Sudarshanam, V. S.; Claus, Richard O.
1993-03-01
A new cylindrical coil configuration for polyvinylidene flouride (PVF2) film based fiber optic phase modulator is studied for the frequency response and nonlinearity of phase shift at the resonance frequency. This configuration, hitherto unapproached for PVF2 film modulators, offers resonance at well defined, controllable and higher frequencies than possible for the flat-strip configuration. Two versions of this configuration are presented that differ strongly in both the resonance frequency and the phase shift nonlinearity coefficient.
Liu, Chang
2015-01-01
The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the ?first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.
Lacot, Eric; Girardeau, Vadim; Hugon, Olivier; Jacquin, Olivier
2016-01-01
In this article, we study the non-linear coupling between the stationary (i.e. the beating modulation signal) and transient (i.e. the laser quantum noise) dynamics of a laser subjected to frequency shifted optical feedback. We show how the noise power spectrum and more specifically the relaxation oscillation frequency of the laser are modified under different optical feedback condition. Specifically we study the influence of (i) the amount of light returning to the laser cavity and (ii) the initial detuning between the frequency shift and intrinsic relaxation frequency. The present work shows how the relaxation frequency is related to the strength of the beating signal and the shape of the noise power spectrum gives an image of the Transfer Modulation Function (i.e. of the amplification gain) of the nonlinear-laser dynamics.The theoretical predictions, confirmed by numerical resolutions, are in good agreements with the experimental data.
Nonlinear frequency shift in Raman backscattering and its implications for plasma diagnostics
Kaganovich, D.; Hafizi, B.; Palastro, J. P.; Ting, A.; Helle, M. H.; Chen, Y.-H.; Jones, T. G.; Gordon, D. F.
2016-12-01
Raman backscattered radiation of intense laser pulses in plasmas is investigated for a wide range of intensities relevant to laser wakefield acceleration. The weakly nonlinear dispersion relation for Raman backscattering predicts an intensity and density dependent frequency shift that is opposite to that suggested by a simple relativistic consideration. This observation has been benchmarked against experimental results, providing a novel diagnostic for laser-plasma interactions.
Nonlinear Frequency Shift in Raman Backscattering and its Implications for Plasma Diagnostics
Kaganovich, D; Palastro, J P; Ting, A; Helle, M H; Chen, Y -H; Jones, T G; Gordon, D F
2016-01-01
Raman backscattered radiation of intense laser pulses in plasma is investigated for a wide range of intensities relevant to laser wakefield acceleration. The weakly nonlinear dispersion relation for Raman backscattering predicts an intensity and density dependent frequency shift that is opposite to that suggested by a simple relativistic consideration. This observation has been benchmarked against experimental results, providing a novel diagnostic for laser-plasma interactions.
Feng, Q S; Wang, Q; Zheng, C Y; Liu, Z J; Cao, L H; He, X T
2016-01-01
The properties of the nonlinear frequency shift (NFS) especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas have been researched by Vlasov simulation. The pictures of the nonlinear frequency shift from harmonic generation and particles trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given and the results of Vlasov simulation are consistent to the theoretical result of multi-ion species plasmas. When the wave number $k\\lambda_{De}$ is small, such as $k\\lambda_{De}=0.1$, the fluid NFS dominates in the total NFS and will reach as large as nearly $15\\%$ when the wave amplitude $|e\\phi/T_e|\\sim0.1$, which indicates that in the condition of small $k\\lambda_{De}$, the fluid NFS dominates in the saturation of stimulated Brillouin scattering especially when the nonlinear IAW amplitude is large.
Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps
Directory of Open Access Journals (Sweden)
Katarzyna Krupa
2012-01-01
Full Text Available We experimentally study four-wave mixing in highly nonlinear fibers using two independent and partially coherent laser pumps and a third coherent signal. We focus our attention on the Bragg-scattering frequency conversion. The two pumps were obtained by amplifying two Intracavity frequency-shifted feedback lasers working in a continuous wave regime.
Institute of Scientific and Technical Information of China (English)
赵应桥; 朱鹤元; 刘建华; 孙迭篪; 李富铭
1997-01-01
A time-resolved cross-phase modulation method combined with a modified nonlinear Schrodinger equation is used to study the effects of nonlinear response time on the propagation of ultrashort pulses in nonlinear dispersion media. Evolution of cross-phase modulation spectrum with the different time delay between the probe pulse and pump pulse is simulated using split-step Fourier method. It is shown that both normal self-frequency-shift-red-shift and abnormal self-frequency-shift-blue-shift can occur in the frequency domain for the probe pulse, and a satisfactory theoretical interpretation is given.
Anchal, Abhishek; Kumar, Pradeep; Landais, Pascal
2016-10-01
We propose and numerically verify a scheme of frequency-shift free mid-span spectral inversion (MSSI) for nonlinearity mitigation in an optical transmission system. Spectral inversion is accomplished by optical phase conjugation, realized by counter-propagating dual pumped four-wave mixing in a highly nonlinear fiber. We examine the performance of MSSI due to critical parameters such as nonlinear fiber length, pump and signal power. We demonstrate the near complete nonlinearity mitigation of 40 Gbps DQPSK modulated data transmitted over 1000 km standard single mode fiber using our method of MSSI. We perform simulation of bit-error rate as a function of optical signal to noise ratio to corroborate the effect of frequency-shift free MSSI.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
By making use of the generalized sine-Gordon equation expansion method, we find cnoidal periodic wave solutions and fundamental bright and dark optical solitarywave solutions for the fourth-order dispersive and the quintic nonlinear Schrodinger equation with self-steepening, and self-frequency shift. Moreover, we discuss the formation conditions of the bright and dark solitary waves.
Non-linear Frequency Scaling Algorithm for FMCW SAR Data
Meta, A.; Hoogeboom, P.; Ligthart, L.P.
2006-01-01
This paper presents a novel approach for processing data acquired with Frequency Modulated Continuous Wave (FMCW) dechirp-on-receive systems by using a non-linear frequency scaling algorithm. The range frequency non-linearity correction, the Doppler shift induced by the continuous motion and the ran
Light-shift-induced photonic nonlinearities
Energy Technology Data Exchange (ETDEWEB)
Brandao, F G S L; Hartmann, M J; Plenio, M B [Institute for Mathematical Sciences, Imperial College London, 53 Exhibition Road, SW7 2PE (United Kingdom)], E-mail: fernando@brandao@imperial.ac.uk
2008-04-15
We propose a new method to produce self- and cross-Kerr photonic nonlinearities, using light-induced Stark shifts due to the interaction of a cavity mode with atoms. The proposed experimental set-up is simpler than in previous approaches, while the strength of the nonlinearity obtained with a single atom is the same as in the setting based on electromagnetically induced transparency. Furthermore our scheme can be applied to engineer effective photonic nonlinear interactions whose strength increases with the number of atoms coupled to the cavity mode, leading to photon-photon interactions several orders of magnitude larger than previously considered possible.
The Gouy phase shift in nonlinear interactions of waves
Lastzka, Nico; Schnabel, Roman
2007-06-01
We theoretically analyze the influence of the Gouy phase shift on the nonlinear interaction between waves of different frequencies. We focus on χ(2)interaction of optical fields, e.g. through birefringent crystals, and show that focussing, stronger than suggested by the Boyd-Kleinman factor, can further improve nonlinear processes. An increased value of 3.32 for the optimal focussing parameter for a single pass process is found. The new value builds on the compensation of the Gouy phase shift by a spatially varying, instead constant, wave vector phase mismatch. We analyze the single-ended, singly resonant standing wave nonlinear cavity and show that in this case the Gouy phase shift leads to an additional phase during backreflection. Our numerical simulations may explain ill-understood experimental observations in such devices.
Frequency shifts in gravitational resonance spectroscopy
Baeßler, S; Pignol, G; Protasov, K V; Rebreyend, D; Kupriyanova, E A; Voronin, A Yu
2015-01-01
Quantum states of ultracold neutrons in the gravitational field are to be characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts, which we call Stern-Gerlach shift, interference shift, and spectator state shift, appear in conceivable measurement schemes and have general importance. These shifts have to be taken into account in precision experiments.
Hippocampal theta frequency shifts and operant behaviour
Lopes da Silva, F.H.; Kamp, A.
1. 1. A shift of hippocampal dominant theta frequency to 6 c/sec has been demonstrated in the post-reward period in two dogs, which occurs consistently related in time to a well defined behavioural pattern in the course of an operant conditioning paradigm. 2. 2. The frequency shift was detected and
Self-Frequency Shift of Cavity Soliton in Kerr Frequency Comb
Zhang, Lin; Kimerling, Lionel C; Michel, Jurgen
2014-01-01
We show that the ultrashort cavity soliton in octave-spanning Kerr frequency comb generation exhibits striking self-adaptiveness and robustness to external perturbations, resulting in a novel frequency shifting/cancellation mechanism and gigantic dispersive wave generation in response to the strong frequency dependence of Kerr nonlinearity, Raman scattering, chromatic dispersion, and cavity Q. These observations open up a great avenue towards versatile manipulation of nonlinear soliton dynamics, flexible spectrum engineering of mode-locked Kerr frequency combs, and highly efficient frequency translation of optical waves.
Hippocampal frequency shifts in different behavioural situations
Kamp, A.; Lopes da Silva, F.H.; Storm van Leeuwen, W.
1971-01-01
Electrical activity of the dog's hippocampus was recorded in (a) an operant behaviour situation, and (b) a field situation by a radio-telemetering system. The dominant frequency of the theta rhythm shifted consistently from 4–5 c/sec to 6–7 c/sec when a dog (a) withdrew from a pedal after being rewa
On the frequency shift of gravitational waves
De Sousa, C M G
2002-01-01
Considering plane gravitational waves propagating through flat spacetime, it is shown that curvatures experienced both in the starting point and during their arrival at the earth can cause a considerable shift in the frequencies as measured by earth and space-based detectors.
Damping and Frequency Shift of Large Amplitude Electron Plasma Waves
DEFF Research Database (Denmark)
Thomsen, Kenneth; Juul Rasmussen, Jens
1983-01-01
The initial evolution of large-amplitude one-dimensional electron waves is investigated by applying a numerical simulation. The initial wave damping is found to be strongly enhanced relative to the linear damping and it increases with increasing amplitude. The temporal evolution of the nonlinear...... damping rate γ(t) shows that it increases with time within the initial phase of propagation, t≲π/ωB (ωB is the bounce frequency), whereafter it decreases and changes sign implying a regrowth of the wave. The shift in the wave frequency δω is observed to be positive for t≲π/ωB; then δω changes sign...
Nonlinear frequency conversion in fiber lasers
DEFF Research Database (Denmark)
Svane, Ask Sebastian
The concept of nonlinear frequency conversion entails generating light at new frequencies other than those of the source light. The emission wavelength of typical fiber laser systems, relying on rare-earth dopants, are constrained within specific bands of the infrared region. By exploiting...... nonlinear processes, light from these specific wavelength bands can be used to generate light at new frequencies otherwise not obtainable by rare-earth elements. This thesis describes work covering Raman fiber lasers (RFLs) and amplifiers for nonlinear frequency down-conversion, and also the method...
Institute of Scientific and Technical Information of China (English)
XU Guang; QIAN Liejia; WANG Tao; FAN Dianyuan; LI Fuming
2004-01-01
It is shown that the cascaded fifth-order nonlinear phase shifts will increase with energy loss in the cascaded processes. Essentially different from the multi-photon absorption accompanied with inherent material nonlinearities, the loss of fundamental wave in a cascaded process is controllable and suppressible. By introducing difference frequencies generated from the reaction between the fundamental and its second harmonic after the cascaded processes, the fundamental wave can be free of energy loss, while the large cascaded fifth-order nonlinear phase shift is maintained.
He, Qingbo; Xu, Yanyan; Lu, Siliang; Shao, Yong
2017-03-01
This paper reports a frequency-shift vibro-acoustic modulation (VAM) effect in a bistable microcracked cantilever oscillator. Low-frequency broadband excitations induced a VAM effect with a shifted modulation frequency through involving a microcracked metal beam in a bistable oscillator model. We used nonlinear dynamics equations and principles to describe the mechanism of a bistable oscillator whose natural frequency varied as the oscillation amplitude increased. We demonstrated this frequency-shift VAM effect using a prototype bistable oscillator model designed to efficiently detect microcracks in solid materials via the VAM effect using ambient vibration excitations.
Damage detection using frequency shift path
Wang, Longqi; Lie, Seng Tjhen; Zhang, Yao
2016-01-01
This paper introduces a novel concept called FREquency Shift (FRESH) path to describe the dynamic behavior of structures with auxiliary mass. FRESH path combines the effects of frequency shifting and amplitude changing into one space curve, providing a tool for analyzing structure health status and properties. A damage index called FRESH curvature is then proposed to detect local stiffness reduction. FRESH curvature can be easily adapted for a particular problem since the sensitivity of the index can be adjusted by changing auxiliary mass or excitation power. An algorithm is proposed to adjust automatically the contribution from frequency and amplitude in the method. Because the extraction of FRESH path requires highly accurate frequency and amplitude estimators; therefore, a procedure based on discrete time Fourier transform is introduced to extract accurate frequency and amplitude with the time complexity of O (n log n), which is verified by simulation signals. Moreover, numerical examples with different damage sizes, severities and damping are presented to demonstrate the validity of the proposed damage index. In addition, applications of FRESH path on two steel beams with different damages are presented and the results show that the proposed method is valid and computational efficient.
Noise-free quantum optical frequency shifting driven by mechanics
Fan, Linran; Poot, Menno; Cheng, Risheng; Guo, Xiang; Han, Xu; Tang, Hong X
2016-01-01
The ability to manipulate single photons is of critical importance for fundamental quantum optics studies and practical implementations of quantum communications. While extraordinary progresses have been made in controlling spatial, temporal, spin and orbit angular momentum degrees of freedom, frequency-domain control of single photons so far relies on nonlinear optical effects, which have faced obstacles such as noise photons, narrow bandwidth and demanding optical filtering. Here we demonstrate the first integrated near-unity efficiency frequency manipulation of single photons, by stretching and compressing a waveguide at 8.3 billion cycles per second. Frequency shift up to 150 GHz at telecom wavelength is realized without measurable added noise and the preservation of quantum coherence is verified through quantum interference between twin photons of different colors. This single photon frequency control approach will be invaluable for increasing the channel capacity of quantum communications and compensati...
Nonlinear Modelling of Low Frequency Loudspeakers
DEFF Research Database (Denmark)
Olsen, Erling Sandermann
1997-01-01
In the Danish LoDist project on distortion from dynamic low-frequency loudspeakers, a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...... for describing the nonlinearities have been developed. Different aspects of modelling loudspeaker nonlinearities are discussed, and the program is briefly described....
Nonlinear Modelling of Low Frequency Loudspeakers
DEFF Research Database (Denmark)
Olsen, Erling Sandermann
1997-01-01
In the Danish LoDist project on distortion from dynamic low frequency loudspeakers a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...... for describing the nonlinearities have been developed. Different aspects of modelling loudspeaker nonlinearities are discussed and the program is briefly demonstrated....
Multiorder nonlinear diffraction in frequency doubling processes
DEFF Research Database (Denmark)
Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw
2009-01-01
We analyze experimentally light scattering from 2 nonlinear gratings and observe two types of second-harmonic frequency-scattering processes. The first process is identified as Raman–Nath type nonlinear diffraction that is explained by applying only transverse phase-matching conditions. The angular...... position of this type of diffraction is defined by the ratio of the second-harmonic wavelength and the grating period. In contrast, the second type of nonlinear scattering process is explained by the longitudinal phase matching only, being insensitive to the nonlinear grating...
Frequency comb generation in quadratic nonlinear media
Ricciardi, Iolanda; Parisi, Maria; Maddaloni, Pasquale; Santamaria, Luigi; De Natale, Paolo; De Rosa, Maurizio
2014-01-01
Optical frequency combs are nowadays routinely used tools in a wide range of scientific and technological applications. Different techniques have been developed for generating optical frequency combs, like mode-locking in lasers and third-order interactions in microresonators, or to extend their spectral capabilities, using frequency conversion processes in nonlinear materials. Here, we experimentally demonstrate and theoretically explain the onset of optical frequency combs in a simple cavity-enhanced second-harmonic-generation system, exploiting second-order nonlinear interactions. We develop an elemental model which provides a deep physical insight into the observed dynamics. Moreover, despite the different underlying physical mechanism, the proposed model is remarkably similar to the description of third-order effects in microresonators, revealing a potential variety of new effects to be explored. Finally, exploiting a nonlinearity intrinsically stronger than the third-order one, our work lays the groundw...
Nonlinear pressure shifts of alkali-metal atoms in inert gases.
Gong, F; Jau, Y-Y; Happer, W
2008-06-13
Precise measurements show that the microwave resonance frequencies of ground-state Rb or Cs atoms have a nonlinear dependence on the pressure of the buffer gases Ar and Kr. No nonlinearities were observed in the gases He or N(2). These observations strongly suggest that the nonlinearities are due to the van der Waals molecules that form in Ar and Kr, but not in He or N(2). The nonlinear part of the shifts is largest in the pressure range of a few tens of torr, similar to the operating pressures of gas-cell atomic clocks. The observed shifts are very well described by a simple function, parametrized by the effective three-body formation rate of molecules and by the effective product of the collisionally limited lifetime times the shift of the hyperfine coupling coefficient in the molecule.
Nonlinear frequency response analysis of structural vibrations
Weeger, Oliver; Wever, Utz; Simeon, Bernd
2014-12-01
In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.
Time shift of pulses due to dispersion slope and nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Marcuse, D.; Menyuk, C.R.; Holzloehner, R.
1999-12-01
The authors show that the time delay of optical pulses traveling in long fibers is influenced by the dispersion slope and the fiber nonlinearity. Consequently, one or more new pulses that are inserted by add-drop operations into a pulse train that has already traveled a long distance may shift relative to the old pulses. This time shift delays the initial pulses more than the newly inserted ones, so that the newly inserted pulses can leave their time frames, leading to errors.
Cyclotron mode frequency shifts in multi-species ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Affolter, M.; Anderegg, F.; Dubin, D.H.E.; Driscoll, C.F.
2014-06-27
In trapped plasmas, electric fields and collective effects shift the cyclotron mode frequencies away from the “bare” cyclotron frequency for each species s. Here, these shifts are measured on a set of cyclotron modes (m=0,1, and 2) with cos(mθ) azimuthal dependence in near rigid-rotor multi-species ion plasmas. We observe that these frequency shifts are dependent on the plasma density, through the E×B rotation frequency f{sub E}, and on the “local” charge concentration δ{sub s} of species s, in close agreement with theory. - Highlights: • Cyclotron modes varying as sin(mθ) with m=0,1and2 are detected. • These mode frequencies shift by factors of the ExB rotation frequency. • These frequency shifts depend on the species charge fraction and radial distribution. • Centrifugal separation of species can greatly modify these frequency shifts.
Nonlinear Negative Refraction by Difference Frequency Generation
Cao, Jianjun; Feng, Yaming; Wan, Wenjie
2015-01-01
Negative refraction has attracted much interest for its promising capability in imaging applications. Such an effect can be implemented by negative index meta-materials, however, which are usually accompanied by high loss and demanding fabrication processes. Recently, alternative nonlinear approaches like phase conjugation and four wave mixing have shown advantages of low-loss and easy-to-implement, but associated problems like narrow accepting angles can still halt their practical applications. Here we demonstrate theoretically and experimentally a new scheme to realize negative refraction by nonlinear difference frequency generation with wide tunability, where a thin BBO slice serves as a negative refraction layer bending the input signal beam to the idler beam at a negative angle. Furthermore, we realize optical focusing effect using such nonlinear negative refraction, which may enable many potential applications in imaging science.
Nonlinear negative refraction by difference frequency generation
Cao, Jianjun; Shen, Dongyi; Feng, Yaming; Wan, Wenjie
2016-05-01
Negative refraction has attracted much interest for its promising capability in imaging applications. Such an effect can be implemented by negative index meta-materials, however, which are usually accompanied by high loss and demanding fabrication processes. Recently, alternative nonlinear approaches like phase conjugation and four wave mixing have shown advantages of low-loss and easy-to-implement, but associated problems like narrow accepting angles can still halt their practical applications. Here, we demonstrate theoretically and experimentally a scheme to realize negative refraction by nonlinear difference frequency generation with wide tunability, where a thin Beta barium borate slice serves as a negative refraction layer bending the input signal beam to the idler beam at a negative angle. Furthermore, we realize optical focusing effect using such nonlinear negative refraction, which may enable many potential applications in imaging science.
Phase shifting in the spatial frequency domain
Yazdani, Roghayeh; Petsch, Sebastian; Fallah, Hamidreza; Hajimahmoodzadeh, Morteza; Zappe, Hans
2016-03-01
We present a simple mathematical method for phase shifting that overcomes some phase shift errors and limitations of commonly used methods. The method is used to generate a sequence of phase-shifted interferograms from a single interferogram. The generated interferograms are employed to reconstruct the wavefront aberrations, as an application. The approach yields results with only very small deviations compared to both simulated wavefront aberrations, including the first 25 Zernike polynomials (0.05%) and those measured with a Shack-Hartmann sensor (0.5%).
Microbubble cloud characterization by nonlinear frequency mixing.
Cavaro, M; Payan, C; Moysan, J; Baqué, F
2011-05-01
In the frame of the fourth generation forum, France decided to develop sodium fast nuclear reactors. French Safety Authority requests the associated monitoring of argon gas into sodium. This implies to estimate the void fraction, and a histogram indicating the bubble population. In this context, the present letter studies the possibility of achieving an accurate determination of the histogram with acoustic methods. A nonlinear, two-frequency mixing technique has been implemented, and a specific optical device has been developed in order to validate the experimental results. The acoustically reconstructed histograms are in excellent agreement with those obtained using optical methods.
Vortex precession frequency and its amplitude-dependent shift in cylindrical nanomagnets
Energy Technology Data Exchange (ETDEWEB)
Metlov, Konstantin L., E-mail: metlov@fti.dn.ua [Donetsk Institute for Physics and Technology NAS, Donetsk 83114 (Ukraine)
2013-12-14
Frequency of free magnetic vortex precession in circular soft ferromagnetic nano-cylinders (magnetic dots) of various sizes is an important parameter, used in design of spintronic devices (such as spin-torque microwave nano-oscillators) and characterization of magnetic nanostructures. Here, using a recently developed collective-variable approach to non-linear dynamics of magnetic textures in planar nano-magnets, this frequency and its amplitude-dependent shift are computed analytically and plotted for the full range of cylinder geometries. The frequency shift is positive in large planar dots, but becomes negative in smaller and more elongated ones. At certain dot dimensions, a zero frequency shift is realized, which can be important for enhancing frequency stability of magnetic nano-oscillators.
Goos-Haenchen shift and time delay in dispersive nonlinear media
Energy Technology Data Exchange (ETDEWEB)
Ilic, I. [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Belicev, P.P., E-mail: petrab@vinca.r [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Milanovic, V.; Radovanovic, J. [Faculty of Electrical Engineering, University of Belgrade, Bul. kralja Aleksandra 73, 11120 Belgrade (Serbia); Hadzievski, Lj. [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)
2011-03-07
We present an analysis of the influence of the Goos-Haenchen effect on tunneling times, group delay and dwell time, of electromagnetic waves propagating through an obstacle made of left-handed metamaterial embedded in a dielectric which exhibits saturable type of nonlinearity. The derived equations show that only the group delay, is affected by the Goos-Haenchen shift without any impact on the dwell time. Besides the reduction of the group delay, the most remarkable result is the possibility for total reduction of the Goos-Haenchen shift for finite incident angles. These phenomena are observable in the frequency region for which metamaterial exhibits negative index of refraction.
Atomic frequency standard relativistic Doppler shift experiment
Peters, H. E.; Reinhardt, V. S.
1974-01-01
An experiment has been performed to measure possible space anisotropy as it would effect the frequency of a cesium atomic beam standard clock in a laboratory on earth due to motion relative to external coordinate frames. The cesium frequency was measured as a function of orientation with respect to an atomic hydrogen maser standard. Over a period of 34 days 101 measurements were made. The results are consistent with a conclusion that no general orientation dependance attributable to spacial anisotropy was observed. It is shown that both the airplane clock results, and the null results for the atomic beam clock, are consistent with Einstein general or special relativity, or with the Lorentz transformations alone.
Laser frequency stabilization and shifting by using modulation transfer spectroscopy
Cheng, Bing; Wang, Zhao-Ying; Wu, Bin; Xu, Ao-Peng; Wang, Qi-Yu; Xu, Yun-Fei; Lin, Qiang
2014-10-01
The stabilizing and shifting of laser frequency are very important for the interaction between the laser and atoms. The modulation transfer spectroscopy for the 87Rb atom with D2 line transition F = 2 → F' = 3 is used for stabilizing and shifting the frequency of the external cavity grating feedback diode laser. The resonant phase modulator with electro—optical effect is used to generate frequency sideband to lock the laser frequency. In the locking scheme, circularly polarized pump- and probe-beams are used. By optimizing the temperature of the vapor, the pump- and probe-beam intensity, the laser linewidth of 280 kHz is obtained. Furthermore, the magnetic field generated by a solenoid is added into the system. Therefore the system can achieve the frequency locking at any point in a range of hundreds of megahertz frequency shifting with very low power loss.
The frequency crossover for the Goos-Hanchen shift
Araujo, Manoel; Carvalho, Silvania; De Leo, Stefano
2014-01-01
For total reflection, the Goos-Hanchen (GH) shift is proportional to the wavelength of the laser beam. At critical angles, such a shift is instead proportional to the square root of the product of the beam waist and wavelength. By using the stationary phase method (SPM) and, when necessary, numerical calculations, we present a detailed analysis of the frequency crossover for the GH shift. The study, done in different incidence regions, sheds new light on the validity of the analytic formulas ...
Gibble, Kurt
2015-01-01
We discuss the theoretical treatment of the microwave lensing frequency shift of the NIST-F1 and F2 atomic fountain clocks by Ashby et al. [Phy. Rev. A. 91, 033624 (2015)]. The shifts calculated by NIST are much smaller than the previously evaluated microwave lensing frequency shifts of other clocks contributing to International Atomic Time. We identify several fundamental problems in the NIST treatment and demonstrate that each significantly affects their results. We also show a smooth transition of microwave lensing frequency shifts to the photon recoil shift for large wave packets.
Frequency Constrained ShiftCP Modeling of Neuroimaging Data
DEFF Research Database (Denmark)
Mørup, Morten; Hansen, Lars Kai; Madsen, Kristoffer H.
2011-01-01
The shift invariant multi-linear model based on the CandeComp/PARAFAC (CP) model denoted ShiftCP has proven useful for the modeling of latency changes in trial based neuroimaging data[17]. In order to facilitate component interpretation we presently extend the shiftCP model such that the extracted...... components can be constrained to pertain to predefined frequency ranges such as alpha, beta and gamma activity. To infer the number of components in the model we propose to apply automatic relevance determination by imposing priors that define the range of variation of each component of the shiftCP model...
Frequency shift in high order harmonic generation from isotopic molecules
He, Lixin; Zhai, Chunyang; Wang, Feng; Shi, Wenjing; Zhang, Qingbin; Zhu, Xiaosong; Lu, Peixiang
2016-01-01
We report the first experimental observation of frequency shift in high order harmonic generation (HHG) from isotopic molecules H2 and D2 . It is found that harmonics generated from the isotopic molecules exhibit obvious spectral red shift with respect to those from Ar atom. The red shift is further demonstrated to arise from the laser-driven nuclear motion in isotopic molecules. By utilizing the red shift observed in experiment, we successfully retrieve the nuclear vibrations in H2 and D2, which agree well with the theoretical calculations from the time-dependent Schrodinger equation (TDSE) with Non-Born-Oppenheimer approximation. Moreover, we demonstrate that the frequency shift can be manipulated by changing the laser chirp.
Functional possibilities of nonlinear crystals for frequency conversion: uniaxial crystals
Energy Technology Data Exchange (ETDEWEB)
Andreev, Yu M [Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation); Arapov, Yu D; Kasyanov, I V [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation); Grechin, S G; Nikolaev, P P [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)
2016-01-31
The method and results of the analysis of phase-matching and nonlinear properties for all point groups of symmetry of uniaxial crystals that determine their functional possibilities for solving various problems of nonlinear frequency conversion of laser radiation are presented. (nonlinear optical phenomena)
Systematic Shifts for Ytterbium-ion Optical Frequency Standards
Batra, N; Gupta, A Sen; Singh, Sukhjit; Arora, Amisha; Arora, Bindiya
2014-01-01
The projected systematic uncertainties of single trapped Ytterbium-ion optical frequency standards are estimated for the quadrupole and octupole transitions which are at wavelengths 435.5 nm and 467 nm, respectively. Finite temperature of the ion and its interaction with the external fields introduce drift in the measured frequency compared to its absolute value. Frequency shifts due to electric quadrupole moment, induced polarization and excess micromotion of the ion depend on electric fields, which are estimated in this article. Geometry of the trap electrodes also result in unwanted electric fields which have been considered in our calculation. Magnetic field induced shift and Stark shifts due to electro-magnetic radiation at a surrounding temperature are also estimated. At CSIR-NPL, we are developing a frequency standard based on the octupole transition for which the systematic uncertainties are an order of magnitude smaller than that using the quadrupole transition, as described here.
Analysis of nonlinear behavior of loudspeakers using the instantaneous frequency
DEFF Research Database (Denmark)
Huang, Hai; Jacobsen, Finn
2003-01-01
It is well know that the weakest link in a sound reproduction chain is the loudspeaker. The most significant effect on the sound quality is nonlinear distortion of loudspeakers. Many methods are applied to analyze the nonlinear distortion of loudspeakers. Almost all of the methods are based...... on the Fourier transform. In this work, a new method using the instantaneous frequency is introduced for describing and characterizing loudspeaker nonlinearities. First, numerical integration is applied to simulate the nonlinearities of loudspeakers caused by two nonlinear parameters, force factor and stiffness......, separately. Then, a practical loudspeaker is used in an experiment and its nonlinear characteristics are analyzed with the instantaneous frequency. The results provide a clear physical interpretation of the nonlinearities of loudspeakers and will be useful for understanding the nonlinear behavior...
Analysis of soliton self-frequency shift in ZBLAN fiber as a broadband supercontinuum medium
Yan, Xin; Liao, Meisong; Suzuki, Takenobu; Ohishi, Yasutake
2013-03-01
In this paper, Soliton self-frequency shift (SSFS) in ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) is investigated based on Raman gain coefficients and generalized nonlinear SchrÖdinger equation. We have measured the Raman gain coefficient spectrum of a fluoride ZBLAN glass. The Raman response function and Raman fraction of ZBLAN fibers are obtained from the actual Raman gain spectrum. The enhanced SSFS in the ZBLAN fiber under investigation as compared to the silica fiber is mainly due to the combination of nonlinear coefficient and Raman response function enhancement. Therefore, ZBLAN fiber is promising materials for SSFS.
Control of the soliton self-frequency shift dynamics using topographic optical fibers.
Bendahmane, A; Vanvincq, O; Mussot, A; Kudlinski, A
2013-09-01
We demonstrate that the dynamics of the soliton self-frequency shift can be accurately controlled by using tapered optical fibers with optimized longitudinal profile shape (that we term topographic fibers). The tapering profiles tailored for a targeted soliton spectral trajectory through dispersion and nonlinearity management are determined by an inverse algorithm. This control is demonstrated experimentally with topographic photonic crystal fibers fabricated directly on a drawing tower.
Frequency Shifts of Micro and Nano Cantilever Beam Resonators Due to Added Masses
Bouchaala, Adam M.
2016-03-21
We present analytical and numerical techniques to accurately calculate the shifts in the natural frequencies of electrically actuated micro and nano (carbon nanotubes (CNTs)) cantilever beams implemented as resonant sensors for mass detection of biological entities, particularly Escherichia coli (E. coli) and prostate specific antigen (PSA) cells. The beams are modeled as Euler-Bernoulli beams, including the nonlinear electrostatic forces and the added biological cells, which are modeled as discrete point masses. The frequency shifts due to the added masses of the cells are calculated for the fundamental and higher-order modes of vibrations. Analytical expressions of the natural frequency shifts under a direct current (DC) voltage and an added mass have been developed using perturbation techniques and the Galerkin approximation. Numerical techniques are also used to calculate the frequency shifts and compared with the analytical technique. We found that a hybrid approach that relies on the analytical perturbation expression and the Galerkin procedure for calculating accurately the static behavior presents the most computationally efficient approach. We found that using higher-order modes of vibration of micro-electro-mechanical-system (MEMS) beams or miniaturizing the sizes of the beams to nanoscale leads to significant improved frequency shifts, and thus increased sensitivities. © 2016 by ASME.
Resonance frequency shift of strongly heated micro-cantilevers
Sandoval, Felipe Aguilar; Bertin, Éric; Bellon, Ludovic
2015-01-01
In optical detection setups to measure the deflection of micro-cantilevers, part of the sensing light is absorbed, heating the mechanical probe. We present experimental evidences of a frequency shift of the resonant modes of a cantilever when the light power of the optical measurement set-up is increased. This frequency shift is a signature of the temperature rise, and presents a dependence on the mode number. An analytical model is derived to take into account the temperature profile along the cantilever, it shows that the frequency shifts are given by an average of the profile weighted by the local curvature for each resonant mode. We apply this framework to measurements in vacuum and demonstrate that huge temperatures can be reached with moderate light intensities: a thousand {\\textdegree}C with little more than 10 mW. We finally present some insight into the physical phenomena when the cantilever is in air instead of vacuum.
Nature of the Frequency Shift of Hydrogen Valence Vibrations
Zhyganiuk, I V
2015-01-01
The physical nature of a frequency shift of hydrogen valence vibrations in a water molecule due to its interaction with neighbor molecules has been studied. Electrostatic forces connected with the multipole moments of molecules are supposed to give a dominating contribution to the intermolecular interaction. The frequency shift was calculated in the case where two neighbor molecules form a dimer. The obtained result is in qualitative agreement with the frequency shifts observed for water vapor, hexagonal ice, and liquid water, as well as for aqueous solutions of alcohols. This fact testifies to the electrostatic nature of H-bonds used to describe both the specific features of the intermolecular interaction in water and the macroscopic properties of the latter.
The frequency crossover for the Goos-Hanchen shift
Araujo, Manoel; De Leo, Stefano
2014-01-01
For total reflection, the Goos-Hanchen (GH) shift is proportional to the wavelength of the laser beam. At critical angles, such a shift is instead proportional to the square root of the product of the beam waist and wavelength. By using the stationary phase method (SPM) and, when necessary, numerical calculations, we present a detailed analysis of the frequency crossover for the GH shift. The study, done in different incidence regions, sheds new light on the validity of the analytic formulas found in literature.
Frequency-Shift of a Frequency Stabilized Laser Based on Zeeman Effect
Institute of Scientific and Technical Information of China (English)
魏荣; 邓见辽; 钱勇; 张宇; 王育竹
2003-01-01
We introduce a new method of frequency-shifting for a diode laser in laser cooling experiments, the method is based on the Zeeman effect of 87Rb atoms. The laser frequency is stabilized by absorption spectrum line of atoms in magnetic field. We show that a magnetic field can be added up to 10-2T. The corresponding frequency shift is 102MHz and the response time is about 1 ms. The large range of the frequency shift is sufficient for laser-cooling experiments.
Utilization of multiple frequencies in 3D nonlinear microwave imaging
DEFF Research Database (Denmark)
Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob
2012-01-01
The use of multiple frequencies in a nonlinear microwave algorithm is considered. Using multiple frequencies allows for obtaining the improved resolution available at the higher frequencies while retaining the regularizing effects of the lower frequencies. However, a number of different challenges...... at lower frequencies are used as starting guesses for reconstructions at higher frequencies. The performance is illustrated using simulated 2-D data and data obtained with the 3-D DTU microwave imaging system....
Parameter Identification of Weakly Nonlinear Vibration System in Frequency Domain
Directory of Open Access Journals (Sweden)
Jiehua Peng
2004-01-01
Full Text Available A new method of identifying parameters of nonlinearly vibrating system in frequency domain is presented in this paper. The problems of parameter identification of the nonlinear dynamic system with nonlinear elastic force or nonlinear damping force are discussed. In the method, the mathematic model of parameter identification is frequency response function. Firstly, by means of perturbation method the frequency response function of weakly nonlinear vibration system is derived. Next, a parameter transformation is made and the frequency response function becomes a linear function of the new parameters. Then, based on this function and with the least square method, physical parameters of the system are identified. Finally, the applicability of the proposed technique is confirmed by numerical simulation.
Anomalously small BBR shift in Tl^+ frequency standard
Zuhrianda, Z.; Safronova, Marianna; Kozlov, Mikhail
2012-06-01
The operation of atomic clocks is generally carried out at room temperature, whereas the definition of the second refers to the clock transition in an atom at absolute zero. This implies that the clock transition frequency should be corrected in practice for the effect of finite temperature of which the leading contributor is the blackbody radiation (BBR) shift. In the present work, we have used configuration interaction + coupled-cluster method to evaluate polarizabilities of the 6s^2 ^1S0 and 6s6p ^3P0 states of Tl^+; α0(^1S0)=19.5 a.u. and α0(^3P0)=21.4 a.u.. We find dynamic correction to the BBR shift to be negligible. The resulting BBR shift at 300 K is δνBBR=-0.0166(17) Hz. This result demonstrates that near cancelation of the ^1S0 and ^3P0 state polarizabilities in monovalent B^+, Al^+, In^+ ions of group 13 [Safronova et al., PRL 107, 143006 (2011)] continues for much heavier Tl^+, leading to anomalously small BBR shift for this system. The corresponding relative BBR shift at 300 K is |δνBBR/ν0|=1.1(1)x10-17. This calculation demonstrates that the BBR contribution to the fractional frequency uncertainty of the Tl^+ frequency standard at 300 K is 1x10-18.
Energy Technology Data Exchange (ETDEWEB)
Montagut, Y. J.; Garcia, J. V.; Jimenez, Y.; Arnau, A. [Grupo de Fenomenos Ondulatorios, Departamento de Ingenieria Electronica, Universitat Politecnica de Valencia (Spain); March, C.; Montoya, A. [Instituto Interuniversitario de Investigacion en Bioingenieria y Tecnologia Orientada al Ser Humano, Universitat Politecnica de Valencia (Spain)
2011-06-15
The improvement of sensitivity in quartz crystal microbalance (QCM) applications has been addressed in the last decades by increasing the sensor fundamental frequency, following the increment of the frequency/mass sensitivity with the square of frequency predicted by Sauerbrey. However, this sensitivity improvement has not been completely transferred in terms of resolution. The decrease of frequency stability due to the increase of the phase noise, particularly in oscillators, made impossible to reach the expected resolution. A new concept of sensor characterization at constant frequency has been recently proposed. The validation of the new concept is presented in this work. An immunosensor application for the detection of a low molecular weight contaminant, the insecticide carbaryl, has been chosen for the validation. An, in principle, improved version of a balanced-bridge oscillator is validated for its use in liquids, and applied for the frequency shift characterization of the QCM immunosensor application. The classical frequency shift characterization is compared with the new phase-shift characterization concept and system proposed.
Frequency shifts of radiating particle moving in EIT metamaterial
Zielińska-Raczyńska, S
2015-01-01
Nowadays, there is considerable interest in metamaterials which realize the electromagnetically induced transparency in a classical system. We consider the frequency shifts of particle moving in metamaterials exhibiting electromagnetically induced transparency effect. The dramatic change of the material dispersion due to the EIT influences the conditions for signal propagation in the medium and has a significant impact on the Doppler effect, possibly leading to the optical control over this phenomenon. The dependence of the Doppler shift to the source frequency and velocity and radiation spectra on external parameters is examined. It was found that for source frequencies fitting transparency window for particular range of source velocities cutoffs appear, i.e. the radiation is not emitted. Our theoretical findings are proved analytically and confirmed by numerical simulations based on finite-difference time-domain method.
Dispersion engineering silicon nitride waveguides for broadband nonlinear frequency conversion
Epping, J.P.
2015-01-01
In this thesis, we investigated nonlinear frequency conversion of optical wavelengths using integrated silicon nitride (Si3N4) waveguides. Two nonlinear conversion schemes were considered: seeded four-wave mixing and supercontinuum generation. The first—seeded four-wave mixing—is investigated by a n
Goos-Hänchen shifts of Helmholtz solitons at nonlocal nonlinear interfaces
Zhiwei, Shi; Jing, Xue; Jilong, Chen; Yang, Li; Huagang, Li
2015-02-01
We address the nonlinear Goos-Hänchen shift of Helmholtz solitons at a nonlocal nonlinear interface between a Kerr medium and a nonlocal nonlinear medium. Based on the framework of the Helmholtz theory, we have demonstrated that the Goos-Hänchen shift depends on the angle of the incidence, the linear and nonlinear refractive index mismatch at the interface, the nonparaxial parameter and the degree of nonlocality. Interestingly, internal and external refraction can be introduced when the nonlinear refractive index mismatch is greater than a threshold value. The total reflection will occur when the degree of nonlocality exceeds a value.
Blackbody radiation shift in 87Rb frequency standard
Safronova, M S; Safronova, U I
2010-01-01
The operation of atomic clocks is generally carried out at room temperature, whereas the definition of the second refers to the clock transition in an atom at absolute zero. This implies that the clock transition frequency should be corrected in practice for the effect of finite temperature of which the leading contributor is the blackbody radiation (BBR) shift. Experimental measurements of the BBR shifts are difficult. In this work, we have calculated the blackbody radiation shift of the ground-state hyperfine microwave transition in 87Rb using the relativistic all-order method and carried out detailed evaluation of the accuracy of our final value. Particular care is taken to accurately account for the contributions from highly-excited states. Our predicted value for the Stark coefficient, k_S=-1.240(4)\\times 10^{-10}\\text{Hz/(V/m)}^{2} is three times more accurate than the previous calculation [1].
Blackbody radiation shift in ^87Rb frequency standard
Safronova, Marianna; Safronova, U. I.
2010-03-01
The operation of atomic clocks is generally carried out at room temperature, whereas the definition of the second refers to the clock transition in an atom at absolute zero. This implies that the clock transition frequency should be corrected in practice for the effect of finite temperature of which the leading contributor is the blackbody radiation (BBR) shift. Experimental measurements of the BBR shifts are difficult. In this work, we have calculated the blackbody radiation shift of the ground-state hyperfine microwave transition in ^87Rb using the relativistic all-order method and evaluated the accuracy of our final value. Particular care is taken to accurately account for the contributions from highly-excited states. Various Rb atomic properties, including E1, E2, and E3 ground state polarizabilities, np and nd E1 polarizabilities, and hyperfine constants are also calculated. The results are compared with experiment and other theory where available.
Atomic resolution in noncontact AFM by probing cantilever frequency shifts
Institute of Scientific and Technical Information of China (English)
Hong Yong Xie
2007-01-01
Rutile TiO2(001) quantum dots (or nano-marks) in different shapes were used to imitate uncleaved material surfaces or materials with rough surfaces. By numerical integration of the equation of motion of cantilever for silicon tip scanning along the [110] direction over the rutile TiO2 (001) quantum dots in ultra high vacuum (UHV), scanning routes were explored to achieve atomic resolution from frequency shift image. The tip-surface interaction forces were calculated from Lennard-Jones (12-6) potential by the Hamaker summation method. The calculated results showed that atomic resolution could be achieved by frequency shift image for TiO2 (001) surfaces of rhombohedral quantum dot scanning in a vertical route, and spherical cap quantum dot scanning in a superposition route.
Tapered amplifier laser with frequency-shifted feedback
Bayerle, A; Vlaar, P; Pasquiou, B; Schreck, F
2016-01-01
We present a frequency-shifted feedback (FSF) laser based on a tapered amplifier. The laser operates as a coherent broadband source with up to 370GHz spectral width and 2.3us coherence time. If the FSF laser is seeded by a continuous-wave laser a frequency comb spanning the output spectrum appears in addition to the broadband emission. The laser has an output power of 280mW and a center wavelength of 780nm. The ease and flexibility of use of tapered amplifiers makes our FSF laser attractive for a wide range of applications, especially in metrology.
Anomalously small blackbody radiation shift in the Tl+ frequency standard
Zuhrianda, Z.; Safronova, M. S.; Kozlov, M. G.
2012-02-01
The operation of atomic clocks is generally carried out at room temperature, whereas the definition of the second refers to the clock transition in an atom at absolute zero. This implies that the clock transition frequency should be corrected in practice for the effect of finite temperature of which the leading contributor is the blackbody radiation (BBR) shift. In the present work, we used configuration interaction + coupled-cluster method to evaluate polarizabilities of the 6s21S0 and 6s6p3P0 states of the Tl+ ion; we find α0(1S0)=19.6 a.u. and α0(3P0)=21.4 a.u. The resulting BBR shift of the 6s6p3P0-6s21S0 Tl+ transition at 300 K is ΔνBBR=-0.0157(16) Hz. This result demonstrates that near cancellation of the 1S0 and 3P0 state polarizabilities in divalent B+, Al+, and In+ ions of group IIIB [M. S. Safronova , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.143006 107, 143006 (2011)] continues for much heavier Tl+, leading to anomalously small BBR shift for this system. This calculation demonstrates that the BBR contribution to the fractional frequency uncertainty of the Tl+ frequency standard at 300 K is 1×10-18. We find that Tl+ has the smallest fractional BBR shift among all present or proposed frequency standards with the exception of Al+.
Modeling of Doppler frequency shift in multipath radiochannels
Penzin, Maksim; Iyin, Nikolay
2016-06-01
We discuss the modeling of propagation of a quasi-monochromatic radio signal, represented by a coherent pulse sequence, in a non-stationary multipath radio channel. In such a channel, signal propagation results in the observed frequency shift for each ray (Doppler effect). The modeling is based on the assumption that during propagation of a single pulse a channel can be considered stationary. A phase change in the channel transfer function is shown to cause the observed frequency shift in the received signal. Thus, instead of measuring the Doppler frequency shift, we can measure the rate of change in the mean phase of one pulse relative to another. The modeling is carried out within the framework of the method of normal waves. The method enables us to model the dynamics of the electromagnetic field at a given point with the required accuracy. The modeling reveals that a local change in ionospheric conditions more severely affects the rays whose reflection region is in the area where the changes occur.
Non Stationary And Non Gaussian Character Of ENSO: The Role Of Climate Shifts And Nonlinearities
Boucharel, J.; Dewitte, B.; Garel, B.; Du Penhoat, Y.
2008-12-01
ENSO is the dominant climate mode of variability in the Pacific, having socio-economical impacts on surrounding regions. ENSO exhibits a significant modulation at decadal to interdecadal timescales which is associated to changes of its characteristics (onset, amplitude, frequency, propagation, and predictability). Among these characteristics, some of them are generally ignored in ENSO studies, such as its asymmetry and the deviation of its statistics from those of the Gaussian distribution. These properties could be related to the ability of the current generation of coupled models to predict ENSO and its modulation. Here, the non-Gaussian nature and asymmetry of ENSO is diagnosed from in situ data and the outputs of a variety of models (from intermediate complexity models to full physics coupled general circulation models) using robust statistical tools. In particular alpha-stable laws are used as theoretical background material to quantify the non-Gaussian character of ENSO time series. It is shown that the Alpha-stable character of ENSO may result from the presence of climate shifts inducing non stationnarity in the time series. Also, cool (warm) periods are associated with ENSO statistics having a larger (weaker) tendency towards Gaussianity and a weaker (larger) asymmetry. This supports the hypothesis of ENSO being rectified by changes in mean state through non-linear processes. The relationship between change in mean state and non-linearity is investigated both in the Zebiak and Cane model and the IPCC models, which indicate that the propensity of a model to reproduce extreme events is related to its tendency to emphasize the non-linear interaction between mean state and ENSO variability. More particularly, high statistical moments i.e. high order nonlinearities seem to be involved in the feedback between extreme events occurrence and mean state shift triggering through inverse energy cascade, emphasizing the ENSO multifractal nature.
New nonlinear polarization effects for frequency selection
Karagodova, Tamara Y.; Karagodov, Alexander I.
1998-05-01
The method of computer simulations on nonlinear resonant magnetooptical effects developed for real multi-level atoms in the two laser fields of arbitrary intensity and external magnetic field is applied for the polarization effects of different types calculations and investigations of the dependence of the characteristics of these effects on magnetic field strength, intensities, polarization and detunings of laser fields for alkaline atoms. The essence of the method consists in simulations and analysis of the plots of dependence of quasi energies on parameters, which are obtained with the help of sorting subprogram, and selection of suitable algorithms for calculations of characteristics of nonlinear resonant magnetooptical effects. One photon and two photon resonant effects are investigated for wide range of magnetic field strength from Zeeman to Paschen Back effects. Some new features in the spectra of rotation of plane of polarization and circular dichroism of different types are predicted. The results show the agreement with known experiments. Such calculations of nonlinear resonant magnetooptical effects in the intense laser fields resonant to adjacent transitions and magnetic field show the opportunity of investigation the modifications of electronic structure due to intense radiation fields and strong external magnetic field in atomic gases and also may be used for the treatment of new methods of phase-polarization selection of modes of tunable lasers.
Gall, Clarence A.
1999-05-01
When an electromagnetic radiation (EMR) source is in uniform motion with respect to an observer, a spectral (Doppler) shift in frequency is seen (blue as it approaches, red as it recedes). Since special relativity is limited to coordinate systems in uniform relative motion, this theory should be subject to this condition. On the other hand, the gravitational red shift (Einstein; Relativity: The Special and the General Theory, Crown,(1961), p.129) claims that EMR frequency decreases as the gravitational field, where the source is located, increases. As a gravitational effect, one would expect its derivation from a solution of the general relativistic field equations (R_μσ=0). Up to now, it has only been possible to derive it indirectly, by comparing the gravitational field to a (centrifugal) field produced by coordinate systems in relative rotational motion as an approximation of special relativity. Since rotation implies acceleration, it does not meet the conditions of special relativity so this is unsatisfactory. This work shows that the problem lies in the Schwarzschild metric which is independent of EMR frequency. By contrast it is easy to deduce the gravitational red shift from the frequency dependent Gall metric (Gall in AIP Conference Proceedings 308, The Evolution of X-Ray Binaries,(1993), p. 87).
