Nonlinear frequency-dependent synchronization in the developing hippocampus.
Prida, L M; Sanchez-Andres, J V
1999-07-01
Synchronous population activity is present both in normal and pathological conditions such as epilepsy. In the immature hippocampus, synchronous bursting is an electrophysiological conspicuous event. These bursts, known as giant depolarizing potentials (GDPs), are generated by the synchronized activation of interneurons and pyramidal cells via GABAA, N-methyl-D-aspartate, and AMPA receptors. Nevertheless the mechanism leading to this synchronization is still controversial. We have investigated the conditions under which synchronization arises in developing hippocampal networks. By means of simultaneous intracellular recordings, we show that GDPs result from local cooperation of active cells within an integration period prior to their onset. During this time interval, an increase in the number of excitatory postsynaptic potentials (EPSPs) takes place building up full synchronization between cells. These EPSPs are correlated with individual action potentials simultaneously occurring in neighboring cells. We have used EPSP frequency as an indicator of the neuronal activity underlying GDP generation. By comparing EPSP frequency with the occurrence of synchronized GDPs between CA3 and the fascia dentata (FD), we found that GDPs are fired in an all-or-none manner, which is characterized by a specific threshold of EPSP frequency from which synchronous GDPs emerge. In FD, the EPSP frequency-threshold for GDP onset is 17 Hz. GDPs are triggered similarly in CA3 by appropriate periodic stimulation of mossy fibers. The frequency threshold for CA3 GDP onset is 12 Hz. These findings clarify the local mechanism of synchronization underlying bursting in the developing hippocampus, indicating that GDPs are fired when background levels of EPSPs or action potentials have built up full synchronization by firing at specific frequencies (>12 Hz). Our results also demonstrate that spontaneous EPSPs and action potentials are important for the initiation of synchronous bursts in the
Frequency, pressure, and strain dependence of nonlinear elasticity in Berea Sandstone
Rivière, Jacques; Pimienta, Lucas; Scuderi, Marco; Candela, Thibault; Shokouhi, Parisa; Fortin, Jérôme; Schubnel, Alexandre; Marone, Chris; Johnson, Paul A.
2016-04-01
Acoustoelasticity measurements in a sample of room dry Berea sandstone are conducted at various loading frequencies to explore the transition between the quasi-static (f→0) and dynamic (few kilohertz) nonlinear elastic response. We carry out these measurements at multiple confining pressures and perform a multivariate regression analysis to quantify the dependence of the harmonic content on strain amplitude, frequency, and pressure. The modulus softening (equivalent to the harmonic at 0f) increases by a factor 2-3 over 3 orders of magnitude increase in frequency. Harmonics at 2f, 4f, and 6f exhibit similar behaviors. In contrast, the harmonic at 1f appears frequency independent. This result corroborates previous studies showing that the nonlinear elasticity of rocks can be described with a minimum of two physical mechanisms. This study provides quantitative data that describes the rate dependency of nonlinear elasticity. These findings can be used to improve theories relating the macroscopic elastic response to microstructural features.
Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan
2016-05-01
Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz.
Correction of Frequency-Dependent Nonlinear Errors in Direct-Conversion Transceivers
2016-03-31
University of Oklahoma Norman , Oklahoma, USA, 73019 pyraminxrox@ou.edu, fulton@ou.edu Abstract: Correction of nonlinear and frequency dependent...behavior of low -cost integrated transceivers, especially in the area of phased arrays, where many transceivers will be used to comprise the system as...analog RF portion of the receive chain of the low -cost, direct-conversion radar system initially presented in [2]. The spectral distortion seen here
Directory of Open Access Journals (Sweden)
Christopher Heine
2014-08-01
Full Text Available A detailed description of the rubber parts’ properties is gaining in importance in the current simulation models of multi-body simulation. One application example is a multi-body simulation of the washing machine movement. Inside the washing machine, there are different force transmission elements, which consist completely or partly of rubber. Rubber parts or, generally, elastomers usually have amplitude-dependant and frequency-dependent force transmission properties. Rheological models are used to describe these properties. A method for characterization of the amplitude and frequency dependence of such a rheological model is presented within this paper. Within this method, the used rheological model can be reduced or expanded in order to illustrate various non-linear effects. An original result is given with the automated parameter identification. It is fully implemented in Matlab. Such identified rheological models are intended for subsequent implementation in a multi-body model. This allows a significant enhancement of the overall model quality.
Fried, Jasper P.; Fangohr, Hans; Kostylev, Mikhail; Metaxas, Peter J.
2016-12-01
We have performed micromagnetic simulations of low-amplitude gyrotropic dynamics of magnetic vortices in the presence of spatially uniform out-of-plane magnetic fields. For disks having small lateral dimensions, we observe a frequency drop-off when approaching the disk's out-of-plane saturation field. This nonlinear frequency response is shown to be associated with a vortex core deformation driven by nonuniform demagnetizing fields that act on the shifted core. The deformation results in an increase in the average out-of-plane magnetization of the displaced vortex state (contrasting the effect of gyrofield-driven deformation at low field), which causes the exchange contribution to the vortex stiffness to switch from positive to negative. This generates an enhanced reduction of the core stiffness at high field, leading to a nonlinear field dependence of the gyrotropic mode frequency.
Li, Haipeng; Xu, Hu; Shen, Xiaopeng; Han, Kui; Bi, Zetong; Xu, Runfeng
2016-06-01
We investigated the electronic properties and second hyperpolarizabilities of hydrogenated silicon nanoclusters (H-SiNCs) by using the density functional theory method. The effects of cluster size, external electric field and incident frequency on the second hyperpolarizability were also examined, respectively. We found that small H-SiNCs exhibit large second hyperpolarizability. With the increase of the number of silicon atoms in H-SiNCs, the frontier molecular orbital energy gap decreases, attributed to the enhancement of the second hyperpolarizability. Interestingly, we also found the electric-field-induced gigantic enhancement of the second hyperpolarizability for H-SiNCs due to the change of electron density distributions. In addition, our results demonstrate a significant dependence on the frequency of incident light.
Li, Haipeng; Xu, Hu; Shen, Xiaopeng; Han, Kui; Bi, Zetong; Xu, Runfeng
2016-06-16
We investigated the electronic properties and second hyperpolarizabilities of hydrogenated silicon nanoclusters (H-SiNCs) by using the density functional theory method. The effects of cluster size, external electric field and incident frequency on the second hyperpolarizability were also examined, respectively. We found that small H-SiNCs exhibit large second hyperpolarizability. With the increase of the number of silicon atoms in H-SiNCs, the frontier molecular orbital energy gap decreases, attributed to the enhancement of the second hyperpolarizability. Interestingly, we also found the electric-field-induced gigantic enhancement of the second hyperpolarizability for H-SiNCs due to the change of electron density distributions. In addition, our results demonstrate a significant dependence on the frequency of incident light.
Li, Haipeng; Xu, Hu; Shen, Xiaopeng; Han, Kui; Bi, Zetong; Xu, Runfeng
2016-01-01
We investigated the electronic properties and second hyperpolarizabilities of hydrogenated silicon nanoclusters (H-SiNCs) by using the density functional theory method. The effects of cluster size, external electric field and incident frequency on the second hyperpolarizability were also examined, respectively. We found that small H-SiNCs exhibit large second hyperpolarizability. With the increase of the number of silicon atoms in H-SiNCs, the frontier molecular orbital energy gap decreases, attributed to the enhancement of the second hyperpolarizability. Interestingly, we also found the electric-field-induced gigantic enhancement of the second hyperpolarizability for H-SiNCs due to the change of electron density distributions. In addition, our results demonstrate a significant dependence on the frequency of incident light. PMID:27305957
[Frequency dependance of compliance].
