williamson nanofluid flow yield by an inclined Lorentz force over a nonlinear stretching sheet

    Directory of Open Access Journals (Sweden)

    Mair Khan

    2018-03-01

    Full Text Available The present analysis is devoted to explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet. Variable viscosity is assumed to vary as a linear function of temperature. The basic mathematical modelled problem i.e. system of PDE’s is converted nonlinear into ODE’s via applying suitable transformations. Computational solutions of the problem is also achieved via efficient numerical technique shooting. Characteristics of controlling parameters i.e. stretching index, inclined angle, Hartmann number, Weissenberg number, variable viscosity parameter, mixed convention parameter, Brownian motion parameter, Prandtl number, Lewis number, thermophoresis parameter and chemical reactive species on concentration, temperature and velocity gradient. Additionally, friction factor coefficient, Nusselt number and Sherwood number are describe with the help of graphics as well as tables verses flow controlling parameters. Keywords: Williamson nanofluid, Temperature depended viscosity, Inclined magnetic field, Mixed convection, Chemical reactive species, Variable viscosity, Shooting method

  8. Anode wire in cylindrical cathode tube : destabilizing electrostatic force

    CERN Document Server

    Wertelaers, P

    2017-01-01

    A two-dimensional -- cross-sectional -- discussion suffices. The tube is offset, and the electrostatic potential is found analytically with perturbative methods. Then, the force is established with the Maxwell stress tensor. Alternatively, trying to find the force with energy methods, fails. Finally, finite element tests are performed in order to report on the degree of non-linearity for large offsets.

  9. Finite Element Study into the effect of footwear temperature on the Forces transmitted to the foot during quasi- static compression loading

    International Nuclear Information System (INIS)

    Shariatmadari, M R; English, R; Rothwell, G

    2010-01-01

    The determination of plantar stresses using computational footwear models which include temperature effects are crucial to predict foam performance in service and to aid material development and product design. Finite Element Method (FEM) provides an efficient computational framework to investigate the foot-footwear interaction. The aim of this research is to use FEM to investigate the effect of varying footwear temperature on plantar stresses. The results obtained will provide data which can be used to help optimise shoe design in terms of minimising damaging stresses in the foot particularly for individuals with diabetes who are susceptible to lower extremity complications. The FE simulation results showed significant reductions in foot stresses with the modifications from FE model (1) without footwear to model (2) with midsole only and to model (3) with midsole and insole. In summary, insole and midsole layers made from various foam materials aim to reduce the Ground Reaction Forces (GRF's) and foot stresses considerably and temperature variation can affect their cushioning and consequently the shock attenuation properties. The loss of footwear cushioning effect can have important clinical implications for those individuals with a history of lower limb overuse injuries or diabetes.

  10. Finite Element Study into the effect of footwear temperature on the Forces transmitted to the foot during quasi- static compression loading

    Science.gov (United States)

    Shariatmadari, M. R.; English, R.; Rothwell, G.

    2010-06-01

    The determination of plantar stresses using computational footwear models which include temperature effects are crucial to predict foam performance in service and to aid material development and product design. Finite Element Method (FEM) provides an efficient computational framework to investigate the foot-footwear interaction. The aim of this research is to use FEM to investigate the effect of varying footwear temperature on plantar stresses. The results obtained will provide data which can be used to help optimise shoe design in terms of minimising damaging stresses in the foot particularly for individuals with diabetes who are susceptible to lower extremity complications. The FE simulation results showed significant reductions in foot stresses with the modifications from FE model (1) without footwear to model (2) with midsole only and to model (3) with midsole and insole. In summary, insole and midsole layers made from various foam materials aim to reduce the Ground Reaction Forces (GRF's) and foot stresses considerably and temperature variation can affect their cushioning and consequently the shock attenuation properties. The loss of footwear cushioning effect can have important clinical implications for those individuals with a history of lower limb overuse injuries or diabetes.

  11. Nonlinear Dynamics Analysis of the Semiactive Suspension System with Magneto-Rheological Damper

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2015-01-01

    Full Text Available This paper examines dynamical behavior of a nonlinear oscillator which models a quarter-car forced by the road profile. The magneto-rheological (MR suspension system has been established, by employing the modified Bouc-Wen force-velocity (F-v model of magneto-rheological damper (MRD. The possibility of chaotic motions in MR suspension is discovered by employing the method of nonlinear stability analysis. With the bifurcation diagrams and corresponding Lyapunov exponent (LE spectrum diagrams detected through numerical calculation, we can observe the complex dynamical behaviors and oscillating mechanism of alternating periodic oscillations, quasiperiodic oscillations, and chaotic oscillations with different profiles of road excitation, as well as the dynamical evolutions to chaos through period-doubling bifurcations, saddle-node bifurcations, and reverse period-doubling bifurcations.

  12. Experimental Observation of Chaotic Beats in Oscillators Sharing Nonlinearity

    Science.gov (United States)

    Paul Asir, M.; Jeevarekha, A.; Philominathan, P.

    This paper deals with the generation of chaotic beats in a system of two forced dissipative LCR oscillators sharing a nonlinear element. The presence of two external periodic excitations and a common nonlinear element in the chosen system enables the facile generation of chaotic beats. Thus rendered chaotic beats were characterized in both time domain and phase space. Lyapunov exponents and envelope of the beats were computed to diagnose the chaotic nature of the signals. The role of common nonlinearity on the complexity of the generated beats is discussed. Real-time experimental hardware implementation has also been done to confirm the subsistence of the phenomenon, for the first time. Extensive Multisim simulations were carried out to understand, a bit more about the shrinkage and revivals of state variables in phase space.

  13. Analysis of the nonlinear dynamics of a 2-axle freight wagon in curves

    DEFF Research Database (Denmark)

    Di Gialleonardo, Egidio; Bruni, Stefano; True, Hans

    2014-01-01

    This paper deals with the study of the nonlinear dynamic behaviour of 2-axle freight wagons in curves, considering the case of one single wagon (neglecting inter-car coupling forces) and of multiple wagons interacting through the buffers and the couplers. A multi-body model of a single wagon...... and of a three-car assembly is introduced, paying particular attention to the nonlinear and nonsmooth modelling of the suspensions and of the inter-car coupling elements. Using this model, a numerical analysis of the steady-state solution reached after the negotiation of curve transition is presented......, it is shown that the coupling forces exchanged by the wagons significantly affect their dynamics in a curve, reducing the amplitude of vibration....

  14. Investigation of the nonlinear static and dynamic behaviour of rectangular microplates under electrostatic actuation

    KAUST Repository

    Saghir, Shahid; Younis, Mohammad I.

    2016-01-01

    We present an investigation of the static and dynamic behavior of the nonlinear von-Karman plates when actuated by the nonlinear electrostatic forces. The investigation is based on a reduced order model developed using the Galerkin method, which rely on modeshapes and in-plane shape functions extracted using a finite element method. In this study, a fully clamped microplate is considered. We investigate the static behavior and the results are validated by comparison with the results calculated by a finite element model. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary resonance. The microplate shows a strong hardening behavior due to the cubic nonlinearity of mid-plane stretching. However, the behavior switches to softening as the DC load is increased.

  15. Investigation of the nonlinear static and dynamic behaviour of rectangular microplates under electrostatic actuation

    KAUST Repository

    Saghir, Shahid

    2016-11-16

    We present an investigation of the static and dynamic behavior of the nonlinear von-Karman plates when actuated by the nonlinear electrostatic forces. The investigation is based on a reduced order model developed using the Galerkin method, which rely on modeshapes and in-plane shape functions extracted using a finite element method. In this study, a fully clamped microplate is considered. We investigate the static behavior and the results are validated by comparison with the results calculated by a finite element model. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary resonance. The microplate shows a strong hardening behavior due to the cubic nonlinearity of mid-plane stretching. However, the behavior switches to softening as the DC load is increased.

  16. Solar forced Dansgaard-Oeschger events and their phase relation with solar proxies

    DEFF Research Database (Denmark)

    Ditlevsen, Peter; Braun, H.; Chialvo, D. R.

    2008-01-01

    of a highly nonlinear system to quasi-periodic solar forcing plus noise. This hypothesis was challenged as inconsistent with the observed variability in the phase relation between proxies of solar activity and Greenland climate. Here we reject the claim of inconsistency by showing that this phase variability...... is a robust, generic feature of the nonlinear dynamics of DO events, as described by a model. This variability is expected from the fact that the events are threshold crossing events, resulting from a cooperative process between the periodic forcing and the noise. This process produces a fluctuating phase...