Nonlinear Modelling of Low Frequency Loudspeakers
DEFF Research Database (Denmark)
Olsen, Erling Sandermann; Christensen, Knud Bank
1996-01-01
A central part of the Danish LoDist project has been the derivation of an extended equivalent circuit and a corresponding set of differential equations suitable for the simulation of high-fidelity woofers under large and very large (clipping) signal conditions. A model including suspension creep ...... and eddy current losses seems to be sufficient, but all the parameters of the model vary with the position of the diaphragm. The model and the associated set of nonlinear differential equations and the solution of the equations are discussed....
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin
2013-01-01
We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...
Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber
DEFF Research Database (Denmark)
Judge, A.C.; Bang, Ole; Eggleton, B.J.
2009-01-01
Soliton propagation is modeled in a tapered photonic crystal fiber for various taper profiles with the purpose of optimizing the soliton self-frequency shift (SSFS) in such geometries. An optimal degree of tapering is found to exist for tapers with an axially uniform waist. In the case of axially...... of dispersive waves. In doing so, the increased nonlinearity and dispersion engineering afforded by the reduction of the core size are exploited while circumventing the limitation imposed on the soliton redshift by the associated shortening of the red zero-dispersion wavelength....
Frequency shifting approach towards textual transcription of heartbeat sounds
Directory of Open Access Journals (Sweden)
Safar Khorasani Ehsan
2011-10-01
Full Text Available Abstract Auscultation is an approach for diagnosing many cardiovascular problems. Automatic analysis of heartbeat sounds and extraction of its audio features can assist physicians towards diagnosing diseases. Textual transcription allows recording a continuous heart sound stream using a text format which can be stored in very small memory in comparison with other audio formats. In addition, a text-based data allows applying indexing and searching techniques to access to the critical events. Hence, the transcribed heartbeat sounds provides useful information to monitor the behavior of a patient for the long duration of time. This paper proposes a frequency shifting method in order to improve the performance of the transcription. The main objective of this study is to transfer the heartbeat sounds to the music domain. The proposed technique is tested with 100 samples which were recorded from different heart diseases categories. The observed results show that, the proposed shifting method significantly improves the performance of the transcription.
Anomalously small blackbody radiation shift in Tl+ frequency standard
Zuhrianda, Z; Kozlov, M G
2012-01-01
The operation of atomic clocks is generally carried out at room temperature, whereas the definition of the second refers to the clock transition in an atom at absolute zero. This implies that the clock transition frequency should be corrected in practice for the effect of finite temperature of which the leading contributor is the blackbody radiation (BBR) shift. In the present work, we used configuration interaction + coupled-cluster method to evaluate polarizabilities of the $6s^2 ^1S_0$ and $6s6p ^3P_0$ states of Tl$^+$ ion; we find $\\alpha_0(^1S_0)=19.6$ a.u. and $\\alpha_0(^3P_0)=21.4$ a.u.. The resulting BBR shift of the $6s6p ^3P_0 - 6s^2 ^1S_0$ Tl$^+$ transition at $300 K$ is $\\Delta \
Frequency shifting approach towards textual transcription of heartbeat sounds.
Arvin, Farshad; Doraisamy, Shyamala; Safar Khorasani, Ehsan
2011-10-04
Auscultation is an approach for diagnosing many cardiovascular problems. Automatic analysis of heartbeat sounds and extraction of its audio features can assist physicians towards diagnosing diseases. Textual transcription allows recording a continuous heart sound stream using a text format which can be stored in very small memory in comparison with other audio formats. In addition, a text-based data allows applying indexing and searching techniques to access to the critical events. Hence, the transcribed heartbeat sounds provides useful information to monitor the behavior of a patient for the long duration of time. This paper proposes a frequency shifting method in order to improve the performance of the transcription. The main objective of this study is to transfer the heartbeat sounds to the music domain. The proposed technique is tested with 100 samples which were recorded from different heart diseases categories. The observed results show that, the proposed shifting method significantly improves the performance of the transcription.
Nonlinear Pulse Compression and Reshaping Using Cross-Phase Modulation in a Dispersion-Shifted Fiber
Institute of Scientific and Technical Information of China (English)
S.; W.; Chan; K.; K.; Chow; C.; Shu
2003-01-01
Nonlinear pulse compression has been demonstrated by cross-phase modulation in a dispersion-shifted fiber. The output is obtained from filtering of the broadened optical spectrum and a pulse width reduction from 61 to 28 ps is achieved.
Blackbody radiation shift in the Rb87 frequency standard
Safronova, M. S.; Jiang, Dansha; Safronova, U. I.
2010-08-01
The operation of atomic clocks is generally carried out at room temperature, whereas the definition of the second refers to the clock transition in an atom at absolute zero. This implies that the clock transition frequency should be corrected in practice for the effect of finite temperature, of which the leading contributor is the blackbody radiation (BBR) shift. Experimental measurements of the BBR shifts are difficult. In this work, we have calculated the blackbody radiation shift of the ground-state hyperfine microwave transition in Rb87 using the relativistic all-order method and carried out a detailed evaluation of the accuracy of our final value. Particular care is taken to accurately account for the contributions from highly excited states. Our predicted value for the Stark coefficient, kS=-1.240(4)×10-10Hz/(V/m)2, is three times more accurate than the previous calculation [E. J. Angstman, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.74.023405 74, 023405 (2006)].
Non Gaussian and Non stationary characters of ENSO: the role of climate shifts and nonlinearities
Boucharel, J.; Dewitte, B.; Garel, B.; Du Penhoat, Y.
2009-04-01
ENSO is the dominant climate mode of variability in the Pacific, having socio-economical impacts on surrounding regions. ENSO exhibits a significant modulation at decadal to multidecadal timescales which is associated to changes of its characteristics (onset, amplitude, frequency, propagation, and predictability). Among these characteristics, some of them are generally ignored in ENSO studies, such as its asymmetry and the deviation of its statistics from those of the Gaussian distribution. These properties could be related to the ability of the current generation of coupled models to predict ENSO and its modulation. Here, the non-Gaussian nature and asymmetry of ENSO is diagnosed from in situ data and a variety of models (from intermediate complexity models to full physics coupled general circulation models) using robust statistical tools. In particular α-stable laws are used as theoretical background material to quantify the non-Gaussian character of ENSO time series. It is shown that the α-stable character of ENSO may result from the presence of climate shifts inducing non stationnarity in the time series. Also, cool (warm) periods are associated with ENSO statistics having a larger (weaker) tendency towards Gaussianity and a weaker (larger) asymmetry. This supports the hypothesis of ENSO being rectified by changes in mean state through non-linear processes. The relationship between change in mean state and non-linearity is investigated both in the Zebiak and Cane model and the IPCC models, which indicate that the propensity of a model to reproduce extreme events is related to its tendency to emphasize the non-linear interaction between mean state and ENSO variability. More particularly, high statistical moments i.e high order nonlinearities seem to be involved in the feedback between extreme events occurrence and mean state shit triggering through energy cascade, emphasizing the ENSO multifractal nature.
Raman induced soliton self-frequency shift in microresonator Kerr frequency combs
Karpov, Maxim; Kordts, Arne; Brasch, Victor; Pfeiffer, Martin; Zervas, Michail; Geiselmann, Michael; Kippenberg, Tobias J
2015-01-01
The formation of temporal dissipative solitons in continuous wave laser driven microresonators enables the generation of coherent, broadband and spectrally smooth optical frequency combs as well as femtosecond pulses with compact form factor. Here we report for the first time on the observation of a Raman-induced soliton self-frequency shift for a microresonator soliton. The Raman effect manifests itself in amorphous SiN microresonator based single soliton states by a spectrum that is hyperbolic secant in shape, but whose center is spectrally red-shifted (i.e. offset) from the continuous wave pump laser. The Raman induced spectral red-shift is found to be tunable via the pump laser detuning and grows linearly with peak power. The shift is theoretically described by the first order shock term of the material's Raman response, and we infer a Raman shock time of 20 fs for amorphous SiN. Moreover, we observe that the Raman induced frequency shift can lead to a cancellation or overcompensation of the soliton recoi...
Frequency-Shift Detectors Bind Binaural as Well as Monaural Frequency Representations
Carcagno, Samuele; Semal, Catherine; Demany, Laurent
2011-01-01
Previous psychophysical work provided evidence for the existence of automatic frequency-shift detectors (FSDs) that establish perceptual links between successive sounds. In this study, we investigated the characteristics of the FSDs with respect to the binaural system. Listeners were presented with sound sequences consisting of a chord of pure…
Frequency-tunable superconducting resonators via nonlinear kinetic inductance
Energy Technology Data Exchange (ETDEWEB)
Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Gao, J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Chaudhuri, S. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Bockstiegel, C. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)
2015-08-10
We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.
Liu, Bo-Wen; Hu, Ming-Lie; Fang, Xiao-Hui; Li, Yan-Feng; Chai, Lu; Wang, Ching-Yue; Tong, Weijun; Luo, Jie; Voronin, Aleksandr A; Zheltikov, Aleksei M
2008-09-15
Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.
Intermittent Giant Goos-Hanchen shifts from Airy beams at nonlinear interfaces
Chamorro-Posada, Pedro; Aceves, Alejandro B; McDonald, Graham S
2013-01-01
We study the giant Goos-Hanchen shift obtained from an Airy beam impinging on a nonlinear interface. To avoid any angular restriction associated with the paraxial approximation, the analysis is based on the numerical solution of the nonlinear Helmholtz equation. We report the existence of non-standard intermittent and oscillatory regimes for the nonlinear Goos-Hanchen shifts which can be explained in terms of the competition between the critical coupling to a surface mode of the reflected component of the Airy beam and the soliton emission from the refracted beam component.
NONLINEAR NATURAL FREQUENCY OF SHALLOW CONICAL SHELLS WITH VARIABLE THICKNESS
Institute of Scientific and Technical Information of China (English)
WANG Xin-zhi; HAN Ming-jun; ZHAO Yong-gang; YEH Kai-yuan
2005-01-01
The nonlinear dynamical variation equation and compatible equation of the shallow conical shell with variable thickness are obtained by the theory of nonlinear dynamical variation equation and compatible equation of the circular thin plate with variable thickness. Assuming the thin film tension is composed of two items. The compatible equation is transformed into two independent equations. Selecting the maximum amplitude in the center of the shallow conical shells with variable thickness as the perturbation parameter,the variation equation and the differential equation are transformed into linear expression by theory of perturbation variation method. The nonlinear natural frequency of shallow conical shells with circular bottom and variable thickness under the fixed boundary conditions is solved. In the first approximate equation, the linear natural frequency of shallow conical shells with variable thickness is obtained. In the third approximate equation, the nonlinear uatural frequency of it is obtained. The figures of the characteristic curves of the natural frequency varying with stationary loads, large amplitude, and variable thickness coefficient are plotted. A valuable reference is given for dynamic engineering.
Blind speech source separation via nonlinear time-frequency masking
Institute of Scientific and Technical Information of China (English)
XU Shun; CHEN Shaorong; LIU Yulin
2008-01-01
Aim at the underdetermined convolutive mixture model, a blind speech source separation method based on nonlinear time-frequency masking was proposed, where the approximate W-disjoint orthogonality (W-DO) property among independent speech signals in time-frequency domain is utilized. In this method, the observation mixture signal from multimicrophones is normalized to be independent of frequency in the time-frequency domain at first, then the dynamic clustering algorithm is adopted to obtain the active source information in each time-frequency slot, a nonlinear function via deflection angle from the cluster center is selected for time-frequency masking, finally the blind separation of mixture speech signals can be achieved by inverse STFT (short-time Fourier transformation). This method can not only solve the problem of frequency permutation which may be met in most classic frequency-domain blind separation techniques, but also suppress the spatial direction diffusion of the separation matrix. The simulation results demonstrate that the proposed separation method is better than the typical BLUES method, the signal-noise-ratio gain (SNRG) increases 1.58 dB averagely.
Acoustic hologram formation with a frequency shifted reference beam.
Whitman, R L
1970-06-01
This paper discusses an interference technique that makes it possible to directly observe and record the usually very weak light diffracted by an acoustical surface perturbation. This is accomplished by using spatial filtering techniques in combination with a frequency shifted reference beam. It is shown that the acoustically diffracted light may be visualized even in the presence of statically scattered light of much higher intensity. An experiment is described in which this technique is used to view the surface perturbations of piezoelectric ceramic material caused by acoustic surface waves. The application of this system to acoustic holography is discussed in detail. This application makes use of the fact that bulk acoustic waves in a material, upon striking the surface at some acute angle, cause surface ripple patterns which form a dynamic hologram of the acoustic field. A photographic image of this hologram frozen in time may then be recorded using the process discussed above.
Cardiac frequency throughout a working shift in coal miners.
Montoliu, M A; Gonzalez, V; Palenciano, L
1995-06-01
Despite the ever-increasing mechanization of industrial activities, coal mining still remains a physically demanding occupation as it is not always possible to extensively mechanize the extraction process. To estimate the physical effort necessary to sustain coal mining activities in a poorly-mechanized mine, cardiac frequency (fc) was measured throughout the working shift with a Sport-Tester PE3000 (Polar Electro OY, Finland) in a representative sample of 73 Asturian miners engaged in a full spectrum of underground work. The mean +/- SD of the overall fc values measured in miners working at the coal face (Group 1, 33 subjects, mean age 32.7 years, age range 21-48 years) was 106.5 +/- 18.2 beats.min-1. In other miners (Group 2, 40 subjects, mean age 34.6 years, age range 23-48 years) corresponding figures were 103.1 +/- 17.7 beats.min-1 (p mechanized mines. However, average working-shift fc differs considerably from subject to subject and is largely unpredictable.
Dual-frequency transducer for nonlinear contrast agent imaging.
Guiroy, Axel; Novell, Anthony; Ringgaard, Erling; Lou-Moeller, Rasmus; Grégoire, Jean-Marc; Abellard, André-Pierre; Zawada, Tomasz; Bouakaz, Ayache; Levassort, Franck
2013-12-01
Detection of high-order nonlinear components issued from microbubbles has emerged as a sensitive method for contrast agent imaging. Nevertheless, the detection of these high-frequency components, including the third, fourth, and fifth harmonics, remains challenging because of the lack of transducer sensitivity and bandwidth. In this context, we propose a new design of imaging transducer based on a simple fabrication process for high-frequency nonlinear imaging. The transducer is composed of two elements: the outer low-frequency (LF) element was centered at 4 MHz and used in transmit mode, whereas the inner high-frequency (HF) element centered at 14 MHz was used in receive mode. The center element was pad-printed using a lead zirconate titanate (PZT) paste. The outer element was molded using a commercial PZT, and curved porous unpoled PZT was used as backing. Each piezoelectric element was characterized to determine the electromechanical performance with thickness coupling factor around 45%. After the assembly of the two transducer elements, hydrophone measurements (electroacoustic responses and radiation patterns) were carried out and demonstrated a large bandwidth (70% at -3 dB) of the HF transducer. Finally, the transducer was evaluated for contrast agent imaging using contrast agent microbubbles. The results showed that harmonic components (up to the sixth harmonic) of the microbubbles were successfully detected. Moreover, images from a flow phantom were acquired and demonstrated the potential of the transducer for high-frequency nonlinear contrast imaging.
DEFF Research Database (Denmark)
Thomsen, Jon Juel
2006-01-01
Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...
Frequency Response and Gap Tuning for Nonlinear Electrical Oscillator Networks
Bhat, Harish S.; Vaz, Garnet J.
2013-01-01
We study nonlinear electrical oscillator networks, the smallest example of which consists of a voltage-dependent capacitor, an inductor, and a resistor driven by a pure tone source. By allowing the network topology to be that of any connected graph, such circuits generalize spatially discrete nonlinear transmission lines/lattices that have proven useful in high-frequency analog devices. For such networks, we develop two algorithms to compute the steady-state response when a subset of nodes are driven at the same fixed frequency. The algorithms we devise are orders of magnitude more accurate and efficient than stepping towards the steady-state using a standard numerical integrator. We seek to enhance a given network's nonlinear behavior by altering the eigenvalues of the graph Laplacian, i.e., the resonances of the linearized system. We develop a Newton-type method that solves for the network inductances such that the graph Laplacian achieves a desired set of eigenvalues; this method enables one to move the eigenvalues while keeping the network topology fixed. Running numerical experiments using three different random graph models, we show that shrinking the gap between the graph Laplacian's first two eigenvalues dramatically improves a network's ability to (i) transfer energy to higher harmonics, and (ii) generate large-amplitude signals. Our results shed light on the relationship between a network's structure, encoded by the graph Laplacian, and its function, defined in this case by the presence of strongly nonlinear effects in the frequency response. PMID:24223751
Quantitative analysis of a frequency-domain nonlinearity indicator.
Reichman, Brent O; Gee, Kent L; Neilsen, Tracianne B; Miller, Kyle G
2016-05-01
In this paper, quantitative understanding of a frequency-domain nonlinearity indicator is developed. The indicator is derived from an ensemble-averaged, frequency-domain version of the generalized Burgers equation, which can be rearranged in order to directly compare the effects of nonlinearity, absorption, and geometric spreading on the pressure spectrum level with frequency and distance. The nonlinear effect is calculated using pressure-squared-pressure quadspectrum. Further theoretical development has given an expression for the role of the normalized quadspectrum, referred to as Q/S by Morfey and Howell [AIAA J. 19, 986-992 (1981)], in the spatial rate of change of the pressure spectrum level. To explore this finding, an investigation of the change in level for initial sinusoids propagating as plane waves through inviscid and thermoviscous media has been conducted. The decibel change with distance, calculated through Q/S, captures the growth and decay of the harmonics and indicates that the most significant changes in level occur prior to sawtooth formation. At large distances, the inviscid case results in a spatial rate of change that is uniform across all harmonics. For thermoviscous media, large positive nonlinear gains are observed but offset by absorption, which leads to a greater overall negative spatial rate of change for higher harmonics.
Nonlinear Vibration of Oscillation Systems using Frequency-Amplitude Formulation
Directory of Open Access Journals (Sweden)
A. Fereidoon
2012-01-01
Full Text Available In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifth-order nonlinearity for two examples using He's Frequency-Amplitude Formulation (HFAF.The effectiveness and convenience of the method is illustrated in these examples. It will be shown that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems.
Institute of Scientific and Technical Information of China (English)
ZHANG Jun-Hai; WANG Feng-Zhi; WANG Yi-Qiu; YANG Dong-Hai
2004-01-01
@@ Light frequency shift measured in a smalloptically pumped caesium beam frequency standard is reported and analysed. Two light sources, the diffused laser light scattered from the caesium beam tube parts and the fluorescence light from the beam atoms excited by the laser light, for the light frequency shift are discussed.
Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres
Ducros, Nicolas; Morin, Franck; Cook, Kevin; Labruyère, Alexis; Février, Sébastien; Humbert, Georges; Druon, Fréderic; Hanna, Marc; Georges, Patrick; Canning, J.; Buczynski, Ryszard; Pysz, Dariusz; Stepien, Ryszard
2010-04-01
Chalcogenide or heavy metal oxide glasses are well known for their good transparency in the mid-infrared (MIR) domain as well as their high nonlinear refractive index (n2) tens to hundreds times higher than that of silica. We have investigated the nonlinear frequency conversion processes, based upon either stimulated Raman scattering (SRS) or soliton fission and soliton self-frequency shift (SSFS) in fibres made up with such highly nonlinear infrared transmitting glasses. First, SRS has been investigated in a chalcogenide As2S3 step index fibre. In the single pass configuration, under quasi continuous wave 1550 nm pumping, Raman cascade up to the forth Stokes order has been obtained in a 3 m long piece of fibre. The possibility to build a Raman laser thanks to in-fibre written Bragg gratings has also been investigated. A 5 dB Bragg grating has been written successfully in the core. Then, nonlinear frequency conversion in ultra-short pulse regime has been studied in a heavy metal oxide (lead-bismuth-gallium ternary system) glass photonic crystal fibre. Broadband radiation, from 800 nm up to 2.8 μm, has been obtained by pumping an 8 cm long piece of fibre at 1600 nm in sub-picosecond pulsed regime. The nonlinear frequency conversion process was assessed by numerical modelling taking into account the actual fibre cross-section as well as the measured linear and nonlinear parameters and was found to be due to soliton fission and Raman-induced SSFS.
Frequency shifts in NIST Cs Primary Frequency Standards due To Transverse RF Field Gradients
Ashby, Neil; Heavner, Thomas; Jefferts, Steven
2014-01-01
A single-particle Green's function (propagator) is introduced to study the detection of laser-cooled Cesium atoms in an atomic fountain due to RF ?field gradients in the Ramsey TE011 cavity. The detection results in a state-dependent loss of atoms at apertures in the physics package, resulting in a frequency bias. A model accounting only for motion in one dimension transverse to the symmetry axis of the fountain is discussed in detail and then generalized to two transverse dimensions. Results for fractional frequency shifts due to transverse field gradients are computed for NIST F-1 and F-2 Cesium fountains. The shifts are found to be negligible except in cases of higher RF power applied to the cavities.
Nonlinear series resonance and standing waves in dual-frequency capacitive discharges
Wen, De-Qi; Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Wang, You-Nian
2017-01-01
It is well-known that the nonlinear series resonance in a high frequency capacitive discharge enhances the electron power deposition and also creates standing waves which produce radially center-high rf voltage profiles. In this work, the dynamics of series resonance and wave effects are examined in a dual-frequency driven discharge, using an asymmetric radial transmission line model incorporating a Child law sheath. We consider a cylindrical argon discharge with a conducting electrode radius of 15 cm, gap length of 3 cm, with a base case having a 60 MHz high frequency voltage of 250 V and a 10 MHz low frequency voltage of 1000 V, with a high frequency phase shift {φ\\text{H}}=π between the two frequencies. For this phase shift there is only one sheath collapse, and the time-averaged spectral peaks of the normalized current density at the center are mainly centered on harmonic numbers 30 and 50 of the low frequency, corresponding to the first standing wave resonance frequency and the series resonance frequency, respectively. The effects of the waves on the series resonance dynamics near the discharge center give rise to significant enhancements in the electron power deposition, compared to that near the discharge edge. Adjusting the phase shift from π to 0, or decreasing the low frequency from 10 to 2 MHz, results in two or more sheath collapses, respectively, making the dynamics more complex. The sudden excitation of the perturbed series resonance current after the sheath collapse results in a current oscillation amplitude that is estimated from analytical and numerical calculations. Self-consistently determining the dc bias and including the conduction current is found to be important. The subsequent slow time variation of the high frequency oscillation is analyzed using an adiabatic theory.
Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers.
Buckland, E L; Boyd, R W
1997-05-15
The electrostrictive contribution to the nonlinear refractive index is investigated by use of frequency-dependent cross-phase modulation with a weak unpolarized cw probe wave and a harmonically modulated pump copropagating in optical fibers. Self-delayed homodyne detection is used to measure the amplitude of the sidebands imposed upon the probe wave as a function of pump intensity for pump modulation frequencies from 10 MHz to 1 GHz. The ratio of the electrostrictive nonlinear coefficient to the cross-phase-modulation Kerr coefficient for unpolarized light is measured to be 1.58:1 for a standard step-index single-mode fiber and 0.41:1 for dispersion-shifted fibers, indicating a larger electrostrictive response in silica fibers than previously expected.
A Closed Form Solution for Nonlinear Oscillators Frequencies Using Amplitude-Frequency Formulation
Directory of Open Access Journals (Sweden)
A. Barari
2012-01-01
Full Text Available Many nonlinear systems in industry including oscillators can be simulated as a mass-spring system. In reality, all kinds of oscillators are nonlinear due to the nonlinear nature of springs. Due to this nonlinearity, most of the studies on oscillation systems are numerically carried out while an analytical approach with a closed form expression for system response would be very useful in different applications. Some analytical techniques have been presented in the literature for the solution of strong nonlinear oscillators as well as approximate and numerical solutions. In this paper, Amplitude-Frequency Formulation (AFF approach is applied to analyze some periodic problems arising in classical dynamics. Results are compared with another approximate analytical technique called Energy Balance Method developed by the authors (EBM and also numerical solutions. Close agreement of the obtained results reveal the accuracy of the employed method for several practical problems in engineering.
Wavenumber shift due to nonlinear plasma and wave interaction
Gan, Chunyun; Xiang, Nong; Yu, Zhi; Yang, Youlei; Ou, Jing
2016-06-01
Wavenumber shift of the ion Bernstein wave has been observed in the particle-in-cell simulations when the input power of the injected wave is sufficiently large. It is demonstrated that the increase of the total kinetic energy of ions, including both the thermal energy related to the random thermal motion and the oscillation energy due to the coherent motion with the wave, gives rise to such change of the wavenumber. However, the velocity distribution function of the ions can approximately be fitted as a Maxwellian distribution function, and thus, the linear dispersion relation still holds, provided that the initial ion temperature is replaced by the effective temperature measured in the simulation.
Non-linear high-frequency waves in the magnetosphere
Indian Academy of Sciences (India)
S Moolla; R Bharuthram; S V Singh; G S Lakhina
2003-12-01
Using ﬂuid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic ﬁeld in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric ﬁeld.
Optimal frequency conversion in the nonlinear stage of modulation instability
Bendahmane, A; Kudlinski, A; Szriftgiser, P; Conforti, M; Wabnitz, S; Trillo, S
2015-01-01
We investigate multi-wave mixing associated with the strongly pump depleted regime of induced modulation instability (MI) in optical fibers. For a complete transfer of pump power into the sideband modes, we theoretically and experimentally demonstrate that it is necessary to use a much lower seeding modulation frequency than the peak MI gain value. Our analysis shows that a record 95 % of the input pump power is frequency converted into the comb of sidebands, in good quantitative agreement with analytical predictions based on the simplest exact breather solution of the nonlinear Schr\\"odinger equation.
Tune shift induced by nonlinear resistive wall wake field of flat collimator
Zimmermann, Frank; Assmann, R W; Burkhardt, H; Caspers, Friedhelm; Gasior, M; Jones, R; Kroyer, T; Métral, E; Redaelli, S; Robert-Démolaize, G; Roncarolo, F; Rumolo, Giovanni; Steinhagen, Ralph J; Wenninger, J
2006-01-01
We present formulae for the coherent and incoherent tune shifts due to the nonlinear resistive wall wake field for a single beam traveling between two parallel plates. In particular, we demonstrate that the nonlinear terms of the resistive-wall wake field become important if the gap between the plates is comparable to the transverse rms beam size. We also compare the theoretically predicted tune shift as a function of gap size with measurements for an LHC prototype graphite collimator in the CERN SPS and with simulations.
Bi, Wanjun; Li, Xia; Xing, Zhaojun; Zhou, Qinling; Fang, Yongzheng; Gao, Weiqing; Xiong, Liangming; Hu, Lili; Liao, Meisong
2016-01-01
Wavelength conversion to the wavelength range that is not covered by commercially available lasers could be accomplished through the soliton self-frequency shift (SSFS) effect. In this study, the phenomenon of SSFS pumped by a picosecond-order pulse in a tellurite microstructured fiber is investigated both theoretically and experimentally. The balance between the dispersion and the nonlinearity achieved by a 1958 nm pump laser induces a distinct SSFS effect. Attributed to the large spectral distance between the pump pulse and the fiber zero-dispersion wavelength, the SSFS is not cancelled due to energy shedding from the soliton to the dispersive wave. Details about the physical mechanisms behind this phenomenon and the variations of the wavelength shift, the conversion efficiency are revealed based on numerical simulations. Owing to the large soliton number N, the pulse width of the first split fundamental soliton is approximately 40 fs, producing a pulse compression factor of ˜38, much higher than that pumped by a femtosecond pulse. Experiments were also conducted to confirm the validity of the simulation results. By varying the pump power, a continuous soliton shift from 1990 nm to 2264 nm was generated. The generation of SSFS in tellurite microstructured fibers with picosecond pump pulse can provide a new approach for wavelength conversion in the mid-infrared range and could be useful in medical and some other areas.
McNaughton, B H; Kopelman, R; Agayan, Rodney R.; Kopelman, Raoul; Naughton, Brandon H. Mc
2006-01-01
We report on a new technique which was used to detect single Escherichia coli that is based on the changes in the nonlinear rotation of a magnetic microsphere driven by an external magnetic field. The presence of one Escherichia Coli bacterium on the surface of a 2.0 micron magnetic microsphere caused an easily measurable change in the drag of the system and, therefore, in the nonlinear rotation rate. The straight-forward measurement uses standard microscopy techniques and the observed average shift in the nonlinear rotation rate changed by a factor of ~3.8.
Widely varying giant Goos-Hänchen shifts from Airy beams at nonlinear interfaces.
Chamorro-Posada, Pedro; Sánchez-Curto, Julio; Aceves, Alejandro B; McDonald, Graham S
2014-03-15
We present a numerical study of the giant Goos-Hänchen shifts (GHSs) obtained from an Airy beam impinging on a nonlinear interface. To avoid any angular restriction associated with the paraxial approximation, the analysis is based on the nonlinear Helmholtz equation. We report the existence of nonstandard nonlinear GHSs displaying an extreme sensitivity to the input intensity and the existence of multiple critical values. These intermittent and oscillatory regimes can be explained in terms of competition between critical coupling to a surface mode and soliton emission from the refracted beam component and how this interplay varies with localization of the initial Airy beam.
Toward an adjustable nonlinear low frequency acoustic absorber
Mariani, R.; Bellizzi, S.; Cochelin, B.; Herzog, P.; Mattei, P. O.
2011-10-01
A study of the targeted energy transfer (TET) phenomenon between an acoustic resonator and a thin viscoelastic membrane has recently been presented in the paper [R. Bellet et al., Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber, Journal of Sound and Vibration 329 (2010) 2768-2791], providing a new path to passive sound control in the low frequency domain where no efficient dissipative device exists. This paper presents experimental results showing that a loudspeaker used as a suspended piston working outside its range of linearity can also be used as a nonlinear acoustic absorber. The main advantage of this technology of absorber is the perspective to adjust independently the device parameters (mass, nonlinear stiffness and damping) according to the operational conditions. To achieve this purpose, quasi-static and dynamic tests have been performed on three types of commercial devices (one with structural modifications), in order to define the constructive characteristics that it should present. An experimental setup has been developed using a one-dimensional acoustic linear system coupled through a box (acting as a weak spring) to a loudspeaker used as a suspended piston acting as an essentially nonlinear oscillator. The tests carried out on the whole vibro-acoustic system have showed the occurrence of the acoustic TET from the acoustic media to the suspended piston and demonstrated the efficiency of this new kind of absorber at low frequencies over a wide frequency range. Moreover, the experimental analyses conducted with different NES masses have confirmed that it is possible to optimize the noise absorption with respect to the excitation level of the acoustic resonator.
Kypraios, Ioannis; Young, Rupert C. D.; Birch, Philip M.; Chatwin, Christopher R.
2003-08-01
The various types of synthetic discriminant function (sdf) filter result in a weighted linear superposition of the training set images. Neural network training procedures result in a non-linear superposition of the training set images or, effectively, a feature extraction process, which leads to better interpolation properties than achievable with the sdf filter. However, generally, shift invariance is lost since a data dependant non-linear weighting function is incorporated in the input data window. As a compromise, we train a non-linear superposition filter via neural network methods with the constraint of a linear input to allow for shift invariance. The filter can then be used in a frequency domain based optical correlator. Simulation results are presented that demonstrate the improved training set interpolation achieved by the non-linear filter as compared to a linear superposition filter.
Jeong, Seongmook; Ju, Seongmin; Kim, Youngwoong; Watekar, Pramod R; Jeong, Hyejeong; Lee, Ho-Jae; Boo, Seongjae; Kim, Dug Young; Han, Won-Taek
2012-01-01
The dispersion-shifted fiber (DSF) incorporated with Si nanocrystals (Si-NCs) having highly nonlinear optical property was fabricated to investigate the effective supercontinuum generation characteristics by using the MCVD process and the drawing process. Optical nonlinearity was enhanced by incorporating Si nanocrystals in the core of the fiber and the refractive index profile of a dispersion-shifted fiber was employed to match its zero-dispersion wavelength to that of the commercially available pumping source for generating effective supercontinuum. The non-resonant nonlinear refractive index, n2, of the Si-NCs doped DSF measured by the cw-SPM method was measured to be 7.03 x 10(-20) [m2/W] and the coefficient of non-resonant nonlinearity, gamma, was 7.14 [W(-1) km(-1)]. To examine supercontinuum generation of the Si-NCs doped DSF, the femtosecond fiber laser with the pulse width of 150 fs (at 1560 nm) was launched into the fiber core. The output spectrum of the Si-NCs doped DSF was found to broaden from 1300 nm to wavelength well beyond 1700 nm, which can be attributed to the enhanced optical nonlinearity by Si-NCs embedded in the fiber core. The short wavelength of the supercontinuum spectrum in the Si-NCs doped DSF showed shift from 1352 nm to 1220 nm for the fiber length of 2.5 m and 200 m, respectively.
The application of sample-and-hold circuits in the laser frequency-shifting
Institute of Scientific and Technical Information of China (English)
Shuyu Zhou; Shanyu Zhou; Yuzhu Wang
2005-01-01
@@ A new method of frequency-shifting for a diode laser is realized. Using a sample-and-hold circuit, the error signal can be held by the circuit during frequency shifting. It can avoid the restraint of locking or even lock-losing caused by the servo circuit when we input a step-up voltage into piezoelectric transition (PZT)to achieve laser frequency-shifting.
Band gap shift and the optical nonlinear absorption of sputtered ZnO-TiO2 films.
Han, Yi-Bo; Han, Jun-Bo; Hao, Zhong-Hua
2011-06-01
ZnO-TiO2 composite films with different Zn/Ti atomic ratios were prepared with radio frequency reactive sputtering method. The Zn percentage composition (f(Zn)) dependent optical band gap and optical nonlinear absorption were investigated using the transmittance spectrum and the Z-scan technique, respectively. The results showed that composite films with f(Zn) in the range of 23.5%-88.3% are poor crystallized and their optical properties are anomalous which exhibit adjustable optical band gap and large optical nonlinear absorption. The optical absorption edge shifted to the blue wavelength direction with the increasing of f(Zn) and reached the minimum value of 285 nm for the sample with f(Zn) = 70.5%, which has the largest direct band gap of 4.30 eV. Further increasing of f(Zn) resulted in the red-shift of the optical absorption edge. The maximum optical nonlinear absorption coefficient of 1.5 x 10(3) cm/GW was also obtained for the same sample with f(Zn) = 70.5%, which is more than 40 times larger than those of pure TiO2 and ZnO films.
Frequency conversion, nonlinear absorption and carrier dynamics of GaSe:B/Er crystals
Yuksek, Mustafa; Karatay, Ahmet; Ertap, Hüseyin; Elmali, Ayhan; Karabulut, Mevlut
2017-04-01
We aimed to investigate the influence of Er3+ rare earth element on the frequency conversion wavelength in boron doped GaSe crystals. It was found that by substitution of Er3+ with B3+, SHG signal shifted to higher wavelength. In addition, the nonlinear absorption properties and ultrafast dynamics of pure, 0.5 at% B3+ and 0.25 at% B3+ + 0.25 at% Er3+ doped GaSe crystals have been studied by open aperture Z-scan and ultrafast pump probe spectroscopy techniques. All of the studied crystals showed nonlinear absorption (NA). It was observed that 0.5 at% B3+ doped GaSe crystal showed bleach signal. This signal switched to NA signal with long life after substitution of 0.25 at% Er3+ with 0.25 at% B3+.
Frequency analysis of nonlinear oscillations via the global error minimization
Kalami Yazdi, M.; Hosseini Tehrani, P.
2016-06-01
The capacity and effectiveness of a modified variational approach, namely global error minimization (GEM) is illustrated in this study. For this purpose, the free oscillations of a rod rocking on a cylindrical surface and the Duffing-harmonic oscillator are treated. In order to validate and exhibit the merit of the method, the obtained result is compared with both of the exact frequency and the outcome of other well-known analytical methods. The corollary reveals that the first order approximation leads to an acceptable relative error, specially for large initial conditions. The procedure can be promisingly exerted to the conservative nonlinear problems.
Resonances in BSO with frequency shifted input beams
DEFF Research Database (Denmark)
Buchhave, Preben; Vasnetsov, M.; Lyuksyutov, S.
1996-01-01
In this publication we report experiments with a frequency modulated offset frequency, which illustrate in which situations the problem may be considered linear, and in which it may not. Surprisingly we find, that even in the region of subharmonic generation, the space-charge field of the primary...... frequencies. We also report how resonances, forced by even a weak modulation of the frequency detuning may cause the suppression of the subharmonic generation....
Electrostatics determine vibrational frequency shifts in hydrogen bonded complexes.
Dey, Arghya; Mondal, Sohidul Islam; Sen, Saumik; Ghosh, Debashree; Patwari, G Naresh
2014-12-14
The red-shifts in the acetylenic C-H stretching vibration of C-H∙∙∙X (X = O, N) hydrogen-bonded complexes increase with an increase in the basicity of the Lewis base. Analysis of various components of stabilization energy suggests that the observed red-shifts are correlated with the electrostatic component of the stabilization energy, while the dispersion modulates the stabilization energy.
Frequency Shift of Carbon-Nanotube-Based Mass Sensor Using Nonlocal Elasticity Theory
Directory of Open Access Journals (Sweden)
Lee Haw-Long
2010-01-01
Full Text Available Abstract The frequency equation of carbon-nanotube-based cantilever sensor with an attached mass is derived analytically using nonlocal elasticity theory. According to the equation, the relationship between the frequency shift of the sensor and the attached mass can be obtained. When the nonlocal effect is not taken into account, the variation of frequency shift with the attached mass on the sensor is compared with the previous study. According to this study, the result shows that the frequency shift of the sensor increases with increasing the attached mass. When the attached mass is small compared with that of the sensor, the nonlocal effect is obvious and increasing nonlocal parameter decreases the frequency shift of the sensor. In addition, when the location of the attached mass is closer to the free end, the frequency shift is more significant and that makes the sensor reveal more sensitive. When the attached mass is small, a high sensitivity is obtained.
Nonlinear Cavity and Frequency Comb Radiations Induced by Negative Frequency Field Effects
Lourés, Cristian Redondo; Faccio, Daniele; Biancalana, Fabio
2015-11-01
Optical Kerr frequency combs (KFCs) are an increasingly important optical metrology tool with applications ranging from ultraprecise spectroscopy to time keeping. KFCs may be generated in compact resonators with extremely high quality factors. Here, we show that the same features that lead to high quality frequency combs in these resonators also lead to an enhancement of nonlinear emissions that may be identified as originating from the presence of a negative frequency (NF) component in the optical spectrum. While the negative frequency component of the spectrum is naturally always present in the real-valued optical field, it is not included in the principal theoretical model used to model nonlinear cavities, i.e., the Lugiato-Lefever equation. We therefore extend these equations in order to include the contribution of NF components and show that the predicted emissions may be studied analytically, in excellent agreement with full numerical simulations. These results are of importance for a variety of fields, such as Bose-Einstein condensates, mode-locked lasers, nonlinear plasmonics, and polaritonics.
Zhang, Haiwei; Shi, Wei; Duan, Liangcheng; Fu, Shijie; Sheng, Quan; Yao, Jianquan
2017-02-01
We propose a principle to achieve a high-resolution temperature sensor through measuring the central frequency shift in the single-frequency Erbium-doped fiber ring laser induced by the thermal drift via the optical heterodyne spectroscopy method. We achieve a temperature sensor with a sensitivity about 9.7 pm/°C and verify the detection accuracy through an experiment. Due to the narrow linewidth of the output singlefrequency signal and the high accuracy of the optical heterodyne spectroscopy method in measuring the frequency shift in the single-frequency ring laser, the temperature sensor can be employed to resolve a temperature drift up to 5.5×10-6 °C theoretically when the single-frequency ring laser has a linewidth of 1 kHz and 10-kHz frequency shift is achieved from the heterodyne spectra.
Microwave lensing frequency shift of the PHARAO laser-cooled microgravity atomic clock
Peterman, Phillip; Gibble, Kurt; Laurent, Phillipe; Salomon, Christophe
2016-04-01
We evaluate the microwave lensing frequency shift of the microgravity laser-cooled caesium clock PHARAO. We find microwave lensing frequency shifts of δν/ν = 11 × 10-17 to 13 × 10-17, larger than the shift of typical fountain clocks. The shift has a weak dependence on PHARAO parameters, including the atomic temperature, size of the atomic cloud, detection laser intensities, and the launch velocity. We also find the lensing frequency shift to be insensitive to selection and detection spatial inhomogeneities and the expected low-frequency vibrations. We conservatively assign a nominal microwave lensing frequency uncertainty of ±4 × 10-17.
Tandon, Neil F.; Cane, Mark A.
2017-06-01
In a suite of idealized experiments with the Community Atmospheric Model version 3 coupled to a slab ocean, we show that the atmospheric circulation response to CO2 increase is sensitive to extratropical cloud feedback that is potentially nonlinear. Doubling CO2 produces a poleward shift of the Southern Hemisphere (SH) midlatitude jet that is driven primarily by cloud shortwave feedback and modulated by ice albedo feedback, in agreement with earlier studies. More surprisingly, for CO2 increases smaller than 25 %, the SH jet shifts equatorward. Nonlinearities are also apparent in the Northern Hemisphere, but with less zonal symmetry. Baroclinic instability theory and climate feedback analysis suggest that as the CO2 forcing amplitude is reduced, there is a transition from a regime in which cloud and circulation changes are largely decoupled to a regime in which they are highly coupled. In the dynamically coupled regime, there is an apparent cancellation between cloud feedback due to warming and cloud feedback due to the shifting jet, and this allows the ice albedo feedback to dominate in the high latitudes. The extent to which dynamical coupling effects exceed thermodynamic forcing effects is strongly influenced by cloud microphysics: an alternate model configuration with slightly increased cloud liquid (LIQ) produces poleward jet shifts regardless of the amplitude of CO2 forcing. Altering the cloud microphysics also produces substantial spread in the circulation response to CO2 doubling: the LIQ configuration produces a poleward SH jet shift approximately twice that produced under the default configuration. Analysis of large ensembles of the Canadian Earth System Model version 2 demonstrates that nonlinear, cloud-coupled jet shifts are also possible in comprehensive models. We still expect a poleward trend in SH jet latitude for timescales on which CO2 increases by more than 25 %. But on shorter timescales, our results give good reason to expect significant
Zhang, Haifeng; Kosinski, John A; Zuo, Lei
2016-09-01
In this paper, we examine the significance of the various higher-order effects regarding calculating temperature behavior from a set of material constants and their temperature coefficients. Temperature-induced velocity shifts have been calculated for quartz surface acoustic wave (SAW) resonators and the contributions of different groups of nonlinear material constants (third-order elastic constants (TOE), third-order piezoelectric constants (TOP), third-order dielectric constants (TOD) and electrostrictive constants (EL)) to the temperature-induced velocity shifts have been analyzed. The analytical methodology has been verified through the comparison of experimental and analytical results for quartz resonators. In general, the third-order elastic constants were found to contribute most significantly to the temperature-induced shifts in the SAW velocity. The contributions from the third-order dielectric constants and electrostrictive constants were found to be negligible. For some specific cases, the third-order piezoelectric constants were found to make a significant contribution to the temperature-induced shifts. The significance of each third-order elastic constant as a contributor to the temperature-velocity effect was analyzed by applying a 10% variation to each of the third-order elastic constants separately. Additionally, we have considered the issues arising from the commonly used thermoelastic expansions that provide a good but not exact description of the temperature effects on frequency in piezoelectric resonators as these commonly used expansions do not include the effects of higher-order material constants.
On the contribution of sunspots to the observed frequency shifts of solar acoustic modes
Santos, A R G; Avelino, P P; Chaplin, W J; Campante, T L
2016-01-01
Activity-related variations in the solar oscillation properties have been known for 30 years. However, the relative importance of the different contributions to the observed variations is not yet fully understood. Our goal is to estimate the relative contribution from sunspots to the observed activity-related variations in the frequencies of the acoustic modes. We use a variational principle to relate the phase differences induced by sunspots on the acoustic waves to the corresponding changes in the frequencies of the global acoustic oscillations. From the sunspot properties (area and latitude as a function of time), we are able to estimate the spot-induced frequency shifts. These are then combined with a smooth frequency shift component, associated with long-term solar-cycle variations, and the results compared with the frequency shifts derived from the Global Oscillation Network Group (GONG) data. The result of this comparison is consistent with a sunspot contribution to the observed frequency shifts of rou...
Dynamic Nonlinear Focal Shift in Amplitude Modulated Moderately Focused Acoustic Beams
Jiménez, Noé; González-Salido, Nuria
2016-01-01
The phenomenon of the displacement of the position of the pressure, intensity and acoustic radiation force maxima along the axis of focused acoustic beams under increasing driving amplitudes (nonlinear focal shift) is studied for the case of a moderately focused beam excited with continuous and 25 kHz amplitude modulated signals, both in water and tissue. We prove that in amplitude modulated beams the linear and nonlinear propagation effects coexist in a semi-period of modulation, giving place to a complex dynamic behaviour, where the singular points of the beam (peak pressure, rarefaction, intensity and acoustic radiation force) locate at different points on axis as a function of time. These entire phenomena are explained in terms of harmonic generation and absorption during the propagation in a lossy nonlinear medium both, for a continuous and an amplitude modulated beam. One of the possible applications of the acoustic radiation force displacement is the generation of shear waves at different locations by ...
DEFF Research Database (Denmark)
Belleter, Dennis J.W.; Galeazzi, Roberto; Fossen, Thor Inge
2015-01-01
This paper presents a global exponential stability (GES) proof for a signalbased nonlinear wave encounter frequency estimator. The estimator under consideration is a second-order nonlinear observer designed to estimate the frequency of a sinusoid with unknown frequency, amplitude and phase. The G...
Lanin, Aleksandr A; Fedotov, Andrei B; Zheltikov, Aleksei M
2012-09-01
Soliton self-frequency shift (SSFS) in a photonic crystal fiber (PCF) pumped by a long-cavity mode-locked Cr:forsterite laser is integrated with second harmonic generation (SHG) in a nonlinear crystal to generate ultrashort light pulses tunable within the range of wavelengths from 680 to 1800 nm at a repetition rate of 20 MHz. The pulse width of the second harmonic output is tuned from 70 to 600 fs by varying the thickness of the nonlinear crystal, beam-focusing geometry, and the wavelength of the soliton PCF output. Wavelength-tunable pulses generated through a combination of SSFS and SHG are ideally suited for coherent Raman microspectroscopy at high repetition rates, as verified by experiments on synthetic diamond and polystyrene films.
Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth
Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda
2017-04-01
Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.
Differential effects of frequency shifted feedback between child and adult stutterers.
Howell, Peter; Sackin, Stevie; Williams, Roberta
1999-01-01
It has been reported previously that presentation of an altered form of the voice enhances the fluency of people who stutter. One of these forms of alteration is frequency shifted feedback. The effects of frequency shifted feedback was compared between two speaker groups that differed in age. The fluency enhancing effects of frequency shifted feedback was greater for adult speakers (mean age 21;3) than for children (mean age 9;11). The results are discussed in terms of their implications for theory and treatment.
Labile cochlear tuning in the mustached bat. I. Concomitant shifts in biosonar emission frequency.
Huffman, R F; Henson, O W
1993-01-01
The cochlea of the mustached bat (Pteronotus parnellii) has sharp tuning characteristics and pronounced resonance within a narrow band near the second harmonic, constant frequency (CF2) component of the animal's biosonar signals. That fine frequency discrimination occurs within this narrow band is evident from Doppler-shift compensation, whereby bats in flight lower the frequency of emitted CF2s to maintain returning echoes within this band. This study examined various factors capable of producing shifts in both the cochlear resonance frequency (CRF) and CF2s emitted by stationary bats and bats actively Doppler-shift compensating on a pendulum. Each of three experimental factors shifted the CRF in a reversible manner. Changes in body temperature produced an average CRF shift of 39 +/- 18 Hz/degrees C. The CRF increased with flight by 150 +/- 100 Hz and returned to baseline values within 10 min after flight. Contralateral sound exposure produced smaller (100 +/- 20 Hz), rapid shifts in the CRF, suggesting that a mechanism different from the temperature- and flight-related shifts was involved. Changes in the CRF induced by temperature and flight were accompanied by shifts in the emitted CF2 of stationary and moving bats. Coupled with a companion study of associated shifts in neural tuning, the concomitant changes in CRF and CF2 provide evidence of cochlear tuning lability in the mustached bat.
Frequencies Shift in Relativistic Binary System (Theoretical Study)
El Fady Morcos, Abd
2016-07-01
A generalized formula for Kermack, McCrea and Whittaker (KMW), has been derived by the author and et al., to study the limb effect of massive rapidly rotating stars. In this work a modified Curzon exact solution for Einstein's field equations has been used to study the variation in the frequencies of signals' carriers from a relativistic binary system. The primary star is assumed to be massive with respect to the secondary one. The center of mass is considered to be coincident to the center of rotating polar coordinate system. The rotation of the secondary star around the primary star and Earth's observer rotates with the Earth are considered in our calculation. A general theoretical formula for the variation in the frequencies of the signals' carriers from a binary system is obtained
Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams.
Camarena, Francisco; Adrián-Martínez, Silvia; Jiménez, Noé; Sánchez-Morcillo, Víctor
2013-08-01
The phenomenon of the displacement of the position along the axis of the pressure, intensity, and radiation force maxima of focused acoustic beams under increasing driving voltages (nonlinear focal shift) is studied for the case of a moderately focused beam. The theoretical and experimental results show the existence of this shift along the axis when the initial pressure in the transducer increases until the acoustic field reaches the fully developed nonlinear regime of propagation. Experimental data show that at high amplitudes and for moderate focusing, the position of the on-axis pressure maximum and radiation force maximum can surpass the geometrical focal length. On the contrary, the on-axis pressure minimum approaches the transducer under increasing driving voltages, increasing the distance between the positive and negative peak pressure in the beam. These results are in agreement with numerical KZK model predictions and the existed data of other authors and can be explained according to the effect of self-refraction characteristic of the nonlinear regime of propagation.
