Nonlinear harmonic generation and proposed experimental verification in SASE FELs
Freund, H P; Milton, S V
2000-01-01
Recently, a 3D, polychromatic, nonlinear simulation code was developed to study the growth of nonlinear harmonics in self-amplified spontaneous emission (SASE) free-electron lasers (FELs). The simulation was applied to the parameters for each stage of the Advanced Photon Source (APS) SASE FEL, intended for operation in the visible, UV, and short UV wavelength regimes, respectively, to study the presence of nonlinear harmonic generation. Significant nonlinear harmonic growth is seen. Here, a discussion of the code development, the APS SASE FEL, the simulations and results, and, finally, the proposed experimental procedure for verification of such nonlinear harmonic generation at the APS SASE FEL will be given.
Multi-order nonlinear diffraction in second harmonic generation
DEFF Research Database (Denmark)
Saltiel, S. M.; Neshev, D.; Krolikowski, Wieslaw
We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes.......We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes....
Strong nonlinear harmonic generation in a PZT/Aluminum resonator
Energy Technology Data Exchange (ETDEWEB)
Parenthoine, D; Haumesser, L; Meulen, F Vander; Tran-Huu-Hue, L-P, E-mail: parenthoine@univ-tours.f [University Francois Rabelais of Tours, U 930 Imagerie et Cerveau, CNRS 2448, ENIVL, rue de la Chocolaterie, BP 3410, 41034 Blois (France)
2009-11-01
In this work, the extentional vibration mode of a coupled PZT/ Aluminum rod resonator is studied experimentally. Geometrical characteristics of the PZT are its 27 mm length and its 4x4 mm{sup 2} cross section area. The excitation voltage consists in sinusoidal bursts in the frequency range (20-80 kHz). Velocity measurements are performed at both ends of this system, using a laser probe. Strong harmonic distortions in the mechanical response (up to -20 dB with respect to the primary wave amplitude) have been observed. The corresponding input levels are far lower than those which are necessary to observe quadratic second harmonic generation in a free PZT resonator. The strong nonlinear effect can be explained as a super-harmonic resonance of the system due to a specific ratio between the eigen frequencies of the two parts of the resonator. Evolution of fundamental and harmonic responses are observed as a function of input levels, highlighting hysteretic behavior.
Imaging theory of nonlinear second harmonic and third harmonic generations in confocal microscopy
Institute of Scientific and Technical Information of China (English)
TANG Zhilie; XING Da; LIU Songhao
2004-01-01
The imaging theory of nonlinear second harmonic generation (SHG) and third harmonic generation (THG) in confocal microscopy is presented in this paper. The nonlinear effect of SHG and THG on the imaging properties of confocal microscopy has been analyzed in detail by the imaging theory. It is proved that the imaging process of SHG and THG in confocal microscopy, which is different from conventional coherent imaging or incoherent imaging, can be divided into two different processes of coherent imaging. The three-dimensional point spread functions (3D-PSF) of SHG and THG confocal microscopy are derived based on the nonlinear principles of SHG and THG. The imaging properties of SHG and THG confocal microscopy are discussed in detail according to its 3D-PSF. It is shown that the resolution of SHG and THG confocal microscopy is higher than that of single-and two-photon confocal microscopy.
Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation.
Neufeld, Ofer; Cohen, Oren
2018-03-30
Optical chirality (OC)-one of the fundamental quantities of electromagnetic fields-corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.
Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation
Neufeld, Ofer; Cohen, Oren
2018-03-01
Optical chirality (OC)—one of the fundamental quantities of electromagnetic fields—corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.
Cumulative Second Harmonic Generation in Lamb Waves for the Detection of Material Nonlinearities
International Nuclear Information System (INIS)
Bermes, Christian; Jacobs, Laurence J.; Kim, Jin-Yeon; Qu, Jianmin
2007-01-01
An understanding of the generation of higher harmonics in Lamb waves is of critical importance for applications such as remaining life prediction of plate-like structural components. The objective of this work is to use nonlinear Lamb waves to experimentally investigate inherent material nonlinearities in aluminum plates. These nonlinearities, e.g. lattice anharmonicities, precipitates or vacancies, cause higher harmonics to form in propagating Lamb waves. The amplitudes of the higher harmonics increase with increasing propagation distance due to the accumulation of nonlinearity while the Lamb wave travels along its path. Special focus is laid on the second harmonic, and a relative nonlinearity parameter is defined as a function of the fundamental and second harmonic amplitude. The experimental setup uses an ultrasonic transducer and a wedge for the Lamb wave generation, and laser interferometry for detection. The experimentally measured Lamb wave signals are processed with a short-time Fourier transformation (STFT), which yields the amplitudes at different frequencies as functions of time, allowing the observation of the nonlinear behavior of the material. The increase of the relative nonlinearity parameter with propagation distance as an indicator of cumulative second harmonic generation is shown in the results for the alloy aluminum 1100-H14
Theory of nonlinear harmonic generation in free-electron lasers with helical wigglers
International Nuclear Information System (INIS)
Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.
2007-05-01
CoherentHarmonicGeneration (CHG), and in particularNonlinearHarmonicGeneration (NHG), is of importance for both short wavelength Free-Electron Lasers (FELs), in relation with the achievement of shorter wavelengths with a fixed electron-beam energy, and high-average power FEL resonators, in relation with destructive effects of higher harmonics radiation on mirrors. In this paper we present a treatment of NHG from helical wigglers with particular emphasis on the second harmonic. Our study is based on an exact analytical solution of Maxwell's equations, derived with the help of a Green's function method. In particular, we demonstrate that nonlinear harmonic generation (NHG) fromhelicalwigglers vanishes on axis. Our conclusion is in open contrast with results in literature, that include a kinematical mistake in the description of the electron motion. (orig.)
Nonlinear Optical Magnetism Revealed by Second-Harmonic Generation in Nanoantennas.
Kruk, Sergey S; Camacho-Morales, Rocio; Xu, Lei; Rahmani, Mohsen; Smirnova, Daria A; Wang, Lei; Tan, Hark Hoe; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S
2017-06-14
Nonlinear effects at the nanoscale are usually associated with the enhancement of electric fields in plasmonic structures. Recently emerged new platform for nanophotonics based on high-index dielectric nanoparticles utilizes optically induced magnetic response via multipolar Mie resonances and provides novel opportunities for nanoscale nonlinear optics. Here, we observe strong second-harmonic generation from AlGaAs nanoantennas driven by both electric and magnetic resonances. We distinguish experimentally the contribution of electric and magnetic nonlinear response by analyzing the structure of polarization states of vector beams in the second-harmonic radiation. We control continuously the transition between electric and magnetic nonlinearities by tuning polarization of the optical pump. Our results provide a direct observation of nonlinear optical magnetism through selective excitation of multipolar nonlinear modes in nanoantennas.
Concept for power scaling second harmonic generation using a cascade of nonlinear crystals
DEFF Research Database (Denmark)
Hansen, Anders Kragh; Tawfieq, Mahmoud; Jensen, Ole Bjarlin
2015-01-01
for efficient power scaling of single-pass SHG beyond such limits using a cascade of nonlinear crystals, in which the first crystal is chosen for high nonlinear efficiency and the subsequent crystal(s) are chosen for power handling ability. Using this highly efficient singlepass concept, we generate 3.7 W...... successfully combines the high efficiency of the first stage with the good power handling properties of the subsequent stages. The concept is generally applicable and can be expanded with more stages to obtain even higher efficiency, and extends also to other combinations of nonlinear media suitable for other......Within the field of high-power second harmonic generation (SHG), power scaling is often hindered by adverse crystal effects such as thermal dephasing arising from the second harmonic (SH) light, which imposes limits on the power that can be generated in many crystals. Here we demonstrate a concept...
Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation.
Larciprete, M C; Bovino, F A; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V
2009-07-15
We present a method, based on noncollinear second-harmonic generation, to evaluate the nonzero elements of the nonlinear optical susceptibility. At a fixed incidence angle, the generated signal is investigated by varying the polarization state of both fundamental beams. The resulting polarization charts allows us to verify if Kleinman's symmetry rules can be applied to a given material or to retrieve the absolute value of the nonlinear optical tensor terms, from a reference measurement. Experimental measurements obtained from gallium nitride layers are reported. The proposed method does not require an angular scan and thus is useful when the generated signal is strongly affected by sample rotation.
Single nano-hole as a new effective nonlinear element for third-harmonic generation
International Nuclear Information System (INIS)
Melentiev, P N; Konstantinova, T V; Afanasiev, A E; Balykin, V I; Kuzin, A A; Baturin, A S; Tausenev, A V; Konyaschenko, A V
2013-01-01
In this letter, we report on a particularly strong optical nonlinearity at the nanometer scale in aluminum. A strong optical nonlinearity of the third order was demonstrated on a single nanoslit. Single nanoslits of different aspect ratio were excited by a laser pulse (120 fs) at the wavelength 1.5 μm, leading predominantly to third-harmonic generation (THG). It has been shown that strong surface plasmon resonance in a nanoslit allows the realization of an effective nanolocalized source of third-harmonic radiation. We show also that a nanoslit in a metal film has a significant advantage in nonlinear processes over its Babinet complementary nanostructure (nanorod): the effective abstraction of heat in a film with a slit makes it possible to use much higher laser radiation intensities. (letter)
Single nano-hole as a new effective nonlinear element for third-harmonic generation
Melentiev, P. N.; Konstantinova, T. V.; Afanasiev, A. E.; Kuzin, A. A.; Baturin, A. S.; Tausenev, A. V.; Konyaschenko, A. V.; Balykin, V. I.
2013-07-01
In this letter, we report on a particularly strong optical nonlinearity at the nanometer scale in aluminum. A strong optical nonlinearity of the third order was demonstrated on a single nanoslit. Single nanoslits of different aspect ratio were excited by a laser pulse (120 fs) at the wavelength 1.5 μm, leading predominantly to third-harmonic generation (THG). It has been shown that strong surface plasmon resonance in a nanoslit allows the realization of an effective nanolocalized source of third-harmonic radiation. We show also that a nanoslit in a metal film has a significant advantage in nonlinear processes over its Babinet complementary nanostructure (nanorod): the effective abstraction of heat in a film with a slit makes it possible to use much higher laser radiation intensities.
Ganeev, R. A.
2017-08-01
The nonlinear spectroscopy using harmonic generation in the extreme ultraviolet range became a versatile tool for the analysis of the optical, structural and morphological properties of matter. The carbon-contained materials have shown the advanced properties among other studied species, which allowed both the definition of the role of structural properties on the nonlinear optical response and the analysis of the fundamental features of carbon as the attractive material for generation of coherent short-wavelength radiation. We review the studies of the high-order harmonic generation by focusing ultrashort pulses into the plasmas produced during laser ablation of various organic compounds. We discuss the role of ionic transitions of ablated carbon-containing molecules on the harmonic yield. We also show the similarities and distinctions of the harmonic and plasma spectra of organic compounds and graphite. We discuss the studies of the generation of harmonics up to the 27th order (λ = 29.9 nm) of 806 nm radiation in the boron carbide plasma and analyze the advantages and disadvantages of this target compared with the ingredients comprising B4C (solid boron and graphite) by comparing plasma emission and harmonic spectra from three species. We also show that the coincidence of harmonic and plasma emission wavelengths in most cases does not cause the enhancement or decrease of the conversion efficiency of this harmonic.
Rani, Sunita; Mohan, Devendra; Kumar, Manish; Sanjay
2018-05-01
Third order nonlinear susceptibility of (GeSe3.5)100-xBix (x = 0, 10, 14) and ZnxSySe100-x-y (x = 2, y = 28; x = 4, y = 20; x = 6, y = 12; x = 8, y = 4) amorphous chalcogenide thin films prepared using thermal evaporation technique is estimated. The dielectric constant at incident and third harmonic wavelength is calculated using "PARAV" computer program. 1064 nm wavelength of Nd: YAG laser is incident on thin film and third harmonic signal at 355 nm wavelength alongwith fundamental light is obtained in reflection that is separated from 1064 nm using suitable optical filter. Reflected third harmonic signal is measured to trace the influence of Bi and Zn on third order nonlinear susceptibility and is found to increase with increase in Bi and Zn content in (GeSe3.5)100-xBix, and ZnxSySe100-x-y chalcogenide thin films respectively. The excellent optical nonlinear property shows the use of chalcogenide thin films in photonics for wavelength conversion and optical data processing.
DEFF Research Database (Denmark)
Bache, Morten; Lodahl, Peter; Mamaev, Alexander V.
2002-01-01
We predict and experimentally observe temporal self-pulsing in singly resonant intracavity second-harmonic generation under conditions of simultaneous parametric oscillation. The threshold for self-pulsing as a function of cavity tuning and phase mismatch are found from analysis of a three...
Maraghechi, Borna; Kolios, Michael C; Tavakkoli, Jahan
2015-01-01
Hyperthermia is a cancer treatment technique that could be delivered as a stand-alone modality or in conjunction with chemotherapy or radiation therapy. Noninvasive and real-time temperature monitoring of the heated tissue improves the efficacy and safety of the treatment. A temperature-sensitive acoustic parameter is required for ultrasound-based thermometry. In this paper the amplitude and the energy of the acoustic harmonics of the ultrasound backscattered signal are proposed as suitable parameters for noninvasive ultrasound thermometry. A commercial high frequency ultrasound imaging system was used to generate and detect acoustic harmonics in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The pressure amplitude and the energy content of the backscattered fundamental frequency (p1 and E1), the second (p2 and E2) and the third (p3 and E3) harmonics were detected in pulse-echo mode. Temperature was increased from 26° to 46 °C uniformly through both samples. The amplitude and the energy content of the harmonics and their ratio were measured and analysed as a function of temperature. The average p1, p2 and p3 increased by 69%, 100% and 283%, respectively as the temperature was elevated from 26° to 46 °C in tissue samples. In the same experiment the average E1, E2 and E3 increased by 163%, 281% and 2257%, respectively. A similar trend was observed in tissue-mimicking gel phantoms. The findings suggest that the harmonics generated due to nonlinear ultrasound beam propagation are highly sensitive to temperature and could potentially be used for noninvasive ultrasound tissue thermometry.
Second harmonic generation microscopy
DEFF Research Database (Denmark)
Brüggemann, Dagmar Adeline; Brewer, Jonathan R.; Risbo, Jens
2010-01-01
Myofibers and collagen show non-linear optical properties enabling imaging using second harmonic generation (SHG) microscopy. The technique is evaluated for use as a tool for real-time studies of thermally induced changes in thin samples of unfixed and unstained pork. The forward and the backward...... scattered SHG light reveal complementary features of the structures of myofibers and collagen fibers. Upon heating the myofibers show no structural changes before reaching a temperature of 53 °C. At this temperature the SHG signal becomes extinct. The extinction of the SHG at 53 °C coincides with a low......-temperature endotherm peak observable in the differential scanning calorimetry (DSC) thermograms. DSC analysis of epimysium, the connective tissue layer that enfold skeletal muscles, produces one large endotherm starting at 57 °C and peaking at 59.5 °C. SHG microscopy of collagen fibers reveals a variability of thermal...
Legland, J-B; Tournat, V; Dazel, O; Novak, A; Gusev, V
2012-06-01
Experimental results are reported on second harmonic generation and self-action in a noncohesive granular medium supporting wave energy propagation both in the solid frame and in the saturating fluid. The acoustic transfer function of the probed granular slab can be separated into two main frequency regions: a low frequency region where the wave propagation is controlled by the solid skeleton elastic properties, and a higher frequency region where the behavior is dominantly due to the air saturating the beads. Experimental results agree well with a recently developed nonlinear Biot wave model applied to granular media. The linear transfer function, second harmonic generation, and self-action effect are studied as a function of bead diameter, compaction step, excitation amplitude, and frequency. This parametric study allows one to isolate different propagation regimes involving a range of described and interpreted linear and nonlinear processes that are encountered in granular media experiments. In particular, a theoretical interpretation is proposed for the observed strong self-action effect.
International Nuclear Information System (INIS)
Martínez-Orozco, J.C.; Mora-Ramos, M.E.; Duque, C.A.
2012-01-01
The GaAs n-type delta-doped field effect transistor is proposed as a source for nonlinear optical responses such as second order rectification and second and third harmonic generation. Particular attention is paid to the effect of hydrostatic pressure on these properties, related with the pressure-induced modifications of the energy level spectrum. The description of the one-dimensional potential profile is made including Hartree and exchange and correlation effects via a Thomas–Fermi-based local density approximation. The allowed energy levels are calculated within the effective mass and envelope function approximations by means of an expansion over an orthogonal set of infinite well eigenfunctions. The results for the coefficients of nonlinear optical rectification and second and third harmonic generation are reported for several values of the hydrostatic pressure. - Highlights: ► GaAs n-type delta-doped field effect transistor. ► NOR and SHG are enhanced as a result of the pressure. ► THG is quenched as a result of the pressure. ► The zero pressure situation is the best scenario for the THG.
Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng
2016-02-29
Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.
Harmonic arbitrary waveform generator
Roberts, Brock Franklin
2017-11-28
High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrary waveform.
Shi, Jindan; Feng, Xian
2018-03-01
We report a diode pumped self-frequency-doubled nonlinear crystalline waveguide on glass fiber. A ribbon fiber has been drawn on the glass composition of 50GeO2-25B2O3-25(La,Yb)2O3. Surface channel waveguides have been written on the surface of the ribbon fiber, using space-selective laser heating method with the assistance of a 244 nm CW UV laser. The Raman spectrum of the written area indicates that the waveguide is composed of structure-deformed nonlinear (La,Yb)BGeO5 crystal. The laser-induced surface wavy cracks have also been observed and the forming mechanism of the wavy cracks has been discussed. Efficient second harmonic generation has been observed from the laser-induced crystalline waveguide, using a 976 nm diode pump. 13 μW of 488 nm output has been observed from a 17 mm long waveguide with 26.0 mW of launched diode pump power, corresponding to a normalized conversion efficiency of 4.4%W-1.
Second harmonic generation imaging
2013-01-01
Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experi...
Approximate effective nonlinear coefficient of second-harmonic generation in KTiOPO(4).
Asaumi, K
1993-10-20
A simplified approximate expression for the effective nonlinear coefficient of type-II second-harmonicgeneration in KTiOPO(4) was obtained by observing that the difference between the refractive indices n(x) and n(y) is 1 order of magnitude smaller than the difference between n(z) and n(y) (or n(x)). The agreement of this approximate equation with the true definition is good, with a maximum discrepancy of 4%.
Cea, T.; Castellani, C.; Benfatto, L.
2016-05-01
The recent observation of a transmitted THz pulse oscillating at three times the frequency of the incident light paves the way to a powerful protocol to access resonant excitations in a superconductor. Here we show that this nonlinear optical process is dominated by light-induced excitation of Cooper pairs, while the collective amplitude (Higgs) fluctuations of the superconducting order parameter give in general a negligible contribution. We also predict a nontrivial dependence of the signal on the direction of the light polarization with respect to the lattice symmetry, which can be tested in systems such as, e.g., cuprate superconductors.
Determination of nonlinear resistance voltage-current relationships by measuring harmonics
Stafford, J. M.
1971-01-01
Test configuration measures harmonic signal amplitudes generated in nonlinear resistance. Vacuum-type voltmeter measures low frequency sinusoidal input signal amplitude and wave-analyzer measures amplitude of harmonic signals generated in junction. Input signal harmonics amplitude must not exceed that of harmonics generated in nonlinear resistance.
Second harmonic generation and sum frequency generation
International Nuclear Information System (INIS)
Pellin, M.J.; Biwer, B.M.; Schauer, M.W.; Frye, J.M.; Gruen, D.M.
1990-01-01
Second harmonic generation and sum frequency generation are increasingly being used as in situ surface probes. These techniques are coherent and inherently surface sensitive by the nature of the mediums response to intense laser light. Here we will review these two techniques using aqueous corrosion as an example problem. Aqueous corrosion of technologically important materials such as Fe, Ni and Cr proceeds from a reduced metal surface with layer by layer growth of oxide films mitigated by compositional changes in the chemical makeup of the growing film. Passivation of the metal surface is achieved after growth of only a few tens of atomic layers of metal oxide. Surface Second Harmonic Generation and a related nonlinear laser technique, Sum Frequency Generation have demonstrated an ability to probe the surface composition of growing films even in the presence of aqueous solutions. 96 refs., 4 figs
Geiger, Franz M.
2009-05-01
This review discusses recent advances in the nonlinear optics of environmental interfaces. We discuss the quantitative aspects of the label-free approaches presented here and demonstrate that nonlinear optics has now assumed the role of a Swiss Army knife that can be used to dissect, with molecular detail, the fundamental and practical aspects of environmental interfaces and heterogeneous geochemical environments. In this work, nonlinear optical methods are applied to complex organic molecules, such as veterinary antibiotics, and to small inorganic anions and cations, such as nitrate and chromate, or cadmium, zinc, and manganese. The environmental implications of the thermodynamic, kinetic, spectroscopic, structural, and electrochemical data are discussed.
Next generation data harmonization
Armstrong, Chandler; Brown, Ryan M.; Chaves, Jillian; Czerniejewski, Adam; Del Vecchio, Justin; Perkins, Timothy K.; Rudnicki, Ron; Tauer, Greg
2015-05-01
Analysts are presented with a never ending stream of data sources. Often, subsets of data sources to solve problems are easily identified but the process to align data sets is time consuming. However, many semantic technologies do allow for fast harmonization of data to overcome these problems. These include ontologies that serve as alignment targets, visual tools and natural language processing that generate semantic graphs in terms of the ontologies, and analytics that leverage these graphs. This research reviews a developed prototype that employs all these approaches to perform analysis across disparate data sources documenting violent, extremist events.
Spatial mode discrimination using second harmonic generation
DEFF Research Database (Denmark)
Delaubert, Vincent; Lassen, Mikael Østergaard; Pulford, David
2007-01-01
Second harmonic generation can be used as a technique for controlling the spatial mode structure of optical beams. We demonstrate experimentally the generation of higher order spatial modes, and that it is possible to use nonlinear phase matching as a predictable and robust technique for the conv...
Harmonic generation with a dual frequency pulse.
Keravnou, Christina P; Averkiou, Michalakis A
2014-05-01
Nonlinear imaging was implemented in commercial ultrasound systems over the last 15 years offering major advantages in many clinical applications. In this work, pulsing schemes coupled with a dual frequency pulse are presented. The pulsing schemes considered were pulse inversion, power modulation, and power modulated pulse inversion. The pulse contains a fundamental frequency f and a specified amount of its second harmonic 2f. The advantages and limitations of this method were evaluated with both acoustic measurements of harmonic generation and theoretical simulations based on the KZK equation. The use of two frequencies in a pulse results in the generation of the sum and difference frequency components in addition to the other harmonic components. While with single frequency pulses, only power modulation and power modulated pulse inversion contained odd harmonic components, with the dual frequency pulse, pulse inversion now also contains odd harmonic components.
International Nuclear Information System (INIS)
Pezzetta, D.; Sibilia, C.; Bertolotti, M.; Ramponi, R.; Osellame, R.; Marangoni, M.; Haus, J. W.; Scalora, M.; Bloemer, M. J.; Bowden, C. M.
2002-01-01
Second-harmonic generation in the Cerenkov configuration is investigated under conditions for which the use of a linear grating fabricated on top of the waveguide reproduces a photonic bandgap structure. The fundamental mode of the guide at the fundamental frequency is tuned at the photonic band-edge resonance, thus producing great confinement and enhancement of the electromagnetic field inside the structure. The conversion efficiency achieved in both the forward and the backward directions is at least 1 order of magnitude greater than that of a conventional Cerenkov emission in a waveguide of the same length. An analysis of the tolerances of the grating period on the conversion efficiency is presented
Kaminski, Adam
2017-08-22
A method and apparatus to generate harmonically related laser wavelengths includes a pair of lenses at opposing faces of a non-linear optical material. The lenses are configured to promote incoming and outgoing beams to be normal to each outer lens surface over a range of acceptance angles of the incoming laser beam. This reduces reflection loss for higher efficiency operation. Additionally, the lenses allow a wider range of wavelengths for lasers for more universal application. Examples of the lenses include plano-cylindrical and plano-spherical form factors.
Sifi, A.; Klein, R. S.; Maillard, A.; Kugel, G. E.; Péter, A.; Polgár, K.
2003-10-01
We present absolute measurements of the effective non-linear optical coefficients deff of cesium lithium borate crystals (CsLiB 6O 10, CLBO) by second harmonic generation using a continuous Nd-YAG laser source. The experiments were carried out at room temperature, on crystals cut perpendicular to type I or type II phase matching directions, with two different crystal lengths along the propagation direction. The d36 and d14 non-linear coefficients involved in deff developments are deduced and are shown to be equal as it is predicted by the Kleinman symmetry. Two different compositions prepared by the Czochralski technique from melt with compositions of 1:1:6 and 1:1:5.5 molar ratios of Cs 2O, Li 2O and B 2O 3 are comparatively studied.
Martínez-Orozco, J. C.; Rojas-Briseño, J. G.; Rodríguez-Magdaleno, K. A.; Rodríguez-Vargas, I.; Mora-Ramos, M. E.; Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Duque, C. A.
2017-11-01
In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, χ0(2), χ2ω(2), and χ3ω(3), are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra.
Harmonics: Generation and Suppression in AC System Networks ...
African Journals Online (AJOL)
However, reactive power flow in electrical networks has adverse effects depending on their magnitude and the nature of the supply network. How these harmonics are generated by nonlinear loads and the means by which they can be kept low are the focus of this paper. Keywords: non-linear loads, harmonics, reactive ...
Theoretical description of high-order harmonic generation in solids
International Nuclear Information System (INIS)
Kemper, A F; Moritz, B; Devereaux, T P; Freericks, J K
2013-01-01
We consider several aspects of high-order harmonic generation in solids: the effects of elastic and inelastic scattering, varying pulse characteristics and inclusion of material-specific parameters through a realistic band structure. We reproduce many observed characteristics of high harmonic generation experiments in solids including the formation of only odd harmonics in inversion-symmetric materials, and the nonlinear formation of high harmonics with increasing field. We find that the harmonic spectra are fairly robust against elastic and inelastic scattering. Furthermore, we find that the pulse characteristics can play an important role in determining the harmonic spectra. (paper)
Intense harmonic generation from various ablation media
International Nuclear Information System (INIS)
Ozaki, T.; Elouga, L.; Suzuki, M.; Kuroda, H.; Ganeev, R.A.
2006-01-01
Complete test of publication follows. High-order harmonic generation (HHG) is a unique source of coherent extreme ultraviolet (XUV) radiation, which can produce soft x-rays within the spectral 'water-window' (between 2.3 and 4.4 nm), and ultimately short pulses with attosecond duration. However, the intensity of present-day harmonics is still low, and serious applications will need an increase of the conversion efficiency. Instead of using gas media, one can also use ablation material, produced on solid targets using a low-intensity prepulse, as the nonlinear medium to generate high-order harmonics. Recently, we have successfully demonstrated the generation of up to the 63 rd harmonic (λ = 12.6 nm) of a Ti:sapphire laser radiation using boron ablation, and a strong enhancement in the intensity of the 13 th harmonic from indium ablation. These harmonics were generated with a modest laser (10 mJ, 150 fs) and with the pre-pulse to main pulse energy ratio constant. In this paper, we perform systematic investigations of ablation harmonics, using the 200 mJ, 30 fs Ti:sapphire beam line of the Canadian Advanced Laser Light Source (ALLS) facility. ALLS allows studying ablation harmonics over wider experimental parameters, and with independent control over the pre-pulse and main pulse energies. The 10 Hz, 200 mJ Ti:sapphire beam line of ALLS is divided into two beams. Each beam has its own energy control system, which allows independent control over the energy of each beam. One of the beams is used as a pre-pulse for creating ablation, which is focused onto the solid target without pulse compression, with pulse duration of 200 ps. The second beam is used as the main pulse for harmonic generation. The main pulse is delayed in time relative to the pre-pulse by propagating through an optical delay line, and then sent through a pulse compressor. The compressed pulse duration have typical pulse duration of 30 fs FWHM, which is then focused onto the ablation medium using MgF 2
Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.
Humphrey, V F
2000-03-01
In high amplitude ultrasonic fields, such as those used in medical ultrasound, nonlinear propagation can result in waveform distortion and the generation of harmonics of the initial frequency. In the nearfield of a transducer this process is complicated by diffraction effects associated with the source. The results of a programme to study the nonlinear propagation in the fields of circular, focused and rectangular transducers are described, and comparisons made with numerical predictions obtained using a finite difference solution to the Khokhlov-Zabolotskaya-Kuznetsov (or KZK) equation. These results are extended to consider nonlinear propagation in tissue-like media and the implications for ultrasonic measurements and ultrasonic heating are discussed. The narrower beamwidths and reduced side-lobe levels of the harmonic beams are illustrated and the use of harmonics to form diagnostic images with improved resolution is described.
Optical Third-Harmonic Generation in Graphene
Directory of Open Access Journals (Sweden)
Sung-Young Hong
2013-06-01
Full Text Available We report strong third-harmonic generation in monolayer graphene grown by chemical vapor deposition and transferred to an amorphous silica (glass substrate; the photon energy is in three-photon resonance with the exciton-shifted van Hove singularity at the M point of graphene. The polarization selection rules are derived and experimentally verified. In addition, our polarization- and azimuthal-rotation-dependent third-harmonic-generation measurements reveal in-plane isotropy as well as anisotropy between the in-plane and out-of-plane nonlinear optical responses of graphene. Since the third-harmonic signal exceeds that from bulk glass by more than 2 orders of magnitude, the signal contrast permits background-free scanning of graphene and provides insight into the structural properties of graphene.
Xiong, S. Y.; Yang, J. G.; Zhuang, J.
2011-10-01
In this work, we use nonlinear spectral imaging based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) for analyzing the morphology of collagen and elastin and their biochemical variations in basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and normal skin tissue. It was found in this work that there existed apparent differences among BCC, SCC and normal skin in terms of their thickness of the keratin and epithelial layers, their size of elastic fibers, as well as their distribution and spectral characteristics of collagen. These differences can potentially be used to distinguish BCC and SCC from normal skin, and to discriminate between BCC and SCC, as well as to evaluate treatment responses.
Surface structure enhanced second harmonic generation in organic nanofibers
DEFF Research Database (Denmark)
Fiutowski, Jacek; Maibohm, Christian; Kostiučenko, Oksana
Second-harmonic generation upon femto-second laser irradiation of nonlinearly optically active nanofibers grown from nonsymmetrically functionalized para-quarterphenylene (CNHP4) molecules is investigated. Following growth on mica templates, the nanofibers have been transferred onto lithography...
Second harmonic generation in resonant optical structures
Eichenfield, Matt; Moore, Jeremy; Friedmann, Thomas A.; Olsson, Roy H.; Wiwi, Michael; Padilla, Camille; Douglas, James Kenneth; Hattar, Khalid Mikhiel
2018-01-09
An optical second-harmonic generator (or spontaneous parametric down-converter) includes a microresonator formed of a nonlinear optical medium. The microresonator supports at least two modes that can be phase matched at different frequencies so that light can be converted between them: A first resonant mode having substantially radial polarization and a second resonant mode having substantially vertical polarization. The first and second modes have the same radial order. The thickness of the nonlinear medium is less than one-half the pump wavelength within the medium.
Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires.
de Hoogh, Anouk; Opheij, Aron; Wulf, Matthias; Rotenberg, Nir; Kuipers, L
2016-08-17
We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.
Limitations and improvements for harmonic generation measurements
International Nuclear Information System (INIS)
Best, Steven; Croxford, Anthony; Neild, Simon
2014-01-01
A typical acoustic harmonic generation measurement comes with certain limitations. Firstly, the use of the plane wave-based analysis used to extract the nonlinear parameter, β, ignores the effects of diffraction, attenuation and receiver averaging which are common to most experiments, and may therefore limit the accuracy of a measurement. Secondly, the method usually requires data obtained from a through-transmission type setup, which may not be practical in a field measurement scenario where access to the component is limited. Thirdly, the technique lacks a means of pinpointing areas of damage in a component, as the measured nonlinearity represents an average over the length of signal propagation. Here we describe a three-dimensional model of harmonic generation in a sound beam, which is intended to provide a more realistic representation of a typical experiment. The presence of a reflecting boundary is then incorporated into the model to assess the feasibility of performing single-sided measurements. Experimental validation is provided where possible. Finally, a focusing acoustic source is modelled to provide a theoretical indication of the afforded advantages when the nonlinearity is localized
Promoting Spontaneous Second Harmonic Generation through Organogelation.
Marco, A Belén; Aparicio, Fátima; Faour, Lara; Iliopoulos, Konstantinos; Morille, Yohann; Allain, Magali; Franco, Santiago; Andreu, Raquel; Sahraoui, Bouchta; Gindre, Denis; Canevet, David; Sallé, Marc
2016-07-27
An organogelator based on the Disperse Red nonlinear optical chromophore was synthesized according to a simple and efficient three-step procedure. The supramolecular gel organization leads to xerogels which display a spontaneous second harmonic generation (SHG) response without any need for preprocessing, and this SHG activity appears to be stable over several months. These findings, based on an intrinsic structural approach, are supported by favorable intermolecular supramolecular interactions, which promote a locally non-centrosymmetric NLO-active organization. This is in sharp contrast with most materials designed for SHG purposes, which generally require the use of expensive or heavy-to-handle external techniques for managing the dipoles' alignment.
Stability and nonlinear dynamics of gyrotrons at cyclotron harmonics
International Nuclear Information System (INIS)
Saraph, G.P.; Nusinovich, G.S.; Antonsen, T.M. Jr.; Levush, B.
1992-01-01
Gyrotrons operating at higher harmonics of the cyclotron frequency can overcome the frequency limitations caused by achievable strength of the magnetic field. However, the excitation of modes at the fundamental frequency exhibit a major problem for stable operation of harmonic gyrotron at high power with high efficiency. Therefore the issues of stability of gyrotron operation at the cyclotron harmonics and nonlinear dynamics of mode interaction are of great importance. The results of the authors stability analysis and multimode simulation are presented here. A detailed nonlinear theory of steady state single mode operation at cyclotron harmonics has been presented previously, taking into account beam-wave coupling and nonlinear gain function at cyclotron harmonics. A set of equations describing low gain regime interaction of modes resonant at different cyclotron harmonics was studied before. The multifrequency time-dependent nonlinear analysis presented here is based on previous gyrotron studies and beam-wave interaction at cyclotron harmonics. The authors have determined the parameter space for stable single mode operation at the second harmonic. The nonlinear dynamics of mode evolution and mode interaction for a harmonic gyrotron is presented. A new nonlinear effect in which the parasite at the fundamental harmonic helps excite the operating mode at the second harmonic has been demonstrated
International Nuclear Information System (INIS)
Duque, C.M.; Mora-Ramos, M.E.; Duque, C.A.
2013-01-01
The calculation of the second and third harmonic generation coefficients is carried out within the framework of the effective mass approximation in two-dimensional GaAs quantum discs under the combined effect of an external magnetic field and parabolic and inverse square confining potentials. Due to the electric dipole selection rules, the system is shown to have second harmonic generation coefficient identically zero for all the values of incident frequency. The generation of third optical harmonics is significantly dependent on the values of the different input parameters, with the presence of resonant peak blueshifts associated with the magnitudes of the parabolic confinement and the applied magnetic field. -- Highlights: ► One-electron conduction states in a two-dimensional quantum dot. ► Magnetic field and an inverse square repulsive potential. ► Generation of second harmonics is always null. ► Magnetic field induces a blueshift of the resonant peaks. ► The inverse square potential induces a reduction of the peak intensities
Energy Technology Data Exchange (ETDEWEB)
Duque, C.M. [Instituto de Física, Universidad de Antioquia, AA 1226 Medellín (Colombia); Mora-Ramos, M.E. [Instituto de Física, Universidad de Antioquia, AA 1226 Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave, Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226 Medellín (Colombia)
2013-06-15
The calculation of the second and third harmonic generation coefficients is carried out within the framework of the effective mass approximation in two-dimensional GaAs quantum discs under the combined effect of an external magnetic field and parabolic and inverse square confining potentials. Due to the electric dipole selection rules, the system is shown to have second harmonic generation coefficient identically zero for all the values of incident frequency. The generation of third optical harmonics is significantly dependent on the values of the different input parameters, with the presence of resonant peak blueshifts associated with the magnitudes of the parabolic confinement and the applied magnetic field. -- Highlights: ► One-electron conduction states in a two-dimensional quantum dot. ► Magnetic field and an inverse square repulsive potential. ► Generation of second harmonics is always null. ► Magnetic field induces a blueshift of the resonant peaks. ► The inverse square potential induces a reduction of the peak intensities.
Enhanced high-order harmonic generation from Argon-clusters
Tao, Yin; Hagmeijer, Rob; Bastiaens, Hubertus M.J.; Goh, S.J.; van der Slot, P.J.M.; Biedron, S.; Milton, S.; Boller, Klaus J.
2017-01-01
High-order harmonic generation (HHG) in clusters is of high promise because clusters appear to offer an increased optical nonlinearity. We experimentally investigate HHG from Argon clusters in a supersonic gas jet that can generate monomer-cluster mixtures with varying atomic number density and
Symmetry properties of second harmonics generated by antisymmetric Lamb waves
Zhu, Wujun; Xiang, Yanxun; Liu, Chang-Jun; Deng, Mingxi; Xuan, Fu-Zhen
2018-03-01
Symmetry properties of second harmonics generated by antisymmetric primary Lamb waves are systematically studied in this work. In theory, the acoustic field of second harmonic Lamb waves is obtained by using the perturbation approximation and normal modal method, and the energy flux transfer from the primary Lamb waves to second harmonics is mainly explored. Symmetry analyses indicate that either the symmetric or antisymmetric Lamb waves can merely generate the symmetric second harmonics. Finite element simulations are performed on the nonlinear Lamb wave propagation of the antisymmetric A0 mode in the low frequency region. The signals of the second harmonics and the symmetric second harmonic s0 mode are found to be exactly equivalent in the time domain. The relative acoustic nonlinearity parameter A2/A12 oscillates with the propagation distance, and the oscillation amplitude and spatial period are well consistent with the theoretical prediction of the A0-s0 mode pair, which means that only the second harmonic s0 mode is generated by the antisymmetric primary A0 mode. Experiments are further conducted to examine the cumulative generation of symmetric second harmonics for the antisymmetric-symmetric mode pair A3-s6. Results show that A2/A12 increases linearly with the propagation distance, which means that the symmetric second harmonic s6 mode is generated cumulatively by the antisymmetric primary A3 mode. The present investigation systematically corroborates the proposed theory that only symmetric second harmonics can be generated accompanying the propagation of antisymmetric primary Lamb waves in a plate.
Second harmonic generation in a molecular magnetic chain
Cavigli, L.; Sessoli, R.; Gurioli, M.; Bogani, L.
2006-05-01
A setup for the determination of all the components of the second harmonic generation tensor in molecular materials is presented. It allows overcoming depletion problems, which one can expect to be common in molecular systems. A preliminary characterization of the nonlinear properties of the single chain magnet CoPhOMe is carried out. We observe a high second harmonic signal, comparable to that of urea, and show that the bulk contributions are dominant over the surface ones.
Coherent harmonics generated by a super-short electron pulse
International Nuclear Information System (INIS)
Ding Wu
1996-01-01
A novel mechanism generating superradiance harmonics is found. In this superradiance harmonics, the temporal width of harmonics is extremely short, the ratio of high harmonic fundamental wave is much higher than the known superradiance harmonics
Harmonic operation of high gain harmonic generation free electron laser
International Nuclear Information System (INIS)
Deng Haixiao; Chinese Academy of Sciences, Beijing; Dai Zhimin
2008-01-01
In high gain harmonic generation (HGHG) free electron laser (FEL), with the right choice of parameters of the modulator undulator, the dispersive section and the seed laser, one may make the spatial bunching of the electron beam density distribution correspond to one of the harmonic frequencies of the radiator radiation, instead of the fundamental frequency of the radiator radiation in conventional HGHG, thus the radiator undulator is in harmonic operation (HO) mode. In this paper, we investigate HO of HGHG FEL. Theoretical analyses with universal method are derived and numerical simulations in ultraviolet and deep ultraviolet spectral regions are given. It shows that the power of the 3rd harmonic radiation in the HO of HGHG may be as high as 18.5% of the fundamental power level. Thus HO of HGHG FEL may obtain short wavelength by using lower beam energy. (authors)
Understanding fifth-harmonic generation in CLBO
Patankar, S.; Yang, S. T.; Moody, J. D.; Bayramian, A. J.; Swadling, G. F.; Barker, D.; Datte, P.; Mennerat, G.; Norton, M.; Carr, C. W.; Begishev, I. A.; Bromage, J.; Ross, J. S.
2018-02-01
We report on results of fifth harmonic generation in Cesium Lithium Borate (CLBO) using a three-crystal cascaded frequency conversion scheme designed to study the energy balance of the final sum frequency generation stage. The experimental setup independently combines the first and fourth harmonic of a Nd:Glass laser in a 5mm thick CLBO crystal. Energy balance between the incoming and output energy is close to unity when the CLBO is out of phase matching and approximately 80% when the crystal is in phase matching. A detailed analysis of the residual fundamental and fourth harmonic energy indicates 5th harmonic light is being generated but only 26% is unaccounted for. We attribute the missing light to linear transmission loss in the CLBO oven. The ratio of the output to input energy is unity when the missing 5th harmonic is incorporated into the calculations. Two-dimensional plane wave mixing simulations show agreement with the results at lower intensities.
Second harmonic generation in a bounded magnetoplasma
International Nuclear Information System (INIS)
Thomas, D.G.
1975-01-01
An experimental study of second harmonic generation in a magnetized plasma contained in a cylindrical cavity resonator shows how the harmonic power varies with fundamental power, background gas pressure, and magnetization. Two cavities were designed. For each the TM010 resonance was in the S-band and the TM011 resonance in the C-band. Both frequencies were harmonically related when the d.c. discharge sustaining the plasma was adjusted to give plasma frequencies of approximately 0.7 GHz and 1.53 GHz. The experimental results show the harmonic power approximately proportional to the square of the fundamental power from 5 to 100 mw, and a decreasing function of pressure from 10 to 150 millitorr. Experiments at constant plasma frequency and varying magnetic field from 0 to 3000 Gauss show a sharp drop in harmonic power to undetectable levels when the electron cyclotron frequency approximates either the fundamental or second harmonic frequencies. These effects are attributed, respectively, to the coupling of fundamental power to other modes and to cavity detuning away from the harmonic. With the plasma frequency adjusted to maintain simultaneous resonance of fundamental and harmonic, a harmonic signal maximum occurred when the upper hybrid frequency approximated the harmonic frequency. Several anomalies, apparently related to the magnetization, background gas, and electron density distribution were observed. Otherwise, the results are qualitatively consistent with the first order theory for a cold, collisional plasma
Few-cycle nonlinear mid-IR pulse generated with cascaded quadratic nonlinearities
DEFF Research Database (Denmark)
Bache, Morten; Liu, Xing; Zhou, Binbin
Generating few-cycle energetic and broadband mid-IR pulses is an urgent current challenge in nonlinear optics. Cascaded second-harmonic generation (SHG) gives access to an ultrafast and octave-spanning self-defocusing nonlinearity: when ΔkL >> 2π the pump experiences a Kerr-like nonlinear index...
High-order harmonic generation in laser plasma plumes
Ganeev, Rashid A
2013-01-01
This book represents the first comprehensive treatment of high-order harmonic generation in laser-produced plumes, covering the principles, past and present experimental status and important applications. It shows how this method of frequency conversion of laser radiation towards the extreme ultraviolet range matured over the course of multiple studies and demonstrated new approaches in the generation of strong coherent short-wavelength radiation for various applications. Significant discoveries and pioneering contributions of researchers in this field carried out in various laser scientific centers worldwide are included in this first attempt to describe the important findings in this area of nonlinear spectroscopy. "High-Order Harmonic Generation in Laser Plasma Plumes" is a self-contained and unified review of the most recent achievements in the field, such as the application of clusters (fullerenes, nanoparticles, nanotubes) for efficient harmonic generation of ultrashort laser pulses in cluster-containin...
Near-field second-harmonic generation from gold nanoellipsoids
Energy Technology Data Exchange (ETDEWEB)
Celebrano, M; Zavelani-Rossi, M; Polli, D; Cerullo, G [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Biagioni, P; Finazzi, M; Duo, L [LNESS - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Labardi, M; Allegrini, M [CNR-INFM, polyLab, Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Grand, J; Adam, P M; Royer, P [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060 10010 Troyes cedex (France)
2008-07-01
Second-harmonic generation from single gold nanofabricated particles is experimentally investigated by a nonlinear scanning near-field optical microscope (SNOM). High peak power femtosecond polarized light pulses at the output of a hollow pyramid aperture allow for efficient second-harmonic imaging, with sub-100-nm spatial resolution and high contrast. The near-field nonlinear response is found to be directly related to both local surface plasmon resonances and particle morphology. The combined analysis of linear and second-harmonic SNOM images allows one to discriminate among near-field scattering, absorption and re-emission processes, which would not be possible with linear techniques alone. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
High order harmonic generation in rare gases
Energy Technology Data Exchange (ETDEWEB)
Budil, Kimberly Susan [Univ. of California, Davis, CA (United States)
1994-05-01
The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~10^{13}-10^{14} W/cm^{2}) is focused into a dense (~10^{17} particles/cm^{3}) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.
Wiggler magnetic field assisted third harmonic generation in expanding clusters
Vij, Shivani
2018-04-01
A simple theoretical model is constructed to study the wiggler magnetic field assisted third harmonic generation of intense short pulse laser in a cluster in its expanding phase. The ponderomotive force of laser causes density perturbations in cluster electron density which couples with wiggler magnetic field to produce a nonlinear current that generates transverse third harmonic. An intense short pulse laser propagating through a gas embedded with atomic clusters, converts it into hot plasma balls via tunnel ionization. Initially, the electron plasma frequency inside the clusters ω pe > \\sqrt{3}{ω }1 (with ω 1 being the frequency of the laser). As the cluster expands under Coulomb force and hydrodynamic pressure, ω pe decreases to \\sqrt{3}{ω }1. At this time, there is resonant enhancement in the efficiency of the third harmonic generation. The efficiency of third harmonic generation is enhanced due to cluster plasmon resonance and by phase matching due to wiggler magnetic field. The effect of cluster size on the expansion rate is studied to observe that the clusters of different radii would expand differently. The impact of laser intensity and wiggler magnetic field on the efficiency of third harmonic generation is also explored.
Nonlinearly driven harmonics of Alfvén modes
Zhang, B.; Breizman, B. N.; Zheng, L. J.; Berk, H. L.
2014-01-01
In order to study the leading order nonlinear magneto-hydrodynamic (MHD) harmonic response of a plasma in realistic geometry, the AEGIS code has been generalized to account for inhomogeneous source terms. These source terms are expressed in terms of the quadratic corrections that depend on the functional form of a linear MHD eigenmode, such as the Toroidal Alfvén Eigenmode. The solution of the resultant equation gives the second order harmonic response. Preliminary results are presented here.
Nonlinearly driven harmonics of Alfvén modes
Energy Technology Data Exchange (ETDEWEB)
Zhang, B., E-mail: bozhang@austin.utexas.edu; Breizman, B. N.; Zheng, L. J.; Berk, H. L. [Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)
2014-01-15
In order to study the leading order nonlinear magneto-hydrodynamic (MHD) harmonic response of a plasma in realistic geometry, the AEGIS code has been generalized to account for inhomogeneous source terms. These source terms are expressed in terms of the quadratic corrections that depend on the functional form of a linear MHD eigenmode, such as the Toroidal Alfvén Eigenmode. The solution of the resultant equation gives the second order harmonic response. Preliminary results are presented here.
Second-harmonic generation in substoichiometric silicon nitride layers
Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca
2013-03-01
Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.
Nonlinear coupling of flow harmonics: Hexagonal flow and beyond
Giacalone, Giuliano; Yan, Li; Ollitrault, Jean-Yves
2018-05-01
Higher Fourier harmonics of anisotropic flow (v4 and beyond) get large contributions induced by elliptic and triangular flow through nonlinear response. We present a general framework of nonlinear hydrodynamic response which encompasses the existing one and allows us to take into account the mutual correlation between the nonlinear couplings affecting Fourier harmonics of any order. Using Large Hadron Collider data on Pb+Pb collisions at s =2.76 TeV, we perform an application of our formalism to hexagonal flow, v6, a coefficient affected by several nonlinear contributions which are of the same order of magnitude. We obtain the first experimental measure of the coefficient χ624, which couples v6 to v2 and v4. This is achieved by putting together the information from several analyses: event-plane correlations, symmetric cumulants, and higher order moments recently analyzed by the ALICE Collaboration. The value of χ624 extracted from data is in fair agreement with hydrodynamic calculations, although with large error bars, which would be dramatically reduced by a dedicated analysis. We argue that within our formalism the nonlinear structure of a given higher order harmonic can be determined more accurately than the harmonic itself, and we emphasize potential applications to future measurements of v7 and v8.
Nonlinear wave chaos: statistics of second harmonic fields.
Zhou, Min; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M
2017-10-01
Concepts from the field of wave chaos have been shown to successfully predict the statistical properties of linear electromagnetic fields in electrically large enclosures. The Random Coupling Model (RCM) describes these properties by incorporating both universal features described by Random Matrix Theory and the system-specific features of particular system realizations. In an effort to extend this approach to the nonlinear domain, we add an active nonlinear frequency-doubling circuit to an otherwise linear wave chaotic system, and we measure the statistical properties of the resulting second harmonic fields. We develop an RCM-based model of this system as two linear chaotic cavities coupled by means of a nonlinear transfer function. The harmonic field strengths are predicted to be the product of two statistical quantities and the nonlinearity characteristics. Statistical results from measurement-based calculation, RCM-based simulation, and direct experimental measurements are compared and show good agreement over many decades of power.
Static third-harmonic lines in widely variable fiber continuum generation
Tu, Haohua; Zhao, Youbo; Liu, Yuan; Boppart, Stephen A.
2014-01-01
An intriguing phenomenon of third-harmonic generation under fiber continuum generation is the emission of an anharmonic signal. One popular interpretation of this effect has developed into a general theory of fiber third-harmonic generation. Here we produce "static" third-harmonic lines dictated fully by fiber properties independent of pump parameters, in contrast to the signals of all known phase-matched nonlinear optical processes that vary dynamically with these parameters. We argue that the anharmonic signal is an illusion of the continuum generation, that it is in fact harmonic, and that this theory should be reevaluated.
Relativistic harmonic content of nonlinear electromagnetic waves in underdense plasmas
International Nuclear Information System (INIS)
Mori, W.B.; Decker, C.D.; Leemans, W.P.