  17. The mechanism by which nonlinearity sustains turbulence in plane Couette flow

    Science.gov (United States)

    Nikolaidis, M.-A.; Farrell, B. F.; Ioannou, P. J.

    2018-04-01

    Turbulence in wall-bounded shear flow results from a synergistic interaction between linear non-normality and nonlinearity in which non-normal growth of a subset of perturbations configured to transfer energy from the externally forced component of the turbulent state to the perturbation component maintains the perturbation energy, while the subset of energy-transferring perturbations is replenished by nonlinearity. Although it is accepted that both linear non-normality mediated energy transfer from the forced component of the mean flow and nonlinear interactions among perturbations are required to maintain the turbulent state, the detailed physical mechanism by which these processes interact in maintaining turbulence has not been determined. In this work a statistical state dynamics based analysis is performed on turbulent Couette flow at R = 600 and a comparison to DNS is used to demonstrate that the perturbation component in Couette flow turbulence is replenished by a non-normality mediated parametric growth process in which the fluctuating streamwise mean flow has been adjusted to marginal Lyapunov stability. It is further shown that the alternative mechanism in which the subspace of non-normally growing perturbations is maintained directly by perturbation-perturbation nonlinearity does not contribute to maintaining the turbulent state. This work identifies parametric interaction between the fluctuating streamwise mean flow and the streamwise varying perturbations to be the mechanism of the nonlinear interaction maintaining the perturbation component of the turbulent state, and identifies the associated Lyapunov vectors with positive energetics as the structures of the perturbation subspace supporting the turbulence.

  18. Nonlinear dynamics of biomimetic micro air vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Y; Kong, J [College of Mechanical Automation, Wuhan University of Science and Technology, Wuhan, 430081 (China)], E-mail: fly_houyu@163.com.cn

    2008-02-15

    Flapping-wing micro air vehicles (FMAV) are new conceptual air vehicles that mimic the flying modes of birds and insects. They surpass the research fields of traditional airplane design and aerodynamics on application technologies, and initiate the applications of MEMS technologies on aviation fields. This paper studies a micro flapping mechanism that based upon insect thorax and actuated by electrostatic force. Because there are strong nonlinear coupling between the two physical domains, electrical and mechanical, the static and dynamic characteristics of this system are very complicated. Firstly, the nonlinear dynamic model of the electromechanical coupling system is set up according to the physical model of the flapping mechanism. The dynamic response of the system in constant voltage is studied by numerical method. Then the effect of damping and initial condition on dynamic characteristics of the system is analyzed in phase space. In addition, the dynamic responses of the system in sine voltage excitation are discussed. The results of research are helpful to the design, fabrication and application of the micro flapping mechanism of FMAV, and also to other micro electromechanical system that actuated by electrostatic force.

  19. A Nonlinear Model of Mix Coil Spring – Rubber for Vertical Suspension of Railway Vehicle

    Directory of Open Access Journals (Sweden)

    Dumitriu Mădălina

    2016-03-01

    Full Text Available The paper focuses on a nonlinear model to represent the mechanical behaviour of a mix coil spring - rubber used in the secondary suspension of passenger rail vehicles. The principle of the model relies on overlapping of the forces corresponding to three components - the elastic component, the viscous component and the dry friction component. The model has two sources on non-linearity, in the elastic force and the friction force, respectively. The main attributes of the model are made visible by its response to an imposed displacement-type harmonic excitation. The results thus obtained from the applications of numerical simulation show a series of basic properties of the model, namely the dependence on amplitude and the excitation frequency of the model response, as well as of its stiffness and damping.

  20. Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings

    Science.gov (United States)

    Wang, Hong; Han, Qinkai; Zhou, Daning

    2017-02-01

    In current bearing dynamic models, the displacement coordinate relations are usually utilized to approximately obtain the contact deformations between the rolling element and raceways, and then the nonlinear restoring forces of the rolling bearing could be calculated accordingly. Although the calculation efficiency is relatively higher, the accuracy is lower as the contact deformations should be solved through iterative analysis. Thus, an improved nonlinear dynamic model is presented in this paper. Considering the preload condition, surface waviness, Hertz contact and elastohydrodynamic lubrication, load distribution analysis is solved iteratively to more accurately obtain the contact deformations and angles between the rolling balls and raceways. The bearing restoring forces are then obtained through iteratively solving the load distribution equations at every time step. Dynamic tests upon a typical rotor system supported by two angular contact ball bearings are conducted to verify the model. Through comparisons, the differences between the nonlinear dynamic model and current models are also pointed out. The effects of axial preload, rotor eccentricity and inner/outer waviness amplitudes on the dynamic response are discussed in detail.

  1. Nonlinear Preconditioning and its Application in Multicomponent Problems

    KAUST Repository

    Liu, Lulu

    2015-12-07

    The Multiplicative Schwarz Preconditioned Inexact Newton (MSPIN) algorithm is presented as a complement to Additive Schwarz Preconditioned Inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. The ASPIN framework, as an option for the outermost solver, successfully handles strong nonlinearities in computational fluid dynamics, but is barely explored for the highly nonlinear models of complex multiphase flow with capillarity, heterogeneity, and complex geometry. In this dissertation, the fully implicit ASPIN method is demonstrated for a finite volume discretization based on incompressible two-phase reservoir simulators in the presence of capillary forces and gravity. Numerical experiments show that the number of global nonlinear iterations is not only scalable with respect to the number of processors, but also significantly reduced compared with the standard inexact Newton method with a backtracking technique. Moreover, the ASPIN method, in contrast with the IMPES method, saves overall execution time because of the savings in timestep size. We consider the additive and multiplicative types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Moreover, we provide the convergence analysis of the MSPIN algorithm. Under suitable assumptions, it is shown that MSPIN is locally convergent, and desired superlinear or even quadratic convergence can be

  2. Micro-macro-discrepancies in nonlinear microrheology: I. Quantifying mechanisms in a suspension of Brownian ellipsoids

    International Nuclear Information System (INIS)

    DePuit, Ryan J; Squires, Todd M

    2012-01-01

    Active and nonlinear microrheology experiments involve a colloidal probe that is forced to move within a material, with the goal of recovering the nonlinear rheological response properties of the material. Various mechanisms cause discrepancies between the nonlinear rheology measured microrheologically and macroscopically, including direct probe-bath collisions, the Lagrangian unsteadiness experienced by the material elements, and the spatially inhomogeneous and rheologically mixed strain field set up around the probe. Here, we perform computational nonlinear microrheology experiments, in which a colloidal probe translates through a dilute suspension of Brownian ellipsoids, whose results we compare against analogous computational experiments on the macroscopic shear rheology of the same model material. The quantitative impact of each of the mechanisms for micro-macro-discrepancy can thus be computed directly, with additional computational experiments performed where the processes in question are ‘turned off’. We show that all three discrepancy mechanisms impact the microrheological measurement quantitatively, and that none can be neglected. This motivates a search for microrheological probes whose geometry or forcing is optimized to minimize these impacts, which we present in a companion article.

  3. Nonlinear Elasticity

    Science.gov (United States)

    Fu, Y. B.; Ogden, R. W.

    2001-05-01

    This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.

  4. Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing

    Science.gov (United States)

    Persad, Geeta Gayatri

    Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols

  5. Nonparametric identification of nonlinear dynamic systems using a synchronisation-based method

    Science.gov (United States)

    Kenderi, Gábor; Fidlin, Alexander

    2014-12-01

    The present study proposes an identification method for highly nonlinear mechanical systems that does not require a priori knowledge of the underlying nonlinearities to reconstruct arbitrary restoring force surfaces between degrees of freedom. This approach is based on the master-slave synchronisation between a dynamic model of the system as the slave and the real system as the master using measurements of the latter. As the model synchronises to the measurements, it becomes an observer of the real system. The optimal observer algorithm in a least-squares sense is given by the Kalman filter. Using the well-known state augmentation technique, the Kalman filter can be turned into a dual state and parameter estimator to identify parameters of a priori characterised nonlinearities. The paper proposes an extension of this technique towards nonparametric identification. A general system model is introduced by describing the restoring forces as bilateral spring-dampers with time-variant coefficients, which are estimated as augmented states. The estimation procedure is followed by an a posteriori statistical analysis to reconstruct noise-free restoring force characteristics using the estimated states and their estimated variances. Observability is provided using only one measured mechanical quantity per degree of freedom, which makes this approach less demanding in the number of necessary measurement signals compared with truly nonparametric solutions, which typically require displacement, velocity and acceleration signals. Additionally, due to the statistical rigour of the procedure, it successfully addresses signals corrupted by significant measurement noise. In the present paper, the method is described in detail, which is followed by numerical examples of one degree of freedom (1DoF) and 2DoF mechanical systems with strong nonlinearities of vibro-impact type to demonstrate the effectiveness of the proposed technique.