Gayrard, P
1975-01-01
Resistance of peripheral or "small" airways is only a small part of the total pulmonary resistance (Raw). Even considerable obstruction in these airways will have little effect on total resistance. Conversely this will lead to inequality in the time constants of units in parallel, and dynamic lung compliance (C dyn) shall fall as respiratory frequence increases. C dyn is measured from simultaneous recordings of transpulmonary pressure (esophageal balloon) and volume obtained from a volume displacement plethysmograph. If Raw and static compliance are found to be normal, the frequency dependance of compliance will result from peripheral airway obstruction only. Early stages of chronic airway obstruction can be established by this method. However this appear not suitable for wide-scale studies.
Nonlinear frequency conversion in fiber lasers
DEFF Research Database (Denmark)
Svane, Ask Sebastian
The concept of nonlinear frequency conversion entails generating light at new frequencies other than those of the source light. The emission wavelength of typical fiber laser systems, relying on rare-earth dopants, are constrained within specific bands of the infrared region. By exploiting...... nonlinear processes, light from these specific wavelength bands can be used to generate light at new frequencies otherwise not obtainable by rare-earth elements. This thesis describes work covering Raman fiber lasers (RFLs) and amplifiers for nonlinear frequency down-conversion, and also the method...
Nonlinear Modelling of Low Frequency Loudspeakers
DEFF Research Database (Denmark)
Olsen, Erling Sandermann
1997-01-01
In the Danish LoDist project on distortion from dynamic low-frequency loudspeakers, a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...... for describing the nonlinearities have been developed. Different aspects of modelling loudspeaker nonlinearities are discussed, and the program is briefly described....
Nonlinear Modelling of Low Frequency Loudspeakers
DEFF Research Database (Denmark)
Olsen, Erling Sandermann
1997-01-01
In the Danish LoDist project on distortion from dynamic low frequency loudspeakers a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...... for describing the nonlinearities have been developed. Different aspects of modelling loudspeaker nonlinearities are discussed and the program is briefly demonstrated....
Multiorder nonlinear diffraction in frequency doubling processes
DEFF Research Database (Denmark)
Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw
2009-01-01
We analyze experimentally light scattering from 2 nonlinear gratings and observe two types of second-harmonic frequency-scattering processes. The first process is identified as Raman–Nath type nonlinear diffraction that is explained by applying only transverse phase-matching conditions. The angular...... position of this type of diffraction is defined by the ratio of the second-harmonic wavelength and the grating period. In contrast, the second type of nonlinear scattering process is explained by the longitudinal phase matching only, being insensitive to the nonlinear grating...
Frequency comb generation in quadratic nonlinear media
Ricciardi, Iolanda; Parisi, Maria; Maddaloni, Pasquale; Santamaria, Luigi; De Natale, Paolo; De Rosa, Maurizio
2014-01-01
Optical frequency combs are nowadays routinely used tools in a wide range of scientific and technological applications. Different techniques have been developed for generating optical frequency combs, like mode-locking in lasers and third-order interactions in microresonators, or to extend their spectral capabilities, using frequency conversion processes in nonlinear materials. Here, we experimentally demonstrate and theoretically explain the onset of optical frequency combs in a simple cavity-enhanced second-harmonic-generation system, exploiting second-order nonlinear interactions. We develop an elemental model which provides a deep physical insight into the observed dynamics. Moreover, despite the different underlying physical mechanism, the proposed model is remarkably similar to the description of third-order effects in microresonators, revealing a potential variety of new effects to be explored. Finally, exploiting a nonlinearity intrinsically stronger than the third-order one, our work lays the groundw...
Nonlinear frequency response analysis of structural vibrations
Weeger, Oliver; Wever, Utz; Simeon, Bernd
2014-12-01
In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.
Frequency Dependent Attenuation Revisited
Richard, Kowar; Xavier, Bonnefond
2009-01-01
The work is inspired by thermo-and photoacoustic imaging, where recent efforts are devoted to take into account attenuation and varying wave speed parameters. In this paper we study causal equations describing propagation of attenuated pressure waves. We review standard models like frequency power laws and and the thermo-viscous equation. The lack of causality of standard models in the parameter range relevant for photoacoustic imaging requires to derive novel equations. The main ingredients for deriving causal equations are the Kramers-Kronig relation and the mathematical concept of linear system theory. The theoretical results of this work are underpined by numerical experiments.
Nonlinear Negative Refraction by Difference Frequency Generation
Cao, Jianjun; Feng, Yaming; Wan, Wenjie
2015-01-01
Negative refraction has attracted much interest for its promising capability in imaging applications. Such an effect can be implemented by negative index meta-materials, however, which are usually accompanied by high loss and demanding fabrication processes. Recently, alternative nonlinear approaches like phase conjugation and four wave mixing have shown advantages of low-loss and easy-to-implement, but associated problems like narrow accepting angles can still halt their practical applications. Here we demonstrate theoretically and experimentally a new scheme to realize negative refraction by nonlinear difference frequency generation with wide tunability, where a thin BBO slice serves as a negative refraction layer bending the input signal beam to the idler beam at a negative angle. Furthermore, we realize optical focusing effect using such nonlinear negative refraction, which may enable many potential applications in imaging science.
Nonlinear negative refraction by difference frequency generation
Cao, Jianjun; Shen, Dongyi; Feng, Yaming; Wan, Wenjie
2016-05-01
Negative refraction has attracted much interest for its promising capability in imaging applications. Such an effect can be implemented by negative index meta-materials, however, which are usually accompanied by high loss and demanding fabrication processes. Recently, alternative nonlinear approaches like phase conjugation and four wave mixing have shown advantages of low-loss and easy-to-implement, but associated problems like narrow accepting angles can still halt their practical applications. Here, we demonstrate theoretically and experimentally a scheme to realize negative refraction by nonlinear difference frequency generation with wide tunability, where a thin Beta barium borate slice serves as a negative refraction layer bending the input signal beam to the idler beam at a negative angle. Furthermore, we realize optical focusing effect using such nonlinear negative refraction, which may enable many potential applications in imaging science.
Gorb, Yuliya
2010-11-01
We model and analyze the response of nonlinear, residually stressed elastic bodies subjected to small amplitude vibrations superimposed upon large deformations. The problem derives from modeling the use of intravascular ultrasound (IVUS) imaging to interrogate atherosclerotic plaques in vivo in large arteries. The goal of this investigation is twofold: (i) introduce a modeling framework for residual stress that unlike traditional Fung type classical opening angle models may be used for a diseased artery, and (ii) investigate the sensitivity of the spectra of small amplitude high frequency time harmonic vibrations superimposed on a large deformation to the details of the residual stress stored in arteries through a numerical simulation using physiologic parameter values under both low and high blood pressure loadings. The modeling framework also points the way towards an inverse problem using IVUS techniques to estimate residual stress in healthy and diseased arteries. © 2010 Elsevier Ltd. All rights reserved.
Frequency-tunable superconducting resonators via nonlinear kinetic inductance
Energy Technology Data Exchange (ETDEWEB)
Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Gao, J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Chaudhuri, S. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Bockstiegel, C. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)
2015-08-10
We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.
Dispersion and polarization dependence of mobile carrier optical nonlinearities
Rustagi, K. C.
1984-06-01
Based on the author's earlier work, it is shown that the proper inclusion of carrier scattering should strongly modify the frequency and polarization dependence of optical nonlinearities due to mobile carriers in semiconductors. When the momentum relaxation is much faster than the energy relaxation, the intensity dependent refractive index is enhanced, the induced birefringence becomes a sharp function of the difference frequency ωa-ωb, and a collision induced stimulated Raman effect becomes important.
Microbubble cloud characterization by nonlinear frequency mixing.
Cavaro, M; Payan, C; Moysan, J; Baqué, F
2011-05-01
In the frame of the fourth generation forum, France decided to develop sodium fast nuclear reactors. French Safety Authority requests the associated monitoring of argon gas into sodium. This implies to estimate the void fraction, and a histogram indicating the bubble population. In this context, the present letter studies the possibility of achieving an accurate determination of the histogram with acoustic methods. A nonlinear, two-frequency mixing technique has been implemented, and a specific optical device has been developed in order to validate the experimental results. The acoustically reconstructed histograms are in excellent agreement with those obtained using optical methods.