1993-01-01
The relativistic harmonic content of large amplitude electromagnetic waves propagating in underdense plasmas is investigated. The steady state harmonic content of nonlinear linearly polarized waves is calculated for both the very underdense (w p /w o ) much-lt 1 and critical density (w p /w o ) ≅ 1 limits. For weak nonlinearities, eE o /mcw o p /w o . Arguments are given for extending these results for arbitrary wave amplitudes. The authors also show that the use of the variable x-ct and the quasi-static approximation leads to errors in both magnitude and sign when calculating the third harmonic. In the absence of damping or density gradients the third harmonic's amplitude is found to oscillate between zero and twice the steady state value. Preliminary PIC simulation results are presented. The simulation results are in basic agreement with the uniform plasma predictions for the third harmonic amplitude. However, the higher harmonics are orders of magnitude larger than expected and the presence of density ramps significantly modifies the results
Nonlinear analysis of a cross-coupled quadrature harmonic oscillator
DEFF Research Database (Denmark)
Djurhuus, Torsten; Krozer, Viktor; Vidkjær, Jens
2005-01-01
The dynamic equations governing the cross-coupled quadrature harmonic oscillator are derived assuming quasi-sinusoidal operation. This allows for an investigation of the previously reported tradeoff between close-to-carrier phase noise and quadrature precision. The results explain how nonlinearity...
Resonant second harmonic generation in potassium vapor
International Nuclear Information System (INIS)
Kim, D.; Mullin, C.S.; Shen, Y.R.; Lawrence Berkeley Lab., CA
1995-06-01
Picosecond pulses are used to study resonant second harmonic generation in potassium vapor. Although the process is both microscopically and macroscopically forbidden, it can readily be observed. The results can be quantitatively understood by a multiphoton-ionization-initiated, dc-field-induced, coherent transient model
High order harmonic generation from plasma mirror
International Nuclear Information System (INIS)
Thaury, C.
2008-09-01
When an intense laser beam is focused on a solid target, its surface is rapidly ionized and forms a dense plasma that reflects the incident field. For laser intensities above few 10 15 W/cm 2 , high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as = 10 18 s), can be generated upon this reflection. Because such a plasma mirror can be used with arbitrarily high laser intensities, this process should eventually lead to the production of very intense pulses in the X-ray domain. In this thesis, we demonstrate that for laser intensities about 10 19 W/cm 2 , two mechanisms can contribute to the generation of high order harmonics: the coherent wake emission and the relativistic emission. These two mechanisms are studied both theoretically and experimentally. In particular, we show that, thanks to very different properties, the harmonics generated by these two processes can be unambiguously distinguished experimentally. We then investigate the phase properties of the harmonic, in the spectral and in the spatial domain. Finally, we illustrate how to exploit the coherence of the generation mechanisms to get information on the dynamics of the plasma electrons. (author)
Harmonic generation with multiple wiggler schemes
Energy Technology Data Exchange (ETDEWEB)
Bonifacio, R.; De Salvo, L.; Pierini, P. [Universita degli Studi, Milano (Italy)
1995-02-01
In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.
Application of organic compounds for high-order harmonic generation of ultrashort pulses
Ganeev, R. A.
2016-02-01
The studies of the high-order nonlinear optical properties of a few organic compounds (polyvinyl alcohol, polyethylene, sugar, coffee, and leaf) are reported. Harmonic generation in the laser-produced plasmas containing the molecules and large particles of above materials is demonstrated. These studies showed that the harmonic distributions and harmonic cutoffs from organic compound plasmas were similar to those from the graphite ablation. The characteristic feature of observed harmonic spectra was the presence of bluesided lobes near the lower-order harmonics.
Optical High Harmonic Generation in C60
Zhang, Guoping
2005-03-01
C60 et al. Physical Review Letters Physical Review B High harmonic generation (HHG) requires a strong laser field, but in a relatively weak laser field is sufficient. Numerical results presented here show while its low order harmonics result from the laser field, its high order ones are mainly from the multiple excitations. Since high order harmonics directly correlate electronic transitions, the HHG spectrum accurately measures transition energies. Therefore, is not only a promising material for HHG, but may also present an opportunity to develop HHG into an electronic structure probing tool. References: G. P. Zhang, 91, 176801 (2003); G. P. Zhang and T. F. George, 68, 165410 (2003); P. B. Corkum, 71, 1994 (1993); G. P. Zhang and Thomas F. George, 93, 147401 (2004); H. Niikura ,ature 417, 917 (2002); ibid. 421, 826 (2003); Y. Mairesse ,cience 302, 1540 (2003); A. Baltuska ,ature 421, 611 (2003).
Transmit beamforming for optimal second-harmonic generation.
Hoilund-Kaupang, Halvard; Masoy, Svein-Erik
2011-08-01
A simulation study of transmit ultrasound beams from several transducer configurations is conducted to compare second-harmonic imaging at 3.5 MHz and 11 MHz. Second- harmonic generation and the ability to suppress near field echoes are compared. Each transducer configuration is defined by a chosen f-number and focal depth, and the transmit pressure is estimated to not exceed a mechanical index of 1.2. The medium resembles homogeneous muscle tissue with nonlinear elasticity and power-law attenuation. To improve computational efficiency, the KZK equation is utilized, and all transducers are circular-symmetric. Previous literature shows that second-harmonic generation is proportional to the square of the transmit pressure, and that transducer configurations with different transmit frequencies, but equal aperture and focal depth in terms of wavelengths, generate identical second-harmonic fields in terms of shape. Results verify this for a medium with attenuation f1. For attenuation f1.1, deviations are found, and the high frequency subsequently performs worse than the low frequency. The results suggest that high frequencies are less able to suppress near-field echoes in the presence of a heterogeneous body wall than low frequencies.
Plasma wave and second harmonic generation
International Nuclear Information System (INIS)
Sodha, M.S.; Sharma, J.K.; Tewari, D.P.; Sharma, R.P.; Kaushik, S.C.
1978-01-01
An investigation is made of a plasma wave at pump wave frequency and second harmonic generation caused by a self induced transverse inhomogeneity introduced by a Gaussian electromagnetic beam in a hot collisionless plasma. In the presence of a Gaussian beam the carriers get redistributed from the high field region to the low field region by ponderomative force and a transverse density gradient is established in the plasma. When the electric vector of the main beam is parallel to this density gradient, a plasma wave at the pump wave frequency is generated. In addition to this the transverse intensity gradient of the electromagnetic wave also contributes significantly to the plasma wave generation. The power of the plasma wave exhibits a maximum and minimum with the power of the pump wave (at z = 0). The generated plasma wave interacts with the electromagnetic wave and leads to the generation of a second harmonic. Furthermore, if the initial power of the pump wave is more than the critical power for self-focusing, the beam gets self-focused and hence the generated plasma wave and second harmonic which depend upon the background electron concentration and power of the main beam also get accordingly modified. (author)
Studies of harmonic generation in free electron lasers
International Nuclear Information System (INIS)
Goldammer, K.
2007-01-01
Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It
Studies of harmonic generation in free electron lasers
Energy Technology Data Exchange (ETDEWEB)
Goldammer, K.
2007-11-12
Nonlinear harmonic generation is one of the most interesting aspects of Free Electron Lasers under study today. It provides for coherent, high intensity radiation at higher harmonics of the FEL resonant frequency. The sources, numerical simulation and applications of harmonic radiation in cascaded High Gain Harmonic Generation FELs were the subject of this thesis. Harmonic emission in FELs originates from harmonic microbunching of the particles and the particular electron trajectory during FEL interaction. Numerical FEL simulation codes model these analytical equations and predict the performance of Free Electron Lasers with good accuracy. This thesis has relied heavily upon the FEL simulation code Genesis 1.3 which has been upgraded in the framework of this thesis to compute harmonic generation in a self-consistent manner. Tests against analytical predictions suggest that the harmonic power levels as well as harmonic gain lengths are simulated correctly. A benchmark with the FEL simulation code GINGER yields excellent agreement of the harmonic saturation length and saturation power. The new version of the simulation code Genesis was also tested against measurements from the VUV-FEL FLASH at DESY. The spectral power distributions of fundamental and third harmonic radiation were recorded at 25.9 nm and 8.6 nm, respectively. The relative bandwidths (FWHM) were in the range of 2 % for both the fundamental as well as the third harmonic, which was accurately reproduced by time-dependent simulations with Genesis. The new code was also used to propose and evaluate a new design for the BESSY Soft X-Ray FEL, a cascaded High Gain Harmonic Generation FEL proposed by BESSY in Berlin. The original design for the BESSY High Energy FEL line requires four HGHG stages to convert the initial seed laser wavelength of 297.5 nm down to 1.24 nm. A new scheme is proposed that makes use of fifth harmonic radiation from the first stage and reduces the number of HGHG stages to three. It
Inhomogeneous critical nonlinear Schroedinger equations with a harmonic potential
International Nuclear Information System (INIS)
Cao Daomin; Han Pigong
2010-01-01
In this paper, we study the Cauchy problem of the inhomogeneous nonlinear Schroedinger equation with a harmonic potential: i∂ t u=-div(f(x)∇u)+|x| 2 u-k(x)|u| 4/N u, x is an element of R N , N≥1, which models the remarkable Bose-Einstein condensation. We discuss the existence and nonexistence results and investigate the limiting profile of blow-up solutions with critical mass.
Prediction of Metastasis Using Second Harmonic Generation
2016-07-01
small but statistically significant difference in average F/B of treated US patients versus untreated Dutch patients. Fig. 1. Display of all...predictive ability of models incorporating F/B using a multivariate linear model, but this time applying the analysis to the entire ER+ and ER- cohort. As...AWARD NUMBER: W81XWH-15-1-0040 TITLE: Prediction of Metastasis Using Second Harmonic Generation PRINCIPAL INVESTIGATOR: Edward Brown
Thomas, Giju; van Voskuilen, Johan; Gerritsen, Hans C.; Sterenborg, H. J. C. M.
2014-01-01
Nonlinear optical imaging (NLOI) has emerged to be a promising tool for bio-medical imaging in recent times. Among the various applications of NLOI, its utility is the most significant in the field of pre-clinical and clinical cancer research. This review begins by briefly covering the core
Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei; Sohn, Hoon; Lim, Hyung Jin
2018-01-01
This paper presents experimental and theoretical analyses of the second harmonic generation due to non-linear interaction of Lamb waves with a fatigue crack. Three-dimensional (3D) finite element (FE) simulations and experimental studies are carried out to provide physical insight into the mechanism of second harmonic generation. The results demonstrate that the 3D FE simulations can provide a reasonable prediction on the second harmonic generated due to the contact nonlinearity at the fatigue crack. The effect of the wave modes on the second harmonic generation is also investigated in detail. It is found that the magnitude of the second harmonic induced by the interaction of the fundamental symmetric mode (S0) of Lamb wave with the fatigue crack is much higher than that by the fundamental anti-symmetric mode (A0) of Lamb wave. In addition, a series of parametric studies using 3D FE simulations are conducted to investigate the effect of the fatigue crack length to incident wave wavelength ratio, and the influence of the excitation frequency on the second harmonic generation. The outcomes show that the magnitude and directivity pattern of the generated second harmonic depend on the fatigue crack length to incident wave wavelength ratio as well as the ratio of S0 to A0 incident Lamb wave amplitude. In summary, the findings of this study can further advance the use of second harmonic generation in damage detection.
Second-harmonic generation in shear wave beams with different polarizations
Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2015-10-01
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.
Second-harmonic generation in shear wave beams with different polarizations
Energy Technology Data Exchange (ETDEWEB)
Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)
2015-10-28
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.
Second-harmonic generation in shear wave beams with different polarizations
International Nuclear Information System (INIS)
Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2015-01-01
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic
Coherent bremsstrahlung generation of harmonics in a laser-produced plasma
International Nuclear Information System (INIS)
Silin, Viktor P
1999-01-01
Foundations of a theory of generation of the harmonics of a laser pump in a fully ionised plasma are proposed. This theory makes it possible to describe the relationships governing harmonic generation in an analytical form. For an elliptically polarised pump field with a low degree of circular polarisation A, the range of plasma parameters is established in which the number of harmonics is found to be of the order of A -1 . Anomalous polarisation properties of the harmonics are predicted. In this case, their polarisation is seen to be nearly perpendicular to the pump polarisation and the degree of circular polarisation increases with the harmonic order number. The harmonic-order-dependent intensity of the pump field which results in circular polarisation of a harmonic is determined making allowance for thermal plasma motion. The conditions under which increasing the low degree of circular pump polarisation increases the efficiency of harmonic generation are established. The nonlinear dependence of the pump polarisation on its intensity under the conditions of collisional absorption in a plasma are identified and an instability of the circular polarisation is revealed. For a plane-polarised pump, it is shown how the maximum power of a harmonic and the pump power corresponding to this maximum scale up with the harmonic order number. The conditions under which the number of harmonics generated is limited owing to the relativistic nature of electron motion in the pump field are established. This effect appears for an unexpectedly weak relativity. (invited paper)
Third-harmonic generation in isotropic media by focused pulses
International Nuclear Information System (INIS)
Tasgal, Richard S.; Band, Y.B.
2004-01-01
For focused pulses of light in isotropic nonlinear media, third-harmonic generation can be strongly affected by group-velocity mismatch between the fundamental and third-harmonic. There is a characteristic time determined by the group-velocity mismatch and the Rayleigh range of the focused pulse. The dynamics depend on two dimensionless quantities, namely the ratio of the characteristic time to the pulse duration and the phase-velocity mismatch times the Rayleigh range. Pulses shorter than the characteristic time have physics described by simple analytic formulas. Pulses near the characteristic time have an intermediate behavior given by an explicit but more complicated formula. Pulses longer than the characteristic time tend to the continuous-wave case
The analysis of harmonic generation coefficients in the ablative Rayleigh-Taylor instability
Lu, Yan; Fan, Zhengfeng; Lu, Xinpei; Ye, Wenhua; Zou, Changlin; Zhang, Ziyun; Zhang, Wen
2017-10-01
In this research, we use the numerical simulation method to investigate the generation coefficients of the first three harmonics and the zeroth harmonic in the Ablative Rayleigh-Taylor Instability. It is shown that the interface shifts to the low temperature side during the ablation process. In consideration of the third-order perturbation theory, the first three harmonic amplitudes of the weakly nonlinear regime are calculated and then the harmonic generation coefficients are obtained by curve fitting. The simulation results show that the harmonic generation coefficients changed with time and wavelength. Using the higher-order perturbation theory, we find that more and more harmonics are generated in the later weakly nonlinear stage, which is caused by the negative feedback of the later higher harmonics. Furthermore, extending the third-order theory to the fifth-order theory, we find that the second and the third harmonics coefficients linearly depend on the wavelength, while the feedback coefficients are almost constant. Further analysis also shows that when the fifth-order theory is considered, the normalized effective amplitudes of second and third harmonics can reach about 25%-40%, which are only 15%-25% in the frame of the previous third-order theory. Therefore, the third order perturbation theory is needed to be modified by the higher-order theory when ηL reaches about 20% of the perturbation wavelength.
Saripalli, Ravi Kiran; Katturi, Naga Krishnakanth; Soma, Venugopal Rao; Bhat, H. L.; Elizabeth, Suja
2017-12-01
The linear, second order, and third order nonlinear optical properties of glucuronic acid γ-lactone single crystals were investigated. The optic axes and principal dielectric axes were identified through optical conoscopy and the principal refractive indices were obtained using the Brewster's angle method. Conic sections were observed which is perceived to be due to spontaneous non-collinear phase matching. The direction of collinear phase matching was determined and the deff evaluated in this direction was 0.71 pm/V. Open and closed aperture Z-scan measurements with femtosecond pulses revealed high third order nonlinearity in the form of self-defocusing, two-photon absorption, as well as saturable absorption.
Geometric effect on second harmonic generation from gold grating
Lu, Jiao; Ding, Baoyong; Huo, Yanyan; Ning, Tingyin
2018-05-01
We numerically investigate second harmonic generation from gold gratings of an ideal rectangular and ladder-shaped cross-section. The SHG efficiency from the gold gratings of the ladder-shaped cross-section is significantly enhanced compared with that from the ideal rectangular cross-section with a maximum enhancement factor of around two. The enhancement is ascribe to the nanostructure dependent local fundamental electric field, the nonlinear sources and thus the far field radiation. Our results have a practical meaning in the explanation of experimental SHG measurement, and the modulation of SHG response in the metallic nanostructure.
Nonlinear processes in laser-produced dense plasma (observation of the fractional harmonics)
International Nuclear Information System (INIS)
Lyu, K.S.
1988-01-01
One of the main issues of laser plasma physics interactions is harmonic generation. The harmonic emission spectrum provides clues as to which non-linear processes take place in the plasma. Several effects contribute to a given line as judged from the complexity of the actual spectra. Unfolding of them has not been done satisfactorily yet. Harmonic lines with half integer or integer orders have been observed, but the physics are far from complete. In this dissertation research, we observed the usual second harmonic generation and a set of fractional harmonics which we believe have been observed for the first time in plasma physics. The plasma was produced by a high power laser and we have characterized its properties from the analysis of the radiation spectra, including the harmonic lines, as measured using the methods of transient spectroscopy. We produced the plasma with a Nd:glass laser which had a 65 nsec pulse width (FWHM) with a total energy of up to 6 Joules. The targets were steel alloys, copper, and aluminum. The harmonic generation from the plasma with a planar metal target was not strong. But, it became stronger when we made a dead hole (cavity) at the laser spot on the target surface. The second harmonic line appears first before the time of the peak of laser pulse. The fractional harmonics, which are related to the laser wavelength by rational number other than integers or half integers, appear near or after the time of the laser peak and weaker in UV wavelength range but stronger if some atomic emission line are near by. To understand the plasma evolution better, we developed computer simulation codes. The codes contain all relevant processes necessary to compute the plasma evolution
High order harmonic generation from plasma mirrors
International Nuclear Information System (INIS)
George, H.
2010-01-01
When an intense laser beam is focused on a solid target, the target's surface is rapidly ionized and forms dense plasma that reflects the incident field. For laser intensities above few 10 to the power of 15 Wcm -2 , high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as 10 -18 s), can be generated upon this reflection. In this thesis, we developed numerical tools to reveal original aspects of harmonic generation mechanisms in three different interaction regime: the coherent wake emission, the relativistic emission and the resonant absorption. In particular, we established the role of these mechanisms when the target is a very thin foil (thickness of the order of 100 nm). Then we study experimentally the spectral, spatial and coherence properties of the emitted light. We illustrate how to exploit these measurements to get information on the plasma mirror dynamics on the femtosecond and atto-second time scales. Last, we propose a technique for the single-shot complete characterization of the temporal structure of the harmonic light emission from the laser-plasma mirror interaction. (author)
Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate
International Nuclear Information System (INIS)
Xiang Yanxun; Deng Mingxi
2008-01-01
The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface. In general, the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur. However, the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied. Through boundary condition and initial condition of excitation, the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined. Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns. (classical areas of phenomenology)
Generating transverse response explicitly from harmonic oscillators
Yao, Yuan; Tang, Ying; Ao, Ping
2017-10-01
We obtain stochastic dynamics from a system-plus-bath mechanism as an extension of the Caldeira-Leggett (CL) model in the classical regime. An effective magnetic field and response functions with both longitudinal and transverse parts are exactly generated from the bath of harmonic oscillators. The effective magnetic field and transverse response are antisymmetric matrices: the former is explicitly time-independent corresponding to the geometric magnetism, while the latter can have memory. The present model can be reduced to previous representative examples of stochastic dynamics describing nonequilibrium processes. Our results demonstrate that a system coupled with a bath of harmonic oscillators is a general approach to studying stochastic dynamics, and provides a method to experimentally implement an effective magnetic field from coupling to the environment.
Sikora, Roman; Markiewicz, Przemysław; Pabjańczyk, Wiesława
2018-04-01
The power systems usually include a number of nonlinear receivers. Nonlinear receivers are the source of disturbances generated to the power system in the form of higher harmonics. The level of these disturbances describes the total harmonic distortion coefficient THD. Its value depends on many factors. One of them are the deformation and change in RMS value of supply voltage. A modern LED luminaire is a nonlinear receiver as well. The paper presents the results of the analysis of the influence of change in RMS value of supply voltage and the level of dimming of the tested luminaire on the value of the current THD. The analysis was made using a mathematical model based on multivariable polynomial fitting.
Directory of Open Access Journals (Sweden)
Sikora Roman
2018-04-01
Full Text Available The power systems usually include a number of nonlinear receivers. Nonlinear receivers are the source of disturbances generated to the power system in the form of higher harmonics. The level of these disturbances describes the total harmonic distortion coefficient THD. Its value depends on many factors. One of them are the deformation and change in RMS value of supply voltage. A modern LED luminaire is a nonlinear receiver as well. The paper presents the results of the analysis of the influence of change in RMS value of supply voltage and the level of dimming of the tested luminaire on the value of the current THD. The analysis was made using a mathematical model based on multivariable polynomial fitting.
Control and metrology of high harmonic generation on plasma mirrors
International Nuclear Information System (INIS)
Monchoce, Sylvain
2014-01-01
When an ultra intense femtosecond laser with high contrast is focused on a solid target, the laser field at focus is sufficient enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This dense plasma entirely reflects the incident beam in the specular direction: this is a so-called plasma mirror. As the interaction between the laser and the plasma mirror is highly non-linear, it thus leads to the high harmonic generation (HHG) in the reflected beam. In the temporal domain, this harmonic spectrum is associated to a train of atto-second pulses. The aim of my PhD were to experimentally control this HHG and to measure the properties of the harmonics. We first studied the optimization of the harmonic signal, and then the spatial characterization of the harmonic beam in the far-field (harmonic divergence). These characterizations are not only important to develop an intense XUV/atto-second light source, but also to get a better understanding of the laser-matter interaction at very high intensity. We have thus been able to get crucial information of the electrons and ions dynamics of the plasma, showing that the harmonics can also be used as a diagnostic of the laser-plasma interaction. We then developed a new general approach for optically-controlled spatial structuring of overdense plasmas generated at the surface of initially plain solid targets. We demonstrate it experimentally by creating sinusoidal plasma gratings of adjustable spatial periodicity and depth, and study the interaction of these transient structures with an ultra-intense laser pulse to establish their usability at relativistically high intensities. We then show how these gratings can be used as a 'spatial ruler' to determine the source size of the high-order harmonic beams produced at the surface of an overdense plasma. These results open new directions both for the metrology of laser-plasma interactions and the emerging field of ultrahigh
Accurate calculation of high harmonics generated by relativistic Thomson scattering
International Nuclear Information System (INIS)
Popa, Alexandru
2008-01-01
The recent emergence of the field of ultraintense laser pulses, corresponding to beam intensities higher than 10 18 W cm -2 , brings about the problem of the high harmonic generation (HHG) by the relativistic Thomson scattering of the electromagnetic radiation by free electrons. Starting from the equations of the relativistic motion of the electron in the electromagnetic field, we give an exact solution of this problem. Taking into account the Lienard-Wiechert equations, we obtain a periodic scattered electromagnetic field. Without loss of generality, the solution is strongly simplified by observing that the electromagnetic field is always normal to the direction electron-detector. The Fourier series expansion of this field leads to accurate expressions of the high harmonics generated by the Thomson scattering. Our calculations lead to a discrete HHG spectrum, whose shape and angular distribution are in agreement with the experimental data from the literature. Since no approximations were made, our approach is also valid in the ultrarelativistic regime, corresponding to intensities higher than 10 23 W cm -2 , where it predicts a strong increase of the HHG intensities and of the order of harmonics. In this domain, the nonlinear Thomson scattering could be an efficient source of hard x-rays
Effect of self-focusing on resonant third harmonic generation of laser in a rippled density plasma
International Nuclear Information System (INIS)
Kaur, Sukhdeep; Sharma, A. K.; Yadav, Sushila
2010-01-01
Resonant third harmonic generation by a Gaussian laser beam in a rippled density plasma is studied. The laser ponderomotive force induces second harmonic longitudinal velocity on electrons that couples with the static density ripple to produce a density perturbation at 2ω,2k+q, where ω and k are the frequency and wave number of the laser and q is the ripple wave number of the laser. This density perturbation beats with electron oscillatory velocity at ω,k-vector to produce a nonlinear current driving the third harmonic generation. In the regime of quadratic nonlinearity, the self-focusing of the laser enhances the third harmonic power. However, at higher intensity, plasma density is significantly reduced on the axis, detuning the third harmonic resonance and weakening the harmonic yield. Self-focusing causes enhancement in the efficiency of harmonic generation.
Tellier, Gildas; Boisrobert, Christian
2007-11-01
The Maker fringes technique is commonly used for the determination of nonlinear optical coefficients. In this article, we present a new formulation of Maker fringes in parallel-surface samples, using boundary conditions taking into account the anisotropy of the crystal, the refractive-index dispersion, and the reflections of the fundamental and the second harmonic waves inside the material. Complete expressions for the generated second harmonic intensity are given for birefringent crystals for the case of no pump depletion. A comparison between theory and experimental results is made, showing the accuracy of our theoretical expressions.
Third-harmonic generation for photoionization studies
International Nuclear Information System (INIS)
Compton, R.N.; Miller, J.C.
1982-01-01
Our group at Oak Ridge National Laboratory (ORNL) has studied resonantly enhanced multiphoton ionization (MPI) of alkali atoms, rare gases, and small molecules using tightly focused dye laser beams (power densities of 10 9 to 10 11 W/cm 2 ). In the case of alkali atoms, some ionization signals appear as a result of gas density effects (dimers or quasi-collisions) as previously discovered by Collins and his collaborators. These have been termed hybrid-resonances. By contrast, in the case of the rare gases, certain resonance ionization signals disappear with increasing gas density. The disappearance of the ionization signals in the rare gases is due to the interference of excitation of the third-harmonic and fundamental laser beam. At low pressure (10 -7 to 10 -5 torr) we have studied (1) mass spectra, (2) kinetic energy released in ionic fragmentation, and (3) photoelectron kinetic energy spectra using time-of-flight mass analysis and a 160 0 spherical sector electrostatic energy analyzer. These experiments, combined with two-color dye laser experiments, can often offer an unambiguous and detailed description of the MPI and subsequent fragmentation events. The major part of this talk will be devoted to the production and the use of vacuum ultraviolet (VUV) light from third-harmonic generation (THG) in the rare gases
Transient regime in second harmonic generation
Szeftel, Jacob; Sandeau, Laure; Sandeau, Nicolas; Delezoide, Camille; Khater, Antoine
2013-09-01
The time growth of the electromagnetic field at the fundamental and double frequencies is studied from the very onset of the second harmonic generation (SHG) process for a set of dipoles lacking a symmetry centre and exhibiting a nonresonant coupling with a classical electromagnetic field. This approach consists first of solving the Schrödinger equation by applying a generalised Rabi rotation to the Hamiltonian describing the light-dipole interaction. This rotation has been devised for the resulting Hamiltonian to show up time-independent for both components of the electromagnetic field at the fundamental frequency and the second harmonic one. Then an energy conservation argument, derived from the Poynting theorem, is introduced to work out an additional relationship between the electromagnetic field and its associated electric polarisation. Finally this analysis yields the full time behaviour of all physical quantities of interest. The calculated results reproduce accurately both the observed spatial oscillations of the SHG intensity (Maker's fringes) and its power law dependence on the intensity of the incoming light at the fundamental frequency.
Third harmonic generation of shear horizontal guided waves propagation in plate-like structures
Energy Technology Data Exchange (ETDEWEB)
Li, Wei Bin [School of Aerospace Engineering, Xiamen University, Xiamen (China); Xu, Chun Guang [School of Mechanical Engineering, Beijing Institute of Technology, Beijing (China); Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)
2016-04-15
The use of nonlinear ultrasonics wave has been accepted as a promising tool for monitoring material states related to microstructural changes, as it has improved sensitivity compared to conventional non-destructive testing approaches. In this paper, third harmonic generation of shear horizontal guided waves propagating in an isotropic plate is investigated using the perturbation method and modal analysis approach. An experimental procedure is proposed to detect the third harmonics of shear horizontal guided waves by electromagnetic transducers. The strongly nonlinear response of shear horizontal guided waves is measured. The accumulative growth of relative acoustic nonlinear response with an increase of propagation distance is detected in this investigation. The experimental results agree with the theoretical prediction, and thus providing another indication of the feasibility of using higher harmonic generation of electromagnetic shear horizontal guided waves for material characterization.
Second Harmonic Generation of Unpolarized Light
Ding, Changqin; Ulcickas, James R. W.; Deng, Fengyuan; Simpson, Garth J.
2017-11-01
A Mueller tensor mathematical framework was applied for predicting and interpreting the second harmonic generation (SHG) produced with an unpolarized fundamental beam. In deep tissue imaging through SHG and multiphoton fluorescence, partial or complete depolarization of the incident light complicates polarization analysis. The proposed framework has the distinct advantage of seamlessly merging the purely polarized theory based on the Jones or Cartesian susceptibility tensors with a more general Mueller tensor framework capable of handling partial depolarized fundamental and/or SHG produced. The predictions of the model are in excellent agreement with experimental measurements of z -cut quartz and mouse tail tendon obtained with polarized and depolarized incident light. The polarization-dependent SHG produced with unpolarized fundamental allowed determination of collagen fiber orientation in agreement with orthogonal methods based on image analysis. This method has the distinct advantage of being immune to birefringence or depolarization of the fundamental beam for structural analysis of tissues.
Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Nie, Zongxiu
2016-02-01
The nonlinear harmonics within the ion motion are the fingerprint of the nonlinear fields. They are exclusively introduced by these nonlinear fields and are responsible to some specific nonlinear effects such as nonlinear resonance effect. In this article, the ion motion in the quadrupole field with a weak superimposed octopole component, described by the nonlinear Mathieu equation (NME), was studied by using the analytical harmonic balance (HB) method. Good accuracy of the HB method, which was comparable with that of the numerical fourth-order Runge-Kutta (4th RK), was achieved in the entire first stability region, except for the points at the stability boundary (i.e., β = 1) and at the nonlinear resonance condition (i.e., β = 0.5). Using the HB method, the nonlinear 3β harmonic series introduced by the octopole component and the resultant nonlinear resonance effect were characterized. At nonlinear resonance, obvious resonant peaks were observed in the nonlinear 3β series of ion motion, but were not found in the natural harmonics. In addition, both resonant excitation and absorption peaks could be observed, simultaneously. These are two unique features of the nonlinear resonance, distinguishing it from the normal resonance. Finally, an approximation equation was given to describe the corresponding working parameter, q nr , at nonlinear resonance. This equation can help avoid the sensitivity degradation due to the operation of ion traps at the nonlinear resonance condition.
Dynamics of injection locking in a solid-state laser with intracavity second-harmonic generation
International Nuclear Information System (INIS)
Zolotoverkh, I I; Lariontsev, E G
2000-01-01
The dynamics of oscillation in a solid-state laser with intracavity second-harmonic generation under the influence of an external signal at the second-harmonic frequency injected into its cavity in the presence of feedback at the double frequency is theoretically studied. Boundaries of the regions of injection locking for three stationary laser states differing in the nonlinear phase incursion caused by radiation conversion into the second harmonic are found. Relaxation oscillations in the stationary state of injection locking are studied. It is shown that the second relaxation frequency, which is related to phase perturbations of the second harmonic and perturbations of the phase difference of waves in a nonlinear crystal, is excited in a single-mode solid-state laser in addition to the fundamental frequency of relaxation oscillations. Conditions are found under which relaxation oscillations at the second relaxation frequency are excited. (lasers)
Gonçalves, Hugo; Saavedra, Inês; Ferreira, Rute AS; Lopes, PE; de Matos Gomes, Etelvina; Belsley, Michael
2018-03-01
Intense well polarized second harmonic light was generated by poly(methyl methacrylate) nanofibres with embedded para-nitroaniline nanocrystals. Subwavelength diameter fibres were electro-spun using a 1:2 weight ratio of chromophore to polymer. Analysis of the generated second harmonic light indicates that the para-nitroaniline molecules, which nominally crystalize in the centrosymmetric space group, were organized into noncentrosymmetric structures leading to a second order susceptibility dominated by a single tensor element. Under the best deposition conditions, the nanofibrers display an effective nonlinear optical susceptibility approximately two orders of magnitude greater than that of potassium dihydrogen phosphate. Generalizing this approach to a broad range of organic molecules with strong individual molecular second order nonlinear responses, but which nominally form centrosymmetric organic crystals, could open a new pathway for the fabrication of efficient sub-micron sized second harmonic light generators.
Tunneling ionization and harmonic generation in two-color fields
International Nuclear Information System (INIS)
Kondo, K.; Kobayashi, Y.; Sagisaka, A.; Nabekawa, Y.; Watanabe, S.
1996-01-01
Tunneling ionization and harmonic generation in two-color fields were studied with a fundamental beam (ω) and its harmonics (2ω,3ω), which were generated by a 100-fs Ti:sapphire laser. Ion yields of atoms and molecules were successfully controlled by means of a change in the relative phase between ω and 3ω pulses. Two-color interference was clearly observed in photoelectron spectra and harmonic spectra. In the ω endash 2ω field even-order harmonics were observed in which the intensity was almost equal to that of the odd harmonics because of an asymmetric optical field. These results were compared with the quasi-static model for ionization and with the quantum theory for harmonic generation. copyright 1996 Optical Society of America
A novel method for detecting second harmonic ultrasonic components generated from fastened bolts
Fukuda, Makoto; Imano, Kazuhiko
2012-09-01
This study examines the use of ultrasonic second harmonic components in the quality control of bolt-fastened structures. An improved method for detecting the second harmonic components, from a bolt fastened with a nut, using the transmission method is constructed. A hexagon head iron bolt (12-mm diameter and 25-mm long) was used in the experiments. The bolt was fastened using a digital torque wrench. The second harmonic component increased by approximately 20 dB before and after the bolt was fastened. The sources of second harmonic components were contact acoustic nonlinearity in the screw thread interfaces of the bolt-nut and were the plastic deformation in the bolt with fastening bolt. This result was improved by approximately 10 dB compared with previous our method. Consequently, usefulness of the novel method for detecting second harmonic ultrasonic components generated from fastened bolt was confirmed.
Integrated GaN photonic circuits on silicon (100) for second harmonic generation
Xiong, Chi; Pernice, Wolfram; Ryu, Kevin K.; Schuck, Carsten; Fong, King Y.; Palacios, Tomas; Tang, Hong X.
2014-01-01
We demonstrate second order optical nonlinearity in a silicon architecture through heterogeneous integration of single-crystalline gallium nitride (GaN) on silicon (100) substrates. By engineering GaN microrings for dual resonance around 1560 nm and 780 nm, we achieve efficient, tunable second harmonic generation at 780 nm. The \\{chi}(2) nonlinear susceptibility is measured to be as high as 16 plus minus 7 pm/V. Because GaN has a wideband transparency window covering ultraviolet, visible and ...
Evidence of multipolar response of Bacteriorhodopsin by noncollinear second harmonic generation.
Bovino, F A; Larciprete, M C; Sibilia, C; Váró, G; Gergely, C
2012-06-18
Noncollinear second harmonic generation from a Bacteriorhodopsin (BR) oriented multilayer film was systematically investigated by varying the polarization state of both fundamental beams. Both experimental results and theoretical simulations, show that the resulting polarization mapping is an useful tool to put in evidence the optical chirality of the investigated film as well as the corresponding multipolar contributions to the nonlinear.
A structure and second-harmonic generation of crystals Li B3O5
International Nuclear Information System (INIS)
Burak, Ya.V.
1997-01-01
Projections of atoms of nonlinear optical crystals Li B 3 O 5 onto planes perpendicular to directions of the phase matching of type-1 and type-2 for second-harmonic generation (SHG) in a YAG:Nd laser are constructed. Analyses of the interdependence of orientations of (B 3 O 7 ) 5 -complexes and of the effectiveness of SHG are conducted
Second-Harmonic Generation Scanning Microscopy on Domains in Al Surfaces
DEFF Research Database (Denmark)
Pedersen, Kjeld; Bozhevolnyi, Sergey I.
1999-01-01
Scanning optical second-harmonic generation microscopy has been used to investigate domains in the surface of polycrystaline Al. Strong contrast among the crystalline grains is obtained due to variations in their crystallographic orientations and thus also nonlinear response. The origin of the co...
Laser plasma as a source of intense attosecond pulses via high-order harmonic generation
International Nuclear Information System (INIS)
Ozaki, T.
2013-01-01
The incredible progress in ultrafast laser technology and Ti:sapphire lasers have lead to many important applications, one of them being high-order harmonic generation (HHG). HHG is a source of coherent extreme ultraviolet (XUV) radiation, which has opened new frontiers in science by extending nonlinear optics and time-resolved spectroscopy to the XUV region, and pushing ultrafast science to the attosecond domain. Progress in attosecond science has revealed many new phenomena that have not been seen with femtosecond pulses. Clearly, the next frontier is to study nonlinear effects at the attosecond timescale and in the XUV. However, a problem with present-day attosecond pulses is that they are just too weak to induce measurable nonlinearities, which severely limits the application of this source. While HHG from solid targets has shown promise for higher conversion efficiency, there is no experiment so far that demonstrates isolated attosecond pulse generation. The generation of isolated, several 100-as pulses with few-µJ energy will enable us to enter a completely new phase in attoscience. In past works, we have demonstrated that high-order harmonics from lowly ionized plasma is a highly efficient method to generate coherent XUV pulses. For example, indium plasma has been shown to generate intense 13th harmonic of the Ti:sapphire laser, with conversion efficiency of 10-4. However, the quasi-monochromatic nature of indium harmonics would make it difficult to generate attosecond pulses. We have also demonstrated that one could increase the harmonic yield by using nanoparticle targets. Specifically, we showed that by using indium oxide nanoparticles or C60 film, we could obtain intense harmonics between wavelengths of 50 to 90 nm. The energy in each of these harmonic orders was measured to be a few µJ, which is sufficient for many applications. However, the problem of using nanoparticle or film targets is the rapid decrease in the harmonic intensity, due to the rapid
Phase-matched third harmonic generation in a plasma
International Nuclear Information System (INIS)
Rax, J.M.; Fisch, N.J.
1993-01-01
Relativistic third harmonic generation in a plasma is investigated. The growth of a third harmonic wave is limited by the difference between the phase velocity of the pump and driven waves. This phase velocity mismatch results in a third harmonic amplitude saturation and oscillation. In order to overcome this saturation, the authors describe a phase-matching scheme based on a resonant density modulation. The limitations of this scheme are analyzed
Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial
Reinhold, J.; Shcherbakov, M. R.; Chipouline, A.; Panov, V. I.; Helgert, C.; Paul, T.; Rockstuhl, C.; Lederer, F.; Kley, E.-B.; Tünnermann, A.; Fedyanin, A. A.; Pertsch, T.
2012-09-01
We investigate experimentally and theoretically the third harmonic generated by a double-layer fishnet metamaterial. To unambiguously disclose most notably the influence of the magnetic resonance, the generated third harmonic was measured as a function of the angle of incidence. It is shown experimentally and numerically that when the magnetic resonance is excited by a pump beam, the angular dependence of the third harmonic signal has a local maximum at an incidence angle of θ≃20∘. This maximum is shown to be a fingerprint of the antisymmetric distribution of currents in the gold layers. An analytical model based on the nonlinear dynamics of the electrons inside the gold shows excellent agreement with experimental and numerical results. This clearly indicates the difference in the third harmonic angular pattern at electric and magnetic resonances of the metamaterial.
Using self-generated harmonics as a diagnostic of high intensity laser-produced plasmas
International Nuclear Information System (INIS)
Krushelnick, K; Watts, I; Tatarakis, M; Gopal, A; Wagner, U; Beg, F N; Clark, E L; Clarke, R J; Dangor, A E; Norreys, P A; Wei, M S; Zepf, M
2002-01-01
The interaction of high intensity laser pulses (up to I∼10 20 W cm -2 ) with plasmas can generate very high order harmonics of the laser frequency (up to the 75th order have been observed). Measurements of the properties of these harmonics can provide important insights into the plasma conditions which exist during such interactions. For example, observations of the spectrum of the harmonic emission can provide information of the dynamics of the critical surface as well as information on relativistic non-linear optical effects in the plasma. However, most importantly, observations of the polarization properties of the harmonics can provide a method to measure the ultra-strong magnetic fields (greater than 350 MG) which can be generated during these interactions. It is likely that such techniques can be scaled to provide a significant amount of information from experiments at even higher intensities
Single-shot fluctuations in waveguided high-harmonic generation
Goh, S.J.; Tao, Y.; van der Slot, Petrus J.M.; Bastiaens, Hubertus M.J.; Herek, Jennifer Lynn; Biedron, S.G.; Danailov, M.B.; Milton, S.V.; Boller, Klaus J.
2015-01-01
For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic
Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation
Celebrano, Michele; Wu, Xiaofei; Baselli, Milena; Großmann, Swen; Biagioni, Paolo; Locatelli, Andrea; de Angelis, Costantino; Cerullo, Giulio; Osellame, Roberto; Hecht, Bert; Duò, Lamberto; Ciccacci, Franco; Finazzi, Marco
2015-05-01
Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ˜5 × 10-10 W-1, enabling a second harmonic photon yield higher than 3 × 106 photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.
Impact of electron-electron Coulomb interaction on the high harmonic generation process in graphene
Avetissian, H. K.; Mkrtchian, G. F.
2018-03-01
Generation of high harmonics in a monolayer graphene initiated by a strong coherent radiation field, taking into account electron-electron Coulomb interaction, is investigated. A microscopic theory describing the nonlinear optical response of graphene is developed. The Coulomb interaction of electrons is treated in the scope of dynamic Hartree-Fock approximation. The closed set of integrodifferential equations for the single-particle density matrix of a graphene quantum structure is solved numerically. The obtained solutions show the significance of many-body Coulomb interaction on the high harmonic generation process in graphene.
Optical klystron and harmonic generation free electron laser
Directory of Open Access Journals (Sweden)
Qika Jia
2005-06-01
Full Text Available The optical field evolution of an optical klystron free electron laser is analytically described for both low gain and high gain cases. The harmonic optical klystron (HOK in which the second undulator is resonant on the higher harmonic of the first undulator is analyzed as a harmonic amplifier. The optical field evolution equation of the HOK is derived analytically for both the CHG mode (coherent harmonic generation, the quadratic gain regime and the HGHG mode (high gain harmonic generation, the exponential gain regime, the effects of energy spread, energy modulation, and dispersion in the whole process are taken into account. The linear theory is given and discussed for the HGHG mode. The analytical formula is given for the CHG mode.
Harmonic generation by atomic and nanoparticle precursors in a ZnS laser ablation plasma
International Nuclear Information System (INIS)
Oujja, M.; Lopez-Quintas, I.; Benítez-Cañete, A.; Nalda, R. de; Castillejo, M.
2017-01-01
Highlights: • Plume species in infrared ns laser ablation of ZnS studied by low-order harmonic generation. • Different spatiotemporal properties of harmonics from atoms and nanoparticles. • Results compared with calculations of optical frequency up-conversion in perturbative regime. - Abstract: Harmonic generation of a driving laser propagating across a laser ablation plasma serves for the diagnosis of multicomponent plumes. Here we study the contribution of atomic and nanoparticle precursors to the generation of coherent ultraviolet and vacuum ultraviolet light as low-order harmonics of the fundamental emission (1064 nm) of a Q-switched Nd:YAG laser in a nanosecond infrared ZnS laser ablation plasma. Odd harmonics from the 3rd up to the 9th order (118.2 nm) have been observed with distinct temporal and spatial characteristics which were determined by varying the delay between the ablation and driving nanosecond pulses and by spatially scanning the plasma with the focused driving beam propagating parallel to the target. At short distances from the target surface (≤1 mm), the harmonic intensity displays two temporal components peaked at around 250 ns and 10 μs. While the early component dies off quickly with increasing harmonic order and vanishes for the 9th order, the late component is notably intense for the 7th harmonic and is still clearly visible for the 9th. Spectral analysis of spontaneous plume emissions help to assign the origin of the two components. While the early plasma component is mainly constituted by neutral Zn atoms, the late component is mostly due to nanoparticles, which upon interaction with the driving laser are subject to breakup and ionization. With the aid of calculations of the phase matching integrals within the perturbative model of optical harmonic generation, these results illustrate how atom and nanoparticle populations, with differing temporal and spatial distributions within the ablation plasma, contribute to the nonlinear
Third-harmonic generation by a Gaussian electromagnetic beam in a magnetoplasma
International Nuclear Information System (INIS)
Sodha, M.S.; Umesh, G.
1978-01-01
This paper presents an investigation of nonlinear third-harmonic generation in a weakly collisional magnetoplasma due to simultaneous propagation of both the right and left circularly polarized modes, having a Gaussian intensity distribution; self-focusing has been taken into account. At moderate powers, the self-focusing is seen to enhance the harmonic output by two orders of magnitude; at high powers, propagation occurs in an almost uniform waveguide devoid of plasma, and the harmonic output is, consequently, decreased. In the vicinity (ω/sub c//ω=0.7) of the electron cyclotron resonance, the harmonic output of the extraordinary mode is enhanced by an order of magnitude; the present theory is not applicable at resonance
Nonlinear Schrödinger equations with single power nonlinearity and harmonic potential
Cipolatti, R.; de Macedo Lira, Y.; Trallero-Giner, C.
2018-03-01
We consider a generalized nonlinear Schrödinger equation (GNLS) with a single power nonlinearity of the form λ ≤ft\\vert \\varphi \\right\\vert p , with p > 0 and λ\\in{R} , in the presence of a harmonic confinement. We report the conditions that p and λ must fulfill for the existence and uniqueness of ground states of the GNLS. We discuss the Cauchy problem and summarize which conditions are required for the nonlinear term λ ≤ft\\vert \\varphi \\right\\vert p to render the ground state solutions orbitally stable. Based on a new variational method we provide exact formulæ for the minimum energy for each index p and the changing range of values of the nonlinear parameter λ. Also, we report an approximate close analytical expression for the ground state energy, performing a comparative analysis of the present variational calculations with those obtained by a generalized Thomas-Fermi approach, and soliton solutions for the respective ranges of p and λ where these solutions can be implemented to describe the minimum energy.
Octave-Spanning Mid-IR Supercontinuum Generation with Ultrafast Cascaded Nonlinearities
DEFF Research Database (Denmark)
Zhou, Binbin; Guo, Hairun; Liu, Xing
2014-01-01
An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation.......An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation....
Second harmonic generation in Te crystal using free electron laser
Yamauchi, T; Minehara, E J
2002-01-01
The second harmonic generation signal converted from the fundamental wavelength of 22 mu m of a free electron laser was observed for the first time using a birefringent Te crystal. The experimental conversion efficiency of Te crystal for second harmonic generation is 0.53%, which is equivalent to the theoretical value within a factor of 2. The Te crystal has been incorporated into an autocorrelator system to measure the micro-pulse width of infrared free electron laser successfully. (author)
Second-harmonic generation in second-harmonic fiber Bragg gratings.
Steel, M J; de Sterke, C M
1996-06-20
We consider the production of second-harmonic light in gratings resonant with the generated field, through a Green's function approach. We recover some standard results and obtain new limits for the uniform grating case. With the extension to nonuniform gratings, we find the Green's function for the second harmonic in a grating with an arbitrary phase shift at some point. We then obtain closed form approximate expressions for the generated light for phase shifts close to π/2 and at the center of the grating. Finally, comparing the uniform and phase-shifted gratings with homogeneous materials, we discuss the enhancement in generated light and the bandwidth over which it occurs, and the consequences for second-harmonic generation in optical fiber Bragg gratings.
High-order harmonics generation from overdense plasmas
International Nuclear Information System (INIS)
Quere, F.; Thaury, C.; Monot, P.; Martin, Ph.; Geindre, J.P.; Audebert, P.; Marjoribanks, R.
2006-01-01
Complete test of publication follows. When an intense laser beam reflects on an overdense plasma generated on a solid target, high-order harmonics of the incident laser frequency are observed in the reflected beam. This process provides a way to produce XUV femtosecond and attosecond pulses in the μJ range from ultrafast ultraintense lasers. Studying the mechanisms responsible for this harmonic emission is also of strong fundamental interest: just as HHG in gases has been instrumental in providing a comprehensive understanding of basic intense laser-atom interactions, HHG from solid-density plasmas is likely to become a unique tool to investigate many key features of laser-plasma interactions at high intensities. We will present both experimental and theoretical evidence that two mechanisms contribute to this harmonic emission: - Coherent Wake Emission: in this process, harmonics are emitted by plasma oscillations in te overdense plasma, triggered in the wake of jets of Brunel electrons generated by the laser field. - The relativistic oscillating mirror: in this process, the intense laser field drives a relativistic oscillation of the plasma surface, which in turn gives rise to a periodic phase modulation of the reflected beam, and hence to the generation of harmonics of the incident frequency. Left graph: experimental harmonic spectrum from a polypropylene target, obtained with 60 fs laser pulses at 10 19 W/cm 2 , with a very high temporal contrast (10 10 ). The plasma frequency of this target corresponds to harmonics 15-16, thus excluding the CWE mechanism for the generation of harmonics of higher orders. Images on the right: harmonic spectra from orders 13 et 18, for different distances z between the target and the best focus. At the highest intensity (z=0), harmonics emitted by the ROM mechanism are observed above the 15th order. These harmonics have a much smaller spectral width then those due to CWE (below the 15th order). These ROM harmonics vanish as soon
Energy Technology Data Exchange (ETDEWEB)
Thomas, Alexander Roy [Univ. of Michigan, Ann Arbor, MI (United States); Krushelnick, Karl [Univ. of Michigan, Ann Arbor, MI (United States)
2016-09-08
We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 10^{21} Wcm^{-2}, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.
Harmonic sums and polylogarithms generated by cyclotomic polynomials
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2011-05-15
The computation of Feynman integrals in massive higher order perturbative calculations in renormalizable Quantum Field Theories requires extensions of multiply nested harmonic sums, which can be generated as real representations by Mellin transforms of Poincare-iterated integrals including denominators of higher cyclotomic polynomials. We derive the cyclotomic harmonic polylogarithms and harmonic sums and study their algebraic and structural relations. The analytic continuation of cyclotomic harmonic sums to complex values of N is performed using analytic representations. We also consider special values of the cyclotomic harmonic polylogarithms at argument x=1, resp., for the cyclotomic harmonic sums at N{yields}{infinity}, which are related to colored multiple zeta values, deriving various of their relations, based on the stuffle and shuffle algebras and three multiple argument relations. We also consider infinite generalized nested harmonic sums at roots of unity which are related to the infinite cyclotomic harmonic sums. Basis representations are derived for weight w=1,2 sums up to cyclotomy l=20. (orig.)
Third harmonic generation by Bloch-oscillating electrons in a quasioptical array
International Nuclear Information System (INIS)
Ghosh, A.W.; Wanke, M.C.; Allen, S.J.; Wilkins, J.W.