  6. Effect of insolation forecasting error on reduction of electricity charges for solar hot water system; Taiyonetsu kyuto system no denki ryokin sakugen koka ni oyobosu nissharyo yosoku gosa no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan)

    1996-10-27

    A solar hot water system can be economically operated if inexpensive midnight power is purchased to cover the shortage of solar energy predicted for the following day. Investigations were conducted because error in insolation prediction affects the system operation and electric charge reduction effect. The target temperature of the heat accumulation tank at every predetermined time point is calculated on the previous evening in consideration of predicted insolation so that the water will be as hot as prescribed at the feeding time on the following day. Midnight power is used for uniform heating to attain the target temperature for 7 o`clock on the following morning. The uniform heating continues from 8 o`clock to the feeding time, this time using solar energy and daytime power to attain the target temperature. Accordingly, the division between the midnight power and daytime power is determined in view of the target temperature for 7 o`clock on the following morning, which target temperature is so set that the charge will be the minimum by optimizing the allocation of the above-said two. When the insolation prediction error rate is beyond 30%, the electric charge grows higher as the rate rises. But, when the rate is not higher than 30%, the charge is little affected by a rise in the rate. 5 refs., 10 figs., 1 tab.

  7. Anharmonic 1D actuator model including electrostatic and Casimir forces with fractional damping perturbed by an external force

    Science.gov (United States)

    Mansoori Kermani, Maryam; Dehestani, Maryam

    2018-06-01

    We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.

  8. Anharmonic 1D actuator model including electrostatic and Casimir forces with fractional damping perturbed by an external force

    Science.gov (United States)

    Mansoori Kermani, Maryam; Dehestani, Maryam

    2018-03-01

    We modeled a one-dimensional actuator including the Casimir and electrostatic forces perturbed by an external force with fractional damping. The movable electrode was assumed to oscillate by an anharmonic elastic force originated from Murrell-Mottram or Lippincott potential. The nonlinear equations have been solved via the Adomian decomposition method. The behavior of the displacement of the electrode from equilibrium position, its velocity and acceleration were described versus time. Also, the changes of the displacement have been investigated according to the frequency of the external force and the voltage of the electrostatic force. The convergence of the Adomian method and the effect of the orders of expansion on the displacement versus time, frequency, and voltage were discussed. The pull-in parameter was obtained and compared with the other models in the literature. This parameter was described versus the equilibrium position and anharmonicity constant.

  9. NONLINEAR TIDES IN CLOSE BINARY SYSTEMS

    International Nuclear Information System (INIS)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-01-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' ∼> 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P ∼ 3 [P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P ∼< a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing

  10. Multiphase patterns in periodically forced oscillatory systems

    International Nuclear Information System (INIS)

    Elphick, C.; Hagberg, A.; Meron, E.

    1999-01-01

    Periodic forcing of an oscillatory system produces frequency locking bands within which the system frequency is rationally related to the forcing frequency. We study extended oscillatory systems that respond to uniform periodic forcing at one quarter of the forcing frequency (the 4:1 resonance). These systems possess four coexisting stable states, corresponding to uniform oscillations with successive phase shifts of π/2. Using an amplitude equation approach near a Hopf bifurcation to uniform oscillations, we study front solutions connecting different phase states. These solutions divide into two groups: π fronts separating states with a phase shift of π and π/2 fronts separating states with a phase shift of π/2. We find a type of front instability where a stationary π front 'decomposes' into a pair of traveling π/2 fronts as the forcing strength is decreased. The instability is degenerate for an amplitude equation with cubic nonlinearities. At the instability point a continuous family of pair solutions exists, consisting of π/2 fronts separated by distances ranging from zero to infinity. Quintic nonlinearities lift the degeneracy at the instability point but do not change the basic nature of the instability. We conjecture the existence of similar instabilities in higher 2n:1 resonances (n=3,4,hor-ellipsis) where stationary π fronts decompose into n traveling π/n fronts. The instabilities designate transitions from stationary two-phase patterns to traveling 2n-phase patterns. As an example, we demonstrate with a numerical solution the collapse of a four-phase spiral wave into a stationary two-phase pattern as the forcing strength within the 4:1 resonance is increased. copyright 1999 The American Physical Society

  11. Muscle tension increases impact force but decreases energy absorption and pain during visco-elastic impacts to human thighs.

    Science.gov (United States)

    Tsui, Felix; Pain, Matthew T G

    2018-01-23

    Despite uncertainty of its exact role, muscle tension has shown an ability to alter human biomechanical response and may have the ability to reduce impact injury severity. The aim of this study was to examine the effects of muscle tension on human impact response in terms of force and energy absorbed and the subjects' perceptions of pain. Seven male martial artists had a 3.9 kg medicine ball dropped vertically from seven different heights, 1.0-1.6 m in equal increments, onto their right thigh. Subjects were instructed to either relax or tense the quadriceps via knee extension (≥60% MVC) prior to each impact. F-scan pressure insoles sampling at 500 Hz recorded impact force and video was recorded at 1000 Hz to determine energy loss from the medicine ball during impact. Across all impacts force was 11% higher, energy absorption was 15% lower and time to peak force was 11% lower whilst perceived impact intensity was significantly lower when tensed. Whether muscle is tensed or not had a significant and meaningful effect on perceived discomfort. However, it did not relate to impact force between conditions and so tensing may alter localised injury risk during human on human type impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Analysis of experimental data: The average shape of extreme wave forces on monopile foundations and the NewForce model

    DEFF Research Database (Denmark)

    Schløer, Signe; Bredmose, Henrik; Ghadirian, Amin

    2017-01-01

    Experiments with a stiff pile subjected to extreme wave forces typical of offshore wind farm storm conditions are considered. The exceedance probability curves of the nondimensional force peaks and crest heights are analysed. The average force time history normalised with their peak values are co...... to the average shapes. For more nonlinear wave shapes, higher order terms has to be considered in order for the NewForce model to be able to predict the expected shapes.......Experiments with a stiff pile subjected to extreme wave forces typical of offshore wind farm storm conditions are considered. The exceedance probability curves of the nondimensional force peaks and crest heights are analysed. The average force time history normalised with their peak values...... are compared across the sea states. It is found that the force shapes show a clear similarity when grouped after the values of the normalised peak force, F/(ρghR2), normalised depth h/(gT2p) and presented in a normalised time scale t/Ta. For the largest force events, slamming can be seen as a distinct ‘hat...

  13. Electron dynamics with radiation and nonlinear wigglers

    International Nuclear Information System (INIS)

    Jowett, J.M.

    1986-06-01

    The physics of electron motion in storage rings is described by supplementing the Hamiltonian equations of motion with fluctuating radiation reaction forces to describe the effects of synchrotron radiation. This leads to a description of radiation damping and quantum diffusion in single-particle phase-space by means of Fokker-Planck equations. For practical purposes, most storage rings remain in the regime of linear damping and diffusion; this is discussed in some detail with examples, concentrating on longitudinal phase space. However special devices such as nonlinear wigglers may permit the new generation of very large rings to go beyond this into regimes of nonlinear damping. It is shown how a special combined-function wiggler can be used to modify the energy distribution and current profile of electron bunches

  14. Mechanical Kerr nonlinearities due to bipolar optical forces between deformable silicon waveguides.

    Science.gov (United States)

    Ma, Jing; Povinelli, Michelle L

    2011-05-23

    We use an analytical method based on the perturbation of effective index at fixed frequency to calculate optical forces between silicon waveguides. We use the method to investigate the mechanical Kerr effect in a coupled-waveguide system with bipolar forces. We find that a positive mechanical Kerr coefficient results from either an attractive or repulsive force. An enhanced mechanical Kerr coefficient several orders of magnitude larger than the intrinsic Kerr coefficient is obtained in waveguides for which the optical mode approaches the air light line, given appropriate design of the waveguide dimensions.

  15. Nonlinear dynamics of a parametrically driven sine-Gordon system

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Kivshar, Yuri S.; Samuelsen, Mogens Rugholm

    1993-01-01

    We consider a sine-Gordon system, driven by an ac parametric force in the presence of loss. It is demonstrated that a breather can be maintained in a steady state at half of the external frequency. In the small-amplitude limit the effect is described by an effective nonlinear Schrodinger equation...