New nonlinear polarization effects for frequency selection
Karagodova, Tamara Y.; Karagodov, Alexander I.
1998-05-01
The method of computer simulations on nonlinear resonant magnetooptical effects developed for real multi-level atoms in the two laser fields of arbitrary intensity and external magnetic field is applied for the polarization effects of different types calculations and investigations of the dependence of the characteristics of these effects on magnetic field strength, intensities, polarization and detunings of laser fields for alkaline atoms. The essence of the method consists in simulations and analysis of the plots of dependence of quasi energies on parameters, which are obtained with the help of sorting subprogram, and selection of suitable algorithms for calculations of characteristics of nonlinear resonant magnetooptical effects. One photon and two photon resonant effects are investigated for wide range of magnetic field strength from Zeeman to Paschen Back effects. Some new features in the spectra of rotation of plane of polarization and circular dichroism of different types are predicted. The results show the agreement with known experiments. Such calculations of nonlinear resonant magnetooptical effects in the intense laser fields resonant to adjacent transitions and magnetic field show the opportunity of investigation the modifications of electronic structure due to intense radiation fields and strong external magnetic field in atomic gases and also may be used for the treatment of new methods of phase-polarization selection of modes of tunable lasers.
Frequency Response and Gap Tuning for Nonlinear Electrical Oscillator Networks
Bhat, Harish S.; Vaz, Garnet J.
2013-01-01
We study nonlinear electrical oscillator networks, the smallest example of which consists of a voltage-dependent capacitor, an inductor, and a resistor driven by a pure tone source. By allowing the network topology to be that of any connected graph, such circuits generalize spatially discrete nonlinear transmission lines/lattices that have proven useful in high-frequency analog devices. For such networks, we develop two algorithms to compute the steady-state response when a subset of nodes are driven at the same fixed frequency. The algorithms we devise are orders of magnitude more accurate and efficient than stepping towards the steady-state using a standard numerical integrator. We seek to enhance a given network's nonlinear behavior by altering the eigenvalues of the graph Laplacian, i.e., the resonances of the linearized system. We develop a Newton-type method that solves for the network inductances such that the graph Laplacian achieves a desired set of eigenvalues; this method enables one to move the eigenvalues while keeping the network topology fixed. Running numerical experiments using three different random graph models, we show that shrinking the gap between the graph Laplacian's first two eigenvalues dramatically improves a network's ability to (i) transfer energy to higher harmonics, and (ii) generate large-amplitude signals. Our results shed light on the relationship between a network's structure, encoded by the graph Laplacian, and its function, defined in this case by the presence of strongly nonlinear effects in the frequency response. PMID:24223751
Non-linear Frequency Scaling Algorithm for FMCW SAR Data
Meta, A.; Hoogeboom, P.; Ligthart, L.P.
2006-01-01
This paper presents a novel approach for processing data acquired with Frequency Modulated Continuous Wave (FMCW) dechirp-on-receive systems by using a non-linear frequency scaling algorithm. The range frequency non-linearity correction, the Doppler shift induced by the continuous motion and the ran
Functional possibilities of nonlinear crystals for frequency conversion: uniaxial crystals
Energy Technology Data Exchange (ETDEWEB)
Andreev, Yu M [Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation); Arapov, Yu D; Kasyanov, I V [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation); Grechin, S G; Nikolaev, P P [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)
2016-01-31
The method and results of the analysis of phase-matching and nonlinear properties for all point groups of symmetry of uniaxial crystals that determine their functional possibilities for solving various problems of nonlinear frequency conversion of laser radiation are presented. (nonlinear optical phenomena)
Manimala, James M; Sun, C T
2016-06-01
The amplitude-dependent dynamic response in acoustic metamaterials having nonlinear local oscillator microstructures is studied using numerical simulations on representative discrete mass-spring models. Both cubically nonlinear hardening and softening local oscillator cases are considered. Single frequency, bi-frequency, and wave packet excitations at low and high amplitude levels were used to interrogate the models. The propagation and attenuation characteristics of harmonic waves in a tunable frequency range is found to correspond to the amplitude and nonlinearity-dependent shifts in the local resonance bandgap for such nonlinear acoustic metamaterials. A predominant shift in the propagated wave spectrum towards lower frequencies is observed. Moreover, the feasibility of amplitude and frequency-dependent selective filtering of composite signals consisting of individual frequency components which fall within propagating or attenuating regimes is demonstrated. Further enrichment of these wave manipulation mechanisms in acoustic metamaterials using different combinations of nonlinear microstructures presents device implications for acoustic filters and waveguides.
Analysis of nonlinear behavior of loudspeakers using the instantaneous frequency
DEFF Research Database (Denmark)
Huang, Hai; Jacobsen, Finn
2003-01-01
It is well know that the weakest link in a sound reproduction chain is the loudspeaker. The most significant effect on the sound quality is nonlinear distortion of loudspeakers. Many methods are applied to analyze the nonlinear distortion of loudspeakers. Almost all of the methods are based...... on the Fourier transform. In this work, a new method using the instantaneous frequency is introduced for describing and characterizing loudspeaker nonlinearities. First, numerical integration is applied to simulate the nonlinearities of loudspeakers caused by two nonlinear parameters, force factor and stiffness......, separately. Then, a practical loudspeaker is used in an experiment and its nonlinear characteristics are analyzed with the instantaneous frequency. The results provide a clear physical interpretation of the nonlinearities of loudspeakers and will be useful for understanding the nonlinear behavior...
Utilization of multiple frequencies in 3D nonlinear microwave imaging
DEFF Research Database (Denmark)
Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob
2012-01-01
The use of multiple frequencies in a nonlinear microwave algorithm is considered. Using multiple frequencies allows for obtaining the improved resolution available at the higher frequencies while retaining the regularizing effects of the lower frequencies. However, a number of different challenges...... at lower frequencies are used as starting guesses for reconstructions at higher frequencies. The performance is illustrated using simulated 2-D data and data obtained with the 3-D DTU microwave imaging system....
Parameter Identification of Weakly Nonlinear Vibration System in Frequency Domain
Directory of Open Access Journals (Sweden)
Jiehua Peng
2004-01-01
Full Text Available A new method of identifying parameters of nonlinearly vibrating system in frequency domain is presented in this paper. The problems of parameter identification of the nonlinear dynamic system with nonlinear elastic force or nonlinear damping force are discussed. In the method, the mathematic model of parameter identification is frequency response function. Firstly, by means of perturbation method the frequency response function of weakly nonlinear vibration system is derived. Next, a parameter transformation is made and the frequency response function becomes a linear function of the new parameters. Then, based on this function and with the least square method, physical parameters of the system are identified. Finally, the applicability of the proposed technique is confirmed by numerical simulation.