1999-01-01
We compute the third harmonic field generated by Bloch-oscillating electrons in a quasioptical array of superlattices under THz irradiation. The third harmonic power transmitted oscillates with the internal electric field, with nodes associated with Bessel functions in eEd/ℎω. The nonlinear response of the array causes the output power to be a multivalued function of the incident laser power. The output can be optimized by adjusting the frequency of the incident pulse to match one of the Fabry-Pacute erot resonances in the substrate. Within the transmission-line model of the array, the maximum conversion efficiency is 0.1%. copyright 1999 American Institute of Physics
Second harmonic generation in anisotropic Langmuir-Blodgett films of N-docosyl-4-nitroaniline
DEFF Research Database (Denmark)
Geisler, T.; Rosenkilde, S.; Ramanujam, P.S.
1992-01-01
Langmuir-Blodgett (LB) films of N-docosyl-4-nitroaniline have been made and their nonlinear optical properties studied by second harmonic generation (SHG) measurements. A significant enhancement of the intensity of the second harmonic of the 1.064-mu-m YAG was observed when a two layer Y-type film...... structure. Both of these observations are not common for Y-type LB films and the usual assumption of C(infinity nu) symmetry is therefore not valid. The results make us suggest that these LB films possess C(s) and C2-nu symmetry for mono- and multilayers, respectively. Theoretical expressions...
Energy Technology Data Exchange (ETDEWEB)
Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C. [Departament de Física i Enginyeria Nuclear, Universitat Politècnica Catalunya, Terrassa 08222 (Spain); Sola, I. [Grupo de Investigación en Óptica Extrema (GIOE), Departamento de Física Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Krolikowski, W. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Science Program, Texas A and M University at Qatar, Doha (Qatar); Sheng, Y. [Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)
2015-06-01
Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.
International Nuclear Information System (INIS)
Trull, J.; Wang, B.; Parra, A.; Vilaseca, R.; Cojocaru, C.; Sola, I.; Krolikowski, W.; Sheng, Y.
2015-01-01
Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system
Second-harmonic generation circular dichroism spectroscopy from tripod-like chiral molecular films
International Nuclear Information System (INIS)
Wang Xiao-Ou; Chen Li-An; Chen Li-Xue; Sun Xiu-Dong; Li Jun-Qing; Li Chun-Fei
2010-01-01
The second-harmonic generation (SHG) circular dichroism in the light of reflection from chiral films of tripod-like chiral molecules is investigated. The expressions of the second-harmonic generation circular dichroism are derived from our presented three-coupled-oscillator model for the tripod-like chiral molecules. Spectral dependence of the circular dichroism of SHG from film surface composed of tripod-like chiral molecules is simulated numerically and analysed. Influence of chiral parameters on the second-harmonic generation circular dichroism spectrum in chiral films is studied. The result shows that the second-harmonic generation circular dichroism is a sensitive method of detecting chirality compared with the ordinary circular dichroism in linear optics. All of our work indicates that the classical molecular models are very effective to explain the second-harmonic generation circular dichroism of chiral molecular system. The classical molecular model theory can give us a clear physical picture and brings us very instructive information about the link between the molecular configuration and the nonlinear processes
Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.
2010-02-01
Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.
Harmonic generation effect in high-Tc films
International Nuclear Information System (INIS)
Khare, Neeraj; Shrivastava, S.K.; Padmanabhan, V.P.N.; Khare, Sangeeta; Gupta, A.K.
1997-01-01
Harmonic generation in thick BPSCCO and thin YBCO films are reported. The application of an ac field (H ac > H c1 ) of frequency f causes the generation of odd harmonics of frequency (2n+1)f. The application of dc field in addition to the ac field causes the appearance of even harmonics also in the BPSCCO film. However, the appearance of even harmonics is not observed in YBCO film with high J c ∼ 1.6x10 6 A/cm 2 and appearance of second harmonic with small magnitude is observed in YBCO film with low J c ∼ 2x10 3 A/cm 2 . The variation of amplitudes of these harmonics are studied as a function of magnitude of ac and dc field and the results are explained in the framework of critical state model. A high-T c film magnetometer based on the measurement of the amplitude of second harmonic has been developed whose field sensitivity is ∼ 1.5x10 -8 T. (author)
High-harmonic generation in a dense medium
International Nuclear Information System (INIS)
Strelkov, V.V.; Platonenko, V.T.; Becker, A.
2005-01-01
The high-harmonic generation in a plasma or gas under conditions when the single-atom response is affected by neighboring ions or atoms of the medium is studied theoretically. We solve numerically the three-dimensional Schroedinger equation for a single-electron atom in the combined fields of the neighboring particles and the laser, and average the results over different random positions of the particles using the Monte Carlo method. Harmonic spectra are calculated for different medium densities and laser intensities. We observe a change of the harmonic properties due to a random variation of the harmonic phase induced by the field of the medium, when the medium density exceeds a certain transition density. The transition density is found to depend on the harmonic order, but it is almost independent of the fundamental intensity. It also differs for the two (shorter and longer) quantum paths. The latter effect leads for ionic densities in the transition regime to a narrowing of the harmonic lines and a shortening of the attosecond pulses generated using a group of harmonics
Second-harmonic generation of practical Bessel beams
Huang, Jin H.; Ding, Desheng; Hsu, Yin-Sung
2009-11-01
A fast Gaussian expansion approach is used to investigate fundamental and second-harmonic generation in practical Bessel beams of finite aperture. The analysis is based on the integral solutions of the KZK equation under the quasilinear approximation. The influence of the medium's attenuation on the beam profile is considered. Analysis results show that the absorption parameter has a significant effect on the far-field beam profile of the second harmonic. Under certain circumstances, the second harmonic of a practical Bessel beam still has the main properties of an ideal Bessel beam of infinite aperture when it propagates within its depth of field.
Optical third-harmonic generation using ultrashort laser pulses
International Nuclear Information System (INIS)
Stoker, D.; Keto, J.W.; Becker, M.F.
2005-01-01
To better predict optical third-harmonic generation (THG) in transparent dielectrics, we model a typical ultrashort pulsed Gaussian beam, including both group velocity mismatch and phase mismatch of the fundamental and harmonic fields. We find that competition between the group velocity mismatch and phase mismatch leads to third-harmonic generation that is sensitive only to interfaces. In this case, the spatial resolution is determined by the group velocity walk-off length. THG of modern femtosecond lasers in optical solids is a bulk process, without a surface susceptibility, but bears the signature of a surface enhancement effect in z-scan measurements. We demonstrate the accuracy of the model, by showing the agreement between the predicted spectral intensity and the measured third-harmonic spectrum from a thin sapphire crystal
Effect of composition and temperature on the second harmonic generation in silver phosphate glasses
Konidakis, I.; Psilodimitrakopoulos, S.; Kosma, K.; Lemonis, A.; Stratakis, E.
2018-01-01
We herein employ nonlinear laser imaging microscopy to explicitly study the dynamics of second harmonic generation (SHG) in silver iodide phosphate glasses. While glasses of this family have gained extensive scientific attention over the years due to their superior conducting properties, considerably less attention has been paid to their unique nonlinear optical characteristics. In the present study, firstly, it is demonstrated that SHG signal intensity is enhanced upon increasing silver content due to the random formation of silver microstructures within the glass network. Secondly, the SHG temperature dynamics were explored near the glass transition temperature (Tg) regime, where significant glass relaxation phenomena occur. It is found that heating towards the Tg improves the SHG efficiency, whereas above Tg, the capacity of glasses to generate second harmonic radiation is drastically suppressed. The novel findings of this work are considered important in terms of the potential employment of these glasses for the realization of advanced photonic applications like optical-switches and wavelength conversion devices.
Spontaneous noncollinear second harmonic generation in GUHP
Czech Academy of Sciences Publication Activity Database
Kroupa, Jan; Fridrichová, M.
2011-01-01
Roč. 13, č. 3 (2011), s. 1-7 ISSN 2040-8978 R&D Projects: GA ČR GA203/09/0878 Institutional research plan: CEZ:AV0Z10100520 Keywords : nonlinear optics * scattering, polarization * nterference * crystal optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.573, year: 2011 http://iopscience.iop.org/2040-8986
Maxfield, Lynn; Palaparthi, Anil; Titze, Ingo
2017-03-01
The traditional source-filter theory of voice production describes a linear relationship between the source (glottal flow pulse) and the filter (vocal tract). Such a linear relationship does not allow for nor explain how changes in the filter may impact the stability and regularity of the source. The objective of this experiment was to examine what effect unpredictable changes to vocal tract dimensions could have on fo stability and individual harmonic intensities in situations in which low frequency harmonics cross formants in a fundamental frequency glide. To determine these effects, eight human subjects (five male, three female) were recorded producing fo glides while their vocal tracts were artificially lengthened by a section of vinyl tubing inserted into the mouth. It was hypothesized that if the source and filter operated as a purely linear system, harmonic intensities would increase and decrease at nearly the same rates as they passed through a formant bandwidth, resulting in a relatively symmetric peak on an intensity-time contour. Additionally, fo stability should not be predictably perturbed by formant/harmonic crossings in a linear system. Acoustic analysis of these recordings, however, revealed that harmonic intensity peaks were asymmetric in 76% of cases, and that 85% of fo instabilities aligned with a crossing of one of the first four harmonics with the first three formants. These results provide further evidence that nonlinear dynamics in the source-filter relationship can impact fo stability as well as harmonic intensities as harmonics cross through formant bandwidths. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Stator Current Harmonic Reduction in a Novel Half Quasi-Z-Source Wind Power Generation System
Directory of Open Access Journals (Sweden)
Shoudao Huang
2016-09-01
Full Text Available The generator stator current gets distorted with unacceptable levels of total harmonic distortion (THD because impedance-source wind power generation systems use three-phase diode rectifiers. The stator current harmonics will cause increasing losses and torque ripple, which reduce the efficiency and stability of the system. This paper proposes a novel half quasi-Z-source inverter (H-qZSI for grid-connected wind power generation systems, which can reduce the generator stator current harmonics a great deal. When H-qZSI operates in the shoot-through zero state, the derivative of the generator stator current is only determined by the instantaneous value of the generator stator voltage, so the nonlinear relationship between generator stator current and stator voltage is improved compared with the traditional impedance-source inverter. Theoretically, it is indicated that the stator current harmonics can be reduced effectively by means of the proposed H-qZSI. Finally, simulation and experimental results are given to verify the theoretical analysis.
High-contrast imaging of mycobacterium tuberculosis using third-harmonic generation microscopy
Kim, Bo Ram; Lee, Eungjang; Park, Seung-Han
2015-07-01
Nonlinear optical microcopy has become an important tool in investigating biomaterials due to its various advantages such as label-free imaging capabilities. In particular, it has been shown that third-harmonic generation (THG) signals can be produced at interfaces between an aqueous medium (e.g. cytoplasm, interstitial fluid) and a mineralized lipidic surface. In this work, we have demonstrated that label-free high-contrast THG images of the mycobacterium tuberculosis can be obtained using THG microscopy.
Coherence properties of the harmonic generation in intense laser field
International Nuclear Information System (INIS)
Salieres, P.
1995-01-01
In this thesis is presented an experimental and theoretical study of the harmonic generation in intense field and coherence properties of this radiation. The first part reminds the main harmonic specter characteristics. Follow then experimental studies of the tray extension with the laser lighting, the harmonic generation by ions, and the influence of the laser field on the efficiency of generation. The second part presents the quantum model of the harmonic generation in tunnel regime that we have used for the calculation of the dipoles. We compare dependence in lighting of some harmonic, by insisting on the characteristic behavior of the atomic phase. The theory of the propagation is presented in third part. After the reminder of the case of a perturbative polarization, we develop the case of the polarization in tunnel regime. With the help of numerical simulations, we show the influence of the atomic phase on the agreement of phase, and therefore on the efficiency of conversion and profiles of generation in the medium. The importance of the geometry of the interaction is underlined. The part IV presents the study of the spatial coherence of the harmonic radiation. We develop first consequences of the theory of the agreement of phase for profiles of emission. Then the comparison with experimental profiles is detailed in function of the different parameters( order of non linearity, laser lighting, position of the focus by report in the gaseous medium). The study of the spectral and temporal coherence of the part V begins with the experimental effect investigation of the ionization on specters of the harmonic of weak order. We present then theoretical predictions of the preceding model for spectral and temporal profiles of the harmonic of highest order, generated in tunnel regime. The part VI is devoted to the UVX source aspect of the harmonic radiation. General characteristics (number of photons, agreement) are first detailed, then we present the first experiences
Modified harmonic balance method for the solution of nonlinear jerk equations
Rahman, M. Saifur; Hasan, A. S. M. Z.
2018-03-01
In this paper, a second approximate solution of nonlinear jerk equations (third order differential equation) can be obtained by using modified harmonic balance method. The method is simpler and easier to carry out the solution of nonlinear differential equations due to less number of nonlinear equations are required to solve than the classical harmonic balance method. The results obtained from this method are compared with those obtained from the other existing analytical methods that are available in the literature and the numerical method. The solution shows a good agreement with the numerical solution as well as the analytical methods of the available literature.
International Nuclear Information System (INIS)
Kulagin, I A; Usmanov, T
1998-01-01
A method developed for the analysis of the interaction of wave beams in a self-interaction regime is used to determine the changes in the optimal conditions for third-harmonic generation with changes in the degree of focusing of the fundamental-frequency radiation in isotropic media. Conditions under which a redistribution of the intensities and phases of the interacting wave beams reduces the efficiency of third-harmonic generation are identified. It is shown that, under strong focusing conditions, there may be additional extrema in the dependence of the intensity of the harmonic on the density of the medium. (nonlinear optical phenomena)
Three-dimensional analysis of harmonic generation in high-gain free-electron lasers
International Nuclear Information System (INIS)
Huang, Zhirong; Kim, Kwang-Je
2000-01-01
In a high-gain free-electron laser (FEL) employing a planar undulator, strong bunching at the fundamental wavelength can drive substantial bunching and power levels at the harmonic frequencies. In this paper we investigate the three-dimensional evolution of harmonic radiation based on the coupled Maxwell-Klimontovich equations that take into account nonlinear harmonic interactions. Each harmonic field is a sum of a linear amplification term and a term driven by nonlinear harmonic interactions. After a certain stage of exponential growth, the dominant nonlinear term is determined by interactions of the lower nonlinear harmonics and the fundamental radiation. As a result, the gain length, transverse profile, and temporal structure of the first few harmonics are eventually governed by those of the fundamental. Transversely coherent third-harmonic radiation power is found to approach 1% of the fundamental power level for current high-gain FEL projects
Directory of Open Access Journals (Sweden)
Yang Yu
2013-01-01
Full Text Available Based on a brief review on current harmonics generation mechanism for grid-connected inverter under distorted grid voltage, the harmonic disturbances and uncertain items are immersed into the original state-space differential equation of grid-connected inverter. A new algorithm of global current harmonic rejection based on nonlinear backstepping control with multivariable internal model principle is proposed for grid-connected inverter with exogenous disturbances and uncertainties. A type of multivariable internal model for a class of nonlinear harmonic disturbances is constructed. Based on application of backstepping control law of the nominal system, a multivariable adaptive state feedback controller combined with multivariable internal model and adaptive control law is designed to guarantee the closed-loop system globally uniformly bounded, which is proved by a constructed Lyapunov function. The presented algorithm extends rejection of nonlinear single-input systems to multivariable globally defined normal form, the correctness and effectiveness of which are verified by the simulation results.
High harmonic generation in H and HD by intense femtosecond ...
Indian Academy of Sciences (India)
2013-04-24
Apr 24, 2013 ... We have argued that for these conditions the harmonic generation due to the transitions in the electronic ... (XUV) or soft X-ray range and generation of very high-energy attosecond (as) pulses have been widely ..... [3] Y Liang, S Augst, S L Chin, Y Beaudoin and M Chaker, J. Phys. B 27, 5119 (1994).
Recent progress of below-threshold harmonic generation
International Nuclear Information System (INIS)
Xiong, Wei-Hao; Peng, Liang-You; Gong, Qihuang
2017-01-01
The harmonics generated from the interaction of a strong laser field with atoms and molecules in the gas phase can be applied as coherent light sources and detecting techniques for structures and dynamics in matter. In the last three decades, the most prevailing experimental and theoretical studies have been focused on the high-order harmonic generation due to its applications in attosecond science. However, low-order harmonics near the ionization threshold of the target have been less explored, partially because the spectrum in this region is more complicated from both the theoretical and experimental point of view. After several pioneering investigations in the mid 1990s, near threshold harmonics (NTHs) begun to draw a great attention again because of the development of high repetition rate cavity enhanced harmonics about 10 years ago. Very recently, NTHs have attracted a lot of experimental and theoretical studies due to their potential applications as light sources and complicated mechanisms. In this topical review, we will summarize the progress of NTHs, including the early and recent experimental measurements in atoms and molecules, as well as the relevant theoretical explorations of these harmonics. (topical review)
Characterization of muscle contraction with second harmonic generation microscopy
Prent, Nicole
Muscle cells have the ability to change length and generate force due to orchestrated action of myosin nanomotors that cause sliding of actin filaments along myosin filaments in the sarcomeres, the fundamental contractile units, of myocytes. The correlated action of hundreds of sarcomeres is needed to produce the myocyte contractions. This study probes the molecular structure of the myofilaments and investigates the movement correlations between sarcomeres during contraction. In this study, second harmonic generation (SHG) microscopy is employed for imaging striated myocytes. Myosin filaments in striated myocytes inherently have a nonzero second-order susceptibility, [special characters omitted] and therefore generate efficient SHG. Employing polarization-in polarization-out (PIPO) SHG microscopy allows for the accurate determination of the characteristic ratio, [special characters omitted] in birefringent myocytes, which describes the structure of the myosin filament. Analysis shows that the b value at the centre of the myosin filament, where the nonlinear dipoles are better aligned, is slightly lower than the value at the edges of the filament, where there is more disorder in orientation of the nonlinear dipoles from the myosin heads. Forced stretching of myocytes resulted in an SHG intensity increase with the elongation of the sarcomere. SHG microscopy captured individual sarcomeres during contraction, allowing for the measurement of sarcomere length (SL) and SHG intensity (SI) fluctuations. The fluctuations also revealed higher SHG intensity in elongated sarcomeres. The sarcomere synchronization model (SSM) for contracting and quiescent myocytes was developed, and experimentally verified for three cases (isolated cardiomyocyte, embryonic chicken cardiomyocyte, and larva myocyte). During contraction, the action of SLs and SIs between neighbouring sarcomeres partially correlated, whereas in quiescent myocytes the SLs show an anti-correlation and the SIs have no
DEFF Research Database (Denmark)
Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe
2012-01-01
This paper proposes a harmonic impedance synthesis technique for voltage-controlled distributed generation inverters in order to damp harmonic voltage distortion on a distribution network. The approach employs a multiloop control scheme, where a selective harmonic load current feedforward loop...... at the dominant harmonic frequencies. Thus, the harmonic voltage drop on the grid-side inductance and the harmonic resonances throughout a distribution feeder with multiple shunt-connected capacitors can be effectively attenuated. Simulation and laboratory test results validate the performance of the proposed...
Second Harmonic Generation of Violet Light in Femtosecond-Laser-Inscribed BiB3O6 Cladding Waveguides
Directory of Open Access Journals (Sweden)
Jia Yuechen
2013-11-01
Full Text Available We report on the second harmonic generation of violet light of a nonlinear cladding waveguide in BiB3O6 crystal produced by femtosecond laser inscription. Under continuous-wave pump laser at 800 nm, the guided second harmonic wave at 400 nm with a conversion efficiency of ~0.32% has been realized through the Type I birefringence phase matching configuration.
Seeding High Gain Harmonic Generation with Laser Harmonics produced in Gases
Lambert, Guillaume; Couprie, Marie Emmanuelle; Garzella, David; Doria, Andrea; Giannessi, Luca; Hara, Toru; Kitamura, Hideo; Shintake, Tsumoru
2004-01-01
Free electron Lasers employing High Gain Harmonic generation (HGHG) schemes are very promising coherent ligth sources for the soft X-ray regime. They offer both transverse and longitudinal coherence, while Self Amplified Spontaneous Emission schemes have a longitudinal coherence limited. We propose here to seed HGHG with high harmonics produced by a Ti:Sa femtosecond laser focused on a gas jet, tuneable in the 100-10 nm spectral region. Specifities concerning the implementation of this particular laser source as a seed for HGHG are investigated. Semi analytical , numerical 1D and 3D calculations are given, for the cases of the SCSS, SPARC and ARC-EN-CIEL projects.
DEFF Research Database (Denmark)
Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe
2012-01-01
This paper proposes a harmonic impedance synthesis technique for voltage-controlled distributed generation inverter in order to damp harmonic voltage distortion on a distribution network. The approach employs a multiloop control scheme, where a selective load harmonic current feedforward loop bas...
Optimization of high harmonic generation by genetic algorithm
International Nuclear Information System (INIS)
Constance Valentin; Olga Boyko; Gilles Rey; Brigitte Mercier; Evaggelos Papalazarou; Laure Antonucci; Philippe Balcou
2006-01-01
Complete test of publication follows. High Harmonic Generation (HHG) is very sensitive to pulse shape of the fundamental laser. We have first used an Acousto-Optic Programmable Dispersive Filter (AOPDF) in order to modify the spectral phase and second, a deformable mirror in order to modify the wavefront. We have optimized harmonic signal using a genetic algorithm coupled with both setups. We show the influence of macroscopic parameters for optimization process. Genetic algorithms have been already used to modify pulse shapes of the fundamental laser in order to optimize high harmonic signals, in order to change the emission wavelength of one harmonic or to modify the fundamental wavefront to optimize harmonic signals. For the first time, we present a systematic study of the optimization of harmonic signals using the AOPDF. Signal optimizations by a factor 2 to 10 have been measured depending of parameters of generation. For instance, one of the interesting result concerns the effect of macroscopic parameters as position of the entrance of the cell with respect to the focus of the IR laser when we change the pulse shapes. For instance, the optimization is higher when the cell entrance is above the focus where the intensity gradients are higher. Although the spectral phase of the IR laser is important for the response of one atom, the optimization depends also of phase-matching and especially of the effect intensity gradients. Other systematic studies have been performed as well as measurements of temporal profiles and wavefronts of the IR beam. These studies allow bringing out the behaviour of high harmonic generation with respect to the optimization process.
Generation of intense high-order vortex harmonics.
Zhang, Xiaomei; Shen, Baifei; Shi, Yin; Wang, Xiaofeng; Zhang, Lingang; Wang, Wenpeng; Xu, Jiancai; Yi, Longqiong; Xu, Zhizhan
2015-05-01
This Letter presents for the first time a scheme to generate intense high-order optical vortices that carry orbital angular momentum in the extreme ultraviolet region based on relativistic harmonics from the surface of a solid target. In the three-dimensional particle-in-cell simulation, the high-order harmonics of the high-order vortex mode is generated in both reflected and transmitted light beams when a linearly polarized Laguerre-Gaussian laser pulse impinges on a solid foil. The azimuthal mode of the harmonics scales with its order. The intensity of the high-order vortex harmonics is close to the relativistic region, with the pulse duration down to attosecond scale. The obtained intense vortex beam possesses the combined properties of fine transversal structure due to the high-order mode and the fine longitudinal structure due to the short wavelength of the high-order harmonics. In addition to the application in high-resolution detection in both spatial and temporal scales, it also presents new opportunities in the intense vortex required fields, such as the inner shell ionization process and high energy twisted photons generation by Thomson scattering of such an intense vortex beam off relativistic electrons.
In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.
Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko
2015-03-23
The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Kaishang, E-mail: zhoukaishang@sinap.ac.cn; Feng, Chao, E-mail: fengchao@sinap.ac.cn; Wang, Dong, E-mail: wangdong@sinap.ac.cn
2016-10-21
The echo enabled harmonic generation (EEHG) scheme holds the ability for the generation of fully coherent soft x-ray free-electron laser (FEL) pulses directly from external UV seeding sources. In this paper, we study the feasibility of using a single stage EEHG to generate coherent radiation in the “water window” and beyond. Using the high-order operating modes of the EEHG scheme, intensive numerical simulations have been performed considering various three-dimensional effects. The simulation results demonstrated that coherent soft x-ray radiation at 150th harmonic (1.77 nm) of the seed can be produced by a single stage EEHG. The decreasing of the final bunching factor at the desired harmonic caused by intra beam scattering (IBS) effect has also been analyzed.
Dynamics of harmonic generation in atoms and molecules
International Nuclear Information System (INIS)
Boutu, W.
2007-09-01
Harmonics are generated when an ultra-short laser impulse with an energy of 10 14 W/cm 2 is focused on a gas jet. A radiation in the UV X range is then emitted in the direction of the incident laser beam. This radiation has a periodical spectral structure composed of odd harmonics of the fundamental frequency. The first part of this work is dedicated to the optimization of the harmonic radiation. We have studied an alternative and cheaper solution to the flexible mirror, we have used a set of concentric phase plates in order to control the spatial phase of the beam and create an enlarged square profile near the focusing spot. We show how different parameters like phase shift or luminous-flux density or jet position have an impact on the harmonic signal. This second part of this work deals with the generation of high order harmonics in N 2 and CO 2 molecules. The experimental setting is based on the RABITT method (reconstruction of the atto-second burst by interference of 2-photon transitions). We have observed the presence of a spectral minimum linked to a phenomena of quantum interferences between the molecule and the electron wave packet. Moreover, a shift in the spectral phase appears at the place of the interference. (A.C.)
Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential
Directory of Open Access Journals (Sweden)
Runzhang Xu
2012-11-01
Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].
Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry.
Neeman, Lior; Ben-Zvi, Regev; Rechav, Katya; Popovitz-Biro, Ronit; Oron, Dan; Joselevich, Ernesto
2017-02-08
The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.
Polymer poling characterization using second harmonic generation (SHG)
Tellier, Gildas; Averty, Dominique; Blart, Errol; Boisrobert, Christian; Gundel, Hartmut; Le Tacon, Sylvain; Monnereau, Cyrille; Odobel, Fabrice; Seveno, Raynald
2006-04-01
Several polymer molecules have structures which are suitable for the non-linear optic applications. We report on the design and fabrication of a high performance electro-optic modulator made of polymer thin films. The polymer we study contains a chromophore based on Disperse Red One covalently grafted to a host-matrix. The polymer materials are deposited in thin layers on a glass substrate by chemical solution deposition, either by spin-coating or by dip-coating. The thickness of the films is ranging from a hundred nanometers to several micrometers. Initially, the polymer molecules are randomly oriented and the films are isotropic, hence no electro-optic effect can be observed. In order to break the symmetry and align the chromophores, the films are submitted to the so-called corona poling process. As a result, their structure become non-centrosymmetric and the second-order susceptibility is no longer zero. The corona poling method consists of applying a high electric field to the polymer by means of a needle electrode, placed above the polymer film which is posed on a grounded sample support electrode. Thermal regulation of the support electrode allows to control the temperature during the poling of the films. Once the poling process has been established, a chemical cross-linking function is thermally activated in order to fix the orientation of the chromophores in the polymer matrix. The orientation and its stability in time is evaluated with a Second Harmonic Generation measurement set-up using the Makers Fringes configuration. We studied the influence of the poling temperature, the distance between the corona needle electrode and the sample, the high voltage applied, and the duration of the poling process on the efficiency of chromophore orientation in order to optimize the poling procedure. Finally, aging of poled polymer samples has been investigated at elevated temperatures, confirming the stability of the cross-linking process.
Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses
International Nuclear Information System (INIS)
Akoezbek, N.; Iwasaki, A.; Chin, S.L.; Becker, A.; Scalora, M.; Bowden, C.M.
2002-01-01
It is shown, both theoretically and experimentally, that during laser pulse filamentation in air an intense ultrashort third-harmonic pulse is generated forming a two-colored filament. The third-harmonic pulse maintains both its peak intensity and energy over distances much longer than the characteristic coherence length. We argue that this is due to a nonlinear phase-locking mechanism between the two pulses in the filament and is independent of the initial material wave-vector mismatch. A rich spatiotemporal propagation dynamics of the third-harmonic pulse is predicted. Potential applications of this phenomenon to other parametric processes are discussed
Second harmonic generation from corona-poled polymer thin films ...
Indian Academy of Sciences (India)
2014-02-09
Feb 9, 2014 ... We characterize thermal stability of second harmonic generation (SHG) properties of four different Y-type polymers poled using corona poling method. These polymers are based on donor–acceptor–donor-type repeating unit with different aromatic moieties acting as donors and dicyanomethylene acting as ...
Second harmonic generation from photonic structured GaN nanowalls
Energy Technology Data Exchange (ETDEWEB)
Soya, Takahiro; Inose, Yuta; Kunugita, Hideyuki; Ema, Kazuhiro; Yamano, Kouji; Kikuchi, Akihiko; Kishino, Katsumi, E-mail: t-soya@sophia.ac.j [Department of Engineering and Applied Sciences, Sophia University 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554 (Japan)
2009-11-15
We observed large enhancement of reflected second harmonic generation (SHG) using the one-dimensional photonic effect in regularly arranged InGaN/GaN single-quantum-well nanowalls. Using the effect when both fundamental and SH resonate with the photonic mode, we obtained enhancement of about 40 times compared with conditions far from resonance.
Generation of high harmonics and attosecond pulses with ultrashort ...
Indian Academy of Sciences (India)
2014-07-11
Jul 11, 2014 ... Two aspects of ultrashort pulse filaments are specifically discussed: (i) numerical simulation results on pulse self-compression by filamentation in a gas cell filled with noble gas. Measurements of high harmonics generated by the pulse extracted from the filament allows for the detection of intensity spikes ...
Theory of second-harmonic generation in silica nanowires
DEFF Research Database (Denmark)
Lægsgaard, Jesper
2010-01-01
, while generating the second harmonic in one of the modes of the LP11 multiplet. This is shown to work in both circular and microstructured nanowires, although only one of the LP11 modes can be phase-matched in the microstructure. The prospect of obtaining large conversion efficiencies in silica...
Theory of surface second-harmonic generation in silica nanowires
DEFF Research Database (Denmark)
Lægsgaard, Jesper
2010-01-01
, while generating the second harmonic in one of the modes of the LP11 multiplet. This is shown to work in both circular and microstructured nanowires, although only one of the LP11 modes can be phase-matched in the microstructure. The prospect of obtaining large conversion efficiencies in silica...
Chiang, C. K.; Xue, David Y.; Mei, Chuh
1993-04-01
A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.
SOLUTION OF HARMONIC OSCILLATOR OF NONLINEAR MASTER SCHRÃ–DINGER
Directory of Open Access Journals (Sweden)
T B Prayitno
2012-02-01
Full Text Available We have computed the solution of a nonrelativistic particle motion in a harmonic oscillator potential of the nonlinear master SchrÃ¶dinger equation. The equation itself is based on two classical conservation laws, the Hamilton-Jacobi and the continuity equations. Those two equations give each contribution for the definition of quantum particle. We also prove that the solution canâ€™t be normalized. Â Keywords : harmonic oscillator, nonlinear SchrÃ¶dinger.
Harmonic generation and flux quantization in granular superconductors
International Nuclear Information System (INIS)
Lam, Q.H.; Jeffries, C.D.
1989-01-01
Simple dynamical models of granular superconductors are used to compute the generation of harmonic power in ac and dc magnetic fields. In zero order, the model is a single superconducting loop, with or without a weak link. The sample-average power is predicted by averaging over suitable distribution functions for loop areas and orientations in a dc magnetic field. In a first-order model, inductance and resistance are also included. In all models the power at high harmonics shows strikingly sharp dips periodic in the dc field, revealing flux quantization in the prototype loops
High-order harmonic generation in a capillary discharge
Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.
2010-06-01
A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.
Multiphoton excitation and high-harmonics generation in topological insulator.
Avetissian, H K; Avetissian, A K; Avchyan, B R; Mkrtchian, G F
2018-05-10
Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi-Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.
Multiphoton excitation and high-harmonics generation in topological insulator
Avetissian, H. K.; Avetissian, A. K.; Avchyan, B. R.; Mkrtchian, G. F.
2018-05-01
Multiphoton interaction of coherent electromagnetic radiation with 2D metallic carriers confined on the surface of the 3D topological insulator is considered. A microscopic theory describing the nonlinear interaction of a strong wave and metallic carriers with many-body Coulomb interaction is developed. The set of integrodifferential equations for the interband polarization and carrier occupation distribution is solved numerically. Multiphoton excitation of Fermi–Dirac sea of 2D massless carriers is considered for a THz pump wave. It is shown that in the moderately strong pump wave field along with multiphoton interband/intraband transitions the intense radiation of high harmonics takes place.
Probing two-centre interference in molecular high harmonic generation
International Nuclear Information System (INIS)
Vozzi, C; Calegari, F; Benedetti, E; Berlasso, R; Sansone, G; Stagira, S; Nisoli, M; Altucci, C; Velotta, R; Torres, R; Heesel, E; Kajumba, N; Marangos, J P
2006-01-01
Two-centre interference in the recombination step of molecular high harmonic generation (HHG) has been probed in CO 2 and O 2 . We report the order dependence of characteristic enhancements or suppressions of high harmonic production in aligned samples of both molecules. In CO 2 , a robust destructive interference was seen consistent with the known separation of the oxygen atoms that are active in HHG. In O 2 , a harmonic enhancement was found indicating constructive interference. A good agreement was found with a simple two-centre interference model that includes the angular distribution function of the sample. The effective momentum of the electron wave was determined from the spectral position of these interferences. Ellipticity-dependent studies in CO 2 clearly show how the destructive interference can be 'switched off' by increasing the degree of ellipticity and thus shifting the effective resonance condition
Energy Technology Data Exchange (ETDEWEB)
Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)
2016-04-15
The nonlinearity parameter is frequently measured as a sensitive indicator in damaged material characterization or tissue harmonic imaging. Several previous studies have employed the plane wave solution, and ignored the effects of beam diffraction when measuring the non-linearity parameter β. This paper presents a multi-Gaussian beam approach to explicitly derive diffraction corrections for fundamental and second harmonics under quasilinear and paraxial approximation. Their effects on the nonlinearity parameter estimation demonstrate complicated dependence of β on the transmitter-receiver geometries, frequency, and propagation distance. The diffraction effects on the non-linearity parameter estimation are important even in the nearfield region. Experiments are performed to show that improved β values can be obtained by considering the diffraction effects.
Direct interferometric measurement of the atomic dipole phase in high-order harmonic generation
International Nuclear Information System (INIS)
Chiara Corsi; Angela Pirri; Emiliano Sali
2006-01-01
Complete test of publication follows. For low gas densities and negligible ionization, the so-called atomic dipole phase, connected with the electronic dynamics involved in the generation process, is the main source of phase modulation and incoherence of high-order harmonics. To accurately determine these laser-intensity-induced phase shifts is therefore of great importance, both for the possible spectroscopic applications of harmonics and for the controlled generation of attosecond pulses. In a semiclassical description, only two electronic trajectories contribute to generate plateau harmonics during each pump optical half-cycle. Electrons appearing in the continuum by tunnel ionization may follow two different quantum paths, namely a long (l) and a short (s) trajectory before recombination. According to the SFA approximation, the harmonic of q th order acquires a phase proportional to the electronic classical action, and simply given by: ψ 0 j (r,t) -α q j I(r,t) with j = l, s where α q j are non-linear phase coefficients, roughly proportional to the time that the originating electron spends in the continuum before recombination. The space and time variation of the laser intensity (I(r,t), causes just a little phase modulation for the s-trajectory harmonic component, while the l-trajectory component becomes strongly chirped and spatially defocused; this gives rise to two spatially-separated regions having different temporal coherence. Here we report the first direct measurement of such atomic dipole phase in the process of high-order harmonic generation. Differently from previous measurements based in the most natural way, i.e., by interferometry. Two phase-locked pump pulses generate two phase-locked harmonic pulses in two nearby positions in a gas jet; one of them is used as a fixed phase reference while the generating intensity of the other is varied. The shift of the XUV interference fringes observed in the far field then gives a direct estimate of the
Soft X-Ray Second Harmonic Generation as an Interfacial Probe
Energy Technology Data Exchange (ETDEWEB)
Lam, R. K.; Raj, S. L.; Pascal, T. A.; Pemmaraju, C. D.; Foglia, L.; Simoncig, A.; Fabris, N.; Miotti, P.; Hull, C. J.; Rizzuto, A. M.; Smith, J. W.; Mincigrucci, R.; Masciovecchio, C.; Gessini, A.; Allaria, E.; De Ninno, G.; Diviacco, B.; Roussel, E.; Spampinati, S.; Penco, G.; Di Mitri, S.; Trovò, M.; Danailov, M.; Christensen, S. T.; Sokaras, D.; Weng, T. -C.; Coreno, M.; Poletto, L.; Drisdell, W. S.; Prendergast, D.; Giannessi, L.; Principi, E.; Nordlund, D.; Saykally, R. J.; Schwartz, C. P.
2018-01-01
Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.
Green bright squeezed light from a cw periodically poled KTP second harmonic generator
DEFF Research Database (Denmark)
Andersen, Ulrik Lund; Buchhave, Preben
2002-01-01
We present the experimental observation of bright amplitude squeezed light from a singly resonant second harmonic generator (SHG) based on a periodically poled potassium titanyl phosphate (KTP) crystal. Contrary to conventional SHG, the interacting waves in this device couple efficiently using qu...... reduction is greater than what could be expected using normal birefringence phase matched KTP with the same experimental parameters. Excellent agreement between experiment and theory is found. (C)2002 Optical Society of America....... quasi phase matching (QPM) and more importantly QPM allows access to higher valued elements of the nonlinear tensor than is possible under the constraint of birefringence phase matching. We observe a noise reduction of 13% below the shot noise limit in the generated second harmonic field. This noise...
Lan, Chunbo; Tang, Lihua; Harne, Ryan L.
2018-05-01
Nonlinear piezoelectric energy harvester (PEH) has been widely investigated during the past few years. Among the majority of these researches, a pure resistive load is used to evaluate power output. To power conventional electronics in practical application, the alternating current (AC) generated by nonlinear PEH needs to be transformed into a direct current (DC) and rectifying circuits are required to interface the device and electronic load. This paper aims at exploring the critical influences of AC and DC interface circuits on nonlinear PEH. As a representative nonlinear PEH, we fabricate and evaluate a monostable PEH in terms of generated power and useful operating bandwidth when it is connected to AC and DC interface circuits. Firstly, the harmonic balance analysis and equivalent circuit representation method are utilized to tackle the modeling of nonlinear energy harvesters connected to AC and DC interface circuits. The performances of the monostable PEH connected to these interface circuits are then analyzed and compared, focusing on the influences of the varying load, excitation and electromechanical coupling strength on the nonlinear dynamics, bandwidth and harvested power. Subsequently, the behaviors of the monostable PEH with AC and DC interface circuits are verified by experiment. Results indicate that both AC and DC interface circuits have a peculiar influence on the power peak shifting and operational bandwidth of the monostable PEH, which is quite different from that on the linear PEH.
Coherent control of third-harmonic-generation by a waveform-controlled two-colour laser field
International Nuclear Information System (INIS)
Chen, W-J; Chen, W-F; Pan, C-L; Lin, R-Y; Lee, C-K
2013-01-01
We investigate generation of the third harmonic (TH; λ = 355 nm) signal by two-colour excitation (λ = 1064 nm and its second harmonic, λ = 532 nm) in argon gas, with emphasis on the influence of relative phases and intensities of the two-colour pump on the third-order nonlinear frequency conversion process. Perturbative nonlinear optics predicts that the TH signal will oscillate periodically with the relative phases of the two-colour driving laser fields due to the interference of TH signals from a direct third-harmonic-generation (THG) channel and a four-wave mixing (FWM) channel. For the first time, we show unequivocal experimental evidence of this effect. A modulation level as high as 0.35 is achieved by waveform control of the two-colour laser field. The modulation also offers a promising way to retrieve the relative phase value of the two-colour laser field. (letter)
Total internal reflection second-harmonic generation: probing the alkane water interface
International Nuclear Information System (INIS)
Conboy, J.C.; Daschbach, J.L.; Richmond, G.L.
1994-01-01
Total internal reflection Second-Harmonic Generation (SHG) has been used to study a series of neat n-alkane/water interfaces. Polarization and incident angular-dependent measurements of the SH response show good agreement with theoretical predictions. Analysis of the incident and polarization angular-dependent SH response allows for determination of the nonlinear optical properties of molecules comprising the interfacial region. Based on Kleinman symmetry, the measured surface nonlinear susceptibilities suggest a high degree of interfacial order for octane and decane with less order indicated by the odd carbon n-alkanes examined, heptane and nonane. The SH response in reflection and transmission has been measured under a Total Internal Reflection (TIR) of the fundamental. The measured nonlinear susceptibilities in each case are found to be identical. (orig.)
International Nuclear Information System (INIS)
Li Wei; Feng Guoying; Li Gang; Huang Yu; Zhang Qiuhui
2009-01-01
Second-harmonic generation (SHG) of high-intensity laser with an SHG crystal for type I angle phase matching has been studied by the use of a split-step algorithm based on the fast Fourier transform and a fourth-order Runge-Kutta (R-K) integrator. The transverse walk-off effect, diffraction, the second-order and the third-order nonlinear effects have been taken into consideration. Influences of a temperature rise distribution of the SHG crystal on the refractive indices of ordinary wave and extraordinary wave have been discussed. The rules of phase mismatching quantity, intensity distribution of output beam and frequency conversion efficiency varying with the temperature rise distribution of the SHG crystal have been analyzed quantitatively. The calculated results indicate that in a high power frequency conversion system, the temperature rise distribution of SHG crystal would result in the phase mismatching of fundamental and harmonic waves, leading to the variation of intensity distribution of the output beam and the decrease of the conversion efficiency. (authors)
Monat, Christelle; Grillet, Christian; Corcoran, Bill; Moss, David J; Eggleton, Benjamin J; White, Thomas P; Krauss, Thomas F
2010-03-29
Using Fourier optics, we retrieve the wavevector dependence of the third-harmonic (green) light generated in a slow light silicon photonic crystal waveguide. We show that quasi-phase matching between the third-harmonic signal and the fundamental mode is provided in this geometry by coupling to the continuum of radiation modes above the light line. This process sustains third-harmonic generation with a relatively high efficiency and a substantial bandwidth limited only by the slow light window of the fundamental mode. The results give us insights into the physics of this nonlinear process in the presence of strong absorption and dispersion at visible wavelengths where bandstructure calculations are problematic. Since the characteristics (e.g. angular pattern) of the third-harmonic light primarily depend on the fundamental mode dispersion, they could be readily engineered.
Third harmonic generation of high power far infrared radiation in semiconductors
Energy Technology Data Exchange (ETDEWEB)
Urban, M [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1996-04-01
We investigated the third harmonic generation of high power infrared radiation in doped semiconductors with emphasis on the conversion efficiency. The third harmonic generation effect is based on the nonlinear response of the conduction band electrons in the semiconductor with respect to the electric field of the incident electromagnetic wave. Because this work is directed towards a proposed application in fusion plasma diagnostics, the experimental requirements for the radiation source at the fundamental frequency are roughly given as follows: a wavelength of the radiation at the fundamental frequency in the order of 1 mm and an incident power greater than 1 MW. The most important experiments of this work were performed using the high power far infrared laser of the CRPP. With this laser a new laser line was discovered, which fits exactly the source specifications given above: the wavelength is 676 {mu}m and the maximum power is up to 2 MW. Additional experiments were carried out using a 496 {mu}m laser and a 140 GHz (2.1 mm) gyrotron. The main experimental progress with respect to previous work in this field is, in addition to the use of a very high power laser, the possibility of an absolute calibration of the detectors for the far infrared radiation and the availability of a new type of detector with a very fast response. This detector made it possible to measure the power at the fundamental as well as the third harmonic frequency with full temporal resolution of the fluctuations during the laser pulse. Therefore the power dependence of the third harmonic generation efficiency could be measured directly. The materials investigated were InSb as an example of a narrow gap semiconductor and Si as standard material. The main results are: narrow gap semiconductors indeed have a highly nonlinear electronic response, but the narrow band gap leads at the same time to a low power threshold for internal breakdown, which is due to impact ionization. figs., tabs., refs.
Optical second harmonic generation from V-shaped chromium nanohole arrays
Khoa Quang, Ngo; Miyauchi, Yoshihiro; Mizutani, Goro; Charlton, Martin D.; Chen, Ruiqi; Boden, Stuart; Rutt, Harvey
2014-02-01
We observed rotational anisotropy of optical second harmonic generation (SHG) from an array of V-shaped chromium nanoholes fabricated by electron beam lithography. Phenomenological analysis indicated that the effective nonlinear susceptibility element \\chi _{313}^{(2)} had a characteristic contribution to the observed anisotropic SHG intensity patterns. Here, coordinate 1 is in the direction of the tip of V shapes in the substrate plane, and 3 indicates the direction perpendicular to the sample surface. The SHG intensity for the S-polarized output light was very weak, probably owing to the cancellation effect of the image dipoles generated at the metal-air boundary. The possible origin of the observed nonlinearity is discussed in terms of the susceptibility elements obtained.
High-harmonic generation in a quantum electron gas trapped in a nonparabolic and anisotropic well
Hurst, Jérôme; Lévêque-Simon, Kévin; Hervieux, Paul-Antoine; Manfredi, Giovanni; Haas, Fernando
2016-05-01
An effective self-consistent model is derived and used to study the dynamics of an electron gas confined in a nonparabolic and anisotropic quantum well. This approach is based on the equations of quantum hydrodynamics, which incorporate quantum and nonlinear effects in an approximate fashion. The effective model consists of a set of six coupled differential equations (dynamical system) for the electric dipole and the size of the electron gas. Using this model we show that: (i) high harmonic generation is related to the appearance of chaos in the phase space, as attested to by related Poincaré sections; (ii) higher order harmonics can be excited efficiently and with relatively weak driving fields by making use of chirped electromagnetic waves.
Gorbunkov, M. V.; Maslova, Yu Ya; Petukhov, V. A.; Semenov, M. A.; Shabalin, Yu V.; Tunkin, V. G.
2018-03-01
Harmonic mode-locking in a solid state laser due to optoelectronic control is studied numerically on the basis of two methods. The first one is detailed numeric simulation taking into account laser radiation fine time structure. It is shown that optimally chosen feedback delay leads to self-started mode-locking with generation of desired number of pulses in the laser cavity. The second method is based on discrete maps for short laser pulse energy. Both methods show that the application of combination of positive and negative feedback loops allows to reduce the period of regular nonlinear dynamics down to a fraction of a laser cavity round trip time.
Murzina, T. V.; Kim, E. M.; Kapra, R. V.; Moshnina, I. V.; Aktsipetrov, O. A.; Kurdyukov, D. A.; Kaplan, S. F.; Golubev, V. G.; Bader, M. A.; Marowsky, G.
2006-01-01
Three-dimensional magnetophotonic crystals (MPCs) based on artificial opals infiltrated by yttrium iron garnet (YIG) are fabricated and their structural, optical, and nonlinear optical properties are studied. The formation of the crystalline YIG inside the opal matrix is checked by x-ray analysis. Two templates are used for the infiltration by YIG: bare opals and those covered by a thin platinum film. Optical second-harmonic generation (SHG) technique is used to study the magnetization-induced nonlinear-optical properties of the composed MPCs. A high nonlinear magneto-optical Kerr effect in the SHG intensity is observed at the edge of the photonic band gap of the MPCs.
Gas jet structure influence on high harmonic generation
Grant-Jacob, James; Mills, Benjamin; Butcher, Thomas J.; Chapman, Richard T.; Brocklesby, William S.; Frey, Jeremy G.
2011-01-01
Gas jets used as sources for high harmonic generation (HHG) have a complex three-dimensional density and velocity profile. This paper describes how the profile influences the generation of extreme-UV light. As the position of the laser focus is varied along the jet flow axis, we show that the intensity of the output radiation varies by approximately three times, with the highest flux being observed when the laser is focused into the Mach disc. The work demonstrated here will aid in the optimi...
Bunching phase and constraints on echo enabled harmonic generation
Hemsing, E.
2018-05-01
A simple mathematical description is developed for the bunching spectrum in echo enabled harmonic generation (EEHG) that incorporates the effect of additional electron beam energy modulations. Under common assumptions, they are shown to contribute purely through the phase of the longitudinal bunching factor, which allows the spectral moments of the bunching to be calculated directly from the known energy modulations. In particular, the second moment (spectral bandwidth) serves as simple constraint on the amplitude of the energy modulations to maintain a transform-limited seed. We show that, in general, the impact on the spectrum of energy distortions that develop between the EEHG chicanes scales like the harmonic number compared to distortions that occur upstream. This may limit the parameters that will allow EEHG to reach short wavelengths in high brightness FELs.
Higher harmonics generation in relativistic electron beam with virtual cathode
Energy Technology Data Exchange (ETDEWEB)
Kurkin, S. A., E-mail: KurkinSA@gmail.com; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028, Russia and Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation)
2014-09-15
The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.
Improved harmonic balance approach to periodic solutions of non-linear jerk equations
International Nuclear Information System (INIS)
Wu, B.S.; Lim, C.W.; Sun, W.P.
2006-01-01
An analytical approximate approach for determining periodic solutions of non-linear jerk equations involving third-order time-derivative is presented. This approach incorporates salient features of both Newton's method and the method of harmonic balance. By appropriately imposing the method of harmonic balance to the linearized equation, the approach requires only one or two iterations to predict very accurate analytical approximate solutions for a large range of initial velocity amplitude. One typical example is used to verify and illustrate the usefulness and effectiveness of the proposed approach
Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances
International Nuclear Information System (INIS)
Perez Polo, Manuel F.; Perez Molina, Manuel
2007-01-01
Chaotic and steady state motions of a nonlinear controlled gimbals suspension gyro used to stabilize an external body are studied in this paper. The equations of the gyro without nonlinear control are deduced from the Euler-Lagrange equations by using the nutation theory. The equations of the system show that a cyclic variable appears. Its elimination allows us to find an auxiliary nonlinear system from which it is possible to deduce a nonlinear control law in order to obtain a desired equilibrium point. From the analysis of the nonlinear control law it is possible to show that due to both harmonic disturbances in the platform of the gyro and in the body to stabilize, regular and chaotic motions can appear. The chaotic motion is researched by means of chaos maps, bifurcation diagrams, sensitivity to initial conditions, Lyapunov exponents and Fourier spectrum density. The transition from chaotic to steady state motion by eliminating the harmonic disturbances from the modification of the initial nonlinear control law is also researched. Next, the paper shows how to use the chaotic motion in order to obtain small input signals so that the desired equilibrium state of the gyro can be reached. The developed methodology and its compared performance are evaluated through analytical methods and numerical simulations
Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances
Energy Technology Data Exchange (ETDEWEB)
Perez Polo, Manuel F. [Department of Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Escuela Politecnica Superior, Campus de San Vicente, 03071 Alicante (Spain)]. E-mail: manolo@dfists.ua.es; Perez Molina, Manuel [Facultad de Ciencias Matematicas, Universidad Nacional de Educacion a Distancia, UNED, C/Boyero 12-1A, Alicante 03007 (Spain)]. E-mail: ma_perez_m@hotmail.com
2007-07-15
Chaotic and steady state motions of a nonlinear controlled gimbals suspension gyro used to stabilize an external body are studied in this paper. The equations of the gyro without nonlinear control are deduced from the Euler-Lagrange equations by using the nutation theory. The equations of the system show that a cyclic variable appears. Its elimination allows us to find an auxiliary nonlinear system from which it is possible to deduce a nonlinear control law in order to obtain a desired equilibrium point. From the analysis of the nonlinear control law it is possible to show that due to both harmonic disturbances in the platform of the gyro and in the body to stabilize, regular and chaotic motions can appear. The chaotic motion is researched by means of chaos maps, bifurcation diagrams, sensitivity to initial conditions, Lyapunov exponents and Fourier spectrum density. The transition from chaotic to steady state motion by eliminating the harmonic disturbances from the modification of the initial nonlinear control law is also researched. Next, the paper shows how to use the chaotic motion in order to obtain small input signals so that the desired equilibrium state of the gyro can be reached. The developed methodology and its compared performance are evaluated through analytical methods and numerical simulations.