  16. Transient and Steady-State Responses of an Asymmetric Nonlinear Oscillator

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    oscillator that describes the motion of a damped, forced system supported symmetrically by simple shear springs on a smooth inclined bearing surface. We also use the percentage overshoot value to study the influence of damping and nonlinearity on the transient and steady-state oscillatory amplitudes.

  17. Resonant difference-frequency atomic force ultrasonic microscope

    Science.gov (United States)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  18. Probabilistic information on object weight shapes force dynamics in a grip-lift task.

    Science.gov (United States)

    Trampenau, Leif; Kuhtz-Buschbeck, Johann P; van Eimeren, Thilo

    2015-06-01

    Advance information, such as object weight, size and texture, modifies predictive scaling of grip forces in a grip-lift task. Here, we examined the influence of probabilistic advance information about object weight. Fifteen healthy volunteers repeatedly grasped and lifted an object equipped with a force transducer between their thumb and index finger. Three clearly distinguishable object weights were used. Prior to each lift, the probabilities for the three object weights were given by a visual cue. We examined the effect of probabilistic pre-cues on grip and lift force dynamics. We expected predictive scaling of grip force parameters to follow predicted values calculated according to probabilistic contingencies of the cues. We observed that probabilistic cues systematically influenced peak grip and load force rates, as an index of predictive motor scaling. However, the effects of probabilistic cues on force rates were nonlinear, and anticipatory adaptations of the motor output generally seemed to overestimate high probabilities and underestimate low probabilities. These findings support the suggestion that anticipatory adaptations and force scaling of the motor system can integrate probabilistic information. However, probabilistic information seems to influence motor programs in a nonlinear fashion.

  19. Counterbalance of cutting force for advanced milling operations

    Science.gov (United States)

    Tsai, Nan-Chyuan; Shih, Li-Wen; Lee, Rong-Mao

    2010-05-01

    The goal of this work is to concurrently counterbalance the dynamic cutting force and regulate the spindle position deviation under various milling conditions by integrating active magnetic bearing (AMB) technique, fuzzy logic algorithm and an adaptive self-tuning feedback loop. Since the dynamics of milling system is highly determined by a few operation conditions, such as speed of spindle, cut depth and feedrate, therefore the dynamic model for cutting process is more appropriate to be constructed by experiments, instead of using theoretical approach. The experimental data, either for idle or cutting, are utilized to establish the database of milling dynamics so that the system parameters can be on-line estimated by employing the proposed fuzzy logic algorithm as the cutting mission is engaged. Based on the estimated milling system model and preset operation conditions, i.e., spindle speed, cut depth and feedrate, the current cutting force can be numerically estimated. Once the current cutting force can be real-time estimated, the corresponding compensation force can be exerted by the equipped AMB to counterbalance the cutting force, in addition to the spindle position regulation by feedback of spindle position. On the other hand, for the magnetic force is nonlinear with respect to the applied electric current and air gap, the characteristics of the employed AMB is investigated also by experiments and a nonlinear mathematic model, in terms of air gap between spindle and electromagnetic pole and coil current, is developed. At the end, the experimental simulations on realistic milling are presented to verify the efficacy of the fuzzy controller for spindle position regulation and the capability of the dynamic cutting force counterbalance.

  20. A comparative study of satellite estimation for solar insolation in Albania with ground measurements

    International Nuclear Information System (INIS)

    Mitrushi, Driada; Berberi, Pëllumb; Muda, Valbona; Buzra, Urim; Bërdufi, Irma; Topçiu, Daniela

    2016-01-01

    The main objective of this study is to compare data provided by Database of NASA with available ground data for regions covered by national meteorological net NASA estimates that their measurements of average daily solar radiation have a root-mean-square deviation RMSD error of 35 W/m"2 (roughly 20% inaccuracy). Unfortunately valid data from meteorological stations for regions of interest are quite rare in Albania. In these cases, use of Solar Radiation Database of NASA would be a satisfactory solution for different case studies. Using a statistical method allows to determine most probable margins between to sources of data. Comparison of mean insulation data provided by NASA with ground data of mean insulation provided by meteorological stations show that ground data for mean insolation results, in all cases, to be underestimated compared with data provided by Database of NASA. Converting factor is 1.149.

  1. Dynamic response analysis of block foundations with nonlinear dry friction mounting system to impact loads

    International Nuclear Information System (INIS)

    Zheng, Enlai; Zhu, Sihong; Zhou, Xinlong

    2014-01-01

    It is essential to establish a dynamic model to predict and evaluate the dynamic performance of a nonlinear dry friction mounting system during design procedure, when it is impossible to carry out the test of prototype. Unlike the conventional ideal dry friction model where the direction of dry friction force is always considered to be opposite to that of relative velocity, a new equivalent resistance model of dry friction force is proposed based on the bilinear hysteretic model by introducing a parameter g in this work. The equivalent resistance contains spring force and damping force, whose direction is not opposite to that of relative velocity. Then, a dynamic model of the block foundation with nonlinear dry friction mounting system is established. When the equivalent resistance is applied to the dynamic model, its dynamic responses are obtained under common practical forms of press loads: rectangular pulse, half-sine pulse, and triangular pulse. Compared to experimental results, the dynamic responses based on the equivalent resistance model are more consistent with the simulation results based on the ideal dry friction model and the validity of the equivalent resistance model for the bilinear hysteretic model in this work is verified. Furthermore, the effect of the pulse shape and pulse duration on the dynamic responses of the block foundation with nonlinear dry friction mounting system is investigated.

  2. Adaptive H∞ nonlinear velocity tracking using RBFNN for linear DC brushless motor

    Science.gov (United States)

    Tsai, Ching-Chih; Chan, Cheng-Kain; Li, Yi Yu

    2012-01-01

    This article presents an adaptive H ∞ nonlinear velocity control for a linear DC brushless motor. A simplified model of this motor with friction is briefly recalled. The friction dynamics is described by the Lu Gre model and the online tuning radial basis function neural network (RBFNN) is used to parameterise the nonlinear friction function and un-modelled errors. An adaptive nonlinear H ∞ control method is then proposed to achieve velocity tracking, by assuming that the upper bounds of the ripple force, the changeable load and the nonlinear friction can be learned by the RBFNN. The closed-loop system is proven to be uniformly bounded using the Lyapunov stability theory. The feasibility and the efficacy of the proposed control are exemplified by conducting two velocity tracking experiments.

  3. Special class of nonlinear damping models in flexible space structures

    Science.gov (United States)

    Hu, Anren; Singh, Ramendra P.; Taylor, Lawrence W.

    1991-01-01

    A special class of nonlinear damping models is investigated in which the damping force is proportional to the product of positive integer or the fractional power of the absolute values of displacement and velocity. For a one-degree-of-freedom system, the classical Krylov-Bogoliubov 'averaging' method is used, whereas for a distributed system, both an ad hoc perturbation technique and the finite difference method are employed to study the effects of nonlinear damping. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on the damping ratio but also on the initial amplitude, the time to measure the response, the frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce the energy of the system and to pass energy to lower modes.

  4. Influence of temperature and salinity on hydrodynamic forces

    Directory of Open Access Journals (Sweden)

    A. Escobar

    2016-12-01

    Full Text Available The purpose of this study is to introduce an innovative approach to offshore engineering so as to take variations in sea temperature and salinity into account in the calculation of hydrodynamic forces. With this in mind, a thorough critical analysis of the influence of sea temperature and salinity on hydrodynamic forces on piles like those used nowadays in offshore wind farms will be carried out. This influence on hydrodynamic forces occurs through a change in water density and viscosity due to temperature and salinity variation. Therefore, the aim here is to observe whether models currently used to estimate wave forces on piles are valid for different ranges of sea temperature and salinity apart from observing the limit when diffraction or nonlinear effects arise combining both effects with the magnitude of the pile diameter. Hence, specific software has been developed to simulate equations in fluid mechanics taking into account nonlinear and diffraction effects. This software enables wave produced forces on a cylinder supported on the sea bed to be calculated. The study includes observations on the calculation model's sensitivity as to a variation in the cylinder's diameter, on the one hand and, on the other, as to temperature and salinity variation. This software will enable an iterative calculation to be made for finding out the shape the pressure wave caused when a wave passes over will have for different pile diameters and water with different temperature and salinity.

  5. Nonlinear Cyclotron absorption of a hole doppleron in cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Voloshin, I.F.; Bugal' ter, G.A.; Demikhovskii, V.Y.; Fisher, L.M.; Yudin, V.A.