DPOAE generation dependence on primary frequencies ratio
Botti, Teresa; Sisto, Renata; Moleti, Arturo; D'Amato, Luisa; Sanjust, Filippo
2015-12-01
Two different mechanisms are responsible for the DPOAE generation. The nonlinear distortion wave-fixed mechanism generates the DPOAE Zero-Latency (ZL) component, as a backward traveling wave from the "overlap" region. Linear reflection of the forward DP wave (IDP) generates the DPOAE Long-Latency (LL) component through a place-fixed mechanism. ZL and LL components add up vectorially to generate the DPOAE recorded in the ear canal. The 2f1 - f2 and 2f2 - f1 DPOAE intensity depends on the stimulus level and on the primary frequency ratio r = f2/f1, where f1 and f2 are the primary stimuli frequencies. Here we study the behavior of the ZL and LL DPOAE components as a function of r by both numerical and laboratory experiments, measuring DPAOEs with an equal primary levels (L1 = L2) paradigm in the range [35, 75] dB SPL, with r ranging in [1.1, 1.45]. Numerical simulations of a nonlocal nonlinear model have been performed without cochlear roughness, to suppress the linear reflection mechanism. In this way the model solution at the base represents the DPOAE ZL component, and the solution at the corresponding DPOAE tonotopic place corresponds to the IDP. This technique has been not effectual to study the 2f2 - f1 DPOAE, as a consequence of its generation mechanism. While the 2f1 - f2 generation place is known to be the tonotopic place x(f2), the 2f2 - f1 DPOAE one has to be assumed basal to its corresponding reflection place. That is because ZL components generated in x(f2) cannot significantly pass through their resonant place. Moreover increasing the ratio r, 2f2 - f1 ZL and LL generation place approach each other, because the overlap region of primary tones decreases. Consequently, the distinction between the two places becomes complicated. DPOAEs have been measured in six young normal-hearing subjects. DPOAE ZL and LL components have been separated by a time-frequency filtering method based on the wavelet transform 1. due to their different phase gradient delay
Dispersion engineering silicon nitride waveguides for broadband nonlinear frequency conversion
Epping, J.P.
2015-01-01
In this thesis, we investigated nonlinear frequency conversion of optical wavelengths using integrated silicon nitride (Si3N4) waveguides. Two nonlinear conversion schemes were considered: seeded four-wave mixing and supercontinuum generation. The first—seeded four-wave mixing—is investigated by a n
Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Samiran, E-mail: sran_g@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)
2016-08-15
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.
Nonlinear Modelling of Low Frequency Loudspeakers
DEFF Research Database (Denmark)
Olsen, Erling Sandermann; Christensen, Knud Bank
1996-01-01
A central part of the Danish LoDist project has been the derivation of an extended equivalent circuit and a corresponding set of differential equations suitable for the simulation of high-fidelity woofers under large and very large (clipping) signal conditions. A model including suspension creep ...... and eddy current losses seems to be sufficient, but all the parameters of the model vary with the position of the diaphragm. The model and the associated set of nonlinear differential equations and the solution of the equations are discussed....
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin
2013-01-01
We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...
Frequency Dependence of Longitudinal Correlation Length in the Yellow Sea
Institute of Scientific and Technical Information of China (English)
LI Feng-Hua; ZHANG Ren-He
2008-01-01
Spatial correlation coefficient is one of the most important parameters for the description of sound propagation in shallow water. Frequency dependence of the longitudinal correlation length is still an open topic. We observe in a shallow water experiment that the longitudinal correlation length in units of wavelength increases with the increase of frequency. This phenomenon has not been seen in the published papers. The theoretical analysis and numerical simulations indicate that the non-linear frequency relationship of the bottom attenuation is the main cause of this phenomenon.
Frequency-dependent heat capacity
DEFF Research Database (Denmark)
Behrens, Claus Flensted
and as a thermometer. The aim of the work is to improve and understand this planar heater experiment. I find: • Carbon has advantages as heater material over the traditionally used metal (nickel) heaters. • The thermal coupling to the surrounding temperature bath should not be made through the liquid but through......The frequency–dependent heat capacity of super-cooled glycerol near the glass transition is measured using the 3w detection technique. An electrical conducting thin film with a temperature–dependent electrical resistance is deposited on a substrate. The thin film is used simultaneously as a heater...... the substrate. • Edge effects, as a result of the finite size of the heater, play an important role. The traditionally way of dealing with these effects are not entirely correct. • The Cole–Davidson function with bCD...
Amplitude-dependent contraction/elongation of nonlinear Lamb waves
Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2016-04-01
Nonlinear elastic guided waves find application in various disciplines of science and engineering, such as non- destructive testing and structural health monitoring. Recent recognition and quantification of their amplitude- dependent changes in spectral properties has contributed to the development of new monitoring concepts for mechanical structures. The focus of this work is to investigate and predict amplitude-dependent shifts in Lamb wave dispersion curves. The theory for frequency/wavenumber shifts for plate waves, based on a Lindstedt-Poincaré perturbation approach, was presented by the authors in previous years. Equivalently, spectral properties changes can be seen as wavelength contraction/elongation. Within the proposed framework, the wavelength of a Lamb wave depends on several factors; e.g., wave amplitude and second-, third- and fourth-order elastic constants, and others. Various types of nonlinear effects are considered in presented studies. Sensitivity studies for model parameters, i.e. higher-order elastic constants, are performed to quantify their influence on Lamb wave frequency/wavenumber shifting, and to identify the key parameters governing wavelength tuning.
The Nonlinear Dynamics of Time Dependent Subcritical Baroclinic Currents
Pedlosky, J.; Flierl, G. R.
2006-12-01
The nonlinear dynamics of baroclinically unstable waves in a time dependent zonal shear flow is considered in the framework of the two-layer Phillips model on the beta plane. In most cases considered in this study the amplitude of the shear is well below the critical value of the steady shear version of the model. Nevertheless, the time dependent problem in which the shear oscillates periodically is unstable, and the unstable waves grow to substantial amplitudes, in some cases with strongly nonlinear and turbulent characteristics. For very small values of the shear amplitude in the presence of dissipation an analytical, asymptotic theory predicts a self-sustained wave whose amplitude undergoes a nonlinear oscillation whose period is amplitude dependent. There is a sensitive amplitude dependence of the wave on the frequency of the oscillating shear when the shear amplitude is small. This behavior is also found in a truncated model of the dynamics, and that model is used to examine larger shear amplitudes. When there is a mean value of the shear in addition to the oscillating component, but such that the total shear is still subcritical, the resulting nonlinear states exhibit a rectified horizontal buoyancy flux with a nonzero time average as a result of the instability of the oscillating shear. For higher, still subcritical, values of the shear we have detected a symmetry breaking in which a second cross-stream mode is generated through an instability of the unstable wave although this second mode would by itself be stable on the basic time dependent current. For shear values that are substantially subcritical but of order of the critical shear, calculations with a full quasi-geostrophic numerical model reveal a turbulent flow generated by the instability. If the beta effect is disregarded the inviscid, linear problem is formally stable. However, our calculations show that a small degree of nonlinearity is enough to destabilize the flow leading to large amplitude
Institute of Scientific and Technical Information of China (English)
Xiao Li; Zhang Wei; Huang Yi-Dong; Peng Jiang-De
2008-01-01
High nonlinear microstructure fibre (HNMF) is preferred in nonlinear fibre optics, especially in the applications of optical parametric effects, due to its high optical nonlinear coefficient. However, polarization dependent dispersion will impact the nonlinear optical parametric process in HNMFs. In this paper, modulation instability (MI) method is used to measure the polarization dependent dispersion of a piece of commercial HNMF, including the group velocity dispersion, the dispersion slope, the fourth-order dispersion and group birefringence. It also experimentally demonstrates the impact of the polarization dependent dispersion on the continuous wave supercontinuum (SC) generation. On one axis MI sidebands with symmetric frequency dctunings are generated, while on the other axis with larger MI frequency detuning, SC is generated by soliton self-frequency shift.
Tiberkevich, V. S.; Slavin, A. N.; Kim, Joo-Von
2008-01-01
The temperature dependence of the generation linewidth for an auto-oscillator with a nonlinear frequency shift is calculated. It is shown that the frequency nonlinearity creates a finite correlation time, tau, for the phase fluctuations. In the low-temperature limit in which the spectral linewidth is smaller than 1/tau, the line shape is approximately Lorentzian and the linewidth is linear in temperature. In the opposite high-temperature limit in which the linewidth is larger than 1/tau, the ...
Frequency dependence of the subharmonic Shapiro steps.