International Nuclear Information System (INIS)
Deng Mingxi; Wang Ping; Lv Xiafu
2006-01-01
This paper describes influences of interfacial properties on second-harmonic generation of Lamb waves propagating in layered planar structures. The nonlinearity in the elastic wave propagation is treated as a second-order perturbation of the linear elastic response. Due to the kinematic nonlinearity and the elastic nonlinearity of materials, there are second-order bulk and surface/interface driving sources in layered planar structures through which Lamb waves propagate. These driving sources can be thought of as forcing functions of a series of double frequency lamb waves (DFLWs) in terms of the approach of modal expansion analysis for waveguide excitation. The total second-harmonic fields consist of a summation of DFLWs in the corresponding stress-free layered planar structures. The interfacial properties of layered planar structures can be described by the well-known finite interfacial stiffness technique. The normal and tangential interfacial stiffness constants can be coupled with the equation governing the expansion coefficient of each DFLW component. On the other hand, the normal and tangential interfacial stiffness constants are associated with the degree of dispersion between Lamb waves and DFLWs. Theoretical analyses and numerical simulations indicate that the efficiency of second-harmonic generation by Lamb wave propagation is closely dependent on the interfacial properties of layered structures. The potential of using the effect of second-harmonic generation by Lamb wave propagation to characterize the interfacial properties of layered structures are considered. Some experimental results are presented
Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Zhou, Binbin
2010-01-01
-matching point is located in the absorption region of the crystal, effectively absorbing the generated dispersive wave. By calculating the phase-matching curves for typically used frequency conversion crystals, we point out that the mid-IR absorption in the crystal in many cases automatically will filter away....... The beating between the dispersive wave and the soliton generates trailing temporal oscillations on the compressed soliton. Insertion of a simple short-wave pass filter after the crystal can restore a clean soliton. On the other hand, bandpass filtering around the dispersive wave peak results in near......We show through theory and numerics that when few-cycle femtosecond solitons are generated through cascaded (phase-mismatched) second-harmonic generation, these broadband solitons can emit optical Cherenkov radiation in the form of linear dispersive waves located in the red part of the spectrum...
Harmonic development of tide-generating potential of terrestrial planets
Kudryavtsev, Sergey M.
2008-08-01
The aim of this study is to obtain high-accurate harmonic developments of the tide-generating potential (TGP) of Mercury, Venus and Mars. The planets’ TGP values have been first calculated on the base of DE/LE-406 numerical planetary/lunar ephemerides over a long period of time and then processed by a new spectral analysis method. According to this method the development is directly made to Poisson series where both amplitudes and arguments of the series’ terms are high-degree polynomials of time. A new harmonic development of Mars TGP is made over the time period 1900 AD 2100 AD and includes 767 second-order Poisson series’ terms of minimum amplitude equal to 10-7 m2 s-2. Analogous series composing both Mercury and Venus TGP harmonic models are built over the time period 1000 AD 3000 AD and include 1,061 and 693 terms, respectively. A modification of the standard HW95 format for representation of the terrestrial planets’ TGP is proposed. The number of terms in the planets’ TGP models transformed to the modified HW95 format is 650 for Mercury, 422 for Venus, and 480 for Mars. The quality of the new developments of the terrestrial planets’ TGP is better than that of the similar developments obtained earlier.
Garg, M.; Kim, H. Y.; Goulielmakis, E.
2018-05-01
Optical waveforms of light reproducible with subcycle precision underlie applications of lasers in ultrafast spectroscopies, quantum control of matter and light-based signal processing. Nonlinear upconversion of optical pulses via high-harmonic generation in gas media extends these capabilities to the extreme ultraviolet (EUV). However, the waveform reproducibility of the generated EUV pulses in gases is inherently sensitive to intensity and phase fluctuations of the driving field. We used photoelectron interferometry to study the effects of intensity and carrier-envelope phase of an intense single-cycle optical pulse on the field waveform of EUV pulses generated in quartz nanofilms, and contrasted the results with those obtained in gas argon. The EUV waveforms generated in quartz were found to be virtually immune to the intensity and phase of the driving field, implying a non-recollisional character of the underlying emission mechanism. Waveform-sensitive photonic applications and precision measurements of fundamental processes in optics will benefit from these findings.
Hysteretic Nonlinearity of Sub-harmonic Emission from Ultrasound Contrast Agent Microbubbles
International Nuclear Information System (INIS)
Qiu Yuan-Yuan; Zhang Dong; Zheng Hai-Rong
2011-01-01
Sub-harmonic contrast imaging promises to improve ultrasound imaging quality by taking advantage of increased contrast to tissue signal. The aim of this study is to examine the hysteretic nonlinearity of sub-harmonic component emitted from microbubbles. Two kinds of microbubble solutions, i.e. Sonovue® and a self-developed contrast agent, are utilized in the study. The hysteretic curves for increasing and decreasing acoustic pressure are theoretically predicted by the Marmottant model and confirmed by measurements. The results reveal that for both microbubble solutions, the development of the rising ramp undergoes three stages, i.e. occurrence, growth and saturation; while hysteresis effect appears in the descending ramp. Sonovue® microbubbles exhibit better sub-harmonic performance over the self-developed UCAs microbubbles due to the difference of elastic properties of the shell. (fundamental areas of phenomenology(including applications))
Utilization of excitation signal harmonics for control of nonlinear systems
DEFF Research Database (Denmark)
Vinther, Kasper; Rasmussen, Henrik; Izadi-Zamanabadi, Roozbeh
2012-01-01
signal together with Fourier analysis to generate a feedback signal and simulations have shown that different system gains and time constants does not change the global equilibrium/operating point. An evaporator in a refrigeration system was used as example in the simulations, however, it is anticipated...... that the method is applicable in a wide variety of systems satisfying the sigmoid function properties....
Ming, Yi; Li, Hui-Min; Ding, Ze-Jun
2016-03-01
Thermal rectification and negative differential thermal conductance were realized in harmonic chains in this work. We used the generalized Caldeira-Leggett model to study the heat flow. In contrast to most previous studies considering only the linear system-bath coupling, we considered the nonlinear system-bath coupling based on recent experiment [Eichler et al., Nat. Nanotech. 6, 339 (2011), 10.1038/nnano.2011.71]. When the linear coupling constant is weak, the multiphonon processes induced by the nonlinear coupling allow more phonons transport across the system-bath interface and hence the heat current is enhanced. Consequently, thermal rectification and negative differential thermal conductance are achieved when the nonlinear couplings are asymmetric. However, when the linear coupling constant is strong, the umklapp processes dominate the multiphonon processes. Nonlinear coupling suppresses the heat current. Thermal rectification is also achieved. But the direction of rectification is reversed compared to the results of weak linear coupling constant.
DEFF Research Database (Denmark)
Bak, Claus Leth; Bak-Jensen, Birgitte; Wiechowski, Wojciech
2008-01-01
This paper demonstrates the results of implementation and verification of an already existing algorithm that allows for calculating saturation characteristics of singlephase power transformers. The algorithm was described for the first time in 1993. Now this algorithm has been implemented using...... the DIgSILENT Programming Language (DPL) as an external script in the harmonic domain calculations of a power system analysis tool PowerFactory [10]. The algorithm is verified by harmonic measurements on a single-phase power transformer. A theoretical analysis of the core nonlinearities phenomena...... in single and three-phase transformers is also presented. This analysis leads to the conclusion that the method can be applied for modelling nonlinearities of three-phase autotransformers....
Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko
2011-05-01
A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.
Field-controllable second harmonic generation at a graphene oxide heterointerface
Fernandes, Gustavo E.; Kim, Jin Ho; Osgood, Richard, III; Xu, Jimmy
2018-03-01
We report on the voltage-dependent SHG signal obtained in a reduced-graphene oxide (rGO)/p-type Si heterointerface. A simple qualitative model considering the interaction between the heterointerface depletion region potential and the naturally occurring surface dipole layer on the rGO is introduced to account for the characteristics of the SHG signal, specifically, a minimum point at ≈ -3 V bias on the rGO side of the interface. This feature-rich system has the potential to provide field-controllable surface-dipole moments and second-order nonlinearities, which may find applications in tunable nonlinear photonic devices for realizing second-harmonic generation and optical-rectification.
Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate.
Meyn, J P; Fejer, M M
1997-08-15
We describe electric-field poling of fine-pitch ferroelectric domain gratings in lithium tantalate and characterization of nonlinear-optical properties by single-pass quasi-phase-matched second-harmonic generation (QPM SHG). With a 7.5-microm-period grating, the observed effective nonlinear coefficient for first-order QPM SHG of 532-nm radiation is 9 pm/V, whereas for a grating with a 2.625-microm period, 2.6 pm/V was observed for second-order QPM SHG of 325-nm radiation. These values are 100% and 55% of the theoretically expected values, respectively. We derive a temperature-dependent Sellmeier equation for lithium tantalate that is valid deeper into the UV than currently available results, based on temperature-tuning experiments at different QPM grating periods combined with refractive-index data in the literature.
The diffraction and walk off in the second harmonic generation
International Nuclear Information System (INIS)
He Yujuan; Cai Bangwei; Zhang Bin
2000-01-01
Taking the second harmonic generation of Gaussian beam in a KDP crystal of type I matching for example, the effects of diffraction and walk off on doubling conversion efficiency have been worked out. The result indicates that the effect of diffraction is very small and can even by neglected. When the input Gaussian beam size is very small, the effect of walk off is very deleterious on doubling conversion. Along with the enlarging of beam size, the effect of walk off is much smaller and can even be neglected
The echo-enabled harmonic generation options for FLASH II
International Nuclear Information System (INIS)
Deng, Haixiao; Decking, Winfried; Faatz, Bart
2011-03-01
FLASH II is an upgrade to the existing free electron laser (FEL) FLASH. The echo-enabled harmonic generation (EEHG) scheme is proposed to be a potential seeding option of FLASH II. In this paper, the possibility of EEHG operation of FLASH II is investigated for the first time. With a combination of existing numerical codes, i.e. a laser-beam interaction code in an undulator (LBICU), a beam tracking code in a chicane (ELEGANT) and an universal FEL simulating code (GENESIS), the effects of beam energy chirp and coherent synchrotron radiation (CSR) on EEHG operation are studied as well. In addition, several interesting issues concerning EEHG simulation are discussed. (orig.)
Second harmonic generation spectroscopy on Si surfaces and interfaces
DEFF Research Database (Denmark)
Pedersen, Kjeld
2010-01-01
Optical second harmonic generation (SHG) spectroscopy studies of Si(111) surfaces and interfaces are reviewed for two types of systems: (1) clean 7 x 7 and root 3 x root 3-Ag reconstructed surfaces prepared under ultra-high vacuum conditions where surface states are excited and (2) interfaces...... in silicon-on-insulator (SOI) structures and thin metal films on Si surfaces where several interfaces contribute to the SHG. In all the systems resonances are seen at interband transitions near the bulk critical points E-1 and E-2. On the clean surfaces a number of resonances appear below the onset of bulk...
Directory of Open Access Journals (Sweden)
A. V. Kudryavtsev
2016-09-01
Full Text Available The transfer matrix method has been widely used to calculate wave propagation through the layered structures consisting entirely of either linear or nonlinear optical materials. In the present work, we develop the transfer matrix method for structures consisting of alternating layers of linear and nonlinear optical materials. The result is presented in a form that allows one to directly substitute the values of material constants, refractive index and absorption coefficient, into the expressions describing the second harmonic generation (SHG field. The model is applied to the calculation of second harmonic (SH field generated in nano-thin layers of transition metal dichalcogenides exfoliated on top of silicon oxide/silicon Fabry-Perot cavity. These structures are intensively studied both in view of their unique properties and perspective applications. A good agreement between experimental and numerical results can be achieved by small modification of optical constants, which may arise in an experiment due to a strong electric field of an incident focused pump laser beam. By considering the SHG effect, this paper completes the series of works describing the role of Fabry-Perot cavity in different optical effects (optical reflection, photoluminescence and Raman scattering in 2D semiconductors that is extremely important for characterization of these unique materials.
International Nuclear Information System (INIS)
Mishina, E.D.; Morozov, A.I.; Sigov, A.S.; Sherstyuk, N.Eh.; Aktsipetrov, O.A.; Lemanov, V.V.; Rasing, Th.
2002-01-01
The surface phase transition in the SrTiO 3 crystal is studied through the method of the second optical harmonic generation. The peculiarities in the nonlinear-optical response are identified at the temperature of T* = 145 K, which by 40 K exceeds the T c temperature of the structural phase transition in the crystal volume. The phenomenon of the nonlinear critical opalescence, caused by availability of the point defects, is studied. The second harmonic field and critical opalescence intensity are calculated on the basis of the phenomenological model of the nonlinear-optical processes with application of the Landau phase transition theory [ru
Sartorello, Giovanni; Olivier, Nicolas; Zhang, Jingjing; Yue, Weisheng; Gosztola, David J.; Wiederrecht, Gary P.; Wurtz, Gré gory; Zayats, Anatoly V.
2016-01-01
We design and fabricate a metasurface composed of gold cut-disk resonators that exhibits a strong coherent nonlinear response. We experimentally demonstrate all-optical modulation of both second- and third-harmonic signals on a subpicosecond time
Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba
2016-01-20
This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.
Steffen, T; Tanimura, Y
The quantum Fokker-Planck equation is derived for a system nonlinearly coupled to a harmonic oscillator bath. The system-bath interaction is assumed to be linear in the bath coordinates but quadratic in the system coordinate. The relaxation induced dynamics of a harmonic system are investigated by
Analysis of Even Harmonics Generation in an Isolated Electric Power System
Kanao, Norikazu; Hayashi, Yasuhiro; Matsuki, Junya
Harmonics bred from loads are mainly odd order because the current waveform has half-wave symmetry. Since the even harmonics are negligibly small, those are not generally measured in electric power systems. However, even harmonics were measured at a 500/275/154kV substation in Hokuriku Electric Power Company after removal of a transmission line fault. The even harmonics caused malfunctions of protective digital relays because the relays used 4th harmonics at the input filter as automatic supervisory signal. This paper describes the mechanism of generation of the even harmonics by comparing measured waveforms with ATP-EMTP simulation results. As a result of analysis, it is cleared that even harmonics are generated by three causes. The first cause is a magnetizing current of transformers due to flux deviation by DC component of a fault current. The second one is due to harmonic conversion of a synchronous machine which generates even harmonics when direct current component or even harmonic current flow into the machine. The third one is that increase of harmonic impedance due to an isolated power system produces harmonic voltages. The design of the input filter of protective digital relays should consider even harmonics generation in an isolated power system.
Second harmonic inversion for ultrasound contrast harmonic imaging
Energy Technology Data Exchange (ETDEWEB)
Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico [THORAXCENTER, Department of Biomedical Engineering Ee2302, Erasmus MC, Rotterdam (Netherlands); Cachard, Christian; Basset, Olivier, E-mail: mirza.pasovic@creatis.insa-lyon.fr [CREATIS-LRMN, Universite de Lyon, INSA-Lyon, Universite Lyon 1, Inserm U630, CNRS UMR 5220 (France)
2011-06-07
Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f{sub 0} and the same amplitude P{sub 0} to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.
Second harmonic inversion for ultrasound contrast harmonic imaging
International Nuclear Information System (INIS)
Pasovic, Mirza; Danilouchkine, Mike; Faez, Telli; Van Neer, Paul L M J; Van der Steen, Antonius F W; De Jong, Nico; Cachard, Christian; Basset, Olivier
2011-01-01
Ultrasound contrast agents (UCAs) are small micro-bubbles that behave nonlinearly when exposed to an ultrasound wave. This nonlinear behavior can be observed through the generated higher harmonics in a back-scattered echo. In past years several techniques have been proposed to detect or image harmonics produced by UCAs. In these proposed works, the harmonics generated in the medium during the propagation of the ultrasound wave played an important role, since these harmonics compete with the harmonics generated by the micro-bubbles. We present a method for the reduction of the second harmonic generated during nonlinear-propagation-dubbed second harmonic inversion (SHI). A general expression for the suppression signals is also derived. The SHI technique uses two pulses, p' and p'', of the same frequency f 0 and the same amplitude P 0 to cancel out the second harmonic generated by nonlinearities of the medium. Simulations show that the second harmonic is reduced by 40 dB on a large axial range. Experimental SHI B-mode images, from a tissue-mimicking phantom and UCAs, show an improvement in the agent-to-tissue ratio (ATR) of 20 dB compared to standard second harmonic imaging and 13 dB of improvement in harmonic power Doppler.
Laser light absorption and harmonic generation due to self-generated magnetic fields
International Nuclear Information System (INIS)
Kruer, W.L.; Estabrook, K.G.
1977-01-01
It is shown that self-generated magnetic fields can play a significant role in laser light absorption. Even normally incident light will then be resonantly absorbed. Computer simulations and theoretical estimates for this absorption and the concomitant harmonic generation are given for parameters characteristic of some recent experiments
Second-harmonic generation of Lamb modes in a solid layer supported by a semi-infinite substrate
International Nuclear Information System (INIS)
Deng Mingxi
2004-01-01
Using a second-order perturbation approximation and a modal expansion analysis approach, this study develops an effective technique for studying the generation of second harmonics of Lamb modes propagating in the composite structure consisting of a solid layer supported by a semi-infinite substrate. The nonlinearity in the elastic wave motion process can result in the generation of second harmonics of primary Lamb mode propagation in the composite structure, and this nonlinearity may be treated as a second-order perturbation of the elastic response of the primary waves. There are second-order bulk and surface/interface driving sources in the composite structure wherever the primary Lamb modes propagate. These driving sources can be thought of as the forcing functions of a finite series of double-frequency Lamb modes (DFLMs) in terms of the approach of modal expansion analysis for waveguide excitation. The fields of the second harmonics of the primary Lamb modes can be regarded as superpositions of the fields of a finite series of DFLMs. Although Lamb modes are dispersive, the field of one DFLM component can have a cumulative growth effect when its phase velocity exactly or approximately equals that of a primary Lamb mode. The formal solutions for the second harmonics of Lamb modes have been obtained. The numerical simulations clearly show the physical process of the generation of second harmonics of Lamb modes in the composite structure. The complicated problems of second-harmonic generation of Lamb modes have been exactly determined within the second-order perturbation approximation
Spectral and spatial characteristics of third-harmonic generation in conical light beams
International Nuclear Information System (INIS)
Peet, V.E.; Shchemeljov, S.V.
2003-01-01
Generation of resonance-enhanced third harmonic in Bessel and other conical beams is analyzed from a simple picture, where the fundamental light field is decomposed into elementary configurations of crossed plain-wave sub-beams. We show that the overall harmonic output can be derived as a superposition of all partial harmonic components driven by elementary configurations of the fundamental field. Good agreement with experimental observations has been obtained in simulation of spectral and spatial characteristics of the generated third harmonic. Some peculiarities of harmonic generation in conical light fields are discussed
International Nuclear Information System (INIS)
Belendez, A.; Gimeno, E.; Alvarez, M.L.; Mendez, D.I.; Hernandez, A.
2008-01-01
An analytical approximate technique for conservative nonlinear oscillators is proposed. This method is a modification of the rational harmonic balance method in which analytical approximate solutions have rational form. This approach gives us the frequency of the motion as a function of the amplitude of oscillation. We find that this method works very well for the whole range of parameters, and excellent agreement of the approximate frequencies with the exact one has been demonstrated and discussed. The most significant features of this method are its simplicity and its excellent accuracy for the whole range of oscillation amplitude values and the results reveal that this technique is very effective and convenient for solving conservative truly nonlinear oscillatory systems with complex nonlinearities
Wang, Zhuo
2018-01-04
Monolayer two-dimensional transition metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have a very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150-nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20-nm-wide gold trenches on flexible substrates, reporting ~7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 104 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 nm to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such fully open, flat and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.
Wang, Zhuo; Dong, Zhaogang; Zhu, Hai; Jin, Lei; Chiu, Ming-Hui; Li, Lain-Jong; Xu, Qing-Hua; Eda, Goki; Maier, Stefan A.; Wee, Andrew T. S.; Qiu, Cheng-Wei; Yang, Joel K.W.
2018-01-01
Monolayer two-dimensional transition metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have a very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150-nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20-nm-wide gold trenches on flexible substrates, reporting ~7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 104 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 nm to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such fully open, flat and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.
Intense multimicrojoule high-order harmonics generated from neutral atoms of In2O3 nanoparticles
International Nuclear Information System (INIS)
Elouga Bom, L. B.; Abdul-Hadi, J.; Vidal, F.; Ozaki, T.; Ganeev, R. A.
2009-01-01
We studied high-order harmonic generation from plasma that contains an abundance of indium oxide nanoparticles. We found that harmonics from nanoparticle-containing plasma are considerably more intense than from plasma produced on the In 2 O 3 bulk target, with high-order harmonic energy ranging from 6 μJ (for the ninth harmonic) to 1 μJ (for the 17th harmonic) in the former case. The harmonic cutoff from nanoparticles was at the 21st order, which is lower than that observed using indium oxide solid target. By comparing the harmonic spectra obtained from solid and nanoparticle indium oxide targets, we concluded that intense harmonics in the latter case are dominantly generated from neutral atoms of the In 2 O 3 nanoparticles
Balaji, Nidish Narayanaa; Krishna, I. R. Praveen; Padmanabhan, C.
2018-05-01
The Harmonic Balance Method (HBM) is a frequency-domain based approximation approach used for obtaining the steady state periodic behavior of forced dynamical systems. Intrinsically these systems are non-autonomous and the method offers many computational advantages over time-domain methods when the fundamental period of oscillation is known (generally fixed as the forcing period itself or a corresponding sub-harmonic if such behavior is expected). In the current study, a modified approach, based on He's Energy Balance Method (EBM), is applied to obtain the periodic solutions of conservative systems. It is shown that by this approach, periodic solutions of conservative systems on iso-energy manifolds in the phase space can be obtained very efficiently. The energy level provides the additional constraint on the HBM formulation, which enables the determination of the period of the solutions. The method is applied to the linear harmonic oscillator, a couple of nonlinear oscillators, the elastic pendulum and the Henon-Heiles system. The approach is used to trace the bifurcations of the periodic solutions of the last two, being 2 degree-of-freedom systems demonstrating very rich dynamical behavior. In the process, the advantages offered by the current formulation of the energy balance is brought out. A harmonic perturbation approach is used to evaluate the stability of the solutions for the bifurcation diagram.
Second-harmonic generation imaging of collagen in ancient bone.
Thomas, B; McIntosh, D; Fildes, T; Smith, L; Hargrave, F; Islam, M; Thompson, T; Layfield, R; Scott, D; Shaw, B; Burrell, C L; Gonzalez, S; Taylor, S
2017-12-01
Second-harmonic generation imaging (SHG) captures triple helical collagen molecules near tissue surfaces. Biomedical research routinely utilizes various imaging software packages to quantify SHG signals for collagen content and distribution estimates in modern tissue samples including bone. For the first time using SHG, samples of modern, medieval, and ice age bones were imaged to test the applicability of SHG to ancient bone from a variety of ages, settings, and taxa. Four independent techniques including Raman spectroscopy, FTIR spectroscopy, radiocarbon dating protocols, and mass spectrometry-based protein sequencing, confirm the presence of protein, consistent with the hypothesis that SHG imaging detects ancient bone collagen. These results suggest that future studies have the potential to use SHG imaging to provide new insights into the composition of ancient bone, to characterize ancient bone disorders, to investigate collagen preservation within and between various taxa, and to monitor collagen decay regimes in different depositional environments.
Second-harmonic generation imaging of collagen in ancient bone
Directory of Open Access Journals (Sweden)
B. Thomas
2017-12-01
Full Text Available Second-harmonic generation imaging (SHG captures triple helical collagen molecules near tissue surfaces. Biomedical research routinely utilizes various imaging software packages to quantify SHG signals for collagen content and distribution estimates in modern tissue samples including bone. For the first time using SHG, samples of modern, medieval, and ice age bones were imaged to test the applicability of SHG to ancient bone from a variety of ages, settings, and taxa. Four independent techniques including Raman spectroscopy, FTIR spectroscopy, radiocarbon dating protocols, and mass spectrometry-based protein sequencing, confirm the presence of protein, consistent with the hypothesis that SHG imaging detects ancient bone collagen. These results suggest that future studies have the potential to use SHG imaging to provide new insights into the composition of ancient bone, to characterize ancient bone disorders, to investigate collagen preservation within and between various taxa, and to monitor collagen decay regimes in different depositional environments.
Principal component analysis of the nonlinear coupling of harmonic modes in heavy-ion collisions
BoŻek, Piotr
2018-03-01
The principal component analysis of flow correlations in heavy-ion collisions is studied. The correlation matrix of harmonic flow is generalized to correlations involving several different flow vectors. The method can be applied to study the nonlinear coupling between different harmonic modes in a double differential way in transverse momentum or pseudorapidity. The procedure is illustrated with results from the hydrodynamic model applied to Pb + Pb collisions at √{sN N}=2760 GeV. Three examples of generalized correlations matrices in transverse momentum are constructed corresponding to the coupling of v22 and v4, of v2v3 and v5, or of v23,v33 , and v6. The principal component decomposition is applied to the correlation matrices and the dominant modes are calculated.
Grolet, Aurelien; Thouverez, Fabrice
2015-02-01
This paper is devoted to the study of vibration of mechanical systems with geometric nonlinearities. The harmonic balance method is used to derive systems of polynomial equations whose solutions give the frequency component of the possible steady states. Groebner basis methods are used for computing all solutions of polynomial systems. This approach allows to reduce the complete system to an unique polynomial equation in one variable driving all solutions of the problem. In addition, in order to decrease the number of variables, we propose to first work on the undamped system, and recover solution of the damped system using a continuation on the damping parameter. The search for multiple solutions is illustrated on a simple system, where the influence of the retained number of harmonic is studied. Finally, the procedure is applied on a simple cyclic system and we give a representation of the multiple states versus frequency.
International Nuclear Information System (INIS)
Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing; Barnard, Dan
2015-01-01
The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α 2 ≃ 2α 1
Jeong, Hyunjo; Zhang, Shuzeng; Barnard, Dan; Li, Xiongbing
2015-09-01
The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α2 ≃ 2α1.
Third harmonic generation of high power far infrared radiation in semiconductors
International Nuclear Information System (INIS)
Urban, M.
1996-04-01
In this work we investigated the third harmonic generation of high power infrared radiation in doped semiconductors with emphasis on the conversion efficiency. The third harmonic generation effect is based on the nonlinear response of the conduction band electrons in the semiconductor with respect to the electric field of the incident electromagnetic wave. Because this work is directed towards a proposed application in fusion plasma diagnostics, the experimental requirements for the radiation source at the fundamental frequency are roughly given as follows: a wavelength of the radiation at the fundamental frequency in the order of 1 mm and an incident power greater than 1 MW. The most important experiments of this work were performed using the high power far infrared laser of the CRPP. With this laser a new laser line was discovered, which fits exactly the source specifications given above: the wavelength is 676 μm and the maximum power is up to 2 MW. Additional experiments were carried out using a 496 μm laser and a 140 GHz (2.1 mm) gyrotron. The main experimental progress with respect to previous work in this field is, in addition to the use of a very high power laser, the possibility of an absolute calibration of the detectors for the far infrared radiation and the availability of a new type of detector with a very fast response. This detector made it possible to measure the power at the fundamental as well as the third harmonic frequency with full temporal resolution of the fluctuations during the laser pulse. Therefore the power dependence of the third harmonic generation efficiency could be measured directly. The materials investigated were InSb as an example of a narrow gap semiconductor and Si as standard material. The main results are: narrow gap semiconductors indeed have a highly nonlinear electronic response, but the narrow band gap leads at the same time to a low power threshold for internal breakdown, which is due to impact ionization. (author) figs
High-brightness high-order harmonic generation at 13 nm with a long gas jet
International Nuclear Information System (INIS)
Kim, Hyung Taek; Kim, I Jong; Lee, Dong Gun; Park, Jong Ju; Hong, Kyung Han; Nam, Chang Hee
2002-01-01
The generation of high-order harmonics is well-known method producing coherent extreme-ultraviolet radiation with pulse duration in the femtosecond regime. High-order harmonics have attracted much attention due to their unique features such as coherence, ultrashort pulse duration, and table-top scale system. Due to these unique properties, high-order harmonics have many applications of atomic and molecular spectroscopy, plasma diagnostics and solid-state physics. Bright generation of high-order harmonics is important for actual applications. Especially, the generation of strong well-collimated harmonics at 13 nm can be useful for the metrology of EUV lithography optics because of the high reflectivity of Mo-Si mirrors at this wavelength. The generation of bright high-order harmonics is rather difficult in the wavelength region below 15nm. Though argon and xenon gases have large conversion efficiency, harmonic generation from these gases is restricted to wavelengths over 20 nm due to low ionization potential. Hence, we choose neon for the harmonic generation around 13 nm; it has larger conversion efficiency than helium and higher ionization potential than argon. In this experiment, we have observed enhanced harmonic generation efficiency and low beam divergence of high-order harmonics from a elongated neon gas jet by the enhancement of laser propagation in an elongated gas jet. A uniform plasma column was produced when the gas jet was exposed to converging laser pulses.
Apparatus for generating nonlinear pulse patterns
Nakamura, N.M.I.
Apparatus for generating a plurality of nonlinear pulse patterns from a single linear pulse pattern. A first counter counts the pulses of the linear pulse pattern and a second counter counts the pulses of the nonlinear pulse pattern. A comparator compares the counts of both counters, and in response to an equal count, a gate is enabled to gate a pulse of the linear pattern as a pulse of the nonlinear pattern, the latter also resetting the first counter. Presettable dividers divide the pulses of each pattern before they are counted by the respective counters. Apparatus for generating a logarithmic pulse pattern from a linear pulse pattern to any log base is described. In one embodiment, a shift register is used in place of the second counter to be clocked by each pulse of the logarithmic pattern to generate the pattern. In another embodiment, a memory stores the logarithmic pattern and is addressed by the second counter which is clocked by the pulses of the logarithmic pulse pattern.
Waveform control method for mitigating harmonics of inverter systems with nonlinear load
DEFF Research Database (Denmark)
Wang, Haoran; Zhu, Guorong; Fu, Xiaobin
2015-01-01
instability in the DC power system, lower its efficiency, and shorten the lifetime of the DC source. This paper presents a general waveform control method that can mitigate the injection of the low-frequency ripple current by the single-phase DC/AC inverter into the DC source. It also discusses the inhibiting......DC power systems connecting to single-phase DC/AC inverters with nonlinear loads will have their DC sources being injected with AC ripple currents containing a low-frequency component at twice the output voltage frequency of the inverter and also other current harmonics. Such a current may create...
Enhancement of harmonic generation using a two section undulator
International Nuclear Information System (INIS)
Prazeres, R.; Glotin, F.; Jaroszynski, D.A.; Ortega, J.M.; Rippon, C.
1999-01-01
Enhancement of the 2nd and 3rd harmonic of the wavelength of a Free-Electron Laser (FEL) has been measured when a single electron beam is crossing a two-section undulator. To produce the harmonic radiation enhancement, the undulator is arranged so that the resonance wavelength of the 2nd undulator (downstream) matches a harmonic of the 1st undulator (upstream). Both the fundamental and the harmonic optical fields evolve in the same optical cavity and are coupled out with different extraction efficiency, through a hole in one of the cavity mirrors. We present measurements that show that the optical power at the 2nd and 3rd harmonic can be enhanced, by about one order of magnitude, in two configurations: when the resonance wavelength of the 2nd undulator matches the harmonic of 1st one (harmonic configuration), or when the gap of the 2nd undulator is slightly larger than first one (step-tapered configuration). We examine the dependence of the harmonic power on the gap of the 2nd undulator. This fundamental/harmonic mode of operation of the FEL may have useful applications in the production of coherent X-ray and VUV radiation, a spectral range where high reflectivity optical cavity mirrors are difficult or impossible to manufacture
High-order harmonic generation with short-pulse lasers
International Nuclear Information System (INIS)
Schafer, K.J.; Krause, J.L.; Kulander, K.C.
1992-12-01
Recent progress in the understanding of high-order harmonic conversion from atoms and ions exposed to high-intensity, short-pulse optical lasers is reviewed. We find that ions can produce harmonics comparable in strength to those obtained from neutral atoms, and that the emission extends to much higher order. Simple scaling laws for the strength of the harmonic emission and the maximium observable harmonic are suggested. These results imply that the photoemission observed in recent experiments in helium and neon contains contributions from ions as well as neutrals
International Nuclear Information System (INIS)
Alnayli, R.Sh.
2010-01-01
Complete text of publication follows. A dialed theoretical studies on performances of the ideal RTP crystal for the electro optical applications as Q-switching laser operation and for nonlinear optics application as second harmonics generation are accomplished in this paper. Single or pair RTP crystal of excellent quality with dimensions 5 x 5 x 7.5 mm 3 have proposed as element model to combined Q-switching operation and frequency doublers for 1.06 μm wave length laser. In order to get and interpolate the optimum conditions to combined both of these operations by application this RTP model. The main am of this work was investigated the most influent parameters on the performance of the electro optical Q-switching laser operation such as, the voltage requirement, contrast and extinction ratios, the birefringence effective and withstand threshold on the other hand the influences of the ray walk off, thermal effective on the efficiency of the second harmonics generation as well are investigated. The results were satisfied for the goals of this paper.
Modified Perfect Harmonics Cancellation Control of a Grid Interfaced SPV Power Generation
Singh, B.; Shahani, D. T.; Verma, A. K.
2015-03-01
This paper deals with a grid interfaced solar photo voltaic (SPV) power generating system with modified perfect harmonic cancellation (MPHC) control for power quality improvement in terms of mitigation of the current harmonics, power factor correction, control of point of common coupling (PCC) voltage with reactive power compensation and load balancing in a three phase distribution system. The proposed grid interfaced SPV system consists of a SPV array, a dc-dc boost converter and a voltage source converter (VSC) used for the compensation of other connected linear and nonlinear loads at PCC. The reference grid currents are estimated using MPHC method and control signals are derived by using pulse width modulation (PWM) current controller of VSC. The SPV power is fed to the common dc bus of VSC and dc-dc boost converter using maximum power point tracking (MPPT). The dc link voltage of VSC is regulated by using dc voltage proportional integral (PI) controller. The analysis of the proposed SPV power generating system is carried out under dc/ac short circuit and severe SPV-SX and SPV-TX intrusion.
Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves
Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei
2018-05-01
Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.
International Nuclear Information System (INIS)
Pradeep, R. Gladwin; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.
2009-01-01
In this paper we point out the existence of a remarkable nonlocal transformation between the damped harmonic oscillator and a modified Emden-type nonlinear oscillator equation with linear forcing, xe+αxx+βx 3 +γx=0, which preserves the form of the time independent integral, conservative Hamiltonian, and the equation of motion. Generalizing this transformation we prove the existence of nonstandard conservative Hamiltonian structure for a general class of damped nonlinear oscillators including Lienard-type systems. Further, using the above Hamiltonian structure for a specific example, namely, the generalized modified Emden equation xe+αx q x+βx 2q+1 =0, where α, β, and q are arbitrary parameters, the general solution is obtained through appropriate canonical transformations. We also present the conservative Hamiltonian structure of the damped Mathews-Lakshmanan oscillator equation. The associated Lagrangian description for all the above systems is also briefly discussed.
Second harmonic generation in generalized Thue-Morse ferroelectric superlattices
International Nuclear Information System (INIS)
Wang Longxiang; Yang Xiangbo; Chen Tongsheng
2009-01-01
In this paper the second harmonic generation (SHG) in generalized Thue-Morse (GTM(m, n)) ferroelectric superlattices is studied. Under the small-signal approximation, the SHG spectra in both real and reciprocal spaces are investigated. It is found that: (1) only when the structure parameters l, l A , and l B are all chosen to be proper, can SHG in GTM(m, n) ferroelectric superlattices be generated; (2) for Family A of generalized Thue-Morse, GTM(m, 1) ferroelectric systems, with the increase of parameter m, the intense peaks of SHG concentrate on the long wavelength 1.4-1.5μm (the fundamental beam (FB) wavelength is within 0.8-1.5μm), but for Family B of generalized Thue-Morse, GTM(1, n) ferroelectric superlattices, with the increase of parameter n, the intense peaks of SHG concentrate on the middle wavelength 1.1-1.2μm; and (3) for GTM(m, 1) ferroelectric superlattices, the bigger the m, the stronger the relative integral intensity (RII) of SHG would be, but for GTM(1, n) ferroelectric systems, the bigger the n, the weaker the RII of SHG would be.
International Nuclear Information System (INIS)
Shen Yuanrang
2011-01-01
This article presents a brief introduction to the birth and early investigations of nonlinear optics, such as second harmonic generation,sum and difference frequency generation, stimulated Raman scattering,and self-action of light etc. Several important research achievements and applications of nonlinear optics are presented as well, including nonlinear optical spectroscopy, phase conjugation and adaptive optics, coherent nonlinear optics, and high-order harmonic generation. In the end, current and future research topics in nonlinear optics are summarized. (authors)
Dimova, E.; Steflekova, V.; Karatodorov, S.; Kyoseva, E.
2018-03-01
We propose a way of achieving efficient and robust second-harmonic generation. The technique proposed is similar to the adiabatic population transfer in a two-state quantum system with crossing energies. If the phase mismatching changes slowly, e.g., due to a temperature gradient along the crystal, and makes the phase match for second-harmonic generation to occur, then the energy would be converted adiabatically to the second harmonic. As an adiabatic technique, the second-harmonic generation scheme presented is stable to variations in the crystal parameters, as well as in the input light, crystal length, input intensity, wavelength and angle of incidence.
Undulator physics and coherent harmonic generation at the MAX-lab electron storage ring
International Nuclear Information System (INIS)
Werin, Sverker.
1991-01-01
This work presents the undulator and harmonic generation project at the electron storage ring MAX-lab at University of Lund. The theory of undulator radiation, laser coherent harmonic generation, optical klystron amplifiers and FELs is treated in one uniform way, with complete solutions of the necessary equations. The permanent magnet undulator is described in some detail, along with the installation of the undulator in the storage ring. Details regarding the emitted radiation, the electron beam path in the undulator and other results are analysed. Finally harmonic generation using a Nd:YAG laser and the creation of coherent photons at the third harmonic (355 nm) is described. (author)
Numerical studies of third-harmonic generation in laser filament in air perturbed by plasma spot
International Nuclear Information System (INIS)
Feng Liubin; Lu Xin; Liu Xiaolong; Li Yutong; Chen Liming; Ma Jinglong; Dong Quanli; Wang Weimin; Xi Tingting; Sheng Zhengming; Zhang Jie; He Duanwei
2012-01-01
Third-harmonic emission from laser filament intercepted by plasma spot is studied by numerical simulations. Significant enhancement of the third-harmonic generation is obtained due to the disturbance of the additional plasma. The contribution of the pure plasma effect and the possible plasma-enhanced third-order susceptibility on the third-harmonic generation enhancement are compared. It is shown that the plasma induced cancellation of destructive interference [Y. Liu et al., Opt. Commun. 284, 4706 (2011)] of two-colored filament is the dominant mechanism of the enhancement of third-harmonic generation.
High-order harmonic generation in solid slabs beyond the single-active-electron approximation
Hansen, Kenneth K.; Deffge, Tobias; Bauer, Dieter
2017-11-01
High-harmonic generation by a laser-driven solid slab is simulated using time-dependent density functional theory. Multiple harmonic plateaus up to very high harmonic orders are observed already at surprisingly low field strengths. The full all-electron harmonic spectra are, in general, very different from those of any individual Kohn-Sham orbital. Freezing the Kohn-Sham potential instead is found to be a good approximation for the laser intensities and harmonic orders considered. The origins of the plateau cutoffs are explained in terms of band gaps that can be reached by Kohn-Sham electrons and holes moving through the band structure.
Controllable nonlocal behaviour by cascaded second-harmonic generation of fs pulses
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Krolikowski, Wieslaw
2008-01-01
Second-harmonic generation (SHG) of ultra-short pulses can act as a prototypical nonlocal nonlinear model, since the strength and nature of the temporal nonlocality can be controlled through the phase-mismatch parameter. The presence of a group-velocity mismatch namely implies that when the phase...... mismatch is small the nonlocal response function becomes oscillatory, while for large phase mismatch it becomes localized. In the transition between the two regimes the strength of the nonlocality diverges, and the system goes from a weakly nonlocal to a strongly nonlocal state. When simulating soliton...... compression to few-cycle pulses in the cascaded quadratic soliton compressor, the spectral content of the full coupled SHG model is predicted by the nonlocal model even when few-cycle pulses are interacting....
Second-harmonic and sum-frequency generation for surface studies
International Nuclear Information System (INIS)
Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.
1987-07-01
Second harmonic generation (SHG) has now been well established as a versatile surface-sensitive probe. It has been used to study electrochemical processes at electrode surfaces, molecular adsorption and desorption at metal and semiconductor surfaces, orientational phase transition of molecular monolayers on water, surface reconstruction and epitaxial growth, and so on. More recently, it has been employed as a tool to monitor monolayer polymerization and other surface reactions, to probe polar order of molecules at interfaces, and to measure molecular nonlinearity. While most surface techniques are restricted to the solid/vacuum environment, SHG is applicable to nearly all interfaces as long as the interfaces are accessible by light. In addition, SHG has the advantages of being capable of in-situ measurements with high temporal, spatial, and spectral resolutions
Bulk quadrupole and interface dipole contribution for second harmonic generation in Si(111)
International Nuclear Information System (INIS)
Reitböck, Cornelia; Stifter, David; Alejo-Molina, Adalberto; Hingerl, Kurt; Hardhienata, Hendradi
2016-01-01
The second harmonic generation (SHG) response was measured for arbitrarily oriented linear input polarization on Si(111) surfaces in rotational anisotropy experiments. We show for the first time, using the simplified bond hyperpolarizability model (SBHM), that the observed angular shifts of the nonlinear peaks and symmetry features—related to changes in the input polarization—help to identify the corresponding interface dipolar and bulk quadrupolar SHG sources, yielding excellent agreement with the experiment. Additionally, we evaluate for the s-in/p-out (sp) and p-in/p-out (pp)-polarization SHG intensities the contributions from the individual Si bonds. Furthermore, a relation between the four parameters arising from SBHM and six coefficients of the phenomenological SHG theory needed to reproduce experimental data is established. (paper)
Squeezed-light generation in a nonlinear planar waveguide with a periodic corrugation
International Nuclear Information System (INIS)
Perina, Jan Jr.; Haderka, Ondrej; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael
2007-01-01
Two-mode nonlinear interaction (second-harmonic and second-subharmonic generation) in a planar waveguide with a small periodic corrugation at the surface is studied. Scattering of the interacting fields on the corrugation leads to constructive interference that enhances the nonlinear process provided that all the interactions are phase matched. Conditions for the overall phase matching are found. Compared with a perfectly quasi-phase-matched waveguide, better values of squeezing as well as higher intensities are reached under these conditions. Procedure for finding optimum values of parameters for squeezed-light generation is described
Li, Mingliang; Deng, Mingxi; Gao, Guangjian; Xiang, Yanxun
2018-05-01
This paper investigated modeling of second-harmonic generation (SHG) of circumferential guided wave (CGW) propagation in a composite circular tube, and then analyzed the influences of interfacial properties on the SHG effect of primary CGW. Here the effect of SHG of primary CGW propagation is treated as a second-order perturbation to its linear wave response. Due to the convective nonlinearity and the inherent elastic nonlinearity of material, there are second-order bulk driving forces and surface/interface driving stresses in the interior and at the surface/interface of a composite circular tube, when a primary CGW mode propagates along its circumference. Based on the approach of modal expansion analysis for waveguide excitation, the said second-order driving forces/stresses are regarded as the excitation sources to generate a series of double-frequency CGW modes that constitute the second-harmonic field of the primary CGW propagation. It is found that the modal expansion coefficient of each double-frequency CGW mode is closely related to the interfacial stiffness constants that are used to describe the interfacial properties between the inner and outer circular parts of the composite tube. Furthermore, changes in the interfacial stiffness constants essentially influence the dispersion relation of CGW propagation. This will remarkably affect the efficiency of cumulative SHG of primary CGW propagation. Some finite element simulations have been implemented of response characteristics of cumulative SHG to the interfacial properties. Both the theoretical analyses and numerical simulations indicate that the effect of cumulative SHG is found to be much more sensitive to changes in the interfacial properties than primary CGW propagation. The potential of using the effect of cumulative SHG by primary CGW propagation to characterize a minor change in the interfacial properties is considered.
Energy Technology Data Exchange (ETDEWEB)
Lambert, G; Garzella, D; Labat, M; Carre, B; Bougeard, M; Salieres, P; Merdji, H; Gobert, O [CEA Saclay, DSM, DRECAM, Serv. Photons Atomes Mol., F-91191 Gif sur Yvette, (France); Lambert, G; Hara, T; Tanikawa, T; Kitamura, H; Shintake, T; Tanaka, Y; Tahara, K [RIKEN SPring Centre, Harima Inst., Hyogo 679-5148, (Japan); Lambert, G; Labat, M; Chubar, O; Couprie, M E [Groupe Magnetisme et Insertion, Synchrotron Soleil, F-91192 Gif sur Yvette, (France); Hara, T; Kitamura, H; Shintake, T; Inoue, S; Tanaka, Y [XFEL Project Head Office, RIKEN, Hyogo 679-5148, (Japan)
2008-07-01
Conventional synchrotron radiation sources enable the structure of matter to be studied at near-atomic spatial resolution and picosecond temporal resolution. Free-electron lasers promise to extend this down to femtosecond timescales. The process by which free-electron lasers amplify synchrotron light-known as self-amplified spontaneous emission - is only partially temporally coherent, but this can be improved by seeding it with an external laser. Here we explore the use of seed light produced by high-order harmonic generation in a gas, covering wavelengths from the ultraviolet to soft X-rays. Using the SPring-8 Compact SASE Source test accelerator, we demonstrate an increase of three orders of magnitude in the intensity of the fundamental radiation at 160 nm, halving of the free-electron laser saturation length, and the generation of nonlinear harmonics at 54 nm and 32 nm. The low seed level used in this demonstration suggests that nonlinear harmonic schemes should enable the generation of fully coherent soft X-rays at wavelengths down to the so-called 'water window', vital for the study of biological samples. (authors)
Enhanced resonant second harmonic generation in plasma based on density transition
Directory of Open Access Journals (Sweden)
Kant Niti
2015-06-01
Full Text Available Resonant second harmonic generation of a relativistic self-focusing laser in plasma with density ramp profile has been investigated. A high intense Gaussian laser beam generates resonant second harmonic beam in plasma with density ramp profile. The second harmonic undergoes periodic focusing in the plasma channel created by the fundamental wave. The normalized second harmonic amplitude varies periodically with distance and attains maximum value in the focal region. Enhancement in the second harmonic amplitude on account of relativistic self-focusing of laser based on plasma density transition is seen. Plasma density ramp plays an important role to make self-focusing stronger which leads to enhance the second harmonic generation in plasma.
Squeezing and entanglement in doubly resonant, type II, second-harmonic generation
DEFF Research Database (Denmark)
Andersen, Ulrik Lund; Buchhave, Preben
2003-01-01
We investigate, theoretically, the generation of bright and vacuum-squeezed light as well as entanglement in intracavity, type II, phase-matched second-harmonic generation. The cavity in which the crystal is embedded is resonant at the fundamental frequency but not at the second-harmonic frequenc...
Phase-locked high-order-harmonic and sub-100-as pulse generation from stretched molecules
International Nuclear Information System (INIS)
Lan Pengfei; Lu Peixiang; Cao Wei; Wang Xinlin; Yang Guang
2006-01-01
High harmonic generation from diatomic molecules in a linearly polarized intense laser field is investigated and the emission time of the harmonics is discussed with the time-frequency analysis method. It is shown that high harmonic generation from molecules at equilibrium distance is similar to that from atoms. Only the harmonics in the cutoff are synchronized, i.e., well phase-locked, whereas the other harmonics are not phase-locked. For the molecule stretched well beyond its equilibrium distance, the harmonics exhibit distinct time-frequency characteristics. The harmonic spectrum can be extended to I p +8U p , where I p and U p are the ionization and ponderomotive potential, and the harmonics with energies below I p +3.17U p are not phase-locked and the harmonics with energies beyond I p +3.17U p are well phase-locked. Thus a large range of harmonics which are well phase-locked are produced, and a train of clean attosecond (as) pulses with a single 90-as pulse in each half optical cycle can be generated with a multicycle laser pulse. Using a few-cycle laser pulse, an isolated attosecond pulse with a duration of about 95 as is obtained
Second harmonic generation microscopy of the living human cornea
Artal, Pablo; Ávila, Francisco; Bueno, Juan
2018-02-01
Second Harmonic Generation (SHG) microscopy provides high-resolution structural imaging of the corneal stroma without the need of labelling techniques. This powerful tool has never been applied to living human eyes so far. Here, we present a new compact SHG microscope specifically developed to image the structural organization of the corneal lamellae in living healthy human volunteers. The research prototype incorporates a long-working distance dry objective that allows non-contact three-dimensional SHG imaging of the cornea. Safety assessment and effectiveness of the system were firstly tested in ex-vivo fresh eyes. The maximum average power of the used illumination laser was 20 mW, more than 10 times below the maximum permissible exposure (according to ANSI Z136.1-2000). The instrument was successfully employed to obtain non-contact and non-invasive SHG of the living human eye within well-established light safety limits. This represents the first recording of in vivo SHG images of the human cornea using a compact multiphoton microscope. This might become an important tool in Ophthalmology for early diagnosis and tracking ocular pathologies.