Kuzin, Evgeny; Mendoza-Vazquez, Sergio; Gutierrez-Gutierrez, Jaime; Ibarra-Escamilla, Baldemar; Haus, Joseph; Rojas-Laguna, Roberto
2005-05-02
We report experimental observations of stimulated Raman scattering in a standard fiber using a directly modulated DFB semiconductor laser amplified by two erbium-doped fibers. The laser pulse width was variably controlled on a nanosecond-scale; the laser emission was separated into two distinct regimes: an initial transient peak regime, followed by a quasi steady-state plateau regime. The transient leading part of the pump pulse containing fast amplitude modulation generated a broadband Raman-induced spectral shift through the modulation instability and subsequent intra-pulse Raman frequency shift. The plateau regime amplified the conventional Stokes shifted emission expected from the peaks of the gain distribution. The output signal spectrum at the end of a 9.13 km length of fiber for the transient part extends from 1550 nm to 1700 nm for a pump pulse peak power of 65 W. We found that the Raman-induced spectral shift is measurable about 8 W for every fiber length examined, 0.6 km, 4.46 km, and 9.13 km. All spectral components of the broadband scattering appear to be generated in the initial kilometer of the fiber span. The Stokes shifted light generation threshold was higher than the threshold for the intra-pulse Raman-induced broadened spectra. This fact enables the nonlinear spectral filtering of pulses from directly modulated semiconductor lasers.
Kuzin, Evgeny A.; Mendoza-Vazquez, Sergio; Gutierrez-Gutierrez, Jaime; Ibarra-Escamilla, Baldemar; Haus, Joseph W.; Rojas-Laguna, Roberto
2005-05-01
We report experimental observations of stimulated Raman scattering in a standard fiber using a directly modulated DFB semiconductor laser amplified by two erbium-doped fibers. The laser pulse width was variably controlled on a nanosecond-scale; the laser emission was separated into two distinct regimes: an initial transient peak regime, followed by a quasi steady-state plateau regime. The transient leading part of the pump pulse containing fast amplitude modulation generated a broadband Raman-induced spectral shift through the modulation instability and subsequent intra-pulse Raman frequency shift. The plateau regime amplified the conventional Stokes shifted emission expected from the peaks of the gain distribution. The output signal spectrum at the end of a 9.13 km length of fiber for the transient part extends from 1550 nm to 1700 nm for a pump pulse peak power of 65 W. We found that the Raman-induced spectral shift is measurable about 8 W for every fiber length examined, 0.6 km, 4.46 km, and 9.13 km. All spectral components of the broadband scattering appear to be generated in the initial kilometer of the fiber span. The Stokes shifted light generation threshold was higher than the threshold for the intra-pulse Raman-induced broadened spectra. This fact enables the nonlinear spectral filtering of pulses from directly modulated semiconductor lasers.
Type WYZ-97 Eighteen-information Noninsulate Frequency-shift Automatic Blocking System
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Type WYZ-97 eighteen-information noninsulate frequency-shift automatic blocking system is the most advanced railroad signaling system in China nowadays.The article introduced its principles,technical targets,features and the applications.
Frequency-Shift a way to Reduce Aliasing in the Complex Cepstrum
DEFF Research Database (Denmark)
Bysted, Tommy Kristensen
1998-01-01
The well-known relation between a time signal and its frequency-shifted spectrum is introduced as an excellent tool for reduction of aliasing in the complex cepstrum. Using N points DFTs the frequency-shift property, when used in the right way, will reduce the aliasing error to a size which on av...... on average is identical to the one normally requiring 2N points DFTs. The cost is an insignificant increase in the number of operations compared to the total number needed for the transformation to the complex cepstrum domain......The well-known relation between a time signal and its frequency-shifted spectrum is introduced as an excellent tool for reduction of aliasing in the complex cepstrum. Using N points DFTs the frequency-shift property, when used in the right way, will reduce the aliasing error to a size which...
Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties
Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon
2012-01-01
Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…
Multi-pulse frequency shifted (MPFS) multiple access modulation for ultra wideband
Nekoogar, Faranak [San Ramon, CA; Dowla, Farid U [Castro Valley, CA
2012-01-24
The multi-pulse frequency shifted technique uses mutually orthogonal short duration pulses o transmit and receive information in a UWB multiuser communication system. The multiuser system uses the same pulse shape with different frequencies for the reference and data for each user. Different users have a different pulse shape (mutually orthogonal to each other) and different transmit and reference frequencies. At the receiver, the reference pulse is frequency shifted to match the data pulse and a correlation scheme followed by a hard decision block detects the data.
Goertz, David E.; Frijlink, Martijn E.; de Jong, N.; van der Steen, A.F.W.
2006-01-01
An experimental lipid encapsulated contrast agent comprised substantially of micrometer to submicrometer diameter bubbles was evaluated for its capacity to produce nonlinear scattering in response to high transmit frequencies. Agent characterization experiments were conducted at transmit frequencies
Influence of Two Photon Absorption on Soliton Self-Frequency Shift
DEFF Research Database (Denmark)
Steffensen, Henrik; Rottwitt, Karsten; Jepsen, Peter Uhd;
2011-01-01
The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect.......The creation of mid-infrared supercontinua necessitates the use of soft-glass fibers. However, some materials, like chalcogenide, have a substantial two photon absorption. We introduce a model for soliton self-frequency shift that successfully includes this effect....
Resonance frequency shift in a cavity with a thin conducting film near a conducting wall
Energy Technology Data Exchange (ETDEWEB)
Braggio, C. [Dipartimento di Fisica, Universita di Ferrara and INFN, Via del Paradiso 12, 44100 Ferrara (Italy)]. E-mail: caterina.braggio@lnl.infn.it; Bressi, G. [INFN, Sezione di Pavia, Via Bassi 6, 27100 Pavia (Italy); Carugno, G. [INFN, Sezione di Padova, Via F. Marzolo 8, 35131 Padova (Italy); Dodonov, A.V. [Departamento de Fisica, Universidade Federal de Sao Carlos, Via Washington Luiz, Km 235, Sao Carlos 13565-905, SP (Brazil); Dodonov, V.V. [Instituto de Fisica, Universidade de Brasilia, Caixa Postal 04455, 70910-900 Brasilia, DF (Brazil)]. E-mail: vdodonov@fis.unb.br; Galeazzi, G. [INFN, LNL, Viale dell' Universita 2, 35020 Legnaro (Italy); Ruoso, G. [INFN, LNL, Viale dell' Universita 2, 35020 Legnaro (Italy); Zanello, D. [INFN, Sezione di Roma, Piazzale A. Moro 2, 00185 Roma (Italy)
2007-03-19
We show that a very thin conducting film (whose thickness can be much smaller than the skin depth), placed nearby a wall of an electromagnetic cavity, can produce the same shift of the resonance frequency as a bulk conducting slab, provided the displacement of the film from the wall is much bigger than the skin depth. We derive a simple analytical formula for the frequency shift and compare it with exact numerical calculations and experimental data.
Numerical and experimental investigation of nonlinear ultrasonic Lamb waves at low frequency
Zuo, Peng; Zhou, Yu; Fan, Zheng
2016-07-01
Nonlinear ultrasonic Lamb waves are popular to characterize the nonlinearity of materials. However, the widely used nonlinear Lamb mode suffers from two associated complications: inherent dispersive and multimode natures. To overcome these, the symmetric Lamb mode (S0) at low frequency region is explored. At the low frequency region, the S0 mode is little dispersive and easy to generate. However, the secondary mode still exists, and increases linearly for significant distance. Numerical simulations and experiments are used to validate the nonlinear features and therefore demonstrate an easy alternative for nonlinear Lamb wave applications.
DEFF Research Database (Denmark)
Wilhjelm, Jens Erik; Pedersen, P. C.
1996-01-01
In previous publications, a new echo-ranging Doppler system based on transmission of repetitive coherent frequency modulated (FM) sinusoids in two different implementations was presented. One of these implementations, the Frequency Modulated - frequency shift measurement (FM-fsm) Doppler system...... is in this paper compared with its PW counterpart, the Pulsed Wave - time shift measurement (PW-tsm) Doppler system. When using transmitted PW and FM signals with a Gaussian envelope, the parallelism between the two systems can be stated explicitly, and comparison be made between the main performance indices...... for the two Doppler systems. The performance of the FM and PW Doppler systems is evaluated by means of numerical simulation and measurements of actual flow profiles. The results indicate that the two Doppler systems have very similar levels of performance....
Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave
Wen, Biyang; Li, Ke
2016-08-01
Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.
Cochannel and Adjacent-Channel Interference in Nonlinear Minimum-Shift-Keyed Satellite System
Yu, John
1995-01-01
The interference susceptibility of a serial-minimum-shift-keyed (SMSK) modulation system to an interfering signal transmitted through a satellite link with cascaded nonlinear elements was investigated through computer simulation. The satellite link evaluated in this study represented NASA's Advanced Communications Technology Satellite (ACTS) system. Specifically, nonlinear characteristics were used that had specified amplitude-modulation to amplitude-modulation and amplitude-modulation to phase-modulation transfer characteristics obtained from the actual ACTS hardware. Two measurement scenarios were analyzed: degradation of an MSK satellite link from cochannel interference and from adjacent-channel interference. Interference was evaluated in terms of the probability of bit error rate (BER) versus energy per bit over noise power density Eb/No.
Nanoscale displacement sensing based on nonlinear frequency mixing in quantum cascade lasers
Mezzapesa, F P; De Risi, G; Brambilla, M; Dabbicco, M; Spagnolo, V; Scamarcio, G
2015-01-01
We demonstrate a sensor scheme for nanoscale target displacement that relies on a single Quantum Cascade Laser (QCL) subject to optical feedback. The system combines the inherent sensitivity of QCLs to optical re-injection and their ultra-stability in the strong feedback regime where nonlinear frequency mixing phenomena are enhanced. An experimental proof of principle in the micrometer wavelength scale is provided. We perform real-time measurements of displacement with {\\lambda}/100 resolution by inserting a fast-shifting reference etalon in the external cavity. The resulting signal dynamics at the QCL terminals shows a stroboscopic-like effect that relates the sensor resolution with the reference etalon speed. Intrinsic limits to the measurement algorithm and to the reference speed are discussed, disclosing that nanoscale ranges are attainable.
IDENTIFICATION OF NONLINEAR DYNAMIC SYSTEMS:TIME-FREQUENCY FILTERING AND SKELETON CURVES
Institute of Scientific and Technical Information of China (English)
王丽丽; 张景绘
2001-01-01
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O . F nonlinear system.A masking operator on definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system ( GSLS ). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. More over, an identification method is proposed through the skeleton curves and the time frequency filtering technique.
Liquid-state acoustically-nonlinear nanoplasmonic source of optical frequency combs
Maksymov, Ivan S
2016-01-01
Nonlinear acoustic interactions in liquids are effectively stronger than nonlinear optical interactions in solids. Thus, harnessing these interactions will offer new possibilities in the design of ultra-compact nonlinear photonic devices. We theoretically demonstrate a hybrid, liquid-state and nanoplasmonic, source of optical frequency combs compatible with fibre-optic technology. This source relies on a nanoantenna to harness the strength of nonlinear acoustic effects and synthesise optical spectra from ultrasound.
Analyzing the frequency shift of physi-adsorbed CO2 in metal organic framework materials
Yao, Yanpeng; Nijem, Nour; Li, Jing; Chabal, Yves; Langreth, David; Thonhauser, Timo
2012-02-01
Combining first-principles density functional theory simulations with IR and Raman experiments, we determine the frequency shift of vibrational modes of CO2 when physi-adsorbed in the iso-structural metal organic framework materials Mg-MOF74 and Zn-MOF74. Surprisingly, we find that the resulting change in shift is rather different for these two systems and we elucidate possible reasons. We explicitly consider three factors responsible for the frequency shift through physi-absorption, namely (i) the change in the molecule length, (ii) the asymmetric distortion of the CO2 molecule, and (iii) the direct influence of the metal center. The influence of each factor is evaluated separately through different geometry considerations, providing a fundamental understanding of the frequency shifts observed experimentally.
Energy Technology Data Exchange (ETDEWEB)
Xu Guoding, E-mail: guodingxu@163.co [Department of Physics, Suzhou University of Science and Technology, Suzhou 215009 (China); Zang Taocheng; Mao Hongmin; Pan Tao [Department of Physics, Suzhou University of Science and Technology, Suzhou 215009 (China)
2010-07-26
As the surface polaritons are excited in Kretschmann configuration with a Kerr-type substrate, the nonlinear Goos-Haenchen (GH) shifts exhibit the optically hysteretic response to the intensity of incident light. For thicker metal films, the GH shifts become very sensitive to the intensity of incident light and the angle of incidence.
Indian Academy of Sciences (India)
S. C. Tripathy; Brajesh Kumar; Kiran Jain; A. Bhatnagar
2000-09-01
Using intermediate degree p-mode frequency data sets for solar cycle 22, we find that the frequency shifts and magnetic activity indicators show a ``hysteresis" phenomenon. It is observed that the magnetic indices follow different paths for the ascending and descending phases of the solar cycle while for radiative indices, the separation between the paths are well within the error limits.
Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2
Weyers, S; Nemitz, N; Li, R; Gibble, K
2011-01-01
We evaluate the frequency error from distributed cavity phase in the caesium fountain clock PTB-CSF2 at the Physikalisch-Technische Bundesanstalt with a combination of frequency measurements and ab initio calculations. The associated uncertainty is 1.3E-16, with a frequency bias of 0.4E-16. The agreement between the measurements and calculations explains the previously observed frequency shifts at elevated microwave amplitude. We also evaluate the frequency bias and uncertainty due to the microwave lensing of the atomic wavepackets. We report a total PTB-CSF2 systematic uncertainty of 4.1E-16.
Dynamic nonlinear focal shift in amplitude modulated moderately focused acoustic beams.
Jiménez, Noé; Camarena, Francisco; González-Salido, Nuria
2017-03-01
The phenomenon of the displacement of the position of the pressure, intensity and acoustic radiation force maxima along the axis of focused acoustic beams under increasing driving amplitudes (nonlinear focal shift) is studied for the case of a moderately focused beam excited with continuous and 25kHz amplitude modulated signals, both in water and tissue. We prove that in amplitude modulated beams the linear and nonlinear propagation effects coexist in a semi-period of modulation, giving place to a complex dynamic behavior, where the singular points of the beam (peak pressure, rarefaction, intensity and acoustic radiation force) locate at different points on axis as a function of time. These entire phenomena are explained in terms of harmonic generation and absorption during the propagation in a lossy nonlinear medium both for a continuous and an amplitude modulated beam. One of the possible applications of the acoustic radiation force displacement is the generation of shear waves at different locations by using a focused mono-element transducer excited by an amplitude modulated signal.
Research on nonlinear characteristics of strata collapse because of the multi-frequency mining
Institute of Scientific and Technical Information of China (English)
YANG Fan; HU Zhen-qi; YANG Lun; MA Feng-hai
2008-01-01
Based on the complexity of mine stratum and coupling of the multi-frequency for the damage of mine stratum, using the method of on-site inspection and mathematical statistics, the regulation and nonlinear characteristics of strata collapse in mine stratum's multi-frequency mining were put forward and systemically studied. Study result shows that the influence of multi-frequency mining in mine stratum has the feature of multi-frequency incontinuity, multi-characteristic and multi-type nonlinear collapse, strata collapse activation turned worse, presenting an accumulation effect of multi-frequency mining for the strata damage. With the example of multi-frequency mining in the mine, the real characteristics of strata collapse by multi-frequency mining and nonlinear characteristics of accumulative response damage were analyzed. Research achievements about the surface recover and controlling of strata collapse by the multi-frequency mining have instruction meaning.
Directory of Open Access Journals (Sweden)
Zheng You
2010-07-01
Full Text Available Micro-cantilever sensors for mass detection using resonance frequency have attracted considerable attention over the last decade in the field of gas sensing. For such a sensing system, an oscillator circuit loop is conventionally used to actuate the micro-cantilever, and trace the frequency shifts. In this paper, gas experiments are introduced to investigate the mechanical resonance frequency shifts of the micro-cantilever within the circuit loop(mechanical resonance frequency, MRF and resonating frequency shifts of the electric signal in the oscillator circuit (system working frequency, SWF. A silicon beam with a piezoelectric zinc oxide layer is employed in the experiment, and a Self-Actuating-Detecting (SAD circuit loop is built to drive the micro-cantilever and to follow the frequency shifts. The differences between the two resonating frequencies and their shifts are discussed and analyzed, and a coefficientrelated to the two frequency shifts is confirmed.Micro-cantilever sensors for mass detection using resonance frequency have attracted considerable attention over the last decade in the field of gas sensing. For such a sensing system, an oscillator circuit loop is conventionally used to actuate the micro-cantilever, and trace the frequency shifts. In this paper, gas experiments are introduced to investigate the mechanical resonance frequency shifts of the micro-cantilever within the circuit loop(mechanical resonance frequency, MRF and resonating frequency shifts of the electric signal in the oscillator circuit (system working frequency, SWF. A silicon beam with a piezoelectric zinc oxide layer is employed in the experiment, and a Self-Actuating-Detecting (SAD circuit loop is built to drive the micro-cantilever and to follow the frequency shifts. The differences between the two resonating frequencies and their shifts are discussed and analyzed, and a coefficientrelated to the two frequency shifts is confirmed.
Qualitative analysis of collective mode frequency shifts in L-alanine using terahertz spectroscopy.
Taulbee, Anita R; Heuser, Justin A; Spendel, Wolfgang U; Pacey, Gilbert E
2009-04-01
We have observed collective mode frequency shifts in deuterium-substituted L-alanine, three of which have previously only been calculated. Terahertz (THz) absorbance spectra were acquired at room temperature in the spectral range of 66-90 cm(-1), or 2.0-2.7 THz, for L-alanine (L-Ala) and four L-Ala compounds in which hydrogen atoms (atomic mass = 1 amu) were substituted with deuterium atoms (atomic mass = 2 amu): L-Ala-2-d, L-Ala-3,3,3-d(3), L-Ala-2,3,3,3-d(4), and L-Ala-d(7). The absorbance maxima of two L-Ala collective modes in this spectral range were recorded for multiple spectral measurements of each compound, and the magnitude of each collective mode frequency shift due to increased mass of these specific atoms was evaluated for statistical significance. Calculations were performed which predict the THz absorbance frequencies based on the estimated reduced mass of the modes. The shifts in absorbance maxima were correlated with the location(s) of the substituted deuterium atom(s) in the L-alanine molecule, and the atoms contributing to the absorbing delocalized mode in the crystal structure were deduced using statistics described herein. The statistical analyses presented also indicate that the precision of the method allows reproducible frequency shifts as small as 1 cm(-1) or 0.03 THz to be observed and that these shifts are not random error in the measurement.
A SIMPLIFIED CALCULATING METHOD OF NONLINEAR FREQUENCY OF CABLE NET UNDER MEAN WIND LOAD
Institute of Scientific and Technical Information of China (English)
Feng Ruoqiang; Wu Yue; Shen Shizhao
2006-01-01
The cable net supported glass curtain wallas the most advanced technique in dot point supported glass curtain wall, is widely used in China. Because of its large deflection and high nonlinearity under wind load, the dynamic performance of the cable net is greatly different from that of the conventional linear structures. The continuous membrane theory is used to construct the nonlinear vibration differential equation of the cable net, and the harmonic balance method is used to solve the analytic formula of the nonlinear frequency. In order to verify the accuracy of the above analytic formula, the results of the formula and the nonlinear FEM time-history method are compared and found to be in good agreement. Furthermore, the nonlinear vibration differential equation and the nonlinear frequency obtained in this paper are the basis for the wind-induced response analysis of a cable net under fluctuating wind load.
Continuous wave operation of quantum cascade lasers with frequency-shifted feedback
Energy Technology Data Exchange (ETDEWEB)
Lyakh, A., E-mail: arkadiy.lyakh@ucf.edu [Pranalytica, Inc., 1101 Colorado Ave., Santa Monica, CA 90401 (United States); NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy, Orlando, FL 32826 (United States); College of Optics and Photonics, University of Central Florida, 304 Scorpius St, Orlando, FL 32826 (United States); Barron-Jimenez, R.; Dunayevskiy, I.; Go, R.; Tsvid, G.; Patel, C. Kumar N., E-mail: patel@pranalytica.com [Pranalytica, Inc., 1101 Colorado Ave., Santa Monica, CA 90401 (United States)
2016-01-15
Operation of continuous wave quantum cascade lasers with a frequency-shifted feedback provided by an acousto-optic modulator is reported. Measured linewidth of 1.7 cm{sup −1} for these devices, under CW operating conditions, was in a good agreement with predictions of a model based on frequency-shifted feedback seeded by spontaneous emission. Linewidth broadening was observed for short sweep times, consistent with sound wave grating period variation across the illuminated area on the acousto-optic modulator. Standoff detection capability of the AOM-based QCL setup was demonstrated for several solid materials.
New method for lens thickness measurement by the frequency-shifted confocal feedback
Tan, Yidong; Zhu, Kaiyi; Zhang, Shulian
2016-12-01
We describe a new method for lens thickness and air gap measurement based on the frequency-shifted confocal feedback. The light intensity fluctuation is eliminated by the heterodyne modulation and the detection sensitivity is improved prominently by the frequency-shifted feedback effect. The measurement results for different materials and kinds of lenses are presented in the paper, including K9 plain glasses, fused silica plain glass, and K9 biconvex lens. The uncertainty of the axial positioning is better than 0.0005 mm and the accuracy reaches micron range. It is promising to be applied in the multi-layer interface positioning and measurement area.
Wide tunable shift of the reflection band in dual frequency cholesteric liquid crystals.
Oton, Eva; Netter, Estelle
2017-06-12
Technologies featuring external control of reflected and transmitted light are lately being explored for a wide range of optical and photonic applications. Yet, the options for spectral band tuning are scarce, especially if dynamic control of either reflected or transmitted light is required. In this work we demonstrate a tunable device capable of shifting the reflected light spectrum of an impinging light using dual frequency cholesteric liquid crystals. Modulating the frequency of the applied signal, the Bragg reflection can be dynamically shifted over a wide spectral range and also switched off. This feature can be applied to color filters, augmented reality, multi-color lasers or tunable windows.
DEFF Research Database (Denmark)
Wang, Dong; Lu, Kaiyuan; Rasmussen, Peter Omand
2015-01-01
The conventional high frequency signal injection method is to superimpose a high frequency voltage signal to the commanded stator voltage before space vector modulation. Therefore, the magnitude of the voltage used for machine torque production is limited. In this paper, a new high frequency...... injection method, in which high frequency signal is generated by shifting the duty cycle between two neighboring switching periods, is proposed. This method allows injecting a high frequency signal at half of the switching frequency without the necessity to sacrifice the machine fundamental voltage...... amplitude. This may be utilized to develop new position estimation algorithm without involving the inductance in the medium to high speed range. As an application example, a developed inductance independent position estimation algorithm using the proposed high frequency injection method is applied to drive...
Kim, Kihong
2015-12-01
The Goos-Hänchen shift of p wave beams incident on a metal-nonlinear dielectric bilayer in the Kretschmann configuration is studied theoretically. The reflectance, the phase of the reflection coefficient and the Goos-Hänchen shift are calculated in a numerically precise manner by using the invariant imbedding method. The Goos-Hänchen shift has been found to be able to take both extremely large positive and negative values due to surface plasmon excitations and very strong bistability and unique hysteresis phenomena appear. In addition, several previous results on the intensity dependence of the Goos-Hänchen shift are pointed out to be erroneous.
Short pulse equations and localized structures in frequency band gaps of nonlinear metamaterials
Energy Technology Data Exchange (ETDEWEB)
Tsitsas, N.L. [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografos, Athens 15773 (Greece); Horikis, T.P. [Department of Mathematics, University of Ioannina, Ioannina 45110 (Greece); Shen, Y.; Kevrekidis, P.G.; Whitaker, N. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Frantzeskakis, D.J., E-mail: dfrantz@phys.uoa.g [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece)
2010-03-01
We consider short pulse propagation in nonlinear metamaterials characterized by a weak Kerr-type nonlinearity in their dielectric response. Two short-pulse equations (SPEs) are derived for the high- and low-frequency 'band gaps' (where linear electromagnetic waves are evanescent) with linear effective permittivity epsilon<0 and permeability mu>0. The structure of the solutions of the SPEs is also briefly discussed, and connections with the soliton solutions of the nonlinear Schroedinger equation are made.
Fiber optical parametric oscillator based on highly nonlinear dispersion-shifted fiber
Institute of Scientific and Technical Information of China (English)
Sigang YANG; Kenneth K. Y. WONG; Minghua CHEN; Shizhong XIE
2013-01-01
The development of fiber optical parametric oscillators （FOPO） based on highly nonlinear dispersion- shifted fiber is reviewed in this paper. Firstly, the background and motivation are introduced, and it is pointed out that the FOPO is promising to act as optical source in non-conventional wavelength bands. Subsequently, the context focuses principally on the problem of inherent multiple-longitudinal-mode characteristic of FOPO and the corresponding solutions to it. The primary technique is by locking the phase of multiple longitudinal modes. The first reported actively mode locked FOPO is also presented in this article. However, it is not probable to realize passively mode locked FOPO because of the random phase dithering of the pump required for suppressing stimulated Brillouin scattering. Furthermore, a regeneratively mode locked FOPO is demonstrated, which can generate wide band tunable radiation in non- conventional wavelengths. Besides mode locked FOPO, the single-longitudinal-mode FOPO is also introduced. Finally, potential future directions are discussed.
Nonlinear beam clean-up using resonantly enhanced sum-frequency mixing
DEFF Research Database (Denmark)
Karamehmedovic, Emir; Pedersen, Christian; Jensen, Ole Bjarlin;
2009-01-01
We investigate the possibility of improving the beam quality and obtaining high conversion efficiency in nonlinear sum-frequency generation. A 765 nm beam from an external cavity tapered diode laser is single-passed through a nonlinear crystal situated in the high intracavity field of a 1342 nm Nd...
Phase sensitivity in deformed-state superposition considering nonlinear phase shifts
Berrada, K.
2016-07-01
We study the problem of the phase estimation for the deformation-state superposition (DSS) under perfect and lossy (due to a dissipative interaction of DSS with their environment) regimes. The study is also devoted to the phase enhancement of the quantum states resulting from a generalized non-linearity of the phase shifts, both without and with losses. We find that such a kind of superposition can give the smallest variance in the phase parameter in comparison with usual Schrödinger cat states in different order of non-linearity even if for a larger average number of photons. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement between the DSS and its environment is investigated during the dissipation. We show that partial entanglement trapping occurs during the dynamics depending on the kind of deformation and mean photon number. These features make the DSS with a larger average number of photons a good candidate for implementation of schemes of quantum optics and information with high precision.
Directory of Open Access Journals (Sweden)
D. Jabari Sabeg
2016-10-01
Full Text Available In this paper, we present a new computational method for solving nonlinear singular boundary value problems of fractional order arising in biology. To this end, we apply the operational matrices of derivatives of shifted Legendre polynomials to reduce such problems to a system of nonlinear algebraic equations. To demonstrate the validity and applicability of the presented method, we present some numerical examples.
Nonlinear control of high-frequency phonons in spider silk
Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George
2016-10-01
Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.
Hays, J. R.
1969-01-01
Lumped parametric system models are simplified and computationally advantageous in the frequency domain of linear systems. Nonlinear least squares computer program finds the least square best estimate for any number of parameters in an arbitrarily complicated model.
Directory of Open Access Journals (Sweden)
Christophe eMagnani
2014-08-01
Full Text Available The neurons in layer II of the medial entorhinal cortex are part of the grid cell network involved in the representation of space. Many of these neurons are likely to be stellate cells with specific oscillatory and firing properties important for their function. A fundamental understanding of the nonlinear basis of these oscillatory properties is critical for the development of theories of grid cell firing. In order to evaluate the behavior of stellate neurons, measurements of their quadratic responses were used to estimate a second order Volterra kernel. This paper uses an operator theory, termed quadratic sinusoidal analysis (QSA, which quantitatively determines that the quadratic response accounts for a major part of the nonlinearity observed at membrane potential levels characteristic of normal synaptic events. Practically, neurons were probed with multi-sinusoidal stimulations to determine a Hermitian operator that captures the quadratic function in the frequency domain. We have shown that the frequency content of the stimulation plays an important role in the characteristics of the nonlinear response, which can distort the linear response as well. Stimulations with enhanced low frequency amplitudes evoked a different nonlinear response than broadband profiles. The nonlinear analysis was also applied to spike frequencies and it was shown that the nonlinear response of subthreshold membrane potential at resonance frequencies near the threshold is similar to the nonlinear response of spike trains.
Nonlinear Low Frequency Water Waves in a Cylindrical Shell
Peng, H. W.; Wang, D. J.; Lee, C. B.
The experiment was carried out to study the low frequency surface waves due to the horizontal high frequency excitation. The feature of the phenomenon was that the big amplitude axisymmetric surface wave frequency was typically about 1/50 of the excitation frequency. The viscous effect of water was neglected as a first approximation in the earlier papers on this subject. In contrast, we found the viscosity was important to achieve the low frequency water wave with the cooperation of hundreds of "finger" waves. Photographs were taken with stroboscopic lighting and thereafter relevant quantitative results were obtained based on the measurements with Polytec Scanning Vibrometer PSV 400.
Guruprasad, V
2008-01-01
Any frequency selective device with an ongoing drift will cause observed spectra to be variously and simultaneously scaled in proportion to their source distances. The reason is that detectors after the drifting selection will integrate instantaneous electric or magnetic field values from successive sinusoids, and these sinusoids would differ in both frequency and phase. Phase differences between frequencies are ordinarily irrelevant, and recalibration procedures at most correct for frequency differences. With drifting selection, however, each integrated field value comes from *the sinusoid of the instantaneously selected frequency at its instantaneous received phase*, hence the waveform constructed by the integration will follow the drifting selection with a phase acceleration given by the drift rate times the slope of the received phase spectrum. A phase acceleration is literally a frequency shift, and the phase spectrum slope of a received waveform is an asymptotic measure of the source distance, as the pa...
Tracing part-per-billion line shifts with direct-frequency-comb Vernier spectroscopy
Siciliani de Cumis, M.; Eramo, R.; Coluccelli, N.; Cassinerio, M.; Galzerano, G.; Laporta, P.; De Natale, P.; Cancio Pastor, P.
2015-01-01
Accurate frequency measurements of molecular transitions around 2 μ m are performed by using a direct-frequency-comb spectroscopy approach that combines an Er+ frequency-comb oscillator at 1.5 μ m , a Tm-Ho fiber amplifier, and a Fabry-Perot-filter, high-resolution dispersive spectrometer optical multiplex-detection system. This apparatus has unique performances in terms of a wide dynamic range to integrate the intensity per comb mode, which allows one to measure molecular absorption profiles with high precision. Spectroscopic information about transition frequencies and linewidths is very accurately determined. Relative frequency uncertainties of the order of a few parts in 10-9 are achieved for rovibrational transitions of the CO2 molecule around 5100 cm-1. Moreover, tiny frequency shifts due to molecular collisions and interacting laser power using direct comb spectroscopy are investigated in a systematic way.
Investigation of the Phonon Frequency Shifts in ZnO Quantum Dots
Alim, Khan A.
2005-03-01
Nanostructures made of ZnO have recently attracted attention due to their proposed applications in low-voltage and short-wavelength electro-optical devices. However, the origin of the observed phonon frequency shifts in such nanostructures is not always understood. We carried out both resonant and non-resonant Raman measurements for 20 nm-diameter ZnO quantum dots (QDs) and bulk ZnO reference samples [1]. A comparison with a recently developed theory [2], allowed us to clarify the origin of the phonon frequency shifts in ZnO QDs. It was found that the phonon confinement results in phonon frequency shifts of only few cm-1. At the same time, the UV laser heating of the QD ensemble was found to induce a large red shift of phonon frequencies for up to 14 cm-1. The authors acknowledge the support of MARCO and its Functional Engineered Nano Architectonics (FENA) Focus Center. [1] K.A. Alim, V.A. Fonoberov, and A.A. Balandin, Appl. Phys. Lett., in review (2004). [2] V.A. Fonoberov and A.A. Balandin, Phys. Stat. Solidi C 1, 2650 (2004); cond-mat/0405681; cond-mat/0411742.
Time and frequency characteristics of temporary threshold shifts caused by pure tone exposures
DEFF Research Database (Denmark)
Ordoñez, Rodrigo Pizarro; Hammershøi, Dorte
2011-01-01
The time-frequency characteristics of Temporary Threshold Shifts (TTS) caused by pure tones were determined using the Békésy audiometric method with narrow-band noise of short duration as the probe stimuli. Two experiments were done using exposures of 3 min at 100 dB above threshold. In the first...
Origin of the frequency shift of Raman scattering in chalcogenide glasses
DEFF Research Database (Denmark)
Han, X.C.; Tao, H.Z.; Gong, L.J.;
2014-01-01
Raman scattering is a sensitive method for probing the structural evolution in glasses, especially in covalent ones. Usually the main Raman scattering frequency shifts with composition for Gesingle bondSe chalcogenide glasses. However, it has not been well established whether and how the dependen...
Experimental Demonstration of Nonlinear Frequency Division Multiplexed Transmission
Aref, Vahid; Schuh, Karsten; Idler, Wilfried
2015-01-01
We experimentally demonstrate an NFDM optical system with modulation over nonlinear discrete spectrum. Particularly, each symbol carries 4-bits from multiplexing two eigenvalues modulated by QPSK constellation. We show a low error performance using NFT detection with 4Gbps rate over 640km.
Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Samiran, E-mail: sran_g@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)
2016-08-15
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.
Nonlinear system identification NARMAX methods in the time, frequency, and spatio-temporal domains
Billings, Stephen A
2013-01-01
Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) modelThe orthogonal least squares algorithm that allows models to be built term by
Raman Self-Frequency Shift of Dissipative Kerr Solitons in an Optical Microresonator.
Karpov, Maxim; Guo, Hairun; Kordts, Arne; Brasch, Victor; Pfeiffer, Martin H P; Zervas, Michail; Geiselmann, Michael; Kippenberg, Tobias J
2016-03-11
The formation of temporal dissipative Kerr solitons in microresonators driven by a continuous-wave laser enables the generation of coherent, broadband, and spectrally smooth optical frequency combs as well as femtosecond pulse sources with compact form factors. Here we report the observation of a Raman-induced soliton self-frequency shift for a microresonator dissipative Kerr soliton also referred to as the frequency-locked Raman soliton. In amorphous silicon nitride microresonator-based single soliton states the Raman effect manifests itself by a spectrum that is sech^{2} in shape and whose center is spectrally redshifted from the continuous wave pump laser. The shift is theoretically described by the first-order shock term of the material's Raman response, and we infer a Raman shock time of ∼20 fs for amorphous silicon nitride. Moreover, we observe that the Raman-induced frequency shift can lead to a cancellation or overcompensation of the soliton recoil caused by the formation of a coherent dispersive wave. The observations are in agreement with numerical simulations based on the Lugiato-Lefever equation with a Raman shock term. Our results contribute to the understanding of Kerr frequency combs in the soliton regime, enable one to substantially improve the accuracy of modeling, and are relevant to the understanding of the fundamental timing jitter of microresonator solitons.
From frequency to time-average-frequency a paradigm shift in the design of electronic system
Xiu, Liming
2015-01-01
Written in a simple, easy to understand style, this book will teach PLL users how to use new clock technology in their work in order to create innovative applications. Investigates the clock frequency concept from a different perspective--at an application level Teaches engineers to use this new clocking technology to create innovations in chip/system level, through real examples extracted from commercial products
Nonlinear optics at low powers: Alternative mechanism of on-chip optical frequency comb generation
Rogov, Andrei S.; Narimanov, Evgenii E.
2016-12-01
Nonlinear optical effects provide a natural way of light manipulation and interaction and form the foundation of applied photonics, from high-speed signal processing and telecommunication to ultrahigh-bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers or boosting efficiency of nonlinear parametric processes by enhancing local-field intensity with high-quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multiphoton absorption. We present an alternative to this conventional approach, with strong nonlinear optical effects at low local intensities, based on period-doubling bifurcations near nonlinear cavity antiresonance and apply it to low-power optical frequency comb generation in a silicon chip.
Frequency domain stability analysis of nonlinear active disturbance rejection control system.
Li, Jie; Qi, Xiaohui; Xia, Yuanqing; Pu, Fan; Chang, Kai
2015-05-01
This paper applies three methods (i.e., root locus analysis, describing function method and extended circle criterion) to approach the frequency domain stability analysis of the fast tool servo system using nonlinear active disturbance rejection control (ADRC) algorithm. Root locus qualitative analysis shows that limit cycle is generated because the gain of the nonlinear function used in ADRC varies with its input. The parameters in the nonlinear function are adjustable to suppress limit cycle. In the process of root locus analysis, the nonlinear function is transformed based on the concept of equivalent gain. Then, frequency domain description of the nonlinear function via describing function is presented and limit cycle quantitative analysis including estimating prediction error is presented, which virtually and theoretically demonstrates that the describing function method cannot guarantee enough precision in this case. Furthermore, absolute stability analysis based on extended circle criterion is investigated as a complement.
Matrix method for the solution of RF field perturbations due to local frequency shifts
Institute of Scientific and Technical Information of China (English)
SUN Zhi-Rui; PENG Jun; FU Shi-Nian
2009-01-01
To tune the accelerating field to the design value in a periodical radio frequency accelerating structure, Slater's perturbation theorem is commonly used. This theorem solves a second-order differential equation to obtain the electrical field variation due to a local frequency shift. The solution becomes very difficult for a complex distribution of the local frequency shifts. Noticing the similarity between the field perturbation equation and the equation describing the transverse motion of a particle in a quadrupole channel, we propose in this paper a new method in which the transfer matrix method is applied to the field calculation instead of directly solving the differential equation. The advantage of the matrix method is illustrated in examples.
Frequency shift keying by current modulation in a MTJ-based STNO with high data rate
Ruiz-Calaforra, A.; Purbawati, A.; Brächer, T.; Hem, J.; Murapaka, C.; Jiménez, E.; Mauri, D.; Zeltser, A.; Katine, J. A.; Cyrille, M.-C.; Buda-Prejbeanu, L. D.; Ebels, U.
2017-08-01
Spin torque nano-oscillators are nanoscopic microwave frequency generators which excel due to their large frequency tuning range and agility for amplitude and frequency modulation. Due to their compactness, they are regarded as suitable candidates for applications in wireless communications, where cost-effective and complementary metal-oxide semiconductor-compatible standalone devices are required. In this work, we study the ability of a magnetic-tunnel-junction based spin torque nano-oscillator to respond to a binary input sequence encoded in a square-shaped current pulse for its application as a frequency-shift-keying (FSK) based emitter. We demonstrate that below the limit imposed by the spin torque nano-oscillator intrinsic relaxation frequency, an agile variation between discrete oscillator states is possible. For this kind of devices, we demonstrate FSK up to data rates of 400 Mbps, which is well suited for the application of such oscillators in wireless networks.
DEFF Research Database (Denmark)
Madsen, Kristoffer Hougaard; Hansen, Lars Kai; Mørup, Morten
2009-01-01
We propose the Time Frequency Gradient Method (TFGM) which forms a framework for optimization of models that are constrained in the time domain while having efficient representations in the frequency domain. Since the constraints in the time domain in general are not transparent in a frequency...... representation we demonstrate how the class of objective functions that are separable in either time or frequency instances allow the gradient in the time or frequency domain to be converted to the opposing domain. We further demonstrate the usefulness of this framework for three different models; Shifted Non......-negative Matrix Factorization, Convolutive Sparse Coding as well as Smooth and Sparse Matrix Factorization. Matlab implementation of the proposed algorithms are available for download at www.erpwavelab.org....
Institute of Scientific and Technical Information of China (English)
HAN Shun-Li; CHENG Bing; ZHANG Jing-Fang; XU Yun-Fei; WANG Zhao-Ying; LIN Qiang
2009-01-01
A simple method to realize both stabilization and shift of the frequency in an external cavity diode laser (ECDL) is reported.Due to the Zeeman effect,the saturated absorption spectrum of Rb atoms in a magnetic field is shifted.This shift can be used to detune the frequency of the ECDL,which is locked to the saturated absorption spectrum.The frequency shift amount can be controlled by changing the magnetic field for a specific polarization state of the laser beam.The advantages of this tunable frequency lock include low laser power requirement,without additional power loss,cheapness,and so on.
Institute of Scientific and Technical Information of China (English)
Dong Lei; Zhang Lei; Dou Hai-Peng; Yin Wang-Bao; Jia Suo-Tang
2008-01-01
Frequency shifts of the acetylene saturated absorption lines at 1.5μm with temperature,gas pressure and laser power have been investigated in detail.The second-order Doppler effect,the recoil effect,the Zeeman effect,the pressure shift and the power shift are taken into consideration.The magnitudes of those shifts caused by various effects are evaluated.In order to reproduce the stability of 5.7 x 10-14 obtained by Edwards,all necessary conditions are given.The results show that when there is a larger external magnetic field,the Zeeman shift could not be neglected,so that the shield should be employed.And the design of a long cavity is advantageous to reduce the influence of the second-order Doppler effect.The results also show that at least ±2.5°C temperature control for cavity can effectively prevent several effects and improve the frequency stability.
Lattice Induced Frequency Shifts in Sr Optical Lattice Clocks at the $10^{-17}$ Level
Westergaard, Philip G; Lorini, Luca; Lecallier, Arnaud; Burt, Eric; Zawada, Michal; Millo, Jacques; Lemonde, Pierre
2011-01-01
We present a comprehensive study of the frequency shifts associated with the lattice potential for a Sr lattice clock. By comparing two such clocks with a frequency stability reaching $5\\times 10^{-17}$ after a one hour integration time, and varying the lattice depth up to $U_0=900 \\, E_r$ with $E_r$ being the recoil energy, we evaluate lattice related shifts with an unprecedented accuracy. We put the first experimental upper bound on the recently predicted frequency shift due to the magnetic dipole (M1) and electric quadrupole (E2) interactions. This upper bound is significantly smaller than the theoretical upper limit. We also give a new upper limit on the effect of hyperpolarizability with an improvement by more than one order of magnitude. Finally, we report the first observation of the vector and tensor shifts in a lattice clock. Combining these measurements, we show that all known lattice related perturbation will not affect the clock accuracy down to the $10^{-17}$ level, even for very deep lattices, u...
Linear and nonlinear properties of chalcogenide glasses in the terahertz frequency
DEFF Research Database (Denmark)
Zalkovskij, Maksim; Malureanu, Radu; Popescu, A.;
2014-01-01
used a standard THz-TDS setup based on photoconductive switches while in the higher frequency domain we used an air biased coherent detection (ABCD) setup. This allowed for a wide frequency range (from 0.2 to 18 THz) investigation of the refractive index of the glasses. The nonlinear coefficient...
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse
Energy Technology Data Exchange (ETDEWEB)
Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2017-03-15
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.
Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties
Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon
2014-01-01
Purpose The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency during anterior-posterior stretching. Method Three materially linear and three materially nonlinear models were created and stretched up to 10 mm in 1 mm increments. Phonation onset pressure (Pon) and fundamental frequency (F0) at Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1 mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models. Results Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length. Conclusions Nonlinear synthetic models appear to more accurately represent the human vocal folds than linear models, especially with respect to F0 response. PMID:22271874
Frequency, pressure, and strain dependence of nonlinear elasticity in Berea Sandstone
Rivière, Jacques; Pimienta, Lucas; Scuderi, Marco; Candela, Thibault; Shokouhi, Parisa; Fortin, Jérôme; Schubnel, Alexandre; Marone, Chris; Johnson, Paul A.
2016-04-01
Acoustoelasticity measurements in a sample of room dry Berea sandstone are conducted at various loading frequencies to explore the transition between the quasi-static (f→0) and dynamic (few kilohertz) nonlinear elastic response. We carry out these measurements at multiple confining pressures and perform a multivariate regression analysis to quantify the dependence of the harmonic content on strain amplitude, frequency, and pressure. The modulus softening (equivalent to the harmonic at 0f) increases by a factor 2-3 over 3 orders of magnitude increase in frequency. Harmonics at 2f, 4f, and 6f exhibit similar behaviors. In contrast, the harmonic at 1f appears frequency independent. This result corroborates previous studies showing that the nonlinear elasticity of rocks can be described with a minimum of two physical mechanisms. This study provides quantitative data that describes the rate dependency of nonlinear elasticity. These findings can be used to improve theories relating the macroscopic elastic response to microstructural features.
Direct generation of optical frequency combs in $\\chi^{(2)}$ nonlinear cavities
Mosca, S; Parisi, M; Maddaloni, P; Santamaria, L; De Natale, P; De Rosa, M
2015-01-01
Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously-pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on $\\chi^{(2)}$ frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although at a very early stage, our work lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.
Direct generation of optical frequency combs in χ(2 nonlinear cavities
Directory of Open Access Journals (Sweden)
Mosca Simona
2016-06-01
Full Text Available Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on χ(2 frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although our work is a very early stage, it lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.
Effect of Phase Shifted Frequency Modulation on Two Level Atom-Field Interaction
Institute of Scientific and Technical Information of China (English)
K.V. Priyesh; Ramesh Babu Thayyullathil
2012-01-01
We have studied the effect of phase shifted frequency modulation on two level atom with field interaction using Jaynes-Cummings model. Here the frequency of the interacting field is sinusoidally varying with time with a constant phase. Due to the presence of phase in the frequency modulation, the variation of population inversion with time is different from the standard case. There are no exact collapses and revivals in the variation of population inversion but it oscillates sinusoidally with time. In coherent field atom interaction the population inversion behaves as in the case of Fock state atom interaction, when frequency modulation with a non zero phase is applied. The study done with squeezed field has shown the same behavior of the population inversion.
Perturbing Open Cavities: Anomalous Resonance Frequency Shifts in a Hybrid Cavity-Nanoantenna System
Ruesink, Freek; Doeleman, Hugo M.; Hendrikx, Ruud; Koenderink, A. Femius; Verhagen, Ewold
2015-11-01
The influence of a small perturbation on a cavity mode plays an important role in fields like optical sensing, cavity quantum electrodynamics, and cavity optomechanics. Typically, the resulting cavity frequency shift directly relates to the polarizability of the perturbation. Here, we demonstrate that particles perturbing a radiating cavity can induce strong frequency shifts that are opposite to, and even exceed, the effects based on the particles' polarizability. A full electrodynamic theory reveals that these anomalous results rely on a nontrivial phase relation between cavity and nanoparticle radiation, allowing backaction via the radiation continuum. In addition, an intuitive model based on coupled mode theory is presented that relates the phenomenon to retardation. Because of the ubiquity of dissipation, we expect these findings to benefit the understanding and engineering of a wide class of systems.
The Coefficient of the Voltage Induced Frequency Shift Measurement on a Quartz Tuning Fork
Directory of Open Access Journals (Sweden)
Yubin Hou
2014-11-01
Full Text Available We have measured the coefficient of the voltage induced frequency shift (VIFS of a 32.768 KHz quartz tuning fork. Three vibration modes were studied: one prong oscillating, two prongs oscillating in the same direction, and two prongs oscillating in opposite directions. They all showed a parabolic dependence of the eigen-frequency shift on the bias voltage applied across the fork, due to the voltage-induced internal stress, which varies as the fork oscillates. The average coefficient of the VIFS effect is as low as several hundred nano-Hz per millivolt, implying that fast-response voltage-controlled oscillators and phase-locked loops with nano-Hz resolution can be built.
Perturbing open cavities: Anomalous resonance frequency shifts in a hybrid cavity-nanoantenna system
Ruesink, Freek; Hendrikx, Ruud; Koenderink, A Femius; Verhagen, Ewold
2015-01-01
The influence of a small perturbation on a cavity mode plays an important role in fields like optical sensing, cavity quantum electrodynamics and cavity optomechanics. Typically, the resulting cavity frequency shift directly relates to the polarizability of the perturbation. Here we demonstrate that particles perturbing a radiating cavity can induce strong frequency shifts that are opposite to, and even exceed, the effects based on the particles' polarizability. A full electrodynamic theory reveals that these anomalous results rely on a non-trivial phase relation between cavity and nanoparticle radiation, allowing back-action via the radiation continuum. In addition, an intuitive model based on coupled mode theory is presented that relates the phenomenon to retardation. Because of the ubiquity of dissipation, we expect these findings to benefit the understanding and engineering of a wide class of systems.
Electric dipole moment searches: reexamination of frequency shifts for particles in traps
Pignol, Guillaume
2012-01-01
In the context of the search for electric dipole moments, a proper theory describing frequency shifts for particles precessing in traps is needed to evaluate the systematic effects. We present here such a theory, valid in the ballistic regime and in the nonadiabatic limit. It permits the calculation of the frequency shifts for arbitrary geometry of the confinement cell as well as for arbitrary shape of the magnetic field, such as those induced by localized magnetic impurities. Our improved theory is especially relevant for experiments measuring the neutron electric dipole moment with an atomic magnetometer. Indeed, the main systematic effects of performed, on-going and future experiments can be assessed with increased confidence and precision.
Energy Technology Data Exchange (ETDEWEB)
Liu, Han-Chun; Ye, Tianyu; Mani, R. G. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Wegscheider, W. [Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich (Switzerland)
2015-02-14
Linear polarization angle, θ, dependent measurements of the microwave radiation-induced oscillatory magnetoresistance, R{sub xx}, in high mobility GaAs/AlGaAs 2D electron devices have shown a θ dependence in the oscillatory amplitude along with magnetic field, frequency, and extrema-dependent phase shifts, θ{sub 0}. Here, we suggest a microwave frequency dependence of θ{sub 0}(f) using an analysis that averages over other smaller contributions, when those contributions are smaller than estimates of the experimental uncertainty.
BLIND CHANNEL ESTIMATION OF SPACE-TIME FREQUENCY-SHIFT KEYING
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The decoupled coherent Maximum Likelihood (ML) detection algorithm presented in this lettercan sharply reduce the complexity of the receiver as well as provide better error performance under the pre-condition that channel should be estimated first. Considering the bandwidth inefficiency of Frequency ShiftKeying (FSK), the acquisition of channel state information through training sequences will further decreasethe transmission efficiency. This letter presents a blind channel estimation algorithm based on noise subspacetheory which can acquire channel information without any training symbols. The simulation shows that thealgorithm brings about fewer channel estimation errors while the frequency efficiency can be increased.
Nonlinear frequency-dependent synchronization in the developing hippocampus.