Tekić, Jasmina; Ivić, Zoran
2011-05-01
Frequency dependence of the subharmonic Shapiro steps has been studied in the ac driven overdamped Frenkel-Kontorova model with deformable substrate potential. As potential gets deformed, in addition to the harmonic steps, subharmonic steps appear in the number and size that increase as the frequency of the external force increases. It was found that size of both harmonic and subharmonic steps strongly depend on the frequency where in the high-amplitude limit oscillatory dependence appears. When expressed as a function of period these oscillations of the step size with frequency have the same form as the oscillations of the step size with amplitude. Deformation of the potential has strong influence on these oscillations, and as in the case of amplitude dependence, with the increase of deformation, the same three distinctive types of behavior have been classified.
NONLINEAR NATURAL FREQUENCY OF SHALLOW CONICAL SHELLS WITH VARIABLE THICKNESS
Institute of Scientific and Technical Information of China (English)
WANG Xin-zhi; HAN Ming-jun; ZHAO Yong-gang; YEH Kai-yuan
2005-01-01
The nonlinear dynamical variation equation and compatible equation of the shallow conical shell with variable thickness are obtained by the theory of nonlinear dynamical variation equation and compatible equation of the circular thin plate with variable thickness. Assuming the thin film tension is composed of two items. The compatible equation is transformed into two independent equations. Selecting the maximum amplitude in the center of the shallow conical shells with variable thickness as the perturbation parameter,the variation equation and the differential equation are transformed into linear expression by theory of perturbation variation method. The nonlinear natural frequency of shallow conical shells with circular bottom and variable thickness under the fixed boundary conditions is solved. In the first approximate equation, the linear natural frequency of shallow conical shells with variable thickness is obtained. In the third approximate equation, the nonlinear uatural frequency of it is obtained. The figures of the characteristic curves of the natural frequency varying with stationary loads, large amplitude, and variable thickness coefficient are plotted. A valuable reference is given for dynamic engineering.
Blind speech source separation via nonlinear time-frequency masking
Institute of Scientific and Technical Information of China (English)
XU Shun; CHEN Shaorong; LIU Yulin
2008-01-01
Aim at the underdetermined convolutive mixture model, a blind speech source separation method based on nonlinear time-frequency masking was proposed, where the approximate W-disjoint orthogonality (W-DO) property among independent speech signals in time-frequency domain is utilized. In this method, the observation mixture signal from multimicrophones is normalized to be independent of frequency in the time-frequency domain at first, then the dynamic clustering algorithm is adopted to obtain the active source information in each time-frequency slot, a nonlinear function via deflection angle from the cluster center is selected for time-frequency masking, finally the blind separation of mixture speech signals can be achieved by inverse STFT (short-time Fourier transformation). This method can not only solve the problem of frequency permutation which may be met in most classic frequency-domain blind separation techniques, but also suppress the spatial direction diffusion of the separation matrix. The simulation results demonstrate that the proposed separation method is better than the typical BLUES method, the signal-noise-ratio gain (SNRG) increases 1.58 dB averagely.
Frequency-dependent streaming potentials: a review
Jouniaux, Laurence; 10.1155/2012/648781
2012-01-01
The interpretation of seismoelectric observations involves the dynamic electrokinetic coupling, which is related to the streaming potential coefficient. We describe the different models of the frequency-dependent streaming potential, mainly the Packard's and the Pride's model. We compare the transition frequency separating low-frequency viscous flow and high-frequency inertial flow, for dynamic permeability and dynamic streaming potential. We show that the transition frequency, on a various collection of samples for which both formation factor and permeability are measured, is predicted to depend on the permeability as inversely proportional to the permeability. We review the experimental setups built to be able to perform dynamic measurements. And we present some measurements and calculations of the dynamic streaming potential.
Phase-dependent dual-frequency contrast imaging at sub-harmonic frequency.
Shen, Che-Chou; Cheng, Chih-Hao; Yeh, Chih-Kuang
2011-02-01
Sub-harmonic imaging techniques have been shown to provide a higher contrast-to-tissue ratio (CTR) at the cost of relatively low signal intensity from ultrasound contrast agents (UCAs). In this study, we propose a method of dual-frequency excitation to further enhance the CTR of subharmonic imaging. A dual-frequency excitation pulse is an amplitude-modulated waveform which consists of two sinusoids with frequencies of f₁ (e.g., 9 MHz) and f₂ (e.g., 6 MHz) and the resulting envelope component at (f₁ - f₂) (e.g., 3 MHz) can serve as a driving force to excite the nonlinear response of UCAs. In this study, the f₂, at twice of the resonance frequency of UCAs, is adopted to efficiently generate a sub-harmonic component at half of the f₂ frequency, and f₁ is included to enhance the high-order nonlinear response of UCAs at the sub-harmonic frequency. The second- and third-order nonlinear components resulting from the envelope component would spectrally overlap at the sub-harmonic frequency when f₁ and f₂ are properly selected. We further optimize the generation of the sub-harmonic component by tuning the phase terms between second- and third-order nonlinear components. The results show that, with dual-frequency excitation, the CTR at sub-harmonic frequency improves compared with the conventional tone-burst method. Moreover, the CTR changes periodically with the relative phase of the separate frequency component in the dual-frequency excitation, leading to a difference of as much as 9.1 dB between the maximal and minimal CTR at 300 kPa acoustic pressure. The echo produced from the envelope component appears to be specific for UCAs, and thus the proposed method has the potential to improve both SNR and CTR in sub-harmonic imaging. Nevertheless, the dual-frequency waveform may suffer from frequency-dependent attenuation that degrades the generation of the envelope component. The deviation of the microbubble's resonance characteristics from the selection of
Dual-frequency transducer for nonlinear contrast agent imaging.
Guiroy, Axel; Novell, Anthony; Ringgaard, Erling; Lou-Moeller, Rasmus; Grégoire, Jean-Marc; Abellard, André-Pierre; Zawada, Tomasz; Bouakaz, Ayache; Levassort, Franck
2013-12-01
Detection of high-order nonlinear components issued from microbubbles has emerged as a sensitive method for contrast agent imaging. Nevertheless, the detection of these high-frequency components, including the third, fourth, and fifth harmonics, remains challenging because of the lack of transducer sensitivity and bandwidth. In this context, we propose a new design of imaging transducer based on a simple fabrication process for high-frequency nonlinear imaging. The transducer is composed of two elements: the outer low-frequency (LF) element was centered at 4 MHz and used in transmit mode, whereas the inner high-frequency (HF) element centered at 14 MHz was used in receive mode. The center element was pad-printed using a lead zirconate titanate (PZT) paste. The outer element was molded using a commercial PZT, and curved porous unpoled PZT was used as backing. Each piezoelectric element was characterized to determine the electromechanical performance with thickness coupling factor around 45%. After the assembly of the two transducer elements, hydrophone measurements (electroacoustic responses and radiation patterns) were carried out and demonstrated a large bandwidth (70% at -3 dB) of the HF transducer. Finally, the transducer was evaluated for contrast agent imaging using contrast agent microbubbles. The results showed that harmonic components (up to the sixth harmonic) of the microbubbles were successfully detected. Moreover, images from a flow phantom were acquired and demonstrated the potential of the transducer for high-frequency nonlinear contrast imaging.
DEFF Research Database (Denmark)
Thomsen, Jon Juel
2006-01-01
Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...
State dependent matrices and balanced energy functions for nonlinear systems
Scherpen, Jacquelien M.A.; Gray, W. Steven
2000-01-01
The nonlinear extension of the balancing procedure requires the case of state dependent quadratic forms for the energy functions, i.e., the nonlinear extensions of the linear Gramians are state dependent matrices. These extensions have some interesting ambiguities that do not occur in the linear cas
Quantitative analysis of a frequency-domain nonlinearity indicator.