Research of second harmonic generation images based on texture analysis
Liu, Yao; Li, Yan; Gong, Haiming; Zhu, Xiaoqin; Huang, Zufang; Chen, Guannan
2014-09-01
Texture analysis plays a crucial role in identifying objects or regions of interest in an image. It has been applied to a variety of medical image processing, ranging from the detection of disease and the segmentation of specific anatomical structures, to differentiation between healthy and pathological tissues. Second harmonic generation (SHG) microscopy as a potential noninvasive tool for imaging biological tissues has been widely used in medicine, with reduced phototoxicity and photobleaching. In this paper, we clarified the principles of texture analysis including statistical, transform, structural and model-based methods and gave examples of its applications, reviewing studies of the technique. Moreover, we tried to apply texture analysis to the SHG images for the differentiation of human skin scar tissues. Texture analysis method based on local binary pattern (LBP) and wavelet transform was used to extract texture features of SHG images from collagen in normal and abnormal scars, and then the scar SHG images were classified into normal or abnormal ones. Compared with other texture analysis methods with respect to the receiver operating characteristic analysis, LBP combined with wavelet transform was demonstrated to achieve higher accuracy. It can provide a new way for clinical diagnosis of scar types. At last, future development of texture analysis in SHG images were discussed.
Second harmonic generation reveals matrix alterations during breast tumor progression
Burke, Kathleen; Tang, Ping; Brown, Edward
2013-03-01
Alteration of the extracellular matrix in tumor stroma influences efficiency of cell locomotion away from the primary tumor into surrounding tissues and vasculature, thereby affecting metastatic potential. We study matrix changes in breast cancer through the use of second harmonic generation (SHG) of collagen in order to improve the current understanding of breast tumor stromal development. Specifically, we utilize a quantitative analysis of the ratio of forward to backward propagating SHG signal (F/B ratio) to monitor collagen throughout ductal and lobular carcinoma development. After detection of a significant decrease in the F/B ratio of invasive but not in situ ductal carcinoma compared with healthy tissue, the collagen F/B ratio is investigated to determine the evolution of fibrillar collagen changes throughout tumor progression. Results are compared with the progression of lobular carcinoma, whose F/B signature also underwent significant evolution during progression, albeit in a different manner, which offers insight into varying methods of tissue penetration and collagen manipulation between the carcinomas. This research provides insights into trends of stromal reorganization throughout breast tumor development.
Behnia, S.; Ziaei, J.; Khodavirdizadeh, M.
2018-06-01
Nonlinear optics (NLO) deserves special attention in new optical devices, making it possible to generate coherent light more efficiently. Among the various NLO phenomena the third-harmonic generation (THG) is at the core of the effective operating mechanism of broadband wavelength conversion, in all-optical devices. Here, we aim to understand how the third-order susceptibility and the electric field may be effectively effect on the localization properties of the light in the THG process when included in a two-mode cavity coherently perturbed by a classical field. We address a stable-unstable transition due to the combination effect of the aforementioned factors. We report a reliable evidence confirming the appearance of chaos in THG under suitable conditions. By tracing the signatures of adjacent-spectral-spacing-ratio (ASSR) distribution and participation ratio, we also find a critical point (ɛc ,κc) =(3 . 1 , 0 . 35) for which a pronounced delocalized response is seen. This study may have profound findings for practical devices, and ushers in new opportunities for practical exploitation of the electric field and the third-order susceptibility effect in nonlinear optical devices.
International Nuclear Information System (INIS)
Claeys, M.; Sinou, J.J.; Lambelin, J.P.; Alcoverro, B.
2014-01-01
This study presents a direct comparison of measured and predicted nonlinear vibrations of a clamped-clamped steel beam. A multi-harmonic comparison of simulations with measurements is performed at the vicinity of the primary resonance. First of all, a nonlinear analytical model of the beam is developed taking into account non-ideal boundary conditions. The Harmonic Balance Method is implemented to estimate the nonlinear behavior of the clamped-clamped beam. This nonlinear method enables to simulate the vibration stationary response of a nonlinear system projected on several harmonics. This study then proposes a method to compare numerical simulations with measurements on all these harmonics. A signal analysis tool is developed to extract the system harmonics' frequency responses from a temporal signal of a swept sine experiment. An evolutionary updating algorithm (Covariance Matrix Adaptation Evolution Strategy), coupled with highly selective filters is used to identify both fundamental frequency and harmonics' amplitude in the temporal signal, at every moment. This tool enables to extract the harmonic amplitudes of the output signal as well as the input signal. The input of the Harmonic Balance Method can then be either an ideal mono-harmonic signal or a multi-harmonic experimental input signal. Finally, the present work focuses on the comparison of experimental and simulated results. From experimental output harmonics and numerical simulations, it is shown that it is possible to distinguish the nonlinearities of the clamped-clamped beam and the effect of the non-ideal input signal. (authors)
International Nuclear Information System (INIS)
Faghihi-Nik, M.; Ghorbanalilu, M.; Shokri, B.
2010-01-01
Complete text of publication follows. Generation of harmonic radiation is an important subject of laser plasma interaction and attracts great attention due to a wide range of applications. It has been seen that intense electromagnetic and quasi-static transverse magnetic fields are generated in laser plasma interaction. An extremely intense magnetic field (up to hundreds of MG) has been observed by experimental measurements in interaction of short laser pulses with plasma. These self-generated or applied magnetic fields affect the propagation of the laser pulses. In most laser interactions with homogeneous plasma, odd harmonics of laser frequency are generated. In this paper, we point out the possibility of even harmonics generation when a linearly polarized laser beam propagates in homogeneous plasma in the presence of a transverse magnetic field. It is shown that applying external field induces a transverse current density oscillating twice of the laser field which leds to generation of second harmonic radiation. This current density is derived using the perturbation method, and the steady state amplitude of the second harmonic obtained by solution of the wave equation. By the same procedure the current density and then the steady state amplitude of higher order harmonics are calculated. The efficiency of harmonic generation (the ratio of harmonic power to incident power) is a drastically function of the strength of external magnetic field. It is found that the efficiency of even harmonics is zero in the absence of magnetic field and increases as the magnetic field is increased. For odd harmonics, applying the external magnetic field enhances the generated harmonics as well. The conversion efficiency also increases with increase in plasma density and intensity of the laser beam.
International Nuclear Information System (INIS)
Chen Qianyong; Kevrekidis, Panayotis G; Malomed, Boris A
2012-01-01
We report results of systematic simulations of the dynamics of solitons in the framework of the one-dimensional nonlinear Schrödinger equation, which includes the harmonic oscillator potential and a random potential. The equation models experimentally relevant spatially disordered settings in Bose-Einstein condensates (BECs) and nonlinear optics. First, the generation of soliton arrays from a broad initial quasi-uniform state by the modulational instability (MI) is considered following a sudden switch of the nonlinearity from repulsive to attractive. Then, we study oscillations of a single soliton in this setting, which models a recently conducted experiment in a BEC. The basic characteristics of the MI-generated array, such as the number of solitons and their mobility, are reported as functions of the strength and correlation length of the disorder, and of the total norm. For the single oscillating soliton, its survival rate is found. The main features of these dependences are explained qualitatively. (paper)
Higher order harmonic generation in the intense laser pulse
International Nuclear Information System (INIS)
Parvizi, R.; Bahrampour, A.; Karimi, M.
2006-01-01
The high intensity pulse of laser field ionizes the atoms and electrons are going to the continuum states of atoms. electrons absorb energy from the strong laser field. The back ground electromagnetic field causes to come back the electrons to ground states of atoms and the absorbed energy is emitted as a high order odd harmonics of incident light. The intensity of emitted harmonics depends on the material atoms and the laser pulse shape. I this paper the effects of step pulse duration on the high order harmonic radiated by the Argon, Helium, and Hydrogen atoms are reported.
Interference Effects in the Optical Second Harmonic Generation from Ultrathin Alkali Films
DEFF Research Database (Denmark)
Balzer, F.; Rubahn, Horst-Günter
2000-01-01
Interference effects are shown to strongly modulate the transmission second harmonic signal (fundamental wavelength 1067 nm) from rough alkali island films grown on insulating substrates if one varies the angle of incidence. Depending on growth conditions and substrate thickness, the measured...... second harmonic dependencies can be interpreted in terms of interference between frontside and rearside adsorbed islands or by taking into account the morphology of the adsorbed alkali islands. By the use of different polarization combinations of both pump and reflected second harmonic wave we obtain...... accurate values of the ratios of the relevant nonlinear optical coefficients....
International Nuclear Information System (INIS)
Nusinovich, Gregory S.; Pu, Ruifeng; Granatstein, Victor L.
2015-01-01
In recent years, there was an active development of high-power, sub-terahertz (sub-THz) gyrotrons for numerous applications. For example, a 0.67 THz gyrotron delivering more than 200 kW with about 20% efficiency was developed. This record high efficiency was achieved because the gyrotron operated in a high-order TE 31,8 -mode with the power of ohmic losses less than 10% of the power of outgoing radiation. That gyrotron operated at the fundamental cyclotron resonance, and a high magnetic field of about 27 T was created by a pulse solenoid. For numerous applications, it is beneficial to use gyrotrons at cyclotron harmonics which can operate in available cryomagnets with fields not exceeding 15 T. However, typically, the gyrotron operation at harmonics faces severe competition from parasitic modes at the fundamental resonance. In the present paper, we consider a similar 0.67 THz gyrotron designed for operation in the same TE 31,8 -mode, but at the second harmonic. We focus on two nonlinear effects typical for interaction between the fundamental and second harmonic modes, viz., the mode suppression and the nonlinear excitation of the mode at the fundamental harmonic by the second harmonic oscillations. Our study includes both the analytical theory and numerical simulations performed with the self-consistent code MAGY. The simulations show that stable second harmonic operation in the TE 31,8 mode is possible with only modest sacrifice of efficiency and power
Phase-dependent quantum interference between different pathways in bichromatic harmonic generation
International Nuclear Information System (INIS)
Jun, Cai; Li-Ming, Wang; Hao-Xue, Qiao
2009-01-01
This paper studies the harmonic generation of the hydrogen atom subjected to a collinear bichromatic laser field by numerically solving the time-dependent Schrödinger equation using the split-operator pseudo-spectral method. By adding a frequency variation to the additional field, the contributions of different pathways to particular order harmonic generation can be isolated. The quantum interference pattern between harmonic pathways, which influences the harmonic intensity, is found to be either constructive or destructive with respect to different relative phase of the two field components. Detailed description of up to the 35th-order harmonics and the harmonic pathways for a wide range of field parameters is presented. (atomic and molecular physics)
Frequency dependence of quantum path interference in non-collinear high-order harmonic generation
International Nuclear Information System (INIS)
Zhong Shi-Yang; He Xin-Kui; Teng Hao; Ye Peng; Wang Li-Feng; He Peng; Wei Zhi-Yi
2016-01-01
High-order harmonic generation (HHG) driven by two non-collinear beams including a fundamental and its weak second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to be dependent on the relative delay of the driving pulse, and the dependences are different for different harmonic orders. This frequency dependence of the interference is attributed to the spatial frequency chirp in the HHG beam resulting from the harmonic dipole phase, which in turn provides a potential way to gain an insight into the generation of high-order harmonics. As an example, the intensity dependent dipole phase coefficient α is retrieved from the interference fringe. (paper)
Energy Technology Data Exchange (ETDEWEB)
Paarmann, Alexander, E-mail: alexander.paarmann@fhi-berlin.mpg.de; Razdolski, Ilya; Melnikov, Alexey; Gewinner, Sandy; Schöllkopf, Wieland; Wolf, Martin [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)
2015-08-24
The Reststrahl spectral region of silicon carbide has recently attracted much attention owing to its potential for mid-infrared nanophotonic applications based on surface phonon polaritons (SPhPs). Studies of optical phonon resonances responsible for surface polariton formation, however, have so far been limited to linear optics. In this Letter, we report the first nonlinear optical investigation of the Reststrahl region of SiC, employing an infrared free-electron laser to perform second harmonic generation (SHG) spectroscopy. We observe two distinct resonance features in the SHG spectra, one attributed to resonant enhancement of the nonlinear susceptibility χ{sup (2)} and the other due to a resonance in the Fresnel transmission. Our work clearly demonstrates high sensitivity of mid-infrared SHG to phonon-driven phenomena and opens a route to studying nonlinear effects in nanophotonic structures based on SPhPs.
Energy Technology Data Exchange (ETDEWEB)
Singh, Mamta; Gupta, D. N., E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, H. [Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)
2015-06-15
We propose an idea to enhance the efficiency of second- and third-harmonic generation by considering the amplitude-modulation of the fundamental laser pulse. A short-pulse laser of finite spot size is modeled as amplitude modulated in time. Amplitude-modulation of fundamental laser contributes in quiver velocity of the plasma electrons and produces the strong plasma-density perturbations, thereby increase in current density at second- and third-harmonic frequency. In a result, the conversion efficiency of harmonic generation increases significantly. Power conversion efficiency of harmonic generation process is the increasing function of the amplitude-modulation parameter of the fundamental laser beam. Harmonic power generated by an amplitude modulated laser is many folds higher than the power obtained in an ordinary case.
International Nuclear Information System (INIS)
Singh, Mamta; Gupta, D. N.; Suk, H.
2015-01-01
We propose an idea to enhance the efficiency of second- and third-harmonic generation by considering the amplitude-modulation of the fundamental laser pulse. A short-pulse laser of finite spot size is modeled as amplitude modulated in time. Amplitude-modulation of fundamental laser contributes in quiver velocity of the plasma electrons and produces the strong plasma-density perturbations, thereby increase in current density at second- and third-harmonic frequency. In a result, the conversion efficiency of harmonic generation increases significantly. Power conversion efficiency of harmonic generation process is the increasing function of the amplitude-modulation parameter of the fundamental laser beam. Harmonic power generated by an amplitude modulated laser is many folds higher than the power obtained in an ordinary case
Nonlinear Entanglement and its Application to Generating Cat States
Shen, Y.; Assad, S. M.; Grosse, N. B.; Li, X. Y.; Reid, M. D.; Lam, P. K.
2015-03-01
The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.
Directory of Open Access Journals (Sweden)
Rong Haiwu
2014-01-01
Full Text Available The erosion of the safe basins and chaotic motions of a nonlinear vibroimpact oscillator under both harmonic and bounded random noise is studied. Using the Melnikov method, the system’s Melnikov integral is computed and the parametric threshold for chaotic motions is obtained. Using the Monte-Carlo and Runge-Kutta methods, the erosion of the safe basins is also discussed. The sudden change in the character of the stochastic safe basins when the bifurcation parameter of the system passes through a critical value may be defined as an alternative stochastic bifurcation. It is founded that random noise may destroy the integrity of the safe basins, bring forward the occurrence of the stochastic bifurcation, and make the parametric threshold for motions vary in a larger region, hence making the system become more unsafely and chaotic motions may occur more easily.
On the quantization of a nonlinear oscillator with quasi-harmonic behaviour
International Nuclear Information System (INIS)
Ranada, M.F.; Carinena, J.F.; Satander, M.
2006-01-01
Full text: (author)The quantum version of a non-linear oscillator, depending of a parameter λ, is studied. This λ-dependent system can be considered deformation of the harmonic oscillator in the sense that for λ→0 all the characteristics of the linear oscillator are recovered. This is a problem of quantization of a system with position-dependent mass and with a λ-dependent nonpolynominal rational potential. The quantization problem is solved using existence of a Killing vector, the λ-dependent Schroedinger equation is exactly solved and λ-dependent eigenenergies and eigenfunctions are obtained. The λ-dependent wave functions appear as related with a family of orthogonal polynomials that can be considered as deformations of the standard Hermite polynomials. In the second part, it is proved the superintegrability of the two-dimensional system
Directory of Open Access Journals (Sweden)
R. Maugé
2008-03-01
Full Text Available A set of evolution equations is derived for the modal coefficients in a weakly nonlinear nonhydrostatic internal-tide generation problem. The equations allow for the presence of large-amplitude topography, e.g. a continental slope, which is formally assumed to have a length scale much larger than that of the internal tide. However, comparison with results from more sophisticated numerical models show that this restriction can in practice be relaxed. It is shown that a topographically induced coupling between modes occurs that is distinct from nonlinear coupling. Nonlinear effects include the generation of higher harmonics by reflection from boundaries, i.e. steeper tidal beams at frequencies that are multiples of the basic tidal frequency. With a seasonal thermocline included, the model is capable of reproducing the phenomenon of local generation of internal solitary waves by a tidal beam impinging on the seasonal thermocline.
Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals
DEFF Research Database (Denmark)
Hansen, Anders Kragh; Andersen, Peter E.; Jensen, Ole Bjarlin
2015-01-01
, despite differences in the phase relations of the involved fields. An unprecedented 5.5 W of continuous-wave diffraction-limited green light is generated from the single-pass sum frequency mixing of two diode lasers in two periodically poled nonlinear crystals (conversion efficiency 50%). The technique......The cascading of nonlinear crystals has been established as a simple method to greatly increase the conversion efficiency of single-pass second-harmonic generation compared to a single-crystal scheme. Here, we show for the first time that the technique can be extended to sum frequency generation...... is generally applicable and can be applied to any combination of fundamental wavelengths and nonlinear crystals....
Sullivan, Shane Z.; DeWalt, Emma L.; Schmitt, Paul D.; Muir, Ryan D.; Simpson, Garth J.
2015-03-01
Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.
Energy Technology Data Exchange (ETDEWEB)
Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Zhang, Shuzeng; Li, Xiongbing [School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075 (China); Barnard, Dan [Center for Nondestructive Evaluation, Iowa State University, Ames, IA 50010 (United States)
2015-09-15
The accurate measurement of acoustic nonlinearity parameter β for fluids or solids generally requires making corrections for diffraction effects due to finite size geometry of transmitter and receiver. These effects are well known in linear acoustics, while those for second harmonic waves have not been well addressed and therefore not properly considered in previous studies. In this work, we explicitly define the attenuation and diffraction corrections using the multi-Gaussian beam (MGB) equations which were developed from the quasilinear solutions of the KZK equation. The effects of making these corrections are examined through the simulation of β determination in water. Diffraction corrections are found to have more significant effects than attenuation corrections, and the β values of water can be estimated experimentally with less than 5% errors when the exact second harmonic diffraction corrections are used together with the negligible attenuation correction effects on the basis of linear frequency dependence between attenuation coefficients, α{sub 2} ≃ 2α{sub 1}.
High-Harmonic Generation in Solids with and without Topological Edge States
DEFF Research Database (Denmark)
Bauer, Dieter; Hansen, Kenneth Christian Klochmann
2018-01-01
High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up...... to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present...
Effects of Energy Chirp on Echo-Enabled Harmonic Generation Free-Electron Lasers
International Nuclear Information System (INIS)
Huang, Z.
2009-01-01
We study effects of energy chirp on echo-enabled harmonic generation (EEHG). Analytical expressions are compared with numerical simulations for both harmonic and bunching factors. We also discuss the EEHG free-electron laser bandwidth increase due to an energy-modulated beam and its pulse length dependence on the electron energy chirp
High-order harmonic generation: A coherent ultrashort emission in the XUV range
International Nuclear Information System (INIS)
Salieres, Pascal; Hergott, Jean-Francois; Le Deroff, Laurent; Merdji, Hamed; Carre, Bertrand; Auguste, Thierry; Monot, Pascal; D'Oliveira, Pascal; Joyeux, Denis; Phalippou, Daniel
2000-01-01
We review the recent progress in theoretical and experimental understanding of harmonic generation by intense laser pulses. We present investigations on the spatial and temporal coherence properties of the harmonic emission, showing that they can be controlled. Finally, we give some examples of current applications of this XUV source, in particular in the diagnostic of dense plasmas
Variable speed DFIG wind energy system for power generation and harmonic current mitigation
Energy Technology Data Exchange (ETDEWEB)
Gaillard, A.; Saadate, S. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Nancy Universite - Universite Henri Poincare Nancy 1, BP239, 54506 Vandoeuvre les Nancy Cedex (France); Poure, P. [Laboratoire d' Instrumentation Electronique de Nancy, Nancy Universite - Universite Henri Poincare Nancy 1, BP239, 54506 Vandoeuvre les Nancy Cedex (France); Machmoum, M. [IREENA, 37 Boulevard de l' Universite, BP 406, 44602 Saint-Nazaire Cedex (France)
2009-06-15
This paper presents a novel approach for simultaneous power generation and harmonic current mitigation using variable speed WECS with DFIG. A new control strategy is proposed to upgrade the DFIG control to achieve simultaneously a green active and reactive power source with active filtering capability. To ensure high filtering performance, we studied an improved harmonic isolator in the time-domain, based on a new high selectivity filter developed in our laboratory. We examined two solutions for harmonic current mitigation: first, by compensating the whole harmonic component of the grid currents or second, by selective isolation of the predominant harmonic currents to ensure active filtering of the 5th and 7th harmonics. Simulation results for a 3 MW WECS with DFIG confirm the effectiveness and the performance of the two proposed approaches. (author)
Spatial properties of odd and even low order harmonics generated in gas.
Lambert, G; Andreev, A; Gautier, J; Giannessi, L; Malka, V; Petralia, A; Sebban, S; Stremoukhov, S; Tissandier, F; Vodungbo, B; Zeitoun, Ph
2015-01-14
High harmonic generation in gases is developing rapidly as a soft X-ray femtosecond light-source for applications. This requires control over all the harmonics characteristics and in particular, spatial properties have to be kept very good. In previous literature, measurements have always included several harmonics contrary to applications, especially spectroscopic applications, which usually require a single harmonic. To fill this gap, we present here for the first time a detailed study of completely isolated harmonics. The contribution of the surrounding harmonics has been totally suppressed using interferential filtering which is available for low harmonic orders. In addition, this allows to clearly identify behaviors of standard odd orders from even orders obtained by frequency-mixing of a fundamental laser and of its second harmonic. Comparisons of the spatial intensity profiles, of the spatial coherence and of the wavefront aberration level of 5ω at 160 nm and 6ω at 135 nm have then been performed. We have established that the fundamental laser beam aberrations can cause the appearance of a non-homogenous donut-shape in the 6ω spatial intensity distribution. This undesirable effect can be easily controlled. We finally conclude that the spatial quality of an even harmonic can be as excellent as in standard generation.
Tanimura, Y; Steffen, T
2000-01-01
The relaxation processes in a quantum system nonlinearly coupled to a harmonic Gaussian-Markovian heat bath are investigated by the quantum Fokker-Planck equation in the hierarchy form. This model describes frequency fluctuations in the quantum system with an arbitrary correlation time and thus
Optimum third harmonic generation efficiency in the far infrared in Si, GaAs and InP
International Nuclear Information System (INIS)
Brazis, R.; Raguotis, R.; Siegrist, M.R.
1997-12-01
We investigate by means of a Monte Carlo technique the nonlinear drift response of electrons to high power electromagnetic waves in Si, GaAs and InP. The first and third harmonic drift velocity amplitudes and phases are presented as function of the pumping wave frequency in the range of 200 to 500 GHz. The third harmonic generation efficiency is found to reach a maximum at a pumping wave amplitude of 10-25 kV/cm depending on the material and the lattice temperature. Cooling down to liquid nitrogen temperature results in an improvement of the efficiency by a factor of 2 to 10, depending on the material and the pumping wave amplitude. Cooled GaAs and InP are both an order of magnitude more efficient than Si at ambient temperature, for which to date the best measured performance has been reported. (author) 2 figs., 5 refs
International Nuclear Information System (INIS)
Das, Priyam; Panigrahi, Prasanta K
2015-01-01
We study Bose–Einstein condensate in the combined presence of time modulated optical lattice and harmonic trap in the mean-field approach. Through the self-similar method, we show the existence of sinusoidal lattice modes in this inhomogeneous system, commensurate with the lattice potential. A significant advantage of this system is wide tunability of the parameters through chirp management. The combined effect of the interaction, harmonic trap and lattice potential leads to the generation of nonlinear resonances, exactly where the matter wave changes its direction. When the harmonic trap is switched off, the BEC undergoes a nonlinear compression for the static optical lattice potential. For better understanding of chirp management and the nature of the sinusoidal excitation, we investigate the energy spectrum of the condensate, which clearly reveals the generation of nonlinear resonances in the appropriate regime. We have also identified a classical dynamical phase transition occurring in the system, where loss of superfluidity takes the superfluid phase to an insulating state. (paper)
Absorption, fluorescence and second harmonic generation in Cr3+-doped BiB3O6 glasses
Kuznik, W.; Fuks-Janczarek, I.; Wojciechowski, A.; Kityk, I. V.; Kiisk, V.; Majchrowski, A.; Jaroszewicz, L. R.; Brik, M. G.; Nagy, G. U. L.
2015-06-01
Synthesis, spectral properties and photoinduced nonlinear optical effects of chromium-doped BiB3O6 glass are studied in the present paper. Absorption, excitation and time resolved luminescence spectra are presented and luminescence decay behavior is discussed. Detailed analysis of the obtained spectra (assignment of the most prominent spectral features in terms of the corresponding Cr3+ energy levels, crystal field strength Dq, Racah parameters B and C) was performed. A weak photostimulated second harmonic generation signal was found to increase drastically due to poling by proton implantation in the investigated sample.
A Perturbation Analysis of Harmonics Generation from Saturated Elements in Power Systems
Kumano, Teruhisa
Nonlinear phenomena such as saturation in magnetic flux give considerable effects in power system analysis. It is reported that a failure in a real 500kV system triggered islanding operation, where resultant even harmonics caused malfunctions in protective relays. It is also reported that the major origin of this wave distortion is nothing but unidirectional magnetization of the transformer iron core. Time simulation is widely used today to analyze this type of phenomena, but it has basically two shortcomings. One is that the time simulation takes two much computing time in the vicinity of inflection points in the saturation characteristic curve because certain iterative procedure such as N-R (Newton-Raphson) should be used and such methods tend to be caught in an ill conditioned numerical hunting. The other is that such simulation methods sometimes do not help intuitive understanding of the studied phenomenon because the whole nonlinear equations are treated in a matrix form and not properly divided into understandable parts as done in linear systems. This paper proposes a new computation scheme which is based on so called perturbation method. Magnetic saturation in iron cores in a generator and a transformer are taken into account. The proposed method has a special feature against the first shortcoming of the N-R based time simulation method stated above. In the proposed method no iterative process is used to reduce the equation residue but uses perturbation series, which means free from the ill condition problem. Users have only to calculate each perturbation terms one by one until he reaches necessary accuracy. In a numerical example treated in the present paper the first order perturbation can make reasonably high accuracy, which means very fast computing. In numerical study three nonlinear elements are considered. Calculated results are almost identical to the conventional Newton-Raphson based time simulation, which shows the validity of the method. The
Sartorello, Giovanni
2016-06-06
We design and fabricate a metasurface composed of gold cut-disk resonators that exhibits a strong coherent nonlinear response. We experimentally demonstrate all-optical modulation of both second- and third-harmonic signals on a subpicosecond time scale. Pump-probe experiments and numerical models show that the observed effects are due to the ultrafast response of the electronic excitations in the metal under external illumination. These effects pave the way for the development of novel active nonlinear metasurfaces with controllable and switchable coherent nonlinear response. © 2016 American Chemical Society.
Nonlinear sound generation by high energy particles
International Nuclear Information System (INIS)
Westervelt, P.J.
1978-01-01
In connection with Project DUMAND, the proposal to utilize the ocean as a giant acoustic detector of neutrinos, the applicability of a recent theory of thermoacoustic arrays [Peter J. Westervelt and Richard S. Larson, J. Acoust. Soc. Am. 54, 121 (1973)] is studied. In the static case or at very low frequencies, about 10% of the coefficient of thermal expansion for water at 20 0 C can be attributed to Debye-like modes. Debye-like modes generate sound via the nonlinear mechanism responsible for the operation of the parametric acoustic array [Peter J. Westervelt, J. Acoust. Soc. Am. 35, 535 (1963)]. The contribution of the Debye-like modes to the thermal expansion coefficient and thus to the sound pressure is essentially independent of the ambient water temperature. Hence if the Debye-like modes are not fully excited as is postulated to be the case at high frequencies, then the thermal expansion coefficient will be less than the static value by an amount that causes it to vanish at about 6 0 C instead of at 4 0 C, the temperature of maximum water density. This theory is in agreement with recent measurements of the temperature dependence of sound generated by proton deposition in water [L. Sulak, et al., Proceedings of the La Jolla Workshop on Acoustic Detection of Neutrinos, 25--29 July 1977, Scripps Institute of Oceanography, U.C.L.A., San Diego, Hugh Bradner, Ed.
High-order harmonic generation in a laser plasma: a review of recent achievements
International Nuclear Information System (INIS)
Ganeev, R A
2007-01-01
A review of studies of high-order harmonic generation in plasma plumes is presented. The generation of high-order harmonics (up to the 101st order, λ = 7.9 nm) of Ti:sapphire laser radiation during the propagation of short laser pulses through a low-excited, low-ionized plasma produced on the surfaces of different targets is analysed. The observation of considerable resonance-induced enhancement of a single harmonic (λ = 61.2 nm) at the plateau region with 10 -4 conversion efficiency in the case of an In plume can offer some expectations that analogous processes can be realized in other plasma samples in the shorter wavelength range. Recent achievements of single-harmonic enhancement at mid- and end-plateau regions are discussed. Various methods for the optimization of harmonic generation are analysed, such as the application of the second harmonic of driving radiation and the application of prepulses of different durations. The enhancement of harmonic generation efficiency during the propagation of femtosecond pulses through a nanoparticle-containing plasma is discussed. (topical review)
Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen
2014-02-10
Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.
Generation of even harmonics in a relativistic laser plasma of atomic clusters
International Nuclear Information System (INIS)
Krainov, V.P.; Rastunkov, V.S.
2004-01-01
It is shown that the irradiation of atomic clusters by a superintense femtosecond laser pulse gives rise to various harmonics of the laser field. They arise as a result of elastic collisions of free electrons with atomic ions inside the clusters in the presence of the laser filed. The yield of even harmonics whose electromagnetic field is transverse is attributed to the relativism of the motion of electrons and the consideration of their drift velocity associated with the internal ionization of atoms and atomic ions of a cluster. These harmonics are emitted in the same direction as odd harmonics. The conductivities and electromagnetic fields of the harmonics are calculated. The generation efficiency of the harmonics slowly decreases as the harmonic number increases. The generation of even harmonics ceases when the drift velocity of electrons becomes equal to zero and only the oscillation velocity of electrons is nonzero. The results can also be applied to the irradiation of solid-state targets inside a skin layer
Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode
Philippe, Charles; Chea, Erick; Nishida, Yoshiki; du Burck, Frédéric; Acef, Ouali
2016-10-01
We report on frequency tripling of CW-Telecom laser diode using two cascaded PPLN ridge nonlinear crystals, both used in single-pass configuration. All optical components used for this development are fibered, leading to a very compact and easy to use optical setup. We have generated up to 290 mW optical power in the green range, from 800 mW only of infrared power around 1.54 µm. This result corresponds to an optical conversion efficiency P 3 ω / P ω > 36 %. To our knowledge, this is best value ever demonstrated up today for a CW-third harmonic generation in single-pass configuration. This frequency tripling experimental setup was tested over more than 2 years of continuous operation, without any interruption. The compactness and the reliability of our device make it very suitable as a transportable optical oscillator. In particular, it paves the way for embedded applications thanks to the high level of long-term stability of the optical alignments.
Sum frequency and second harmonic generation from the surface of a liquid microjet
Energy Technology Data Exchange (ETDEWEB)
Smolentsev, Nikolay; Chen, Yixing; Roke, Sylvie, E-mail: sylvie.roke@epfl.ch [Laboratory for Fundamental Biophotonics (LBP), Institute of Bioengineering (IBI), School of Engineering STI, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne (Switzerland); Jena, Kailash C. [Laboratory for Fundamental Biophotonics (LBP), Institute of Bioengineering (IBI), School of Engineering STI, École Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne (Switzerland); Department of Physics, Indian Institute of Technology Ropar, Rupnagar, 140001 (India); Brown, Matthew A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, CH-8093 Zurich (Switzerland)
2014-11-14
The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.
Sum frequency and second harmonic generation from the surface of a liquid microjet
Smolentsev, Nikolay; Chen, Yixing; Jena, Kailash C.; Brown, Matthew A.; Roke, Sylvie
2014-11-01
The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena.
Sum frequency and second harmonic generation from the surface of a liquid microjet
International Nuclear Information System (INIS)
Smolentsev, Nikolay; Chen, Yixing; Roke, Sylvie; Jena, Kailash C.; Brown, Matthew A.
2014-01-01
The use of a liquid microjet as a possible source of interest for Second Harmonic Generation (SHG) and Sum Frequency Generation (SFG) spectroscopy is examined. We measured non-resonant SHG scattering patterns from the air/water interface of a microjet of pure water and observe a strong enhancement of the SHG signal for certain scattering angles. These enhancements can be explained by the optical properties and the shape of the liquid microjet. SFG experiments at the surface of a liquid microjet of ethanol in air show that it is also possible to measure the coherent vibrational SFG spectrum of the ethanol/air interface in this way. Our findings are useful for future far-UV or X-ray based nonlinear optical surface experiments on liquid jets. In addition, combined X-ray photoelectron spectroscopy and SHG/SFG measurements are feasible, which will be very useful in improving our understanding of the molecular foundations of electrostatic and chemical surface properties and phenomena
International Nuclear Information System (INIS)
Zaretsky, D F; Korneev, Ph; Becker, W
2010-01-01
Extending the Lewenstein model of high-order harmonic generation (HHG) in a laser-irradiated atom, a model of HHG in a cluster is formulated. The constituent atoms of the cluster are assumed to be partly ionized. An electron freed through tunnelling may recombine either with its parent ion or with another ion in the vicinity. Harmonics due to the former process are coherent within the same cluster and may be coherent between different clusters, while harmonics due to the latter process are incoherent. Depending on the density of available ions, the incoherent mechanism may dominate the total harmonic yield, and the harmonic spectrum, which extends to higher energies, has a less distinct cutoff and an enhanced low-energy part.
Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams
International Nuclear Information System (INIS)
Cooling, M P; Humphrey, V F; Wilkens, V
2011-01-01
The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.
Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams
Cooling, M. P.; Humphrey, V. F.; Wilkens, V.
2011-02-01
The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.
Interplay between absorption, dispersion and refraction in high-order harmonic generation
International Nuclear Information System (INIS)
Dachraoui, H; Helmstedt, A; Bartz, P; Michelswirth, M; Mueller, N; Pfeiffer, W; Heinzmann, U; Auguste, T; Salieres, P
2009-01-01
We report a detailed experimental and theoretical study on high-order harmonic generation of a femtosecond Ti-sapphire laser focused at an intensity of around 10 15 W cm -2 onto a high-pressure (50-210 mbar) neon gas cell of variable length (1-3 mm). Using thorough three-dimensional simulations, we discuss the interplay between the different factors influencing the harmonic-generation efficiency, i.e. phase matching determined by the electronic and atomic dispersions, re-absorption of the harmonics by the medium and refraction of the generating laser beam. Generically, we find that, in our generation conditions, the emission yield of harmonics from the plateau region of the spectrum is absorption limited, whereas the emission from harmonics in the cut-off is strongly reduced due to both electron dispersion and ionization-induced refraction of the laser beam. A good agreement between the numerical results and the experimental data is obtained for the harmonic yield dependence on the various generation parameters (gas pressure, medium length and laser intensity).
Ultrahigh harmonics generation in a FEL with a seed laser
International Nuclear Information System (INIS)
Goloviznin, V.V.; Amersfoort, P.W. van
1995-01-01
One of the most challenging problems in modern FEL technology is to operate in the X-ray region, especially in the open-quotes water windowclose quotes. Because of the absence of optical resonators in this range of wavelengths, only a single-pass device may be suitable for this task. The Self-Amplified Spontaneous Emission (SASE) mechanism is now under active discussion as a realistic way to provide high-power coherent emission in the X-ray range. Both the undulator parameters and the electron beam parameters required for the lasing are achieveable at today's technological level. On the other hand, the SASE approach implies a very long and expensive periodic magnetic structure, typically several tens of meters long. This is mainly because of the rather long build-up time necessary to establish a coherent mode from incoherent noise. A mechanism of shortening this time would be therefore highly desirable. In the present paper we consider a scheme using two undulators and a seed-laser to produce coherent X-ray emission. The first undulator and the seed-laser provide a pre-modulation of the beam while the second undulator serves as a source of coherent spontaneous radiation at a very high harmonic of the seed-laser frequency; the whole scheme may then be considered to be an FEL-based frequency upconvertor. The total length of the periodic magnetic structure is shown to be of the order of several meters, nearly an order of magnitude shorter than in the SASE case. For the same beam quality as in the SASE scheme and with realistic seed-laser parameters, the efficiency of the beam pre-modulation at the 50-th (exclamation point) harmonic is shown to be as high as 15%. The output radiation is tunable between discrete harmonics of the seed-frequency
Discrete second order trajectory generator with nonlinear constraints
Morselli, R.; Zanasi, R.; Stramigioli, Stefano
2005-01-01
A discrete second order trajectory generator for motion control systems is presented. The considered generator is a nonlinear system which receives as input a raw reference signal and provides as output a smooth reference signal satisfying nonlinear constraints on the output derivatives as UM-(x) ≤
Harmonizing the prototypes concerning the fast reactors of 4. generation
International Nuclear Information System (INIS)
Anon.
2008-01-01
In january 2008, an agreement was signed between the Japan Atomic Energy Agency (JAEA), the American Department of Energy (DOE) and the French Atomic Energy Commission, in order to harmonize the projects of the 3 countries for the development of prototypes of sodium-cooled fast reactors. This cooperation concerns the following issues: -) the purpose of the prototypes, -) common set of safety rules, -) technical innovations for reducing construction, operating and maintenance costs, and -) information exchange about the level of power, the type of nuclear fuels and the time schedule of these prototypes. (A.C.)
High level harmonic radiation: atto-second impulse generation, application to coherent radiation
International Nuclear Information System (INIS)
Kovacev, Milutin
2003-01-01
The work presented in this thesis is dedicated to the characterization and optimization of the unique properties of high order harmonic generation in a rare gas: high brilliance, short pulse duration (femtosecond to atto-second, 1 as = 10"-"1"8 s and good mutual coherence. In the first part of this work, we concentrate on the exploitation of a scaling law using a high-energy laser loosely focused inside an extended gaseous medium. For the first time, the generated harmonic energy exceeds the 1 μJ level per laser pulse using the fifteenth harmonic order at a wavelength of 53 nm. The conversion efficiency reaches 4.10"-"5, which results from the combination of a strong dipolar response and a good phase matching within a generating volume that is extended by self guiding of the generating laser pulse. In the second part, our interest is devoted to the temporal profile of the harmonic emission and its atto-second structure. We first demonstrate the feasibility of a spatial/spectral selection of the contributions associated to the two main electronic trajectories, allowing thereby the generation of regular atto-second pulse trains. We then characterize such a pulse train by the measurement of the relative phases of consecutive harmonics. Finally, we describe an original technique for the temporal confinement of the harmonic emission by manipulating the ellipticity of the generating laser beam. In the third part, our interest is dedicated to the mutual coherence properties of the harmonic emission. We first demonstrate the precise control of the relative phase of the harmonic pulses by multiple beam interference in the XUV. This frequency-domain interferometry using four phase-locked temporally separated pulses shows an extreme sensitivity to the relative phase of the pulses on an atto-second time scale. We then measure the first order autocorrelation trace of the harmonic beam thanks to the generation of two harmonic sources mutually coherent and spatially separated
Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas
Energy Technology Data Exchange (ETDEWEB)
Kant, Niti [Department of Physics, Lovely Professional University, Phagwara, Punjab 144 402 (India); Nandan Gupta, Devki [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)
2012-01-15
In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.
Resonant third-harmonic generation of a short-pulse laser from electron-hole plasmas
International Nuclear Information System (INIS)
Kant, Niti; Nandan Gupta, Devki; Suk, Hyyong
2012-01-01
In semiconductors, free carriers are created in pairs in inter-band transitions and consist of an electron and its corresponding hole. At very high carrier densities, carrier-carrier collisions dominate over carrier-lattice collisions and carriers begin to behave collectively to form plasma. Here, we apply a short-pulse laser to generate third-harmonic radiation from a semiconductor plasma (electron-hole plasma) in the presence of a transverse wiggler magnetic-field. The process of third-harmonic generation of an intense short-pulse laser is resonantly enhanced by the magnetic wiggler, i.e., wiggler magnetic field provides the necessary momentum to third-harmonic photons. In addition, a high-power laser radiation, propagating through a semiconductor imparts an oscillatory velocity to the electrons and exerts a ponderomotive force on electrons at the third-harmonic frequency of the laser. This oscillatory velocity produces a third-harmonic longitudinal current. And due to the beating of the longitudinal electron velocity and the wiggler magnetic field, a transverse third-harmonic current is produced that drives third-harmonic electromagnetic radiation. It is finally observed that for a specific wiggler wave number value, the phase-matching conditions for the process are satisfied, leading to resonant enhancement in the energy conversion efficiency.
High-Intensity High-order Harmonics Generated from Low-Density Plasma
International Nuclear Information System (INIS)
Ozaki, T.; Bom, L. B. Elouga; Abdul-Hadi, J.; Ganeev, R. A.; Haessler, S.; Salieres, P.
2009-01-01
We study the generation of high-order harmonics from lowly ionized plasma, using the 10 TW, 10 Hz laser of the Advanced Laser Light Source (ALLS). We perform detailed studies on the enhancement of a single order of the high-order harmonic spectrum generated in plasma using the fundamental and second harmonic of the ALLS beam line. We observe quasi-monochromatic harmonics for various targets, including Mn, Cr, Sn, and In. We identify most of the ionic/neutral transitions responsible for the enhancement, which all have strong oscillator strengths. We demonstrate intensity enhancements of the 13th, 17th, 29th, and 33rd harmonics from these targets using the 800 nm pump laser and varying its chirp. We also characterized the attosecond nature of such plasma harmonics, measuring attosecond pulse trains with 360 as duration for chromium plasma, using the technique of ''Reconstruction of Attosecond Beating by Interference of Two-photon Transitions''(RABBIT). These results show that plasma harmonics are intense source of ultrashort coherent soft x-rays.
On-the-Fly Control of High-Harmonic Generation Using a Structured Pump Beam
Hareli, Liran; Lobachinsky, Lilya; Shoulga, Georgiy; Eliezer, Yaniv; Michaeli, Linor; Bahabad, Alon
2018-05-01
We demonstrate experimentally a relatively simple yet powerful all-optical enhancement and control technique for high harmonic generation. This is achieved by using as a pump beam two different spatial optical modes interfering together to realize tunable periodic quasi-phase matching of the interaction. With this technique, we demonstrate on-the-fly quasi-phase matching of harmonic orders 29-41 at ambient gas pressure levels of 50 and 100 Torr, where an up to 100-fold enhancement of the emission is observed. The technique is scalable to different harmonic orders and ambient pressure conditions.
Harmonics and energy management
International Nuclear Information System (INIS)
Andresen, M.
1993-01-01
To summarize what this paper has presented: Voltage and current non-sinusoidal wave shapes exist in our power system. These harmonics result from the prolific use of non-linear loads. The use of these types of loads is increasing dramatically, partly due to the push to implement energy management techniques involving harmonic generating equipment. Harmonic analysis can identify specific harmonics, their frequency, magnitude, and phase shift referenced to the fundamental. Harmonic distortion forces the use of true RMS multimeters for measurement accuracy. High levels of neutral current and N-G voltages are now possible. Transformers may overheat and fail even though they are below rated capacity. Low power factors due to harmonics cannot be corrected by the installation of capacitors, and knowledge of the fundamental VARs or the displacement power factor is needed to use capacitors alone for power factor correction. The harmonic related problems presented are by no means an exhaustive list. Many other concerns arise when harmonics are involved in the power system. The critical issue behind these problems is that many of the devices being recommended from an energy management point of view are contributing to the harmonic levels, and thus to the potential for harmonic problems. We can no longer live in the sinusoidal mentality if we are to be effective in saving energy and reducing costs
Bogdan, V. M.; Bond, V. B.
1980-01-01
The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.
Nonlinear effects in the radiation force generated by amplitude-modulated focused beams
González, Nuria; Jiménez, Noé; Redondo, Javier; Roig, Bernardino; Picó, Rubén; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.; Camarena, Francisco
2012-10-01
Harmonic Motion Imaging (HMI) uses an amplitude-modulated (AM) beam to induce an oscillatory radiation force before, during and after ablation. In this paper, the findings from a numerical analysis of the effects related with the nonlinear propagation of AM focused ultrasonic beams in water on the radiation force and the location of its maxima will be presented. The numerical modeling is performed using the KZK nonlinear parabolic equation. The radiation force is generated by a focused transducer with a gain of 18, a carrier frequency of 1 MHz and a modulation frequency of 25 kHz. The modulated excitation generates a spatially-invariant force proportional to the intensity. Regarding the nonlinear wave propagation, the force is no longer proportional to the intensity, reaching a factor of eight between the nonlinear and linear estimations. Also, a 9 mm shift in the on-axis force peak occurs when the initial pressure increased from 1 to 300 kPa. This spatial shift, due to the nonlinear effects, becomes dynamic in AM focused beams, as the different signal periods have different amplitudes. This study shows that both the value and the spatial position of the force peak are affected by the nonlinear propagation of the ultrasonic waves.
Generation of µW level plateau harmonics at high repetition rate.
Hädrich, S; Krebs, M; Rothhardt, J; Carstens, H; Demmler, S; Limpert, J; Tünnermann, A
2011-09-26
The process of high harmonic generation allows for coherent transfer of infrared laser light to the extreme ultraviolet spectral range opening a variety of applications. The low conversion efficiency of this process calls for optimization or higher repetition rate intense ultrashort pulse lasers. Here we present state-of-the-art fiber laser systems for the generation of high harmonics up to 1 MHz repetition rate. We perform measurements of the average power with a calibrated spectrometer and achieved µW harmonics between 45 nm and 61 nm (H23-H17) at a repetition rate of 50 kHz. Additionally, we show the potential for few-cycle pulses at high average power and repetition rate that may enable water-window harmonics at unprecedented repetition rate. © 2011 Optical Society of America
DEFF Research Database (Denmark)
Chen, Zhe; Pedersen, John Kim; Blaabjerg, Frede
2004-01-01
A hybrid compensation system consisting of an active filter and a group of distributed passive filters has been studied previously. The passive filters are used for each distorting load or Dispersed Generation (DG) unit to remove major harmonics and provide reactive power compensation. The active...... filter is connected in parallel with the distributed passive filters and loads/DGs to correct the system unbalance and remove the remaining harmonic components. The effectiveness of the presented compensation system has also been demonstrated. This paper studies the performance of the hybrid compensation...... demonstrated that the harmonic resonance can be damped effectively. The hybrid filter system is an effective compensation system for dispersed generation systems. In the compensation system, the passive filters are mainly responsible for main harmonic and reactive power compensation of each individual load/ DG...
Generation of the second harmonics of Bessel light beams in a KTP crystal
International Nuclear Information System (INIS)
Belyi, V N; Kazak, N S; Kondratyuk, N V; Khilo, N A; Shagov, A A
1998-01-01
Theoretical and experimental investigations were made of the characteristic features of doubling the frequency of Bessel light beams by the oe - e interaction in a KTP crystal. All possible and scalar interactions of plane-wave components of Bessel beams were observed experimentally. The spatial structure of the second harmonic in the far zone consisted of a central spot and a concentric ring. The diffraction divergence of the central beam was weak ( ∼ 1.7 mrad). The energy conversion efficiency was ∼ 21% for a Bessel beam, which was three times higher than the efficiency of conversion of the initial laser beam. A theoretical model was based on representation of the field of the second harmonic as a superposition of Bessel beams, which provided a correct description of the observed spatial and energy characteristics of the second harmonic. (nonlinear optical phenomena and devices)
Optical second harmonic generation from Pt nanowires with boomerang-like cross-sectional shapes
Ogata, Yoichi; Anh Tuan, Nguyen; Miyauchi, Yoshihiro; Mizutani, Goro
2011-08-01
We have fabricated Pt nanowires with boomerang-like cross-sectional shapes on the MgO(110) faceted template and observed their optical second-harmonic generation (SHG) response. In the TEM images the Pt nanowires on the MgO substrate had macroscopic C2v symmetry, however, their structure had microscopic imperfections. In the SHG response, as a function of the sample rotation angle around the substrate normal, we found contributions from the nonlinear susceptibility elements χ113, χ223, χ311, χ322, and χ333 originating from the broken symmetry in the 3; [110] direction of the MgO substrate. The indices 1 and 2 denote the [001] and [11¯0] directions, respectively. Under C2v symmetry no SHG is expected in the s-in/s-out polarization configuration, however, a finite SHG was observed in this polarization configuration. We suggest that the SHG in the forbidden configuration might originate from the imperfections in the nanowire structure.
Young, Pamela A.; Nazir, Muhammad; Szulczewski, Michael J.; Keely, Patricia J.; Eliceiri, Kevin W.
2012-03-01
Tumor-Associated Collagen Signatures (TACS) have been identified that manifest in specific ways during breast tumor progression and that correspond to patient outcome. There are also compelling metabolic changes associated with carcinoma invasion and progression. We have characterized the difference in the autofluorescent properties of metabolic co-factors, NADH and FAD, between normal and carcinoma breast cell lines. Also, we have shown in vitro that increased collagen density alters metabolic genes which are associated with glycolysis and leads to a more invasive phenotype. Establishing the relationship between collagen density, cellular metabolism, and metastasis in physiologically relevant cancer models is crucial for developing cancer therapies. To study cellular metabolism with respect to collagen density in vivo, we use multiphoton fluorescence excitation microscopy (MPM) in conjunction with a rodent mammary imaging window implanted in defined mouse cancer models. These models are ideal for the study of collagen changes in vivo, allowing determination of corresponding metabolic changes in breast cancer invasion and progression. To measure cellular metabolism, we collect fluorescence lifetime (FLIM) signatures of NADH and FAD, which are known to change based on the microenvironment of the cells. Additionally, MPM systems are capable of collecting second harmonic generation (SHG) signals which are a nonlinear optical property of collagen. Therefore, MPM, SHG, and FLIM are powerful tools with great potential for characterizing key features of breast carcinoma in vivo. Below we present the current efforts of our collaborative group to develop intravital approaches based on these imaging techniques to look at defined mouse mammary models.
Kumar, Rajesh; Grønhaug, Kirsten M.; Romijn, Elisabeth I.; Drogset, Jon O.; Lilledahl, Magnus B.
2014-05-01
Osteoarthritis is one of the most prevalent joint diseases in the world. Although the cause of osteoarthritis is not exactly clear, the disease results in a degradation of the quality of the articular cartilage including collagen and other extracellular matrix components. We have investigated alterations in the structure of collagen fibers in the cartilage tissue of the human knee using mulitphoton microscopy. Due to inherent high nonlinear susceptibility, ordered collagen fibers present in the cartilage tissue matrix produces strong second harmonic generation (SHG) signals. Significant morphological differences are found in different Osteoarthritic grades of cartilage by SHG microscopy. Based on the polarization analysis of the SHG signal, we find that a few locations of hyaline cartilage (mainly type II collagen) is being replaced by fibrocartilage (mainly type I cartilage), in agreement with earlier literature. To locate the different types and quantify the alteration in the structure of collagen fiber, we employ polarization-SHG microscopic analysis, also referred to as _-tensor imaging. The image analysis of p-SHG image obtained by excitation polarization measurements would represent different tissue constituents with different numerical values at pixel level resolution.