Prida, L M; Sanchez-Andres, J V
1999-07-01
Synchronous population activity is present both in normal and pathological conditions such as epilepsy. In the immature hippocampus, synchronous bursting is an electrophysiological conspicuous event. These bursts, known as giant depolarizing potentials (GDPs), are generated by the synchronized activation of interneurons and pyramidal cells via GABAA, N-methyl-D-aspartate, and AMPA receptors. Nevertheless the mechanism leading to this synchronization is still controversial. We have investigated the conditions under which synchronization arises in developing hippocampal networks. By means of simultaneous intracellular recordings, we show that GDPs result from local cooperation of active cells within an integration period prior to their onset. During this time interval, an increase in the number of excitatory postsynaptic potentials (EPSPs) takes place building up full synchronization between cells. These EPSPs are correlated with individual action potentials simultaneously occurring in neighboring cells. We have used EPSP frequency as an indicator of the neuronal activity underlying GDP generation. By comparing EPSP frequency with the occurrence of synchronized GDPs between CA3 and the fascia dentata (FD), we found that GDPs are fired in an all-or-none manner, which is characterized by a specific threshold of EPSP frequency from which synchronous GDPs emerge. In FD, the EPSP frequency-threshold for GDP onset is 17 Hz. GDPs are triggered similarly in CA3 by appropriate periodic stimulation of mossy fibers. The frequency threshold for CA3 GDP onset is 12 Hz. These findings clarify the local mechanism of synchronization underlying bursting in the developing hippocampus, indicating that GDPs are fired when background levels of EPSPs or action potentials have built up full synchronization by firing at specific frequencies (>12 Hz). Our results also demonstrate that spontaneous EPSPs and action potentials are important for the initiation of synchronous bursts in the
Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators
Matsko, Andrey B; Savchenkov, Anatoliy A; Maleki, Lute
2012-01-01
We theoretically and experimentally investigate the chaotic regime of optical frequency combs generated in nonlinear ring microresonators pumped with continuous wave light. We show that the chaotic regime reveals itself, in an apparently counter-intuitive way, by a flat top symmetric envelope of the frequency spectrum, when observed by means of an optical spectrum analyzer. The comb demodulated on a fast photodiode produces a noisy radio frequency signal with an spectral width significantly exceeding the linear bandwidth of the microresonator mode.
A frequency up-converting harvester based on internal resonance in 2-DOF nonlinear systems
Wu, Yipeng; Qiu, Jinhao; Ji, Hongli
2016-11-01
This paper reports the design and experimental testing of a novel frequency up- converting piezoelectric energy harvester. The harvester is firstly approximated as a 2-degree- of-freedom cubic nonlinear system instead of the general Duffing systems. A 1:3 internal resonance innovatively applied in the frequency up-conversion approach is thoroughly investigated. Finally, the theoretical dynamic model confirmed by the experimental results clearly shows the effect of the frequency up-conversion.
THz radiation by the frequency down-shift of Nd:YAG lasers
Son, S; Park, J Y
2013-01-01
The interaction between an intense laser and a relativistic dense electron beam propagating in the same direction could down-shift the laser frequency. This process, which can be used to generate a coherent THz radiation, is theoretically analyzed. With a set of practically relevant parameters, it is suggested that the radiation energy could reach the order of 1 mJ per shot in the duration of 100 pico-second, or the temporal radiation power of 10 MW.
Optical frequency conversion in quasi-phase-matched stacks of nonlinear crystals
Rustagi, K. C.; Mehendale, S. C.; Meenakshi, S.
1982-06-01
The paper presents a quantitative theory of nonlinear frequency conversion in stacks of crystals in which the phase mismatch due to dispersion is compensated by changing the sign of the nonlinear coupling coefficient in successive crystals. The effects of systematic and random departures in crystal lengths are studied with emphasis on the evolution of the relative phase. It is shown that with the appropriate choice of the signs of the nonlinear coupling coefficient in various crystals, high efficiency frequency conversion should be possible using almost any sufficiently large set of nonlinear crystals. In addition, the theory of second harmonic generation in periodic stacks and in rotating twinned crystals of zinc-blend structure is described.
Gear Fault Diagnosis Based on Narrowband Demodulation with Frequency Shift and Spectrum Edit
Directory of Open Access Journals (Sweden)
Yu Guo
2016-09-01
Full Text Available To address the difficulties on the vibration feature extraction of gear localized faults for rotating machinery under varying speed conditions, an improved narrowband demodulation method with spectrum edit and frequency shift is proposed in the paper. The vibration signal is acquired and resampled at constant angle increments at first, by which the non-stationary signal is converted into a quasi-stationary signal in the angular domain to reduce the distortions caused by the speed fluctuations. Subsequently, the signal in the angular domain is processed by a synchronous average algorithm, where the noises can be eliminated effectively and the order components corresponding to the gear faults become prominent. Finally, the narrowband demodulation scheme with the spectrum edit and frequency shift is applied on the averaged signal. By using the spectrum edit, most of unconcerned components can be filtered out effectively. Moreover, the frequency shift property of the Fourier transform is employed in the proposed demodulation scheme to obtain a better phase demodulation result. Simulations and experiments support the proposed scheme positively.
New nonlinear mechanisms of midlatitude atmospheric low-frequency variability
Sterk, A. E.; Vitolo, R.; Broer, H. W.; Simo, C.; Dijkstra, H. A.
2010-01-01
This paper studies the dynamical mechanisms potentially involved in the so-called atmospheric low-frequency variability, occurring at midlatitudes in the Northern Hemisphere This phenomenon is characterised by recurrent non-propagating and temporally persistent flow patterns, with typical spatial an
New nonlinear mechanisms of midlatitude atmospheric low-frequency variability
Sterk, A. E.; Vitolo, R.; Broer, H.W.; Simó, C.; Dijkstra, H.A.|info:eu-repo/dai/nl/073504467
2010-01-01
This paper studies the dynamical mechanisms potentially involved in the so-called atmospheric low-frequency variability, occurring at midlatitudes in the Northern Hemisphere. This phenomenon is characterised by recurrent non-propagating and temporally persistent flow patterns, with typical spatial a
Nonlinear optics at low powers: new mechanism of on-chip optical frequency comb generation
Rogov, Andrei
2016-01-01
Nonlinear optical effects provide a natural way of light manipulation and interaction, and form the foundation of applied photonics -- from high-speed signal processing and telecommunication, to ultra-high bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers, or boosting efficiency of nonlinear parametric processes by enhancing local field intensity with high quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multi-photon absorption. Here, we present an alternative to this conventional approach, with strong nonlinear optical effects at substantially lower local intensities, based on period-doubling bifurcations near nonlinear cavity anti-resonance, and apply it to low-power optical comb generation in a silicon chip.
Parametrically Excited Nonlinear Two-Degree-of-Freedom Systems with Repeated Natural Frequencies
Directory of Open Access Journals (Sweden)
A. H. Nayfeh
1995-01-01
Full Text Available The method of normal forms is used to study the nonlinear response of two-degree-of-freedom systems with repeated natural frequencies and cubic nonlinearity to a principal parametric excitation. The linear part of the system has a nonsemisimple one-to-one resonance. The character of the stability and various types of bifurcation including the formation of a homoclinic orbit are analyzed. The results are applied to the flutter of a simply supported panel in a supersonic airstream.
Nonlinear interferometer for tailoring the frequency spectrum of bright squeezed vacuum
Iskhakov, T Sh; Perez, A; Boyd, R W; Leuchs, G; Chekhova, M
2015-01-01
We propose a method for tailoring the frequency spectrum of bright squeezed vacuum by generating it in a nonlinear interferometer, consisting of two down-converting nonlinear crystals separated by a dispersive medium. Due to a faster dispersive spreading of higher-order Schmidt modes, the spectral width of the radiation at the output is reduced as the length of the dispersive medium is increased. Preliminary results show 30\\% spectral narrowing.
DEFF Research Database (Denmark)
Ghasemi, Negareh; Zare, Firuz; Davari, Pooya
2017-01-01
Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectri...... receiver is a function of a voltage across the resistor in the RLC branches and is related to the resonance frequencies of the ultrasound transducer....
Karkar, Sami; Vergez, Christophe; 10.1016/j.jsv.2012.09.033
2012-01-01
In this paper, we extend the method proposed by Cochelin and Vergez [A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions, Journal of Sound and Vibration, 324 (2009) 243-262] to the case of non-polynomial nonlinearities. This extension allows for the computation of branches of periodic solutions of a broader class of nonlinear dynamical systems. The principle remains to transform the original ODE system into an extended polynomial quadratic system for an easy application of the harmonic balance method (HBM). The transformation of non-polynomial terms is based on the differentiation of state variables with respect to the time variable, shifting the nonlinear non-polynomial nonlinearity to a time-independent initial condition equation, not concerned with the HBM. The continuation of the resulting algebraic system is here performed by the asymptotic numerical method (high order Taylor series representation of the solution branch) using a further differentiation ...
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri
2008-01-01
The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear s...... spring-mass chains with non-linear inclusions. The presented analytical and numerical results suggest that the effective material properties can easily be altered by establishing finite amplitude HF standing waves in the non-linear regions of the chain....
Wahlstrand, J K; McCole, E T; Cheng, Y -H; Palastro, J P; Levis, R J; Milchberg, H M
2013-01-01
Nonlinear optics experiments measuring phase shifts induced in a weak probe pulse by a strong pump pulse must account for coherent effects that only occur when the pump and probe pulses are temporally overlapped. It is well known that a weak probe beam experiences a greater phase shift from a strong pump beam than the pump beam induces on itself. The physical mechanism behind the enhanced phase shift is diffraction of pump light into the probe direction by a nonlinear refractive index grating produced by interference between the two beams. For an instantaneous third-order response, the effect of the grating is to simply double the probe phase shift, but when delayed nonlinearities are considered, the effect is more complex. A comprehensive treatment is given for both degenerate and nondegenerate pump-probe experiments in noble and diatomic gases. Results of numerical calculations are compared to a recent transient birefringence measurement [Loriot et al., Opt. Express 17, 13429 (2009)] and a recent spectral i...
Phase stabilization of Kerr frequency comb internally without nonlinear optical interferometry
Huang, S -W; Yang, J; Yu, M; Kwong, D -L; Wong, C W
2016-01-01
Optical frequency comb (OFC) technology has been the cornerstone for scientific breakthroughs such as precision frequency metrology, redefinition of time, extreme light-matter interaction, and attosecond sciences. While the current mode-locked laser-based OFC has had great success in extending the scientific frontier, its use in real-world applications beyond the laboratory setting remains an unsolved challenge. Microresonator-based OFCs, or Kerr frequency comb, have recently emerged as a candidate solution to the challenge because of their preferable size, weight, and power consumption (SWaP). On the other hand, the current phase stabilization technology requires either external optical references or power-demanding nonlinear processes, overturning the SWaP benefit of Kerr frequency combs. Introducing a new concept in phase control, here we report an internally phase stabilized Kerr frequency comb without the need of any optical references or nonlinear processes. We describe the comb generation analytically ...
Frequency-shift low-pass filtering and least mean square adaptive filtering for ultrasound imaging
Wang, Shanshan; Li, Chunyu; Ding, Mingyue; Yuchi, Ming
2016-04-01
Ultrasound image quality enhancement is a problem of considerable interest in medical imaging modality and an ongoing challenge to date. This paper investigates a method based on frequency-shift low-pass filtering (FSLF) and least mean square adaptive filtering (LMSAF) for ultrasound image quality enhancement. FSLF is used for processing the ultrasound signal in the frequency domain, while LMSAPF in the time domain. Firstly, FSLF shifts the center frequency of the focused signal to zero. Then the real and imaginary part of the complex data are filtered respectively by finite impulse response (FIR) low-pass filter. Thus the information around the center frequency are retained while the undesired ones, especially background noises are filtered. Secondly, LMSAF multiplies the signals with an automatically adjusted weight vector to further eliminate the noises and artifacts. Through the combination of the two filters, the ultrasound image is expected to have less noises and artifacts and higher resolution, and contrast. The proposed method was verified with the RF data of the CIRS phantom 055A captured by SonixTouch DAQ system. Experimental results show that the background noises and artifacts can be efficiently restrained, the wire object has a higher resolution and the contrast ratio (CR) can be enhanced for about 12dB to 15dB at different image depth comparing to delay-and-sum (DAS).
Measurements and Modeling of the Nonlinear Behavior of a Guitar Pickup at Low Frequencies †
Directory of Open Access Journals (Sweden)
Antonin Novak
2017-01-01
Full Text Available Description of the physical behavior of electric guitars is still not very widespread in the scientific literature. In particular, the physical models describing a nonlinear behavior of pickups still requires some refinements. The study presented in this paper is focused on nonlinear modeling of the pickups. Two main issues are raised. First, is the currently most used nonlinear model (a Hammerstein model sufficient for the complex nonlinear behavior of the pickup? In other words, would a more complex model, such as a Generalized Hammerstein that can deal better with the nonlinear memory, yield better results? The second troublesome issue is how to measure the nonlinear behavior of a pickup correctly. A specific experimental set-up allowing for driving the pickup in a controlled way (string displacement perpendicular to the pickup and to separate the nonlinear model of the pickup from other nonlinearities in the measurement chain is proposed. Thanks to this experimental set-up, a Generalized Hammerstein model of the pickup is estimated for frequency range 15–500 Hz and the results are compared with a simple Hammerstein model. A comparison with experimental results shows that both models succeed in describing the pickup when used in realistic conditions.
Calculations of the vibrational frequency and isotopic shift of UF6 and U2F6
Institute of Scientific and Technical Information of China (English)
Zhang Yun-Guang; Zha Xin-Wei
2012-01-01
Molecular structure,vibrational frequency and infrared intensity of UF6 are investigated by using the revised Perdew-Burke-Enzerhof function with the triple-zeta polarized basis set.The calculation results are in good agreement with the experimental values and indicate the existence of a stable U2F6 molecule with a multiple bonded U2 unit.The calculation results also predict that the D3d symmetry of U2F6 is more stable than D3h.The optimized geometries,vibrational frequencies,and infrared intensities are also reported for U2F6 molecules in D3d symmetry.In addition,the isotopic shift of vibrational frequencies of the two molecules under isotopic substitution of uranium atom are also investigated with the same method.The U2F6 molecule is predicted to be better than UF6 for laser uranic isotope separation.
Computation of the frequency response of a nonlinearly loaded antenna within a cavity
Directory of Open Access Journals (Sweden)
F. Gronwald
2004-01-01
Full Text Available We analyze a nonlinearly loaded dipole antenna which is located within a rectangular cavity and excited by an electromagnetic signal. The signal is composed from two different frequencies. In order to calculate the spectrum of the resulting electromagnetic field within the resonator we transform the antenna problem into a network problem. This requires to precisely determine the antenna impedance within the cavity. The resulting nonlinear equivalent network is solved by means of the harmonic balance technique. As a result the occurrence of low intermodulation frequencies within the spectrum is verified.
Linear and Nonlinear Time-Frequency Analysis for Parameter Estimation of Resident Space Objects
2017-02-22
AFRL-AFOSR-UK-TR-2017-0023 Linear and Nonlinear Time-Frequency Analysis for Parameter Estimation of Resident Space Objects Marco Martorella... UNIVERSITY DI PISA, DEPARTMENT DI INGEGNERIA Final Report 02/22/2017 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research...Nonlinear Time-Frequency Analysis for Parameter Estimation of Resident Space Objects 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-14-1-0183 5c. PROGRAM
Low-frequency band gaps in chains with attached non-linear oscillators
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard
2007-01-01
in structures with periodic or random inclusions are located mainly in the high frequency range, as the wavelength has to be comparable with the distance between the alternating parts. Band gaps may also exist in structures with locally attached oscillators. In the linear case the gap is located around......The aim of this article is to investigate the wave propagation in one-dimensional chains with attached non-linear local oscillators by using analytical and numerical models. The focus is on the influence of non-linearities on the filtering properties of the chain in the low frequency range...
Intracavity frequency doubling of CW Ti:Sapphire laser utilising BiBO nonlinear crystal
DEFF Research Database (Denmark)
Thorhauge, Morten; Mortensen, Jesper Liltorp; Tidemand-Lichtenberg, Peter
Utilising BiBO nonlinear crystal frequency doubling a Ti:Sapphire CW laser gave 100 mW at 405 nm and 53 mW at 392 nm. Stability proved excellent without servo control. Broad tunability was shown around 392 nm.......Utilising BiBO nonlinear crystal frequency doubling a Ti:Sapphire CW laser gave 100 mW at 405 nm and 53 mW at 392 nm. Stability proved excellent without servo control. Broad tunability was shown around 392 nm....
New nonlinear mechanisms of midlatitude atmospheric low-frequency variability
Sterk, A. E.; Vitolo, R.; Broer, H. W.; Simó, C.; Dijkstra, H. A.
2010-05-01
This paper studies the dynamical mechanisms potentially involved in the so-called atmospheric low-frequency variability, occurring at midlatitudes in the Northern Hemisphere. This phenomenon is characterised by recurrent non-propagating and temporally persistent flow patterns, with typical spatial and temporal scales of 6000-10 000 km and 10-50 days, respectively. We study a low-order model derived from the 2-layer shallow-water equations on a β-plane channel. The main ingredients of the low-order model are a zonal flow, a planetary scale wave, orography, and a baroclinic-like forcing. A systematic analysis of the dynamics of the low-order model is performed using techniques and concepts from dynamical systems theory. Orography height ( h0) and magnitude of zonal wind forcing ( U0) are used as control parameters to study the bifurcations of equilibria and periodic orbits. Along two curves of Hopf bifurcations an equilibrium loses stability ( U0≥12.5 m/s) and gives birth to two distinct families of periodic orbits. These periodic orbits bifurcate into strange attractors along three routes to chaos: period doubling cascades, breakdown of 2-tori by homo- and heteroclinic bifurcations, or intermittency ( U0≥14.5 m/s and h0≥800 m). The observed attractors exhibit spatial and temporal low-frequency patterns comparing well with those observed in the atmosphere. For h0≤800 m the periodic orbits have a period of about 10 days and patterns in the vorticity field propagate eastward. For h0≥800 m, the period is longer (30-60 days) and patterns in the vorticity field are non-propagating. The dynamics on the strange attractors are associated with low-frequency variability: the vorticity fields show weakening and strengthening of non-propagating planetary waves on time scales of 10-200 days. The spatio-temporal characteristics are “inherited” (by intermittency) from the two families of periodic orbits and are detected in a relatively large region of the parameter
FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, J.; Hanasoge, S.; Antia, H. M. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai-400005 (India)
2015-06-20
Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.
Shifting of wrapped phase maps in the frequency domain using a rational number
Gdeisat, Munther A.; Burton, David R.; Lilley, Francis; Arevalillo-Herráez, Miguel; Abushakra, Ahmad; Qaddoura, Maen
2016-10-01
The number of phase wraps in an image can be either reduced, or completely eliminated, by transforming the image into the frequency domain using a Fourier transform, and then shifting the spectrum towards the origin. After this, the spectrum is transformed back to the spatial domain using the inverse Fourier transform and finally the phase is extracted using the arctangent function. However, it is a common concern that the spectrum can be shifted only by an integer number, meaning that the phase wrap reduction is often not optimal. In this paper we propose an algorithm than enables the spectrum to be frequency shifted by a rational number. The principle of the proposed method is confirmed both by using an initial computer simulation and is subsequently validated experimentally on real fringe patterns. The technique may offer in some cases the prospects of removing the necessity for a phase unwrapping process altogether and/or speeding up the phase unwrapping process. This may be beneficial in terms of potential increases in signal recovery robustness and also for use in time-critical applications.
Hybrid time/frequency domain modeling of nonlinear components
DEFF Research Database (Denmark)
Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth
2007-01-01
model is used as a basis for its implementation. First, the linear network part is replaced with an ideal voltage source and a time domain (EMT) simulation is performed. During the initial oscillations, harmonic content of the converter currents is calculated at every period by a fast Fourier transform...... and the periodic steady state is identified. Obtained harmonic currents are assigned to current sources and used in the frequency domain calculation in the linear network. The obtained three-phase bus voltage is then inverse Fourier transformed and assigned to the voltage source and the time domain simulation...... is performed again. This process is repeated until the change in the magnitudes and phase angles of the fundamental and low order characteristic harmonics of the bus voltage is smaller then predefined precision indexes. The method is verified against precise time domain simulation. The convergence properties...
Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Koga, J. K.; Pirozhkov, A. S.; Rosanov, N. N.; Zhidkov, A. G.
2011-01-01
We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency change due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.
Wen, Qiang; Lian, Su-Jie; Zhang, Chen; Zhao, Hui; Zhao, Yu; Wang, Gao; Xu, De-Gang; Yao, Jian-Quan
2014-03-01
In order to obtain the different position temperature changes in the process of explosive casting accurate, stability and comprehensive, we designed the temperature monitoring system based on fiber Bragg grating spectral shift. Through the fiberoptic network, the system can monitor the different point temperature of melt-cast explosive real-time. According to the function of linear frequency shift of fiber Bragg grating wavelength with the grating of temperature, we get the temperature of different positions. Four channels share a broadband light source with a coupler. The Bragg wavelengths of the 5 gratings of each fiber are separated from each other. Using the gratings designed, spliced and packaged by our own, we can obtain temperature data through the demodulator. The temperature data was processed by the Origin to draw diagram time-temperature curve. The results show that the measured temperature data of the fiber Bragg grating can meet the requirements of experiment.
Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals
Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun
2016-07-01
Recent studies of brain activities show that cross-frequency coupling (CFC) plays an important role in memory and learning. Many measures have been proposed to investigate the CFC phenomenon, including the correlation between the amplitude envelopes of two brain waves at different frequencies - cross-frequency amplitude-amplitude coupling (AAC). In this short communication, we describe how nonstationary, nonlinear oscillatory signals may produce spurious cross-frequency AAC. Utilizing the empirical mode decomposition, we also propose a new method for assessment of AAC that can potentially reduce the effects of nonlinearity and nonstationarity and, thus, help to avoid the detection of artificial AACs. We compare the performances of this new method and the traditional Fourier-based AAC method. We also discuss the strategies to identify potential spurious AACs.
A Closed form Solution for Nonlinear Oscillators’ Frequencies Using Amplitude-Frequency Formulation
DEFF Research Database (Denmark)
Barari, Amin; Kimiaeifar, Amin; Nejad, M.G
2012-01-01
an analytical approach with a closed form expression for system response would be very useful in different applications. Some analytical techniques have been presented in the literature for the solution of strong nonlinear oscillators as well as approximate and numerical solutions. In this paper, Amplitude...
Detection of damaged supports under railway track based on frequency shift
Wang, Longqi; Zhang, Yao; Lie, Seng Tjhen
2017-03-01
In railway transportation systems, the tracks are usually fastened on sleepers which are supported by the ballast. A lot of research has been conducted to guarantee the safety of railway track because of its importance, and more concern is expressed about monitoring of track itself such as railway level and alignment. The ballast and fasteners which provide strong support to the railway track are important as well whereas the detection of loose or missing fasteners and damaged ballast mainly relies on visual inspection. Although it is reliable when the fastener is missing and the damaged ballast is on the surface, it provides less help if the fastener is only loose and the damaged ballast is under the sleepers, which are however frequently observed in practice. This paper proposes an approach based on frequency shift to identify the damaged supports including the loose or missing fasteners and damaged ballast. In this study, the rail-sleeper-ballast system is modeled as an Euler beam evenly supported by a series of springs, the stiffness of which are reduced when the fastener is loose or missing and the ballast under the sleepers is damaged. An auxiliary mass is utilized herein and when it is mounted on the beam, the natural frequencies of the whole system will change with respect to the location of the auxiliary mass. The auxiliary mass induced frequency shift is analyzed and it is found the natural frequencies change periodically when the supports are undamaged, whereas the periodicity will be broken due to damaged supports. In fact, the natural frequencies drop clearly when the auxiliary mass moves over the damaged support. A special damage index only using the information of the damaged states is proposed and both numerical and experimental examples are carried out to validate the proposed method.
Fried, Jasper P.; Fangohr, Hans; Kostylev, Mikhail; Metaxas, Peter J.
2016-12-01
We have performed micromagnetic simulations of low-amplitude gyrotropic dynamics of magnetic vortices in the presence of spatially uniform out-of-plane magnetic fields. For disks having small lateral dimensions, we observe a frequency drop-off when approaching the disk's out-of-plane saturation field. This nonlinear frequency response is shown to be associated with a vortex core deformation driven by nonuniform demagnetizing fields that act on the shifted core. The deformation results in an increase in the average out-of-plane magnetization of the displaced vortex state (contrasting the effect of gyrofield-driven deformation at low field), which causes the exchange contribution to the vortex stiffness to switch from positive to negative. This generates an enhanced reduction of the core stiffness at high field, leading to a nonlinear field dependence of the gyrotropic mode frequency.
Brandl, Matthias F; Mücke, Oliver D
2010-12-15
Frequency-shifted feedback (FSF) lasers have emerged as powerful tools for precision distance metrology. At the output of a Michelson interferometer, the detected rf spectra of the FSF laser light contain a length-dependent heterodyne beat signal whose linewidth ultimately limits the achievable accuracy of length measurements. Here, we demonstrate a narrow-linewidth chirped frequency comb from an FSF Ti:sapphire ring laser seeded by a phase-modulated, ultra-low-phase-noise, single-frequency fiber laser. We experimentally investigate the influence of the seed laser linewidth on the resulting width and shape of the length-dependent rf beat signal. An ultranarrow heterodyne beat linewidth of <20 Hz is observed.
Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals
DEFF Research Database (Denmark)
Hansen, Anders Kragh; Andersen, Peter E.; Jensen, Ole Bjarlin;
2015-01-01
, despite differences in the phase relations of the involved fields. An unprecedented 5.5 W of continuous-wave diffraction-limited green light is generated from the single-pass sum frequency mixing of two diode lasers in two periodically poled nonlinear crystals (conversion efficiency 50%). The technique......The cascading of nonlinear crystals has been established as a simple method to greatly increase the conversion efficiency of single-pass second-harmonic generation compared to a single-crystal scheme. Here, we show for the first time that the technique can be extended to sum frequency generation...... is generally applicable and can be applied to any combination of fundamental wavelengths and nonlinear crystals....
Wideband multiwavelength erbium-doped fiber ring laser with frequency shifted feedback
Kim, Seung Kwan; Chu, Moo Jung; Lee, Jong Hyun
2001-04-01
Wideband multiwavelength erbium-doped fiber ring lasers with frequency shifted feedback are described. The use of an intra-cavity gain flattening filter (GFF) was proposed in order to increase the lasing spectral bandwidth, leading to a demonstration of 34 lasing wavelengths in 28 nm bandwidth in C-band. The GFF induced spectral output power fluctuation is discussed. Multiwavelength operation was also demonstrated for the first time in L-band, where wideband laser operation was obtained without a GFF. Optical bistability and Kerr effect induced pulsation were determined to be limiting factors to stable operation range in this kind of multiwavelength lasers.
Multiple symbols soft-decision metrics for coded frequency-shift keying signals
Institute of Scientific and Technical Information of China (English)
MA Zheng; PERSSON Danie; LARSSON Erik G.; FAN PingZhi
2013-01-01
This paper derives a novel multiple symbols soft-decision metrics for frequency-shift keying signals which are affected by additive symmetric α -stable （S α S） noise and fading. The approximate metric, which is for the case where channel state information （phases, amplitudes, and noise dispersion parameter） is unknown is obtained based on a generalized-likelihood ratio （GLR） approach. The metric is obtained in closed form and proved to be effective. The performances of the multiple symbols soft-decision metrics are compared numerically for a turbo-coded system. The proposed multiple symbols metric provides substantial improvement over earlier single-symbol metrics.
Frequency Shifts Induced by Field Gradients in Muon $g-2$ Experiments
Nouri, N; Golub, R; Plaster, B
2016-01-01
Two prominent efforts aimed at probing beyond Standard Model physics, searches for a neutron electric dipole moment (EDM) and measurements of the muon $g-2$ anomalous magnetic moment, employ spin precession techniques. In the most recent neutron EDM experiment, frequency shifts induced by magnetic field gradients and $\\mathbf{E} \\times \\mathbf{v}$ motional fields were a significant source of systematic error. We consider the possibility of a similar effect in the most recent muon $g-2$ experiment, and find that such an effect could potentially be as large as $\\sim 1$ ppm fractional error, to be compared with the reported $\\sim 0.5$ ppm error.
High frequency analysis of a plate carrying a concentrated nonlinear spring-mass system
Culver, Dean; Dowell, Earl
2016-09-01
Examining the behavior of dynamical systems with many degrees of freedom undergoing random excitation at high frequency often requires substantial computation. These requirements are even more stringent for nonlinear systems. One approach for describing linear systems, Asymptotic Modal Analysis (AMA), has been extended to nonlinear systems in this paper. A prototypical system, namely a thin plate carrying a concentrated hardening cubic spring-mass, is explored. The study focuses on the response of three principal variables to random, frequency-bounded excitation: the displacement of the mounting location of the discrete spring-mass, the relative displacement of the discrete mass to this mounting location, and the absolute displacement of the discrete mass. The results indicate that extending AMA to nonlinear systems for input frequency bands containing a large number of modes is feasible. Several advantageous properties of nonlinear AMA are found, and an additional reduced frequency-domain modal method, Dominance-Reduced Classical Modal Analysis (DRCMA), is proposed that is intermediate in accuracy and the cost of computation between AMA and Classical Modal Analysis (CMA).
Measurements of quadrupole frequency shift in the SPS at 26 GeV/c
Bohl, T; Shaposhnikova, E; Tückmantel, Joachim; CERN. Geneva. AB Department
2008-01-01
Measurements of the quadrupole frequency shift with intensity at 26 GeV/c using the peak detected signal were performed in the SPS from 1999 to monitor the evolution of the low-frequency longitudinal impedance [1]. While the large changes, first, due to the impedance reduction and then due to the re-installation of the MKE kickers,are easy to see, to observe small variations of impedance (as shielding or removal of a few kickers) much higher accuracy of measurements is required. This was difficult to achieve so far, mainly due to the insufficient reproducibility of the longitudinal parameters of the injected beam for different intensities as well as for different MDs. In this Note the important role of longitudinal emittance in addition to the bunch length is also revealed.
Frequency-Shifted Interferometry — A Versatile Fiber-Optic Sensing Technique
Directory of Open Access Journals (Sweden)
Fei Ye
2014-06-01
Full Text Available Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI. This technique uses a continuous-wave light source, an optical frequency shifter, and a slow detector. We discuss the operation principles of several FSI implementations and show their applications in fiber length and dispersion measurement, locating weak reflections along a fiber link, fiber-optic sensor multiplexing, and high-sensitivity cavity ring-down measurement. Detailed analysis of FSI system parameters is also presented.
Clark, W. G.; Hanson, M. E.; Lefloch, F.; Ségransan, P.
1995-03-01
A novel method of Fourier transform spectroscopy of the transient signals from wide, inhomogeneously broadened magnetic resonance spectra is described and analyzed. It has the advantages of high resolution, high sensitivity, and freedom from the distortions introduced by the finite amplitude of the pulsed rf magnetic field and the finite bandwidth of the receiving system. It consists of recording the transient signal at a series of magnetic fields, shifting the frequency of the transient by the corresponding field step for each point, and summing the corresponding Fourier transformed signals. Although the primary emphasis is on pulsed NMR, the analysis also applies to pulsed ESR. Criteria for the range and step interval of the magnetic field variation are discussed. The accuracy and sensitivity of the method are compared with earlier methods of spin echo spectroscopy. A description of the corresponding measurement of NQR, NMR, and ESR spectra obtained by stepping the frequency of the spectrometer is also presented.
Ouali, D.; Chebana, F.; Ouarda, T. B. M. J.
2017-06-01
The high complexity of hydrological systems has long been recognized. Despite the increasing number of statistical techniques that aim to estimate hydrological quantiles at ungauged sites, few approaches were designed to account for the possible nonlinear connections between hydrological variables and catchments characteristics. Recently, a number of nonlinear machine-learning tools have received attention in regional frequency analysis (RFA) applications especially for estimation purposes. In this paper, the aim is to study nonlinearity-related aspects in the RFA of hydrological variables using statistical and machine-learning approaches. To this end, a variety of combinations of linear and nonlinear approaches are considered in the main RFA steps (delineation and estimation). Artificial neural networks (ANNs) and generalized additive models (GAMs) are combined to a nonlinear ANN-based canonical correlation analysis (NLCCA) procedure to ensure an appropriate nonlinear modeling of the complex processes involved. A comparison is carried out between classical linear combinations (CCAs combined with linear regression (LR) model), semilinear combinations (e.g., NLCCA with LR) and fully nonlinear combinations (e.g., NLCCA with GAM). The considered models are applied to three different data sets located in North America. Results indicate that fully nonlinear models (in both RFA steps) are the most appropriate since they provide best performances and a more realistic description of the physical processes involved, even though they are relatively more complex than linear ones. On the other hand, semilinear models which consider nonlinearity either in the delineation or estimation steps showed little improvement over linear models. The linear approaches provided the lowest performances.
Taichenachev, A V; Yudin, V I; Ovsiannikov, V D; Pal'chikov, V G; Oates, C W
2008-11-01
We report a hitherto undiscovered frequency shift for forbidden J = 0-->J = 0 clock transitions excited in atoms confined to an optical lattice. These shifts result from magnetic-dipole and electric-quadrupole transitions, which have a spatial dependence in an optical lattice that differs from that of the stronger electric-dipole transitions. In combination with the residual translational motion of atoms in an optical lattice, this spatial mismatch leads to a frequency shift via differential energy level spacing in the lattice wells for ground state and excited state atoms. We estimate that this effect could lead to fractional frequency shifts as large as 10(-16), which might prevent lattice-based optical clocks from reaching their predicted performance levels. Moreover, these effects could shift the magic wavelength in lattice clocks in three dimensions by as much as 100 MHz, depending on the lattice configuration.
Nonlinear Acoustics FDTD method including Frequency Power Law Attenuation for Soft Tissue Modeling
Jiménez, Noé; Sánchez-Morcillo, Víctor; Camarena, Francisco; Hou, Yi; Konofagou, Elisa E
2014-01-01
This paper describes a model for nonlinear acoustic wave propagation through absorbing and weakly dispersive media, and its numerical solution by means of finite differences in time domain method (FDTD). The attenuation is based on multiple relaxation processes, and provides frequency dependent absorption and dispersion without using computational expensive convolutional operators. In this way, by using an optimization algorithm the coefficients for the relaxation processes can be obtained in order to fit a frequency power law that agrees the experimentally measured attenuation data for heterogeneous media over the typical frequency range for ultrasound medical applications. Our results show that two relaxation processes are enough to fit attenuation data for most soft tissues in this frequency range including the fundamental and the first ten harmonics. Furthermore, this model can fit experimental attenuation data that do not follow exactly a frequency power law over the frequency range of interest. The main...
Mierau, Andreas; Klimesch, Wolfgang; Lefebvre, Jérémie
2017-09-30
Neural populations produce complex oscillatory patterns thought to implement brain function. The dominant rhythm in the healthy adult human brain is formed by alpha oscillations with a typical power peak most commonly found between 8 and 12Hz. This alpha peak frequency has been repeatedly discussed as a highly heritable and stable neurophysiological "trait" marker reflecting anatomical properties of the brain, and individuals' general cognitive capacity. However, growing evidence suggests that the alpha peak frequency is highly volatile at shorter time scales, dependent on the individuals' "state". Based on the converging experimental and theoretical results from numerous recent studies, here we propose that alpha frequency variability forms the basis of an adaptive mechanism mirroring the activation level of neural populations which has important functional implications. We here integrate experimental and computational perspectives to shed new light on the potential role played by shifts in alpha peak frequency and discuss resulting implications. We further propose a potential mechanism by which alpha oscillations are regulated in a noisy network of spiking neurons in presence of delayed feedback. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Green pulsed lidar-radar emitter based on a multipass frequency-shifting external cavity.
Zhang, Haiyang; Brunel, Marc; Romanelli, Marco; Vallet, Marc
2016-04-01
This paper investigates the radio frequency (RF) up-conversion properties of a frequency-shifting external cavity on a laser beam. We consider an infrared passively Q-switched pulsed laser whose intensity modulation results from the multiple round-trips in the external cavity, which contains a frequency shifter. The output beam undergoes optical second-harmonic generation necessary to reach the green wavelength. We model the pulse train using a rate-equation model to simulate the laser pulses, together with a time-delayed interference calculation taking both the diffraction efficiency and the Gaussian beam propagation into account. The predictions are verified experimentally using a diode-pumped Nd:YAG laser passively Q-switched by Cr4+:YAG whose pulse train makes multiple round-trips in a mode-matched external cavity containing an acousto-optic frequency shifter driven at 85 MHz. Second-harmonic generation is realized in a KTP crystal, yielding RF-modulated pulses at 532 nm with a modulation contrast of almost 100%. RF harmonics up to the 6th order (1.020 GHz) are observed in the green output pulses. Such a RF-modulated green laser may find applications in underwater detection and ranging.
Jing, Xingjian
2015-01-01
This book is a systematic summary of some new advances in the area of nonlinear analysis and design in the frequency domain, focusing on the application oriented theory and methods based on the GFRF concept, which is mainly done by the author in the past 8 years. The main results are formulated uniformly with a parametric characteristic approach, which provides a convenient and novel insight into nonlinear influence on system output response in terms of characteristic parameters and thus facilitate nonlinear analysis and design in the frequency domain. The book starts with a brief introduction to the background of nonlinear analysis in the frequency domain, followed by recursive algorithms for computation of GFRFs for different parametric models, and nonlinear output frequency properties. Thereafter the parametric characteristic analysis method is introduced, which leads to the new understanding and formulation of the GFRFs, and nonlinear characteristic output spectrum (nCOS) and the nCOS based analysis a...
Mathematical model for the adsorption-induced nonlocal frequency shift in adatoms-nanobeam system
Bourouina, Hicham; Yahiaoui, Réda; Kerid, Rachid; Amine Benamar, Mohammed El; Brioua, Fathi
2017-09-01
This paper models and investigates the resonance frequency shift induced by the adsorption phenomena for an adatoms-nanobeam system including the small scale effect as well as rotary inertia and shear distortion effects. The Lennard-Jones (6-12) type potential is used to determine the adsorption-induced energy owing van der Waals (vdW) interaction mechanism between adatom-adatom and adatom-substrate. The small scale effect is introduced by using Eringen's nonlocal elasticity theory while the explicit expressions of inertia moment and shear force are derived from the standard Timoshenko beam equations in which the residual stress effect is accounted as an additive axial load. Numerical results showed that the resonance frequency shift is depended on each of the adsorption density, mode number and small scale effects. Thus, numerical results are discussed in detail for a proper analysis of dynamic vibration behavior of adatoms-nanobeam systems which are of interest in the development of mass sensing devices.
Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan
2016-05-01
Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz.
Generation of High Frequency Response in a Dynamically Loaded, Nonlinear Soil Column
Energy Technology Data Exchange (ETDEWEB)
Spears, Robert Edward [Idaho National Laboratory; Coleman, Justin Leigh [Idaho National Laboratory
2015-08-01
Detailed guidance on linear seismic analysis of soil columns is provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998),” which is currently under revision. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain analysis which includes evaluation of soil columns. When performing linear analysis, a given soil column is typically evaluated with a linear, viscous damped constitutive model. When submitted to a sine wave motion, this constitutive model produces a smooth hysteresis loop. For nonlinear analysis, the soil column can be modelled with an appropriate nonlinear hysteretic soil model. For the model in this paper, the stiffness and energy absorption result from a defined post yielding shear stress versus shear strain curve. This curve is input with tabular data points. When submitted to a sine wave motion, this constitutive model produces a hysteresis loop that looks similar in shape to the input tabular data points on the sides with discontinuous, pointed ends. This paper compares linear and nonlinear soil column results. The results show that the nonlinear analysis produces additional high frequency response. The paper provides additional study to establish what portion of the high frequency response is due to numerical noise associated with the tabular input curve and what portion is accurately caused by the pointed ends of the hysteresis loop. Finally, the paper shows how the results are changed when a significant structural mass is added to the top of the soil column.
An improved Q estimation approach: the weighted centroid frequency shift method
Li, Jingnan; Wang, Shangxu; Yang, Dengfeng; Dong, Chunhui; Tao, Yonghui; Zhou, Yatao
2016-06-01
Seismic wave propagation in subsurface media suffers from absorption, which can be quantified by the quality factor Q. Accurate estimation of the Q factor is of great importance for the resolution enhancement of seismic data, precise imaging and interpretation, and reservoir prediction and characterization. The centroid frequency shift method (CFS) is currently one of the most commonly used Q estimation methods. However, for seismic data that contain noise, the accuracy and stability of Q extracted using CFS depend on the choice of frequency band. In order to reduce the influence of frequency band choices and obtain Q with greater precision and robustness, we present an improved CFS Q measurement approach—the weighted CFS method (WCFS), which incorporates a Gaussian weighting coefficient into the calculation procedure of the conventional CFS. The basic idea is to enhance the proportion of advantageous frequencies in the amplitude spectrum and reduce the weight of disadvantageous frequencies. In this novel method, we first construct a Gauss function using the centroid frequency and variance of the reference wavelet. Then we employ it as the weighting coefficient for the amplitude spectrum of the original signal. Finally, the conventional CFS is adopted for the weighted amplitude spectrum to extract the Q factor. Numerical tests of noise-free synthetic data demonstrate that the WCFS is feasible and efficient, and produces more accurate results than the conventional CFS. Tests for noisy synthetic data indicate that the new method has better anti-noise capability than the CFS. The application to field vertical seismic profile (VSP) data further demonstrates its validity5.
A non-linear frequency transform and its application to speaker recognition
Institute of Scientific and Technical Information of China (English)
YU Yibiao; YUAN Dongmei; XUE Feng
2009-01-01
Based on analyzing contribution of short-time spectrum in different frequency sub-bands to speaker recognition and using of polynomial curve matching techniques, a non-linear frequency transform and feature detection algorithm are proposed to highlight the speaker's individuality in short-time spectrum of speech. The experimental results show that the perfor-mance of speaker recognition system is improved effectively, the average error rate of recognition relatively falls about 70.5%, 60.8% and 70.5% in comparison with classical frequency transform of Mel, Bark and ERB (Equivalent Rectangular Bandwidth) respectively.
Two—photon Nonlinear Jaynes—Cummings Model with Stark Shift
Institute of Scientific and Technical Information of China (English)
董传华; 卢俊
2002-01-01
Two-photon Jaynes-Cummimgs model is generalized to the case of Kerr medium in this paper,The field and atom are prepared initially in two-photon superposition state and ground state respectively.Nonlinear coefficient affects the dynamic behaviors of the field and atom.Evolutions of the squeezing for the operators of field and atom and the quantum inversion are discussed.In particular,the higher-order squeezing for atomic dipole and the effects of nonlinearity on it,which have not been studied by other authors,are investigated,Increasing the nonlinear coefficient will decrease the squeezing depth of atomic dipole.
Nonlinear Goos–Hänchen shifts of reflected light from inhomogeneous Kerr-like slabs
Energy Technology Data Exchange (ETDEWEB)
Mao, Hongmin, E-mail: hongminmao@hotmail.com; Zang, Taocheng; Sun, Jian; Pan, Tao; Xu, Guoding
2013-09-02
We investigate the Goos–Hänchen (GH) shifts of reflected light from Kerr-like slabs, whose permittivities are inhomogeneous in space as well as light intensity dependent. The GH shifts exhibit bistable, multivalued properties or a more complicated hysteretic response to the input light intensity, and the different spatial dependences of the permittivity have a great effect on the hysteretic response. The bistable or multivalued GH shifts can be modulated by various parameters, such as the angle of incidence and the thickness of slab. - Highlights: • The Goos–Hänchen (GH) shifts of reflected light from inhomogeneous Kerr-like slabs are investigated. • The GH shifts exhibit bistable, multivalued properties or a more complicated hysteretic response to the input light intensity. • The bistable or multivalued GH shifts can be modulated by the angle of incidence and the thickness of slab.
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Thomsen, Jon Juel
2009-01-01
We investigate how high-frequency (HF) excitation combined with strongly non-linear elasticity may influence the effective properties for low-frequency wave propagation. The HF effects are demonstrated for linear spring-mass chains with embedded non-linear parts. The investigated mechanical syste...
Laso, B.; Potapova, N. I.; Freizon, I. A.; Shapiro, B. S.
1981-08-01
An analysis of vertical-sounding and Doppler-shift data at 10 and 15 MHz obtained for the Boulder-Havana path indicates that the influence of critical frequencies is primarily manifested in variations of propagation modes and associated variations of Doppler shift. Variations of layer height are shown to have a considerable effect on the morning peak and to primarily determine the magnitude of Doppler shift during disturbed nighttime periods.
2015-03-01
AFRL-RY-WP-TP-2015-0068 GROWTH AND STUDY OF NONLINEAR OPTICAL MATERIALS FOR FREQUENCY CONVERSION DEVICES WITH APPLICATIONS IN DEFENCE AND...2015 Technical Paper 1 August 2013 – 1 August 2014 4. TITLE AND SUBTITLE GROWTH AND STUDY OF NONLINEAR OPTICAL MATERIALS FOR FREQUENCY CONVERSION...SUBJECT TERMS hydride vapor phase epitaxy, nonlinear optical materials , quasi-phase matching 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Verdon-Kidd, D. C.; Kiem, A. S.
2015-12-01
Rainfall intensity-frequency-duration (IFD) relationships are commonly required for the design and planning of water supply and management systems around the world. Currently, IFD information is based on the "stationary climate assumption" that weather at any point in time will vary randomly and that the underlying climate statistics (including both averages and extremes) will remain constant irrespective of the period of record. However, the validity of this assumption has been questioned over the last 15 years, particularly in Australia, following an improved understanding of the significant impact of climate variability and change occurring on interannual to multidecadal timescales. This paper provides evidence of regime shifts in annual maximum rainfall time series (between 1913-2010) using 96 daily rainfall stations and 66 sub-daily rainfall stations across Australia. Furthermore, the effect of these regime shifts on the resulting IFD estimates are explored for three long-term (1913-2010) sub-daily rainfall records (Brisbane, Sydney, and Melbourne) utilizing insights into multidecadal climate variability. It is demonstrated that IFD relationships may under- or over-estimate the design rainfall depending on the length and time period spanned by the rainfall data used to develop the IFD information. It is recommended that regime shifts in annual maximum rainfall be explicitly considered and appropriately treated in the ongoing revisions of the Engineers Australia guide to estimating and utilizing IFD information, Australian Rainfall and Runoff (ARR), and that clear guidance needs to be provided on how to deal with the issue of regime shifts in extreme events (irrespective of whether this is due to natural or anthropogenic climate change). The findings of our study also have important implications for other regions of the world that exhibit considerable hydroclimatic variability and where IFD information is based on relatively short data sets.
Drive Signal Frequency-Lock Method Based on 90° Phase Shift for Quartz Angular-Rate Sensor
Institute of Scientific and Technical Information of China (English)
LIAO Xing-cai; SUN Yu-nan; TANG Qiong; CUI Fang
2005-01-01
A drive signal frequency-lock method for quartz angular-rate sensor is presented. The calculation result obtained by the equivalent volume force analytic method indicated that when taking the inherent frequency of the drive tines as the drive signal frequency the phase of the reference vibration is 90° behind that of the drive signal, and the square of amplitude is less than that of the maximal amplitude by 1/(4Q2d) merely. The curves derived from the finite element analytic method proved that near the inherent frequency the phase shift of the feedback voltage is identical to that of the reference vibration, and the amplitude is proportional to that of the reference vibration, and the phase shift is linear approximatively with the frequency shift. The frequency shift could be calculated according to the phase shift obtained by quadrature correlation detection, so the drive signal frequency could be locked at the inherent frequency of the drive tines by means of iteration.
DEFF Research Database (Denmark)
Chen, Yaohui; Mørk, Jesper
2010-01-01
We present a novel scheme to achieve tunable microwave phase shifts at frequencies exceeding 100 GHz based on wavelength conversion induced by high-speed cross-gain modulation in quantum-dot semiconductor optical amplifiers.......We present a novel scheme to achieve tunable microwave phase shifts at frequencies exceeding 100 GHz based on wavelength conversion induced by high-speed cross-gain modulation in quantum-dot semiconductor optical amplifiers....
Non-linear swept frequency technique for CO2 measurements using a CW laser system
Campbell, Joel F
2013-01-01
A system using a non-linear multi-swept sine wave system is described which employs a multi-channel, multi-swept orthogonal waves, to separate channels and make multiple, simultaneous online/offline CO2 measurements. An analytic expression and systematic method for determining the orthogonal frequencies for the unswept, linear swept and non-linear swept cases is presented. It is shown that one may reduce sidelobes of the autocorrelation function while preserving cross channel orthogonality, for thin cloud rejection.
Non-linear Vibration of Oscillation Systems using Frequency-Amplitude Formulation
DEFF Research Database (Denmark)
Fereidoon, A.; Ghadimi, M.; Barari, Amin
2012-01-01
In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifthorder nonlinearity for two examples using He’s Frequency Amplitude Formulation (HFAF).The effectiveness and convenience of the method is illustrated in these examples. It will be shown...... that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems....
A fast continuation scheme for accurate tracing of nonlinear oscillator frequency response functions
Chen, Guoqiang; Dunne, J. F.
2016-12-01
A new algorithm is proposed to combine the split-frequency harmonic balance method (SF-HBM) with arc-length continuation (ALC) for accurate tracing of the frequency response of oscillators with non-expansible nonlinearities. ALC is incorporated into the SF-HBM in a two-stage procedure: Stage I involves finding a reasonably accurate response frequency and solution using a relatively large number of low-frequency harmonics. This step is achieved using the SF-HBM in conjunction with ALC. Stage II uses the SF-HBM to obtain a very accurate solution at the frequency obtained in Stage I. To guarantee rapid path tracing, the frequency axis is appropriately subdivided. This gives high chance of success in finding a globally optimum set of harmonic coefficients. When approaching a turning point however, arc-lengths are adaptively reduced to obtain a very accurate solution. The combined procedure is tested on three hardening stiffness examples: a Duffing model; an oscillator with non-expansible stiffness and single harmonic forcing; and an oscillator with non-expansible stiffness and multiple-harmonic forcing. The results show that for non-expansible nonlinearities and multiple-harmonic forcing, the proposed algorithm is capable of tracing-out frequency response functions with high accuracy and efficiency.