Reichman, Brent O; Gee, Kent L; Neilsen, Tracianne B; Miller, Kyle G
2016-05-01
In this paper, quantitative understanding of a frequency-domain nonlinearity indicator is developed. The indicator is derived from an ensemble-averaged, frequency-domain version of the generalized Burgers equation, which can be rearranged in order to directly compare the effects of nonlinearity, absorption, and geometric spreading on the pressure spectrum level with frequency and distance. The nonlinear effect is calculated using pressure-squared-pressure quadspectrum. Further theoretical development has given an expression for the role of the normalized quadspectrum, referred to as Q/S by Morfey and Howell [AIAA J. 19, 986-992 (1981)], in the spatial rate of change of the pressure spectrum level. To explore this finding, an investigation of the change in level for initial sinusoids propagating as plane waves through inviscid and thermoviscous media has been conducted. The decibel change with distance, calculated through Q/S, captures the growth and decay of the harmonics and indicates that the most significant changes in level occur prior to sawtooth formation. At large distances, the inviscid case results in a spatial rate of change that is uniform across all harmonics. For thermoviscous media, large positive nonlinear gains are observed but offset by absorption, which leads to a greater overall negative spatial rate of change for higher harmonics.
Nonlinear Vibration of Oscillation Systems using Frequency-Amplitude Formulation
Directory of Open Access Journals (Sweden)
A. Fereidoon
2012-01-01
Full Text Available In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifth-order nonlinearity for two examples using He's Frequency-Amplitude Formulation (HFAF.The effectiveness and convenience of the method is illustrated in these examples. It will be shown that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems.
Time-Dependent Mean-Field Games with Logarithmic Nonlinearities
Gomes, Diogo A.
2015-10-06
In this paper, we prove the existence of classical solutions for time-dependent mean-field games with a logarithmic nonlinearity and subquadratic Hamiltonians. Because the logarithm is unbounded from below, this nonlinearity poses substantial mathematical challenges that have not been addressed in the literature. Our result is proven by recurring to a delicate argument which combines Lipschitz regularity for the Hamilton-Jacobi equation with estimates for the nonlinearity in suitable Lebesgue spaces. Lipschitz estimates follow from an application of the nonlinear adjoint method. These are then combined with a priori bounds for solutions of the Fokker-Planck equation and a concavity argument for the nonlinearity.
A Closed Form Solution for Nonlinear Oscillators Frequencies Using Amplitude-Frequency Formulation
Directory of Open Access Journals (Sweden)
A. Barari
2012-01-01
Full Text Available Many nonlinear systems in industry including oscillators can be simulated as a mass-spring system. In reality, all kinds of oscillators are nonlinear due to the nonlinear nature of springs. Due to this nonlinearity, most of the studies on oscillation systems are numerically carried out while an analytical approach with a closed form expression for system response would be very useful in different applications. Some analytical techniques have been presented in the literature for the solution of strong nonlinear oscillators as well as approximate and numerical solutions. In this paper, Amplitude-Frequency Formulation (AFF approach is applied to analyze some periodic problems arising in classical dynamics. Results are compared with another approximate analytical technique called Energy Balance Method developed by the authors (EBM and also numerical solutions. Close agreement of the obtained results reveal the accuracy of the employed method for several practical problems in engineering.
Non-linear high-frequency waves in the magnetosphere
Indian Academy of Sciences (India)
S Moolla; R Bharuthram; S V Singh; G S Lakhina
2003-12-01
Using ﬂuid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic ﬁeld in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric ﬁeld.
Optimal frequency conversion in the nonlinear stage of modulation instability
Bendahmane, A; Kudlinski, A; Szriftgiser, P; Conforti, M; Wabnitz, S; Trillo, S
2015-01-01
We investigate multi-wave mixing associated with the strongly pump depleted regime of induced modulation instability (MI) in optical fibers. For a complete transfer of pump power into the sideband modes, we theoretically and experimentally demonstrate that it is necessary to use a much lower seeding modulation frequency than the peak MI gain value. Our analysis shows that a record 95 % of the input pump power is frequency converted into the comb of sidebands, in good quantitative agreement with analytical predictions based on the simplest exact breather solution of the nonlinear Schr\\"odinger equation.
Crystalline structure and symmetry dependence of acoustic nonlinearity parameters
Cantrell, John H.
1994-01-01
A quantitative measure of elastic wave nonlinearity in crystals is provided by the acoustic nonlinearity parameters. The nonlinearity parameters are defined for arbitrary propagation modes for solids of arbitrary crystalline symmetry and are determined along the pure mode propagation directions for 33 crystals of cubic symmetry from data reported in the literature. The magnitudes of the nonlinearity parameters are found to exhibit a strong dependence on the crystalline structure and symmetries associated with the modal direction in the solid. Calculations based on the Born-Mayer potential for crystals having a dominant repulsive contribution to the elastic constants from the interatomic pair potential suggest that the origin of the structure dependence is associated with the shape rather than the strength of the potential. Considerations based on variations in crystal symmetry during loading along pure mode propagation directions of face-centered-cubic solids provide a qualitative explanation for the dependence of the acoustic nonlinearity parameters on modal direction.
Nonlinear control of high-frequency phonons in spider silk
Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George
2016-10-01
Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.
Quantum Size- Dependent Third- Order Nonlinear Optical Susceptibility in Semiconductor Quantum Dots
Institute of Scientific and Technical Information of China (English)
SUN Ting; XIONG Gui-guang
2005-01-01
The density matrix approach has been employed to investigate the optical nonlinear polarization in a single semiconductor quantum dot(QD). Electron states are considered to be confined within a quantum dot with infinite potential barriers. It is shown, by numerical calculation, that the third-order nonlinear optical susceptibilities for a typical Si quantum dot is dependent on the quantum size of the quantum dot and the frequency of incident light.
Frequency dependent magnetization of superconductor strip
Energy Technology Data Exchange (ETDEWEB)
Thakur, Kailash Prasad [Landcare Research, Palmerston North (New Zealand); Raj, Ashish [Computer Science in Radiology, Weill Medical College, Cornell University, NY (United States); Brandt, Ernst Helmut [Max-Planck-Institut fuer Metallforschung, POB 800665, D-70506 Stuttgart (Germany); Sastry, Pamidi V P S S, E-mail: thakurk@landcareresearch.co.nz, E-mail: asr2004@med.cornell.edu, E-mail: ehb@mf.mpg.de, E-mail: pamidi@caps.fsu.edu [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States)
2011-04-15
The frequency dependence of magnetic ac loss of thin superconductor strip subjected to an ac magnetic field perpendicular to the surface of the strip is investigated by incorporating a flux creep model into the critical state model of Brandt and Indenbom. It is found that the reduced ac loss exhibits a maximum value at a frequency f{sub m}, which is a rapidly varying function of the applied ac magnetic field. At low magnetic field, f{sub m} becomes zero, and ac loss decreases with frequency as a power law ({approx}f{sup -2/n}). Whereas at high magnetic field f{sub m} becomes infinite and ac loss increases with frequency, still following the power law ({approx}f{sup 1/n}). The analytical results are substantiated with experimental data and the results of a 2D finite element simulation.
Toward an adjustable nonlinear low frequency acoustic absorber
Mariani, R.; Bellizzi, S.; Cochelin, B.; Herzog, P.; Mattei, P. O.
2011-10-01
A study of the targeted energy transfer (TET) phenomenon between an acoustic resonator and a thin viscoelastic membrane has recently been presented in the paper [R. Bellet et al., Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber, Journal of Sound and Vibration 329 (2010) 2768-2791], providing a new path to passive sound control in the low frequency domain where no efficient dissipative device exists. This paper presents experimental results showing that a loudspeaker used as a suspended piston working outside its range of linearity can also be used as a nonlinear acoustic absorber. The main advantage of this technology of absorber is the perspective to adjust independently the device parameters (mass, nonlinear stiffness and damping) according to the operational conditions. To achieve this purpose, quasi-static and dynamic tests have been performed on three types of commercial devices (one with structural modifications), in order to define the constructive characteristics that it should present. An experimental setup has been developed using a one-dimensional acoustic linear system coupled through a box (acting as a weak spring) to a loudspeaker used as a suspended piston acting as an essentially nonlinear oscillator. The tests carried out on the whole vibro-acoustic system have showed the occurrence of the acoustic TET from the acoustic media to the suspended piston and demonstrated the efficiency of this new kind of absorber at low frequencies over a wide frequency range. Moreover, the experimental analyses conducted with different NES masses have confirmed that it is possible to optimize the noise absorption with respect to the excitation level of the acoustic resonator.