Licari, Giuseppe; Beckwith, Joseph S; Soleimanpour, Saeideh; Matile, Stefan; Vauthey, Eric
2018-04-04
A planarizable push-pull molecular probe with mechanosensitive properties was investigated at several biomimetic interfaces, consisting of different phospholipid monolayers located between dodecane and an aqueous buffer solution, using the interface-specific surface-second-harmonic-generation (SSHG) technique. Whereas the SSHG spectra recorded at liquid-disordered interfaces were similar to the absorption spectra in bulk solutions, those measured at liquid-ordered phases exhibited a remarkable shift towards lower energies to an extent depending on the surface pressure of the phospholipid monolayer. On the basis of quantum-chemical calculations, this effect was accounted for by the planarization of the mechanosensitive probe. Polarization-resolved SSHG measurements revealed that the average orientation of the probe at the interface is an even more sensitive reporter of lateral pressure and order than the spectral shape. Additionally, time-resolved SSHG measurements pointed to slower dynamics upon intercalation inside the phospholipid monolayer, most likely due to the more constrained environment. This study demonstrates that the concept of mechanosensitive optical probes can be further exploited when combined with a surface-selective nonlinear optical technique.
Optical third harmonic generation in the magnetic semiconductor EuSe
Lafrentz, M.; Brunne, D.; Kaminski, B.; Pavlov, V. V.; Pisarev, R. V.; Henriques, A. B.; Yakovlev, D. R.; Springholz, G.; Bauer, G.; Bayer, M.
2012-01-01
Third harmonic generation (THG) has been studied in europium selenide EuSe in the vicinity of the band gap at 2.1-2.6 eV and at higher energies up to 3.7 eV. EuSe is a magnetic semiconductor crystalizing in centrosymmetric structure of rock-salt type with the point group m3m. For this symmetry the crystallographic and magnetic-field-induced THG nonlinearities are allowed in the electric-dipole approximation. Using temperature, magnetic field, and rotational anisotropy measurements, the crystallographic and magnetic-field-induced contributions to THG were unambiguously separated. Strong resonant magnetic-field-induced THG signals were measured at energies in the range of 2.1-2.6 eV and 3.1-3.6 eV for which we assign to transitions from 4f7 to 4f65d1 bands, namely involving 5d(t2g) and 5d(eg) states.
Multidimensional high harmonic spectroscopy
International Nuclear Information System (INIS)
Bruner, Barry D; Soifer, Hadas; Shafir, Dror; Dudovich, Nirit; Serbinenko, Valeria; Smirnova, Olga
2015-01-01
High harmonic generation (HHG) has opened up a new frontier in ultrafast science where attosecond time resolution and Angstrom spatial resolution are accessible in a single measurement. However, reconstructing the dynamics under study is limited by the multiple degrees of freedom involved in strong field interactions. In this paper we describe a new class of measurement schemes for resolving attosecond dynamics, integrating perturbative nonlinear optics with strong-field physics. These approaches serve as a basis for multidimensional high harmonic spectroscopy. Specifically, we show that multidimensional high harmonic spectroscopy can measure tunnel ionization dynamics with high precision, and resolves the interference between multiple ionization channels. In addition, we show how multidimensional HHG can function as a type of lock-in amplifier measurement. Similar to multi-dimensional approaches in nonlinear optical spectroscopy that have resolved correlated femtosecond dynamics, multi-dimensional high harmonic spectroscopy reveals the underlying complex dynamics behind attosecond scale phenomena. (paper)
International Nuclear Information System (INIS)
Chae, Jongchul; Litvinenko, Yuri E.
2017-01-01
The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical results suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na i D 2 and H α lines.
Energy Technology Data Exchange (ETDEWEB)
Chae, Jongchul [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 08826 (Korea, Republic of); Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton 3240 (New Zealand)
2017-08-01
The vertical propagation of nonlinear acoustic waves in an isothermal atmosphere is considered. A new analytical solution that describes a finite-amplitude wave of an arbitrary wavelength is obtained. Although the short- and long-wavelength limits were previously considered separately, the new solution describes both limiting cases within a common framework and provides a straightforward way of interpolating between the two limits. Physical features of the nonlinear waves in the chromosphere are described, including the dispersive nature of low-frequency waves, the steepening of the wave profile, and the influence of the gravitational field on wavefront breaking and shock formation. The analytical results suggest that observations of three-minute oscillations in the solar chromosphere may reveal the basic nonlinear effect of oscillations with combination frequencies, superposed on the normal oscillations of the system. Explicit expressions for a second-harmonic signal and the ratio of its amplitude to the fundamental harmonic amplitude are derived. Observational evidence of the second harmonic, obtained with the Fast Imaging Solar Spectrograph, installed at the 1.6 m New Solar Telescope of the Big Bear Observatory, is presented. The presented data are based on the time variations of velocity determined from the Na i D{sub 2} and H α lines.
Ellipticity and the offset angle of high harmonics generated by homonuclear diatomic molecules
International Nuclear Information System (INIS)
Odzak, S; Milosevic, D B
2011-01-01
In our recent paper (2010 Phys. Rev. A 82 023412) we introduced a theory of high-order harmonic generation by diatomic molecules exposed to an elliptically polarized laser field and have shown that the nth harmonic emission rate has contributions of the components of the T-matrix element in the direction of the laser-field polarization and in the direction perpendicular to it. Using both components of the T-matrix element we now develop a theoretical approach for calculating ellipticity and the offset angle of high harmonics. We show that the emitted harmonics generated by aligned molecules are elliptically polarized even if the applied field is linearly polarized. Using examples of N 2 , O 2 and Ar 2 molecules we show the existence of extrema and sudden changes of the harmonic ellipticity and the offset angle for particular molecular alignment and explain them by the destructive two-centre interference. Taking into account that the aligned molecules are an anisotropic medium for high harmonic generation, we introduce elliptic dichroism as a measure of this anisotropy, for both components of the T-matrix element. We propose that the measurement of the elliptic dichroism may reveal further information about the molecular structure.
International Nuclear Information System (INIS)
Isakov, Vladimir A; Kanavin, Andrey P; Uryupin, Sergey A
2005-01-01
The flux density is determined for radiation emitted by a plasma at the tripled frequency of an ultrashort laser pulse, which produces weak high-frequency modulations of the electron temperature in the plasma skin layer. It is shown that heat removal from the skin layer can reduce high-frequency temperature modulations and decrease the nonlinear plasma response. The optimum conditions for the third harmonic generation are found. (interaction of laser radiation with matter. laser plasma)
Organic materials for second harmonic generation. Final report
International Nuclear Information System (INIS)
Twieg, R.J.
1985-01-01
Materials were chosen by screening the Cambridge Crystallographic Index for new noncentrosymmetric crystalline compounds, by screening commercially available materials or by synthesis of unique new substances. Measurements were then made on the powder form of these materials. Langmuir-Blodgett films were deposited and studied. In addition to the above studies, a computer program was developed to calculate (hyper) polarizabilities of organic molecules and thus aid in the selection of materials for testing. The nonlinear molecules have been divided into three classes according to absorption cutoff: 400 to 500 nm, 300 to 400 nm, and 200 to 300 nm. 108 refs., 7 tabs
Organic materials for second harmonic generation. Final report
Energy Technology Data Exchange (ETDEWEB)
Twieg, R.J. (comp.)
1985-03-31
Materials were chosen by screening the Cambridge Crystallographic Index for new noncentrosymmetric crystalline compounds, by screening commercially available materials or by synthesis of unique new substances. Measurements were then made on the powder form of these materials. Langmuir-Blodgett films were deposited and studied. In addition to the above studies, a computer program was developed to calculate (hyper) polarizabilities of organic molecules and thus aid in the selection of materials for testing. The nonlinear molecules have been divided into three classes according to absorption cutoff: 400 to 500 nm, 300 to 400 nm, and 200 to 300 nm. 108 refs., 7 tabs. (WRF)
Vector model for polarized second-harmonic generation microscopy under high numerical aperture
International Nuclear Information System (INIS)
Wang, Xiang-Hui; Chang, Sheng-Jiang; Lin, Lie; Wang, Lin-Rui; Huo, Bing-Zhong; Hao, Shu-Jian
2010-01-01
Based on the vector diffraction theory and the generalized Jones matrix formalism, a vector model for polarized second-harmonic generation (SHG) microscopy is developed, which includes the roles of the axial component P z , the weight factor and the cross-effect between the lateral components. The numerical results show that as the relative magnitude of P z increases, the polarization response of the second-harmonic signal will vary from linear polarization to elliptical polarization and the polarization orientation of the second-harmonic signal is different from that under the paraxial approximation. In addition, it is interesting that the polarization response of the detected second-harmonic signal can change with the value of the collimator lens NA. Therefore, it is more advantageous to adopt the vector model to investigate the property of polarized SHG microscopy for a variety of cases
High-Harmonic Generation in Solids with and without Topological Edge States
Bauer, Dieter; Hansen, Kenneth K.
2018-04-01
High-harmonic generation in the two topological phases of a finite, one-dimensional, periodic structure is investigated using a self-consistent time-dependent density functional theory approach. For harmonic photon energies smaller than the band gap, the harmonic yield is found to differ by up to 14 orders of magnitude for the two topological phases. This giant topological effect is explained by the degree of destructive interference in the harmonic emission of all valence-band (and edge-state) electrons, which strongly depends on whether or not topological edge states are present. The combination of strong-field laser physics with topological condensed matter opens up new possibilities to electronically control strong-field-based light or particle sources or—conversely—to steer by all optical means topological electronics.
Optimization of multi-color laser waveform for high-order harmonic generation
Jin, Cheng; Lin, C. D.
2016-09-01
With the development of laser technologies, multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms. A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes. We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm. By choosing different fitness criteria, we demonstrate that: (i) harmonic yields can be enhanced by 10 to 100 times, (ii) harmonic cutoff energy can be substantially extended, (iii) specific harmonic orders can be selectively enhanced, and (iv) single attosecond pulses can be efficiently generated. The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed. The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years. Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 30916011207), Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (Grant No. DE-FG02-86ER13491), and Air Force Office of Scientific Research, USA (Grant No. FA9550-14-1-0255).
High-order harmonic generation from a two-dimensional band structure
Jin, Jian-Zhao; Xiao, Xiang-Ru; Liang, Hao; Wang, Mu-Xue; Chen, Si-Ge; Gong, Qihuang; Peng, Liang-You
2018-04-01
In the past few years, harmonic generation in solids has attracted tremendous attention. Recently, some experiments of two-dimensional (2D) monolayer or few-layer materials have been carried out. These studies demonstrated that harmonic generation in the 2D case shows a strong dependence on the laser's orientation and ellipticity, which calls for a quantitative theoretical interpretation. In this work, we carry out a systematic study on the harmonic generation from a 2D band structure based on a numerical solution to the time-dependent Schrödinger equation. By comparing with the 1D case, we find that the generation dynamics can have a significant difference due to the existence of many crossing points in the 2D band structure. In particular, the higher conduction bands can be excited step by step via these crossing points and the total contribution of the harmonic is given by the mixing of transitions between different clusters of conduction bands to the valence band. We also present the orientation dependence of the harmonic yield on the laser polarization direction.
Wen, Lianggong
Many diseases, e.g. ovarian cancer, breast cancer and pulmonary fibrosis, are commonly associated with drastic alterations in surrounding connective tissue, and changes in the extracellular matrix (ECM) are associated with the vast majority of cellular processes in disease progression and carcinogenesis: cell differentiation, proliferation, biosynthetic ability, polarity, and motility. We use second harmonic generation (SHG) microscopy for imaging the ECM because it is a non-invasive, non-linear laser scanning technique with high sensitivity and specificity for visualizing fibrillar collagen. In this thesis, we are interested in developing imaging techniques to understand how the ECM, especially the collagen architecture, is remodeled in diseases. To quantitate remodeling, we implement a 3D texture analysis to delineate the collagen fibrillar morphology observed in SHG microscopy images of human normal and high grade malignant ovarian tissues. In the learning stage, a dictionary of "textons"---frequently occurring texture features that are identified by measuring the image response to a filter bank of various shapes, sizes, and orientations---is created. By calculating a representative model based on the texton distribution for each tissue type using a training set of respective mages, we then perform classification between normal and high grade malignant ovarian tissues classification based on the area under receiver operating characteristic curves (true positives versus false positives). The local analysis algorithm is a more general method to probe rapidly changing fibrillar morphologies than global analyses such as FFT. It is also more versatile than other texture approaches as the filter bank can be highly tailored to specific applications (e.g., different disease states) by creating customized libraries based on common image features. Further, we describe the development of a multi-view 3D SHG imaging platform. Unlike fluorescence microscopy, SHG excites
Harmonic Detection at Initialization With Kalman Filter
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar; Imran, Raja Muhammad; Shoro, Ghulam Mustafa
2014-01-01
Most power electronic equipment these days generate harmonic disturbances, these devices hold nonlinear voltage/current characteristic. The harmonics generated can potentially be harmful to the consumer supply. Typically, filters are integrated at the power source or utility location to filter out...... the affect of harmonics on the supply. For the detection of these harmonics various techniques are available and one of that technique is the Kalman filter. In this paper we investigate that what are the consequences when harmonic detection system based on Kalman Filtering is initialized...
Theory of third-harmonic generation using Bessel beams, and self-phase-matching
International Nuclear Information System (INIS)
Tewari, S.P.; Huang, H.; Boyd, R.W.
1996-01-01
Taking Bessel beams (J 0 beam) as a representation of a conical beam, and a slowly varying envelope approximation (SVEA) we obtain the results for the theory of third-harmonic generation from an atomic medium. We demonstrate how the phenomenon of self-phase-matching is contained in the transverse-phase-matching integral of the theory. A method to calculate the transverse-phase-matching integral containing four Bessel functions is described which avoids the computer calculations of the Bessel functions. In order to consolidate the SVEA result an alternate method is used to obtain the exact result for the third-harmonic generation. The conditions are identified in which the exact result goes over to the result of the SVEA. The theory for multiple Bessel beams is also discussed which has been shown to be the source of the wide width of the efficiency curve of the third-harmonic generation observed in experiments. copyright 1996 The American Physical Society
QED effects induced harmonics generation in extreme intense laser foil interaction
Yu, J. Y.; Yuan, T.; Liu, W. Y.; Chen, M.; Luo, W.; Weng, S. M.; Sheng, Z. M.
2018-04-01
A new mechanism of harmonics generation (HG) induced by quantum electrodynamics (QED) effects in extreme intense laser foil interaction is found and investigated by particle-in-cell (PIC) simulations. When two laser pulses with identical intensities of 1.6× {10}24 {{W}} {{{cm}}}-2 are counter-incident on a thin foil target, harmonics emission is observed in their reflected electromagnetic waves. Such harmonics radiation is excited due to transversely oscillating electric currents coming from the vibration of QED effect generated {e}-{e}+ pairs. The effects of laser intensity and polarization were studied. By distinguishing the cascade depth of generated photons and pairs, the influence of QED cascades on HG was analyzed. Although the current HG is not an efficient way for radiation source applications, it may provide a unique way to detect the QED processes in the near future ultra-relativistic laser solid interactions.
International Nuclear Information System (INIS)
Yasumoto, Kiyotoshi; Abe, Hiroshi
1983-01-01
The second harmonic generated by a relativistic annular electron beam propagating through a cylindrical waveguide immersed in a strong axial magnetic field is investigated on the basis of the relativistic hydrodynamic equations for cold electrons. The efficiency of second harmonic generation is calculated separately for the pump by the TM electromagnetic wave and for the pump by the slow space-charge wave, by assuming that the electron beam is thin and of low density and the pump wave is azimuthally symmetric. It is shown that, in the case of slow space-charge wave pump, an appreciably large efficiency of second harmonic generation is achieved in the high frequency region, whereas the efficiency by the TM electromagnetic wave pump is relatively small over the whole frequency range.(author)
Enhancement of high-order harmonic generation in the presence of noise
Energy Technology Data Exchange (ETDEWEB)
Yavuz, I; Altun, Z [Department of Physics, Marmara University, 34722 Ziverbey, Istanbul (Turkey); Topcu, T, E-mail: ilhan.yavuz@marmara.edu.tr [Department of Physics, Auburn University, AL 36849-5311 (United States)
2011-07-14
We report on our simulations of the generation of high-order harmonics from atoms driven by an intense femtosecond laser field in the presence of noise. We numerically solve the non-perturbative stochastic time-dependent Schroedinger equation and observe how varying noise levels affect the frequency components of the high harmonic spectrum. Our calculations show that when an optimum amount of noise is present in the driving laser field, roughly a factor of 45 net enhancement can be achieved in high-order harmonic yield, especially, around the cut-off region. We observe that, for a relatively weak noise, the enhancement mechanism is sensitive to the carrier-envelope phase. We also investigate the possibility of generating ultra-short intense attosecond pulses by combining the laser field and noise and observe that a roughly four orders of magnitude enhanced isolated attosecond burst can be generated.
Enhancement of high-order harmonic generation in the presence of noise
International Nuclear Information System (INIS)
Yavuz, I; Altun, Z; Topcu, T
2011-01-01
We report on our simulations of the generation of high-order harmonics from atoms driven by an intense femtosecond laser field in the presence of noise. We numerically solve the non-perturbative stochastic time-dependent Schroedinger equation and observe how varying noise levels affect the frequency components of the high harmonic spectrum. Our calculations show that when an optimum amount of noise is present in the driving laser field, roughly a factor of 45 net enhancement can be achieved in high-order harmonic yield, especially, around the cut-off region. We observe that, for a relatively weak noise, the enhancement mechanism is sensitive to the carrier-envelope phase. We also investigate the possibility of generating ultra-short intense attosecond pulses by combining the laser field and noise and observe that a roughly four orders of magnitude enhanced isolated attosecond burst can be generated.
Fabrication of Multi-Harmonic Buncher for Pulsed Proton Beam Generation
Energy Technology Data Exchange (ETDEWEB)
Kim, H. S.; Kwon, H. J.; Cho, Y. S. [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)
2015-05-15
Fast neutrons with a broad spectrum can be generated by irradiating the proton beams on target materials. To measure the neutron energy by time of flight (TOF) method, the short pulse width of the proton beam is preferred because the neutron energy uncertainty is proportional to the pulse width. In addition, the pulse repetition rate should be low enough to extend the lower limit of the available neutron energy. Pulsed proton beam generation system is designed based on an electrostatic deflector and slit system as shown in Fig. 1. In a simple deflector with slit system, most of the proton beam is blocked by slit, especially when the beam pulse width is short. The ideal field pattern inside the buncher cavity is saw-tooth wave. To make the field pattern similar to the saw-tooth waveform, we adopted a multi-harmonic buncher (MHB). The design for the multi-harmonic buncher including 3D electromagnetic calculation has been performed. Based on the design, a multi-harmonic buncher cavity was fabricated. It consists of two resonators, two drift tubes and a vacuum chamber. The resonator is a quarter-wave coaxial resonator type. The drift tube is connected to the resonator by using a coaxial vacuum feedthrough. Design summary and detailed fabrication method of the multi-harmonic buncher is presented in this paper. A multi-harmonic buncher for a proton beam chopper system to generate a short pulse neutron beam was designed, fabricated and assembled.
High-order-harmonic generation from H2+ molecular ions near plasmon-enhanced laser fields
Yavuz, I.; Tikman, Y.; Altun, Z.
2015-08-01
Simulations of plasmon-enhanced high-order-harmonic generation are performed for a H2+ molecular cation near the metallic nanostructures. We employ the numerical solution of the time-dependent Schrödinger equation in reduced coordinates. We assume that the main axis of H2+ is aligned perfectly with the polarization direction of the plasmon-enhanced field. We perform systematic calculations on plasmon-enhanced harmonic generation based on an infinite-mass approximation, i.e., pausing nuclear vibrations. Our simulations show that molecular high-order-harmonic generation from plasmon-enhanced laser fields is possible. We observe the dispersion of a plateau of harmonics when the laser field is plasmon enhanced. We find that the maximum kinetic energy of the returning electron follows 4 Up . We also find that when nuclear vibrations are enabled, the efficiency of the harmonics is greatly enhanced relative to that of static nuclei. However, the maximum kinetic energy 4 Up is largely maintained.
A Case Study of Harmonic Impact on a Motor-Generator Set System
Energy Technology Data Exchange (ETDEWEB)
Joung, Pil-Bum [KHNP CRI, Daejeon (Korea, Republic of)
2016-10-15
Motor-Generator Sets are usually used to supply power to a Control Element Drive Mechanism Control System (CEDMCS) at nuclear power plants with pressurized water reactors. Two Motor-Generator Sets, which have 100% capacity, are operated in parallel to improve the reliability of the power supply to the CEDMCS. Fig. 1 presents a diagram of a Motor- Generator Set system. The system of a Motor-Generator Set is composed of electrical equipment, such as a motor, a fly-wheel, and a generator, an exciter and protection-control device, such as a protective relay, synchro check relay, and an auto voltage regulator. In general, the harmonic impact of electrical equipment increases the deterioration of the equipment, the motor, and the generator’s lifetime, which can also be caused by vibration and over-heating and maloperation of the protection-control device. In this paper, we came to understand the harmonic impact on the Motor-Generator Set system through a study of delaying parallel operation by non-operation of the synchro check relay and the fault of under voltage protective relay. Thus, KHNP has established and applied the measures of harmonic reduction by the CEDMCS, such as limiting the voltage harmonic distortion to less than 10%, which is described in IEEE Std 519.
Quasimonochromatic x-rays generated from nonlinear Thomson backscattering
International Nuclear Information System (INIS)
Lan Pengfei; Lu Peixiang; Cao Wei; Wang Xinlin
2007-01-01
The nonlinear Thomson backscattering in a circularly polarized Gaussian laser pulse is investigated and spectral characteristics of the emission are discussed. It is indicated that the frequency of the emitted light is up-shifted by the nonlinear doppler effect. By using a properly focused laser beam or putting the electron before the focus, the variety of the nonlinear Doppler shift during the interaction can be minimized and quasimonochromatic x-rays are generated. Taking into account the emission power, the optimum situations for generating quasimonochromatic x-rays are explored
Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure
Directory of Open Access Journals (Sweden)
E. Hemsing
2017-06-01
Full Text Available We analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by the microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.
New results of the high-gain harmonic generation free-electron laser experiment
International Nuclear Information System (INIS)
Doyuran, A.; Babzien, M.; Shaftan, T.; Biedron, S.G.; Yu, L.H.; Ben-Zvi, I.; DiMauro, L.F.; Graves, W.; Johnson, E.; Krinsky, S.; Malone, R.; Pogorelsky, I.; Skaritka, J.; Rakowsky, G.; Wang, X.J.; Woodle, M.; Yakimenko, V.; Jagger, J.; Sajaev, V.; Vasserman, I.
2001-01-01
We report on the experimental investigation of high-gain harmonic generation carried out at the Accelerator Test Facility at Brookhaven National Laboratory. A seed CO 2 laser at a wavelength of 10.6 μm was used to generate FEL output at a 5.3-μm wavelength. The duration of the output pulse was measured using a second-harmonic intensity autocorrelator, and the coherence length was measured using an interferometer. We also measured the energy distribution of the electron beam after it exited the second undulator, observing behavior consistent with that is expected at saturation. The intensity of the harmonic components of the output at 2.65 and 1.77 μm was determined relative to that of the 5.3-μm fundamental. Finally, using a corrector magnet upstream of the radiator, steering effects on the trajectories of the electron and light beams were studied
Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation
International Nuclear Information System (INIS)
Bovino, F. A.; Larciprete, M. C.; Belardini, A.; Sibilia, C.
2009-01-01
We investigated noncollinear second harmonic generation form zinc oxide films, grown on glass substrates by dual ion beam sputtering technique. At a fixed incidence angle, the generated signal is investigated by scanning the polarization state of both fundamental beams. We show that the map of the generated signal as a function of polarization states of both pump beams, together with the analytical curves, allows to retrieve the orientation of the optical axis and eventually, its angular tilt, with respect to the surface normal.
Nonlinear coherent loss for generating non-classical states
International Nuclear Information System (INIS)
Mikhalychev, A; Mogilevtsev, D; Kilin, S
2011-01-01
Here, we discuss a generation of non-classical states of bosonic mode with the help of artificially designed loss, namely the nonlinear coherent loss. We show how to generate superpositions of Fock states, and how it is possible to 'comb' the initial states leaving only states with certain properties in the resulting superposition (for example, a generation of a superposition of Fock states with odd number of particles). We discuss purity of generated states and estimate maximal achievable generation fidelity.
Adan, N. F.; Soomro, D. M.
2017-01-01
Power factor correction capacitor (PFCC) is commonly installed in industrial applications for power factor correction (PFC). With the expanding use of non-linear equipment such as ASDs, power converters, etc., power factor (PF) improvement has become difficult due to the presence of harmonics. The resulting capacitive impedance of the PFCC may form a resonant circuit with the source inductive reactance at a certain frequency, which is likely to coincide with one of the harmonic frequency of the load. This condition will trigger large oscillatory currents and voltages that may stress the insulation and cause subsequent damage to the PFCC and equipment connected to the power system (PS). Besides, high PF cannot be achieved due to power distortion. This paper presents the design of a three-phase hybrid filter consisting of a single tuned passive filter (STPF) and shunt active power filter (SAPF) to mitigate harmonics and resonance in the PS through simulation using PSCAD/EMTDC software. SAPF was developed using p-q theory. The hybrid filter has resulted in significant improvement on both total harmonic distortion for voltage (THDV) and total demand distortion for current (TDDI) with maximum values of 2.93% and 9.84% respectively which were within the recommended IEEE 519-2014 standard limits. Regarding PF improvement, the combined filters have achieved PF close to desired PF at 0.95 for firing angle, α values up to 40°.
DEFF Research Database (Denmark)
Olsson, Per-Ivar; Fiandaca, Gianluca; Larsen, Jakob Juul
, a logarithmic gate width distribution for optimizing IP data quality and an estimate of gating uncertainty. Additional steps include modelling and cancelling of non-linear background drift and harmonic noise and a technique for efficiently identifying and removing spikes. The cancelling of non-linear background...... drift is based on a Cole-Cole model which effectively handles current induced electrode polarization drift. The model-based cancelling of harmonic noise reconstructs the harmonic noise as a sum of harmonic signals with a common fundamental frequency. After segmentation of the signal and determining....... The processing steps is successfully applied on full field profile data sets. With the model-based cancelling of harmonic noise, the first usable IP gate is moved one decade closer to time zero. Furthermore, with a Cole-Cole background drift model the shape of the response at late times is accurately retrieved...
Ganguly, Jayanta; Saha, Surajit; Bera, Aindrila; Ghosh, Manas
2016-10-01
We examine the profiles of optical rectification (OR), second harmonic generation (SHG) and third harmonic generation (THG) of impurity doped QDs under the combined influence of hydrostatic pressure (HP) and temperature (T) in presence and absence of Gaussian white noise. Noise has been incorporated to the system additively and multiplicatively. In order to study the above nonlinear optical (NLO) properties the doped dot has been subjected to a polarized monochromatic electromagnetic field. Effect of application of noise is nicely reflected through alteration of peak shift (blue/red) and variation of peak height (increase/decrease) of above NLO properties as temperature and pressure are varied. All such changes again sensitively depends on mode of application (additive/multiplicative) of noise. The remarkable influence of interplay between noise strength and its mode of application on the said profiles has also been addressed. The findings illuminate fascinating role played by noise in tuning above NLO properties of doped QD system under the active presence of both hydrostatic pressure and temperature.
Microbubble generator excited by fluidic oscillator's third harmonic frequency
Czech Academy of Sciences Publication Activity Database
Tesař, Václav
2014-01-01
Roč. 92, č. 9 (2014), s. 1603-1615 ISSN 0263-8762 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : fluidic oscillator * microbubble generation * fluidic feedback loop Subject RIV: BK - Fluid Dynamics Impact factor: 2.348, year: 2014 http://dx.doi.org/10.1016/j.cherd.2013.12.004
Directory of Open Access Journals (Sweden)
H. R. Liu
2015-01-01
Full Text Available Considering a sort of elastic mass with asymmetric hysteresis characteristic which widespread existing in engineering field, a piecewise-nonlinear dynamical equation, which contains asymmetric hysteretic loop, is established. By using the method of Incremental Harmonic Balance (IHB, the analytic linearized algebraic equation of the system is obtained. On the basis of this algebraic equation, the coefficients of the algebraic expression are figured out by the incremental procedure and the iterative process of the regulated variable. Through the emulation, the amplitude frequency response curve and the relation between the value of the harmonic component and the external excitation are researched; the bistable regions of the bifurcation diagram of the system under the variation of the excitation amplitude are studied. The above results can be used to guide the research of the asymmetric hysteretic system with polynomial expression.
International Nuclear Information System (INIS)
Belendez, A.; Fernandez, E.; Rodes, J.J.; Fuentes, R.; Pascual, I.
2009-01-01
The harmonic balance method is used to construct approximate frequency-amplitude relations and periodic solutions to an oscillating charge in the electric field of a ring. By combining linearization of the governing equation with the harmonic balance method, we construct analytical approximations to the oscillation frequencies and periodic solutions for the oscillator. To solve the nonlinear differential equation, firstly we make a change of variable and secondly the differential equation is rewritten in a form that does not contain the square-root expression. The approximate frequencies obtained are valid for the complete range of oscillation amplitudes and excellent agreement of the approximate frequencies and periodic solutions with the exact ones are demonstrated and discussed
International Nuclear Information System (INIS)
Bogdanov, A.T.
1990-01-01
The nonlinear evolution of an initially monoenergetic [ν-bar(t = 0) = (0,0,u)] electron beam propagating in a nonmagnetized dielectric medium of permittivity ε > 1, with initial velocity u ≥ c/√ε (where c is the vacuum speed of light) is investigated. The specific instability of the beam under such conditions is the cause of the generation of a broad spectrum of transverse electromagnetic waves coupled to the simultaneous excitation of the second harmonic of the beam's oscillations, both at the expense of the beam's initial kinetic energy. The system of self-consistent nonlinear equations, describing the particle-field dynamics, is treated in the spirit of the weak-turbulence approach. The integrals of the resulting nonlinear system of equations for the amplitudes of the fields of the electron density are used to evaluate the spectral distribution of the amplitudes in the saturation phase, and hence the efficiency of the transformation of the beam's energy into electromagnetic radiation as a function of the width of the spectrum of the initially present electromagnetic fluctuations. A substantial increase in this efficiency is observed in comparison with the single-mode case. (author)
Ok, Kang Min; Chi, Eun Ok; Halasyamani, P Shiv
2006-08-01
Characterization methods for bulk non-centrosymmetric compounds are described. These methods include second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. In this tutorial review with each phenomenon, details are given of the measurement techniques along with a brief history and background. Finally, data interpretation is discussed.
DEFF Research Database (Denmark)
Skovsen, Esben; Søndergaard, Thomas; Fiutowski, Jacek
2012-01-01
Coherent local excitation of surface plasmon polaritons (SPPs) by second-harmonic generation (SHG) in aligned crystalline organic functionalized para-phenylene nanofibers deposited on a thin silver film is demonstrated. The excited SPPs are characterized using angle-resolved leakage radiation...
Third harmonic generation of CO2 laser radiation in AgGaSe2 crystal
Indian Academy of Sciences (India)
journal of. September 2000 physics pp. 405–412. Third harmonic generation of .... cell, the short pulse is accompanied by an unavoidable background pulse of 216 ns dura- ... the long pulse laser interacts with only a small number of SF molecules. ... illuminates the discharge region and produces electrons by ionization of ...
Continuous-variable Einstein-Podolsky-Rosen paradox with traveling-wave second-harmonic generation
International Nuclear Information System (INIS)
Olsen, M.K.
2004-01-01
The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics. Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both entanglement and the paradox with continuous variables that are analogous to the position and momentum of the original proposal
Effect of loss on slow-light-enhanced second-harmonic generation in periodic nanostructures
DEFF Research Database (Denmark)
Saravi, Sina; Quintero-Bermudez, Rafael; Setzpfandt, Frank
2016-01-01
We theoretically analyze the dependence of second-harmonic generation efficiency on the group index in periodic optical waveguides with loss. We investigate different possible scenarios of using slow light to enhance the efficiency of this process and show that in some cases there exists a maxima...
Zhang, Zhiqing; Kuzmin, Nikolay V.; Groot, Marie Louise; de Munck, Jan C.
2017-01-01
Motivation: The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering,
Plasmonic enhancement of High Harmonic Generation revisited: Predominance of Atomic Line Emission
Directory of Open Access Journals (Sweden)
Ropers C.
2013-03-01
Full Text Available We demonstrate nanostructure-enhanced extreme ultraviolet fluorescence from noble gases driven by low-energy, few-cycle light pulses. Despite sufficient local intensities, plasmon-enhanced high harmonic generation is not observed, which follows from the small, nanometer-size coherent source volume.
High harmonic generation in H2 and HD by two-colour femtosecond ...
Indian Academy of Sciences (India)
We have argued that for these combinations, the harmonic generation due to transitions in the electronic continuum by tunnelling or multiphoton ionization may be neglected and only the electronic transitions within the two lowest electronic states would be important. Thus, the characteristic features of HHG spectra in the ...
DEFF Research Database (Denmark)
Mygind, Jesper; Pedersen, Niels Falsig; Sørensen, O. H.
1976-01-01
The first direct observation of the parametrically generated half-harmonic voltage in a Josephson tunnel junction is reported. A microwave signal at f=17.25 GHz is applied to the junction dc current biased at zero voltage such that the Josephson plasma resonance fp=f/2. Under these conditions...
Generation of Bright Phase-matched Circularly-polarized Extreme Ultraviolet High Harmonics
2014-12-08
1995). 42. Eichmann , H. et al. Polarization-dependent high-order two-color mixing. Phys. Rev. A 51, R3414–R3417 (1995). 43. Fleischer, A., Kfir, O...calculations of polarization-dependent two- color high-harmonic generation. Phys. Rev. A 52, 2262–2278 (1995). 10. Eichmann , H. et al. polarization
Generation of ultrahigh harmonics with a two-stage free electron laser and a seed laser
Goloviznin, V. V.; van Amersfoort, P. W.
1997-01-01
We consider the possibility to premodulate an ultrarelativistic electron beam on the nanometer length scale, so that it can produce coherent spontaneous radiation in the x-ray range. The scheme that uses the same basic elements as the high gain harmonic generation (HGHG) scheme, two wigglers and a
Kerr-like behaviour of second harmonic generation in the far-off resonant regime
Peřinová, Vlasta; Lukš, Antonín; Křepelka, Jaromír; Leoński, Wiesław; Peřina, Jan
2018-05-01
We separate the Kerr-like behaviour of the second-harmonic generation in the far-off resonant regime from the oscillations caused by the time-dependence of the interaction energy. To this purpose, we consider the approximation obtained from the exact dynamics by the method of small rotations. The Floquet-type decomposition of the approximate dynamics comprises the Kerr-like dynamics and oscillations of the same order of magnitude as those assumed for the exact dynamics of the second-harmonic generation. We have found that a superposition of two states of concentrated quantum phase arises in the fundamental mode in the second-harmonic generation in the far-off resonant limit at a later time than a superposition of two coherent states in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes. The quantum phase fluctuation is higher for the same initial coherent amplitudes in the fundamental mode in the second-harmonic generation in the far-off resonant limit than in the corresponding Kerr medium and the difference is larger for higher initial coherent amplitudes.
Quantum properties of transverse pattern formation in second-harmonic generation
DEFF Research Database (Denmark)
Bache, Morten; Scotto, P.; Zambrini, R.
2002-01-01
these equations through extensive numerical simulations and analytically in the linearized limit. Our study, made below and above the threshold of pattern formation, is guided by a microscopic scheme of photon interaction underlying pattern formation in second-harmonic generation. Close to the threshold...
International Nuclear Information System (INIS)
Boyd, G.T.; Shen, Y.R.; Hansch, T.W.
1985-06-01
Optical second-harmonic generation (SHG) can be an extremely sensitive tool for surface studies. The technique is capable of probing adsorbed molecules at various interfaces. It is based on the idea that SHG is forbidden in a medium with inversion symmetry, but necessarily allowed at a surface. To see such a surface nonlinear optical effect, high laser intensity is often needed. Thus, in the experiments reported so far, pulsed lasers were used exclusively. From the consideration for practical applications, however, the technique would look much more attractive if the bulky pulsed laser can be replaced by a simple inexpensive c-w diode laser. This paper describes the first demonstration of surface SHG with a c-w laser. 3 refs., 1 fig
International Nuclear Information System (INIS)
Hack, Szabolcs; Varró, Sándor; Czirják, Attila
2016-01-01
We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.
Energy Technology Data Exchange (ETDEWEB)
Hack, Szabolcs [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary); Varró, Sándor [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, SZFI, PO Box 49, H-1525 Budapest (Hungary); Czirják, Attila [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary)
2016-02-15
We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.
Harmonic emission due to the nonlinear coupling of a Gaussian laser and a plasma wave
Energy Technology Data Exchange (ETDEWEB)
Pathak, R; Jain, R K [Department of Mathematics, SSL Jain College, Vidisha, MP, 464001 (India); Parashar, J [Department of Physics, Samrat Ashok Technological Institute, Vidisha, MP, 464001 (India)
2010-04-15
A high-power Gaussian laser propagating through a plasma couples with a large-amplitude plasma wave and undergoes scattering to produce harmonics. The process is sensitive to the phase matching angle between the laser and plasma wave numbers and the plasma wave frequency. For larger harmonics, the phase matching angle is high. The efficiency of the process is comparatively high at higher plasma wave frequencies.
Bak, Claus Leth; Bak-Jensen, Birgitte; Wiechowski, Wojciech
2008-01-01
This paper demonstrates the results of implementation and verification of an already existing algorithm that allows for calculating saturation characteristics of singlephase power transformers. The algorithm was described for the first time in 1993. Now this algorithm has been implemented using the DIgSILENT Programming Language (DPL) as an external script in the harmonic domain calculations of a power system analysis tool PowerFactory [10]. The algorithm is verified by harmonic measurements ...
Ma, Xiaohua
2011-03-01
Achiral nonlinear optical (NLO) chromophores 1,3-diazaazulene derivatives, 2-(4â€-aminophenyl)-6-nitro-1,3-diazaazulene (APNA) and 2-(4â€-N,N-diphenylaminophenyl)-6-nitro-1,3-diazaazulene (DPAPNA), were synthesized with high yield. Despite the moderate static first hyperpolarizabilities (β0) for both APNA [(136 Â± 5) Ã - 10-30 esu] and DPAPNA [(263 Â± 20) Ã - 10-30 esu], only APNA crystal shows a powder efficiency of second harmonic generation (SHG) of 23 times that of urea. It is shown that the APNA crystallization driven cooperatively by the strong H-bonding network and the dipolar electrostatic interactions falls into the noncentrosymmetric P2 12121 space group, and that the helical supramolecular assembly is solely responsible for the efficient SHG response. To the contrary, the DPAPNA crystal with centrosymmetric P-1 space group is packed with antiparalleling dimmers, and is therefore completely SHG-inactive. 1,3-Diazaazulene derivatives are suggested to be potent building blocks for SHG-active chiral crystals, which are advantageous in high thermal stability, excellent near-infrared transparency and high degree of designing flexibility. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 Optical crystals based on 1,3-diazaazulene derivatives are reported as the first example of organic nonlinear optical crystal whose second harmonic generation activity is found to originate solely from the chirality of their helical supramolecular orientation. The strong H-bond network forming between adjacent choromophores is found to act cooperatively with dipolar electrostatic interactions in driving the chiral crystallization of this material. Copyright © 2011 Wiley Periodicals, Inc.
Probe of Multielectron Dynamics in Xenon by Caustics in High-Order Harmonic Generation
Faccialà, D.; Pabst, S.; Bruner, B. D.; Ciriolo, A. G.; De Silvestri, S.; Devetta, M.; Negro, M.; Soifer, H.; Stagira, S.; Dudovich, N.; Vozzi, C.
2016-08-01
We investigated the giant resonance in xenon by high-order harmonic generation spectroscopy driven by a two-color field. The addition of a nonperturbative second harmonic component parallel to the driving field breaks the symmetry between neighboring subcycles resulting in the appearance of spectral caustics at two distinct cutoff energies. By controlling the phase delay between the two color components it is possible to tailor the harmonic emission in order to amplify and isolate the spectral feature of interest. In this Letter we demonstrate how this control scheme can be used to investigate the role of electron correlations that give birth to the giant resonance in xenon. The collective excitations of the giant dipole resonance in xenon combined with the spectral manipulation associated with the two-color driving field allow us to see features that are normally not accessible and to obtain a good agreement between the experimental results and the theoretical predictions.
Enhancement of third-order harmonic generation by interaction of two IR femtosecond filaments
International Nuclear Information System (INIS)
Liu, Z Y; Ding, P J; Shi, Y C; Lu, X; Liu, Q C; Sun, S H; Ding, B W; Hu, B T; Liu, X L
2012-01-01
Three orders of magnitude in the enhancement of the third-order harmonic (TH) generation induced by the interaction of two femtosecond filaments crossing with small angles in the air is achieved. The dependences of the TH generation on the time delay, the relative polarization, the input laser intensity ratios between the probe and pump beam are measured with the crossing angle of 3.5deg , and the results with quasi-vertical crossing angle are also shown for comparison
Ulvila, Ville; Phillips, C R; Halonen, Lauri; Vainio, Markku
2013-11-01
We report optical frequency comb generation by a continuous-wave pumped optical parametric oscillator (OPO) without any active modulation. The OPO is configured as singly resonant with an additional nonlinear crystal (periodically poled MgO:LiNbO3) placed inside the OPO for phase mismatched second harmonic generation (SHG) of the resonating signal beam. The phase mismatched SHG causes cascading χ(2) nonlinearities, which can substantially increase the effective χ(3) nonlinearity in MgO:LiNbO3, leading to spectral broadening of the OPO signal beam via self-phase modulation. The OPO generates a stable 4 THz wide (-30 dB) frequency comb centered at 1.56 μm.
Zhu, Yu; Liu, Zhigang; Deng, Wen; Deng, Zhongwen
2018-05-01
Frequency-scanning interferometry (FSI) using an external cavity diode laser (ECDL) is essential for many applications of the absolute distance measurement. However, owing to the hysteresis and creep of the piezoelectric actuator inherent in the ECDL, the optical frequency scanning exhibits a nonlinearity that seriously affects the phase extraction accuracy of the interference signal and results in the reduction of the measurement accuracy. To suppress the optical frequency nonlinearity, a harmonic frequency synthesis method for shaping the desired input signal instead of the original triangular wave is presented. The effectiveness of the presented shaping method is demonstrated through the comparison of the experimental results. Compared with an incremental Renishaw interferometer, the standard deviation of the displacement measurement of the FSI system is less than 2.4 μm when driven by the shaped signal.
Energy Technology Data Exchange (ETDEWEB)
Zhang, G. P.; Strubbe, David A.; Louie, Steven G.; George, Thomas F. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States) and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry and Biochemistry and Department of Physics and Astronomy, Office of the Chancellor and Center for Nanoscience, University of Missouri-St. Louis, St. Louis, Missouri 63121 (United States)
2011-08-15
Non-linear-optical properties in C{sub 60} have attracted enormous attention for over two decades. The endohedral complex N-C{sub 60}, with its remarkable thermal stability and spin-quartet ground state, is a candidate for future room-temperature quantum computing, but there has been no investigation of its non-linear-optical properties. Here, a first-principles calculation shows that N-C{sub 60} is a promising material for nanoscale and ultrafast modulations. Excitation by a pump laser pulse of the nitrogen-atom vibration inside the C{sub 60} cage transiently breaks inversion symmetry and can enable second-harmonic generation (SHG) from a probe pulse. Unlike the SHG observed in C{sub 60} thin films, this harmonic signal is switched on and off periodically every 345 fs. For an fcc crystal of N-C{sub 60}, the second-order susceptibility {chi}{sup (2)} is on the order of 10{sup -8} esu, similar to commercially used nonlinear materials.
Non-linear M -sequences Generation Method
Directory of Open Access Journals (Sweden)
Z. R. Garifullina
2011-06-01
Full Text Available The article deals with a new method for modeling a pseudorandom number generator based on R-blocks. The gist of the method is the replacement of a multi digit XOR element by a stochastic adder in a parallel binary linear feedback shift register scheme.
International Nuclear Information System (INIS)
Sola, I. J.; Zaier, A.; Cormier, E.; Mevel, E.; Constant, E.; Lopez-Martens, R.; Johnsson, P.; Varju, K.; Mauritsson, J.; L'Huillier, A.; Strelkov, V.
2006-01-01
The temporal confinement of high harmonic generation (HHG) via modulation of the polarization of the fundamental pulse is studied in both temporal and spectral domains. In the temporal domain, a collinear cross-correlation setup using a 40 fs IR pump for the HHG and a 9 fs IR pulse to probe the generated emission is used to measure the XUV pulse duration. The observed temporal confinement is found to be consistent with theoretical predictions. An increased confinement is observed when a 9 fs pulse is used to generate the harmonics. An important spectral broadening, including a continuum background, is also measured. Theoretical calculations show that with 10 fs driving pulses, either one or two main attosecond pulses are created depending on the value of the carrier envelope phase
Nonlinear optics at interfaces
International Nuclear Information System (INIS)
Chen, C.K.
1980-12-01
Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory
Cheng, Yazhou; Jia, Yuechen; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng
2014-11-01
We report on the guided-wave second-harmonic generation in a KTiOPO4 nonlinear optical waveguide fabricated by a 17 MeV O5+ ion irradiation at a fluence of 1.5×1015 ions/cm2. The waveguide guides light along both TE and TM polarizations, which is suitable for phase-matching frequency doubling. Second harmonics of green light at a wavelength of 532 nm have been generated through the KTiOPO4 waveguide platform under an optical pump of fundamental wave at 1064 nm in both continuous-wave and pulsed regimes, reaching optical conversion efficiencies of 5.36%/W and 11.5%, respectively. The propagation losses have been determined to be ˜3.1 and ˜5.7 dB/cm for the TE and TM polarizations at a wavelength of 632.8 nm, respectively.
Energy Technology Data Exchange (ETDEWEB)
Ouahrani, Tarik, E-mail: tarik_ouahrani@yahoo.fr [Laboratoire de Physique Theorique, Universite de Tlemcen, B.P.230,13000 Tlemcen (Algeria); Ecole Preparatoire en Sciences et Techniques, Depertement de Physique EPST-T, Tlemcen 13000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Universite de Mascara, 29000 Mascara (Algeria); Lasri, B. [Laboratoire de Physique Theorique, Universite de Tlemcen, B.P.230,13000 Tlemcen (Algeria); Universite Dr Tahar Moulay de Saida, B.P. 138, Cite el Nasr, Saida 20000 (Algeria); Reshak, Ali H. [School of Complex systems, FFPW- South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Material Engineering, Malaysia University of Perlis, P.O Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia); Bouhemadou, A. [Department of Physics, Faculty of Sciences, University of Setif, 19000 Setif (Algeria); Bin-Omran, S. [Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)
2012-09-15
The chemical bonding of the ZnAl{sub 2}Se{sub 4}, CdAl{sub 2}Se{sub 4} and HgAl{sub 2}Se{sub 4} defect chalcopyrites has been studied in the framework of the quantum theory of atoms in molecules (AIM). The GW quasi-particle approximation is used to correct the DFT-underestimation of energy gap, and as a consequence the linear and nonlinear optical properties are significantly enhanced. The second harmonic generation (SHG) displays certain dependence with the ionicity degree decrease through the dependency of the SHG on the band gap. The occurrence of the AIM saddle point is characterized and some clarifying features in relationship with the density topology are exposed, which enable to understand the relation with the second harmonic generation effect.
Ultrafast third-harmonic generation from textured aluminum nitride-sapphire interfaces
International Nuclear Information System (INIS)
Stoker, D. S.; Keto, J. W.; Baek, J.; Wang, W.; Becker, M. F.; Kovar, D.
2006-01-01
We measured and modeled third-harmonic generation (THG) from an AlN thin film on sapphire using a time-domain approach appropriate for ultrafast lasers. Second-harmonic measurements indicated that polycrystalline AlN contains long-range crystal texture. An interface model for third-harmonic generation enabled an analytical representation of scanning THG (z-scan) experiments. Using it and accounting for Fresnel reflections, we measured the AlN-sapphire susceptibility ratio and estimated the susceptibility for aluminum nitride, χ xxxx (3) (3ω;ω,ω,ω)=1.52±0.25x10 -13 esu. The third-harmonic (TH) spectrum strongly depended on the laser focus position and sample thickness. The amplitude and phase of the frequency-domain interference were fit to the Fourier transform of the calculated time-domain field to improve the accuracy of several experimental parameters. We verified that the model works well for explaining TH signal amplitudes and spectral phase. Some anomalous features in the TH spectrum were observed, which we attributed to nonparaxial effects
Spatio-spectral analysis of ionization times in high-harmonic generation
Energy Technology Data Exchange (ETDEWEB)
Soifer, Hadas, E-mail: hadas.soifer@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Dagan, Michal; Shafir, Dror; Bruner, Barry D. [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Ivanov, Misha Yu. [Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London (United Kingdom); Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Serbinenko, Valeria; Barth, Ingo; Smirnova, Olga [Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Strasse 2A, D-12489 Berlin (Germany); Dudovich, Nirit [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)
2013-03-12
Graphical abstract: A spatio-spectral analysis of the two-color oscillation phase allows us to accurately separate short and long trajectories and reconstruct their ionization times. Highlights: ► We perform a complete spatio-spectral analysis of the high harmonic generation process. ► We analyze the ionization times across the entire spatio-spectral plane of the harmonics. ► We apply this analysis to reconstruct the ionization times of both short and long trajectories. - Abstract: Recollision experiments have been very successful in resolving attosecond scale dynamics. However, such schemes rely on the single atom response, neglecting the macroscopic properties of the interaction and the effects of using multi-cycle laser fields. In this paper we perform a complete spatio-spectral analysis of the high harmonic generation process and resolve the distribution of the subcycle dynamics of the recolliding electron. Specifically, we focus on the measurement of ionization times. Recently, we have demonstrated that the addition of a weak, crossed polarized second harmonic field allows us to resolve the moment of ionization (Shafir, 2012) [1]. In this paper we extend this measurement and perform a complete spatio-spectral analysis. We apply this analysis to reconstruct the ionization times of both short and long trajectories showing good agreement with the quantum path analysis.