Wang, X.; Zheng, G. T.
2016-02-01
A simple and general Equivalent Dynamic Stiffness Mapping technique is proposed for identifying the parameters or the mathematical model of a nonlinear structural element with steady-state primary harmonic frequency response functions (FRFs). The Equivalent Dynamic Stiffness is defined as the complex ratio between the internal force and the displacement response of unknown element. Obtained with the test data of responses' frequencies and amplitudes, the real and imaginary part of Equivalent Dynamic Stiffness are plotted as discrete points in a three dimensional space over the displacement amplitude and the frequency, which are called the real and the imaginary Equivalent Dynamic Stiffness map, respectively. These points will form a repeatable surface as the Equivalent Dynamic stiffness is only a function of the corresponding data as derived in the paper. The mathematical model of the unknown element can then be obtained by surface-fitting these points with special functions selected by priori knowledge of the nonlinear type or with ordinary polynomials if the type of nonlinearity is not pre-known. An important merit of this technique is its capability of dealing with strong nonlinearities owning complicated frequency response behaviors such as jumps and breaks in resonance curves. In addition, this technique could also greatly simplify the test procedure. Besides there is no need to pre-identify the underlying linear parameters, the method uses the measured data of excitation forces and responses without requiring a strict control of the excitation force during the test. The proposed technique is demonstrated and validated with four classical single-degree-of-freedom (SDOF) numerical examples and one experimental example. An application of this technique for identification of nonlinearity from multiple-degree-of-freedom (MDOF) systems is also illustrated.
Song, Xinfang; Wang, Wenyuan; Fu, Libin
2016-09-01
Oscillating electric field is chosen to investigate the electron-positron pair production process by using a quantum kinetic theory and the effective mass model [Phys. Rev. Lett. 112, 050402 (2014)]. The particle yield exhibits a characteristic oscillatory structure which is related to the multi-photon thresholds. The true peak positions are typically slightly above the naive threshold estimate, which is defined as frequency shift. During the numerical calculations, we find the frequency shift can be affected by the system parameters under adiabatic closing the external field, it is worthwhile to study in detail. In this paper, we investigate the frequency shift and the sub-band effect in electron-positron pair production with oscillating electric field. First, a quantum kinetic theory and the effective mass are presented to obtain the frequency shift, the results are fitted very well. And we find the frequency shift and the sub-band effect can be influenced by pulse duration, photon number, and strength of the external field. The frequency shift becomes evident as increases of photon number and the external field strength. The sub-band width is relatively lower at longer pulse duration, higher photon number region, and weaker external field. The results shown in the paper are helpful for understanding multi-photon pair production process in the strong field.
Directory of Open Access Journals (Sweden)
Arkoprovo Biswas
2011-07-01
Full Text Available In the presence of conducting inhomogeneities in near-surface structures, apparent resistivity data in magnetotelluric sounding can be severely distorted. This is due to electric fields generated from boundary charges on surficial inhomogeneities. Such distortion persists throughout the entire recording range and is known as static shift in magnetotellurics. Frequency-independent static shifts manifest as vertical, parallel shifts that occur in plots of the dual logarithmic scale of apparent resistivity versus time period. The phase of magnetotelluric sounding data remains unaffected by the static shift and can be used to remove the static shift to some extent. However, individual inversion of phase data yields highly nonunique results, and alone it will not work to correctly remove the static shift. Inversions of uncorrected magnetotelluric data yield erroneous and unreliable estimations, while static-shift-corrected magnetotelluric data provide better and reliable estimations of the resistivities and thicknesses of subsurface structures. In the present study, static shift (a frequency-independent real constant is also considered as one of the model parameters and is optimized together with other model parameters (resistivity and thickness using the very fast simulated annealing global inversion technique. This implies that model parameters are determined simultaneously with the estimate of the static shift in the data. Synthetic and noisy data generated for a number of models are interpreted, to demonstrate the efficacy of the approach to yield reliable estimates of subsurface structures when the apparent resistivity data are affected by static shift. Individual inversions of static-shift-affected apparent resistivity data and phase data yield unreliable estimations of the model parameters. Furthermore, the estimated model parameters after individual data inversions do not show any systematic correlations with the amount of static shift in the
2015-08-27
The high voltage diodes D5 to D10 are used to protect the HV switch against negative back swing voltage, while D4 diode for reverse current ...AFRL-AFOSR-CL-TR-2015-0001 STUDY OF HV DIELECTRICS FOR HIGH FREQUENCY OPERATION IN LINEAR & NONLINEAR TRANSMISSION LINES & SIMULATION & DEVELOPMENT...AFOSR Final Performance Report Study of HV Dielectrics for High Frequency Operation in Linear and Nonlinear Transmission Lines and Simulation
Frequency-Shift Zero-Forcing Time-Varying Equalization for Doubly Selective SIMO Channels
Directory of Open Access Journals (Sweden)
Verde Francesco
2006-01-01
Full Text Available This paper deals with the problem of designing linear time-varying (LTV finite-impulse response zero-forcing (ZF equalizers for time- and frequency-selective (so-called doubly selective single-input multiple-output (SIMO channels. Specifically, relying on a basis expansion model (BEM of the rapidly time-varying channel impulse response, we derive the canonical frequency-domain representation of the minimal norm LTV-ZF equalizer, which allows one to implement it as a parallel bank of linear time-invariant filters having, as input signals, different frequency-shift (FRESH versions of the received data. Moreover, on the basis of this FRESH representation, we propose a simple and effective low-complexity version of the minimal norm LTV-ZF equalizer and we discuss the relationships between the devised FRESH equalizers and a LTV-ZF equalizer recently proposed in the literature. The performance analysis, carried out by means of computer simulations, shows that the proposed FRESH-LTV-ZF equalizers significantly outperform their competitive alternative.
Nonlinear frequency conversion effect in a one-dimensional graphene-based photonic crystal
Wicharn, S.; Buranasiri, P.
2015-07-01
In this research, the nonlinear frequency conversion effect based on four-wave mixing (FWM) principle in a onedimensional graphene-based photonics crystal (1D-GPC) has been investigated numerically. The 1D-GPC structure is composed of two periodically alternating material layers, which are graphene-silicon dioxide bilayer system and silicon membrane. Since, the third-order nonlinear susceptibility χ(3) of bilayer system is hundred time higher than pure silicon dioxide layer, so the enhancement of FWM response can be achieved inside the structure with optimizing photon energy being much higher than a chemical potential level (μ) of graphene sheet. In addition, the conversion efficiencies of 1DGPC structure are compared with chalcogenide based photonic structure for showing that 1D-GPC structure can enhance nonlinear effect by a factor of 100 above the chalcogenide based structure with the same structure length.
Nonlinear mixing of Nd:YAG lasers; harmonic and sum frequency generation
Walsh, Brian M.
2017-03-01
Nonlinear optical materials give rise to a number of phenomena under high intensity of the incident electric field, with nonlinear mixing being a prominent example. This article discusses such nonlinear mixing processes of Nd:YAG lasers in BBO outside the more common harmonics of the 1.064 μm transition (0.532 μm, 0.366 μm and 0.266 μm). In particular, harmonics of the less common 0.946 μm transition (0.473 μm and 0.315 μm) as well as sum frequency of the 1.052 and 1.319 μm transitions (0.585 μm) and its second harmonic (0.293 μm) is discussed.
Sorokin, Vladislav S; Thomsen, Jon Juel
2016-02-01
The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli-Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature, nonlinear material and nonlinear inertia owing to longitudinal motions of the beam are taken into account, and (ii) mid-plane stretching nonlinearity. A novel approach is employed, the method of varying amplitudes. As a result, the isolated as well as combined effects of the considered sources of nonlinearities are revealed. It is shown that nonlinear inertia has the most substantial impact on the dispersion relation of a non-uniform beam by removing all frequency band-gaps. Explanations of the revealed effects are suggested, and validated by experiments and numerical simulation.
Frequency Shifts of Luminescence for ZnO Nanoparticles in Porous Alumina Template
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
ZnO nanoparticles in porous anodized alumina were fabricated by sol-gel method. The PL spectra of pure ZnO nanoparticles, porous alumina template and the ZnO/PAA composite system were investigated after annealed at different temperatures. The annealing of ZnO/PAA composite system displays very complicated behavior, where changing of luminescence intensity and a "red shift" of emission frequency were observed at less or higher than 500 ℃ of the annealing temperature, respectively. To explain the phenomenon, it is considered that the emission origin of the green luminescence of ZnO nanoparticles came from OZn. It is suggested that the ZnO/PAA composite system should be annealed at the temperature above 500 ℃ in order to get intense luminescence of ZnO nanoparticle.
Lin, Jian; Liu, Jiaming; Zhang, Hao; Li, Wenxiu; Zhao, Lu; Jin, Junjie; Huang, Anping; Zhang, Xiaofu; Xiao, Zhisong
2016-12-01
Rigorous expressions of resonant frequency shift (RFS) in anomalous dispersion enhanced resonant optical gyroscopes (ADEROGs) are deduced without making approximation, which provides a precise theoretical guidance to achieve ultra-sensitive ADEROGs. A refractive index related modification factor is introduced when considering special theory of relativity (STR). We demonstrate that the RFS will not be ”infinitely large” by using critical anomalous dispersion (CAD) and negative modification does not exist, which make the mechanism of anomalous dispersion enhancement clear and coherent. Although step change of RFS will happen when the anomalous dispersion condition varies, the amplification of RFS is limited by attainable variation of refractive index in practice. Moreover, it is shown that the properties of anomalous dispersion will influence not only the amplification of RFS, but also the detection range of ADEROGs.
Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus
Directory of Open Access Journals (Sweden)
Elena T. Herruzo
2012-03-01
Full Text Available Bimodal atomic force microscopy is a force-microscopy method that requires the simultaneous excitation of two eigenmodes of the cantilever. This method enables the simultaneous recording of several material properties and, at the same time, it also increases the sensitivity of the microscope. Here we apply fractional calculus to express the frequency shift of the second eigenmode in terms of the fractional derivative of the interaction force. We show that this approximation is valid for situations in which the amplitude of the first mode is larger than the length of scale of the force, corresponding to the most common experimental case. We also show that this approximation is valid for very different types of tip–surface forces such as the Lennard-Jones and Derjaguin–Muller–Toporov forces.
Classical calculation of relativistic frequency-shifts in an ideal Penning trap
Ketter, Jochen; Höcker, Martin; Schuh, Marc; Streubel, Sebastian; Blaum, Klaus
2013-01-01
The ideal Penning trap consists of a uniform magnetic field and an electrostatic quadrupole potential. In the classical low-energy limit, the three characteristic eigenfrequencies of a charged particle trapped in this configuration do not depend on the amplitudes of the three eigenmotions. No matter how accurate the experimental realization of the ideal Penning trap, its harmonicity is ultimately compromised by special relativity. Using a classical formalism of first-order perturbation theory, we calculate the relativistic frequency-shifts associated with the motional degrees of freedom for a spinless particle stored in an ideal Penning trap, and we compare the results with the simple but surprisingly accurate model of relativistic mass-increase.
An ultraviolet laser communication system using frequency-shift keying modulation scheme
Peng, Di-yong; Shi, Jun; Peng, Guang-hui; Xiao, Sha-li; Xu, Shan-he; Wang, Shan; Liu, Feng
2015-01-01
A communication system based on an ultraviolet (UV) laser at 266 nm is presented to improve the communication distance. The pulse frequency-shift keying (FSK) modulation scheme is studied and improved in order to reduce the bit error rate (BER), and is put into practice on a field programmable gate array (FPGA). The mathematical models of the modulation and demodulation are established. A test platform is set up to measure the energy density and pulse response under different distances and receiver elevation angles. It is shown that the omnibearing communication can be realized, and the bit rate is limited to 12.5 Mbit/s. The BER is estimated to be less than 10-7 at distance of 300 m in line-of-sight (LOS) communication model and to be less than 10-6 at distance of 80 m in non-line-of-sight (NLOS) communication model.
De Filippis, G.; Noël, J. P.; Kerschen, G.; Soria, L.; Stephan, C.
2017-09-01
The introduction of the frequency-domain nonlinear subspace identification (FNSI) method in 2013 constitutes one in a series of recent attempts toward developing a realistic, first-generation framework applicable to complex structures. If this method showed promising capabilities when applied to academic structures, it is still confronted with a number of limitations which needs to be addressed. In particular, the removal of nonphysical poles in the identified nonlinear models is a distinct challenge. In the present paper, it is proposed as a first contribution to operate directly on the identified state-space matrices to carry out spurious pole removal. A modal-space decomposition of the state and output matrices is examined to discriminate genuine from numerical poles, prior to estimating the extended input and feedthrough matrices. The final state-space model thus contains physical information only and naturally leads to nonlinear coefficients free of spurious variations. Besides spurious variations due to nonphysical poles, vibration modes lying outside the frequency band of interest may also produce drifts of the nonlinear coefficients. The second contribution of the paper is to include residual terms, accounting for the existence of these modes. The proposed improved FNSI methodology is validated numerically and experimentally using a full-scale structure, the Morane-Saulnier Paris aircraft.
Arditi, Tal; Granot, Er'el; Sternklar, Shmuel
2007-09-15
Brillouin amplification with counterpropagating modulated pump and Stokes light leads to nonlinear modulation-phase shifts of the interacting intensity waves. This is due to a partial transformation of the nonmodulated light component at the input into modulated light at the output as a result of a mixing process with the counterpropagating modulated component of the pump and results in an advance or delay of the input modulation. This occurs for interactions over less than half of a modulation wavelength. Milliwatts of power in a kilometer of standard single-mode fiber give significant tunability of the modulation phase.
Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media
Phillips, C R; Gallmann, L; Keller, U
2015-01-01
Advances in the amplification and manipulation of ultrashort laser pulses has led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine all of these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device. Moreover, our approach simultaneously offers solutions to the performance-limiting issues in the conventionally-used techniques, and supports scaling in power and bandwidth of the laser source. The approach is based on two-dimensional patterning of quasi-phase-matching gratings combined with optical parametric interactions involving spatially dispersed laser pulses...
Combinatorial Frequency Generation in Quasi-Periodic Stacks of Nonlinear Dielectric Layers
Directory of Open Access Journals (Sweden)
Oksana Shramkova
2014-07-01
Full Text Available Three-wave mixing in quasi-periodic structures (QPSs composed of nonlinear anisotropic dielectric layers, stacked in Fibonacci and Thue-Morse sequences, has been explored at illumination by a pair of pump waves with dissimilar frequencies and incidence angles. A new formulation of the nonlinear scattering problem has enabled the QPS analysis as a perturbed periodic structure with defects. The obtained solutions have revealed the effects of stack composition and constituent layer parameters, including losses, on the properties of combinatorial frequency generation (CFG. The CFG features illustrated by the simulation results are discussed. It is demonstrated that quasi-periodic stacks can achieve a higher efficiency of CFG than regular periodic multilayers.
Nonlinear modeling of low-to-high-frequency noise up-conversion in microwave electron devices
Filicori, Fabio; Traverso, Pier A.; Florian, Corrado
2003-05-01
Measurement-based, circuit-oriented non-linear noise modeling of microwave electron devices is still an open field of research, since existing approaches are not always suitable for the accurate prediction of low-frequency noise up-conversion to RF, which represents an essential information for the non-linear circuit analyses performed in the CAD of low phase-noise oscillators. In this paper a technology-independent, empirical approach to the modeling of noise contributions at the ports of electron devices, operating under strongly non-linear conditions, is proposed. Details concerning the analytical formulation of the model, which is derived by considering randomly time-varying perturbations in the basic equations of an otherwise conventional charge-controlled non-linear model, are presented, along with a discussion about the measurement techniques devoted to its experimental characterization. An example of application of the proposed Charge-Controlled Non-linear Noise (CCNN) model is considered in the case of a HBT transistor. Techniques devoted to the implementation of the obtained model in the framework of commercial CAD tools for circuit analysis and design are provided as well.
Directory of Open Access Journals (Sweden)
A. H. Bhrawy
2012-01-01
Full Text Available A shifted Jacobi Galerkin method is introduced to get a direct solution technique for solving the third- and fifth-order differential equations with constant coefficients subject to initial conditions. The key to the efficiency of these algorithms is to construct appropriate base functions, which lead to systems with specially structured matrices that can be efficiently inverted. A quadrature Galerkin method is introduced for the numerical solution of these problems with variable coefficients. A new shifted Jacobi collocation method based on basis functions satisfying the initial conditions is presented for solving nonlinear initial value problems. Through several numerical examples, we evaluate the accuracy and performance of the proposed algorithms. The algorithms are easy to implement and yield very accurate results.
Santos, A R G; Avelino, P P; Chaplin, W J; Campante, T L
2016-01-01
The activity-related variations in the solar acoustic frequencies have been known for 30 years. However, the importance of the different contributions is still not well established. With this in mind, we developed an empirical model to estimate the spot-induced frequency shifts, which takes into account the sunspot properties, such as area and latitude. The comparison between the model frequency shifts obtained from the daily sunspot records and those observed suggests that the contribution from a stochastic component to the total frequency shifts is about 30%. The remaining 70% is related to a global, long-term variation. We also propose a new observable to investigate the short- and mid-term variations of the frequency shifts, which is insensitive to the long-term variations contained in the data. On the shortest time scales the variations in the frequency shifts are strongly correlated with the variations in the total area covered by sunspots. However, a significant loss of correlation is still found, whic...
Kougioumtzoglou, I. A.; Fragkoulis, V. C.; Pantelous, A. A.; Pirrotta, A.
2017-09-01
A frequency domain methodology is developed for stochastic response determination of multi-degree-of-freedom (MDOF) linear and nonlinear structural systems with singular matrices. This system modeling can arise when a greater than the minimum number of coordinates/DOFs is utilized, and can be advantageous, for instance, in cases of complex multibody systems where the explicit formulation of the equations of motion can be a nontrivial task. In such cases, the introduction of additional/redundant DOFs can facilitate the formulation of the equations of motion in a less labor intensive manner. Specifically, relying on the generalized matrix inverse theory, a Moore-Penrose (M-P) based frequency response function (FRF) is determined for a linear structural system with singular matrices. Next, relying on the M-P FRF a spectral input-output (excitation-response) relationship is derived in the frequency domain for determining the linear system response power spectrum. Further, the above methodology is extended via statistical linearization to account for nonlinear systems. This leads to an iterative determination of the system response mean vector and covariance matrix. Furthermore, to account for singular matrices, the generalization of a widely utilized formula that facilitates the application of statistical linearization is proved as well. The formula relates to the expectation of the derivatives of the system nonlinear function and is based on a Gaussian response assumption. Several linear and nonlinear MDOF structural systems with singular matrices are considered as numerical examples for demonstrating the validity and applicability of the developed frequency domain methodology.
Frequency map analysis of resonances in a nonlinear lattice with space charge
Energy Technology Data Exchange (ETDEWEB)
Turchetti, G. E-mail: turchetti@bo.infn.it; Bazzani, A.; Bergamini, F.; Rambaldi, S.; Hofmann, I.; Bongini, L.; Franchetti, G
2001-05-21
In storage rings for heavy ion fusion beam losses must be minimized. During bunch compression high space charge is reached and the reciprocal effects between the collective modes of the beam and the single particle lattice nonlinearities must be considered to understand the problem of resonance crossing and halo formation. We show that the frequency map analysis of particle in core models gives an adequate description of the resonance network and of the chaotic regions where the halo particles can diffuse.
Correction of Frequency-Dependent Nonlinear Errors in Direct-Conversion Transceivers
2016-03-31
University of Oklahoma Norman , Oklahoma, USA, 73019 pyraminxrox@ou.edu, fulton@ou.edu Abstract: Correction of nonlinear and frequency dependent...behavior of low -cost integrated transceivers, especially in the area of phased arrays, where many transceivers will be used to comprise the system as...analog RF portion of the receive chain of the low -cost, direct-conversion radar system initially presented in [2]. The spectral distortion seen here
Frequency and Phase Noise in Non-Linear Microwave Oscillator Circuits
Tannous, C.
2003-01-01
We have developed a new methodology and a time-domain software package for the estimation of the oscillation frequency and the phase noise spectrum of non-linear noisy microwave circuits based on the direct integration of the system of stochastic differential equations representing the circuit. Our theoretical evaluations can be used in order to make detailed comparisons with the experimental measurements of phase noise spectra in selected oscillating circuits.
Chadwick, Richard S.; Cartagena-Rivera, Alexander X.
2015-12-01
Measurement of frequency shifts of cantilevers having an attached microsphere oscillating at acoustic frequencies can be used to assess mechanical properties of cochlear structures. The method has already been reported for measuring elastic and viscous properties of the tectorial membrane. We describe here how the method can be used to examine other cochlear structures. Theory and formulas for relating hair bundle stiffness and tension in the developing cochlear sensory epithelium to measured frequency shifts are given to estimate the expected frequency shifts and show feasibility of the measurements. We show through a molecular model of myosin II located along the edges of confluent hexagons that myosin contractile forces are balanced by isotropic tension in the developing confluent sheet of cells.
Institute of Scientific and Technical Information of China (English)
Zhou Meng; Hui-Juan Zhou; Yi Liao; Qiong Yao
2008-01-01
High-speed and wide-band LiNbO3 waveguide electro-optic intensity modulator has drawn great attention in the field of optical fiber communi-cation and sensor. This paper reports the research results on the measurement of frequency shift character-istics of Mach-Zehnder electro-optic intensity modulator. Two measurement methods of frequency shift character-istics for high and low frequency modulations are studied in theory and experiment and demonstrate different results. The realization of a multi-wavelength optical source based on Mach-Zehnder electro-optic intensity modulator has been introduced. The technique to reach the maximum intensity for interesting shift frequency, particularly for heterodyne detection of Brillouin distributed optical fiber sensing, has been given.
Directory of Open Access Journals (Sweden)
Nor Zakiah Yahaya
2014-01-01
Full Text Available This paper presents an intercomparison between the finite element method, method of moment, and the variational method to determine the effect of moisture content on the resonant frequency shift of a microstrip patch loaded with wet material. The samples selected for this study were Hevea rubber latex with different percentages of moisture content from 35% to 85%. The results were compared with the measurement data in the frequency range between 1 GHz and 4 GHz. It was found that the finite element method is the most accurate among all the three computational techniques with 0.1 mean error when compared to the measured resonant frequency shift. A calibration equation was obtained to predict moisture content from the measured frequency shift with an accuracy of 2%.
Directory of Open Access Journals (Sweden)
Bin Wang
2016-01-01
Full Text Available This paper studies the application of frequency distributed model for finite time control of a fractional order nonlinear hydroturbine governing system (HGS. Firstly, the mathematical model of HGS with external random disturbances is introduced. Secondly, a novel terminal sliding surface is proposed and its stability to origin is proved based on the frequency distributed model and Lyapunov stability theory. Furthermore, based on finite time stability and sliding mode control theory, a robust control law to ensure the occurrence of the sliding motion in a finite time is designed for stabilization of the fractional order HGS. Finally, simulation results show the effectiveness and robustness of the proposed scheme.
Using strong nonlinearity and high-frequency vibrations to control effective mechanical stiffness
DEFF Research Database (Denmark)
Thomsen, Jon Juel
2008-01-01
High-frequency excitation (HFE) can be used to change the effective stiffness of an elastic structure, and related quanti-ties such as resonance frequencies, wave speed, buckling loads, and equilibrium states. There are basically two ways to do this: By using parametrical HFE (with or without non...... the method of direct separation of motions with results of a modified multiple scales ap-proach, valid also for strong nonlinearity, the stiffening ef-fect is predicted for a generic 1-dof system, and results are tested against numerical simulation and ((it is planned)) laboratory experiments....
Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides
DEFF Research Database (Denmark)
Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.;
2013-01-01
in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second-order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process...... in this optimal regime. We also find an operating regime in which high-efficiency frequency conversion without temporal-shape selectivity can be achieved while preserving the shapes of a wide class of input pulses. The results are applicable to both classical and quantum frequency conversion....
Two-beam nonlinear Kerr effect to stabilize laser frequency with sub-Doppler resolution
Martins, Weliton Soares; de Silans, Thierry Passerat; Oriá, Marcos; Chevrollier, Martine; 10.1364/AO.51.005080
2012-01-01
Avoiding laser frequency drifts is a key issue in many atomic physics experiments. Several techniques have been developed to lock the laser frequency using sub-Doppler dispersive atomic lineshapes as error signals in a feedback loop. We propose here a two-beam technique that uses non-linear properties of an atomic vapor around sharp resonances to produce sub-Doppler dispersive-like lineshapes that can be used as error signals. Our simple and robust technique has the advantage of not needing either modulation or magnetic fields.
Ulvila, Ville; Halonen, Lauri; Vainio, Markku
2015-01-01
We present an experimental study of optical frequency comb generation based on cascaded quadratic nonlinearities inside a continuous-wave-pumped optical parametric oscillator. We demonstrate comb states which produce narrow-linewidth intermode beat note signals, and we verify the mode spacing uniformity of the comb at the Hz level. We also show that spectral quality of the comb can be improved by modulating the parametric gain at a frequency that corresponds to the comb mode spacing. We have reached a high average output power of over 4 W in the near-infrared region, at ~2 {\\mu}m.
Quasi-periodic solutions of nonlinear beam equation with prescribed frequencies
Energy Technology Data Exchange (ETDEWEB)
Chang, Jing [College of Information Technology, Jilin Agricultural University, Changchun 130118 (China); Gao, Yixian, E-mail: gaoyx643@nenu.edu.cn; Li, Yong [School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024 (China)
2015-05-15
Consider the one dimensional nonlinear beam equation u{sub tt} + u{sub xxxx} + mu + u{sup 3} = 0 under Dirichlet boundary conditions. We show that for any m > 0 but a set of small Lebesgue measure, the above equation admits a family of small-amplitude quasi-periodic solutions with n-dimensional Diophantine frequencies. These Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proofs are based on an infinite dimensional Kolmogorov-Arnold-Moser iteration procedure and a partial Birkhoff normal form. .
Using strong nonlinearity and high-frequency vibrations to control effective mechanical stiffness
DEFF Research Database (Denmark)
Thomsen, Jon Juel
2008-01-01
High-frequency excitation (HFE) can be used to change the effective stiffness of an elastic structure, and related quanti-ties such as resonance frequencies, wave speed, buckling loads, and equilibrium states. There are basically two ways to do this: By using parametrical HFE (with or without non...... the method of direct separation of motions with results of a modified multiple scales ap-proach, valid also for strong nonlinearity, the stiffening ef-fect is predicted for a generic 1-dof system, and results are tested against numerical simulation and ((it is planned)) laboratory experiments....
Development of coherent tunable source in 2–16 m region using nonlinear frequency mixing processes
Indian Academy of Sciences (India)
Udit Chatterjee
2014-01-01
A very convenient way to obtain widely tunable source of coherent radiation in the infrared region is through nonlinear frequency mixing processes like second harmonic generation (SHG), difference-frequency mixing (DFM) or optical parametric oscillation (OPO). Using commonly available Nd:YAG laser and its harmonic pumped dye laser radiation as parent beams, we have been able to generate coherent tunable infrared radiation (IR) in 2–16 m region using different nonlinear crystals by DFM and OPO. We have also generated such IR source in the 4–5 m region through SHG of CO2 laser in different infrared crystals. In the process we have characterized a large number of nonlinear crystals like different borate group of crystals, KTP, KTA, LiIO3, MgO:LiNbO3, GaSe, AgGaSe2, ZnGeP2, AgGa1−InSe2, HgGa2S4 etc. To improve the conversion efficiencies of such frequency conversion processes, we have developed some novel schemes, like multipass configuration (MC) and positive optical feedback (POF). The significance of the obtained results lies in the fact that to get the same conversion in SHG or DFM, one now requires fundamental input radiation with much lower intensity.
Non-linear DSGE Models, The Central Difference Kalman Filter, and The Mean Shifted Particle Filter
DEFF Research Database (Denmark)
Andreasen, Martin Møller
This paper shows how non-linear DSGE models with potential non-normal shocks can be estimated by Quasi-Maximum Likelihood based on the Central Difference Kalman Filter (CDKF). The advantage of this estimator is that evaluating the quasi log-likelihood function only takes a fraction of a second. T...
Directory of Open Access Journals (Sweden)
Laurent Segers
2015-07-01
Full Text Available This paper describes a new approach and implementation methodology for indoor ranging based on the time difference of arrival using code division multiple access with ultrasound signals. A novel implementation based on a field programmable gate array using finite impulse response filters and an optimized correlation demodulator implementation for ultrasound orthogonal signals is developed. Orthogonal codes are modulated onto ultrasound signals using frequency shift keying with carrier frequencies of 24.5 kHz and 26 kHz. This implementation enhances the possibilities for real-time, embedded and low-power tracking of several simultaneous transmitters. Due to the high degree of parallelism offered by field programmable gate arrays, up to four transmitters can be tracked simultaneously. The implementation requires at most 30% of the available logic gates of a Spartan-6 XC6SLX45 device and is evaluated on accuracy and precision through several ranging topologies. In the first topology, the distance between one transmitter and one receiver is evaluated. Afterwards, ranging analyses are applied between two simultaneous transmitters and one receiver. Ultimately, the position of the receiver against four transmitters using trilateration is also demonstrated. Results show enhanced distance measurements with distances ranging from a few centimeters up to 17 m, while keeping a centimeter-level accuracy.
Vibrational dephasing and frequency shifts of hydrogen-bonded pyridine-water complexes
Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.
2015-01-01
In this paper we present the picosecond vibrational dynamics and Raman shifts of hydrogen-bonded pyridine-water complexes present in aqueous solutions in a wide concentration range from dense to extreme dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The concentration induced variations in bandwidths, band frequencies and characteristic dephasing times have been estimated and interpreted as effects due to solute-solvent interactions. The time-correlation functions of vibrational dephasing were obtained for the ring breathing mode of both "free" and hydrogen-bonded pyridine molecules and it was found that sufficiently deviate from the Kubo model. There is a general agreement in the whole concentration range with the modeling proposed by the Rothschild approach, which applies to complex liquids. The results have shown that the reorientation of pyridine aqueous solutions is very slow and hence in both scattering geometries only vibrational dephasing is probed. It is proposed that the spectral changes depend on the perturbations induced by the dynamics of the water molecules in the first hydration cell and water in bulk, while at extreme dilution conditions, the number of bulk water molecules increases and the interchange between molecules belonging to the first hydration cell may not be the predominant modulation mechanism. The evolution of several parameters, such as the characteristic times, the percentage of Gaussian character in the peak shape and the a parameter are indicative of drastic variations at extreme dilution revealing changes in the vibrational relaxation of the pyridine complexes in the aqueous environment. The higher dilution is correlated to diffusion of water molecules into the reference pyridine system in agreement with the jump diffusion model, while at extreme dilutions, almost all pyridine molecules are
Vibrational dephasing and frequency shifts of hydrogen-bonded pyridine-water complexes.
Kalampounias, A G; Tsilomelekis, G; Boghosian, S
2015-01-25
In this paper we present the picosecond vibrational dynamics and Raman shifts of hydrogen-bonded pyridine-water complexes present in aqueous solutions in a wide concentration range from dense to extreme dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The concentration induced variations in bandwidths, band frequencies and characteristic dephasing times have been estimated and interpreted as effects due to solute-solvent interactions. The time-correlation functions of vibrational dephasing were obtained for the ring breathing mode of both "free" and hydrogen-bonded pyridine molecules and it was found that sufficiently deviate from the Kubo model. There is a general agreement in the whole concentration range with the modeling proposed by the Rothschild approach, which applies to complex liquids. The results have shown that the reorientation of pyridine aqueous solutions is very slow and hence in both scattering geometries only vibrational dephasing is probed. It is proposed that the spectral changes depend on the perturbations induced by the dynamics of the water molecules in the first hydration cell and water in bulk, while at extreme dilution conditions, the number of bulk water molecules increases and the interchange between molecules belonging to the first hydration cell may not be the predominant modulation mechanism. The evolution of several parameters, such as the characteristic times, the percentage of Gaussian character in the peak shape and the a parameter are indicative of drastic variations at extreme dilution revealing changes in the vibrational relaxation of the pyridine complexes in the aqueous environment. The higher dilution is correlated to diffusion of water molecules into the reference pyridine system in agreement with the jump diffusion model, while at extreme dilutions, almost all pyridine molecules are
Nonlinear model calibration of a shear wall building using time and frequency data features
Asgarieh, Eliyar; Moaveni, Babak; Barbosa, Andre R.; Chatzi, Eleni
2017-02-01
This paper investigates the effects of different factors on the performance of nonlinear model updating for a seven-story shear wall building model. The accuracy of calibrated models using different data features and modeling assumptions is studied by comparing the time and frequency responses of the models with the exact simulated ones. Simplified nonlinear finite element models of the shear wall building are calibrated so that the misfit between the considered response data features of the models and the structure is minimized. A refined FE model of the test structure, which was calibrated manually to match the shake table test data, is used instead of the real structure for this performance evaluation study. The simplified parsimonious FE models are composed of simple nonlinear beam-column fiber elements with nonlinearity infused in them by assigning generated hysteretic nonlinear material behaviors to uniaxial stress-strain relationship of the fibers. Four different types of data features and their combinations are used for model calibration: (1) time-varying instantaneous modal parameters, (2) displacement time histories, (3) acceleration time histories, and (4) dissipated hysteretic energy. It has been observed that the calibrated simplified FE models can accurately predict the nonlinear structural response in the absence of significant modeling errors. In the last part of this study, the physics-based models are further simplified for casting into state-space formulation and a real-time identification is performed using an Unscented Kalman filter. It has been shown that the performance of calibrated state-space models can be satisfactory when reasonable modeling assumptions are used.
Nonlinear vegetation phenology shifts over northern China during 1982-2006
An, Youzhi; Liu, Wenbo; Gao, Wei; Gao, Zhiqiang; Liu, Chaoshun; Shi, Runhe
2016-09-01
The response of vegetation phenology change to climate change effects in the Northern China has been reported in the past several decades. Phenological change is a critical understanding in terrestrial carbon cycling. This study aims to investigate linear and nonlinear change trends and nonlinear response change trends in climate in vegetation phenology over Northern China in the last three decades. We analyzed the vegetation phenology over the Northern China by the new released Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVIg) dataset from 1982 to 2006.Results show that based on linear method, we can found that SOS was gradually advanced, EOS gradually delayed, and then LOS gradually lengthened. But on the basis of nonlinear method, phenological trends in the SOS, EOS and LOS are not continuous, we can found extended LOS with advanced SOS and delayed EOS before the turning point (TP) of spring SOS and autumn EOS trends and shortened LOS with delayed SOS and advanced EOS after the turning point (TP) of spring SOS and autumn EOS trends.
Furumachi, S.; Ueno, T.
2016-04-01
We study magnetostrictive vibration based power generator using iron-gallium alloy (Galfenol). The generator is advantages over conventional, such as piezoelectric material in the point of high efficiency highly robust and low electrical impedance. Generally, the generator exhibits maximum power when its resonant frequency matches the frequency of ambient vibration. In other words, the mismatch of these frequencies results in significant decrease of the output. One solution is making the spring characteristics nonlinear using magnetic force, which distorts the resonant peak toward higher or lower frequency side. In this paper, vibrational generator consisting of Galfenol plate of 6 by 0.5 by 13 mm wound with coil and U shape-frame accompanied with plates and pair of permanent magnets was investigated. The experimental results show that lean of resonant peak appears attributed on the non-linear spring characteristics, and half bandwidth with magnets is 1.2 times larger than that without. It was also demonstrated that the addition of proof mass is effective to increase the sensitivity but also the bandwidth. The generator with generating power of sub mW order is useful for power source of wireless heath monitoring for bridge and factory machine.
Non-linear DSGE Models, The Central Difference Kalman Filter, and The Mean Shifted Particle Filter
DEFF Research Database (Denmark)
Andreasen, Martin Møller
. The second contribution of this paper is to derive a new particle filter which we term the Mean Shifted Particle Filter (MSPFb). We show that the MSPFb outperforms the standard Particle Filter by delivering more precise state estimates, and in general the MSPFb has lower Monte Carlo variation in the reported...
Soliton self-frequency blue-shift in gas-filled hollow-core photonic crystal fibers
Saleh, Mohammed F; Hoelzer, Philipp; Nazarkin, Alexander; Travers, John C; Joly, Nicolas Y; Russell, Philip St J; Biancalana, Fabio
2011-01-01
We show theoretically that the photoionization process in a hollow-core photonic crystal fiber filled with a Raman-inactive noble gas leads to a constant acceleration of solitons in the time domain with a continuous shift to higher frequencies, limited only by ionization loss. This phenomenon is opposite to the well-known Raman self-frequency red-shift of solitons in solid-core glass fibers. We also predict the existence of unconventional long-range non-local soliton interactions leading to spectral and temporal soliton clustering. Furthermore, if the core is filled with a Raman-active molecular gas, spectral transformations between red-shifted, blue-shifted and stabilized solitons can take place in the same fiber.
Volterra series truncation and kernel estimation of nonlinear systems in the frequency domain
Zhang, B.; Billings, S. A.
2017-02-01
The Volterra series model is a direct generalisation of the linear convolution integral and is capable of displaying the intrinsic features of a nonlinear system in a simple and easy to apply way. Nonlinear system analysis using Volterra series is normally based on the analysis of its frequency-domain kernels and a truncated description. But the estimation of Volterra kernels and the truncation of Volterra series are coupled with each other. In this paper, a novel complex-valued orthogonal least squares algorithm is developed. The new algorithm provides a powerful tool to determine which terms should be included in the Volterra series expansion and to estimate the kernels and thus solves the two problems all together. The estimated results are compared with those determined using the analytical expressions of the kernels to validate the method. To further evaluate the effectiveness of the method, the physical parameters of the system are also extracted from the measured kernels. Simulation studies demonstrates that the new approach not only can truncate the Volterra series expansion and estimate the kernels of a weakly nonlinear system, but also can indicate the applicability of the Volterra series analysis in a severely nonlinear system case.
Energy transport in weakly nonlinear wave systems with narrow frequency band excitation.
Kartashova, Elena
2012-10-01
A novel discrete model (D model) is presented describing nonlinear wave interactions in systems with small and moderate nonlinearity under narrow frequency band excitation. It integrates in a single theoretical frame two mechanisms of energy transport between modes, namely, intermittency and energy cascade, and gives the conditions under which each regime will take place. Conditions for the formation of a cascade, cascade direction, conditions for cascade termination, etc., are given and depend strongly on the choice of excitation parameters. The energy spectra of a cascade may be computed, yielding discrete and continuous energy spectra. The model does not require statistical assumptions, as all effects are derived from the interaction of distinct modes. In the example given-surface water waves with dispersion function ω(2)=gk and small nonlinearity-the D model predicts asymmetrical growth of side-bands for Benjamin-Feir instability, while the transition from discrete to continuous energy spectrum, excitation parameters properly chosen, yields the saturated Phillips' power spectrum ~g(2)ω(-5). The D model can be applied to the experimental and theoretical study of numerous wave systems appearing in hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc.
Bouchaala, Adam M.
2016-03-18
We present analytical formulations to calculate the induced resonance frequency shifts of electrically actuated clamped–clamped micro and nano (Carbon nanotube) beams due to an added mass. Based on the Euler–Bernoulli beam theory, we investigate the linear dynamic responses of the beams added masses, which are modeled as discrete point masses. Analytical expressions based on perturbation techniques and a one-mode Galerkin approximation are developed to calculate accurately the frequency shifts under a DC voltage as a function of the added mass and position. The analytical results are compared to numerical solution of the eigenvalue problem. Results are shown for the fundamental as well as the higher-order modes of the beams. The results indicate a significant increase in the frequency shift, and hence the sensitivity of detection, when scaling down to nano scale and using higher-order modes. © 2016 Springer Science+Business Media Dordrecht
Energy Technology Data Exchange (ETDEWEB)
Liu, X. H.; Luo, H.; Qu, T. L., E-mail: qutianliang@nudt.edu.cn; Yang, K. Y.; Ding, Z. C. [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)
2015-10-15
We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of {sup 87}Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the {sup 87}Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the {sup 87}Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.
Directory of Open Access Journals (Sweden)
X. H. Liu
2015-10-01
Full Text Available We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.
A Suspended Stripline Frequency Tripler Using a Left-Handed Nonlinear Transmission Line
Directory of Open Access Journals (Sweden)
In Bok Kim
2015-01-01
Full Text Available A suspended stripline frequency tripler using a left-handed nonlinear transmission line (LH NLTL is presented. The proposed tripler using the LH NLTL is composed of a series of varactor diodes, shunt inductances, and a high-pass filter implemented with suspended stripline (SSL. An ultrawideband microstrip-to-suspended stripline transition is also utilized. The fabricated LH NLTL provides the minimum insertion loss of 1.7 dB and the maximum insertion loss of 4.7 dB for a wide frequency band from 2.6 to 18 GHz. As a tripler, the measured minimum third harmonic conversion loss is 15.3 dB at an input frequency of 2.4 GHz and typically 17 dB from 2 to 3.1 GHz.
Ecological prediction with nonlinear multivariate time-frequency functional data models
Yang, Wen-Hsi; Wikle, Christopher K.; Holan, Scott H.; Wildhaber, Mark L.
2013-01-01
Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction. We illustrate the effectiveness of our approach through simulation and by application to predicting spawning success of shovelnose sturgeon in the Lower Missouri River.
DEFF Research Database (Denmark)
Sorokin, Vladislav S.; Thomsen, Jon Juel
2016-01-01
The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli– Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature...
Institute of Scientific and Technical Information of China (English)
Abhijit Sinha; Sourangshu Mukhopadhyay
2004-01-01
In optical soliton propagation through a single mode optical fiber,it is established that self-phase mod ulation is maintained by the third order non-linearity of the silica-based glass material of the fiber.In this paper we show that the fifth order non-linearity has also some contribution in frequency variation of self-phase modulation.
Exploring the sources of p-mode frequency shifts in the CoRoT target HD 49933
Liu, Zhie; Yang, Wuming; Li, Tanda; Liu, Kang; Tian, Zhijia; Ge, Zhishuai; Yu, Jie
2014-01-01
The oscillations of the solar-like star HD 49933 have been observed thoroughly by CoRot. Two dozens of frequency shifts, which are closely related with the change in magnetic activity, have been measured. To explore the effects of the magnetic activity on the frequency shifts, we calculate frequency shifts for the radial and $l = 1$ p-modes of HD 49933 with the general variational method, which evaluates the shifts using a spatial integral of the product of a kernel and some sources. The theoretical frequency shifts well reproduce the observation. The magnitudes and positions of the sources are determined according to the $\\chi^2$ criterion. We predict the source that contributes to both $l = 0$ and $l = 1$ modes is located at $0.48 - 0.62$Mm below the stellar surface. In addition, based on the assumption that $A_{0}$ is proportional to the change in the MgII activity index $\\Delta{i}_{MgII}$, we obtained that the change of MgII index between minimum and maximum of HD 49933 cycle period is about 0.665. The ma...
Galán, Roberto F
2009-09-01
We provide an analytical expression for the mean frequency shift in phase oscillators as a function of the standard deviation, sigma and the autocorrelation time, tau of small random perturbations. We show that the frequency shift is negative and proportional to sigma;{2} . Its absolute value increases monotonically with tau , approaching an asymptote determined by the L2 -norm of the phase-response curve. We validate our theoretical predictions with computer simulations and discuss their implications for the design of electronic oscillators and for the encoding of information in biological neural networks.
Soliton self-frequency blue-shift in gas-filled hollow-core photonic crystal fibers
2011-01-01
We show theoretically that the photoionization process in a hollow-core photonic crystal fiber filled with a Raman-inactive noble gas leads to a constant acceleration of solitons in the time domain with a continuous shift to higher frequencies, limited only by ionization loss. This phenomenon is opposite to the well-known Raman self-frequency red-shift of solitons in solid-core glass fibers. We also predict the existence of unconventional long-range non-local soliton interactions leading to s...
Time-Frequency (Wigner Analysis of Linear and Nonlinear Pulse Propagation in Optical Fibers
Directory of Open Access Journals (Sweden)
José Azaña
2005-06-01
Full Text Available Time-frequency analysis, and, in particular, Wigner analysis, is applied to the study of picosecond pulse propagation through optical fibers in both the linear and nonlinear regimes. The effects of first- and second-order group velocity dispersion (GVD and self-phase modulation (SPM are first analyzed separately. The phenomena resulting from the interplay between GVD and SPM in fibers (e.g., soliton formation or optical wave breaking are also investigated in detail. Wigner analysis is demonstrated to be an extremely powerful tool for investigating pulse propagation dynamics in nonlinear dispersive systems (e.g., optical fibers, providing a clearer and deeper insight into the physical phenomena that determine the behavior of these systems.
Nonlinear Superconducting Metamaterials in Free-Space at mm-wave Frequencies
Anlage, Steven; Zhang, Daimeng; Trepanier, Melissa; Mukhanov, Oleg; Delfanazari, K.; Savinov, V.; Zheludev, N.
2014-03-01
Superconducting metamaterials show the promise of low loss, compact size and extreme tunability and nonlinearity, allowing for new applications. Most demonstrations of these metamaterials have been conducted in waveguide geometries, either in co-planar form or three-dimensional single-conductor structures. Here we demonstrate for the first time a widely tunable superconducting metamaterial operating under the free-space illumination of a quasi-optical beam in the 100 GHz regime. The meta-atoms are Radio Frequency Superconducting QUantum Interference Devices (RF SQUIDs) that form compact self-resonant objects endowed with the nonlinearity of the Josephson effect. The metamaterial is tuned with dc magnetic flux, temperature and mm-wave power, and holds promise for a new generation of mm-wave agile devices. This work is supported by the NSF-GOALI and OISE programs through grant # ECCS-1158644, and CNAM.
Optimal spectral filtering in soliton self-frequency shift for deep-tissue multiphoton microscopy
Wang, Ke; Qiu, Ping
2015-05-01
Tunable optical solitons generated by soliton self-frequency shift (SSFS) have become valuable tools for multiphoton microscopy (MPM). Recent progress in MPM using 1700 nm excitation enabled visualizing subcortical structures in mouse brain in vivo for the first time. Such an excitation source can be readily obtained by SSFS in a large effective-mode-area photonic crystal rod with a 1550-nm fiber femtosecond laser. A longpass filter was typically used to isolate the soliton from the residual in order to avoid excessive energy deposit on the sample, which ultimately leads to optical damage. However, since the soliton was not cleanly separated from the residual, the criterion for choosing the optimal filtering wavelength is lacking. Here, we propose maximizing the ratio between the multiphoton signal and the n'th power of the excitation pulse energy as a criterion for optimal spectral filtering in SSFS when the soliton shows dramatic overlapping with the residual. This optimization is based on the most efficient signal generation and entirely depends on physical quantities that can be easily measured experimentally. Its application to MPM may reduce tissue damage, while maintaining high signal levels for efficient deep penetration.
Dependence of Brillouin frequency shift on water absorption ratio in polymer optical fibers
Minakawa, Kazunari; Koike, Kotaro; Hayashi, Neisei; Koike, Yasuhiro; Mizuno, Yosuke; Nakamura, Kentaro
2016-06-01
We studied the dependence of the Brillouin frequency shift (BFS) on the water-absorption ratio in poly(methyl methacrylate)-based polymer optical fibers (POFs) to clarify the effect of the humidity on POF-based Brillouin sensors. The BFS, deduced indirectly using an ultrasonic pulse-echo technique, decreased monotonically as the water absorption ratio increased, mainly because of the decrease in the Young's modulus. For the same water absorption ratio, the BFS change was larger at a higher temperature. The maximal BFS changes (absolute values) at 40, 60, and 80 °C were 158, 285, and 510 MHz, respectively (corresponding to the temperature changes of ˜9 °C, ˜16 °C, and ˜30 °C). Thus, some countermeasure against the humidity is indispensable in implementing strain/temperature sensors based on Brillouin scattering in POFs, especially at a higher temperature. On the other hand, Brillouin-based distributed humidity sensors might be developed by exploiting the BFS dependence on water absorption in POFs.
Modified reverse tapering method to prevent frequency shift of the radiation in the planar undulator
Shim, Chi Hyun; Ko, In Soo; Parc, Yong Woon
2017-03-01
This paper presents a modified reverse tapering method to generate a polarized soft x ray in x-ray free-electron lasers (XFELs) with a higher photon power and a shorter undulator length than the simple linear reverse tapering method. In the proposed method, a few untapered planar undulators are added before the simple linear reverse tapering section of the undulator line. This simple modification prevents the frequency shift of the radiation that occurs when the simple linear reverse tapering method is applied to planar undulators. In the proposed method, the total length of planar undulators decreased in spite of the additional untapered undulators. When the modified reverse tapering method is used with four untapered planar undulators, the total length of the planar undulators is 64.6 m. On the other hand, the required length of the planar undulators is 94.6 m when the simple linear reverse tapering method is used. The proposed method gives us a way to generate a soft x-ray pulse (1.24 keV) with a high degree of polarization (>0.99 ) and radiation power (>30 GW ) at the new undulator line with a 10-GeV electron beam in the Pohang Accelerator Laboratory X-ray Free-Electron Laser. This method can be applied in the existing XFELs in the world without any change in the undulator lines.
Joglekar, D. M.; Mitra, Mira
2017-02-01
The nonlinear interaction of a dual frequency flexural wave with a breathing crack generates a peculiar frequency mixing phenomena, which is manifested in form of the side bands or peaks at combinations frequencies in frequency spectrum of the response. Although these peaks have been proven useful in ascertaining the presence of crack, they barely carry any information about the crack location. In this regards, the present article analyzes the time domain representation of the response obtained by employing a wavelet spectral finite element method. The study reveals that the combination tones generated at the crack location travel with dissimilar speeds along the waveguide, owing to its dispersive nature. The separation between the lobes corresponding to these combination tones therefore, depends on the distance that they have travelled. This observation is then used to formulate a method to predict the crack location with respect to the sensor. A brief parametric study shows marginal errors in predicting the crack location, which ascertains the validity of the method. This article also studies the frequency spectrum of the response. The peaks at combination tones are quantified in terms of a modulate parameter which depends on the severity of the crack. The inferences drawn from the time and the frequency domain study can be instrumental in designing a robust strategy for detecting location and severity of the crack.