Frequency-Dependent Properties of Magnetic Nanoparticle Crystals
Energy Technology Data Exchange (ETDEWEB)
Majetich, Sara [Carnegie Mellon Univ., Pittsburgh, PA (United States)
2016-05-17
MHz), and high frequency (up to 20 GHz) regimes. Our results will demonstrate whether a DC dipolar ferromagnet shows collective frequency-dependent reponse similar to that of an exchange-based ferromagnet, and will provide data for comparison of optimal nanocomposite properties with those of ferrites used in high frequency applications. Both the magnetic and electronic response of the composites will be examined in order to determine the frequency range where hopping conductivity leads to significant eddy current power losses. In the high frequency regime we will look for evidence of spin wave quantization and the resulting decrease in non-linear spin wave processes that could affect the performance of high frequency magnetic devices.
Frequency dependent changes in NMDAR-dependent synaptic plasticity
Directory of Open Access Journals (Sweden)
Arvind eKumar
2011-09-01
Full Text Available The NMDAR-dependent synaptic plasticity is thought to mediate several forms of learning, and can be induced by spike trains containing a small number of spikes occurring with varying rates and timing, as well as with oscillations. We computed the influence of these variables on the plasticity induced at a single NMDAR containing synapse using a reduced model that was analytically tractable, and these findings were confirmed using detailed, multi-compartment model. In addition to explaining diverse experimental results about the rate and timing dependence of synaptic plasticity, the model made several novel and testable predictions. We found that there was a preferred frequency for inducing long-term potentiation (LTP such that higher frequency stimuli induced lesser LTP, decreasing as 1/f when the number of spikes in the stimulus was kept fixed. Among other things, the preferred frequency for inducing LTP varied as a function of the distance of the synapse from the soma. In fact, same stimulation frequencies could induce LTP or LTD depending on the dendritic location of the synapse. Next, we found that rhythmic stimuli induced greater plasticity then irregular stimuli. Furthermore, brief bursts of spikes significantly expanded the timing dependence of plasticity. Finally, we found that in the ~5-15Hz frequency range both rate- and timing-dependent plasticity mechanisms work synergistically to render the synaptic plasticity most sensitive to spike-timing. These findings provide computational evidence that oscillations can have a profound influence on the plasticity of an NMDAR-dependent synapse, and show a novel role for the dendritic morphology in this process.
Nonlinear Acoustics FDTD method including Frequency Power Law Attenuation for Soft Tissue Modeling
Jiménez, Noé; Sánchez-Morcillo, Víctor; Camarena, Francisco; Hou, Yi; Konofagou, Elisa E
2014-01-01
This paper describes a model for nonlinear acoustic wave propagation through absorbing and weakly dispersive media, and its numerical solution by means of finite differences in time domain method (FDTD). The attenuation is based on multiple relaxation processes, and provides frequency dependent absorption and dispersion without using computational expensive convolutional operators. In this way, by using an optimization algorithm the coefficients for the relaxation processes can be obtained in order to fit a frequency power law that agrees the experimentally measured attenuation data for heterogeneous media over the typical frequency range for ultrasound medical applications. Our results show that two relaxation processes are enough to fit attenuation data for most soft tissues in this frequency range including the fundamental and the first ten harmonics. Furthermore, this model can fit experimental attenuation data that do not follow exactly a frequency power law over the frequency range of interest. The main...
Energy Technology Data Exchange (ETDEWEB)
Belendez, A; Gimeno, E; Mendez, D I; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es
2008-06-15
A modified generalized, rational harmonic balance method is used to construct approximate frequency-amplitude relations for a conservative nonlinear singular oscillator in which the restoring force is inversely proportional to the dependent variable. The procedure is used to solve the nonlinear differential equation approximately. The approximate frequency obtained using this procedure is more accurate than those obtained using other approximate methods and the discrepancy between the approximate frequency and the exact one is lower than 0.40%.
Nonlinear time dependent behaviour of epoxy resins
Marotzke, C.; Feldmann, T.
2016-07-01
The nonlinear behaviour of epoxy resins is studied on standard tensile tests. A strain field measurement system is applied (Aramis) in order to monitor local strains. The residual strain is measured by recovering the specimens for up to 68 hours after unloading. The time span the specimen is exposed to load has a large influence on the creeping process and the residual strain after recovering. This is studied by comparison of instantaneous unloading with keeping the specimen under permanent load for thirty minutes. It is shown that moderate differences in the initial strain can lead to large differences in the creep behaviour as well as in the residual strain.
Frequency Dependent Negative Resistance-A review
Directory of Open Access Journals (Sweden)
D.Susan
2012-08-01
Full Text Available Inductors are bulky and costly but reducing the size of the inductors reduces the quality factor. There is also a fundamental limitation of using inductor that it cannot be suitable for the micro miniature structure and integrated circuits applications. Because of these limitations, inductors cannot be used in most of the analog circuit applications. Hence simulated inductors are used as an alternative. In case the simulated inductor becomes floating some linear transformation is used which results in the formation of a new D element called the Frequency Dependent Negative Resistance (FDNR. This paper presents an overview of the basic circuits of simulating the Frequency Dependent Negative Resistance and its various applications in analog circuits in the place of floating inductor.
Analysis of frequency dependent pump light absorption
Wohlmuth, Matthias; Pflaum, Christoph
2011-03-01
Simulations have to accurately model thermal lensing in order to help improving resonator design of diode pumped solid state lasers. To this end, a precise description of the pump light absorption is an important prerequisite. In this paper, we discuss the frequency dependency of the pump light absorption in the laser crystal and its influence on the simulated laser performance. The results show that the pump light absorption has to include the spectral overlap of the emitting pump source and the absorbing laser material. This information can either be used for a fully frequency dependent absorption model or, at least in the shown examples, to compute an effective value for an exponential Beer-Lambert law of absorption. This is particularly significant at pump wavelengths coinciding with a peak of absorption. Consequences for laser stability and performance are analyzed for different pump wavelengths in a Nd:YAG laser.
Nonlinear frequency shift in Raman backscattering and its implications for plasma diagnostics
Kaganovich, D.; Hafizi, B.; Palastro, J. P.; Ting, A.; Helle, M. H.; Chen, Y.-H.; Jones, T. G.; Gordon, D. F.
2016-12-01
Raman backscattered radiation of intense laser pulses in plasmas is investigated for a wide range of intensities relevant to laser wakefield acceleration. The weakly nonlinear dispersion relation for Raman backscattering predicts an intensity and density dependent frequency shift that is opposite to that suggested by a simple relativistic consideration. This observation has been benchmarked against experimental results, providing a novel diagnostic for laser-plasma interactions.
Nonlinear Frequency Shift in Raman Backscattering and its Implications for Plasma Diagnostics
Kaganovich, D; Palastro, J P; Ting, A; Helle, M H; Chen, Y -H; Jones, T G; Gordon, D F
2016-01-01
Raman backscattered radiation of intense laser pulses in plasma is investigated for a wide range of intensities relevant to laser wakefield acceleration. The weakly nonlinear dispersion relation for Raman backscattering predicts an intensity and density dependent frequency shift that is opposite to that suggested by a simple relativistic consideration. This observation has been benchmarked against experimental results, providing a novel diagnostic for laser-plasma interactions.