    1977-10-01

    We investigated experimentally the nonlinear behavior of the impedance of a cadmium plate in the region of existence of the hole doppleron. It is shown theoretically that this phenomenon can be attributed to nonlinear cyclotron absorption of the wave in the metal. A theory of nonlinear cyclotron absorption of a hole doppleron in cadmium is constructed. The nonlinearity is due to the influence of the wave magnetic field H that alters the trajectories of the resonant electrons responsible for the cyclotron asorption. The Lorentz force connected with the field H modulates the particle velocity along the magnetic field at a characteristic frequency ..omega../sub 0/ proportional to the square root of the wave amplitude. The modulation of the longitudinal particle velocity leads to violation of the condition of their resonant interaction with the wave, as a result of which the absorption coefficient decreases. The nonlinearity is significant when the frequency ..omega../sub 0/ is large compared with the electron-collision frequency. A decrease of the cyclotron absorption changes radically the picture of the surface-impedance oscillations of the plate in the magnetic field. We studied in the experiment the influence of the temperature, of the angle of inclination of the magnetic field, and of the frequency on the nonlinear-effect threshold field that separates the regions of linear and nonlinear behavior of the sample impedance. The measurement results are in qualitative agreement with the conclusions of the theory.

  6. Non-linear time series analysis on flow instability of natural circulation under rolling motion condition

    International Nuclear Information System (INIS)

    Zhang, Wenchao; Tan, Sichao; Gao, Puzhen; Wang, Zhanwei; Zhang, Liansheng; Zhang, Hong

    2014-01-01

    Highlights: • Natural circulation flow instabilities in rolling motion are studied. • The method of non-linear time series analysis is used. • Non-linear evolution characteristic of flow instability is analyzed. • Irregular complex flow oscillations are chaotic oscillations. • The effect of rolling parameter on the threshold of chaotic oscillation is studied. - Abstract: Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions were studied by the method of non-linear time series analysis. Experimental flow time series of different dimensionless power and rolling parameters were analyzed based on phase space reconstruction theory. Attractors which were reconstructed in phase space and the geometric invariants, including correlation dimension, Kolmogorov entropy and largest Lyapunov exponent, were determined. Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions was studied based on the results of the geometric invariant analysis. The results indicated that the values of the geometric invariants first increase and then decrease as dimensionless power increases which indicated the non-linear characteristics of the system first enhance and then weaken. The irregular complex flow oscillation is typical chaotic oscillation because the value of geometric invariants is at maximum. The threshold of chaotic oscillation becomes larger as the rolling frequency or rolling amplitude becomes big. The main influencing factors that influence the non-linear characteristics of the natural circulation system under rolling motion are thermal driving force, flow resistance and the additional forces caused by rolling motion. The non-linear characteristics of the natural circulation system under rolling motion changes caused by the change of the feedback and coupling degree among these influencing factors when the dimensionless power or rolling parameters changes

  7. Fuzzy logic control of vehicle suspensions with dry friction nonlinearity

    Indian Academy of Sciences (India)

    We design and investigate the performance of fuzzy logic-controlled (FLC) active suspensions on a nonlinear vehicle model with four degrees of freedom, without causing any degeneration in suspension working limits. Force actuators were mounted parallel to the suspensions. In this new approach, linear combinations of ...

  8. Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams

    Science.gov (United States)

    Kluger, Jocelyn M.; Sapsis, Themistoklis P.; Slocum, Alexander H.

    2015-04-01

    In the present work we examine how mechanical nonlinearity can be appropriately utilized to achieve strong robustness of performance in an energy harvesting setting. More specifically, for energy harvesting applications, a great challenge is the uncertain character of the excitation. The combination of this uncertainty with the narrow range of good performance for linear oscillators creates the need for more robust designs that adapt to a wider range of excitation signals. A typical application of this kind is energy harvesting from walking vibrations. Depending on the particular characteristics of the person that walks as well as on the pace of walking, the excitation signal obtains completely different forms. In the present work we study a nonlinear spring mechanism that is composed of a cantilever wrapping around a curved surface as it deflects. While for the free cantilever, the force acting on the free tip depends linearly on the tip displacement, the utilization of a contact surface with the appropriate distribution of curvature leads to essentially nonlinear dependence between the tip displacement and the acting force. The studied nonlinear mechanism has favorable mechanical properties such as low frictional losses, minimal moving parts, and a rugged design that can withstand excessive loads. Through numerical simulations we illustrate that by utilizing this essentially nonlinear element in a 2 degrees-of-freedom (DOF) system, we obtain strongly nonlinear energy transfers between the modes of the system. We illustrate that this nonlinear behavior is associated with strong robustness over three radically different excitation signals that correspond to different walking paces. To validate the strong robustness properties of the 2DOF nonlinear system, we perform a direct parameter optimization for 1DOF and 2DOF linear systems as well as for a class of 1DOF and 2DOF systems with nonlinear springs similar to that of the cubic spring that are physically realized

  9. Nonlinear Phenomena in the Single-Mode Dynamics in an AFM Cantilever Beam

    KAUST Repository

    Ruzziconi, Laura; Lenci, Stefano; Younis, Mohammad I.

    2016-01-01

    This study deals with the nonlinear dynamics arising in an atomic force microscope cantilever beam. After analyzing the static behavior, a single degree of freedom Galerkin reduced order model is introduced, which describes the overall scenario

  10. Non-linear characterisation of the physical model of an ancient masonry bridge

    International Nuclear Information System (INIS)

    Fragonara, L Zanotti; Ceravolo, R; Matta, E; Quattrone, A; De Stefano, A; Pecorelli, M

    2012-01-01

    This paper presents the non-linear investigations carried out on a scaled model of a two-span masonry arch bridge. The model has been built in order to study the effect of the central pile settlement due to riverbank erosion. Progressive damage was induced in several steps by applying increasing settlements at the central pier. For each settlement step, harmonic shaker tests were conducted under different excitation levels, this allowing for the non-linear identification of the progressively damaged system. The shaker tests have been performed at resonance with the modal frequency of the structure, which were determined from a previous linear identification. Estimated non-linearity parameters, which result from the systematic application of restoring force based identification algorithms, can corroborate models to be used in the reassessment of existing structures. The method used for non-linear identification allows monitoring the evolution of non-linear parameters or indicators which can be used in damage and safety assessment.

  11. Nonlinear aerodynamics of two-dimensional airfoils in severe maneuver

    Science.gov (United States)

    Scott, Matthew T.; Mccune, James E.

    1988-01-01

    This paper presents a nonlinear theory of forces and moment acting on a two-dimensional airfoil in unsteady potential flow. Results are obtained for cases of both large and small amplitude motion. The analysis, which is based on an extension of Wagner's integral equation to the nonlinear regime, takes full advantage of the trailing wake's tendency to deform under local velocities. Interactive computational results are presented that show examples of wake-induced lift and moment augmentation on the order of 20 percent of quasi-static values. The expandability and flexibility of the present computational method are noted, as well as the relative speed with which solutions are obtained.

  12. Stabilization and regulation of nonlinear systems a robust and adaptive approach

    CERN Document Server

    Chen, Zhiyong

    2015-01-01

    The core of this textbook is a systematic and self-contained treatment of the nonlinear stabilization and output regulation problems. Its coverage embraces both fundamental concepts and advanced research outcomes and includes many numerical and practical examples. Several classes of important uncertain nonlinear systems are discussed. The state-of-the art solution presented uses robust and adaptive control design ideas in an integrated approach which demonstrates connections between global stabilization and global output regulation allowing both to be treated as stabilization problems. Stabilization and Regulation of Nonlinear Systems takes advantage of rich new results to give students up-to-date instruction in the central design problems of nonlinear control, problems which are a driving force behind the furtherance of modern control theory and its application. The diversity of systems in which stabilization and output regulation become significant concerns in the mathematical formulation of practical contr...

  13. Accelerator-feasible N-body nonlinear integrable system

    Directory of Open Access Journals (Sweden)

    V. Danilov

    2014-12-01

    Full Text Available Nonlinear N-body integrable Hamiltonian systems, where N is an arbitrary number, have attracted the attention of mathematical physicists for the last several decades, following the discovery of some number of these systems. This paper presents a new integrable system, which can be realized in facilities such as particle accelerators. This feature makes it more attractive than many of the previous such systems with singular or unphysical forces.