Frequency-domain L2-stability conditions for time-varying linear and nonlinear MIMO systems
Institute of Scientific and Technical Information of China (English)
Zhihong HUANG; Y. V. VENKATESH; Cheng XIANG; Tong Heng LEE
2014-01-01
The paper deals with the L2-stability analysis of multi-input-multi-output (MIMO) systems, governed by integral equations, with a matrix of periodic/aperiodic time-varying gains and a vector of monotone, non-monotone and quasi-monotone nonlin-earities. For nonlinear MIMO systems that are described by differential equations, most of the literature on stability is based on an application of quadratic forms as Lyapunov-function candidates. In contrast, a non-Lyapunov framework is employed here to derive new and more general L2-stability conditions in the frequency domain. These conditions have the following features:i) They are expressed in terms of the positive definiteness of the real part of matrices involving the transfer function of the linear time-invariant block and a matrix multiplier function that incorporates the minimax properties of the time-varying linear/nonlinear block. ii) For certain cases of the periodic time-varying gain, they contain, depending on the multiplier function chosen, no restrictions on the normalized rate of variation of the time-varying gain, but, for other periodic/aperiodic time-varying gains, they do. Overall, even when specialized to periodic-coefficient linear and nonlinear MIMO systems, the stability conditions are distinct from and less restrictive than recent results in the literature. No comparable results exist in the literature for aperiodic time-varying gains. Furthermore, some new stability results concerning the dwell-time problem and time-varying gain switching in linear and nonlinear MIMO systems with periodic/aperiodic matrix gains are also presented. Examples are given to illustrate a few of the stability theorems.
Nonlinear Response of Unbiased and Biased Bilayer Graphene at Terahertz Frequencies
McGouran, Riley
The main focus of this thesis is the investigation of the nonlinear response of unbiased and biased bilayer graphene to incident radiation at terahertz frequencies. We present a tight-binding model of biased and unbiased bilayer graphene that is used to calculate the nonlinear terahertz response. Dynamic equations are developed for the electron density matrix within the length gauge. These equations facilitate the calculation of interband and intraband carrier dynamics. We then obtain nonlinear transmitted and reflected terahertz fields using the calculated nonlinear interband and intraband current densities. We examine the nonlinear response of unbiased bilayer graphene as a function of the incident field amplitude. In this case the sample is taken to be undoped. In the reflected field, we find the maximum third harmonic amplitude to be approximately 30% of the fundamental frequency for an incident field of 1.5 kV cm-1, which is greater than that found in undoped monolayer graphene at the same field amplitude. To examine the nonlinear response of biased bilayer graphene, we investigate two different scenarios. In the first scenario, we consider an undoped sample at fixed temperature. We find that when the external bias has a value of 2 meV, the generated third harmonic in the reflected field is approximately 45% of the fundamental for an incident field amplitude of 2 kV cm-1 . When we increase the external bias further to 8 meV, we find the generated third harmonic field is approximately 38% of the fundamental for an incident field amplitude of 1 kV cm-1. For both of these bias values, the generated third harmonic is greater than that found in undoped monolayer graphene. In that system, the generated third harmonic field is approximately 32% of the fundamental for an incident field amplitude of 200 V cm-1. In the second scenario, we consider doped biased bilayer graphene. We fix the carrier density at 2x1012 cm-2, the incident field amplitude at 50 kV cm-1, and
Nariyuki, Y; Nariyuki, Yasuhiro; Hada, Tohru
2006-01-01
Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfven waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfven waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation.
NONLINEAR OPTICAL FREQUENCY CONVERTER OF LASER RADIATION ON THE LBO TYPE I CRYSTALS
Directory of Open Access Journals (Sweden)
N. V. Kondratyuk
2014-01-01
Full Text Available Describes nonlinear optical frequency converter of laser radiation based on the two LBO type I crystals allowing to receive pulses of radiation at three wavelengths of 1064 nm, 532 nm and 355 nm with an adjustable pulse energy. For fine adjustment of the output pulse energy used two dual phase plates that change the orientation of the plane of polarization of the two waves in cascade third harmonic generation. Measured the efficiency of the generation of harmonics of the intensity of radiation at 1064 nm.
High-frequency effects in 1D spring-mass systems with strongly non-linear inclusions
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Snaeland, S.O.; Thomsen, Jon Juel
2010-01-01
-like systems with embedded non-linear parts, where the masses interact with a limited set of neighbour masses. The presented analytical and numerical results show that the effective properties for LF wave propagation can be altered by establishing HF standing waves in the non-linear regions of the chain......This work generalises the possibilities to change the effective material or structural properties for low frequency (LF) wave propagation, by using high-frequency (HF) external excitation combined with strong non-linear and non-local material behaviour. The effects are demonstrated on 1D chain....... The changes affect the effective stiffness and damping of the system....
Cui, Yue; Zhang, Min; Zhan, Yueying; Wang, Danshi; Huang, Shanguo
2016-08-01
A scheme for optical parallel encryption/decryption of quadrature phase shift keying (QPSK) signals is proposed, in which three QPSK signals at 10 Gb/s are encrypted and decrypted simultaneously in the optical domain through nondegenerate four-wave mixing in a highly nonlinear fiber. The results of theoretical analysis and simulations show that the scheme can perform high-speed wiretapping against the encryption of parallel signals and receiver sensitivities of encrypted signal and the decrypted signal are -25.9 and -23.8 dBm, respectively, at the forward error correction threshold. The results are useful for designing high-speed encryption/decryption of advanced modulated signals and thus enhancing the physical layer security of optical networks.
Liu, Yunqiao; Calvisi, Michael L.; Wang, Qianxi
2017-04-01
Encapsulated microbubbles (EMBs) are widely used in medical ultrasound imaging as contrast-enhanced agents. However, the potential damaging effects of violent collapsing EMBs to cells and tissues in clinical settings have remained a concern. Dual-frequency ultrasound is a promising technique for improving the efficacy and safety of sonography. The system modeled consists of the external liquid, membrane and internal gases of an EMB. The microbubble dynamics are simulated using a simple nonlinear interactive theory, considering the compressibility of the internal gas, viscosity of the liquid flow and viscoelasticity of the membrane. The radial oscillation and interfacial stability of an EMB under single- and dual-frequency excitations are compared. The simulation results show that the dual-frequency technique produces larger backscatter pressure at higher harmonics of the primary driving frequency—this enriched acoustic spectrum can enhance blood-tissue contrast and improve the quality of sonographic images. The results further show that the acoustic pressure threshold associated with the onset of shape instability is greater for dual-frequency driving. This suggests that the dual-frequency technique stabilizes the encapsulated bubble, thereby improving the efficacy and safety of contrast-enhanced agents.
Bauerschmidt, S T; Abdolvand, Amir; Russell, Philip S J
2015-01-01
When a laser pump beam of sufficient intensity is incident on a Raman-active medium such as hydrogen gas, a strong Stokes signal, red-shifted by the Raman transition frequency {\\Omega}$_R$, is generated. This is accompanied by the creation of a "coherence wave" of synchronized molecular oscillations with wavevector {\\Delta}{\\beta} determined by the optical dispersion. Within its lifetime, this coherence wave can be used to shift by {\\Omega}$_R$ the frequency of a third "mixing" signal, provided phase-matching is satisfied, i.e., {\\Delta}{\\beta} is matched. Conventionally this can be arranged using non-collinear beams or higher-order waveguide modes. Here we report collinear phase-matched frequency shifting of an arbitrary mixing signal using only the fundamental LP$_{01}$ modes of a hydrogen-filled hollow-core PCF. This is made possible by the S-shaped dispersion curve that occurs around the pressure-tunable zero dispersion point. Phase-matched frequency shifting by 125 THz is possible from the UV to the near...
Directory of Open Access Journals (Sweden)
Batista VictorS.
2013-03-01
Full Text Available We characterize the transient solvent-dependent OH-stretching frequency shifts of photoacid 2-naphthol hydrogen-bonded with CH3CN in the S0- and S1-states using a combined experimental and theoretical approach, and disentangle specific hydrogen-bonding contributions from nonspecific dielectric response.
Institute of Scientific and Technical Information of China (English)
Liu Yong; Han Xiang; Ti Ang; Wang Yu-Min; Ling Bi-Li; Hu Li-Qun; Gao Xiang
2012-01-01
This paper presents a theoretical calculation of the effects of relativistic broadening and frequency down-shift on the electron cyclotron emission measurements for a wide range of plasma parameters in the Experimental Advanced Superconducting Tokamak (EAST).The calculation is based on the radiation transfer equation,with the reabsorption and reemission processes taken into account.The broadening effect contributes to the radial resolution of the measurement,and the calculation results indicate that it is ～ 2 cm in the case of the central electron temperature 10 keV.A pseudo radial displacement of the obtained electron temperature profile occurs if the relativistic frequency down-shift effect is not taken into account in the determination of the emission layer position.The shift could be a few centimeters as the electron temperature increases,and this effect should be taken into account.
Zlenko, A. S.; Akhmetshin, U. G.; Bogatyrjov, V. A.; Bulatov, L. I.; Dvoyrin, V. V.; Firstov, S. V.; Dianov, E. M.
2009-10-01
A germanium-doped silica-core fiber with an active region in the form of a thin ring of silica doped with bismuth ions was fabricated. Bismuth doping in the ring surrounding the core allows to stabilize bismuth in silica glass, and it does not impose any restrictions on the composition of the core. The bismuth concentration in the ring is less than 0.2 wt.%. The GeO2 concentration in the core is more than 15 mol.%. A high germanium concentration in the core allows to shift the zero dispersion wavelength to 1860 nm and to obtain a high nonlinear refractive index (n2 more than 3,2*10-20 m2/W). Spectroscopic investigations were carried out in the visible and near infrared (800-1700 nm) spectral range. Despite the small concentration of bismuth, we observed the absorption and luminescence characteristic bands, confirming the presence of bismuth active centers in silica glass. Upon pumping at 1350 nm the on/off gain spectrum was measured on a 20-m fiber. The gain was observed throughout investigated range of 1430-1530 nm. The maximal gain of ~9.5 dB was obtained near 1430 nm. The results of the spectroscopic investigations of the fiber with a thin active Bi-doped ring showed prospects of the creation and application of such fiber type for laser and nonlinear optics.
Directory of Open Access Journals (Sweden)
Christopher Heine
2014-08-01
Full Text Available A detailed description of the rubber parts’ properties is gaining in importance in the current simulation models of multi-body simulation. One application example is a multi-body simulation of the washing machine movement. Inside the washing machine, there are different force transmission elements, which consist completely or partly of rubber. Rubber parts or, generally, elastomers usually have amplitude-dependant and frequency-dependent force transmission properties. Rheological models are used to describe these properties. A method for characterization of the amplitude and frequency dependence of such a rheological model is presented within this paper. Within this method, the used rheological model can be reduced or expanded in order to illustrate various non-linear effects. An original result is given with the automated parameter identification. It is fully implemented in Matlab. Such identified rheological models are intended for subsequent implementation in a multi-body model. This allows a significant enhancement of the overall model quality.
Nonlinear propagation of high-frequency energy from blast waves as it pertains to bat hearing
Loubeau, Alexandra
Close exposure to blast noise from military weapons training can adversely affect the hearing of both humans and wildlife. One concern is the effect of high-frequency noise from Army weapons training on the hearing of endangered bats. Blast wave propagation measurements were conducted to investigate nonlinear effects on the development of blast waveforms as they propagate from the source. Measurements were made at ranges of 25, 50, and 100 m from the blast. Particular emphasis was placed on observation of rise time variation with distance. Resolving the fine shock structure of blast waves requires robust transducers with high-frequency capability beyond 100 kHz, hence the limitations of traditional microphones and the effect of microphone orientation were investigated. Measurements were made with a wide-bandwidth capacitor microphone for comparison with conventional 3.175-mm (⅛-in.) microphones with and without baffles. The 3.175-mm microphone oriented at 90° to the propagation direction did not have sufficient high-frequency response to capture the actual rise times at a range of 50 m. Microphone baffles eliminate diffraction artifacts on the rise portion of the measured waveform and therefore allow for a more accurate measurement of the blast rise time. The wide-band microphone has an extended high-frequency response and can resolve shorter rise times than conventional microphones. For a source of 0.57 kg (1.25 lb) of C-4 plastic explosive, it was observed that nonlinear effects steepened the waveform, thereby decreasing the shock rise time, from 25 to 50 m. At 100m, the rise times had increased slightly. For comparison to the measured blast waveforms, several models of nonlinear propagation are applied to the problem of finite-amplitude blast wave propagation. Shock front models, such as the Johnson and Hammerton model, and full-waveform marching algorithms, such as the Anderson model, are investigated and compared to experimental results. The models
Schreiber, Eric; Peichl, Markus; Jirousek, Matthias
2013-10-01
Passive microwave (MW) remote sensing is used in Earth observation missions for example to estimate the salinity of oceans or the soil moisture of landscapes. In these cases the absolute brightness temperature numbers are important for sufficient accuracy of the estimated geo-physical parameters. Consequently a suitable system calibration network is required. At DLR a radiometric demonstrator for fully-electronic MW imaging was set up at Ka-band, which is based on a combination of beam steering by frequency shift using a broadband slotted-waveguide antenna for one scanning direction, and the application of aperture synthesis for the other direction. Aperture synthesis is well known from radio astronomy, but it is still a new imaging principle for Earth observation or security applications. Hence as well new calibration techniques have to be developed for this kind of scanning mechanism. In this paper a novel approach for a noise-source based calibration method taking into account the antenna losses will be introduced. When using aperture synthesis techniques to determine the absolute brightness temperature values, it is very important, among other things, to know the exact phase transfer function of the system in order to achieve the desired radiometric resolution. Consequently our approach enables phase calibration as well. The paper outlines a proof of concept for this calibration method using a two-element interferometer called VESAS (Voll Elektronischer Scanner mit AperturSynthese) as a demonstrator. The functionality of the demonstrator and the proof of concept of the imaging principle mentioned before are written in detail in [1].
Jiao, J. P.; Drinkwater, B. W.; Neild, S. A.; Wilcox, P. D.
2009-06-01
Guided wave structural health monitoring offers the prospect of continuous interrogation of large plate-like structures with a sparse network of permanently attached sensors. Currently, the most common approach is to monitor changes in the received signals by subtraction from a reference signal obtained when the structure was known to be defect-free. In this paper a comparison is made between this defect-free subtraction approach and a technique in which low-frequency vibration modulation of guided wave signals is used to detect nonlinear scatterers. The modulation technique potentially overcomes the need for the defect-free reference measurement as the subtraction is now made between different parts of an externally applied low-frequency vibration. Linear defects were simulated by masses bonded onto a plate and nonlinear scatterers were simulated by loading a similar mass against the plate. The experimental results show that the defect-free subtraction technique performs well in detecting the bonded mass whereas the modulation technique is able to discriminate between the bonded and loaded masses. Furthermore, because the modulation technique does not require a defect-free reference, it is shown to be relatively independent of temperature effects, a significant problem for reference based subtraction techniques.
Daeichin, Verya; Bosch, Johan G; Needles, Andrew; Foster, F Stuart; van der Steen, Antonius; de Jong, Nico
2015-02-01
There is increasing use of ultrasound contrast agent in high-frequency ultrasound imaging. However, conventional contrast detection methods perform poorly at high frequencies. We performed systematic in vitro comparisons of subharmonic, non-linear fundamental and ultraharmonic imaging for different depths and ultrasound contrast agent concentrations (Vevo 2100 system with MS250 probe and MicroMarker ultrasound contrast agent, VisualSonics, Toronto, ON, Canada). We investigated 4-, 6- and 10-cycle bursts at three power levels with the following pulse sequences: B-mode, amplitude modulation, pulse inversion and combined pulse inversion/amplitude modulation. The contrast-to-tissue (CTR) and contrast-to-artifact (CAR) ratios were calculated. At a depth of 8 mm, subharmonic pulse-inversion imaging performed the best (CTR = 26 dB, CAR = 18 dB) and at 16 mm, non-linear amplitude modulation imaging was the best contrast imaging method (CTR = 10 dB). Ultraharmonic imaging did not result in acceptable CTRs and CARs. The best candidates from the in vitro study were tested in vivo in chicken embryo and mouse models, and the results were in a good agreement with the in vitro findings.
Scalar and Vector Nonlinear Decays of Low-frequency Alfvén Waves
Zhao, J. S.; Voitenko, Y.; De Keyser, J.; Wu, D. J.
2015-02-01
We found several efficient nonlinear decays for Alfvén waves in the solar wind conditions. Depending on the wavelength, the dominant decay is controlled by the nonlinearities proportional to either scalar or vector products of wavevectors. The two-mode decays of the pump MHD Alfvén wave into co- and counter-propagating product Alfvén and slow waves are controlled by the scalar nonlinearities at long wavelengths ρ i2k0\\perp 2background magnetic field, ω0 is frequency of the pump Alfvén wave, ρ i is ion gyroradius, and ω ci is ion-cyclotron frequency). The scalar decays exhibit both local and nonlocal properties and can generate not only MHD-scale but also kinetic-scale Alfvén and slow waves, which can strongly accelerate spectral transport. All waves in the scalar decays propagate in the same plane, hence these decays are two-dimensional. At shorter wavelengths, ρ i2k0\\perp 2\\gtω 0/ω ci, three-dimensional vector decays dominate generating out-of-plane product waves. The two-mode decays dominate from MHD up to ion scales ρ i k 0 ~= 0.3; at shorter scales the one-mode vector decays become stronger and generate only Alfvén product waves. In the solar wind the two-mode decays have high growth rates >0.1ω0 and can explain the origin of slow waves observed at kinetic scales.
SCALAR AND VECTOR NONLINEAR DECAYS OF LOW-FREQUENCY ALFVÉN WAVES
Energy Technology Data Exchange (ETDEWEB)
Zhao, J. S.; Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Voitenko, Y.; De Keyser, J., E-mail: js_zhao@pmo.ac.cn [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan 3 Avenue Circulaire, B-1180 Brussels (Belgium)
2015-02-01
We found several efficient nonlinear decays for Alfvén waves in the solar wind conditions. Depending on the wavelength, the dominant decay is controlled by the nonlinearities proportional to either scalar or vector products of wavevectors. The two-mode decays of the pump MHD Alfvén wave into co- and counter-propagating product Alfvén and slow waves are controlled by the scalar nonlinearities at long wavelengths ρ{sub i}{sup 2}k{sub 0⊥}{sup 2}<ω{sub 0}/ω{sub ci} (k {sub 0} is wavenumber perpendicular to the background magnetic field, ω{sub 0} is frequency of the pump Alfvén wave, ρ {sub i} is ion gyroradius, and ω {sub ci} is ion-cyclotron frequency). The scalar decays exhibit both local and nonlocal properties and can generate not only MHD-scale but also kinetic-scale Alfvén and slow waves, which can strongly accelerate spectral transport. All waves in the scalar decays propagate in the same plane, hence these decays are two-dimensional. At shorter wavelengths, ρ{sub i}{sup 2}k{sub 0⊥}{sup 2}>ω{sub 0}/ω{sub ci}, three-dimensional vector decays dominate generating out-of-plane product waves. The two-mode decays dominate from MHD up to ion scales ρ {sub i} k {sub 0} ≅ 0.3; at shorter scales the one-mode vector decays become stronger and generate only Alfvén product waves. In the solar wind the two-mode decays have high growth rates >0.1ω{sub 0} and can explain the origin of slow waves observed at kinetic scales.
Xiong, Fuqin; Andro, Monty
2001-01-01
This paper first shows that the Doppler frequency shift affects the frequencies of the RF carrier, subcarriers, envelope, and symbol timing by the same percentage in an Orthogonal Frequency Division Multiplexing (OFDM) signal or any other modulated signals. Then the SNR degradation of an OFDM system due to Doppler frequency shift, frequency offset of the local oscillators and phase noise is analyzed. Expressions are given and values for 4-, 16-, 64-, and 256-QAM OFDM systems are calculated and plotted. The calculations show that the Doppler shift of the D3 project is about 305 kHz, and the degradation due to it is about 0.01 to 0.04 dB, which is negligible. The degradation due to frequency offset and phase noise of local oscillators will be the main source of degradation. To keep the SNR degradation under 0.1 dB, the relative frequency offset due to local oscillators must be below 0.01 for the 16 QAM-OFDM. This translates to an offset of 1.55 MHz (0.01 x 155 MHz) or a stability of 77.5 ppm (0.01 x 155 MHz/20 GHz) for the DI project. To keep the SNR degradation under 0.1 dB, the relative linewidth (0) due to phase noise of the local oscillators must be below 0.0004 for the 16 QAM-OFDM. This translates to a linewidth of 0.062 MHz (0.0004 x 155 MHz) of the 20 GHz RIF carrier. For a degradation of 1 dB, beta = 0.04, and the linewidth can be relaxed to 6.2 MHz.
Nonlinear magnetic metamaterials.
Shadrivov, Ilya V; Kozyrev, Alexander B; van der Weide, Daniel W; Kivshar, Yuri S
2008-12-08
We study experimentally nonlinear tunable magnetic metamaterials operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators where a varactor diode is introduced into each resonator so that the magnetic resonance can be tuned dynamically by varying the input power. We demonstrate that at higher powers the transmission of the metamaterial becomes power-dependent and, as a result, such metamaterial can demonstrate various nonlinear properties. In particular, we study experimentally the power-dependent shift of the transmission band and demonstrate nonlinearity-induced enhancement (or suppression) of wave transmission. (c) 2008 Optical Society of America
Said, Christopher P; Baron, Sean G; Todorov, Alexander
2009-03-01
Previous neuroimaging research has shown amygdala sensitivity to the perceived trustworthiness of neutral faces, with greater responses to untrustworthy compared with trustworthy faces. This observation is consistent with the common view that the amygdala encodes fear and is preferentially responsive to negative stimuli. However, some studies have shown greater amygdala activation to positive compared with neutral stimuli. The first goal of this study was to more fully characterize the amygdala response to face trustworthiness by modeling its activation with both linear and nonlinear predictors. Using fMRI, we report a nonmonotonic response profile, such that the amygdala responds strongest to highly trustworthy and highly untrustworthy faces. This finding complicates future attempts to make inferences about mental states based on activation in the amygdala. The second goal of the study was to test for modulatory effects of image spatial frequency filtering on the amygdala response. We predicted greater amygdala sensitivity to face trustworthiness for low spatial frequency images compared with high spatial frequency images. Instead, we found that both frequency ranges provided sufficient information for the amygdala to differentiate faces on trustworthiness. This finding is consistent with behavioral results and suggests that trustworthiness information may reach the amygdala through pathways carrying both coarse and fine resolution visual signals.
Saletes, Izella; Gilles, Bruno; Bera, Jean-Christophe
2011-01-01
Enhancing cavitation activity with minimal acoustic intensities could be interesting in a variety of therapeutic applications where mechanical effects of cavitation are needed with minimal heating of surrounding tissues. The present work focuses on the relative efficiency of a signal combining two neighbouring frequencies and a one-frequency signal for initiating ultrasound inertial cavitation. Experiments were carried out in a water tank, using a 550kHz piezoelectric composite spherical transducer focused on targets with 46μm roughness. The acoustic signal scattered, either by the target or by the cavitation bubbles, is filtered using a spectral and cepstral-like method to obtain an inertial cavitation activity measurement. The ultrasound excitations consist of 1.8ms single bursts of single frequency f(0)=550kHz excitation, in the monofrequency case, and of dual frequency f(1)=535kHz and f(2)=565kHz excitation, in the bifrequency case. It is shown that depending on the value of the monofrequency cavitation threshold intensity the bifrequency excitation can increase or reduce the cavitation threshold. The analysis of the thresholds indicates that the mechanisms involved are nonlinear. The progress of the cavitation activity beyond the cavitation threshold is also studied. The slope of the cavitation activity considered as a function of the acoustic intensity is always steeper in the case of the bifrequency excitation. This means that the delimitation of the region where cavitation occurs should be cleaner than with a classical monofrequency excitation.
Energy Technology Data Exchange (ETDEWEB)
Arditi, M. (Univ. of Paris, Orsay, France); Picque, J.L.
1975-10-01
A new method allowing laser frequency stabilization with reference to a microwave oscillator, independently of the laser intensity, is described. The method makes use of the dependence of the ground-state HF transition frequency on the optical radiation frequency in alkali atoms irradiated by quasi-resonant light. Preliminary experimental investigations are reported in the case of a cw CaAs diode laser tuned to the D2 absorption line in a cesium gas cell. The absolute laser frequency exhibited variations of 1.4 MHz rms around an average value determined to within 2 parts in 100 billions for a period of 5 min. The possibility of defining a cesium beam, reference wavelength connected with the time standard is discussed.
Peng, Kuang; Cao, Yiping; Wu, Yingchun; Chen, Cheng; Wan, Yingying
2017-01-01
A dual-frequency online phase measurement profilometry (PMP) method with phase-shifting parallel to moving direction of measured object is proposed in this paper. The high-frequency fringe is used for the better modulation patterns in pixel matching and it is not modified by the measured object's surface. Based on the relative positive between the moving measured object and digital light processing (DLP), the high-frequency fringe in each dual-frequency deformed pattern after pixel matching is the same. As a result, the phase can be calculated directly by the improved Stoilov algorithm without filtering out the low-frequency component containing the measured object's height information. As there is no filtering process in phase calculation, the valid information loss can be avoided so that the accuracy of the proposed method can be guaranteed. Simulations and experiments prove the method's feasibility and precision.
Institute of Scientific and Technical Information of China (English)
Qiao Yao-Jun; Liu Xue-Jun; Ji Yue-Feng
2011-01-01
This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems.The research results show that this method can reduce the walkoff effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method,the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system,but also effective for highdispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation.The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method.For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system,the suggested method can improve the nonlinear threshold (for Q ＞ 10 dB) about 2.7,1.2 and 1.0 dB,and the maximum Q factor about 1.2,0.4 and 0.3 dB,for 2,8 and 16 ps/(nm·km) dispersion coefficients.
Auditory perceptual efficacy of nonlinear frequency compression used in hearing aids: A review
Directory of Open Access Journals (Sweden)
Yitao Mao
2017-09-01
Full Text Available Many patients with sensorineural hearing loss have a precipitous high-frequency loss with relatively good thresholds in the low frequencies. This present paper briefly introduces and compares the basic principles of four types of frequency lowering algorithms with emphasis on nonlinear frequency compression (NLFC. A review of the effects of the NLFC algorithm on speech and music perception and sound quality appraisal is then provided. For vowel perception, it seems that the benefits provided by NLFC are limited, which are probably related to the parameter settings of the compression. For consonant perception, several studies have shown that NLFC provides improved perception of high-frequency consonants such as /s/ and /z/. However, a few other studies have demonstrated negative results in consonant perception. In terms of sentence recognition, persistent use of NLFC might provide improved performance. Compared to the conventional processing, NLFC does not alter the speech sound quality appraisal and music perception as long as the compression setting is not too aggressive. In the subsequent section, the relevant factors with regard to NLFC settings, time-course of acclimatization, listener characteristics, and perceptual tasks are discussed. Although the literature shows mixed results on the perceptual efficacy of NLFC, this technique improved certain aspects of speech understanding in certain hearing-impaired listeners. Little research is available on speech perception outcomes in languages other than English. More clinical data are needed to verify the perceptual efficacy of NLFC in patients with precipitous high-frequency hearing loss. Such knowledge will help guide clinical rehabilitation of those patients.
Forsberg, Flemming; Shi, William T; Jadidian, Bahram; Winder, Alan A
2004-12-01
Nonlinear contrast imaging modes such as second harmonic imaging (HI) and subharmonic imaging (SHI) are increasingly important for clinical applications. However, the performance of currently available transducers for HI and SHI is significantly constrained by their limited bandwidth. To bypass this constraint, a novel transducer concept termed multi-frequency harmonic transducer arrays (MFHA's) has been designed and a preliminary evaluation has been conducted. The MFHA may ultimately be used for broadband contrast enhanced HI and SHI with high dynamic range and consists of three multi-element piezo-composite sub-arrays (A-C) constructed so the center frequencies are 4f(A) = 2f(B) = f(C) (specifically 2.5/5.0/10.0 MHz and 1.75/3.5/7.0 MHz). In principle this enables SHI by transmitting on sub-array C receiving on B and, similarly, from B to A as well as HI by transmitting on A receiving on B and, likewise, from B to C. Initially transmit and receive pressure levels of the arrays were measured with the elements of each sub-array wired in parallel. Following contrast administration, preliminary in vitro HI and SHI signal-to-noise ratios of up to 40 dB were obtained. In conclusion, initial design and in vitro characterization of two MFHA's have been performed. They have an overall broad frequency bandwidth of at least two octaves. Due to the special design of the array assembly, the SNR for HI and SHI was comparable to that of regular B-mode and better than commercially available HI systems. However, further research on multi-element MFHA's is required before their potential for in vivo nonlinear contrast imaging can be assessed.
Nonlinear theory of kinetic instabilities near threshold
Energy Technology Data Exchange (ETDEWEB)
Berk, H.L.; Pekker, M.S. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Breizman, B.N. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies]|[Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)
1997-05-01
A new nonlinear equation has been derived and solved for the evolution of an unstable collective mode in a kinetic system close to the threshold of linear instability. The resonant particle response produces the dominant nonlinearity, which can be calculated iteratively in the near-threshold regime as long as the mode doe snot trap resonant particles. With sources and classical relaxation processes included, the theory describes both soft nonlinear regimes, where the mode saturation level is proportional to an increment above threshold, and explosive nonlinear regimes, where the mode grows to a level that is independent of the closeness to threshold. The explosive solutions exhibit mode frequency shifting. For modes that exist in the absence of energetic particles, the frequency shift is both upward and downward. For modes that require energetic particles for their existence, there is a preferred direction of the frequency shift. The frequency shift continues even after the mode traps resonant particles.
DEFF Research Database (Denmark)
Yu, Jianjun; Jeppesen, Palle
2001-01-01
Using cross-phase modulation in a 1-km high-nonlinearity dispersion-shifted fiber with subsequent filtering by a tunable optical filter, 80-Gb/s pulsewidth maintained wavelength conversion is realized. Penalty-free transmission over 80-km conventional single-mode fiber and 12-km dispersion...
Elwakil, Ahmed S.
2009-04-28
Two novel sinusoidal oscillator structures with an explicit tanh(x) nonlinearity are proposed. The oscillators have the attractive feature: the higher the operating frequency, the lower the necessary gain required to start oscillations. A nonlinear model for the two oscillators is derived and verified numerically. Spice simulations using AMS BiCMOS 0.35 μ model parameters and experimental results are shown. Copyright © 2009 John Wiley & Sons, Ltd.
Solid-State Radio Frequency Plasma Heating Using a Nonlinear Transmission Line
Miller, Kenneth; Ziemba, Timothy; Prager, James; Slobodov, Ilia
2015-11-01
Radio Frequency heating systems are rarely used by the small-scale validation platform experiments due to the high cost and complexity of these systems, which typically require high power gyrotrons or klystrons, associated power supplies, waveguides and vacuum systems. The cost and complexity of these systems can potentially be reduced with a nonlinear transmission line (NLTL) based system. In the past, NLTLs have lacked a high voltage driver that could produce long duration high voltage pulses with fast rise times at high pulse repetition frequency. Eagle Harbor Technologies, Inc. (EHT) has created new high voltage nanosecond pulser, which combined with NLTL technology will produce a low-cost, fully solid-state architecture for the generation of the RF frequencies (0.5 to 10 GHz) and peak power levels (~ 10 MW) necessary for plasma heating and diagnostic systems for the validation platform experiments within the fusion science community. The proposed system does not require the use of vacuum tube technology, is inherently lower cost, and is more robust than traditional high power RF heating schemes. Design details and initial bench testing results for the new RF system will be presented. This work is supported under DOE Grant # DE-SC0013747.
Institute of Scientific and Technical Information of China (English)
Hui-juan ZHOU; Zhou MENG; Yi LIAO
2010-01-01
The modulation depth,defined according to practical mod-ulation results,which changes with the microwave power and its fre-quency,is significant for systems utilizing the frequency-shift charac-teristic of the LiNbO3 waveguide Electro-Optic Intensity Modulator (EOIM).By analyzing the impedance mismatch between the micro-wave source and the EOIM,the effective voltage applied to the RF port of the EOIM is deprived frcm the microwave power and its fre-quency.Associating with analyses of the phase velocity mismatch be-tween the microwave and the optical wave,the theoretical modulation depth has been obtained,which is verified by experimental results.We provide a method to choose the appropriate modulation depth to optimize the desired sideband through proper transmission bias far the system based an the frequency-shift characteristic of the EOIM.
An improved wave-vector frequency-domain method for nonlinear wave modeling.
Jing, Yun; Tao, Molei; Cannata, Jonathan
2014-03-01
In this paper, a recently developed wave-vector frequency-domain method for nonlinear wave modeling is improved and verified by numerical simulations and underwater experiments. Higher order numeric schemes are proposed that significantly increase the modeling accuracy, thereby allowing for a larger step size and shorter computation time. The improved algorithms replace the left-point Riemann sum in the original algorithm by the trapezoidal or Simpson's integration. Plane waves and a phased array were first studied to numerically validate the model. It is shown that the left-point Riemann sum, trapezoidal, and Simpson's integration have first-, second-, and third-order global accuracy, respectively. A highly focused therapeutic transducer was then used for experimental verifications. Short high-intensity pulses were generated. 2-D scans were conducted at a prefocal plane, which were later used as the input to the numerical model to predict the acoustic field at other planes. Good agreement is observed between simulations and experiments.
Designing Non-linear Frequency Modulated Signals For Medical Ultrasound Imaging
DEFF Research Database (Denmark)
Gran, Fredrik; Jensen, Jørgen Arendt
2006-01-01
is tested experimentally using the RASMUS ultrasound system with a 7 MHz linear array transducer. Synthetic transmit aperture ultrasound imaging is applied to acquire data. The proposed design method was compared to a linear FM signal. Due to more efficient spectral usage, a gain in SNR of 4.3plusmn1.2 d......In this paper a new method for designing non-linear frequency modulated (NLFM) waveforms for ultrasound imaging is proposed. The objective is to control the amplitude spectrum of the designed waveform and still keep a constant transmit amplitude, so that the transmitted energy is maximized...... in the transducer can be decreased. Secondly, by choosing an appropriate amplitude spectrum, no additional temporal tapering has to be applied to the matched filter to achieve sufficient range sidelobe suppression. Proper design results in waveforms with a range sidelobe level beyond -80 dB. The design method...
DEFF Research Database (Denmark)
Behrouzian, Ehsan; Bongiorno, Massimo; Teodorescu, Remus
2014-01-01
The purpose of this paper is to investigate the impact of switching harmonics on the instantaneous power that flows in the cells of a chain-link based STATCOM when using Phase-Shifted PWM. Two different cases are investigated for the converter cells: low, and high switching frequency. It is shown...... distribution among cells of the same phase leg, thus contributing to the capacitors balancing. Theoretical conclusions are validated through PSCAD simulation results....
Kubelka, Jan
2013-10-15
Changes in the amide I' IR band with temperature are widely used for elucidation of peptide and protein conformational transitions and folding equilibria. Since amide I' exhibits inherent temperature dependent frequency shifts, standard mixture analysis methods are not applicable. To reliably extract the true thermodynamic states, frequency shifts of the component spectra must be explicitly taken into account. For this purpose, new methods termed shifted multivariate spectra analysis (SMSA) and parametric SMSA (pSMSA) are developed and tested on sets of synthetic data as well as real experimental amide I' spectra for thermal unfolding of an α-helical peptide. SMSA uses no specific functional form for the transition (soft modeling), while the parametric variant (pSMSA) assumes a thermodynamic model (hard modeling). The implementation is optimized specifically for amide I' IR in that it takes advantage of known, linear dependence of the frequencies as well as intensities on temperature. The synthetic data tests demonstrate the robustness of the methods; the initial test parameters are recovered with a high degree of reliability, although the nonparameteric SMSA is subject to the rotational ambiguity. Application to the peptide experimental amide I' data illustrates additional complications encountered with the analysis of real systems, such as correction for the side-chain spectra and interference of spectral shape changes. Nevertheless, the results are in excellent agreement with the independent control using circular dichroism (CD) data. The general applicability and limitations of the methods are discussed along with potential extensions.
Luo, J; He, X; Yablonskiy, D A
2014-03-01
The nature of the remarkable phase contrast in high-field gradient echo MRI studies of human brain is a subject of intense debates. The generalized Lorentzian approach (He and Yablonskiy, Proc Natl Acad Sci USA 2009;106:13558-13563) provides an explanation for the anisotropy of phase contrast, the near absence of phase contrast between white matter and cerebrospinal fluid, and changes of phase contrast in multiple sclerosis. In this study, we experimentally validate the generalized Lorentzian approach. The Generalized Lorentzian Approach suggests that the local contribution to frequency shifts in white matter does not depend on the average tissue magnetic susceptibility (as suggested by Lorentzian sphere approximation), but on the distribution and symmetry of magnetic susceptibility inclusions at the cellular level. We use ex vivo rat optic nerve as a model system of highly organized cellular structure containing longitudinally arranged myelin and neurofilaments. The nerve's cylindrical shape allowed accurate measurement of its magnetic susceptibility and local frequency shifts. We found that the volume magnetic susceptibility difference between nerve and water is -0.116 ppm, and the magnetic susceptibilities of longitudinal components are -0.043 ppm in fresh nerve, and -0.020 ppm in fixed nerve. The frequency shift observed in the optic nerve as a representative of white matter is consistent with generalized Lorentzian approach but inconsistent with Lorentzian sphere approximation. Copyright © 2013 Wiley Periodicals, Inc.
Generation of green frequency comb from chirped χ{sup (2)} nonlinear photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Lai, C.-M. [Department of Electronic Engineering, Ming Chuan University, Taoyuan, Taiwan (China); Chang, K.-H.; Yang, Z.-Y.; Fu, S.-H.; Tsai, S.-T.; Hsu, C.-W.; Peng, L.-H. [Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China); Yu, N. E. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Boudrioua, A. [LPL, CNRS - UMR 7538, Université Paris 13, Sorbone Paris Cité (France); Kung, A. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan (China); Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan (China)
2014-12-01
Spectrally broad frequency comb generation over 510–555 nm range was reported on chirped quasi-phase-matching (QPM) χ{sup (2)} nonlinear photonic crystals of 12 mm length with periodicity stepwise increased from 5.9 μm to 7.1 μm. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040 nm to 1090 nm wavelength range, the 520 nm to 545 nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted green frequency comb to have the same mode spacing of 450 GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (1020–1040 nm) and the idler (1090–1110 nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510–520 nm and the 545–555 nm spectral regime. Additional 530–535 nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ∼10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.
Directory of Open Access Journals (Sweden)
P. A. Johnson
1996-01-01
Full Text Available Nonlinear elastic response in rock is established as a robust and representative characteristic rock rather than a curiosity. We show measurements of this behaviour from a variety of experiments on rock taken over many orders of magnitude in strain and frequency. The evidence leads to a pattern of unifying behaviour in rock: (1 Nonlinear response in rock is ubiquitous. (2 The response takes place over a large frequency interval (dc to 105 kHz at least. (3 The response not only occurs, as is commonly appreciated, large strains but also at small strains where this behaviour and the manifestations of this behaviour are commonly disregarded.
Ranging with frequency-shifted feedback lasers: from μm-range accuracy to MHz-range measurement rate
Kim, J. I.; Ogurtsov, V. V.; Bonnet, G.; Yatsenko, L. P.; Bergmann, K.
2016-12-01
We report results on ranging based on frequency-shifted feedback (FSF) lasers with two different implementations: (1) An Ytterbium-fiber system for measurements in an industrial environment with accuracy of the order of 1 μm, achievable over a distance of the order of meters with potential to reach an accuracy of better than 100 nm; (2) A semiconductor laser system for a high rate of measurements with an accuracy of 2 mm @ 1 MHz or 75 μm @ 1 kHz and a limit of the accuracy of ≥10 μm. In both implementations, the distances information is derived from a frequency measurement. The method is therefore insensitive to detrimental influence of ambient light. For the Ytterbium-fiber system, a key feature is the injection of a single-frequency laser, phase modulated at variable frequency Ω, into the FSF-laser cavity. The frequency Ω_{max} at which the detector signal is maximal yields the distance. The semiconductor FSF-laser system operates without external injection seeding. In this case, the key feature is frequency counting that allows convenient choice of either accuracy or speed of measurements simply by changing the duration of the interval during which the frequency is measured by counting.
Directory of Open Access Journals (Sweden)
Nadja Razavi
Full Text Available INTRODUCTION: The cerebral resting state in schizophrenia is altered, as has been demonstrated separately by electroencephalography (EEG and functional magnetic resonance imaging (fMRI resting state networks (RSNs. Previous simultaneous EEG/fMRI findings in healthy controls suggest that a consistent spatiotemporal coupling between neural oscillations (EEG frequency correlates and RSN activity is necessary to organize cognitive processes optimally. We hypothesized that this coupling is disorganized in schizophrenia and related psychotic disorders, in particular regarding higher cognitive RSNs such as the default-mode (DMN and left-working-memory network (LWMN. METHODS: Resting state was investigated in eleven patients with a schizophrenia spectrum disorder (n = 11 and matched healthy controls (n = 11 using simultaneous EEG/fMRI. The temporal association of each RSN to topographic spectral changes in the EEG was assessed by creating Covariance Maps. Group differences within, and group similarities across frequencies were estimated for the Covariance Maps. RESULTS: The coupling of EEG frequency bands to the DMN and the LWMN respectively, displayed significant similarities that were shifted towards lower EEG frequencies in patients compared to healthy controls. CONCLUSIONS: By combining EEG and fMRI, each measuring different properties of the same pathophysiology, an aberrant relationship between EEG frequencies and altered RSNs was observed in patients. RSNs of patients were related to lower EEG frequencies, indicating functional alterations of the spatiotemporal coupling. SIGNIFICANCE: The finding of a deviant and shifted coupling between RSNs and related EEG frequencies in patients with a schizophrenia spectrum disorder is significant, as it might indicate how failures in the processing of internal and external stimuli, as commonly seen during this symptomatology (i.e. thought disorders, hallucinations, arise.
Frequency shifts of resonant modes of the Sun due to near-surface convective scattering
Bhattacharya, Jishnu; Antia, H M
2015-01-01
Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the "surface term." The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun....
He, Fei; Wei, Hua-Liang; Billings, Stephen A.
2015-08-01
This paper introduces a new approach for nonlinear and non-stationary (time-varying) system identification based on time-varying nonlinear autoregressive moving average with exogenous variable (TV-NARMAX) models. The challenging model structure selection and parameter tracking problems are solved by combining a multiwavelet basis function expansion of the time-varying parameters with an orthogonal least squares algorithm. Numerical examples demonstrate that the proposed approach can track rapid time-varying effects in nonlinear systems more accurately than the standard recursive algorithms. Based on the identified time domain model, a new frequency domain analysis approach is introduced based on a time-varying generalised frequency response function (TV-GFRF) concept, which enables the analysis of nonlinear, non-stationary systems in the frequency domain. Features in the TV-GFRFs which depend on the TV-NARMAX model structure and time-varying parameters are investigated. It is shown that the high-dimensional frequency features can be visualised in a low-dimensional time-frequency space.
Directory of Open Access Journals (Sweden)
MUHAMMAD ARIF
2017-01-01
Full Text Available Ultrasound imaging with the subharmonic component from contrast microbubbles provide improved CTR (Contrast-to-Tissue Ratio, however it is susceptible to the low amplitude of the subharmonic component. In this simulation study, NLFM (Nonlinear Frequency Modulated signals are proposed in order to enhance the subharmonic response from microbubbles. NLFM signals having fractional bandwidths of 10, 20, and 40% with up and down sweeps were used as excitation. The performance of NLFM signals were compared with the reference tone-burst and LFM (Linear Frequency Modulated signals. The results show that the ultrasound contrast microbubbles can produce subharmonic response which is dependent on the applied signal pressure and bandwidth. It is observed that the subharmonic component of the scattered NLFM signal is 3.2dB higher than the LFM signal, whereas it is 9dB higher compared to the sinusoidal tone-burst signal. The results are also presented which show that the up and down sweeps NLFM signals performed better than the LFM signals at the same acoustic pressure and bandwidth.
Institute of Scientific and Technical Information of China (English)
应阳君; 黄祖洽
2001-01-01
Frequency catastrophe is found in a cell Ca2+ nonlinear oscillation model with time delay. The relation of the frequency transition to the time delay is studied by numerical simulations and theoretical analysis. There is a range of parameters in which two kinds of attractors with great frequency differences co-exist in the system. Along with parameter changes, a critical phenomenon occurs and the oscillation frequency changes greatly. This mechanism helps us to deepen the understanding of the complex dynamics of delay systems, and might be of some meaning in cell signalling.
Takbiri, Z.; Czuba, J. A.; Foufoula-Georgiou, E.
2014-12-01
Hydrologic change is occurring in many basins throughout the Midwestern U.S. not only in the mean annual streamflow but across a spectrum of magnitudes and frequencies. Disentangling the causative mechanisms responsible for these changes such as anthropogenic factors, e.g., artificial drainage to increase agricultural productivity, and climatic shifts in precipitation patterns is important for planning effective mitigation strategies. We have begun unraveling these changes in a human impacted agricultural landscape in the Midwestern U.S., specifically two subbasins of the Minnesota River Basin in Minnesota: the Redwood and Whetstone River Basins, where there has been a shift in agriculture from small grains to soybeans. This shift occurred at different times for each basin (1976 and 1991, respectively) and when soy covered about 20% of the basin area an apparent shift in the hydrologic regime also occurred as evidence by visual inspection of the hydrographs. Precisely quantifying the nature of this hydrologic regime shift however is a challenge and this work adds in this direction. Using Copulas and the joint probability distribution of daily precipitation and streamflow, we quantified a significantly higher dependence between precipitation and streamflow increments in the mid-quantiles (0.1-0.6; attributed to the artificial drainage to the stream rather than the slower infiltration and subsurface runoff) and no significant change for high quantiles (because for extreme storms the artificially fast drainage does not differ much hydrologically from the naturally fast overland flow). We further performed a multi-scale analysis of streamflow increments via wavelets to quantify the changes in the magnitude and frequency of the rising and falling limbs of hydrographs, confirming the above findings. Since precipitation changes were confirmed not to be significant, it is suggested that streamflow changes are largely driven by a change in land use and not climate in these
Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; D'Incerti, Ludovico; Jovicich, Jorge
2015-03-01
In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.
Hyperfine-frequency shifts of alkali-metal atoms during long-range collisions
McGuyer, B H
2013-01-01
Collisions with chemically inert atoms or molecules change the hyperfine coupling of an alkali-metal atom through the hyperfine-shift interaction. This interaction is responsible for the pressure shifts of the microwave resonances of alkali-metal atoms in buffer gases, is an important spin interaction in alkali-metal--noble-gas van der Waals molecules, and is anticipated to enable the magnetoassociation of ultracold molecules such as RbSr. An improved estimate is presented for the long-range asymptote of this interaction for Na, K, Rb, and Cs. To test the results, the change in hyperfine coupling due to a static electric field is estimated and reasonable agreement is found.
Energy Technology Data Exchange (ETDEWEB)
Duan Zhisheng [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)], E-mail: duanzs@pku.edu.cn; Wang Jinzhi; Yang Ying; Huang Lin [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)
2009-04-30
This paper surveys frequency-domain and time-domain methods for feedback nonlinear systems and their possible applications to chaos control, coupled systems and complex dynamical networks. The absolute stability of Lur'e systems with single equilibrium and global properties of a class of pendulum-like systems with multi-equilibria are discussed. Time-domain and frequency-domain criteria for the convergence of solutions are presented. Some latest results on analysis and control of nonlinear systems with multiple equilibria and applications to chaos control are reviewed. Finally, new chaotic oscillating phenomena are shown in a pendulum-like system and a new nonlinear system with an attraction/repulsion function.
Frequency selective non-linear blending to improve image quality in liver CT
Energy Technology Data Exchange (ETDEWEB)
Bongers, M.N.; Bier, G.; Kloth, C.; Schabel, C.; Nikolaou, K.; Horger, M. [University Hospital of Tuebingen (Germany). Dept. of Diagnostic and Interventional Radiology; Fritz, J. [Johns Hopkins University School of Medicine, Baltimore, MD (United States). Russell H. Morgan Dept. of Radiology and Radiological Science
2016-12-15
To evaluate the effects of a new frequency selective non-linear blending (NLB) algorithm on the contrast resolution of liver CT with low intravascular concentration of iodine contrast. Our local ethics committee approved this retrospective study. The informed consent requirement was waived. CT exams of 25 patients (60% female, mean age: 65±16 years of age) with late phase CT scans of the liver were included as a model for poor intrahepatic vascular contrast enhancement. Optimal post-processing settings to enhance the contrast of hepatic vessels were determined. Outcome variables included signal-to-noise (SNR) and contrast-to-noise ratios (CNR) of hepatic vessels and SNR of liver parenchyma of standard and post-processed images. Image quality was quantified by two independent readers using Likert scales. The post-processing settings for the visualization of hepatic vasculature were optimal at a center of 115HU, delta of 25HU, and slope of 5. Image noise was statistically indifferent between standard and post-processed images. The CNR between the hepatic vasculature (HV) and liver parenchyma could be significantly increased for liver veins (CNR{sub Standard} 1.62±1.10, CNR{sub NLB} 3.6±2.94, p=0.0002) and portal veins (CNR{sub Standard} 1.31±0.85, CNR{sub NLB} 2.42±3.03, p=0.046). The SNR of liver parenchyma was significantly higher on post-processed images (SNR{sub NLB} 11.26±3.16, SNR{sub Standard} 8.85± 2.27, p=0.008). The overall image quality and depiction of HV were significantly higher on post-processed images (NLB{sub DHV}: 4 [3-4.75], S{sub tandardDHV}: 2 [1.3-2.5], p=<0.0001; {sub NLBIQ}: 4 [4-4], {sub StandardIQ}: 2 [2-3], p=<0.0001). The use of a frequency selective non-linear blending algorithm increases the contrast resolution of liver CT and can improve the visibility of the hepatic vasculature in the setting of a low contrast ratio between vessels and the parenchyma.