International Nuclear Information System (INIS)
Deng Ming-Xi; Gao Guang-Jian; Li Ming-Liang
2015-01-01
The experimental observation of cumulative second-harmonic generation of the primary circumferential guided wave propagation is reported. A pair of wedge transducers is used to generate the primary circumferential guided wave desired and to detect its fundamental-frequency and second-harmonic amplitudes on the outside surface of the circular tube. The amplitudes of the fundamental waves and the second harmonics of the circumferential guided wave propagation are measured for different separations between the two wedge transducers. At the driving frequency where the primary and the double-frequency circumferential guided waves have the same linear phase velocities, the clear second-harmonic signals can be observed. The quantitative relationships between the second-harmonic amplitudes and circumferential angle are analyzed. It is experimentally verified that the second harmonics of primary circumferential guided waves do have a cumulative growth effect with the circumferential angle. (paper)
International Nuclear Information System (INIS)
Feng Liqiang; Chu Tianshu
2012-01-01
Highlights: ► Investigation of HHG spectra and single isolated attosecond pulse generation. ► Irradiation from a model Ne atom by two-color time delayed pulse. ► Observation of time delay effect and relative phase effect. ► Revelation of the optimal condition for generating isolated attosecond pulse. ► Generation of a single isolated attosecond pulse of 45as. - Abstract: In this paper, we theoretically investigate the delay time effect on the high-order harmonic generation (HHG) when a model Ne atom is exposed to a two-color time delayed pulse, consisting of a 5fs/800 nm fundamental field and a 20fs/2000 nm controlling field. It shows that the HHG spectra are strongly sensitive to the delay time between the two laser fields, in particular, for the zero carrier-envelope phase (CEP) φ case (corresponding to the 800 nm fundamental field), the maximum cutoff energy has been achieved at zero delay time. However, with the introduction of the CEP (φ = 180°), the delay effect on HHG is changed, exhibiting a ‘U’ structure harmonic emission from −1 T to 1 T. In addition, the combinations of different controlling pulse frequencies and pulse intensities have also been considered, showing the similar results as the original controlling field case, but with some characteristics. Finally, by properly superposing the optimal harmonic spectrum, an isolated 45as pulse is generated without phase compensation.
International Nuclear Information System (INIS)
Dhenaut, Christophe
1995-01-01
Conception of new organic materials for nonlinear optics is generally driven by a molecular engineering approach. The usual technique for determining the quadratic hyper polarizability of designed molecules is the electric field induced second harmonic (EFISH) experiment. However this technique is limited to neutral molecules with a permanent dipole moment. We have realized an harmonic light scattering (HLS) experiment which allow the measurement of any kind of molecules, polar or non polar, neutral or ionic. Using this technique we have been able to demonstrate experimentally the validity of the octupole concept (molecules without dipole moment) which has been proposed recently. We have studied molecules corresponding to various octupolar geometries. Nonlinearities are found to be comparable to those of the best dipolar compounds. We have also investigated other molecular families with different symmetry such as polyenes, sub-phthalocyanines and phthalocyanines by EFISH and HLS techniques. We have confronted results obtained by the two experiments. It appears that these results are not easy to compare, the tensorial components accessible by each experiment being different. The two experiments seems complementary. HLS experiments allow the observation of a quadratic hyper polarizability for centrosymmetric molecules. This surprising observation could be explained by the contribution of a vibration al part to the hyper polarizability measured by HLS (but not present in EFISH). Interpretation of this dynamic process is still in progress. (author) [fr
Evidence of the 2s2p(1P) doubly excited state in the harmonic generation spectrum of helium
International Nuclear Information System (INIS)
Ngoko Djiokap, J. M.; Starace, Anthony F.
2011-01-01
By solving the two-active-electron time-dependent Schroedinger equation in an intense, ultrashort laser field, we investigate evidence of electron correlations in the high-order harmonic generation spectrum of helium. As the frequency of the driving laser pulse varies from 4.6 to 6.6 eV, the 13th, 11th, and 9th harmonics sequentially become resonant with the transition between the ground state and the isolated 2s2p( 1 P) autoionizing state of helium, which dramatically enhances these harmonics and changes their profiles. When each of the 9th and 13th harmonics are in resonance with this autoionizing state, there is also a low-order multiphoton resonance with a Rydberg state, resulting in a particularly large enhancement of these harmonics relative to neighboring harmonics. When the 11th harmonic is in resonance with the 2s2p( 1 P) autoionizing state, the 13th harmonic is simultaneously in resonance with numerous higher-energy autoionizing states, resulting in a competition between these two harmonics for intensity. These results demonstrate that even electron correlations occurring over a narrow energy interval can have a significant effect on strong-field processes such as harmonic generation.
Ascenti, Giorgio; Zimbaro, Giovanni; Mazziotti, Silvio; Chimenz, Roberto; Fede, Carmelo; Visalli, Carmela; Scribano, Emanuele
2004-06-01
Contrast-enhanced voiding urosonography (VUS) is largely accepted both for the diagnosis and follow-up of vesicoureteric reflux (VUR) in children. To evaluate the usefulness of contrast-enhanced second-harmonic VUS in the diagnosis and grading of VUR, using a second-generation contrast agent. Eighty consecutive children were prospectively studied with contrast-enhanced second-harmonic VUS. All children received a second-generation contrast medium, constituted by phospholipid-stabilized microbubbles of sulphur-hexafluoride (SonoVue, Bracco, Milan, Italy). US monitoring of the bladder, of the retrovesical space and of the kidneys was performed using, alternatively, both tissue-harmonic and contrast-harmonic modes. In those young boys where VUR was depicted at VUS, examination was completed with transperineal, sagittal urethral exploration during micturition. VUR was graded in five steps and diagnoses were compared with voiding cystourethrography (VCUG). VUR was diagnosed in 52 reno-ureteral units with VUS. In 49 of these reno-ureteral units, VCUG confirmed the presence of VUR. In comparison to VUS, sensitivity and negative predictive value of VCUG were inferior. The grade of VUR detected at VUS was higher than that detected at VCUG in three units. In no case was the grade of VUR detected at VCUG higher than the one detected at VUS. The differences between VUS and VCUG in grading VUR were statistically significant (p=0.02). Imaging of the normal posterior urethra was skilfully demonstrated with US in 15 young boys with VUR. No statistically significant differences were found between tissue-harmonic and contrast-harmonic mode (p=0.102). Contrast-enhanced second-harmonic VUS is a sensitive and easy technique for the evaluation of VUR. A second-generation US contrast medium such as SonoVue, if available, should be the first choice as the dose required for one examination is much lower and consequently significant reduction of contrast agent cost is possible. Copyright
Generation of Caustics and Rogue Waves from Nonlinear Instability.
Safari, Akbar; Fickler, Robert; Padgett, Miles J; Boyd, Robert W
2017-11-17
Caustics are phenomena in which nature concentrates the energy of waves and may exhibit rogue-type behavior. Although they are known mostly in optics, caustics are intrinsic to all wave phenomena. As we demonstrate in this Letter, the formation of caustics and consequently rogue events in linear systems requires strong phase fluctuations. We show that nonlinear phase shifts can generate sharp caustics from even small fluctuations. Moreover, in that the wave amplitude increases dramatically in caustics, nonlinearity is usually inevitable. We perform an experiment in an optical system with Kerr nonlinearity, simulate the results based on the nonlinear Schrödinger equation, and achieve perfect agreement. As the same theoretical framework is used to describe other wave systems such as large-scale water waves, our results may also aid the understanding of ocean phenomena.
International Nuclear Information System (INIS)
Martinez, R.M.
1983-01-01
Part One examines the properties of electron cyclotron harmonic waves by means of computer simulation. The electromagnetic cyclotron harmonic modes not previously observed in simulation are emphasized and compared with the better known electrostatic (Bernstein) modes for perpendicular propagation. The investigation is performed by a spectrum analysis (both wavelength and frequency) of the thermal equilibrium electromagnetic fluctuation fields present in the simulation. A numerical solution of the fully electromagnetic dispersion relation shows that extreme frequency resolution is necessary to discern shifts of the electromagnetic mode frequencies from the cyclotron harmonics except at high plasma density or temperature. The simulation results show that at high plasma pressure the amplitude of the electromagnetic modes can become greater than that of the electrostatic modes. Part Two examines the interaction of an external electromagnetic wave with the electrostatic cylotron harmonic modes. The stimulated Raman scattering with an extraordinary wave as the pump is observed to occur in a wavelength regime where it would be prevented by Landau damping in an unmagnetized plasma
High gain harmonic generation free electron lasers enhanced by pseudoenergy bands
Directory of Open Access Journals (Sweden)
Takashi Tanaka
2017-08-01
Full Text Available We propose a new scheme for high gain harmonic generation free electron lasers (HGHG FELs, which is seeded by a pair of intersecting laser beams to interact with an electron beam in a modulator undulator located in a dispersive section. The interference of the laser beams gives rise to a two-dimensional modulation in the energy-time phase space because of a strong correlation between the electron energy and the position in the direction of dispersion. This eventually forms pseudoenergy bands in the electron beam, which result in efficient harmonic generation in HGHG FELs in a similar manner to the well-known scheme using the echo effects. The advantage of the proposed scheme is that the beam quality is less deteriorated than in other existing schemes.
Generation of high harmonic free electron laser with phase-merging effect
Energy Technology Data Exchange (ETDEWEB)
Li, Heting, E-mail: liheting@ustc.edu.cn; Jia, Qika; Zhao, Zhouyu
2017-03-01
An easy-to-implement scheme is proposed to produce the longitudinal electron bunch density modulation with phase-merging phenomenon. In this scheme an electron bunch is firstly transversely dispersed in a modified dogleg to generate the exact dependence of electron energy on the transverse position, then it is modulated in a normal modulator. After travelling through a modified chicane with specially designed transfer matrix elements, the density modulation with phase-merging effect is generated which contains high harmonic components of the seed laser. We present theoretical analysis and numerical simulations for seeded soft x-ray free-electron laser. The results demonstrate that this technique can significantly enhance the frequency up-conversion efficiency and allow a seeded FEL operating at very high harmonics.
Ellipticity dependence of high harmonics generated using 400 nm driving lasers
Cheng, Yan; Khan, Sabih; Zhao, Kun; Zhao, Baozhen; Chini, Michael; Chang, Zenghu
2011-05-01
High order harmonics generated from 400 nm driving pulses hold promise of scaling photon flux of single attosecond pulses by one to two orders of magnitude. We report ellipticity dependence and phase matching of high order harmonics generated from such pulses in Neon gas target and compared them with similar measurements using 800 nm driving pulses. Based on measured ellipticity dependence, we predict that double optical gating (DOG) and generalized double optical gating (GDOG) can be employed to extract intense single attosecond pulses from pulse train, while polarization gating (PG) may not work for this purpose. This material is supported by the U.S. Army Research Office under grant number W911NF-07-1-0475, and by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.
First lasing of a high-gain harmonic generation free-electron laser experiment.
Energy Technology Data Exchange (ETDEWEB)
Babzien, M.; Ben-Zvi, I.; Biedron, S. G.; DiMauro, L. F.; Douryan, A.; Galayda, J. N.; Gluskin, E.; Graves, W.; Jagger, J.; Johnson, E.; Krinsky, S.; Malone, R.; Pogorelsky, I.; Rakowsky, G.; Sajaev, V.; Skaritka, J.; Solomon, L.; Vasserman, I.; Wang, X. L.; Woodle, M.; Yakimenko, V.; Yu, L.-H.
1999-09-11
We report on the first lasing of a high-gain harmonic generation (HGHG) free-electron laser (FEL). The experiment was conducted at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). This is a BNL experiment in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory. A preliminary measurement gives a high-gain harmonic generation (HGHG) pulse energy that is 2 x 10{sup 7} times larger than the spontaneous radiation, In a purely self-amplified spontaneous emission (SASE) mode of operation, the signal was measured as 10 times larger than the spontaneous radiation in the same distance ({approximately}2 m) through the same wiggler. This means the HGHG signal is 2 x 10{sup 6} times larger than the SASE signal. To obtain the same saturated output power by the SASE process, the radiator would have to be 3 times longer (6 m).
Zhang, Xiaoshi; Lytle, Amy L.; Cohen, Oren; Kapteyn, Henry C.; Murnane, Margaret M.
2010-11-09
All-optical quasi-phase matching (QPM) uses a train of counterpropagating pulses to enhance high-order harmonic generation (HHG) in a hollow waveguide. A pump pulse enters one end of the waveguide, and causes HHG in the waveguide. The counterpropagation pulses enter the other end of the waveguide and interact with the pump pulses to cause QPM within the waveguide, enhancing the HHG.
International Nuclear Information System (INIS)
Ivanov, I A; Kheifets, A S
2010-01-01
We describe a theoretical procedure for solving the time-dependent Schroedinger equation (TDSE) for atomic systems with one or two valence electrons. Motion of the valence electrons is described by means of the Hartree-Fock potential including the exchange interaction. We apply the procedure to various physical phenomena occurring in atoms exposed to strong electromagnetic fields. As an illustration, we consider below the processes of high harmonics generation and attosecond pulses production.
Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki
2014-08-01
We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕinterface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.
Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki
2014-01-01
We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ_ with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°.
Grain size effect of monolayer MoS2 transistors characterized by second harmonic generation mapping
Lin, Chih-Pin
2015-08-27
We investigated different CVD-synthesized MoS2 films, aiming to correlate the device characteristics with the grain size. The grain size of MoS2 can be precisely characterized through nondestructive second harmonic generation mapping based on the degree of inversion symmetry. The devices with larger grains at the channel region show improved on/off current ratio, which can be explained by the less carrier scattering caused by the grain boundaries.
International Nuclear Information System (INIS)
Zhang Xiangyun; Sun Zhenrong; Wang Yufeng; Chen Guoliang; Wang Zugeng; Li Ruxin; Zeng Zhinan; Xu Zhizhan
2007-01-01
High harmonic generation from Ar and He atoms by a few-cycle laser pulse in periodic and chirped hollow fibres is investigated theoretically by a self-consistent model. Based on enhanced high harmonics in a periodic hollow fibre, a chirped hollow fibre is proposed to improve quasi-phase matching for the generated harmonics near the cutoff. The results show that the extended and enhanced harmonics near the cutoff are well phase-matched, and a single x-ray pulse with a duration of 279 as in Ar gas and 255 as in He gas can be achieved by frequency synthesizing of high harmonics in the well-selected cutoff bandwidth. The results show that this technique is a potential candidate to generate an intense isolated attosecond pulse in the 'water window' spectrum
The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas
International Nuclear Information System (INIS)
Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; Mancuso, Christopher; Perez-Hernandez, Jose A.; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L.; Tarazkar, Maryam; Romanov, Dmitri A.; Levis, Robert J.; Gaffney, Jim A.; Foord, Mark; Libby, Stephen B.; Jaron-Becker, Agnieskzka; Becker, Andreas; Plaja, Luis; Muranane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio
2015-01-01
High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matching - the constructive addition of x-ray waves from a large number of atoms - favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidt-limited pulse trains of ~100 attoseconds
Below-threshold harmonic generation from strong non-uniform fields
Yavuz, I.
2017-10-01
Strong-field photoemission below the ionization threshold is a rich/complex region where atomic emission and harmonic generation may coexist. We studied the mechanism of below-threshold harmonics (BTH) from spatially non-uniform local fields near the metallic nanostructures. Discrete harmonics are generated due to the broken inversion symmetry, suggesting enriched coherent emission in the vuv frequency range. Through the numerical solution of the time-dependent Schrödinger equation, we investigate wavelength and intensity dependence of BTH. Wavelength dependence identifies counter-regular resonances; individual contributions from the multi-photon emission and channel-closing effects due to quantum path interferences. In order to understand the underlying mechanism of BTH, we devised a generalized semi-classical model, including the influence of Coulomb and non-uniform field interactions. As in uniform fields, Coulomb potential in non-uniform fields is the determinant of BTH; we observed that the generation of BTH are due to returning trajectories with negative energies. Due to large distance effectiveness of the non-uniformity, only long trajectories are noticeably affected.
Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.
Rosnitskiy, Pavel B; Yuldashev, Petr V; Sapozhnikov, Oleg A; Maxwell, Adam D; Kreider, Wayne; Bailey, Michael R; Khokhlova, Vera A
2017-02-01
Various clinical applications of high-intensity focused ultrasound have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this paper is to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasi-linear conditions at the focus. Multiparametric nonlinear modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. The results are presented in terms of the parameters of an equivalent single-element spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields.
DEFF Research Database (Denmark)
Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe
2012-01-01
Harmonic current filtering and resonance damping have become important concerns on the control of an islanded microgrids. To address these challenges, this paper proposes a control method of inverter-interfaced Distributed Generation (DG) units, which can autonomously share harmonic currents and ...
Generation of Attosecond x-ray pulse using Coherent Relativistic Nonlinear Thomson Scattering
Energy Technology Data Exchange (ETDEWEB)
Lee, Ki Tae; Park, Seong Hee; Cha, Yong Ho; Jeong, Young Uk; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2005-07-01
Relativistic plasma, a new regime in physics, has been opened due to the development in ultra-intense laser technology during the past decade. Not only the fundamental aspect of relativistic plasma are attractive but also its potential application seems to be significant especially in the area of the generation of high energy particles such as electrons, ions, positrons, and {gamma}-rays. The generation of x-ray radiation with a pulse width of sub-femtoseconds presently draws much attention because such a radiation allows one to explore ultra-fast dynamics of electrons and nucleons. Several schemes have been proposed and/or demonstrated to generate an ultra-short x-ray pulse: the relativistic Doppler shift of a backscattered laser pulse by a relativistic electron beam, the harmonic frequency upshift of a laser pulse by relativistic nonlinear motion of electrons, high order harmonic generation in the interaction of intense laser pulse with noble gases and solids The train of a few 100 attosecond pulses has been observed in the case of laser-noble gas interaction. When a low-intensity laser pulse is irradiated on an electron, the electron undergoes a harmonic oscillatory motion and generates a dipole radiation with the same frequency as the incident laser pulse, which is called Thomson scattering. As the laser intensity increases, the oscillatory motion of the electron becomes relativistically nonlinear, which leads to the generation of harmonic radiations, referred to as Relativistic Nonlinear Thomson Scattered (RNTS) radiation. The motion of the electron begins to be relativistic as the following normalized vector potential approaches to unity: a{sub 0}=8.5 x 10{sup -10} {lambda}{iota}{sup 1/2} , (1) where {lambda} is the laser wavelength in {mu}m and I the laser intensity in W/cm{sup 2} The RNTS radiation has been investigated in analytical ways. Recently, indebted to the development of the ultra-intense laser pulse, experiments on RNTS radiation have been carried
Li, Guicun; Zheng, Yinghui; Ge, Xiaochun; Zeng, Zhinan; Li, Ruxin
2016-08-08
We have experimentally investigated the frequency modulation of high-order harmonics in an orthogonally polarized two-color laser field consisting of a mid-infrared 1800nm fundamental pulse and its second harmonic pulse. It is demonstrated that the high harmonic spectra can be fine-tuned as we slightly change the relative delay of the two-color laser pulses. By analyzing the relative frequency shift of each harmonic at different two-color delays, the nonadiabatic spectral shift induced by the rapid variation of the intensity-dependent intrinsic dipole phase can be distinguished from the blueshift induced by the change of the refractive index during self-phase modulation (SPM). Our comprehensive analysis shows that the frequency modulation pattern is a reflection of the average emission time of high-order harmonic generation (HHG), thus offering a simple method to fine-tune the spectra of the harmonics on a sub-cycle time scale.
Production of High Harmonic X-Ray Radiation from Non-linear Thomson at LLNL PLEIADES
Lim, Jae; Betts, Shawn; Crane, John; Doyuran, Adnan; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M
2005-01-01
We describe an experiment for production of high harmonic x-ray radiation from Thomson backscattering of an ultra-short high power density laser by a relativistic electron beam at the PLEIADES facility at LLNL. In this scenario, electrons execute a figure-8 motion under the influence of the high-intensity laser field, where the constant characterizing the field strength is expected to exceed unity: $aL=e*EL/m*c*ωL ≥ 1$. With large $aL$ this motion produces high harmonic x-ray radiation and significant broadening of the spectral peaks. This paper is intended to give a layout of the PLEIADES experiment, along with progress towards experimental goals.
Suhaimi, Nurul Sheeda; Ohae, Chiaki; Gavara, Trivikramarao; Nakagawa, Ken'ichi; Hong, Feng-Lei; Katsuragawa, Masayuki
2015-12-15
We report the generation of five phase-locked harmonics, f₁:2403 nm, f₂:1201 nm, f₃:801 nm, f₄:600 nm, and f₅:480 nm with an exact frequency ratio of 1:2:3:4:5 by implementing a divide-by-three optical frequency divider in the high harmonic generation process. All five harmonics are generated coaxially with high phase coherence in time and space, which are applicable for various practical uses.
Energy Technology Data Exchange (ETDEWEB)
Hamh, S. Y.; Park, S.-H.; Lee, J. S., E-mail: jsl@gist.ac.kr [Department of Physics and Photon Science, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Jerng, S.-K.; Jeon, J. H.; Chun, S. H. [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of); Jeon, J. H.; Kahng, S. J. [Department of Physics, Korea University, Seoul 136-701 (Korea, Republic of); Yu, K.; Choi, E. J. [Department of Physics, University or Seoul, Seoul 130-743 (Korea, Republic of); Kim, S.; Choi, S.-H. [Department of Applied Physics, College of Applied Science, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Bansal, N. [Department of Electrical and Computer Engineering, Rutgers, The state University of New Jersey, Piscataway, New Jersey 08854 (United States); Oh, S. [Department of Physics and Astronomy, Rutgers, The state University of New Jersey, Piscataway, New Jersey 08854 (United States); Park, Joonbum; Kho, Byung-Woo; Kim, Jun Sung [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)
2016-02-01
We investigate the surface and interface states of Bi{sub 2}Se{sub 3} thin films by using the second-harmonic generation technique. Distinct from the surface of bulk crystals, the film surface and interface show the isotropic azimuth dependence of second-harmonic intensity, which is attributed to the formation of randomly oriented domains on the in-plane. Based on the nonlinear susceptibility deduced from the model fitting, we determine that the surface band bending induced in a space charge region occurs more strongly at the film interface facing the Al{sub 2}O{sub 3} substrate or capping layer compared with the interface facing the air. We demonstrate that distinct behavior of the terahertz electric field emitted from the samples can provide further information about the surface electronic state of Bi{sub 2}Se{sub 3}.
Kozlovsky, William J.; Nabors, C. D.; Byer, Robert L.
1988-01-01
56-percent efficient external-cavity-resonant second-harmonic generation of a diode-laser pumped, CW single-axial-mode Nd:YAG laser is reported. A theory of external doubling with a resonant fundamental is presented and compared to experimental results for three monolithic cavities of nonlinear MgO:LiNbO3. The best conversion efficiency was obtained with a 12.5-mm-long monolithic ring cavity doubler, which produced 29.7 mW of CW, single-axial model 532-nm radiation from an input of 52.5 mW.
International Nuclear Information System (INIS)
Yu, Nan Ei; Kurimura, Sunao; Kitamura, Kenji
2005-01-01
A periodically poled device was investigated by using fourth-order quasi-phase-matched (QPM) second harmonic generation (SHG) in MgO-doped stoichiometric lithium tantalate (LiTaO 3 ). The effective nonlinear coefficient was found be 2.4 pm/V by using fourth-order QPM SHG at the fundamental wavelength of 1064 nm. For first-order QPM SHG, the effective value of d 33 could be 9.2 pm/V. Using the sensitive higher-order QPM SHG method, we investigated the relationship between the domain duty ratio and the conversion efficiency.
Simoncig, Alberto
2010-01-01
2008/2009 I processi di generazione di armoniche di ordine superiore (High-order Harmonic Generation o HHG) in gas inerti rappresentano, attualmente, la tecnica piu` promettente per la creazione di impulsi di luce coerente nell'estremo ultra-violetto (EUV) in una configurazione table-top. I processi HHG si basano sull'interazione non-lineare, tra impulsi laser ultra-corti, tipicamente dell'ordine della decina di femtosecondi, e atomi di gas inerti. Le caratteristiche che distinguono i...
Wibowo, Arief Cahyo
Metal-Organic Materials (MOMs) contain metal moieties and organic ligands that combine to form discrete (e.g. metal-organic polyhedra, spheres or nanoballs, metal-organic polygons) or polymeric structures with one-, two-, or three-dimensional periodicities that can exhibit a variety of properties resulting from the presence of the metal moieties and/or ligand connectors in the structure. To date, MOMs with a range of functional attributes have been prepared, including record-breaking porosity, catalytic properties, molecular magnetism, chemical separations and sensing ability, luminescence and NLO properties, multiferroic, ferroelectric, and switchable molecular dielectric properties. We are interested in synthesizing non-centrosymmetric MOM single crystals possessing one of the ten polar space groups required for non-linear optical properties (such as second harmonic generation) and ferroelectric applications. This thesis is divided into two main parts: materials with optical properties, such as photoluminescence and materials for targeted applications such as second harmonic generation and ferroelectric properties. This thesis starts with an introduction describing material having centrosymmetric, non-polar space groups, single crystals structures and their photoluminescence properties. These crystals exhibit very interesting and rare structures as well as interesting photoluminescence properties. Chapters 2-5 of this thesis focus on photoluminescent properties of new MOMs, and detail the exploratory research involving the comparatively rare bismuth, lead, and tin coordination polymers. Specifically, the formation of single white-light emitting phosphors based on the combination of bismuth or lead with pyridine-2,5-dicarboxylate is discussed (Chapter 2). The observation of a new Bi2O2 layer and a new Bi4O 3 chain in bismuth terephthalate-based coordination polymers is presented in Chapter 3, while the formation of diverse structures of tin-based coordination
One-third (period three) harmonic generation in microwave-driven Josephson tunnel junctions
DEFF Research Database (Denmark)
Hansen, Jørn Bindslev; Clarke, J.; Mygind, Jesper
1986-01-01
One-third harmonic signals have been generated in the zero voltage state of a Josephson tunnel junction driven with a microwave current in the frequency range 8–20 GHz. The signal was as much as 50 dB above the noise level of the detector with a linewidth of less than 100 Hz. The junction...... parameters and microwave current were measured in situ in separate experiments. The subharmonic generation occurred for ranges of microwave current and frequency that were in reasonable agreement with the results of digital computer simulations. Applied Physics Letters is copyrighted by The American...
Quantum-path control in high-order harmonic generation at high photon energies
International Nuclear Information System (INIS)
Zhang Xiaoshi; Lytle, Amy L; Cohen, Oren; Murnane, Margaret M; Kapteyn, Henry C
2008-01-01
We show through experiment and calculations how all-optical quasi-phase-matching of high-order harmonic generation can be used to selectively enhance emission from distinct quantum trajectories at high photon energies. Electrons rescattered in a strong field can traverse short and long quantum trajectories that exhibit differing coherence lengths as a result of variations in intensity of the driving laser along the direction of propagation. By varying the separation of the pulses in a counterpropagating pulse train, we selectively enhance either the long or the short quantum trajectory, and observe distinct spectral signatures in each case. This demonstrates a new type of coupling between the coherence of high-order harmonic beams and the attosecond time-scale quantum dynamics inherent in the process
A concept of a new undulator that will generate irrational higher harmonics in synchrotron radiation
International Nuclear Information System (INIS)
Hashimoto, Shinya; Sasaki, Shigemi
1994-03-01
A preliminary consideration has been made on an undulator with magnetic poles quasi-periodically aligned along the path of electron beams to discriminate the rational higher harmonics of radiation that are harmful in some synchrotron radiation experiments. The harmonics with irrational ratios in energy generated by the undulator is never simultaneously reflected by a crystal monochromator in the same orientation. A combination of the new undulator and high-resolution crystal monochromator is expected to be very useful on beamlines of high energy radiation in which X-ray mirrors are useless because of too small critical angles of total reflection. Further, a possibility of manufacturing the new undulator has been discussed. (author)
High order harmonic generation in noble gases using plasmonic field enhancement
International Nuclear Information System (INIS)
Ciappina, Marcelo F.; Shaaran, Tahir; Lewenstein, Maciej
2013-01-01
Theoretical studies of high-order harmonic generation (HHG) in rare gases driven by plasmonic field enhancement are presented. This kind of fields appears when plasmonic nanostructures are illuminated by an intense few-cycle laser and have a particular spatial dependency, depending on the geometrical shape of the nanostructure. It is demonstrated that the strong nonhomogeneous character of the laser enhanced field plays an important role in the HHG process and significantly extends the harmonic cutoff. The models are based on numerical solution of the time dependent Schroedinger equation (TDSE) and supported by classical and semiclassical calculations. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Directory of Open Access Journals (Sweden)
Andrea V. Bragas
2011-03-01
Full Text Available We report the enhancement of the optical second harmonic signal in non-centrosymmetric semiconductor CdS quantum dots, when they are placed in close contact with isolated silver nanoparticles. The intensity enhancement is about 1000. We also show that the enhancement increases when the incoming laser frequency $omega$ is tuned toward the spectral position of the silver plasmon at $2omega$, proving that the silver nanoparticle modifies the nonlinear emission.Received: 8 March 2011, Accepted: 30 May 2011; Edited by: L. Viña; Reviewed by: R. Gordon, Department of Electrical and Computer Engineering, University of Victoria, British Columbia, Canada; DOI: 10.4279/PIP.030002Cite as: P. M. Jais, C. von Bilderling, A. V. Bragas, Papers in Physics 3, 030002 (2011
Coherent Sources of XUV Radiation Soft X-Ray Lasers and High-Order Harmonic Generation
Jaeglé, Pierre
2006-01-01
Extreme ultraviolet radiation, also referred to as soft X-rays or XUV, offers very special optical properties. The X-UV refractive index of matter is such that normal reflection cannot take place on polished surfaces whereas beam transmission through one micrometer of almost all materials reduces to zero. Therefore, it has long been a difficult task to imagine and to implement devices designed for complex optics experiments in this wavelength range. Thanks to new sources of coherent radiation - XUV-lasers and High Order Harmonics - the use of XUV radiation, for interferometry, holography, diffractive optics, non-linear radiation-matter interaction, time-resolved study of fast and ultrafast phenomena and many other applications, including medical sciences, is ubiquitous.
International Nuclear Information System (INIS)
Kasahara, H.; Seki, T.; Kumazawa, R.; Saito, K.; Mutoh, T.; Kubo, S.; Shimozuma, T.; Igami, H.; Yoshimura, Y.; Takahashi, H.; Yamada, I.; Tokuzawa, T.; Ohdachi, S.; Morita, S.; Nomura, G.; Shimpo, F.; Komori, A.; Motojima, O.; Oosako, T.; Takase, Y.
2008-01-01
A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of 40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately -46 dBm/Hz. These lower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability.
International Nuclear Information System (INIS)
Belendez, A.; Fernandez, E.; Rodes, J.J.; Fuentes, R.; Pascual, I.
2009-01-01
In a previous short communication [A. Belendez, E. Fernandez, J.J. Rodes, R. Fuentes, I. Pascual, Phys. Lett. A 373 (2009) 735] the nonlinear oscillations of a punctual charge in the electric field of a charged ring were analyzed. Approximate frequency-amplitude relations and periodic solutions were obtained using the harmonic balance method. Now we clarify an important aspect about of this oscillation charge. Taking into account Earnshaw's theorem, this punctual charge cannot be a free charge and so it must be confined, for example, on a finite conducting wire placed along the axis of the ring. Then, the oscillatory system may consist of a punctual charge on a conducting wire placed along the axis of the uniformly charged ring.
Harmonic balance finite element method applications in nonlinear electromagnetics and power systems
Lu, Junwei; Yamada, Sotoshi
2016-01-01
The first book applying HBFEM to practical electronic nonlinear field and circuit problems * Examines and solves wide aspects of practical electrical and electronic nonlinear field and circuit problems presented by HBFEM * Combines the latest research work with essential background knowledge, providing an all-encompassing reference for researchers, power engineers and students of applied electromagnetics analysis * There are very few books dealing with the solution of nonlinear electric- power-related problems * The contents are based on the authors' many years' research and industry experience; they approach the subject in a well-designed and logical way * It is expected that HBFEM will become a more useful and practical technique over the next 5 years due to the HVDC power system, renewable energy system and Smart Grid, HF magnetic used in DC/DC converter, and Multi-pulse transformer for HVDC power supply * HBFEM can provide effective and economic solutions to R&D product development * Includes Matlab e...
International Nuclear Information System (INIS)
Higuet, J.
2010-10-01
High harmonic generation is a well known phenomenon explained by a three step model: because of the high intensity field generated by an ultrashort laser pulse, an atom or a molecule can be tunnel ionized. The ejected electron is then accelerated by the intense electric field, and eventually can recombine on its parent ion, leading to the emission of a XUV photon. Because of the generating process in itself, this light source is a promising candidate to probe the electronic structure of atoms and molecules, with an atto-second/sub-nanometer potential resolution (1 as=10 -18 s). In this work, we have studied the sensitivity of the emitted light (in terms of amplitude, but also phase and polarization) towards the electronic structure of the generating medium. We have first worked on atomic medium, then on molecules (N 2 , CO 2 , O 2 ). Comparing the experimental results with numerical simulations shows the necessity to model finely the generation process and to go beyond commonly used approximations. We have also shown the possibility to perform high harmonic spectroscopy in order to measure dynamics of complex molecules, such as Nitrogen Dioxide (NO 2 ). This technic has obtained complementary results compared to classical spectroscopy and has revealed dynamics of the electronic wave packet along a conical intersection. In this experiment, we have adapted conventional optical spectroscopy technic to the XUV spectral area, which significantly improved the signal over noise ratio. (author)
Macías-Díaz, J. E.
2018-02-01
In this work, we introduce a spatially discrete model that is a modification of the well-known α-Fermi-Pasta-Ulam chain with damping. The system is perturbed at one end by a harmonic disturbance irradiating at a frequency in the forbidden band-gap of the classical regime, and a nonlocal coupling between the oscillators is considered using discrete Riesz fractional derivatives. We propose fully discrete expressions to approximate an energy functional of the system, and we use them to calculate the total energy of fractional chains over a relatively long period of time [Fract. Diff. Appl. 4 (2004) 153-162]. The approach is thoroughly tested in the case of local couplings against known qualitative results, including simulations of the process of nonlinear recurrence in the traditional chains of anharmonic oscillators. As an application, we provide evidence that the process of supratransmission is present in spatially discrete Fermi-Pasta-Ulam lattices with Riesz fractional derivatives in space. Moreover, we perform numerical experiments for small and large amplitudes of the harmonic disturbance. In either case, we establish the dependency of the critical amplitude at which supratransmission begins as a function of the driving frequency. Our results are in good agreement with the analytic predictions for the classical Fermi-Pasta-Ulam chain.
Patel, Dhananjay; Singh, Vinay Kumar; Dalal, U. D.
2017-01-01
Single mode fibers (SMF) are typically used in Wide Area Networks (WAN), Metropolitan Area Networks (MAN) and also find applications in Radio over Fiber (RoF) architectures supporting data transmission in Fiber to the Home (FTTH), Remote Antenna Units (RAUs), in-building networks etc. Multi-mode fibers (MMFs) with low cost, ease of installation and low maintenance are predominantly (85-90%) deployed in-building networks providing data access in local area networks (LANs). The transmission of millimeter wave signals through the SMF in WAN and MAN, along with the reuse of MMF in-building networks will not levy fiber reinstallation cost. The transmission of the millimeter waves experiences signal impairments due to the transmitter non-linearity and modal dispersion of the MMF. The MMF exhibiting large modal dispersion limits the bandwidth-length product of the fiber. The second and higher-order harmonics present in the optical signal fall within the system bandwidth. This causes degradation in the received signal and an unwanted radiation of power at the RAU. The power of these harmonics is proportional to the non-linearity of the transmitter and the modal dispersion of the MMF and should be maintained below the standard values as per the international norms. In this paper, a mathematical model is developed for Second-order Harmonic Distortion (HD2) generated due to non-linearity of the transmitter and chromatic-modal dispersion of the SMF-MMF optic link. This is also verified using a software simulation. The model consists of a Mach Zehnder Modulator (MZM) that generates two m-QAM OFDM Single Sideband (SSB) signals based on phase shift of the hybrid coupler (90° and 120°). Our results show that the SSB signal with 120° hybrid coupler has suppresses the higher-order harmonics and makes the system more robust against the HD2 in the SMF-MMF optic link.
The Nonlinear Distortions in the Oscillatory System of Generator on CFOA
Directory of Open Access Journals (Sweden)
Yuriy Konstantinovich Rybin
2012-01-01
Full Text Available In recent years, many articles came out where one could find the analysis of oscillatory systems of electric sinusoid signals generators with amplifiers called CFOA—current feedback operational amplifiers. As a rule, the analysis of such systems is made by applying mathematical modeling methods on the basis of the amplifier linear model, which does not allow estimating advantages and disadvantages of the systems realized with those amplifiers in comparison with classical systems. A nonlinear model of a current feedback operational amplifier (CFOA is introduced in the paper; nonlinearity of “current mirror” is reflected in the form of current double limiting. The analysis of two known oscillatory systems has been carried out with the use of this non-linear model. Dependence between current limiting level, output voltage amplitude, and maximum oscillation frequency has been obtained. The paper shows that output current limiting under current output connection of capacitive load reduces frequency range and output voltage amplitude considerably and increases harmonic distortions in comparison with classical oscillatory systems. The research done has found that the application of new amplifiers does not give considerable advantages to the oscillatory systems with CFOA.
Novak, A.; Simon, L.; Lotton, P.
2018-04-01
Mechanical transducers, such as shakers, loudspeakers and compression drivers that are used as excitation devices to excite acoustical or mechanical nonlinear systems under test are imperfect. Due to their nonlinear behaviour, unwanted contributions appear at their output besides the wanted part of the signal. Since these devices are used to study nonlinear systems, it should be required to measure properly the systems under test by overcoming the influence of the nonlinear excitation device. In this paper, a simple method that corrects distorted output signal of the excitation device by means of predistortion of its input signal is presented. A periodic signal is applied to the input of the excitation device and, from analysing the output signal of the device, the input signal is modified in such a way that the undesirable spectral components in the output of the excitation device are cancelled out after few iterations of real-time processing. The experimental results provided on an electrodynamic shaker show that the spectral purity of the generated acceleration output approaches 100 dB after few iterations (1 s). This output signal, applied to the system under test, is thus cleaned from the undesirable components produced by the excitation device; this is an important condition to ensure a correct measurement of the nonlinear system under test.
Propagation dynamics and X-pulse formation in phase-mismatched second-harmonic generation
International Nuclear Information System (INIS)
Valiulis, G.; Jukna, V.; Jedrkiewicz, O.; Clerici, M.; Rubino, E.; DiTrapani, P.
2011-01-01
This paper concerns the theoretical, numerical, and experimental study of the second-harmonic-generation (SHG) process under conditions of phase and group-velocity mismatch and aims to demonstrate the dimensionality transition of the SHG process caused by the change of the fundamental wave diameter. We show that SHG from a narrow fundamental beam leads to the spontaneous self-phase-matching process with, in addition, the appearance of angular dispersion for the off-axis frequency components generated. The angular dispersion sustains the formation of the short X pulse in the second harmonic (SH) and is recognized as three-dimensional (3D) dynamics. On the contrary, the large-diameter fundamental beam reduces the number of the degrees of freedom, does not allow the generation of the angular dispersion, and maintains the so-called one-dimensional (1D) SHG dynamics, where the self-phase-matching appears just for axial components and is accompanied by the shrinking of the SH temporal bandwidth, and sustains a long SH pulse formation. The transition from long SH pulse generation typical of the 1D dynamics to the short 3D X pulse is illustrated numerically and experimentally by changing the conditions from the self-defocusing to the self-focusing regime by simply tuning the phase mismatch. The numerical and experimental verification of the analytical results are also presented.
Single attosecond pulse from terahertz-assisted high-order harmonic generation
Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Fulop, Jozsef A.; Farkas, Gyozo; Hebling, Janos; Tosa, Valer; Varju, Katalin
2011-08-01
High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.
Single attosecond pulse from terahertz-assisted high-order harmonic generation
International Nuclear Information System (INIS)
Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Farkas, Gyozo; Fulop, Jozsef A.; Hebling, Janos; Tosa, Valer; Varju, Katalin
2011-01-01
High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.
Single attosecond pulse from terahertz-assisted high-order harmonic generation
Energy Technology Data Exchange (ETDEWEB)
Balogh, Emeric [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); Kovacs, Katalin [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Dombi, Peter; Farkas, Gyozo [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary); Fulop, Jozsef A.; Hebling, Janos [Department of Experimental Physics, University of Pecs, H-7624 Pecs (Hungary); Tosa, Valer [National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Varju, Katalin [HAS Research Group on Laser Physics, University of Szeged, H-6701 Szeged (Hungary)
2011-08-15
High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.
Two-color phase control of high-order harmonic generation in intense laser fields
International Nuclear Information System (INIS)
Telnov, D.A.; Wang, J.; Chu, S.
1995-01-01
We present a time-independent generalized Floquet approach for nonperturbative treatment of high-order harmonic generation (HG) in intense onea (i) determination of the complex quasienergy eigenvalue and eigenfunction by means of the non-Hermitian Floquet formalism, wherein the Floquet Hamiltonian is discretized by the complex-scaling generalized pseudospectral technique [Wang, Chu, and Laughlin, Phys. Rev. A 50, 3208 (1994)], and (ii) calculation of the HG rates based on the approach that implies the classical treatment of the electromagnetic field and quantal treatment of the atom. The method is applied to the nonperturbative study of HG by the hydrogen atom in strong laser fields with the fundamental frequencies 532 and 775 nm and their third harmonics. The results show a strong dependence on the relative phase δ between the fundamental frequency field and its harmonic. For the intensities used in calculations (1x10 13 and 5x10 13 W/cm 2 for the fundamental frequency 532 nm and 1x10 13 and 3x10 13 W/cm 2 for the fundamental frequency 775 nm, the harmonic intensity being 10 and 100 times weaker), the total photon emission rate has its maximum at δ=0 and minimum at δ=π. However, this tendency, while valid for the first several HG peaks, is reversed for the higher HG peaks. The HG spectrum for δ=π is broader and the peak heights decrease more slowly compared to the case of δ=0. These results have their analog in the multiphoton above-threshold detachment study performed recently for H - ions [Telnov, Wang, and Chu, Phys. Rev. A 51, 4797 (1995)
Effect of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma
International Nuclear Information System (INIS)
Nitikant; Sharma, A K
2004-01-01
The process of second harmonic generation of an intense short pulse laser in a plasma is resonantly enhanced by the application of a magnetic wiggler. The wiggler of suitable wave number k-vector 0 provides necessary momentum to second harmonic photons to make harmonic generation a resonant process. The laser imparts an oscillatory velocity to electrons and exerts a longitudinal ponderomotive force on them at (2ω 1 ,2k-vector 1 ), where ω 1 and k-vector 1 are the frequency and the wave number of the laser, respectively. As the electrons acquire oscillatory velocity at the second harmonic, the wiggler magnetic field beats with it to produce a transverse second harmonic current at (2ω 1 ,2k-vector 1 +k-vector 0 ), driving the second harmonic electromagnetic radiation. However, the group velocity of the second harmonic wave is greater than that of the fundamental wave, hence, the generated pulse slips out of the main laser pulse and its amplitude saturates
Optical rogue waves generation in a nonlinear metamaterial
Onana Essama, Bedel Giscard; Atangana, Jacques; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Kofane, Timoleon Crepin
2014-11-01
We investigate the behavior of electromagnetic wave which propagates in a metamaterial for negative index regime. The optical pulse propagation is described by the nonlinear Schrödinger equation with cubic-quintic nonlinearities, second- and third-order dispersion effects. The behavior obtained for negative index regime is compared to that observed for positive index regime. The characterization of electromagnetic wave uses some pulse parameters obtained analytically and called collective coordinates such as amplitude, temporal position, width, chirp, frequency shift and phase. Six frequency ranges have been pointed out where a numerical evolution of collective coordinates and their stability are studied under a typical example to verify our analysis. It appears that a robust soliton due to a perfect compensation process between second-order dispersion and cubic-nonlinearity is presented at each frequency range for both negative and positive index regimes. Thereafter, the stability of the soliton pulse and physical conditions leading to optical rogue waves generation are discussed at each frequency range for both regimes, when third-order dispersion and quintic-nonlinearity come into play. We have demonstrated that collective coordinates give much useful information on external and internal behavior of rogue events. Firstly, we determine at what distance begins the internal excitation leading to rogue waves. Secondly, what kind of internal modification and how it modifies the system in order to build-up rogue events. These results lead to a best comprehension of the mechanism of rogue waves generation. So, it clearly appears that the rogue wave behavior strongly depends on nonlinearity strength of distortion, frequency and regime considered.
Extreme UV harmonic production by free-electron generators of coherent radiation
International Nuclear Information System (INIS)
Ortega, J.M.
1986-01-01
The bunching phenomenon is the basic process occurring in a free-electron generator of coherent generation such as the Klystron in the mm-wave-length range or the free-electron laser (FEL) in the optical region. During interaction with the incident electromagnetic wave the electrons are progressively gathered into small packets separated by a length equal to its wavelength λ/sub L/. Once the electrons are bunched there is a given phase relationship between them and the field of any wave which wavelength is an harmonic of λ/sub L/. This is the source of the gain (electrons decelerated by the field) or of the absorption (electrons accelerated by the laser) mechanisms. In the FEL case the electrons are passing through an undulator (spatially varying periodic magnetic field). Since one uses high-energy electrons (E≅100-1000 MeV) they emit synchrotron radiation called in this case undulator radiation or spontaneous emission. This radiation coexists with the stimulated emission giving rise to the gain mechanism and to the FEL oscillation. When the electrons are bunched the spontaneous emission becomes coherent at the wavelength harmonic of λ/sub L/, and there is an increase in the emission intensity which ideally would be N/sub e/. (Number of electrons is typically ≅10/sup 10/.) Thus bursts of photons are emitted at frequencies harmonic of an incident wave which may be an external laser or the FEL itself. This is likely to extend the spectral range of the free-electron generation of coherent radiation toward the extreme UV λ<1000A). The advantages and limitations of the various solutions (linear or circular accelerator, FEL, or external laser) are discussed. The authors summarize the various experimental results obtained to date and the prospects for the synchrotron radiation dedicated ring super-ACO presently under construction at LURE at Orsay
Energy Technology Data Exchange (ETDEWEB)
Ganeev, R. A., E-mail: rashid-ganeev@mail.ru [Ophthalmology and Advanced Laser Medical Center, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama 350-0495 (Japan); Physical Department, Voronezh State University, Voronezh 394006 (Russian Federation)
2016-03-21
We compare the resonance-induced enhancement of single harmonic and the quasi-phase-matching-induced enhancement of the group of harmonics during propagation of the tunable mid-infrared femtosecond pulses through the perforated laser-produced indium plasma. We show that the enhancement of harmonics using the macro-process of quasi-phase-matching is comparable with the one using micro-process of resonantly enhanced harmonic. These studies show that joint implementation of the two methods of the increase of harmonic yield could be a useful tool for generation of strong short-wavelength radiation in different spectral regions. We compare these effects in indium, as well as in other plasmas.
Energy Technology Data Exchange (ETDEWEB)
Reshak, A. H., E-mail: maalidph@yahoo.co.uk [New Technologies-Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Klymovych, O. S.; Zmiy, O. F. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, Voli Av. 13, 43025 Lutsk (Ukraine); Myronchuk, G. L.; Zamuruyeva, O. V. [Department of Physics, Lesya Ukrainka Eastern European National University, Voli Av. 13, 43025 Lutsk (Ukraine); Alahmed, Z. A. [Department of Physics and Astronomy, King Saud University, Riyadh 11451 (Saudi Arabia); Chyský, J.; Bila, Jiri [Department of Instrumentation and Control Engineering, Faculty of Mechanical Engineering, CTU in Prague, Technicka 4, 166 07 Prague 6 (Czech Republic); Kamarudin, H. [Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)
2014-10-14
We have performed the investigation of the nonlinear optical properties namely the third harmonic generation (THG) of the glass-formation region in the Cu{sub 2}Se–GeSe{sub 2}–As{sub 2}Se{sub 3} system. The samples were synthesized by direct single-temperature method from high-purity elementary substances. We have found that the value of disorder parameter Δ depends on the composition of the glassy alloys. The measurements show that increasing the Cu{sub 2}Se concentration leads to increased slope of the absorption edge, which may be explained by the decrease of the height of random potential relief for the electrons in the tails of the state density which border the band edges. A very sharp increase in the THG at low temperature was observed. Significant enhancement in THG was obtained with decreasing the energy gap, which agreed well with the nonlinear optical susceptibilities obtained from other glasses.
Glass formation and the third harmonic generation of Cu2Se–GeSe2–As2Se3 glasses
International Nuclear Information System (INIS)
Reshak, A. H.; Klymovych, O. S.; Zmiy, O. F.; Myronchuk, G. L.; Zamuruyeva, O. V.; Alahmed, Z. A.; Chyský, J.; Bila, Jiri; Kamarudin, H.
2014-01-01
We have performed the investigation of the nonlinear optical properties namely the third harmonic generation (THG) of the glass-formation region in the Cu 2 Se–GeSe 2 –As 2 Se 3 system. The samples were synthesized by direct single-temperature method from high-purity elementary substances. We have found that the value of disorder parameter Δ depends on the composition of the glassy alloys. The measurements show that increasing the Cu 2 Se concentration leads to increased slope of the absorption edge, which may be explained by the decrease of the height of random potential relief for the electrons in the tails of the state density which border the band edges. A very sharp increase in the THG at low temperature was observed. Significant enhancement in THG was obtained with decreasing the energy gap, which agreed well with the nonlinear optical susceptibilities obtained from other glasses.
More efficient second harmonic generation of whispering gallery modes by selective out-coupling
Trainor, Luke S.; Sedlmeir, Florian; Peuntinger, Christian; Schwefel, Harald G. L.
2017-01-01
We demonstrate second harmonic generation (SHG) in an $x$-cut congruent lithium niobate (LN) whispering gallery mode resonator. We first show theoretically that independent control of the coupling of the pump and signal modes is optimal for high conversion rates. A scheme based on our earlier work in Ref. [1] is then implemented experimentally to verify this. Thereby we are able to improve on the efficiency of SHG by more than an order of magnitude by selectively out-coupling using a LN prism...
Third-harmonic generation of a laser-driven quantum dot with impurity
Sakiroglu, S.; Kilic, D. Gul; Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sokmen, I.
2018-06-01
The third-harmonic generation (THG) coefficient for a laser-driven quantum dot with an on-center Gaussian impurity under static magnetic field is theoretically investigated. Laser field effect is treated within the high-frequency Floquet approach and the analytical expression of the THG coefficient is deduced from the compact density-matrix approach. The numerical results demonstrate that the application of intense laser field causes substantial changes on the behavior of THG. In addition the position and magnitude of the resonant peak of THG coefficient is significantly affected by the magnetic field, quantum dot size and the characteristic parameters of the impurity potential.