  14. A nonlinear beam model to describe the postbuckling of wide neo-Hookean beams

    Science.gov (United States)

    Lubbers, Luuk A.; van Hecke, Martin; Coulais, Corentin

    2017-09-01

    Wide beams can exhibit subcritical buckling, i.e. the slope of the force-displacement curve can become negative in the postbuckling regime. In this paper, we capture this intriguing behaviour by constructing a 1D nonlinear beam model, where the central ingredient is the nonlinearity in the stress-strain relation of the beams constitutive material. First, we present experimental and numerical evidence of a transition to subcritical buckling for wide neo-Hookean hyperelastic beams, when their width-to-length ratio exceeds a critical value of 12%. Second, we construct an effective 1D energy density by combining the Mindlin-Reissner kinematics with a nonlinearity in the stress-strain relation. Finally, we establish and solve the governing beam equations to analytically determine the slope of the force-displacement curve in the postbuckling regime. We find, without any adjustable parameters, excellent agreement between the 1D theory, experiments and simulations. Our work extends the understanding of the postbuckling of structures made of wide elastic beams and opens up avenues for the reverse-engineering of instabilities in soft and metamaterials.

  15. One Nonlinear PID Control to Improve the Control Performance of a Manipulator Actuated by a Pneumatic Muscle Actuator

    Directory of Open Access Journals (Sweden)

    Jun Zhong

    2014-05-01

    Full Text Available Braided pneumatic muscle actuator shows highly nonlinear properties between displacements and forces, which are caused by nonlinearity of pneumatic system and nonlinearity of its geometric construction. In this paper, a new model based on Bouc-Wen differential equation is proposed to describe the hysteretic behavior caused by its structure. The hysteretic loop between contractile force and displacement is dissolved into linear component and hysteretic component. Relationship between pressure within muscle actuator and parameters of the proposed model is discussed. A single degree of freedom manipulator actuated by PMA is designed. On the basis of the proposed model, a novel cascade position controller is designed. Single neuron adaptive PID algorithm is adopted to cope with the nonlinearity and model uncertainties of the manipulator. The outer loop of the controller is to handle position tracking problem and the inner loop is to control pressure. The controller is applied to the manipulator and experiments are conducted. Results demonstrate the effectiveness of the proposed controller.

  16. Stability diagram for the forced Kuramoto model.

    Science.gov (United States)

    Childs, Lauren M; Strogatz, Steven H

    2008-12-01

    We analyze the periodically forced Kuramoto model. This system consists of an infinite population of phase oscillators with random intrinsic frequencies, global sinusoidal coupling, and external sinusoidal forcing. It represents an idealization of many phenomena in physics, chemistry, and biology in which mutual synchronization competes with forced synchronization. In other words, the oscillators in the population try to synchronize with one another while also trying to lock onto an external drive. Previous work on the forced Kuramoto model uncovered two main types of attractors, called forced entrainment and mutual entrainment, but the details of the bifurcations between them were unclear. Here we present a complete bifurcation analysis of the model for a special case in which the infinite-dimensional dynamics collapse to a two-dimensional system. Exact results are obtained for the locations of Hopf, saddle-node, and Takens-Bogdanov bifurcations. The resulting stability diagram bears a striking resemblance to that for the weakly nonlinear forced van der Pol oscillator.

  17. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...

  18. Global format for energy-momentum based time integration in nonlinear dynamics

    DEFF Research Database (Denmark)

    Krenk, Steen

    2014-01-01

    A global format is developed for momentum and energy consistent time integration of second‐order dynamic systems with general nonlinear stiffness. The algorithm is formulated by integrating the state‐space equations of motion over the time increment. The internal force is first represented...... of mean value products at the element level or explicit use of a geometric stiffness matrix. An optional monotonic algorithmic damping, increasing with response frequency, is developed in terms of a single damping parameter. In the solution procedure, the velocity is eliminated and the nonlinear...

  19. Numerical assessment of factors affecting nonlinear internal waves in the South China Sea

    Science.gov (United States)

    Li, Qiang

    2014-02-01

    Nonlinear internal waves in the South China Sea exhibit diverse characteristics, which are associated with the complex conditions in Luzon Strait, such as the double ridge topography, the Earth’s rotation, variations in stratification and the background current induced by the Kuroshio. These effects are individually assessed using the MITgcm. The performance of the model is first validated through comparison with field observations. Because of in-phased ray interaction, the western ridge in Luzon Strait intensifies the semidiurnal internal tides generated from the eastern ridge, thus reinforcing the formation of nonlinear internal waves. However, the ray interaction for K1 forcing becomes anti-phased so that the K1 internal tide generation is reduced by the western ridge. Not only does the rotational dispersion suppress internal tide generation, it also inhibits nonlinear steepening and consequent internal solitary wave formation. As a joint effect, the double ridges and the rotational dispersion result in a paradoxical phenomenon: diurnal barotropic tidal forcing is dominant in Luzon Strait, but semidiurnal internal tides prevail in the deep basin of the South China Sea. The seasonal variation of the Kuroshio is consistent with the seasonal appearance of nonlinear internal waves in the South China Sea. The model results show that the westward inflow due to the Kuroshio intrusion reduces the amplitude of internal tides in the South China Sea, causing the weakening or absence of internal solitary waves. Winter stratification cannot account for the significant reduction of nonlinear internal waves, because the amplitude growth of internal tides due to increased thermocline tilting counteracts the reduced nonlinearity caused by thermocline deepening.

  20. What is the Time Scale for Orbital Forcing of the Martian Water Cycle?

    Science.gov (United States)

    Hecht, M. H.

    2003-01-01

    Calculation of the periodic variations in the martian orbital parameters by Ward and subsequent refinements to the theory have inspired numerous models of variation of the martian water cycle. Most of these models have focused on variations in planetary obliquity on a both a short-term (110 kyr) time scale as well as larger oscillations occuring over millions of years. To a lesser extent, variations in planetary eccentricity have also been considered. The third and fastest mode of variation, the precession of the longitude of perihelion, has generally been deemphasized because, among the three parameters, it is the only one that does not change the integrated annual insolation. But as a result of this precession, the asymmetry in peak summer insolation between the poles exceeds 50%, with the maximum cycling between poles every 25.5 kyrs. The relative contribution of these different elements to orbital forcing of climate takes on particular importance in the context of apparently recent waterrelated features such as gullies or polar layered deposits (PLD). Christensen, for example, recently indentified mantling of heavily gullied crater walls as residual dust-covered snow deposits that were responsible for the formation of the gullies in a previous epoch. Christensen assumed that the snow was originally deposited at a period of high obliquity which was stabilized against sublimation by a lag deposit of dust. It is suggested here that not obliquity, but the shortterm oscillations associated with precession of the perihelion may play the dominant role in the formation of gullies, major strata in the polar layered deposits (PLD), and other water-related features.

  1. Loss of Energy Concentration in Nonlinear Evolution Beam Equations

    Science.gov (United States)

    Garrione, Maurizio; Gazzola, Filippo

    2017-12-01

    Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation u_{tt} + u_{xxxx} + f(u)= g(x, t) in bounded space-time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.

  2. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.

    Science.gov (United States)

    Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum

    2016-03-01

    Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Insolation driven biomagnetic response to the Holocene Warm Period in semi-arid East Asia

    Science.gov (United States)

    Liu, Suzhen; Deng, Chenglong; Xiao, Jule; Li, Jinhua; Paterson, Greig A.; Chang, Liao; Yi, Liang; Qin, Huafeng; Pan, Yongxin; Zhu, Rixiang

    2015-01-01

    The Holocene Warm Period (HWP) provides valuable insights into the climate system and biotic responses to environmental variability and thus serves as an excellent analogue for future global climate changes. Here we document, for the first time, that warm and wet HWP conditions were highly favourable for magnetofossil proliferation in the semi-arid Asian interior. The pronounced increase of magnetofossil concentrations at ~9.8 ka and decrease at ~5.9 ka in Dali Lake coincided respectively with the onset and termination of the HWP, and are respectively linked to increased nutrient supply due to postglacial warming and poor nutrition due to drying at ~6 ka in the Asian interior. The two-stage transition at ~7.7 ka correlates well with increased organic carbon in middle HWP and suggests that improved climate conditions, leading to high quality nutrient influx, fostered magnetofossil proliferation. Our findings represent an excellent lake record in which magnetofossil abundance is, through nutrient availability, controlled by insolation driven climate changes.

  4. Entropy generation minimization (EGM) of nanofluid flow by a thin moving needle with nonlinear thermal radiation

    Science.gov (United States)

    Waleed Ahmed Khan, M.; Ijaz Khan, M.; Hayat, T.; Alsaedi, A.