Wada, Daichi; Igawa, Hirotaka; Murayama, Hideaki; Kasai, Tokio
2014-03-24
A signal processing method based on group delay calculations is introduced for distributed measurements of long-length fiber Bragg gratings (FBGs) based on optical frequency domain reflectometry (OFDR). Bragg wavelength shifts in interfered signals of OFDR are regarded as group delay. By calculating group delay, the distribution of Bragg wavelength shifts is obtained with high computational efficiency. We introduce weighted averaging process for noise reduction. This method required only 3.5% of signal processing time which was necessary for conventional equivalent signal processing based on short-time Fourier transform. The method also showed high sensitivity to experimental signals where non-uniform strain distributions existed in a long-length FBG.
Yuan, Xueyin; Mayanovic, Robert A.; Zheng, Haifei
2016-12-01
A new geobarometry was derived from the quantified relationships among Raman vibrational frequencies of anhydrite, pressure and temperature, as determined from in-situ micro-Raman spectroscopy of natural anhydrite crystals measured at p-T conditions up to 560 °C and 1400 MPa by using a hydrothermal diamond anvil cell (HDAC). With this geobarometry, the pressure in HDAC experiments and in anhydrite-bearing fluid inclusions can be determined directly from the ν1, 1016, ν3, 1128 and ν3, 1160 Raman frequency shifts of anhydrite at high p-T conditions relative to their values measured at ambient conditions. The pressure can be determined to an accuracy of better than 30 MPa based on the attainable accuracy of ±0.1 cm-1 for the fitted ν1 Raman peak positions, provided the measured spectra are calibrated using the emission peak of an external fluorescent light source. The feasibility and reliability of this geobarometry were verified by rebuilding the p-T history of two fluid inclusions from the ν1 frequency shifts of anhydrite daughter minerals from room to high temperatures, and by measuring the phase-transition pressures of calcite-CaCO3(II)-CaCO3(III) sequence at ambient temperature in a HDAC experiment using anhydrite as a Raman pressure sensor.
Banh Quoc, Tuan; Ishige, Masashi; Ohkubo, Yuria; Aketagawa, Masato
2009-12-01
In the previous work (Ishige et al 2009 Meas. Sci. Technol. 20 084019), we presented a method of measuring the relative air-refractive-index fluctuation (Δnair) from the laser frequency shift with the measurement uncertainty of order 10-8 using a phase modulation homodyne interferometer (Basile et al 1991 Metrologia 28 455), which was supported by an ultralow thermal expansion material (ULTEM) and an external cavity laser diode (ECLD). In this paper, an improvement in the uncertainty of the Δnair measurement is presented. The improvement method is based on a Fabry-Perot cavity constructed on the ULTEM, which has a thermal expansion coefficient of 2 × 10-8 K-1 and an ECLD. The Pound-Drever-Hall method (Drever et al 1983 Appl. Phys. B 31 97) is also used to control the ECLD frequency to track the resonance of the cavity. Δnair can be derived from the ECLD frequency shift. The estimated measurement uncertainty of Δnair for a short time (~150 s) in the experiment is of order 2.5 × 10-9 or less.
Energy Technology Data Exchange (ETDEWEB)
Olsrud, Johan; Wirestam, Ronnie; Brockstedt, Sara; Persson, Bertil R.R. [Department of Radiation Physics, Lund University Hospital, SE-221 85 Lund (Sweden); Nilsson, Annika M.K. [Department of Physics, Lund Institute of Technology, SE-221 00 Lund (Sweden); Tranberg, Karl-Goeran [Department of Surgery, Lund University Hospital, SE-221 85 Lund (Sweden); Staahlberg, Freddy [Department of Radiation Physics, Lund University Hospital, SE-221 85 Lund (Sweden); Department of Diagnostic Radiology, Lund University Hospital, SE-221 85 Lund (Sweden)
1998-09-01
In this work the temperature dependence of the proton resonance frequency was assessed in agarose gel with a high melting temperature (95 deg. C) and in porcine liver in vitro at temperatures relevant to thermotherapy (25-80 deg. C). Furthermore, an optically tissue-like agarose gel phantom was developed and evaluated for use in MRI. The phantom was used to visualize temperature distributions from a diffusing laser fibre by means of the proton resonance frequency shift method. An approximately linear relationship (0.0085 ppm deg. C{sup -1}) between proton resonance frequency shift and temperature change was found for agarose gel, whereas deviations from a linear relationship were observed for porcine liver. The optically tissue-like agarose gel allowed reliable MRI temperature monitoring, and the MR relaxation times (T{sub 1} and T{sub 2}) and the optical properties were found to be independently alterable. Temperature distributions around a diffusing laser fibre, during irradiation and subsequent cooling, were assessed with high spatial resolution (voxel size = 4.3 mm{sup 3}) and with random uncertainties ranging from 0.3 deg. C to 1.4 deg. C (1 SD) with a 40 s scan time. (author)
DEFORMATION MEASUREMENT USING DUAL-FREQUENCY PROJECTION GRATING PHASE-SHIFT PROFILOMETRY
Institute of Scientific and Technical Information of China (English)
Yanming Chen; Yuming He; Eryi Hu; Hongmao Zhu
2008-01-01
2π phase ambiguity problem is very important in phase measurement when a deformed object has a large out of plane displacement. The dual-frequency projection grating phaseshifting profilometry (PSP) can be used to solve such an issue. In the measurement, two properchosen frequency gratings are utilized to synthesize an equivalent wavelength grating which ensures the computed phase in a principal phase range. Thus, the error caused by the phase unwrapping process with the conventional phase reconstruct algorithm can be eliminated. Finally, experimental result of a specimen with large plastic deformation is given to prove that the proposed method is effective to handle the phase discontinuity.
Effect of Two-Photon Stark Shift on the Multi-Frequency Raman Spectra
Directory of Open Access Journals (Sweden)
Hao Yan
2014-09-01
Full Text Available High order Raman generation has received considerable attention as a possible method for generating ultrashort pulses. A large number of Raman orders can be generated when the Raman-active medium is pumped by two laser pulses that have a frequency separation equal to the Raman transition frequency. High order Raman generation has been studied in the different temporal regimes, namely: adiabatic, where the pump pulses are much longer than the coherence time of the transition; transient, where the pulse duration is comparable to the coherence time; and impulsive, where the bandwidth of the ultrashort pulse is wider than the transition frequency. To date, almost all of the work has been concerned with generating as broad a spectrum as possible, but we are interested in studying the spectra of the individual orders when pumped in the transient regime. We concentrate on looking at extra peaks that are generated when the Raman medium is pumped with linearly chirped pulses. The extra peaks are generated on the low frequency side of the Raman orders. We discuss how linear Raman scattering from two-photon dressed states can lead to the generation of these extra peaks.
Kim, J I; Bonnet, G; Yatsenko, L P; Bergmann, K
2016-01-01
We report results on ranging based on frequency shifted feedback (FSF) lasers with two different implementations: (1) An Ytterbium-fiber system for measurements in an industrial environment with accuracy of the order of 1 $\\mu$m, achievable over a distance of the order of meters with potential to reach an accuracy of better than 100 nm; (2) A semiconductor laser system for a high rate of measurements with an accuracy of 2 mm @ 1 MHz or 75 $\\mu$m @ 1 kHz and a limit of the accuracy of $\\geq $ 10 $\\mu$m. In both implementations, the distances information is derived from a frequency measurement. The method is therefore insensitive to detrimental influence of ambient light. For the Ytterbium-fiber system a key feature is the injection of a single frequency laser, phase modulated at variable frequency $\\Omega$, into the FSF-laser cavity. The frequency $\\Omega_{max}$ at which the detector signal is maximal yields the distance. The semiconductor FSF laser system operates without external injection seeding. In this c...
Center of Mass Estimation for a Spinning Spacecraft Using Doppler Shift of the GPS Carrier Frequency
Sedlak, Joseph E.
2016-01-01
A sequential filter is presented for estimating the center of mass (CM) of a spinning spacecraft using Doppler shift data from a set of onboard Global Positioning System (GPS) receivers. The advantage of the proposed method is that it is passive and can be run continuously in the background without using commanded thruster firings to excite spacecraft dynamical motion for observability. The NASA Magnetospheric Multiscale (MMS) mission is used as a test case for the CM estimator. The four MMS spacecraft carry star cameras for accurate attitude and spin rate estimation. The angle between the spacecraft nominal spin axis (for MMS this is the geometric body Z-axis) and the major principal axis of inertia is called the coning angle. The transverse components of the estimated rate provide a direct measure of the coning angle. The coning angle has been seen to shift slightly after every orbit and attitude maneuver. This change is attributed to a small asymmetry in the fuel distribution that changes with each burn. This paper shows a correlation between the apparent mass asymmetry deduced from the variations in the coning angle and the CM estimates made using the GPS Doppler data. The consistency between the changes in the coning angle and the CM provides validation of the proposed GPS Doppler method for estimation of the CM on spinning spacecraft.
Directory of Open Access Journals (Sweden)
Gholam Hossein Halvani
2012-12-01
Full Text Available Introduction: Depression as a disorder is relatively common in all societies; several factors are involved in depression development, that shift work is one of these factors. This study compared the frequency of depression in different shifts of nurses in hospitals of Yazd University of medical sciences. Materials & Methods: This study is a descriptive analytical study. Based on statistical methods, 150 nurses participated in this study. The research tool was a questionnaire that included 15 personal questions and 21 questions related to Beck test. The results were analysed by SPSS software. Results: 13.3% of all subjects were males and 86.7% were females. Results showed that, there is no significant relationship between gender, education, type of job, employment status and satisfaction levels of income with depression. Marital status (P-Value = 0.009 and F = 6.93, shift work (day working and shift work (P-Value = 0.032 and F = 1.11, job satisfaction (P-Value = 0.000 and F = 7.641 and the satisfaction of the employer (P-Value = 0.001 and F = 5.414 were significantly associated with depression. 3.49% of the nurses were in normal status, 7.26% had mild depression, 3.9% required consultation with the psychiatrist,% 7.8% suffered from moderate depression, 75.4% from severe depression and 3.1% from very severe depression. Conclusion: It seems that shift work can not cause depression alone, but depression is the result of the interaction of several factors.
Golub, Robert
2014-01-01
The usual approach to considerations of apin relaxation and frequency shifts due to fluctuating fields is through the density matrix Slichter. Here we treat the problem of the influence of fluctuating fields on a spin 1/2 system based on direct solution of the Schroedinger equation in contrast to the usual treatment. Our results are seen to be in agreement with the known results in the literature McGregor, Slichter, Red2, CSH, as they must, but our derivation directly from the Schroedinger equation allows us to see the role of the necessary assumptions in a somewhat clearer way.
Gumber, Sukirti; Gambhir, Monica; Jha, Pradip Kumar; Mohan, Man
2016-10-01
We study the combined effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency in quantum ring. The high flexibility in size and shape of ring makes it possible to fabricate a nearly perfect two-dimensional quantum structure. We also explore the dependence of frequency conversion, measured in terms of third order nonlinear susceptibility χ(3) , on coupling field, hydrostatic pressure and magnetic field. Although, a dip in χ(3) is observed with the introduction of strong coupling field, it renders the ring structure transparent to generated wave thus effectively enhancing the output of nonlinear frequency conversion process. At a fixed coupling strength, the output can be further enhanced by increasing the magnetic field while it shows an inverse relationship with pressure. These parameters, being externally controlled, provide an easy handle to control the output of quantum ring which can be used as frequency converter in communication networks.
Savchenkov, Anatoliy A. (Inventor); Strekalov, Dmitry V. (Inventor); Maleki, Lute (Inventor); Matsko, Andrey B. (Inventor); Iltchenko, Vladimir S. (Inventor); Martin, Jan M. (Inventor)
2010-01-01
A method of shifting and fixing an optical frequency of an optical resonator to a desired optical frequency, and an optical resonator made by such a method are provided. The method includes providing an optical resonator having a surface and a refractive index, and obtaining a coating composition having a predetermined concentration of a substance and having a refractive index that is substantially similar to the refractive index of the optical resonator. The coating composition inherently possesses a thickness when it is applied as a coating. The method further includes determining a coating ratio for the surface of the optical resonator and applying the coating composition onto a portion of the surface of the optical resonator based upon the determined coating ratio.
Amplitude and Frequency Control: Stability of Limit Cycles in Phase-Shift and Twin-T Oscillators
Directory of Open Access Journals (Sweden)
J. P. Dada
2008-01-01
Full Text Available We show a technique for external direct current (DC control of the amplitudes of limit cycles both in the Phase-shift and Twin-T oscillators. We have found that amplitudes of the oscillator output voltage depend on the DC control voltage. By varying the total impedance of each oscillator oscillatory network, frequencies of oscillations are controlled using potentiometers. The main advantage of the proposed circuits is that both the amplitude and frequency of the waveforms generated can be independently controlled. Analytical, numerical, and experimental methods are used to determine the boundaries of the states of the oscillators. Equilibrium points, stable limit cycles, and divergent states are found. Analytical results are compared with the numerical and experimental solutions, and a good agreement is obtained.
Resonance frequency shifts due to quantized electronic states in atomically thin NEMS
Chen, Changyao; Deshpande, Vikram; Koshino, Mikito; Lee, Sunwoo; Gondarenko, Alexander; MacDonald, Allan; Kim, Philip; Hone, James
The classic picture of the force exerted on a parallel plate capacitor assumes infinite density of states (DOS), which implies identical electrochemical and electrostatic potential. However, such assumption can breakdown in low-dimensional devices where the DOS is finite or quantized. Here we consider the mechanical resonance shift of a nanoelectromechanical (NEMS) resonator with small DOS, actuated and detected capacitively at fixed electrochemical potential. We found three leading correction terms to the classical picture: the first term leads to the modulation of static force due to the variation in chemical potential, and the second and third terms are related to the static and dynamic changes in spring constants, caused by quantum capacitance. The theory agrees well with recent experimental findings from graphene resonator in quantum Hall regimes, where the chemical potential and quantum capacitance are tuned by magnetic field, while the gate voltage is kept constant.
Joglekar, D. M.; Mitra, M.
2015-11-01
A breathing crack, due to its bilinear stiffness characteristics, modifies the frequency spectrum of a propagating dual-frequency elastic wave, and gives rise to sidebands around the probing frequency. This paper presents an analytical-numerical method to investigate such nonlinear frequency mixing resulting from the modulation effects induced by a breathing crack in 1D waveguides, such as axial rods and the Euler-Bernoulli beams. A transverse edge-crack is assumed to be present in both the waveguides, and the local flexibility caused by the crack is modeled using an equivalent spring approach. A simultaneous treatment of both the waveguides, in the framework of the Fourier transform based spectral finite element method, is presented for analyzing their response to a dual frequency excitation applied in the form of a tone-burst signal. The intermittent contact between the crack surfaces is accounted for by introducing bilinear contact forces acting at the nodes of the damage spectral element. Subsequently, an iterative approach is outlined for solving the resulting system of nonlinear simultaneous equations. Applicability of the proposed method is demonstrated by considering several test cases. The existence of sidebands and the higher order harmonics is confirmed in the frequency domain response of both the waveguides under investigation. A qualitative comparison with the previous experimental observations accentuates the utility of the proposed solution method. Additionally, the influence of the two constituent frequencies in the dual frequency excitation is assessed by varying the relative strengths of their amplitudes. A brief parametric study is performed for bringing out the effects of the relative crack depth and crack location on the degree of modulation, which is quantified in terms of the modulation parameter. Results of the present investigation can find their potential use in providing an analytical-numerical support to the studies geared towards the
Energy Technology Data Exchange (ETDEWEB)
Sato, Masayasu; Isei, Nobuaki; Ishida, Sinichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment
1995-11-01
Effect of relativistic frequency down-shift on the determination of the electron temperature profile from electron cyclotron emission(ECE) in JT-60U tokamak plasmas is studied. The radial shift of the electron temperature profile due to the effects is not negligible, compared with the spatial resolution of ECE measurement systems of JT-60U. Therefore it is necessary to correct the effect for precise measurement of the electron temperature profile. Dependencies of the shifted frequency on the electron density, electron temperature and toroidal magnetic field are studied for the uniform electron density and parabolic electron temperature profile in JT-60U. It is revealed to be necessary for the estimation of shift due to the relativistic down-shift frequency to take into account of the optical thickness. (author).
Fridberger, A; vanMaarseveen, JTPW; Scarfone, E; Ulfendahl, M; Flock, B; Flock, A
1997-01-01
We have used the guinea pig isolated temporal bone preparation to investigate changes in the nonlinear properties of the tone-evoked cochlear potentials during reversible step displacements of the basilar membrane towards either the scala tympani or the scala vestibuli. The position shifts were prod
A design for LED＇s frequency shift keying drive circuit%LED移频键控信号驱动电路的设计
Institute of Scientific and Technical Information of China (English)
李绍铭; 刘晓东
2012-01-01
提出了一种新的推挽功率管驱动信号的死区加入方法，并结合负压电荷泵理论设计了一种通过移频键控控制信号实现LED准恒流调节的方法。该方法可以实现对电流的线性调节，满足中小功率LED对于能量利用效率和延长使用寿命的要求。%This paper proposes a new kind of method to insert dead time to the signals which control the push-pull tube. Combining with the charge pump theory and frequency shift keying, a new method to realize LED constant-current drive is designed. The circuit can realize nonlinear control to the current efficiently without the feedback branch. The circuit can realize linear control to the current. So it can meet the requirements that energy should be used efficiently and that the LED＇s using life should be extended effectively.
Probing hysteretic elasticity in weakly nonlinear materials
Energy Technology Data Exchange (ETDEWEB)
Johnson, Paul A [Los Alamos National Laboratory; Haupert, Sylvain [UPMC UNIV PARIS; Renaud, Guillaume [UPMC UNIV PARIS; Riviere, Jacques [UPMC UNIV PARIS; Talmant, Maryline [UPMC UNIV PARIS; Laugier, Pascal [UPMC UNIV PARIS
2010-12-07
Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.
Frequency response areas in the inferior colliculus: nonlinearity and binaural interaction
Yu, Jane J.; Young, Eric D.
2013-01-01
The tuning, binaural properties, and encoding characteristics of neurons in the central nucleus of the inferior colliculus (CNIC) were investigated to shed light on nonlinearities in the responses of these neurons. Results were analyzed for three types of neurons (I, O, and V) in the CNIC of decerebrate cats. Rate responses to binaural stimuli were characterized using a 1st- plus 2nd-order spectral integration model. Parameters of the model were derived using broadband stimuli with random spectral shapes (RSS). This method revealed four characteristics of CNIC neurons: (1) Tuning curves derived from broadband stimuli have fixed (i. e., level tolerant) bandwidths across a 50–60 dB range of sound levels; (2) 1st-order contralateral weights (particularly for type I and O neurons) were usually larger in magnitude than corresponding ipsilateral weights; (3) contralateral weights were more important than ipsilateral weights when using the model to predict responses to untrained noise stimuli; and (4) 2nd-order weight functions demonstrate frequency selectivity different from that of 1st-order weight functions. Furthermore, while the inclusion of 2nd-order terms in the model usually improved response predictions related to untrained RSS stimuli, they had limited impact on predictions related to other forms of filtered broadband noise [e. g., virtual-space stimuli (VS)]. The accuracy of the predictions varied considerably by response type. Predictions were most accurate for I neurons, and less accurate for O and V neurons, except at the lowest stimulus levels. These differences in prediction performance support the idea that type I, O, and V neurons encode different aspects of the stimulus: while type I neurons are most capable of producing linear representations of spectral shape, type O and V neurons may encode spectral features or temporal stimulus properties in a manner not easily explained with the low-order model. Supported by NIH grant DC00115. PMID:23675323
Simandoux, Oliver; Gâteau, Jérôme; Bossy, Emmanuel
2013-01-01
In the thermoelastic regime, photoacoustic sensing of optical absorption relies on conversion from light to acoustic energy via the coefficient of thermal expansion \\beta. In this work, we confront confront experimental measurements to theoretical predictions of nonlinear photoacoustic generation based on the dynamic variation of \\beta(T) during the optical excitation of absorbers in aqueous solution. The photoacoustic generation from solutions of organic dye and gold nanospheres (with same optical densities), illuminated with 532 nm nanosecond pulses, was detected using a high frequency ultrasound transducer (center frequency 20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence (a few mJ/cm2) for an equilibrium temperature around 4{\\deg}C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. Under the same condition, no emission was observed with the absorbing organic dye. At a fixed fluence of 5 mJ/cm2, th...
Institute of Scientific and Technical Information of China (English)
陈运运; 吴军基; 应展烽; 万萌
2012-01-01
针对并网光伏发电系统主动频移孤岛检测中,并网侧待测信号在过零点附近存在的噪声干扰,对过零测频法和锁相环测频法精度带来的不良影响,提出了一种具有噪声抑制功能的三角变换测频法.通过对最优检测点间隔进行估计和少数频率奇异点的剔除,即使并网光伏发电系统主动频移孤岛检测中并网侧待测信号受噪声干扰,带噪声抑制的三角变换测频法也能避免孤岛效应误判现象,提高了系统运行的可靠性.在MATLAB/Simulink下进行了建模和仿真,验证了该三角变换测频算法的正确性.%Aimed at the active frequency shift islanding detection of grid-connected PV generation system, the noise interference nearby zero crossing point of grid connected side signal to be measured brought adverse effects on the precision, of zero-crossing measurement and PLL (phase-locked loop) frequency detection method, a triangle transformation frequency detection method with the function of noise suppression was proposed. Through optimal detction point interval evaluation and eliminating frequency singularity, the proposed method could avoid islanding misjudgement although grid connected side signal to be measured is interfered by the noise,system operation reliability was improved. The simulation model of system was established, which verified the the correctness of the method.
Wang, Shanshan; Song, Junjie; Peng, Yang; Zhou, Liang; Ding, Mingyue; Yuchi, Ming
2017-03-01
In recent years, many research studies have been carried out on ultrasound computed tomography (USCT) for improving the detection and management of breast cancer. This paper investigates a signal pre-processing method based on frequency-shift low-pass filtering (FSLF) and least mean square adaptive filtering (LMSAF) for USCT image quality enhancement (proposed in our previous work). FSLF is designed base on Zoom Fast Fourier Transform algorithm (ZFFT) for processing the ultrasound signals in the frequency domain, while LMSAPF is based on the least mean square (LMS) algorithm in the time domain. Through the combination of the two filters, the ultrasound image is expected to have less noises and artifacts, and higher resolution and contrast. The proposed method was verified with the radio-frequency (RF) data of the nylon threads and the breast phantom captured by the USCT system developed in the Medical Ultrasound Laboratory. Experimental results show that the reconstructed images of nylon threads by the proposed method had narrower main lobe width and lower side lobe level comparing to the delay-and-sum (DAS). The background noises and artifacts could also be efficiently restrained. The reconstructed image of breast phantom by the proposed method had a higher resolution and the contrast ratio (CR) could be enhanced for about 12dB to 18dB at different region of interest (ROI).
2015-09-17
processing - optical frequency conversion and optical DSB -to-SSB conversion 5a. CONTRACT NUMBER FA2386-14-1-0006 5b. GRANT NUMBER Grant 134113...nonlinear dynamics of semiconductor lasers for certain optical signal processing functionalities, including optical DSB -to-SSB conversion, photonic...conversion and optical DSB -to-SSB conversion Performance Period May 30, 2014 ~ May 29, 2015 Principal Investigator Name: Sheng-Kwang Hwang Position
Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition
Malakyan, Y P; Budker, D; Kimball, D F; Yashchuk, V V; Malakyan, Yu. P.
2003-01-01
A low-light-power theory of nonlinear magneto-optical rotation of frequency-modulated light resonant with a J=1->J'=0 transition is presented. The theory is developed for a Doppler-free transition, and then modified to account for Doppler broadening and velocity mixing due to collisions. The results of the theory are shown to be in qualitative agreement with experimental data obtained for the rubidium D1 line.
Directory of Open Access Journals (Sweden)
Ohanyan G.G.
2010-09-01
Full Text Available The quasi-adiabatic and quasi-isotherm regimes of propagation of high-frequency perturbation are considered in a thermal relaxing gas–fluid mixture. The simplified non-linear equations are obtained. It is shown that in the absence of heat transfer and under the quasi-adiabatic regime the form of propagation is soliton, or the shock wave in quasi-isotherm regime.
Ohanyan G.G.
2010-01-01
The quasi-adiabatic and quasi-isotherm regimes of propagation of high-frequency perturbation are considered in a thermal relaxing gas–fluid mixture. The simplified non-linear equations are obtained. It is shown that in the absence of heat transfer and under the quasi-adiabatic regime the form of propagation is soliton, or the shock wave in quasi-isotherm regime.
Loures, Cristian Redondo; Biancalana, Fabio
2014-01-01
We study the influence of third-harmonic generation (THG) and negative frequency polarization terms in the self-phase modulation (SPM) of short and intense pulses in Kerr media. We find that THG induces additional symmetric lobes in the SPM process. The amplitude of these new sidebands are greatly enhanced by the contributions of the negative frequency Kerr (NFK) term and the shock operator. We compare our theoretical predictions based on the analytical nonlinear phase with simulations carried out by using the full unidirectional pulse propagation equation (UPPE).
Institute of Scientific and Technical Information of China (English)
ZHANG Shao-hua; YAO Jian-quan; ZHOU Rui; WEN Wu-qi; XU De-gang; WANG Peng
2011-01-01
Using nanosecond pulse near-infrared and mid-infrared laser pulses as the pump source,we obtain terahertz wave sources via four-wave difference frequency mixing.From the coupled wave theory,.we analyze the four-wave mixing process of GaSe crystal and alkali metal vapor in detail,get the analytical expression of terahertz wave output power,and discuss the conditions for achieving phase matching.By adjusting the pump frequency,the third-order nonlinear polarization of alkali metal vapor is resonance-enhanced.This program offers a new type of high-power terahertz radiation source.
Fan, Jiajie; Mohamed, Moumouni Guero; Qian, Cheng; Fan, Xuejun; Zhang, Guoqi; Pecht, Michael
2017-07-18
With the expanding application of light-emitting diodes (LEDs), the color quality of white LEDs has attracted much attention in several color-sensitive application fields, such as museum lighting, healthcare lighting and displays. Reliability concerns for white LEDs are changing from the luminous efficiency to color quality. However, most of the current available research on the reliability of LEDs is still focused on luminous flux depreciation rather than color shift failure. The spectral power distribution (SPD), defined as the radiant power distribution emitted by a light source at a range of visible wavelength, contains the most fundamental luminescence mechanisms of a light source. SPD is used as the quantitative inference of an LED's optical characteristics, including color coordinates that are widely used to represent the color shift process. Thus, to model the color shift failure of white LEDs during aging, this paper first extracts the features of an SPD, representing the characteristics of blue LED chips and phosphors, by multi-peak curve-fitting and modeling them with statistical functions. Then, because the shift processes of extracted features in aged LEDs are always nonlinear, a nonlinear state-space model is then developed to predict the color shift failure time within a self-adaptive particle filter framework. The results show that: (1) the failure mechanisms of LEDs can be identified by analyzing the extracted features of SPD with statistical curve-fitting and (2) the developed method can dynamically and accurately predict the color coordinates, correlated color temperatures (CCTs), and color rendering indexes (CRIs) of phosphor-converted (pc)-white LEDs, and also can estimate the residual color life.
Energy Technology Data Exchange (ETDEWEB)
Johannsmann, Diethelm
2001-06-01
Viscoelastic effects contribute to the shift in resonance frequency of quartz crystal resonators induced by deposition of thin films on the resonator surface. In turn, the mechanical stiffness of the film can be experimentally determined from a comparison of the resonance shifts on different harmonics. When the film is much thinner than the wavelength of shear sound, a series expansion of the viscoelastic effects to third order in film thickness leads to rather simple equations. When plotting the normalized frequency shift {delta}f/f versus the square of the overtone order n{sup 2} one finds a linear relationship, where the slope is determined by the film{close_quote}s elastic compliance. When the same analysis is carried out on the resonance bandwidths rather than the frequency shifts the viscous compliance is obtained. The effects of asymmetric coatings, electrodes, and liquid media are discussed. {copyright} 2001 American Institute of Physics.
Kato, Masao; Fujiura, Kazuo; Kurihara, Takashi
2005-03-10
Ultrafast asynchronous all-optical signal processing is experimentally demonstrated. It is based on the intensity-dependent, self-frequency shift of a gigahertz Raman soliton. We demonstrate error-free, asynchronous, all-optical, bit-by-bit, self-signal recognition and demultiplexing from contended optical packets without use of an optical buffer, control pulse, or bit-phase synchronization. Fourfold, contended, 9.95-Gbit/s optical packets are transmitted through a conventional repeater span of 80 km and simultaneously demultiplexed to multiwavelength 9.95-Gbit/s optical packets with 0.5-dB processing sensitivity. Furthermore, we successfully accomplish demultiplexing from overlapping signals in contended optical packets with better than 3-dB recognition sensitivity. We confirm the capability of realizing a 3x cascade operation from bit-error-rate measurements.
Non-reciprocal nonlinear optic induced transparency and frequency conversion on a chip
Guo, Xiang; Jung, Hojoong; Tang, Hong X
2015-01-01
Developments in photonic chips have spurred photon based classical and quantum information processing, attributing to the high stability and scalability of integrated photonic devices [1, 2]. Optical nonlinearity [3] is indispensable in these complex photonic circuits, because it allows for classical and quantum light sources, all-optical switch, modulation, and non-reciprocity in ambient environments. It is commonly known that nonlinear interactions are often greatly enhanced in the microcavities [4]. However, the manifestations of coherent photon-photon interaction in a cavity, analogous to the electromagnetically induced transparency [5], have never been reported on an integrated platform. Here, we present an experimental demonstration of the coherent photon-photon interaction induced by second order optical nonlinearity (\\chi^{(2)} ) on an aluminum nitride photonic chip. The non-reciprocal nonlinear optic induced transparency is demonstrated as a result of the coherent interference between photons with di...
Wang, Zhenzhou
2016-08-01
In this paper, we present a 3D surface imaging system based on the well-known phase shift profilometry. To yield the analytical solutions, four shifted phases and three high carrier frequencies are used to compute the phase map and reduce the noises that are caused by the inherent optical aberrations and external influences, e.g. different illumination light sources, uneven intensity distribution and automatic image processing algorithms. To reduce the system noise, we propose to model the pattern of the calibration grid in a virtual space. To obtain the modeled pattern, we use a plane to intercept the rays that are modeled by the proposed angle modeling method. In the world coordinate system, the angle and the pattern are computed based on the calibration data. A registration method is used to transform the modeled pattern in the virtual space to the ideal pattern in the world coordinate system by computing the least squared errors between the true points in the modeled pattern and the measured points in the practical pattern. The modeled (true) points are used for re-calibration of the 3D imaging system. Experimental results showed that the measurement accuracy increases considerably and the MSE is reduced from 0.95 mm to 0.65 mm (32% average error decrease) after replacing the measured points with the true points for calibration.
Hornoy, Benjamin; Pavy, Nathalie; Gérardi, Sébastien; Beaulieu, Jean; Bousquet, Jean
2015-11-11
Understanding the genetic basis of adaptation to climate is of paramount importance for preserving and managing genetic diversity in plants in a context of climate change. Yet, this objective has been addressed mainly in short-lived model species. Thus, expanding knowledge to nonmodel species with contrasting life histories, such as forest trees, appears necessary. To uncover the genetic basis of adaptation to climate in the widely distributed boreal conifer white spruce (Picea glauca), an environmental association study was conducted using 11,085 single nucleotide polymorphisms representing 7,819 genes, that is, approximately a quarter of the transcriptome.Linear and quadratic regressions controlling for isolation-by-distance, and the Random Forest algorithm, identified several dozen genes putatively under selection, among which 43 showed strongest signals along temperature and precipitation gradients. Most of them were related to temperature. Small to moderate shifts in allele frequencies were observed. Genes involved encompassed a wide variety of functions and processes, some of them being likely important for plant survival under biotic and abiotic environmental stresses according to expression data. Literature mining and sequence comparison also highlighted conserved sequences and functions with angiosperm homologs.Our results are consistent with theoretical predictions that local adaptation involves genes with small frequency shifts when selection is recent and gene flow among populations is high. Accordingly, genetic adaptation to climate in P. glauca appears to be complex, involving many independent and interacting gene functions, biochemical pathways, and processes. From an applied perspective, these results shall lead to specific functional/association studies in conifers and to the development of markers useful for the conservation of genetic resources. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular
2017-04-03
Naftaly NPL MANAGEMENT LTD Final Report 04/02/2017 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOE...ADDRESS(ES) NPL MANAGEMENT LTD HAMPTON RD TEDDINGTON, TW11 0LW GB 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...refractive index and () is the incident electric field. The imaginary component of nonlinear refractive index, i.e. nonlinear or multi-photon
Institute of Scientific and Technical Information of China (English)
Yan Wang; Qing Wang; Wei Zhang; Xiaoming Liu; Jiangde Peng
2005-01-01
@@ A broadband multiwavelength Raman fiber ring laser (RFRL) covering the whole C-band at room temperature are presented. The effect of the intracavity highly nonlinear dispersion-shifted fiber on broadening and flattening the output spectrum envelope is discussed and experimentally demonstrated. More than 45-dB extinction-ratio multiwavelength output from 1527.76 to 1566.86 nm with 100-GHz channel spacing and 2.1-dB power ripple has been achieved by carefully controlling the individual powers of three pump lasers.
Directory of Open Access Journals (Sweden)
Tao Chen
2014-01-01
Full Text Available We address the problem of a new joint Doppler frequency shift (DFS and direction of arrival (DOA estimation for colocated TDM-MIMO radar that is a novel technology applied to autocruise and safety driving system in recent years. The signal model of colocated TDM-MIMO radar with few transmitter or receiver channels is depicted and “time varying steering vector” model is proved. Inspired by sparse representations theory, we present a new processing scheme for joint DFS and DOA estimation based on the new input signal model of colocated TDM-MIMO radar. An ultracomplete redundancy dictionary for angle-frequency space is founded in order to complete sparse representations of the input signal. The SVD-SR algorithm which stands for joint estimation based on sparse representations using SVD decomposition with OMP algorithm and the improved M-FOCUSS algorithm which combines the classical M-FOCUSS with joint sparse recovery spectrum are applied to the new signal model’s calculation to solve the multiple measurement vectors (MMV problem. The improved M-FOCUSS algorithm can work more robust than SVD-SR and JS-SR algorithms in the aspects of coherent signals resolution and estimation accuracy. Finally, simulation experiments have shown that the proposed algorithms and schemes are feasible and can be further applied to practical application.
Institute of Scientific and Technical Information of China (English)
Li-jiang WANG; Chun-sheng WU; Zhao-ying HU; Yuan-fan ZHANG; Rong LI; Ping WANG
2008-01-01
By means of the specific immuno-recognition and ultra-sensitive mass detection, a quartz crystal microbalance (QCM) biosensor for Escherichia coli O157:H7 detection was developed in this work. As a suitable surfactant, 16-mercaptohexadecanoic acid (MHDA) was introduced onto the Au surface of QCM, and then self-assembled with N-hydroxysuccinimide (NHS) raster as a reactive intermediate to provide an active interface for the specific antibody immobilization. The binding of target bacteria with the immobilized antibodies decreased the sensor's resonant frequency, and the frequency shift was correlated to the bacterial concentration. The stepwise assembly of the immunosensor was characterized by means of the electrochemical techniques. Using the immersion-dry-immersion procedure, this QCM biosensor could detect 2.0×102 colony forming units (CFU)/ml E. coli O157:H7. In order to reduce the fabrication time, a polyelectrolyte layer-by-layer self-assembly (LBL-SA) method was adopted for fast construction. Finally, the reproducibility of this biosensor was discussed.
Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander
2016-05-01
The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.
Bao, Bin; Guyomar, Daniel; Lallart, Mickaël
2016-09-01
This article proposes a nonlinear tri-interleaved piezoelectric topology based on the synchronized switch damping on inductor (SSDI) technique, which can be applied to phononic metamaterials for elastic wave control and effective low-frequency vibration reduction. A comparison of the attenuation performance is made between piezoelectric phononic metamaterial with distributed SSDI topology (each SSDI shunt being independently connected to a single piezoelectric element) and piezoelectric phononic metamaterial with the proposed electronic topology. Theoretical results show excellent band gap hybridization (near-coupling between Bragg scattering mechanism and wideband resonance mechanism induced by synchronized switch damping networks in piezoelectric phononic metamaterials) with the proposed electronic topology over the investigated frequency domain. Furthermore, piezoelectric phononic metamaterials with proposed electronic topology generated a better low-frequency broadband gap, which is experimentally validated by measuring the harmonic response of a piezoelectric phononic metamaterial beam under clamped-clamped boundary conditions.
A Design of Frequency Shifting GoTa Terminal%一种GoTa移频终端的设计方案
Institute of Scientific and Technical Information of China (English)
吕国栋; 白灵; 宋滔
2013-01-01
GoTa数字集群通信系统是应用范围最广和国际化程度最高的国产数字集群系统。将GoTa系统移频应用，使其能够突破频段限制，满足更多用户的集群调度通信需求。移频终端是GoTa集群通信系统移频应用的重要设备，主要由主控模块、移频模块、GoTa模块等构成。介绍了GoTa系统移频应用的工作原理，提出了一种GoTa移频终端解决方案。并给出了移频模块、接收待机等技术难点的解决方法。样机通过系统测试，实现非标准频段下的GoTa集群功能。%GoTa(Global Open Trunking Architecture) is a typical domestic digital trunking system with independent intellectual property right and also a well-known system all over the world. And it is widely used and has a huge amount of users. By breaking through the limitation of working frequency and expanding the working frequency to a broad band, the frequency shifting application of GoTa could be done, thus to meet the demands of more users. The terminal of frequency shifting GoTa system, as a very important equipment, is mainly composed of central control module, frequency shifting RF module and basic GoTa module. This paper, based on the working principle of GoTa frequency shifting application, proposes a novel solution for the design of frequency shifting terminal, gives a detailed analysis of the key issues, including the frequency shifting RF module and the power management of receiver. Finally, the experiment on prototype frequency shifting GoTa system indicates that the scheme is feasible and effective and that all the functions of frequency shifting GoTa terminal could work well.
Mohamed, Mohamed Sabry; Carlin, Jean-François; Minkov, Momchil; Gerace, Dario; Savona, Vincenzo; Grandjean, Nicolas; Galli, Matteo; Houdré, Romuald
2016-01-01
We report on nonlinear frequency conversion from the telecom range via second harmonic generation (SHG) and third harmonic generation (THG) in suspended gallium nitride slab photonic crystal (PhC) cavities on silicon, under continuous-wave resonant excitation. Optimized two-dimensional PhC cavities with augmented far-field coupling have been characterized with quality factors as high as 4.4$\\times10^{4}$, approaching the computed theoretical values. The strong enhancement in light confinement has enabled efficient SHG, achieving normalized conversion efficiency of 2.4$\\times10^{-3}$ $W^{-1}$, as well as simultaneous THG. SHG emission power of up to 0.74 nW has been detected without saturation. The results herein validate the suitability of gallium nitride for integrated nonlinear optical processing.
DEFF Research Database (Denmark)
Rahman, Imadur Mohamed; Marchetti, Nicola; Fitzek, Frank;
2005-01-01
In this work, we have analyzed a joint spatial diversity and multiplexing transmission structure for MIMO-OFDM system, where Orthogonal Space-Frequency Block Coding (OSFBC) is used across all spatial multiplexing branches. We have derived a BLAST-like non-linear Successive Interference Cancellation...... in this paper. We have found that a linear two-stage receiver for the proposed system [1] performs very close to the non-linear receiver studied in this work. Finally, we compared the system performance in spatially correlated scenario. It is found that higher amount of spatial correlation at the transmitter...... (SIC) receiver where the detection is done on subcarrier by sub-carrier basis based on both Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) nulling criterion for the system. In terms of Frame Error Rate (FER), MMSE based SIC receiver performs better than all other receivers compared...
Huang, Y.; Guan, H.; Bian, W.; Ma, L.; Liang, K.; Li, T.; Gao, K.
2017-05-01
A comparison of two optical frequency standards and a detailed study of the systematic frequency shifts of each 40Ca+ single-ion optical frequency standard is presented. The methods used for the systematic shift evaluation of the comparison measurements are also provided. One of the ion traps runs at a chosen operating frequency of 24.7 MHz, determined by the differential scalar polarizability of the clock transition, at which frequency the rf-induced Stark shifts and second-order Doppler shifts cancel each other, yielding a great suppression in the combined micromotion shifts. After compensating for the micromotion, the two optical frequency standards both reach an uncertainty level of a few parts in 10-17, which is more than an order of magnitude smaller compared to a few years ago. The dominant source of uncertainty is the blackbody radiation shift after minimizing the micromotion-induced shifts. The blackbody radiation shift is evaluated by controlling and measuring the temperature at the trap center. With a measurement over one month, the frequency difference between the two clocks is measured to be 3.2 × 10-17 with a measurement uncertainty of 5.5 × 10-17, considering both the statistical (1.9 × 10-17) and the systematic (5.1 × 10-17) uncertainties. Due to improvement of the clock laser and better control of the optical and electromagnetic field geometry and the laboratory conditions, a fractional stability of 7 × 10-17 in 20,000 s of averaging time is achieved. The absolute frequency of the 40Ca+ 4 s2S1/2-3d 2D5/2 clock transition is measured as 411 042 129 776 401.7 (1.1) Hz, with a fractional uncertainty of 2.7 × 10-15 using the GPS satellites as a link to the SI second. Details of the method used for the systematic shift evaluation of the measurements are given.
Nonlinear evolution of drift instabilities
Energy Technology Data Exchange (ETDEWEB)
Lee, W.W.; Krommes, J.A.; Oberman, C.R.; Smith, R.A.
1984-01-01
The nonlinear evolution of collisionless drift instabilities in a shear-free magnetic field has been studied by means of gyrokinetic particle simulation as well as numerical integration of model mode-coupling equations. The purpose of the investigation is to identify relevant nonlinear mechanisms responsible for the steady-state drift wave fluctuations. It is found that the saturation of the instability is mainly caused by the nonlinear E x B convection of the resonant electrons and their associated velocity space nonlinearity. The latter also induces energy exchange between the competing modes, which, in turn, gives rise to enhanced diffusion. The nonlinear E x B convection of the ions, which contributes to the nonlinear frequency shift, is also an important ingredient for the saturation.
Non trivial effect of strong high-frequency excitation on a nonlinear controlled system
DEFF Research Database (Denmark)
Fidlin, A.; Thomsen, Jon Juel
2004-01-01
due to control is usually high compared to uncontrolled systems. A standard optimal controller for a standard nonlinear system (a movable cart used to balance a pendulum vertically) is shown to exhibit pronounced bias error in presence of HF-excitation. The bias increases with increased excitation...
Nonlinear Cascades of Surface Oceanic Geostrophic Kinetic Energy in the Frequency Domain
2012-09-01
Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts ANDREW J. MORTEN Department of Physics, University of Michigan, Ann...compute spectra and spectral fluxes in Vtt * NLOM output, highlighted against the IS Feb 2002 snapshot of sea surface height (cm) in the model: mid... Technology - Woods Hole Oceanographic Institution Joint Program, 220 pp. Larichev, V., and G. Reznik, 1976a: Strongly nonlinear two- dimensional
On nonlinear evolution of low-frequency Alfvén waves in weakly-expanding solar wind plasmas
Energy Technology Data Exchange (ETDEWEB)
Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190 Toyama City, Toyama 930-8555 (Japan)
2015-02-15
A multi-dimensional nonlinear evolution equation for Alfvén waves in weakly-expanding solar wind plasmas is derived by using the reductive perturbation method. The expansion of solar wind plasma parcels is modeled by an expanding box model, which includes the accelerating expansion. It is shown that the resultant equation agrees with the Wentzel-Kramers-Brillouin prediction of the low-frequency Alfvén waves in the linear limit. In the cold and one-dimensional limit, a modified derivative nonlinear Schrodinger equation is obtained. Direct numerical simulations are carried out to discuss the effect of the expansion on the modulational instability of monochromatic Alfvén waves and the propagation of Alfvén solitons. By using the instantaneous frequency, it is quantitatively shown that as far as the expansion rate is much smaller than wave frequencies, effects of the expansion are almost adiabatic. It is also confirmed that while shapes of Alfvén solitons temporally change due to the expansion, some of them can stably propagate after their collision in weakly-expanding plasmas.
Kompan, Mikhail
2016-01-01
The giant frequency shift was observed in Raman spectra for inramolecular O-H vibration band. The effect was observed in SERS-condition experiment, when exciting light was focused by short-focus objective on the Ag-surface, merged in water. The shift was detected relatively to the regularl position of band, measured from the bulk of water under the same other conditions.
Ketter, Jochen; Höcker, Martin; Streubel, Sebastian; Blaum, Klaus
2014-01-01
The ideal Penning trap consists of a uniform magnetic field and an electrostatic quadrupole potential. Cylindrically-symmetric deviations thereof are parametrized by the coefficients Bn and Cn, respectively. Relativistic mass-increase aside, the three characteristic eigenfrequencies of a charged particle stored in an ideal Penning trap are independent of the three motional amplitudes. This three-fold harmonicity is a highly-coveted virtue for precision experiments that rely on the measurement of at least one eigenfrequency in order to determine fundamental properties of the stored particle, such as its mass. However, higher-order contributions to the ideal fields result in amplitude-dependent frequency-shifts. In turn, these frequency-shifts need to be understood for estimating systematic experimental errors, and eventually for correcting them by means of calibrating the imperfections. The problem of calculating the frequency-shifts caused by small imperfections of a near-ideal trap yields nicely to perturbat...
Bouchaala, Adam M.
2016-12-05
We present analytical formulations to calculate the induced resonance frequency shifts of electrically actuated clamped-clamped microbeams due to an added mass. Based on the Euler-Bernoulli beam theory, we investigate the linear dynamic responses of the beams added masses, which are modeled as discrete point masses. Analytical expressions based on perturbation techniques and a one-mode Galerkin approximation are developed to calculate accurately the frequency shifts under a DC voltage as a function of the added mass and position. The analytical results are compared to numerical solution of the eigenvalue problem. Results are shown for the fundamental as well as the higher-order modes of the beams. The results indicate a significant increase in the frequency shift, and hence the sensitivity of detection, when scaling down to nano scale and using higher-order modes.
Ege, Kerem; Boutillon, Xavier; Rébillat, Marc
2013-03-01
The piano soundboard transforms the string vibration into sound and therefore, its vibrations are of primary importance for the sound characteristics of the instrument. An original vibro-acoustical method is presented to isolate the soundboard nonlinearity from that of the exciting device (here: a loudspeaker) and to measure it. The nonlinear part of the soundboard response to an external excitation is quantitatively estimated for the first time, at ≈-40 dB below the linear part at the ff nuance. Given this essentially linear response, a modal identification is performed up to 3 kHz by means of a novel high resolution modal analysis technique [K. Ege, X. Boutillon, B. David, High-resolution modal analysis, Journal of Sound and Vibration 325 (4-5) (2009) 852-869]. Modal dampings (which, so far, were unknown for the piano in this frequency range) are determined in the mid-frequency domain where FFT-based methods fail to evaluate them with an acceptable precision. They turn out to be close to those imposed by wood. A finite-element modelling of the soundboard is also presented. The low-order modal shapes and the comparison between the corresponding experimental and numerical modal frequencies suggest that the boundary conditions can be considered as blocked, except at very low frequencies. The frequency-dependency of the estimated modal densities and the observation of modal shapes reveal two well-separated regimes. Below ≈1 kHz, the soundboard vibrates more or less like a homogeneous plate. Above that limit, the structural waves are confined by ribs, as already noticed by several authors, and localised in restricted areas (one or a few inter-rib spaces), presumably due to a slightly irregular spacing of the ribs across the soundboard.
DEFF Research Database (Denmark)
Liu, Xing; Zhou, Binbin; Guo, Hairun;
2015-01-01
in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between. lambda = 2.2-2.4 mu m as a resonant dispersive wave. This process relies...... on nondegenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation. (C) 2015 Optical Society of America...
Energy Technology Data Exchange (ETDEWEB)
Klofai, Yerima [Department of Physics, Higher Teacher Training College, University of Maroua, PO Box 46 Maroua (Cameroon); Essimbi, B Z [Department of Physics, Faculty of Science, University of Yaounde 1, PO Box 812 Yaounde (Cameroon); Jaeger, D, E-mail: bessimb@yahoo.fr [ZHO, Optoelectronik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)
2011-10-15
Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.
Sanbonmatsu, K. Y.; Goldman, M. V.; Newman, D. L.
A hybrid kinetic-fluid model is developed which is relevant to lower hybrid spikelets observed in the topside auroral ionosphere [Vago et al., 1992; Eriksson et al., 1994]. In contrast to previous fluid models [Shapiro et al., 1995; Tam and Chang, 1995; Seyler, 1994; Shapiro et al., 1993] our linear low frequency plasma response is magnetized and kinetic. Fluid theory is used to incorporate the nonlinear wave coupling. Performing a linear stability analysis, we calculate the growth rate for the modulational instability, driven by a lower hybrid wave pump. We find that both the magnetic and kinetic effects inhibit the modulational instability.
DEFF Research Database (Denmark)
Blaabjerg, Frede; Aquila, A. Dell; Liserre, Marco;
2004-01-01
A systematic approach to study dc/ac and ac/dc converters without the use of synchronous transformation is proposed. The use of a frequency-shift technique allows a straightforward analysis of single-phase and three-phase systems. The study of dc/ac and of ac/dc converters is reported to the study...... of dc/dc converters via a 50 Hz frequency-shift. The input admittance is calculated and measured for two study examples (a three-phase active rectifier and a single-phase photovoltaic inverter). These examples show that the purpose of a well designed controller for grid-connected converters...
Schiller, Stephan; Bekbaev, Ashat K; Korobov, Vladimir I
2014-01-01
We calculate the DC Stark effect for three molecular hydrogen ions in the non-relativistic approximation. The effect is calculated both in dependence on the rovibrational state and in dependence on the hyperfine state. We discuss special cases and approximations. We also calculate the AC polarisabilities for several rovibrational levels, and therefrom evaluate accurately the black-body radiation shift, including the effects of excited electronic states. The results enable the detailed evaluation of certain systematic shifts of the transitions frequencies for the purpose of ultra-high-precision optical, microwave or radio-frequency spectroscopy in ion traps.
Schiller, S.; Bakalov, D.; Bekbaev, A. K.; Korobov, V. I.