Advances in high-order harmonic generation sources for time-resolved investigations
Energy Technology Data Exchange (ETDEWEB)
Reduzzi, Maurizio [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Carpeggiani, Paolo [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Kühn, Sergei [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Calegari, Francesca [Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Nisoli, Mauro; Stagira, Salvatore [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Vozzi, Caterina [Institute of Photonics and Nanotechnologies, CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Dombi, Peter [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, 1121 Budapest (Hungary); Kahaly, Subhendu [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Tzallas, Paris; Charalambidis, Dimitris [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Foundation for Research and Technology – Hellas, Institute of Electronic Structure and Lasers, P.O. Box 1527, GR-711 10 Heraklion, Crete (Greece); Varju, Katalin [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, 6720 Szeged (Hungary); Osvay, Karoly [ELI-ALPS, ELI-Hu Kft., Dugonics ter 13, H-6720 Szeged (Hungary); and others
2015-10-15
We review the main research directions ongoing in the development of extreme ultraviolet sources based on high-harmonic generation for the synthesization and application of trains and isolated attosecond pulses to time-resolved spectroscopy. A few experimental and theoretical works will be discussed in connection to well-established attosecond techniques. In this context, we present the unique possibilities offered for time-resolved investigations on the attosecond timescale by the new Extreme Light Infrastructure Attosecond Light Pulse Source, which is currently under construction.
Advances in high-order harmonic generation sources for time-resolved investigations
International Nuclear Information System (INIS)
Reduzzi, Maurizio; Carpeggiani, Paolo; Kühn, Sergei; Calegari, Francesca; Nisoli, Mauro; Stagira, Salvatore; Vozzi, Caterina; Dombi, Peter; Kahaly, Subhendu; Tzallas, Paris; Charalambidis, Dimitris; Varju, Katalin; Osvay, Karoly
2015-01-01
We review the main research directions ongoing in the development of extreme ultraviolet sources based on high-harmonic generation for the synthesization and application of trains and isolated attosecond pulses to time-resolved spectroscopy. A few experimental and theoretical works will be discussed in connection to well-established attosecond techniques. In this context, we present the unique possibilities offered for time-resolved investigations on the attosecond timescale by the new Extreme Light Infrastructure Attosecond Light Pulse Source, which is currently under construction.
Damianos, D.; Vitrant, G.; Lei, M.; Changala, J.; Kaminski-Cachopo, A.; Blanc-Pelissier, D.; Cristoloveanu, S.; Ionica, I.
2018-05-01
In this work, we investigate Second Harmonic Generation (SHG) as a non-destructive characterization method for Silicon-On-Insulator (SOI) materials. For thick SOI stacks, the SHG signal is related to the thickness variations of the different layers. However, in thin SOI films, the comparison between measurements and optical modeling suggests a supplementary SHG contribution attributed to the electric fields at the SiO2/Si interfaces. The impact of the electric field at each interface of the SOI on the SHG is assessed. The SHG technique can be used to evaluate interfacial electric fields and consequently interface charge density in SOI materials.
Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy
Energy Technology Data Exchange (ETDEWEB)
Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore)
2014-09-08
We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.
Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy
International Nuclear Information System (INIS)
Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei
2014-01-01
We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.
On the possible origin of bulk third harmonic generation in skin cells
Su, Tung-Yu; Liao, Chien-Sheng; Yang, Chih-Yuan; Zhuo, Guan-Yu; Chen, Szu-Yu; Chu, Shi-Wei
2011-09-01
We studied third harmonic generation (THG) of melanin solution with concentrations similar to melanocytes in human skin. In contrast to conventional observation of THG at interface, bulk THG was detected inside the solution due to the formation of melanin hydrocolloids. A linear relationship between melanin concentration and THG intensity was found, suggesting THG originated from high-order hyper-Rayleigh scattering. By fitting this linear relationship, third-order hyperpolarizability of melanin hydrocolloids was determined to be three orders larger than that of water. Our result will be useful for interpretation of THG signals in skin and other tissues containing colloidal particles.
Development of a high-flux XUV source based on high-order harmonic generation
Czech Academy of Sciences Publication Activity Database
Nefedova, Victoria; Albrecht, Martin; Kozlová, Michaela; Nejdl, Jaroslav
2017-01-01
Roč. 220, Oct (2017), s. 9-13 ISSN 0368-2048 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : optimization * high harmonic generation * HHG * laser * XUV radiation * phase-matching * conversion efficiency Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.661, year: 2016
Su, Ping-Jung; Chen, Wei-Liang; Hong, Jin-Bon; Li, Tsung-Hsien; Wu, Ruei-Jr; Chou, Chen-Kuan; Lin, Sung-Jan; Dong, Chen-Yuan
2010-02-01
We used polarization-resolved, second harmonic generation (P-SHG) microscopy at single pixel resolution for medical diagnosis of pathological skin dermis, and found that P-SHG can be used to distinguish normal and dermal pathological conditions of keloid, morphea, and dermal elastolysis. We find that the histograms of the d33/d31 ratio for the pathological skins to contain two peak values and to be wider than that of the normal case, suggesting that the pathological dermal collagen fibers tend to be more structurally heterogeneous. Our work demonstrates that pixel-resolved, second-order susceptibility microscopy is effective for detecting heterogeneity in spatial distribution of collagen fibers.
Atomically Phase-Matched Second-Harmonic Generation in a 2D Crystal
2016-08-26
OPEN ORIGINAL ARTICLE Atomically phase-matched second-harmonic generation in a 2D crystal Mervin Zhao1,2,*, Ziliang Ye1,2,*, Ryuji Suzuki3,4,*, Yu...photoluminescence mapping, Raman spectroscopy and atomic -force microscopy. (b) Image produced via scanning and gathering the SH light produced by the 3R-MoS2...arising from a single atomic layer, where the SH light elucidated important information such as the grain boundaries and electronic structure in these ultra
A superconducting short period undulator for a harmonic generation FEL experiment
International Nuclear Information System (INIS)
Ingold, G.; Solomon, L.; Ben-Zvi, I.; Krinsky, S.; Li, D.; Lynch, D.; Sheehan, J.; Woodle, M.; Qiu, X.Z.; Yu, L.H.
1993-01-01
A three stage superconducting (SC) undulator for a high gain harmonic generation (HGE) FEL experiment in the infrared is under construction at the NSLS in collaboration with Grumman Corporation. A novel undulator technology suitable for short period (6-40mm) undulators will be employed for all three stages, the modulator, the dispersive section and the radiator. The undulator triples the frequency of a 10.4μm CO 2 seed laser. So far a 27 period (one third of the final radiator) prototype radiator has been designed, built and tested
High efficiency fourth-harmonic generation from nanosecond fiber master oscillator power amplifier
Mu, Xiaodong; Steinvurzel, Paul; Rose, Todd S.; Lotshaw, William T.; Beck, Steven M.; Clemmons, James H.
2016-03-01
We demonstrate high power, deep ultraviolet (DUV) conversion to 266 nm through frequency quadrupling of a nanosecond pulse width 1064 nm fiber master oscillator power amplifier (MOPA). The MOPA system uses an Yb-doped double-clad polarization-maintaining large mode area tapered fiber as the final gain stage to generate 0.5-mJ, 10 W, 1.7- ns single mode pulses at a repetition rate of 20 kHz with measured spectral bandwidth of 10.6 GHz (40 pm), and beam qualities of Mx 2=1.07 and My 2=1.03, respectively. Using LBO and BBO crystals for the second-harmonic generation (SHG) and fourth-harmonic generation (FHG), we have achieved 375 μJ (7.5 W) and 92.5 μJ (1.85 W) at wavelengths of 532 nm and 266 nm, respectively. To the best of our knowledge these are the highest narrowband infrared, green and UV pulse energies obtained to date from a fully spliced fiber amplifier. We also demonstrate high efficiency SHG and FHG with walk-off compensated (WOC) crystal pairs and tightly focused pump beam. An SHG efficiency of 75%, FHG efficiency of 47%, and an overall efficiency of 35% from 1064 nm to 266 nm are obtained.
A novel intravital multi-harmonic generation microscope for early diagnosis of oral cancer
Cheng, Yu-Hsiang; Lin, Chih-Feng; Shih, Ting-Fang; Sun, Chi-Kuang
2013-03-01
Oral cancer is one of the most frequently diagnosed human cancers and leading causes of cancer death all over the world, but the prognosis and overall survival rate are still poor because of delay in diagnosis and lack of early intervention. The failure of early diagnosis is due to insufficiency of proper diagnostic and screening tools and most patients are reluctant to undergo biopsy. Optical virtual biopsy techniques, for imaging cells and tissues at microscopic details capable of differentiating benign from malignant lesions non-invasively, are thus highly desirable. A novel multi-harmonic generation microscope, excited by a 1260 nm Cr:forsterite laser, with second and third harmonic signals demonstrating collagen fiber distribution and cell morphology in a sub-micron resolution, was developed for clinical use. To achieve invivo observation inside the human oral cavity, a small objective probe with a suction capability was carefully designed for patients' comfort and stability. By remotely changing its focus point, the same objective can image the mucosa surface with a low magnification, illuminated by side light-emitting diodes, with a charge-coupled device (CCD) for site location selection before the harmonic generation biopsy was applied. Furthermore, the slow galvanometer mirror and the fast resonant mirror provide a 30 fps frame rate for high-speed real-time observation and the z-motor of this system is triggered at the same rate to provide fast 3D scanning, again ensuring patients' comfort. Focusing on the special cytological and morphological changes of the oral epithelial cells, our preliminary result disclosed excellent consistency with traditional histopathology studies.
International Nuclear Information System (INIS)
Le, Anh-Thu; Lin, C. D.; Lucchese, R. R.
2010-01-01
We present theoretical calculations for polarization and ellipticity of high-order harmonics from aligned N 2 , CO 2 , and O 2 molecules generated by linearly polarized lasers. Within the rescattering model, the two polarization amplitudes of the harmonics are determined by the photo-recombination amplitudes for photons emitted with polarization parallel or perpendicular to the direction of the same returning electron wave packet. Our results show clear species-dependent polarization states, in excellent agreement with experiments. We further note that the measured polarization ellipse of the harmonic furnishes the needed parameters for a 'complete' experiment in molecules.
Kovchegov, Yuri V.; Skokov, Vladimir V.
2018-05-01
We show that, in the saturation/color glass condensate framework, odd azimuthal harmonics of the two-gluon correlation function with a long-range separation in rapidity are generated by the higher-order saturation corrections in the interactions with the projectile and the target. At the very least, the odd harmonics require three scatterings in the projectile and three scatterings in the target. We derive the leading-order expression for the two-gluon production cross section which generates odd harmonics: the expression includes all-order interactions with the target and three interactions with the projectile. We evaluate the obtained expression both analytically and numerically, confirming that the odd-harmonics contribution to the two-gluon production in the saturation framework is nonzero.
Nonlinear generation of the fundamental radiation in plasmas
International Nuclear Information System (INIS)
Chian, A.C.L.; Rizzato, F.B.
1993-01-01
Nonlinear generation of coherent electromagnetic radiation by intense Langmuir waves in the vicinity of the fundamental plasma frequency f p is of current interest in space and laboratory plasmas. In a pioneer work, Lashmore-Davies demonstrated that an efficient process for converting intense Langmuir waves into f p electromagnetic radiation can be achieved by two counterstreaming Langmuir pump waves through an electromagnetic oscillating two-stream instability. Recently Chian and Alves, Akimoto and Rizzato and Chian extended the formalism of Lashmore-Davies in order to include mixed processes with induced modes which are purely electrostatic or electromagnetic. In this paper we extend our previous analysis, in order to study the nonlinear interaction involving travelling electromagnetic pumps, low-frequency density fluctuations and high-frequency f p modes which can be electrostatic-electromagnetic hybrids. (author) 5 refs., 2 figs
Nonlinear mode conversion with chaotic soliton generation at plasma resonance
International Nuclear Information System (INIS)
Pietsch, H.; Laedke, E.W.; Spatschek, K.H.
1993-01-01
The resonant absorption of electromagnetic waves near the critical density in inhomogeneous plasmas is studied. A driven nonlinear Schroedinger equation for the mode-converted oscillations is derived by multiple-scaling techniques. The model is simulated numerically. The generic transition from a stationary to a time-dependent solution is investigated. Depending on the parameters, a time-chaotic behavior is found. By a nonlinear analysis, based on the inverse scattering transform, solitons of a corresponding integrable equation are identified as the dominant coherent structures of the chaotic dynamics. Finally, a map is presented which predicts chaotic soliton generation and emission at the critical density. Its qualitative behavior, concerning the bifurcation points, is in excellent agreement with the numerical simulations
Abanador, Paul M.; Mauger, François; Lopata, Kenneth; Gaarde, Mette B.; Schafer, Kenneth J.
2018-04-01
Using a model molecular system (A2) with two active electrons restricted to one dimension, we examine high-order harmonic generation (HHG) enhanced by rescattering. Our results show that even at intensities well below the single ionization saturation, harmonics generated from the cation (A2+ ) can be significantly enhanced due to the rescattering of the electron that is initially ionized. This two-electron effect is manifested by the appearance of a secondary plateau and cutoff in the HHG spectrum, extending beyond the predicted cutoff in the single active electron approximation. We use our molecular model to investigate the wavelength dependence of rescattering enhanced HHG, which was first reported in a model atomic system [I. Tikhomirov, T. Sato, and K. L. Ishikawa, Phys. Rev. Lett. 118, 203202 (2017), 10.1103/PhysRevLett.118.203202]. We demonstrate that the HHG yield in the secondary cutoff is highly sensitive to the available electron rescattering energies as indicated by a dramatic scaling with respect to driving wavelength.
Towards protein-crystal centering using second-harmonic generation (SHG) microscopy
International Nuclear Information System (INIS)
Kissick, David J.; Dettmar, Christopher M.; Becker, Michael; Mulichak, Anne M.; Cherezov, Vadim; Ginell, Stephan L.; Battaile, Kevin P.; Keefe, Lisa J.; Fischetti, Robert F.; Simpson, Garth J.
2013-01-01
The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals has been explored. The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using β 2 adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHG images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed
Adur, J.; Ferreira, A. E.; D'Souza-Li, L.; Pelegati, V. B.; de Thomaz, A. A.; Almeida, D. B.; Baratti, M. O.; Carvalho, H. F.; Cesar, C. L.
2012-03-01
Osteogenesis Imperfecta (OI) is a genetic disorder that leads to bone fractures due to mutations in the Col1A1 or Col1A2 genes that affect the primary structure of the collagen I chain with the ultimate outcome in collagen I fibrils that are either reduced in quantity or abnormally organized in the whole body. A quick test screening of the patients would largely reduce the sample number to be studied by the time consuming molecular genetics techniques. For this reason an assessment of the human skin collagen structure by Second Harmonic Generation (SHG) can be used as a screening technique to speed up the correlation of genetics/phenotype/OI types understanding. In the present work we have used quantitative second harmonic generation (SHG) imaging microscopy to investigate the collagen matrix organization of the OI human skin samples comparing with normal control patients. By comparing fibril collagen distribution and spatial organization, we calculated the anisotropy and texture patterns of this structural protein. The analysis of the anisotropy was performed by means of the two-dimensional Discrete Fourier Transform and image pattern analysis with Gray-Level Co-occurrence Matrix (GLCM). From these results, we show that statistically different results are obtained for the normal and disease states of OI.
Theoretical analysis of dynamic chemical imaging with lasers using high-order harmonic generation
International Nuclear Information System (INIS)
Van-Hoang Le; Anh-Thu Le; Xie Ruihua; Lin, C. D.
2007-01-01
We report theoretical investigations of the tomographic procedure suggested by Itatani et al. [Nature (London) 432, 867 (2004)] for reconstructing highest occupied molecular orbitals (HOMOs) using high-order harmonic generation (HHG). Due to the limited range of harmonics from the plateau region, we found that even under the most favorable assumptions, it is still very difficult to obtain accurate HOMO wave functions using the tomographic procedure, but the symmetry of the HOMOs and the internuclear separation between the atoms can be accurately extracted, especially when lasers of longer wavelengths are used to generate the HHG. Since the tomographic procedure relies on approximating the continuum wave functions in the recombination process by plane waves, the method can no longer be applied upon the improvement of the theory. For future chemical imaging with lasers, we suggest that one may want to focus on how to extract the positions of atoms in molecules instead, by developing an iterative method such that the theoretically calculated macroscopic HHG spectra can best fit the experimental HHG data
Directory of Open Access Journals (Sweden)
Ying Chen
Full Text Available In this paper, we present the direct-substitution (DS method to study the second-harmonic generation (SHG in arbitrary one-dimensional optical superlattices (OS. Applying this method to Fibonacci and generalized Fibonacci systems, we obtain the relative intensity of SHG and compare them with previous works. We confirmed the validity of the proposed DS method by comparing our results of SHG in quasiperiodic Fibonacci OS with previous works using analytical Fourier transform method. Furthermore, the three-dimension SHG spectra obtained by DS method present the properties of SHG in Fibonacci OS more distinctly. What’s more important, the DS method demands very few limits and can be used to compute directly and conveniently the intensity of SHG in arbitrary OS where the quasi-phase-matching (QPM can be achieved. It shows that the DS method is powerful for the calculation of electric field and intensity of SHG and can help experimentalists conveniently to estimate the distributions of SHG in any designed polarized systems. Keywords: Second-harmonic generation, Direct-substitution, Fibonacci
Electric generating capacity planning: A nonlinear programming approach
Energy Technology Data Exchange (ETDEWEB)
Yakin, M.Z.; McFarland, J.W.
1987-02-01
This paper presents a nonlinear programming approach for long-range generating capacity expansion planning in electrical power systems. The objective in the model is the minimization of total cost consisting of investment cost plus generation cost for a multi-year planning horizon. Reliability constraints are imposed by using standard and practical reserve margin requirements. State equations representing the dynamic aspect of the problem are included. The electricity demand (load) and plant availabilities are treated as random variables, and the method of cumulants is used to calculate the expected energy generated by each plant in each year of the planning horizon. The resulting model has a (highly) nonlinear objective function and linear constraints. The planning model is solved over the multiyear planning horizon instead of decomposing it into one-year period problems. This approach helps the utility decision maker to carry out extensive sensitivity analysis easily. A case study example is provided using EPRI test data. Relationships among the reserve margin, total cost and surplus energy generating capacity over the planning horizon are explored by analyzing the model.
Li, Baihong; Dong, Ruifang; Zhou, Conghua; Xiang, Xiao; Li, Yongfang; Zhang, Shougang
2018-05-01
Selective two-photon microscopy and high-precision nonlinear spectroscopy rely on efficient spectral compression at the desired frequency. Previously, a Fresnel-inspired binary phase shaping (FIBPS) method was theoretically proposed for spectral compression of two-photon absorption and second-harmonic generation (SHG) with a square-chirped pulse. Here, we theoretically show that the FIBPS can introduce a negative quadratic frequency phase (negative chirp) by analogy with the spatial-domain phase function of Fresnel zone plate. Thus, the previous theoretical model can be extended to the case where the pulse can be transformed limited and in any symmetrical spectral shape. As an example, we experimentally demonstrate spectral compression in SHG by FIBPS for a Gaussian transform-limited pulse and show good agreement with the theory. Given the fundamental pulse bandwidth, a narrower SHG bandwidth with relatively high intensity can be obtained by simply increasing the number of binary phases. The experimental results also verify that our method is superior to that proposed in [Phys. Rev. A 46, 2749 (1992), 10.1103/PhysRevA.46.2749]. This method will significantly facilitate the applications of selective two-photon microscopy and spectroscopy. Moreover, as it can introduce negative dispersion, hence it can also be generalized to other applications in the field of dispersion compensation.
Directory of Open Access Journals (Sweden)
Chunqiang Li
2016-01-01
Full Text Available Atherosclerosis has been recognized as a chronic inflammation disease, in which many types of cells participate in this process, including lymphocytes, macrophages, dendritic cells (DCs, mast cells, vascular smooth muscle cells (SMCs. Developments in imaging technology provide the capability to observe cellular and tissue components and their interactions. The knowledge of the functions of immune cells and their interactions with other cell and tissue components will facilitate our discovery of biomarkers in atherosclerosis and prediction of the risk factor of rupture-prone plaques. Nonlinear optical microscopy based on two-photon excited autofluorescence and second harmonic generation (SHG were developed to image mast cells, SMCs and collagen in plaque ex vivo using endogenous optical signals. Mast cells were imaged with two-photon tryptophan autofluorescence, SMCs were imaged with two-photon NADH autofluorescence, and collagen were imaged with SHG. This development paves the way for further study of mast cell degranulation, and the effects of mast cell derived mediators such as induced synthesis and activation of matrix metalloproteinases (MMPs which participate in the degradation of collagen.
Czech Academy of Sciences Publication Activity Database
Gilary, I.; Kaprálová, Petra; Moiseyev, N.
2006-01-01
Roč. 74, - (2006), 052505-1 ISSN 1050-2947 R&D Projects: GA AV ČR(CZ) KJB100550501; GA MŠk(CZ) LC512 Grant - others:Israel Science Foundation(IL) 1152/04 Institutional research plan: CEZ:AV0Z40550506 Keywords : high-order harmonic generation * symmetry selection rules * even harmonics * complex scaling * F-produkt Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.047, year: 2006
Second Harmonic Generation Imaging Analysis of Collagen Arrangement in Human Cornea.
Park, Choul Yong; Lee, Jimmy K; Chuck, Roy S
2015-08-01
To describe the horizontal arrangement of human corneal collagen bundles by using second harmonic generation (SHG) imaging. Human corneas were imaged with an inverted two photon excitation fluorescence microscope. The excitation laser (Ti:Sapphire) was tuned to 850 nm. Backscatter signals of SHG were collected through a 425/30-nm bandpass emission filter. Multiple, consecutive, and overlapping image stacks (z-stacks) were acquired to generate three dimensional data sets. ImageJ software was used to analyze the arrangement pattern (irregularity) of collagen bundles at each image plane. Collagen bundles in the corneal lamellae demonstrated a complex layout merging and splitting within a single lamellar plane. The patterns were significantly different in the superficial and limbal cornea when compared with deep and central regions. Collagen bundles were smaller in the superficial layer and larger in deep lamellae. By using SHG imaging, the horizontal arrangement of corneal collagen bundles was elucidated at different depths and focal regions of the human cornea.
International Nuclear Information System (INIS)
Superfine, R.; Huang, J.Y.; Shen, Y.R.
1988-12-01
We have used sum frequency generation (SFG) to study the order in a silane monolayer before and after the deposition of a coadsorbed liquid crystal monolayer. We observe an increase in the order of the chain of the silane molecule induced by the interpenetration of the liquid crystal molecules. By using second harmonic generation (SHG) and SFG, we have studied the orientation and conformation of the liquid crystal molecule on clean and silane coated glass surfaces. On both surfaces, the biphenyl group is tilted by 70 degree with the alkyl chain end pointing away from the surface. The shift in the C-H stretch frequencies in the coadsorbed system indicates a significant interaction between molecules. 9 refs., 3 figs
Robust enhancement of high harmonic generation via attosecond control of ionization.
Bruner, Barry D; Krüger, Michael; Pedatzur, Oren; Orenstein, Gal; Azoury, Doron; Dudovich, Nirit
2018-04-02
High-harmonic generation (HHG) is a powerful tool to generate coherent attosecond light pulses in the extreme ultraviolet. However, the low conversion efficiency of HHG at the single atom level poses a significant practical limitation for many applications. Enhancing the efficiency of the process defines one of the primary challenges in the application of HHG as an advanced XUV source. In this work, we demonstrate a new mechanism, which in contrast to current methods, enhances the HHG conversion efficiency purely on a single particle level. We show that using a bichromatic driving field, sub-optical-cycle control and enhancement of the tunnelling ionization rate can be achieved, leading to enhancements in HHG efficiency by up to two orders of magnitude. Our method advances the perspectives of HHG spectroscopy, where isolating the single particle response is an essential component, and offers a simple route toward scalable, robust XUV sources.
Passive energy jitter reduction in the cascaded third harmonic generation process
International Nuclear Information System (INIS)
Yan, L; Du, Y; You, Y; Sun, X; Wang, D; Hua, J; Shi, J; Lu, W; Huang, W; Chen, H; Tang, C; Huang, Z
2014-01-01
In free electron laser (FEL) systems with ultraviolet (UV) laser driven injectors, a highly stable UV source generated through cascaded third harmonic generation (THG) from an infrared (IR) source is a key element in guaranteeing the acceptable current jitter at the undulator. In this letter, the negative slope of the THG efficiency for high intensity ultrashort IR pulses is revealed to be a passive stabilization mechanism for energy jitter reduction in UV. A reduction of 2.5 times the energy jitter in UV is demonstrated in the experiment and simulations show that the energy jitter in UV can be reduced by more than one order of magnitude if the energy jitter in IR is less than 3%, with proper design of the THG efficiency curve, fulfilling the challenging requirement for UV laser stability in a broad scope of applications such as the photoinjector of x-ray FELs. (letter)
International Nuclear Information System (INIS)
Warner, E.S.; Heath, G.A.
2012-01-01
A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO 2 -eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO 2 -eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO 2 -eq/kWh by 2050.
Nonlinear radiation generation processes in the auroral acceleration region
Directory of Open Access Journals (Sweden)
R. Pottelette
2017-11-01
Full Text Available It is known from laboratory plasma experiments that double layers (DLs radiate in the electromagnetic spectrum; but this is only known qualitatively. In these experiments, it was shown that the electron beam created on the high-potential side of a DL generates nonlinear structures which couple to electromagnetic waves and act as a sender antenna. In the Earth auroral region, observations performed by auroral spacecraft have shown that DLs occur naturally in the source region of intense radio emissions called auroral kilometric radiation (AKR. Very high time-, spatial-, and temporal-resolution measurements are needed in order to characterize waves and particle distributions in the vicinity of DLs, which are moving transient structures. We report observations from the FAST satellite of a localized large-amplitude parallel electric field (∼ 300 mV m−1 recorded at the edges of the auroral density cavity. In agreement with laboratory experiments, on the high-potential side of the DL, elementary radiation events are detected. They occur substantially above the local electron gyrofrequency and are associated with the presence of electron holes. The velocity of these nonlinear structures can be derived from the measurement of the Doppler-shifted AKR frequency spectrum above the electron gyrofrequency. The generated electron holes appear as the nonlinear evolution of electrostatic waves generated by the electron–electron two-stream instability because they propagate at about half the beam velocity. It is pointed out that, in the vicinity of a DL, the shape of the electron distribution gives rise to a significant power recorded in the left-hand polarized ordinary (LO mode.
Nonlinear Flow Generation By Electrostatic Turbulence In Tokamaks
International Nuclear Information System (INIS)
Wang, W.X.; Diamond, P.H.; Hahm, T.S.; Ethier, S.; Rewoldt, G.; Tang, W.M.
2010-01-01
Global gyrokinetic simulations have revealed an important nonlinear flow generation process due to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes and trapped electron modes (TEM). In collisionless TEM (CTEM) turbulence, nonlinear residual stress generation by both the fluctuation intensity and the intensity gradient in the presence of broken symmetry in the parallel wave number spectrum is identified for the first time. Concerning the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear has been identified to be a key, universal mechanism in various turbulence regimes. Simulations reported here also indicate the existence of other mechanisms beyond E - B shear. The ITG turbulence driven 'intrinsic' torque associated with residual stress is shown to increase close to linearly with the ion temperature gradient, in qualitative agreement with experimental observations in various devices. In CTEM dominated regimes, a net toroidal rotation is driven in the cocurrent direction by 'intrinsic' torque, consistent with the experimental trend of observed intrinsic rotation. The finding of a 'flow pinch' in CTEM turbulence may offer an interesting new insight into the underlying dynamics governing the radial penetration of modulated flows in perturbation experiments. Finally, simulations also reveal highly distinct phase space structures between CTEM and ITG turbulence driven momentum, energy and particle fluxes, elucidating the roles of resonant and non-resonant particles.
Directory of Open Access Journals (Sweden)
Hasanova L. H.
2017-12-01
Full Text Available Nowadays permanent magnet synchronous machines those frequency-controlled from stator side with frequency inverters made on the basis of power transistors or fully controlled thyristors, are widely used as motors and generators. In future they are also promising a good application in transport, including marine. Modern frequency inverters are equipped with a control system based on sine-shaped pulse width modulation. While shaping the voltage in the output of the inverter, in addition to the fundamental harmonic, higher harmonic components are also included in the voltage shape, which certainly affect the operating parameters of the generator (electromagnetic torque, power, currents. To determine this effect the modeling and investigation technique of higher harmonic voltages in the "electric network – frequency converter – synchronous machine with permanent magnets" system has been developed. The proposed equations of a frequency-controlled permanent magnet synchronous machine allow relatively simply reproduce the harmonic composition of the voltage in the output of a frequency inverter equipped with the control system based on a sinusoidal pulse width modulation. The developed research technique can be used for inverters with any number and composition of voltage harmonic components feeding a stator winding of a permanent magnet synchronous machine. On a particular case, the efficiency of the research technique of the higher harmonics influence on the operating parameters of the generator has been demonstrated. At the same time, the study has been carried out taking into account the shape of the voltage curve feeding the windings of the synchronous machine containing in addition to the fundamental harmonic the 8, 10, 11, 13, 14 and 16-th harmonic components, and the rated active power of the synchronous machine has been equal to 1 500 kW.
Stator Current Harmonic Control with Resonant Controller for Doubly Fed Induction Generator
DEFF Research Database (Denmark)
Liu, Changjin; Blaabjerg, Frede; Chen, Wenjie
2012-01-01
rotor current control loop for harmonic suppression. The overall control scheme is implemented in dq frame. Based on a mathematical model of the DFIG control system, the effects on system stability using the resonant controller, an analysis of the steady-state error, and the dynamic performance......, are discussed in this paper. Taking these effects into account, the parameters of the resonant controller can be designed and effectively damp the influence from the grid voltage harmonics. As a result, the impacts of the negative sequence fifth- and positive sequence seventh-order voltage harmonics...... harmonics, especially low-order harmonics. This paper proposes a stator current harmonic suppression method using a sixth-order resonant controller to eliminate negative sequence fifth- and positive sequence seventh-order current harmonics. A stator current harmonic control loop is added to the conventional...
Interpretation of nonlinearity in wind generated ocean surface waves
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
of sinusoidal component waves; a consequent idea arising out of Fourier analysis. It is hypothesised that a sea state which is always nonlinear to various degrees is a result of interaction, both linear and nonlinear, between nonlinear component waves...
Matteini, Paolo; Ratto, Fulvio; Rossi, Francesca; Cicchi, Riccardo; Stringari, Chiara; Kapsokalyvas, Dimitrios; Pavone, Francesco S.; Pini, Roberto
2009-02-01
The structural modifications in the collagen lattice of corneal stroma induced by near-infrared laser welding were investigated with second-harmonic generation (SHG) imaging. The corneal laser welding procedure is performed by staining the wound edges with a saturated water solution of Indocyanine Green (ICG) followed by irradiation with a 810 nm diode laser operated in continuous (CWLW: continuous wave laser welding) or pulsed (PLW: pulsed laser welding) mode. Both these procedures can provide closure of corneal wounds by inducing different structural modifications in the extracellular matrix. SHG imaging of native corneal stroma revealed collagen bundles composed of many regularly aligned collagen fibrils. After CWLW the regular lamellar arrangement was lost; collagen bundles appeared densely packed with an increasing disordered arrangement toward the welded cut. The weld was characterized by a loss of details; nevertheless, the observation of the second harmonic signal at this site indicated the lack of collagen denaturation. By contrast, PLW mode produced welding spots at the interface between donor and recipient corneal layers, which were characterized by a severe loss of the SHG signal, suggesting the occurrence of a complete collagen denaturation. SHG imaging appeared to be a powerful tool for visualizing the supramolecular morphological modifications in the collagen matrix after laser welding.
Tunable High Harmonic Generation driven by a Visible Optical Parametric Amplifier
Directory of Open Access Journals (Sweden)
Keathley P.
2013-03-01
Full Text Available We studied high-harmonic generation (HHG in Ar, Ne and He gas jets using a broadly tunable, high-energy optical parametric amplifier (OPA in the visible wavelength range. We optimized the noncollinear OPA to deliver tunable, femtosecond pulses with 200-500 μJ energy at 1-kHz repetition rate with excellent spatiotemporal properties, suitable for HHG experiments. By tuning the central wavelength of the OPA while keeping energy, duration and beam size constant, we experimentally studied the scaling law of conversion efficiency and cut-off energy with the driver wavelength in argon and helium respectively. Our measurements show a λ−5.9±0.9 wavelength dependence of the conversion efficiency and a λ1.7±0.2 dependence of the HHG cut-off photon energy over the full visible range in agreement with previous experiments of near- and mid-IR wavelengths. By tuning the central wavelength of the driver source and changing the gas, the high order harmonic spectra in the extreme ultraviolet cover the full range of photon energy between ~25 eV and ~100 eV. Due to the high coherence intrinsic in HHG, as well as the broad and continuous tunability in the extreme UV range, a high energy, high repetition rate version of this source might be an ideal seed for free electron lasers.
Modelling and Analysis of DFIG Wind Turbine Harmonics Generated in Grids
A.Chilambuchelvan; B.BabyPriya,
2010-01-01
In this paper an analytic technique for modelling harmonics is proposed for a DFIG wind turbine connected to the grid. An algorithm based on Hilbert transform for the analysis of harmonics in power systems isdeveloped. The simulation results prove the effectiveness of the Hilbert Transform (HT) for power harmonic analysis in DFIG wind turbine connected to a grid.
Energy Technology Data Exchange (ETDEWEB)
Leblanc, Jean L. [University P. and M. Curie-Paris 6, Polymer Rheology and Processing, Vitry-sur-Seine (France)
2007-10-15
The so-called thermoplastic vulcanizates (TPV) are essentially blends of a crystalline thermoplastic polymer (e.g., polypropylene) and a vulcanizable rubber composition, prepared through a special process called dynamic vulcanization, which yields a fine dispersion of micron-size crosslinked rubber particles in a thermoplastic matrix. Such materials are by nature complex polymer systems, i.e., multiphase, heterogeneous, typically disordered materials for which structure is as important as composition. Correctly assessing their rheological properties is a challenging task for several reasons: first, even if the uniformity of their composition is taken for granted, TPV are indeed very complicated materials, not only heterogeneous but also with a morphology related to their composition; second, their morphology can be affected by the flow field used; third, the migration of small labile ingredients (e.g., oil, curative residue, etc.) can in the meantime significantly change the boundary flow conditions, for instance through self-lubrication due to phase separation of the oil, or wall slip, or both. The aims of the work reported were to investigate a series of commercial TPV through the so-called Fourier transform rheometry, a testing technique especially developed to accurately investigate the nonlinear viscoelastic domain. Results are tentatively interpreted in terms of material composition and structure. (orig.)
Haddad, L. H.; Carr, Lincoln D.
2015-11-01
We analyze the vortex solution space of the (2+1)-dimensional nonlinear Dirac equation for bosons in a honeycomb optical lattice at length scales much larger than the lattice spacing. Dirac point relativistic covariance combined with s-wave scattering for bosons leads to a large number of vortex solutions characterized by different functional forms for the internal spin and overall phase of the order parameter. We present a detailed derivation of these solutions which include skyrmions, half-quantum vortices, Mermin-Ho and Anderson-Toulouse vortices for vortex winding {\\ell }=1. For {\\ell }≥slant 2 we obtain topological as well as non-topological solutions defined by the asymptotic radial dependence. For arbitrary values of ℓ the non-topological solutions include bright ring-vortices which explicitly demonstrate the confining effects of the Dirac operator. We arrive at solutions through an asymptotic Bessel series, algebraic closed-forms, and using standard numerical shooting methods. By including a harmonic potential to simulate a finite trap we compute the discrete spectra associated with radially quantized modes. We demonstrate the continuous spectral mapping between the vortex and free particle limits for all of our solutions.
International Nuclear Information System (INIS)
Kant, Niti; Gupta, Devki Nandan; Suk, Hyyong
2011-01-01
A Gaussian laser-beam resonantly generates a second-harmonic wave in a plasma in the presence of a wiggler magnetic-field of suitable period. The self-focusing of the fundamental pulse enhances the intensity of the second-harmonic pulse. An introduction of an upward plasma-density ramp strongly enhances the self-focusing of the fundamental laser pulse. The laser pulse attains a minimum spot size and propagates up to several Rayleigh lengths without divergence. Due to the strong self-focusing of the fundamental laser pulse, the second-harmonic intensity enhances significantly. A considerable enhancement of the intensity of the second-harmonic is observed from the proposed mechanism. -- Highlights: → An upward plasma-density ramp is very important for laser propagation in plasmas. → As the plasma density increases, effect of self-focusing becomes stronger. → We utilize this self-focused laser to generate second-harmonic radiations. → The self-focusing laser enhances the intensity of the second-harmonic pulse.
Energy Technology Data Exchange (ETDEWEB)
Kant, Niti [Department of Physics, Lovely Professional University, Phagwara 144 402, Punjab (India); Gupta, Devki Nandan, E-mail: dngupta@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Suk, Hyyong [Advanced Photonics Research Institute (APRI) and Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500 712 (Korea, Republic of)
2011-08-15
A Gaussian laser-beam resonantly generates a second-harmonic wave in a plasma in the presence of a wiggler magnetic-field of suitable period. The self-focusing of the fundamental pulse enhances the intensity of the second-harmonic pulse. An introduction of an upward plasma-density ramp strongly enhances the self-focusing of the fundamental laser pulse. The laser pulse attains a minimum spot size and propagates up to several Rayleigh lengths without divergence. Due to the strong self-focusing of the fundamental laser pulse, the second-harmonic intensity enhances significantly. A considerable enhancement of the intensity of the second-harmonic is observed from the proposed mechanism. -- Highlights: → An upward plasma-density ramp is very important for laser propagation in plasmas. → As the plasma density increases, effect of self-focusing becomes stronger. → We utilize this self-focused laser to generate second-harmonic radiations. → The self-focusing laser enhances the intensity of the second-harmonic pulse.
International Nuclear Information System (INIS)
Deng Ming-Xi; Xiang Yan-Xun
2010-01-01
Within the second-order perturbation approximation, this paper investigates the physical process of generation of the time-domain second harmonic by a primary Lamb wave waveform in an elastic plate. The present work is performed based on the preconditions that the phase velocity matching is satisfied and that the transfer of energy from the primary Lamb wave to the double frequency Lamb wave is not zero. It investigates the influences of the difference between the group velocities of the primary Lamb wave and the double frequency Lamb wave, the propagation distance and the duration of the primary Lamb wave waveform on the envelope shape of the time-domain second harmonic. It finds that the maximum magnitude of the envelope of the second-harmonic waveform can grow within some propagation distance even if the condition of group velocity matching is not satisfied. Our analyses also indicate that the maximum magnitude of the envelope of the second-harmonic waveform is kept constant beyond a specific propagation distance. Furthermore, it concludes that the integration amplitude of the time-domain second-harmonic waveform always grows with propagation distance within the second-order perturbation. The present research yields new physical insight not previously available into the effect of generation of the time-domain second harmonic by propagation of a primary Lamb wave waveform
Yao, Yuhong; Knox, Wayne H.
2015-03-01
We report the optical system design of a novel speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed simultaneous second harmonic generation from the efficiently generated Stokes and anti-Stokes pulses from a commercially available photonic crystal fiber (PCF) with two zero dispersion wavelengths (TZDW). We describe the optimized configuration of the TZDW fiber source which supports excitations of dual narrow-band pulses with peak wavelengths at 850 nm, 1260 nm and spectral bandwidths of 23 nm, 26 nm, respectively within 12 cm of commercially available TZDW PCF. The conversion efficiencies are as high as 44% and 33% from the pump source (a custom-built Yb:fiber master-oscillator-power-amplifier). As a result of the nonlinear dynamics of propagation, the dual pulses preserve their ultrashort pulse width (with measured autocorrelation traces of 200 fs and 227 fs,) which eliminates the need for dispersion compensation before harmonic generation. With proper optical design of the free-space harmonic generation system, we achieve milli-Watt power level red, green and blue pulses at 630 nm, 517 nm and 425 nm. Having much broader spectral bandwidths compared to picosecond RGB laser sources, the source is inherently speckle-free due to the ultra-short coherence length (99.4% excitation purities of the three primaries, leading to the coverage of 192% NTSC color gamut (CIE 1976). The reported RGB source features a very simple system geometry, its potential for power scaling is discussed with currently available technologies.
Ren, Ming-Liang; Agarwal, Rahul; Nukala, Pavan; Liu, Wenjing; Agarwal, Ritesh
2016-07-13
We demonstrate that optical second harmonic generation (SHG) can be utilized to determine the exact nature of nanotwins in noncentrosymmetric crystals, which is challenging to resolve via conventional transmission electron or scanned probe microscopies. Using single-crystalline nanotwinned CdTe nanobelts and nanowires as a model system, we show that SHG polarimetry can distinguish between upright (Cd-Te bonds) and inverted (Cd-Cd or Te-Te bonds) twin boundaries in the system. Inverted twin boundaries are generally not reported in nanowires due to the lack of techniques and complexity associated with the study of the nature of such defects. Precise characterization of the nature of defects in nanocrystals is required for deeper understanding of their growth and physical properties to enable their application in future devices.
International Nuclear Information System (INIS)
Ngah Demon, Siti Zulaikha; Miyauchi, Yoshihiro; Mizutani, Goro; Matsushima, Toshinori; Murata, Hideyuki
2014-01-01
Highlights: • SHG phase from the interfaces of ITO/CuPc and ITO/pentacene was observed. • Optical dispersion of the organic thin film was taken into account. • Phase shift from bare ITO was 140° for ITO/CuPc and 160° for ITO/pentacene. - Abstract: We observed phase shift in optical second harmonic generation (SHG) from interfaces of indium tin oxide (ITO)/copper phthalocyanine (CuPc) and ITO/pentacene. Phase correction due to Fresnel factors of the sample was taken into account. The phase of SHG electric field at the ITO/pentacene interface, ϕ interface with respect to the phase of SHG of bare substrate ITO was 160°, while the interface of ITO/CuPc had a phase of 140°
Second-harmonic generation as a DNA malignancy indicator of prostate glandular epithelial cells
International Nuclear Information System (INIS)
Zheng-Fei, Zhuang; Han-Ping, Liu; Zhou-Yi, Guo; Xiao-Yuan, Deng; Shuang-Mu, Zhuo; Bi-Ying, Yu
2010-01-01
This paper first demonstrates second-harmonic generation (SHG) in the intact cell nucleus, which acts as an optical indicator of DNA malignancy in prostate glandular epithelial cells. Within a scanning region of 2.7 μm×2.7 μm in cell nuclei, SHG signals produced from benign prostatic hyperplasia (BPH) and prostate carcinoma (PC) tissues (mouse model C57BL/6) have been investigated. Statistical analyses (t test) of a total of 405 measurements (204 nuclei from BPH and 201 nuclei from PC) show that SHG signals from BPH and PC have a distinct difference (p < 0.05), suggesting a potential optical method of revealing very early malignancy in prostate glandular epithelial cells based upon induced biochemical and/or biophysical modifications in DNA. (geophysics, astronomy and astrophysics)
Application of Fourier transform-second-harmonic generation imaging to the rat cervix.
Lau, T Y; Sangha, H K; Chien, E K; McFarlin, B L; Wagoner Johnson, A J; Toussaint, K C
2013-07-01
We present the application of Fourier transform-second-harmonic generation (FT-SHG) imaging to evaluate the arrangement of collagen fibers in five nonpregnant rat cervices. Tissue slices from the mid-cervix and near the external orifice of the cervix were analyzed in both two-dimensions (2D) and three-dimensions (3D). We validate that the cervical microstructure can be quantitatively assessed in three dimensions using FT-SHG imaging and observe collagen fibers oriented both in and out-of-plane in the outermost and the innermost layers, which cannot be observed using 2D FT-SHG analysis alone. This approach has the potential to be a clinically applicable method for measuring progressive changes in collagen organization during cervical remodeling in humans. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Photoinduced second harmonic generation of LaFe4Sb12near spin fluctuated critical points
International Nuclear Information System (INIS)
Nouneh, K.; Viennois, R.; Kityk, I.V.; Terki, F.; Charar, S.; Benet, S.; Paschen, S.
2004-01-01
The temperature dependence of the resistivity, the Seebeck coefficient and photoinduced second harmonic generation (PISHG) are studied near the quantum critical point in the skutterudite compound LaFe 4 Sb 12 , possessing increased spin fluctuations. We observed a large maximum of the PISHG at a temperature of about 15 K. The PISHG signal increases substantially below 35 K. We found a correlation between the temperature dependences of PISHG, resistivity and Seebeck coefficient. We proposed a phenomenological explanation for the occurrence of the PISHG signal in LaFe 4 Sb 12 implying strong spin fluctuations exist in this system, which may present some interest for the study of other spin fluctuation systems. Physical insight into the phenomenon observed is grounded in the participation of anharmonic electron-phonon and electron-paramagnon interactions stimulated by inducing light in the interactions with the photoexcited dipole moments. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Second-harmonic generation in atomic vapor with picosecond laser pulses
International Nuclear Information System (INIS)
Kim, D.; Mullin, C.S.; Shen, Y.R.
1997-01-01
Picosecond laser pulses were used to study the highly forbidden resonant second-harmonic generation (SHG) in potassium vapor. The input intensity dependence, vapor density dependence, buffer-gas pressure dependence, and spatial profile of the SHG were measured. A pump - probe experiment was conducted to probe the time dependence of the SHG signal. The experimental results can be understood from an ionization-initiated dc-field-induced SHG model. A theory of a dc-field-induced SHG model is developed that takes into account the time development of the dc electric field in detail. This temporal buildup of the dc field along with transient coherent excitation between two-photon-allowed transitions can explain the experimental results quantitatively, including the previous vapor SHG results with nanosecond laser pulses. copyright 1997 Optical Society of America
Analysis of the superconducting wiggler magnets for the ATF Harmonic Generation FEL experiment
International Nuclear Information System (INIS)
Zhang, X.; Ben-Zvi, I.; Ingold, G.; Krinsky, S.; Yu, L.H.
1992-01-01
In this paper, we consider the superconducting wiggler magnet under construction for the High Gain Harmonic Generation experiment (HGHG) at the Accelerator Test Facility (ATF) at BNL. This wiggler consists of an energy modulation section, a dispersion magnet and a radiator section. We present an analysis of the dispersion magnet and the end effects in the other wiggler sections. The purpose of the dispersion magnet is to convert energy modulation of the electron beam into spatial bunching. For the dispersion magnet, we discuss the physical requirements, analyze the magnetic design, determine the focusing properties, and consider the effect of departures from ideal behavior on the FEL gain. In the modulator and radiator wigglers we analyze the effects due to the ends of the wiggler and discuss their correction. In addition, the localized field produced by a trim coil for horizontal beam steering is investigated
Low-temperature anomalies of photoinduced second harmonic generation in skutterudites
International Nuclear Information System (INIS)
Viennois, R; Kityk, I V; Terki, F; Charar, S; Muntzer, A; Kasperczyk, J; Ravot, D; Tedenac, J C
2003-01-01
Photoinduced second harmonic generation (PISHG) was found in skutterudite compounds of CeFe 4 Sb 12 and Ce 0.7 Fe 3.5 Ni 0.5 Sb 12 . Measurements versus temperature, pump-probe delaying time and external magnetic field were performed. The studied compounds belong to moderate heavy fermion compounds (HFC) in the ground state. The PISHG signals appear at 6.8 and 4.9 K for CeFe 4 Sb 12 and Ce 0.7 Fe 3.5 Ni 0.5 Sb 12 , respectively. We suspect that these signals are due to anharmonic electron-phonon interactions creating a charge density non-centrosymmetry. The observed effects are caused either by a possible phase transition or by drastic changes in the electron structure of the HFC with decreasing temperature
Two-Photon Luminescence and Second Harmonic Generation from Gold Micro-Plates
Directory of Open Access Journals (Sweden)
Xu Wang
2014-09-01
Full Text Available Micron-sized gold plates were prepared by reducing chloroauric acid with lemongrass extract. Their two-photon luminescence (TPL and second harmonic generation (SHG were investigated. The results show that the TPL and SHG intensity of gold plates is dependent on the wavelength and polarization of excitation laser. The TPL intensity of gold plates decreases with the increase of the excitation wavelength except for a small peak around 820–840 nm, while SHG intensity increases with the excitation wavelength redshift. In addition, it is found that the TPL intensity of the gold plate’s edge is related with the angle between the edge orientation and the polarization direction of the excitation light. The TPL intensity increases with the angle increase from 0° to 90°.
Dynamic modification of the fragmentation of COq+ excited states generated with high-order harmonics
International Nuclear Information System (INIS)
Cao, W.; De, S.; Singh, K. P.; Chen, S.; Laurent, G.; Ray, D.; Ben-Itzhak, I.; Cocke, C. L.; Schoeffler, M. S.; Belkacem, A.; Osipov, T.; Rescigno, T.; Alnaser, A. S.; Bocharova, I. A.; Zherebtsov, S.; Kling, M. F.; Litvinyuk, I. V.
2010-01-01
The dynamic process of fragmentation of CO q+ excited states is investigated using a pump-probe approach. EUV radiation (32-48 eV) generated by high-order harmonics was used to ionize and excite CO molecules and a time-delayed infrared (IR) pulse (800 nm) was used to influence the evolution of the dissociating multichannel wave packet. Two groups of states, separable experimentally by their kinetic-energy release (KER), are populated by the EUV and lead to C + -O + fragmentation: direct double ionization of the neutral molecule and fragmentation of the cation leading to C + -O*, followed by autoionization of O*. The IR pulse was found to modify the KER of the latter group in a delay-dependent way which is explained with a model calculation.
Vibrational excitation of hydrogen molecules by two-photon absorption and third-harmonic generation
Miyamoto, Yuki; Hara, Hideaki; Hiraki, Takahiro; Masuda, Takahiko; Sasao, Noboru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko
2018-01-01
We report the coherent excitation of the vibrational state of hydrogen molecules by two-photon absorption and the resultant third-harmonic generation (THG). Parahydrogen molecules cooled by liquid nitrogen are irradiated by mid-infrared nanosecond pulses at 4.8 μm with a nearly Fourier-transform-limited linewidth. The first excited vibrational state of parahydrogen is populated by two-photon absorption of the mid-infrared photons. Because of the narrow linewidth of the mid-infrared pulses, coherence between the ground and excited states is sufficient to induce higher-order processes. Near-infrared photons from the THG are observed at 1.6 μm. The dependence of the intensity of the near-infrared radiation on mid-infrared pulse energy, target pressure, and cell length is determined. We used a simple formula for THG with consideration of realistic experimental conditions to explain the observed results.