    2018-04-01

    Entropy generation minimization (EGM) and heat transport in nonlinear radiative flow of nanomaterials over a thin moving needle has been discussed. Nonlinear thermal radiation and viscous dissipation terms are merged in the energy expression. Water is treated as ordinary fluid while nanomaterials comprise titanium dioxide, copper and aluminum oxide. The nonlinear governing expressions of flow problems are transferred to ordinary ones and then tackled for numerical results by Built-in-shooting technique. In first section of this investigation, the entropy expression is derived as a function of temperature and velocity gradients. Geometrical and physical flow field variables are utilized to make it nondimensionalized. An entropy generation analysis is utilized through second law of thermodynamics. The results of temperature, velocity, concentration, surface drag force and heat transfer rate are explored. Our outcomes reveal that surface drag force and Nusselt number (heat transfer) enhanced linearly for higher nanoparticle volume fraction. Furthermore drag force decays for aluminum oxide and it enhances for copper nanoparticles. In addition, the lowest heat transfer rate is achieved for higher radiative parameter. Temperature field is enhanced with increase in temperature ratio parameter.

  5. Modeling and experimental verification of doubly nonlinear magnet-coupled piezoelectric energy harvesting from ambient vibration

    International Nuclear Information System (INIS)

    Zhou, Shengxi; Cao, Junyi; Wang, Wei; Liu, Shengsheng; Lin, Jing

    2015-01-01

    This paper presents a nonlinear doubly magnet-coupled energy harvesting system (DMEHS) which could exhibit co-bistable and monostable dynamic characteristics. Its various characteristic responses induced by the magnetic force can be conveniently obtained using the adjustable horizontal distance between two coupled harvesters in the DMEHS. In the case of appropriate relative positions, the DMEHS appears in a co-bistable structure which is different from the traditional bistable structure. Additionally, both the inclination angle of endmost magnets and the displacement perpendicular to the vibration direction are taken into account to calculate the nonlinear magnetic force in the nonlinear electromechanical equations. The numerical investigations show good agreement with experimental results with respect to the output voltage response. Each harvester without magnetic coupling is tested independently to compare with the DMEHS. Both numerical and experimental results also demonstrate the frequency bandwidth and performance enhancements by changing the horizontal distance between the two coupled harvesters. (paper)

  6. Nonlinear analysis of a closed-loop tractor-semitrailer vehicle system with time delay

    Science.gov (United States)

    Liu, Zhaoheng; Hu, Kun; Chung, Kwok-wai

    2016-08-01

    In this paper, a nonlinear analysis is performed on a closed-loop system of articulated heavy vehicles with driver steering control. The nonlinearity arises from the nonlinear cubic tire force model. An integration method is employed to derive an analytical periodic solution of the system in the neighbourhood of the critical speed. The results show that excellent accuracy can be achieved for the calculation of periodic solutions arising from Hopf bifurcation of the vehicle motion. A criterion is obtained for detecting the Bautin bifurcation which separates branches of supercritical and subcritical Hopf bifurcations. The integration method is compared to the incremental harmonic balance method in both supercritical and subcritical scenarios.

  7. Localized Effects in the Nonlinear Behavior of Sandwich Panels with a Transversely Flexible Core

    DEFF Research Database (Denmark)

    Frostig, Y.; Thomsen, Ole Thybo

    2005-01-01

    This paper presents the results of an investigation of the role of localized effects within the geometrically nonlinear domain on structural sandwich panels with a "compliant" core. Special emphasis is focused on the nonlinear response near concentrated loads and stiffened core regions. The adopted...... nonlinear analysis approach incorporates the effects of the vertical flexibility of the core, and it is based on the approach of the High-order Sandwich Panel Theory (HSAPT). The results demonstrate that the effects of localized loads, when taken into the geometrically nonlinear domain, change the response...... of the panel from a strength problem controlled by stress constraints into a stability problem with unstable limit point behavior when force-controlled loads are applied. The stability problem emerge as the nonlinear response develops with the formation of a small number of buckling waves in the compressed...

  8. Nonlinear features identified by Volterra series for damage detection in a buckled beam

    Directory of Open Access Journals (Sweden)

    Shiki S. B.

    2014-01-01

    Full Text Available The present paper proposes a new index for damage detection based on nonlinear features extracted from prediction errors computed by multiple convolutions using the discrete-time Volterra series. A reference Volterra model is identified with data in the healthy condition and used for monitoring the system operating with linear or nonlinear behavior. When the system has some structural change, possibly associated with damage, the index metrics computed could give an alert to separate the linear and nonlinear contributions, besides provide a diagnostic about the structural state. To show the applicability of the method, an experimental test is performed using nonlinear vibration signals measured in a clamped buckled beam subject to different levels of force applied and with simulated damages through discontinuities inserted in the beam surface.

  9. Simplified Model of Nonlinear Landau Damping

    International Nuclear Information System (INIS)

    Yampolsky, N.A.; Fisch, N.J.

    2009-01-01

    The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

  10. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of

  11. Analytical and Computational Modeling of Mechanical Waves in Microscale Granular Crystals: Nonlinearity and Rotational Dynamics

    Science.gov (United States)

    Wallen, Samuel P.

    Granular media are one of the most common, yet least understood forms of matter on earth. The difficulties in understanding the physics of granular media stem from the fact that they are typically heterogeneous and highly disordered, and the grains interact via nonlinear contact forces. Historically, one approach to reducing these complexities and gaining new insight has been the study of granular crystals, which are ordered arrays of similarly-shaped particles (typically spheres) in Hertzian contact. Using this setting, past works explored the rich nonlinear dynamics stemming from contact forces, and proposed avenues where such granular crystals could form designer, dynamically responsive materials, which yield beneficial functionality in dynamic regimes. In recent years, the combination of self-assembly fabrication methods and laser ultrasonic experimental characterization have enabled the study of granular crystals at microscale. While our intuition may suggest that these microscale granular crystals are simply scaled-down versions of their macroscale counterparts, in fact, the relevant physics change drastically; for example, short-range adhesive forces between particles, which are negligible at macroscale, are several orders of magnitude stronger than gravity at microscale. In this thesis, we present recent advances in analytical and computational modeling of microscale granular crystals, in particular concerning the interplay of nonlinearity, shear interactions, and particle rotations, which have previously been either absent, or included separately at macroscale. Drawing inspiration from past works on phononic crystals and nonlinear lattices, we explore problems involving locally-resonant metamaterials, nonlinear localized modes, amplitude-dependent energy partition, and other rich dynamical phenomena. This work enhances our understanding of microscale granular media, which may find applicability in fields such as ultrasonic wave tailoring, signal processing

  12. Structure dynamics with regard to non-linear support behavior; Dynamische Strukturberechnung unter Beruecksichtigung nichtlinearen Lagerverhaltens

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, W. [Technischer Ueberwachungs-Verein Nord e.V., Hamburg (Germany)

    2000-07-01

    Because of modifications to a feed-water line of a power plant structural calculations of the pipework were performed. As a result of a linear (modal) analysis very high restraint forces on the supports were calculated. In order to reduce conservatisms in the calculation the model was optimized with regard to the support stiffnesses and nonlinear behavior of slide bearings, guides and shock absorbers were taken into account. The main result of the non-linear analysis, which was performed by methods of direct-integration, was that nonlinearity yields evident differences in structural frequencies and in energy dissipation (damping) in comparison to the linear analysis. The high restraint forces on the supports became smaller for most of the supports but at some points the forces of the non-linear analysis were even higher. So the conservatism of the linear analysis is not fully valid for the whole structure. The relevance of the non-linear effects in dynamic piping calculations is shown by comparing the calculation result with measurements which were performed on structures in the plant. (orig.) [German] Im Rahmen der Aenderung der Speisewasserleitung einer Kraftwerksanlage wurde die Struktur neu berechnet. Die Analysen mit einem linearen Modell (modal), das ueblicherweise verwendet wird, ergaben hohe Lasten an Halterungen. Zum Abbau von Konservativitaeten wurde eine realistischere Modellierung durch die Beruecksichtigung des nichtlinearen Verhaltens der in der Anlage befindlichen Gleitlager, Fuehrungen und Stossbremsen in der Berechnung vorgenommen. Die Untersuchungen haben ergeben, dass durch die Nichtlinearitaet das Frequenzverhalten der Struktur und die Dissipation von Energie durch Reibvorgaenge wesentlich beeinflusst werden. Des Weiteren ist festzustellen, dass aus linearen Analysen nicht uneingeschraenkt konservative Ergebnisse gewonnen werden. Die Relevanz der Beruecksichtigung des nichtlinearen Lagerverhaltens bei einer dynamischen Strukturberechnung wird

  13. Geometrical nonlinear deformation model and its experimental study on bimorph giant magnetostrictive thin film

    Institute of Scientific and Technical Information of China (English)

    Wei LIU; Zhenyuan JIA; Fuji WANG; Yongshun ZHANG; Dongming GUO

    2008-01-01

    The geometrical nonlinearity of a giant magne-tostrictive thin film (GMF) can be clearly detected under the magnetostriction effect. Thus, using geometrical linear elastic theory to describe the strain, stress, and constitutive relationship of GMF is inaccurate. According to nonlinear elastic theory, a nonlinear deformation model of the bimorph GMF is established based on assumptions that the magnetostriction effect is equivalent to the effect of body force loaded on the GMF. With Taylor series method, the numerical solution is deduced. Experiments on TbDyFe/Polyimide (PI)/SmFe and TbDyFe/Cu/SmFe are then conducted to verify the proposed model, respectively. Results indicate that the nonlinear deflection curve model is in good conformity with the experimental data.