2014-05-01
We calculate the dc Stark effect for three molecular hydrogen ions in the nonrelativistic approximation. The effect is calculated both in dependence on the rovibrational state and in dependence on the hyperfine state. We discuss special cases and approximations. We also calculate the ac polarizabilities for several rovibrational levels and therefrom evaluate accurately the blackbody radiation shift, including the effects of excited electronic states. The results enable the detailed evaluation of certain systematic shifts of the transitions frequencies for the purpose of ultrahigh-precision optical, microwave, or radio-frequency spectroscopy in ion traps.
Feng, Lu; Gao, Fengling; Liu, Meihua; Wang, Shibin; Li, Linan; Shen, Min; Wang, Zhiyong
2012-07-01
The marked progress in MEMS/NEMS technology has demanded the development of a fundamental understanding of cantilever-based sensing principles. One of the challenges of cantilever-based detection is identifying and discerning the most influenced parameters responsible for the observed changes in the cantilever response. For example, effects of various force fields such as those induced by atom/molecular adsorption and variations in temperature may occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of sensors. In this paper, we, therefore, systematically investigate the interplay between these two distinctly different mechanisms and attendant mechanical response. To this end, a theory model is proposed to predict the mechanical bending and resonance frequency shift of micro- and nanocantilevers taking into account atom/molecular adsorption and variations in temperature at the same time. The adsorption induced mechanical responses of microcantilevers are modeled for the van der Waals interaction in presence of surface effect. Thermal effects addressed here include the thermal mismatch between the substrate and coating layer owing to different thermal expansion coefficients and the temperature-dependent material properties. The theoretical and computational model developed here will allow one to gain an insight into not only the mechanical responses observed experimentally but also the fundamental, novel detection principles for sensing applications.
DEFF Research Database (Denmark)
Ordonez, Rodrigo; Hammershøi, Dorte
2005-01-01
Temporary Threshold Shifts (TTS) were determined for 9 subjects exposed to three different band-passed signals taken from one channel of a binaural recording of an industrial mill. The three 2-octave bands were: Low (125 to 500 Hz), mid (500 Hz to 2 kHz), and high (2 kHz to 8 kHz). The band-passe...... signals may not be well characterised by the A-weighting curve. The present paper presents the recovery model and discusses the application of the model to the present TTS data.......-passed signals were adjusted to give the same equivalent A-weighted sound exposure according to ISO-1999 (1990) and were presented to one ear of the subjects in three separate experimental sessions. The results were used in a recovery model based on a least-squares fit of the data to a superposition...... of exponential functions. The recovery model showed good agreement with the average TTS across subjects and confirms that the high band caused the greatest TTS. The difference between the TTS caused by exposures with the same A-weighted equivalent level, suggests that the frequency characteristics of exposure...
Murrell, J K J
2001-01-01
previously unexplored regions of parameter space. We show that these calculations predict a range of previously unreported dynamical I-V characterises for SQUID rings in the strongly hysteretic regime. Finally, we present the successful realisation of a novel experimental technique that permits the weak link of a SQUID to be probed independently of the associated ring structure by mechanically opening and closing the ring. We demonstrate that this process can be completed during the same experimental run without the need for warming and re-cooling of the sample. This thesis is concerned with the investigation of the non-linear behaviour of a Superconducting Quantum Interference Device (SQUID) coupled to a RF tank circuit. We consider two regimes, one where the underlying SQUID behaviour is non-hysteretic with respect to an externally applied magnetic flux, and the other where hysteretic (dissipative) behaviour is observed. We show that, by following non-linearities induced in the tank circuit response, the un...
National Research Council Canada - National Science Library
Hwang, Paul
2006-01-01
... expected intrinsic frequency in the frequency spectrum measured by a stationary probe. The advection of the wave number component by the orbital current of background waves produces a net downshift in the encounter frequency...
Optical and Acoustical Frequencies in a Nonlinear Helicoidal Model of DNA Molecules
Institute of Scientific and Technical Information of China (English)
ZDRAVKOVI(C) S.; SATARI(C) M.V.
2005-01-01
@@ We compare optical and acoustical frequencies in the Peyrard-Bishop-Dauxois model, i.e.an extended Peyrard-Bishop model, of DNA molecules.We discuss how ratio of those frequencies depends on a value of the harmonic constant of the helicoidal spring K.Also, we suggest that the most favourable mode could be a resonance mode.
Institute of Scientific and Technical Information of China (English)
Lidong Lü; Yuejiang Song; Fan Zhu; Xuping Zhang
2012-01-01
The nonlinear effects that limit the performance of the multi-frequency probe (MFP) based coherent optical time domain reflectometry (C-OTDR) are investigated.Based on theoretical analysis and experimental results,compared with conventional C-OTDR,when the probe pulse has power gradient within the pulse width,self-phase modulation (SPM) and cross-phase modulation (XPM) are strengthened in the new COTDR scheme.The generation of four-wave mixing (FWM) is dependent on SPM and XPM,and with modulation frequency of phase modulator higher than 40 MHz,the stimulated Brillouin scattering (SBS) threshold can be enhanced by more than 5 dB,which benefits the maximum dynamic range of the MFP C-OTDR.
Lu, Y.; Cottone, F.; Boisseau, S.; Galayko, D.; Marty, F.; Basset, P.
2015-12-01
This paper reports for the first time a MEMS electrostatic vibration energy harvester (e-VEH) with corona-charged vertical electrets on its electrodes. The bandwidth of the 1-cm2 device is extended in low and high frequencies by nonlinear elastic stoppers. With a bias voltage of 46 V (electret@21 V + DC external source@25 V) between the electrodes, the RMS power of the device reaches 0.89 μW at 33 Hz and 6.6 μW at 428 Hz. The -3dB frequency band including the hysteresis is 223∼432 Hz, the one excluding the hysteresis 88∼166 Hz. We also demonstrate the charging of a 47 μF capacitor used for powering a wireless and autonomous temperature sensor node with a data transmission beyond 10 m at 868 MHz.
Effects of weak nonlinearity on dispersion relations and frequency band-gaps of periodic structures
DEFF Research Database (Denmark)
Sorokin, Vladislav; Thomsen, Jon Juel
2015-01-01
-plane stretching. A novel approach, the Method of Varying Amplitudes, is employed. This implies representing a solution in the form of a harmonic series with varying amplitudes; however, in contrast to averaging methods, the amplitudes are not required to vary slowly in space. As a result, a shift of band...
Sánchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S
2011-09-15
Giant Goos-Hänchen shifts and radiation-induced trapping are studied at the planar boundary separating two focusing Kerr media within the framework of the Helmholtz theory. The analysis, valid for all angles of incidence, reveals that interfaces exhibiting linear external refraction can also accommodate both phenomena. Numerical evidence of these effects is provided, based on analytical predictions derived from a generalized Snell's law.
Windhorst, U; Kokkoroyiannis, T; Laouris, Y; Meyer-Lohmann, J
1994-03-01
Spinal recurrent inhibition via Renshaw cells and proprioceptive feedback via skeletal muscle and muscle spindle afferents have been hypothesized to constitute a compound feedback system [Windhorst (1989) Afferent Control of Posture and Locomotion; Windhorst (1993) Robots and Biological Systems--Towards a New Bionics]. To assess their detailed functions, it is necessary to know their dynamic characteristics. Previously we have extensively described the properties of signal transmission from motor axons to Renshaw cells using random motor axon stimulation and data analysis methods based thereupon. Using the same methods, we here compare these properties, in the cat, with those between motor axons and group Ia muscle spindle afferents in terms of frequency responses and nonlinear features. The frequency responses depend on the mean rate (carrier rate) of activation of motor axons and on the strength of coupling between motor units and spindles. In general, they are those of a second-order low-pass system with a cut-off at fairly low frequencies. This contrasts with the dynamics of motor axon-Renshaw cell couplings which are those of a much broader band-pass with its peak in the range of c. 2-15 Hz [Christakos (1987) Neuroscience 23, 613-623]. The second-order non-linearities in motor unit-muscle spindle signal lines are much more diverse than those in motor axon-Renshaw cell couplings. Although the average strength of response declines with mean stimulus rate in both subsystems, there is no systematic relationship between the amount of non-linearity and the average response in the former, whilst there is in the latter. The qualitative appearance of motor unit-muscle spindle non-linearities was complicated as was the average response to motor unit twitches. Thus, whilst Renshaw cells appear to dynamically reflect motor output rather faithfully, muscle spindles seem to signal local muscle fibre length changes and their dynamics. This would be consistent with the
Energy Technology Data Exchange (ETDEWEB)
He, Zhaoguo [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zong, Qiugang, E-mail: qgzong@gmail.com; Wang, Yongfu [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Liu, Siqing; Lin, Ruilin; Shi, Liqin [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)
2014-12-15
Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = –9.3°) region. For the three cases, the time-dependent wave amplitude, cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.
Simandoux, Olivier; Prost, Amaury; Gateau, Jérôme; Bossy, Emmanuel
2015-03-01
In this work, we experimentally investigate thermal-based nonlinear photoacoustic generation as a mean to discriminate between different types of absorbing particles. The photoacoustic generation from solutions of dye molecules and gold nanospheres (same optical densities) was detected using a high frequency ultrasound transducer (20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence for an equilibrium temperature around 4 °C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. The photoacoustic amplitude was also studied as a function of the equilibrium temperature from 2 °C to 20 °C. While the photoacoustic amplitude from the dye molecules vanished around 4 °C, the photoacoustic amplitude from the gold nanospheres remained significant over the whole temperature range. Our preliminary results suggest that in the context of high frequency photoacoustic imaging, nanoparticles may be discriminated from molecular absorbers based on nanoscale temperature rises.
He, Zhaoguo; Zong, Qiugang; Liu, Siqing; Wang, Yongfu; Lin, Ruilin; Shi, Liqin
2014-12-01
Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = -9.3°) region. For the three cases, the time-dependent wave amplitude, cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.
Institute of Scientific and Technical Information of China (English)
李兴泉; 邓兆祥; 李英强; 章竟成; 王腾腾
2013-01-01
The component mode synthesis method was used to compute structural mid-frequency range modes,and the characteristic constraint mode was used for reducing interface DOFs.The frequency shifting technique was induced to cut off lower frequency characteristic constraint modes.The influence of lower frequency characteristic constraint modes on structural mid-frequency range modes was studied.The results showed that before frequency shifting,the lower frequency characteristic constraint modes have an important influence on the mid-frequency range modes of a system,the former can not be cut off; but after frequency shifting,the former can be cut off.The frequency shifting technique was used to compute a prototype vehicle modes in a frequency range of 250 ～300 Hz.The results showed that the lower frequency characteristic constraint modes can be cut off after frequency shifting,the computation needs less time; it means this technique can improve the computational efficiency for mid-frequency range modes of a complex structure.%采用基于特征约束模态降阶的模态综合方法计算结构中频段振动特性时,针对低阶特征约束模态不能截断的问题,引入了移频方法对子结构动力学方程进行变换,并推导了移频后低阶特征约束模态与系统中频段模态的关系,结果表明:采用移频方法后,低阶特征约束模态可以截断.采用该方法计算了某白车身有限元模型160 ～190Hz频段内的振动特性,结果表明:采用移频方法后,保留的特征约束模态阶数较少,系统振动特性的计算时间较短,说明该方法有助于提高复杂结构中频段振动特性的计算效率.
Frequency response of the Loschmidt echo decay in an open driven nonlinear oscillator
Zhang, Shi-Hui; Yan, Zhan-Yuan
2015-11-01
The decay of the Loschmidt echo and its relation to the frequency response of the underlying classical dynamics are investigated in an open Duffing system by means of the Wigner function. The initial Wigner function of the system is Gaussian and centered at a phase point (x 0, p 0). For different (x 0, p 0), significant peaks are observed in the frequency response curves of the Loschmidt echo decay during the evolution of the Wigner function. Furthermore, there is good correspondence between the frequency response curves of the Loschmidt echo decay and the underlying classical dynamics. This can be attributed to the increase of the fringes of the Wigner function by the external driving force, which can be revealed by the frequency response of the underlying classical dynamics.
Frequency-Uniform Decomposition, Function Spaces , and Applications to Nonlinear Evolution Equations
Directory of Open Access Journals (Sweden)
Shaolei Ru
2013-01-01
Full Text Available By combining frequency-uniform decomposition with (, we introduce a new class of function spaces (denoted by . Moreover, we study the Cauchy problem for the generalized NLS equations and Ginzburg-Landau equations in .
Nonlinear Frequency Compression: Effects on Sound Quality Ratings of Speech and Music
National Research Council Canada - National Science Library
Parsa, Vijay; Scollie, Susan; Glista, Danielle; Seelisch, Andreas
2013-01-01
...) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing...
DEFF Research Database (Denmark)
Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten
2013-01-01
Recently, we solved the coupled-mode equations for Bragg scattering (BS) in the low- and high-conversion regimes, but without the effects of nonlinear phase modulation (NPM). We now present solutions and Green functions in the low-conversion regime that include NPM. We find that NPM does not change...... are still possible, even when the effects of NPM are included. Finally, the effects of using different input signals are considered, and we conclude that using the natural input modes of the system drastically increases the efficiency. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers...
Slanina, Zdeněk
1991-01-01
Harmonic vibrational analysis of the water dimer is reported for four BJH- and four MCYL-type flexible water-water potentials. The calculated monomer/dimer frequency shifts correspond reasonably well to the available observed terms, the BJH-type flexible potentials (with the gas-phase intramolecular potential) yielding a slightly better agreement.
Institute of Scientific and Technical Information of China (English)
Fadhil H. T. Al-dulaimy; WANG Zuoying(王作英)
2003-01-01
This work demonstrates the use of the nonlinear time-frequency distribution (NLTFD) of a discrete time energy operator (DTEO) based on amplitude modulation-frequency modulation demodulation techniques as a feature in speech recognition. The duration distribution based hidden Markov module in a speaker independent large vocabulary mandarin speech recognition system was reconstructed from the feature vectors in the front-end detection stage. The goal was to improve the performance of the existing system by combining new features to the baseline feature vector. This paper also deals with errors associated with using a pre-emphasis filter in the front end processing of the present scheme, which causes an increase in the noise energy at high frequencies above 4 kHz and in some cases degrades the recognition accuracy. The experimental results show that eliminating the pre-emphasis filters from the pre-processing stage and using NLTFD with compensated DTEO combined with Mel frequency cepstrum components give a 21.95% reduction in the relative error rate compared to the conventional technique with 25 candidates used in the test.
Keller, J; Kalincev, D; Kiethe, J; Mehlstäubler, T E
2015-01-01
In order to improve the short-term stability of trapped-ion optical clocks, we are developing a frequency standard based on ${}^{115}$In${}^+$ / ${}^{172}$Yb${}^+$ Coulomb crystals. For this purpose, we have developed scalable segmented Paul traps which allow a high level of control for multiple ion ensembles. In this article, we detail on our recent results regarding the reduction of the leading sources of frequency uncertainty introduced by the ion trap: 2nd-order Doppler shifts due to micromotion and the heating of secular motion, as well as the black-body radiation shift due to warming of the trap. We show that the fractional frequency uncertainty due to each of these effects can be reduced to well below $10^{-19}$.
Kink topology control by high-frequency external forces in nonlinear Klein-Gordon models
Alvarez-Nodarse, R.; Quintero, N. R.; Mertens, F. G.
2014-10-01
A method of averaging is applied to study the dynamics of a kink in the damped double sine-Gordon equation driven by both external (nonparametric) and parametric periodic forces at high frequencies. This theoretical approach leads to the study of a double sine-Gordon equation with an effective potential and an effective additive force. Direct numerical simulations show how the appearance of two connected π kinks and of an individual π kink can be controlled via the frequency. An anomalous negative mobility phenomenon is also predicted by theory and confirmed by simulations of the original equation.
Kink topology control by high-frequency external forces in nonlinear Klein-Gordon models.
Alvarez-Nodarse, R; Quintero, N R; Mertens, F G
2014-10-01
A method of averaging is applied to study the dynamics of a kink in the damped double sine-Gordon equation driven by both external (nonparametric) and parametric periodic forces at high frequencies. This theoretical approach leads to the study of a double sine-Gordon equation with an effective potential and an effective additive force. Direct numerical simulations show how the appearance of two connected π kinks and of an individual π kink can be controlled via the frequency. An anomalous negative mobility phenomenon is also predicted by theory and confirmed by simulations of the original equation.
A Study of Shift-Frequency Jamming to LPI Radar%一种低截获概率雷达的移频干扰研究
Institute of Scientific and Technical Information of China (English)
吕亚昆; 杨承志; 芦建辉; 张晓杰
2014-01-01
A combined modulation LPI radar signal-frequency modulated continuous wave-phase shift keying (FMCW-PSK) was designed ,and the effect to matched filtering of the two characteristics ,carrier frequency and frequency rate of the signal were analyzed .Starting from these two characteristic ,their changes on the radar signal's jamming were studied .The false Doppler shift-frequency jamming on radar signals influence and jamming effects were analyzed in detail .Based on this an improved method was proposed ,which was sawtooth wave frequency-shift jamming ,and a detailed theoretical analysis and simulation was given .The results showed that the jamming can achieve better results ,verified the shift frequency jamming was an effective jamming method to the low probability of intercept radar .%设计了一种调频连续波-相移键控复合调制的低截获概率雷达信号，并分析了频率、调频斜率两个特征对信号匹配滤波的影响。从这两个特征入手研究利用特征变化对雷达信号的干扰。详细分析了假多普勒移频干扰对雷达信号的影响和干扰效果，在此基础上提出了锯齿波移频改进干扰方法，并给出了仿真实验，结果表明可以实现较好的干扰效果，验证了移频干扰是对低截获概率雷达的一种有效干扰。
On Perceptual Distortion Minimization and Nonlinear Least-Squares Frequency Estimation
DEFF Research Database (Denmark)
Christensen, Mads Græsbøll; Jensen, Søren Holdt
2006-01-01
In this paper, we present a framework for perceptual error minimization and sinusoidal frequency estimation based on a new perceptual distortion measure, and we state its optimal solution. Using this framework, we relate a number of well-known practical methods for perceptual sinusoidal parameter...
Pysher, Matthew; Bahabad, Alon; Peng, Peng; Arie, Ady; Pfister, Olivier
2010-02-15
We report the successful design and experimental implementation of three coincident nonlinear interactions, namely ZZZ (type 0), ZYY (type I), and YYZ/YZY (type II) second-harmonic generation of 780 nm light from a 1560 nm pump beam in a single, multigrating, periodically poled KTiOPO(4) crystal. The resulting nonlinear medium is the key component for making a scalable quantum computer over the optical frequency comb of a single optical parametric oscillator.
Vícha, Jan; Marek, Radek; Straka, Michal
2016-10-17
The role of relativistic effects on (1)H NMR chemical shifts of Sn(II) and Pb(II) hydrides is investigated by using fully relativistic DFT calculations. The stability of possible Pb(II) hydride isomers is studied together with their (1)H NMR chemical shifts, which are predicted in the high-frequency region, up to 90 ppm. These (1)H signals are dictated by sizable relativistic contributions due to spin-orbit coupling at the heavy atom and can be as large as 80 ppm for a hydrogen atom bound to Pb(II). Such high-frequency (1)H NMR chemical shifts of Pb(II) hydride resonances cannot be detected in the (1)H NMR spectra with standard experimental setup. Extended (1)H NMR spectral ranges are thus suggested for studies of Pb(II) compounds. Modulation of spin-orbit relativistic contribution to (1)H NMR chemical shift is found to be important also in the experimentally known Sn(II) hydrides. Because the (1)H NMR chemical shifts were found to be rather sensitive to the changes in the coordination sphere of the central metal in both Sn(II) and Pb(II) hydrides, their application for structural investigation is suggested.
Directory of Open Access Journals (Sweden)
Umberto Melia
Full Text Available The level of sedation in patients undergoing medical procedures evolves continuously, affected by the interaction between the effect of the anesthetic and analgesic agents and the pain stimuli. The monitors of depth of anesthesia, based on the analysis of the electroencephalogram (EEG, have been progressively introduced into the daily practice to provide additional information about the state of the patient. However, the quantification of analgesia still remains an open problem. The purpose of this work is to improve the prediction of nociceptive responses with linear and non-linear measures calculated from EEG signal filtered in frequency bands higher than the traditional bands. Power spectral density and auto-mutual information function was applied in order to predict the presence or absence of the nociceptive responses to different stimuli during sedation in endoscopy procedure. The proposed measures exhibit better performances than the bispectral index (BIS. Values of prediction probability of Pk above 0.75 and percentages of sensitivity and specificity above 70% were achieved combining EEG measures from the traditional frequency bands and higher frequency bands.
Institute of Scientific and Technical Information of China (English)
Ta Na; Qiu Jiajun; Cai Ganhua
2005-01-01
Zero mode natural frequency (ZMNF) is found during experiments. The ZMNF and vibrations resulted by it are studied. First, calculating method of the ZMNF excited by electromagnetic in vibrational system of coupled mechanics and electrics are given from the view of magnetic energy.Laws that the ZMNF varies with active power and exciting current are obtained and are verified by experiments. Then, coupled lateral and torsional vibration of rotor shaft system is studied by considering rest eccentricity, rotating eccentricity and swing eccentricity. Using Largrange-Maxwell equation when three phases are asymmetric derives differential equation of the coupled vibration. With energy method of nonlinear vibration, amplitude-frequency characteristics of resonance are studied when rotating speed of rotor equals to ZMNF. The results show that ZMNF will occur in turbine generators by the action of electromagnetic. Because ZMNF varies with electromagnetic parameters,resonance can occur when exciting frequency of the rotor speed is fixed whereas exciting current change. And also find that a generator is in the state of large amplitude in rated exciting current.
Manimala, James M; Sun, C T
2016-06-01
The amplitude-dependent dynamic response in acoustic metamaterials having nonlinear local oscillator microstructures is studied using numerical simulations on representative discrete mass-spring models. Both cubically nonlinear hardening and softening local oscillator cases are considered. Single frequency, bi-frequency, and wave packet excitations at low and high amplitude levels were used to interrogate the models. The propagation and attenuation characteristics of harmonic waves in a tunable frequency range is found to correspond to the amplitude and nonlinearity-dependent shifts in the local resonance bandgap for such nonlinear acoustic metamaterials. A predominant shift in the propagated wave spectrum towards lower frequencies is observed. Moreover, the feasibility of amplitude and frequency-dependent selective filtering of composite signals consisting of individual frequency components which fall within propagating or attenuating regimes is demonstrated. Further enrichment of these wave manipulation mechanisms in acoustic metamaterials using different combinations of nonlinear microstructures presents device implications for acoustic filters and waveguides.
Ege, Kerem; Rébillat, Marc
2012-01-01
The piano soundboard transforms the string vibration into sound and therefore, its vibrations are of primary importance for the sound characteristics of the instrument. An original vibro-acoustical method is presented to isolate the soundboard nonlinearity from that of the exciting device (here: a loudspeaker) and to measure it. The nonlinear part of the soundboard response to an external excitation is quantitatively estimated for the first time, at \\approx -40 dB below the linear part at the ff nuance. Given this essentially linear response, a modal identification is performed up to 3 kHz by means of a novel high resolution modal analysis technique (Ege et al., High-resolution modal analysis, JSV, 325(4-5), 2009). Modal dampings (which, so far, were unknown for the piano in this frequency range) are determined in the midfrequency domain where FFT-based methods fail to evaluate them with an acceptable precision. They turn out to be close to those imposed by wood. A finite-element modelling of the soundboard i...
Liu, Xing; Guo, Hairun; Bache, Morten
2015-01-01
We show numerically that ultrashort self-defocusing temporal solitons colliding with a weak pulsed probe in the near-IR can convert the probe to the mid-IR. A near-perfect conversion efficiency is possible for a high effective soliton order. The near-IR self-defocusing soliton can form in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between $\\lambda=2.2-2.4~\\mu\\rm m$ as a resonant dispersive wave. This process relies on non-degenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation.
Natural Frequencies and Mode Shapes of a Nonlinear, Uniform Cantilevered Beam
2006-09-01
spectrum” [13]. The speaker is shown in Figure 11. 16 Figure 11: Excitation Force 3.1.6 Laser Vibrometer The Polytec Scanning...system. This investigation used the 3-D method. The 3-D laser vibrometer used Polytec software version 8.3 to analyze the data. Once the beam was...measured by the lasers were sent to the Polytec software which applied a Fast Fourier Transform (FFT) to find the frequencies. From the FFT the natural
Modeling and frequency domain analysis of nonlinear compliant joints for a passive dynamic swimmer
Carbajal, Juan Pablo; Ziegler, Marc; Lang, Zi-Qiang
2011-01-01
In this paper we present the study of the mathematical model of a real life joint used in an underwater robotic fish. Fluid-structure interaction is utterly simplified and the motion of the joint is approximated by D\\"uffing's equation. We compare the quality of analytical harmonic solutions previously reported, with the input-output relation obtained via truncated Volterra series expansion. Comparisons show a trade-off between accuracy and flexibility of the methods. The methods are discussed in detail in order to facilitate reproduction of our results. The approach presented herein can be used to verify results in nonlinear resonance applications and in the design of bio-inspired compliant robots that exploit passive properties of their dynamics. We focus on the potential use of this type of joint for energy extraction from environmental sources, in this case a K\\'arm\\'an vortex street shed by an obstacle in a flow. Open challenges and questions are mentioned throughout the document.
Premraj, D.; Suresh, K.; Palanivel, J.; Thamilmaran, K.
2017-09-01
A periodically forced series LCR circuit with Chua's diode as a nonlinear element exhibits slow passage through Hopf bifurcation. This slow passage leads to a delay in the Hopf bifurcation. The delay in this bifurcation is a unique quantity and it can be predicted using various numerical analysis. We find that when an additional periodic force is added to the system, the delay in bifurcation becomes chaotic which leads to an unpredictability in bifurcation delay. Further, we study the bifurcation of the periodic delay to chaotic delay in the slow passage effect through strange nonchaotic delay. We also report the occurrence of strange nonchaotic dynamics while varying the parameter of the additional force included in the system. We observe that the system exhibits a hitherto unknown dynamical transition to a strange nonchaotic attractor. With the help of Lyapunov exponent, we explain the new transition to strange nonchaotic attractor and its mechanism is studied by making use of rational approximation theory. The birth of SNA has also been confirmed numerically, using Poincaré maps, phase sensitivity exponent, the distribution of finite-time Lyapunov exponents and singular continuous spectrum analysis.
Fritts, David C.; Wang, Ding-Yi
1991-01-01
Results are presented of radar observations of horizontal and vertical velocities near the summer mesopause at Poker Flat (Alaska), showing that the observed vertical velocity spectra were influenced strongly by Doppler-shifting effects. The horizontal velocity spectra, however, were relatively insensitive to horizontal wind speed. The observed spectra are compared with predicted spectra for various models of the intrinsic motion spectrum and degrees of Doppler shifting.
Smirnov, Sergey V; Kobtsev, Sergey M; Kukarin, Sergey V
2014-01-13
For the first time we report the results of both numerical simulation and experimental observation of second-harmonic generation as an example of non-linear frequency conversion of pulses generated by passively mode-locked fiber master oscillator in different regimes including conventional (stable) and double-scale (partially coherent and noise-like) ones. We show that non-linear frequency conversion efficiency of double-scale pulses is slightly higher than that of conventional picosecond laser pulses with the same energy and duration despite strong phase fluctuations of double-scale pulses.
Non-linear forecasting in high-frequency financial time series
Strozzi, F.; Zaldívar, J. M.
2005-08-01
A new methodology based on state space reconstruction techniques has been developed for trading in financial markets. The methodology has been tested using 18 high-frequency foreign exchange time series. The results are in apparent contradiction with the efficient market hypothesis which states that no profitable information about future movements can be obtained by studying the past prices series. In our (off-line) analysis positive gain may be obtained in all those series. The trading methodology is quite general and may be adapted to other financial time series. Finally, the steps for its on-line application are discussed.
Speech Signal Encryption Based on Frequency Shift Function%基于移频函数的语音信号加密
Institute of Scientific and Technical Information of China (English)
闫应天
2015-01-01
Aiming at the problem of encryption of speech signal, based on MATLAB software programming, using frequency shift function to shift frequency encryption, and on this basis, an improved method is presented to segment a speech signal into encryption, so as to improve the effect of encryption.%针对语音信号的加密问题,基于MATLAB软件编程,利用移频函数对语音信号进行移频加密,并在此基础上给出了一种改进方法,将一个语音信号进行分割加密,从而提高加密的效果.
Indian Academy of Sciences (India)
H Karacali; H Yurtseven
2005-11-01
We relate in this study the thermal expansivity, , to the Raman frequency shift (1/)( /) for the rotatory lattice (librational) mode in ammonia solid II near its melting point. We have used our calculated Raman frequencies of this mode for pressures of 3.65, 5.02 and 6.57 kbars for this crystalline system. The values of the slope, d/d, which we deduced from our spectroscopic relation, are compared with those obtained experimentally. In particular, our computed slope value for the pressure of 5.02 kbar is in very good agreement with the empirical result.
DEFF Research Database (Denmark)
Orozco Santillán, Arturo; Cutanda Henriquez, Vicente
2008-01-01
of the cavity due to the presence of the levitated object. The Boltzmann-Ehrenfest principle has been used to obtain an analytical expression for the resonance frequency shift in a cylindrical cavity produced by a small sphere, with kR .... The validity of the Boltzmann-Ehrenfest method has been investigated by means of the Boundary Element Method (BEM) and confirmed with experiments....
Fernandez, Marta; Espinosa, Hugo G; Thiel, David V; Arrinda, Amaia
2017-09-12
The interaction of body-worn antennas with the human body causes a significant decrease in antenna efficiency and a shift in resonant frequency. A resonant slot in a small conductive box placed on the body has been shown to reduce these effects. The specific absorption rate is less than international health standards for most wearable antennas due to small transmitter power. This paper reports the linear relationship between power absorbed by biological tissues at different locations on the body and radiation efficiency based on numerical modeling (r = 0.99). While the -10 dB bandwidth of the antenna remained constant and equal to 12.5%, the maximum frequency shift occurred when the antenna was close to the elbow (6.61%) and on the thigh (5.86%). The smallest change was found on the torso (4.21%). Participants with body-mass index (BMI) between 17 and 29 kg/m(2) took part in experimental measurements, where the maximum frequency shift was 2.51%. Measurements showed better agreement with simulations on the upper arm. These experimental results demonstrate that the BMI for each individual had little effect on the performance of the antenna. Bioelectromagnetics. 2017;9999:XX-XX. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Institute of Scientific and Technical Information of China (English)
CHENG Chun-Fu; WANG Xiao-Fang; SHEN Bai-Fei
2004-01-01
Femtosecond Raman solitoh generation, tunable from 800 to 1044nm, has been theoretically investigated for a photonic crystal fibre pumped by a 200-rs pulse. A highly nonlinear photonic crystal fibre with a length of only 57.7cm and a nonlinear coefficient of 0.075 (Wm)-1 is used to achieved such a broadband. It is found that the spectral bandwidth increases with the input peak power. In particular, it is also found that the output wavelengths of the resulting sub-40 fs Raman solitons can also be tuned effectively by varying the initial pulse chirp. There exists an optimal positive chirp which maximizes the bandwidth, corresponding to the formation of only one long-wavelength Raman soliton.
Energy Technology Data Exchange (ETDEWEB)
Chen, Z. (Zukun)
2001-01-01
The Spallation Neutron Source (SNS) is an accelerator-based neutron scattering research facility. The linear accelerator (linac) is the principal accelerating structure and divided into a room-temperature linac and a superconducting linac. The normal conducting linac system that consists of a Drift Tube Linac (DTL) and a Coupled Cavity Linac (CCL) is to be built by Los Alamos National Laboratory. The CCL structure is 55.36-meters long. It accelerates H- beam from 86.8 Mev to 185.6 Mev at operating frequency of 805 MHz. This side coupled cavity structure has 8 cells per segment, 12 segments and 11 bridge couplers per module, and 4 modules total. A 5-MW klystron powers each module. The number 3 and number 9 bridge coupler of each module are connected to the 5-MW RF power supply. The bridge coupler with length of 2.5 {beta}{gamma} is a three-cell structure and located between the segments and allows power flow through the module. The center cell of each bridge coupler is excited during normal operation. To obtain a uniform electromagnetic filed and meet the resonant frequency shift, the RF induced heat must be removed. Thus, the thermal deformation and frequency shift studies are performed via numerical simulations in order to have an appropriate cooling design and predict the frequency shift under operation. The center cell of the bridge coupler also contains a large 4-inch slug tuner and a tuning post that used to provide bulk frequency adjustment and field intensity adjustment, so that produce the proper total field distribution in the module assembly.
Tassev, V. L.; Vangala, S.; Peterson, R.; Kimani, M.; Snure, M.; Markov, I.
2016-03-01
Frequency conversion in orientation-patterned quasi-phase matched materials is a leading approach for generating tunable mid- and long-wave coherent IR radiation for a wide variety of applications. A number of nonlinear optical materials are currently under intensive investigation. Due to their unique properties, chiefly wide IR transparency and high nonlinear susceptibility, GaAs and GaP are among the most promising. Compared to GaAs, GaP has the advantage of having higher thermal conductivity and significantly lower 2PA in the convenient pumping range of 1- 1.7 μm. HVPE growth of OPGaP, however, has encountered certain challenges: low quality and high price of commercially available GaP wafers; and strong parasitic nucleation during HVPE growth that reduces growth rate and aggravates layer quality, often leading to pattern overgrowth. Lessons learned from growing OPGaAs were not entirely helpful, leaving us to alternative solutions for both homoepitaxial growth and template preparation. We report repeatable one-step HVPE growth of up to 400 μm thick OPGaP with excellent domain fidelity deposited for first time on OPGaAs templates. The templates were prepared by wafer fusion bonding or MBE assisted polarity inversion technique. A close to equilibrium growth at such a large lattice mismatch (-3.6%) is itself noteworthy, especially when previously reported attempts (growth of OPZnSe on OPGaAs templates) at much smaller mismatch (+0.3%) have produced limited results. Combining the advantages of the two most promising materials, GaAs and GaP, is a solution that will accelerate the development of high power, tunable laser sources for the mid- and long-wave IR, and THz region.
Duifhuis, H
This letter concerns the paper "An approximate transfer function for the dual-resonance nonlinear filter model of auditory frequency selectivity" [E. A. Lopez-Poveda, J. Acoust. Soc. Am. 114, 2112-2117 (2003)]. It proposes a correction of the historical framework in which the paper is presented.
Moon, Il-Ju; Kim, Sung-Hun; Klotzbach, Phil; Chan, Johnny C. L.
2016-06-01
Recently a pronounced global poleward shift in the latitude at which the maximum intensities of tropical cyclones (TC) occur has been identified. Moon et al (2015 Environ. Res. Lett. 10 104004) reported that the poleward migration is significantly influenced by changes in interbasin frequency. These frequency changes are a larger contributor to the poleward shift than the intrabasin migration component. The strong role of interbasin frequency changes in the poleward migration also suggest that the poleward trend could be changed to an opposite equatorward trend in the future due to multi-decadal variability that significantly impacts Northern Hemisphere TC frequency. In the accompanying comment, Kossin et al (2016 Environ. Res. Lett. 11 068001) questioned the novelty and robustness of our results by raising issues associated with subsampling, contributions from some basins to poleward migration, and data dependency. Here, we explain the originality and importance of our main findings, which are different from those of Kossin et al (2014 Nature 509 349-52) and reaffirm that our conclusions are maintained regardless of the issues that were raised.
1977-05-01
and 6() in place of the corresponding resonance quantities. In the limit o - I (CL - o), the load frequencies approach the antiresonance frequencies...while the limit a o (CL c) reduces the frequencies to the resonances. 2 Cu. Y+ _II ZL w NOW"z CZ) LUL Lu Ul- CD 0 LU OD (D qt 6 0 OD (D I* N -00 0 0 0...2. The quantity multiplying Tk in (40) is called the Onoe funcion : 46 G (M) = +2k2/D. is plotted versus 0 for various k values and for M = 1, 3, and
DEFF Research Database (Denmark)
Trampedach, Regner; Aarslev, Magnus J.; Houdek, Günter
2017-01-01
We analyse the effect on adiabatic stellar oscillation frequencies of replacing the near-surface layers in 1D stellar structure models with averaged 3D stellar surface convection simulations. The main difference is an expansion of the atmosphere by 3D convection, expected to explain a major part...... of the asteroseismic surface effect; a systematic overestimation of p-mode frequencies due to inadequate surface physics. We employ pairs of 1D stellar envelope models and 3D simulations from a previous calibration of the mixing-length parameter, alpha. That calibration constitutes the hitherto most consistent...... matching of 1D models to 3D simulations, ensuring that their differences are not spurious, but entirely due to the 3D nature of convection. The resulting frequency shift is identified as the structural part of the surface effect. The important, typically non-adiabatic, modal components of the surface...
The cooperative Lamb shift in an atomic nanolayer
Keaveney, James; Krohn, Ulrich; Hughes, Ifan G; Sarkisyan, David; Adams, Charles S
2012-01-01
We present an experimental measurement of the cooperative Lamb shift and the Lorentz shift using an atomic nanolayer with tunable thickness and atomic density. The cooperative Lamb shift arises due to the exchange of virtual photons between identical atoms. The interference between the forward and backward propagating virtual fields is confirmed by the thickness dependence of the shift which has a spatial frequency equal to $2k$, i.e. twice that of the optical field. The demonstration of cooperative interactions in an easily scalable system opens the door to a new domain for non-linear optics.
Wang, L. M.; Li, Chun; Yan, Z.-C.; Drake, G. W. F.
2017-03-01
Isotope shifts and total transition frequencies are calculated for the 2 2S-3 2S transition of the lithium isotopes 6Li, 7Li, 8Li, 9Li, and the halo nucleus 11Li. The accuracy is improved for previously calculated relativistic and quantum electrodynamic corrections, and in particular a disagreement for the Bethe logarithm is resolved for the ground 2S state. Our previous result is confirmed for the 2 2P state. We use the pseudostate expansion method to perform the sum over virtual intermediate states. Results for the second-order relativistic recoil term of order α2(μ/M ) 2 Ry are shown to make a significant contribution relative to the theoretical uncertainty, but because of accidental cancellations the final result for the isotope shift is nearly unchanged. However, the spin-orbit term makes an unexpectedly large contribution to the splitting isotope shift (SIS) for the 2 1/2 2P -2 3/2 2P fine structure, increasing the theoretical value for the 6Li-7Li isotopes to 0.556 31 (7 )±0.001 MHz. A comparison is made with high-precision measurements and other calculations for the SIS and for the total 2 2S-3 2S transition frequency.
Institute of Scientific and Technical Information of China (English)
WANG Huanlei; ZHU Xiaofeng; GONG Xiufen; ZHANG Dong
2003-01-01
Based on the finite amplitude insert-substitu- tion method, a novel technique to reconstruct the acoustic nonlinear parameter B/A tomography for biological tissues in reflection mode via the difference frequency wave generated by a parametric array is developed in this paper. An experimental system is established, and the beam pattern of the difference frequency wave is measured and compared with that excited directly from a transmitter at the same frequency. B/A tomography for several biological tissues including normal and pathological tissues, is experimentally obtained with satisfying quality. Results indicate that B/A imaging using this mode may become a novel modality in ultrasonic diagnosis.
Low-frequency variability and heat transport in a low-order nonlinear coupled ocean-atmosphere model
Vannitsem, Stéphane; De Cruz, Lesley; Ghil, Michael
2014-01-01
We formulate and study a low-order nonlinear coupled ocean-atmosphere model with an emphasis on the impact of radiative and heat fluxes and of the frictional coupling between the two components. This model version extends a previous 24-variable version by adding a dynamical equation for the passive advection of temperature in the ocean, together with an energy balance model. The bifurcation analysis and the numerical integration of the model reveal the presence of low-frequency variability (LFV) concentrated on and near a long-periodic, attracting orbit. This orbit combines atmospheric and oceanic modes, and it arises for large values of the meridional gradient of radiative input and of frictional coupling. Chaotic behavior develops around this orbit as it loses its stability; this behavior is still dominated by the LFV on decadal and multi-decadal time scales that is typical of oceanic processes. Atmospheric diagnostics also reveals the presence of predominant low- and high-pressure zones, as well as of a su...
2016-07-01
Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9
Energy Technology Data Exchange (ETDEWEB)
Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)
2003-05-07
A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.
Energy Technology Data Exchange (ETDEWEB)
Bellstedt, Peter [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Haefner, Sabine; Leppert, Joerg; Goerlach, Matthias; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany)
2012-12-15
We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC Prime C and 3D C Prime NCA with sequential {sup 13}C acquisitions, 3D NHH and 3D NC Prime H with sequential {sup 1}H acquisitions and 3D CANH and 3D C'NH with broadband {sup 13}C-{sup 15}N mixing are demonstrated using microcrystalline samples of the {beta}1 immunoglobulin binding domain of protein G (GB1) and the chicken {alpha}-spectrin SH3 domain.
Directory of Open Access Journals (Sweden)
Federica Villa
2016-05-01
Full Text Available Bioelectrical Impedance Spectroscopy (BIS allows assessing the composition of body districts noninvasively and quickly, potentially providing important physiological/clinical information. However, neither portable commercial instruments nor more advanced wearable prototypes simultaneously satisfy the demanding needs of unobtrusively tracking body fluid shifts in different segments simultaneously, over a broad frequency range, for long periods and with high measurements rate. These needs are often required to evaluate exercise tests in sports or rehabilitation medicine, or to assess gravitational stresses in aerospace medicine. Therefore, the aim of this work is to present a new wearable prototype for monitoring multi-segment and multi-frequency BIS unobtrusively over long periods. Our prototype guarantees low weight, small size and low power consumption. An analog board with current-injecting and voltage-sensing electrodes across three body segments interfaces a digital board that generates square-wave current stimuli and computes impedance at 10 frequencies from 1 to 796 kHz. To evaluate the information derivable from our device, we monitored the BIS of three body segments in a volunteer before, during and after physical exercise and postural shift. We show that it can describe the dynamics of exercise-induced changes and the effect of a sit-to-stand maneuver in active and inactive muscular districts separately and simultaneously.
Infiltrated bunch of solitons in Bi-doped frequency-shifted feedback fibre laser operated at 1450 nm
Rissanen, Joona; Korobko, Dmitry A.; Zolotovsky, Igor O.; Melkumov, Mikhail; Khopin, Vladimir F.; Gumenyuk, Regina
2017-03-01
Mode-locked fibre laser as a dissipative system is characterized by rich forms of soliton interaction, which take place via internal energy exchange through noisy background in the presence of dispersion and nonlinearity. The result of soliton interaction was either stationary-localized or chaotically-oscillated soliton complexes, which have been shown before as stand-alone in the cavity. Here we report on a new form of solitons complex observed in Bi-doped mode-locked fibre laser operated at 1450 nm. The solitons are arranged in two different group types contemporizing in the cavity: one pulse group propagates as bound solitons with fixed phase relation and interpulse position eventuated in 30 dB spectrum modulation depth; while the other pulses form a bunch with continuously and chaotically moving solitons. The article describes both experimental and theoretical considerations of this effect.
Tassev, V.; Snure, M.; Vangala, S.; Kimani, M.; Peterson, R.; Schunemann, P.
2014-10-01
A series of nonlinear materials including GaAs, GaP, and ZnSe have been examined to determine their suitability for non-linear frequency conversion devices (FCD) and more specifically their use as high power, compact and broadly tunable IR and THz sources for defense and security applications. The more mature GaAs was investigated to reveal the causes for the optical losses that restrict achievement of higher conversion efficiency in quasi-phasematched FCD, while the efforts with GaP were oriented in developing simple, cost effective techniques for fabrication of orientation patterned (OP) templates and optimizing the subsequent thick HVPE growth on these templates. Thus, average growth rates of 50- 70 μm/h were achieved in up to 8-hour long experiments. High optical layer quality was achieved by suitable control of the process parameters. The optimal orientation of the pattern was determined and used as essential feedback aiming to improve the template preparation. This led to the production of the first 300-400 μm thick device quality OPGaP. Efforts to suppress the parasitic nucleation during growths with longer duration or to achieve thicker layers by a 2 step growth process were also made. The main challenge with the newer candidate, OPZnSe, was to establish suitable regimes for hydrothermal growth on plain (001) ZnSe seeds grown by chemical vapor deposition. Two different temperature ranges, 330-350 °C and 290-330 °C, were investigated. The mineralized concentration was also manipulated to accelerate the growth in (111) direction and, thus, to improve the growth in (001) direction. The next material in the line is GaN. The traditional HVPE approach will be combined with a growth at low reactor pressure. Growths will be performed in the next sequence: growth on thin GaN layers grown by MOCVD on sapphire wafers, growth on half-patterned GaN templates with different orientations and, finally, growth on OPGaN templates.
DEFF Research Database (Denmark)
Ordonez, Rodrigo; Hammershøi, Dorte
2005-01-01
Temporary Threshold Shifts (TTS) were determined for 9 subjects exposed to three different band-passed signals taken from one channel of a binaural recording of an industrial mill. The three 2-octave bands were: Low (125 to 500 Hz), mid (500 Hz to 2 kHz), and high (2 kHz to 8 kHz). The band......-passed signals were adjusted to give the same equivalent A-weighted sound exposure according to ISO-1999 (1990) and were presented to one ear of the subjects in three separate experimental sessions. The results were used in a recovery model based on a least-squares fit of the data to a superposition...
Directory of Open Access Journals (Sweden)
Georg Bier
Full Text Available Ischemic brain edema is subtle and hard to detect by computed tomography within the first hours of stroke onset. We hypothesize that non-enhanced CT (NECT post-processing with frequency-selective non-linear blending ("best contrast"/BC increases its accuracy in detecting edema and irreversible tissue damage (infarction.We retrospectively analyzed the NECT scans of 76 consecutive patients with ischemic stroke (exclusively middle cerebral artery territory-MCA before and after post-processing with BC both at baseline before reperfusion therapy and at follow-up (5.73±12.74 days after stroke onset using the Alberta Stroke Program Early CT Score (ASPECTS. We assessed the differences in ASPECTS between unprocessed and post-processed images and calculated sensitivity, specificity, and predictive values of baseline NECT using follow-up CT serving as reference standard for brain infarction.NECT detected brain tissue hypoattenuation in 35 of 76 patients (46.1%. This number increased to 71 patients (93.4% after post-processing with BC. Follow-up NECT confirmed brain infarctions in 65 patients (85.5%; p = 0.012. Post-processing increased the sensitivity of NECT for brain infarction from 35/65 (54% to 65/65 (100%, decreased its specificity from 11/11 (100% to 7/11 (64%, its positive predictive value (PPV from 35/35 (100% to 65/69 (94% and increased its accuracy 46/76 (61% to 72/76 (95%.This post-hoc analysis suggests that post-processing of NECT with BC may increase its sensitivity for ischemic brain damage significantly.
Energy Technology Data Exchange (ETDEWEB)
Cho, Seung Hyun; Park, Choon Su; Seo, Dae Cheol [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Cho, Seung Wan [Dept. of Mechanical Engineering, Sunngkyunkwan University, Suwon (Korea, Republic of); Jhang, Kyung Young [Dept. of Mechanical Engineering, Hanyang University, Seoul (Korea, Republic of)
2014-08-15
Recently, much attention has been paid to nonlinear ultrasonic technology as a potential tool to assess hidden damages that cannot be detected by conventional ultrasonic testing. One nonlinear ultrasonic technique is measurement of the resonance frequency shift, which is based on the hysteresis of the material elasticity. Sophisticated measurement of resonance frequency is required, because the change in resonance frequency is usually quite small. In this investigation, the nonlinear electromagnetic acoustic resonance (NEMAR) method was employed. The NEMAR method uses noncontact electromagnetic acoustic transducers (EMATs) in order to minimize the effect of the transducer on the frequency response of the object. Aluminum plate specimens that underwent three point bending fatigue were tested witha shear wave EMAT. The hysteretic nonlinear parameter α, a key indicator of damage, was calculated from the resonance frequency shift at several levels of input voltage. The hysteretic nonlinear parameter of a damaged sample was compared to that of an intact one, showing a difference in the values.
Energy Technology Data Exchange (ETDEWEB)
Welch, E. C.; Zhang, P.; He, Z.-H. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Dollar, F. [JILA, University of Colorado, Boulder, Colorado 80309 (United States); Krushelnick, K.; Thomas, A. G. R., E-mail: agrt@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States)
2015-05-15
High order harmonic generation from solid targets is a compelling route to generating intense attosecond or even zeptosecond pulses. However, the effects of ion motion on the generation of harmonics have only recently started to be considered. Here, we study the effects of ion motion in harmonics production at ultrahigh laser intensities interacting with solid density plasma. Using particle-in-cell simulations, we find that there is an optimum density for harmonic production that depends on laser intensity, which scales linearly with a{sub 0} with no ion motion but with a reduced scaling if ion motion is included. We derive a scaling for this optimum density with ion motion and also find that the background ion motion induces Doppler red-shifts in the harmonic structures of the reflected pulse. The temporal structure of the Doppler shifts is correlated to the envelope of the incident laser pulse. We demonstrate that by introducing a frequency chirp in the incident pulse we are able to eliminate these Doppler shifts almost completely.
Energy Technology Data Exchange (ETDEWEB)
Feister, S., E-mail: feister.7@osu.edu; Orban, C. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Nees, J. A. [Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Center for Ultra-Fast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Morrison, J. T. [Fellow, National Research Council, Washington, D.C. 20001 (United States); Frische, K. D. [Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Chowdhury, E. A. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Intense Energy Solutions, LLC., Plain City, Ohio 43064 (United States); Roquemore, W. M. [Air Force Research Laboratory, Dayton, Ohio 45433 (United States)
2014-11-15
Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiers synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre-pulse measurements
Richoux, Olivier; Hardy, Jean
2009-01-01
This paper presents an application of time-frequency methods to characterize the dispersion of acoustic waves travelling in a one-dimensional periodic or disordered lattice made up of Helmholtz resonators connected to a cylindrical tube. These methods allow (1) to evaluate the velocity of the wave energy when the input signal is an acoustic pulse ; (2) to display the evolution of the spectral content of the transient signal ; (3) to show the role of the localized nonlinearities on the propagation .i.e the emergence of higher harmonics. The main result of this paper is that the time-frequency methods point out how the nonlinearities break the localization of the waves and/or the filter effects of the lattice.