  14. Nonlinear longitudinal dynamics studies at the ALS

    International Nuclear Information System (INIS)

    Byrd, J.M.; Cheng, W.-H.; De Santis, S.; Li, D.; Stupakov, G.; Zimmermann, F.

    1999-01-01

    We present a summary of results for a variety of studies of nonlinear longitudinal dynamics in the Advanced Light Source, an electron storage ring. These include observation of decoherence at injection, decay of an injected beam, forced synchrotron oscillations and diffusion from one bunch to the next. All of the measurements were made using a dual-scan streak camera which allowed the real-time observation of the longitudinal distribution of the electron beam

  15. Nonlinear dynamic effects in a two-wave CO2 laser

    International Nuclear Information System (INIS)

    Gorobets, V A; Kozlov, K V; Kuntsevich, B F; Petukhov, V O

    1999-01-01

    Theoretical and experimental investigations were made of nonlinear dynamic regimes of the operation of a two-wave CO 2 laser with cw excitation in an electric discharge and loss modulation in one of the channels. Nonlinear amplitude - frequency characteristics of each of the laser channels have two low-frequency resonance spikes, associated with forced linear oscillations of two coupled oscillators, and high-frequency spikes, corresponding to doubling of the period of the output radiation oscillations. At low loss-modulation frequencies the intensity oscillations of the output radiation in the coupled channels are in antiphase, whereas at high modulation frequencies the dynamics is cophasal. Nonlinear dynamic effects, such as doubling of the period and of the repetition frequency of the pulses and chaotic oscillations of the output radiation intensity, are observed for certain system parameters. (control of laser radiation parameters)

  16. Equivalent Representation Form of Oscillators with Elastic and Damping Nonlinear Terms

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    Full Text Available In this work we consider the nonlinear equivalent representation form of oscillators that exhibit nonlinearities in both the elastic and the damping terms. The nonlinear damping effects are considered to be described by fractional power velocity terms which provide better predictions of the dissipative effects observed in some physical systems. It is shown that their effects on the system dynamics response are equivalent to a shift in the coefficient of the linear damping term of a Duffing oscillator. Then, its numerical integration predictions, based on its equivalent representation form given by the well-known forced, damped Duffing equation, are compared to the numerical integration values of its original equations of motion. The applicability of the proposed procedure is evaluated by studying the dynamics response of four nonlinear oscillators that arise in some engineering applications such as nanoresonators, microresonators, human wrist movements, structural engineering design, and chain dynamics of polymeric materials at high extensibility, among others.

  17. Three-dimensional analysis of nonlinear plasma oscillation

    International Nuclear Information System (INIS)

    Miano, G.

    1990-01-01

    In an underdense plasma a large-amplitude plasma oscillation may be produced by the beating of two external and colinear electromagnetic waves with a frequency difference approximately equal to the plasma frequency - plasma beat wave (PBW) resonant mechanism. The plasma oscillations are driven by the ponderomotive force arising from the beating of the two imposed electromagnetic waves. In this paper two pump electromagnetic waves with arbitrary transverse profiles have been considered. The plasma is described by using the three dimensinal weakly relativistic fluid equations. The nonlinear plasma oscillation dynamics is studied by using the eulerian description, the averaging and the multiple time scale methods. Unlike the linear theory a strong cross field coupling between longitudinal ans transverse electric field components of the plasma oscillation comes out, resulting in a nonlinear phase change and energy transfer between the two components. Unlike the one-dimensional nonlinear theory, the nonlinear frequency shift is caused by relativistic effects as well as by convective effects and electromagnetic field generated from the three dimensional plasma oscillation. The large amplitude plasma oscillation dynamics produced by a bunched relativistic electron beam with arbitrary transverse profile - plasma wave field (PWF) - or by a high power single frequency short electromagnetic pulse with arbitrary transverse profile - electromagnetic plasma wake field (EPWF) - may be described by means of the present theory. (orig.)

  18. Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System

    Science.gov (United States)

    Li, Hailiang; Wang, Yi; Yang, Tong; Zhong, Mingying

    2018-04-01

    The main purpose of the present paper is to investigate the nonlinear stability of viscous shock waves and rarefaction waves for the bipolar Vlasov-Poisson-Boltzmann (VPB) system. To this end, motivated by the micro-macro decomposition to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179, 2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro-macro decomposition around the local Maxwellian related to the bipolar VPB system and give a unified framework to study the nonlinear stability of the basic wave patterns to the system. Then, as applications of this new decomposition, the time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock waves and rarefaction waves are proved for the 1D bipolar VPB system. More precisely, it is first proved that the linear superposition of two Boltzmann shock profiles in the first and third characteristic fields is nonlinearly stable to the 1D bipolar VPB system up to some suitable shifts without the zero macroscopic mass conditions on the initial perturbations. Then the time-asymptotic stability of the rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar VPB system. These two results are concerned with the nonlinear stability of wave patterns for Boltzmann equation coupled with additional (electric) forces, which together with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725, 2016) sheds light on understanding the complicated dynamic behaviors around the wave patterns in the transportation of charged particles under the binary collisions, mutual interactions, and the effect of the electrostatic potential forces.

  19. Numerical combination for nonlinear analysis of structures coupled to layered soils

    Directory of Open Access Journals (Sweden)

    Wagner Queiroz Silva

    Full Text Available This paper presents an alternative coupling strategy between the Boundary Element Method (BEM and the Finite Element Method (FEM in order to create a computational code for the analysis of geometrical nonlinear 2D frames coupled to layered soils. The soil is modeled via BEM, considering multiple inclusions and internal load lines, through an alternative formulation to eliminate traction variables on subregions interfaces. A total Lagrangean formulation based on positions is adopted for the consideration of the geometric nonlinear behavior of frame structures with exact kinematics. The numerical coupling is performed by an algebraic strategy that extracts and condenses the equivalent soil's stiffness matrix and contact forces to be introduced into the frame structures hessian matrix and internal force vector, respectively. The formulation covers the analysis of shallow foundation structures and piles in any direction. Furthermore, the piles can pass through different layers. Numerical examples are shown in order to illustrate and confirm the accuracy and applicability of the proposed technique.

  20. Analysis of Nonlinear Vibration in Permanent Magnet Synchronous Motors under Unbalanced Magnetic Pull

    Directory of Open Access Journals (Sweden)

    Ao Zhang

    2018-01-01

    Full Text Available The vibration and noise of permanent magnet synchronous motors (PMSM are mainly caused by unbalanced magnetic pull (UMP. This paper aims to investigate nonlinear vibration in PMSMs. Firstly, the analytical model of the air-gap magnetic field with an eccentric rotor in PMSM is studied, and the analytical model is verified by the finite element method. Then the dynamic model of an offset rotor-bearing system is established, and the gyroscopic effect, nonlinear bearing force and UMP are taken into consideration. Finally, the dynamic characteristics of different static displacement eccentricities, rotor offsets and radial clearances are investigated in both the time domain and the frequency domain. The results show that the amplitudes of dynamic responses increase with the static displacement eccentricity and rotor offset and high integer multiples of rotating frequency appear with the increase of displacement eccentricity. The coupling effects of bearing force, unbalanced mass force and UMP are observed in the frequency domain, and the frequency components in the dynamic responses indicate that the bearings have an effect on the system.