Frequency analysis of nonlinear oscillations via the global error minimization
Kalami Yazdi, M.; Hosseini Tehrani, P.
2016-06-01
The capacity and effectiveness of a modified variational approach, namely global error minimization (GEM) is illustrated in this study. For this purpose, the free oscillations of a rod rocking on a cylindrical surface and the Duffing-harmonic oscillator are treated. In order to validate and exhibit the merit of the method, the obtained result is compared with both of the exact frequency and the outcome of other well-known analytical methods. The corollary reveals that the first order approximation leads to an acceptable relative error, specially for large initial conditions. The procedure can be promisingly exerted to the conservative nonlinear problems.
Liu, Chang
2015-01-01
The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the ?first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.
Dynamic Acousto-Elasticity: Pressure and Frequency Dependences in Berea Sandstone.
Riviere, J. V.; Pimienta, L.; Latour, S.; Fortin, J.; Schubnel, A.; Johnson, P. A.
2014-12-01
Nonlinear elasticity is studied at the laboratory scale with the goal of understanding observations at earth scales, for instance during strong ground motion, tidal forcing and earthquake slip processes. Here we report frequency and pressure dependences on elasticity when applying dynamic acousto-elasticity (DAE) of rock samples, analogous to quasi-static acousto-elasticity. DAE allows one to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. We perform DAE on a sample of Berea sandstone subject to 0.5MPa uniaxial load, with sinusoidal oscillating strain amplitudes ranging from 10-6 to 10-5 and at frequencies from 0.1 to 260Hz. In addition, the confining pressure is increased stepwise from 0 to 30MPa. We compare results to previous measurements made at lower (mHz) and higher (kHz) frequencies. Nonlinear elastic parameters corresponding to conditioning effects, third order elastic constants and fourth order elastic constants are quantitatively compared over the pressure and frequency ranges. We observe that the decrease in modulus due to conditioning increases with frequency, suggesting a frequency and/or strain-rate dependence that should be included in nonlinear elastic models of rocks. In agreement with previous measurements, nonlinear elastic effects also decrease with confining pressure, suggesting that nonlinear elastic sources such as micro-cracks, soft bonds and dislocations are turned off as the pressure increases.
Frequency dependent thermal expansion in binary viscoelasticcomposites
Energy Technology Data Exchange (ETDEWEB)
Berryman, James G.
2007-12-01
The effective thermal expansion coefficient beta* of abinary viscoelastic composite is shown to be frequency dependent even ifthe thermal expansion coefficients beta A and beta B of both constituentsare themselves frequency independent. Exact calculations for binaryviscoelastic systems show that beta* is related to constituent valuesbeta A, beta B, volume fractions, and bulk moduli KA, KB, as well as tothe overall bulk modulus K* of the composite system. Then, beta* isdetermined for isotropic systems by first bounding (or measuring) K* andtherefore beta*. For anisotropic systems with hexagonal symmetry, theprincipal values of the thermal expansion beta*perp and beta*para can bedetermined exactly when the constituents form a layered system. In allthe examples studied, it is shown explicitly that the eigenvectors of thethermoviscoelastic system possess non-negative dissipation -- despite thecomplicated analytical behavior of the frequency dependent thermalexpansivities themselves. Methods presented have a variety ofapplications from fluid-fluid mixtures to fluid-solid suspensions, andfrom fluid-saturated porous media to viscoelastic solid-solidcomposites.
Nonlinear Cavity and Frequency Comb Radiations Induced by Negative Frequency Field Effects
Lourés, Cristian Redondo; Faccio, Daniele; Biancalana, Fabio
2015-11-01
Optical Kerr frequency combs (KFCs) are an increasingly important optical metrology tool with applications ranging from ultraprecise spectroscopy to time keeping. KFCs may be generated in compact resonators with extremely high quality factors. Here, we show that the same features that lead to high quality frequency combs in these resonators also lead to an enhancement of nonlinear emissions that may be identified as originating from the presence of a negative frequency (NF) component in the optical spectrum. While the negative frequency component of the spectrum is naturally always present in the real-valued optical field, it is not included in the principal theoretical model used to model nonlinear cavities, i.e., the Lugiato-Lefever equation. We therefore extend these equations in order to include the contribution of NF components and show that the predicted emissions may be studied analytically, in excellent agreement with full numerical simulations. These results are of importance for a variety of fields, such as Bose-Einstein condensates, mode-locked lasers, nonlinear plasmonics, and polaritonics.
A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity
Energy Technology Data Exchange (ETDEWEB)
Johnson, Jay R; Wing, Simon
2005-03-08
The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.
Nonlinear Structure Formation with the Environmentally Dependent Dilaton
Brax, Phil; Davis, Anne-C; Li, Baojiu; Shaw, Douglas J
2011-01-01
We have studied the nonlinear structure formation of the environmentally dependent dilaton model using $N$-body simulations. We find that the mechanism of suppressing the scalar fifth force in high-density regions works very well. Within the parameter space allowed by the solar system tests, the dilaton model predicts small deviations of the matter power spectrum and the mass function from their $\\Lambda$CDM counterparts. The importance of taking full account of the nonlinearity of the model is also emphasized.
Non-linear dependences in finance
Chicheportiche, Rémy
2013-01-01
The thesis is composed of three parts. Part I introduces the mathematical and statistical tools that are relevant for the study of dependences, as well as statistical tests of Goodness-of-fit for empirical probability distributions. I propose two extensions of usual tests when dependence is present in the sample data and when observations have a fat-tailed distribution. The financial content of the thesis starts in Part II. I present there my studies regarding the "cross-sectional" dependences among the time series of daily stock returns, i.e. the instantaneous forces that link several stocks together and make them behave somewhat collectively rather than purely independently. A calibration of a new factor model is presented here, together with a comparison to measurements on real data. Finally, Part III investigates the temporal dependences of single time series, using the same tools and measures of correlation. I propose two contributions to the study of the origin and description of "volatility clustering"...
Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers.
Buckland, E L; Boyd, R W
1997-05-15
The electrostrictive contribution to the nonlinear refractive index is investigated by use of frequency-dependent cross-phase modulation with a weak unpolarized cw probe wave and a harmonically modulated pump copropagating in optical fibers. Self-delayed homodyne detection is used to measure the amplitude of the sidebands imposed upon the probe wave as a function of pump intensity for pump modulation frequencies from 10 MHz to 1 GHz. The ratio of the electrostrictive nonlinear coefficient to the cross-phase-modulation Kerr coefficient for unpolarized light is measured to be 1.58:1 for a standard step-index single-mode fiber and 0.41:1 for dispersion-shifted fibers, indicating a larger electrostrictive response in silica fibers than previously expected.
DEFF Research Database (Denmark)
Belleter, Dennis J.W.; Galeazzi, Roberto; Fossen, Thor Inge
2015-01-01
This paper presents a global exponential stability (GES) proof for a signalbased nonlinear wave encounter frequency estimator. The estimator under consideration is a second-order nonlinear observer designed to estimate the frequency of a sinusoid with unknown frequency, amplitude and phase. The G...
Frequency dependent polarization analysis of high-frequency seismograms
Park, Jeffrey; Vernon, Frank L., III; Lindberg, Craig R.
1987-11-01
We present a multitaper algorithm to estimate the polarization of particle motion as a function of frequency from three-component seismic data. This algorithm is based on a singular value decomposition of a matrix of eigenspectra at a given frequency. The right complex eigenvector zˆ corresonding to the largest singular value of the matrix has the same direction as the dominant polarization of seismic motion at that frequency. The elements of the polarization vector zˆ specify the relative amplitudes and phases of motion measured along the recorded components within a chosen frequency band. The width of this frequency band is determined by the time-bandwidth product of the prolate spheroidal tapers used in the analysis. We manipulate the components of zˆ to determine the apparent azimuth and angle of incidence of seismic motion as a function of frequency. The orthogonality of the eigentapers allows one to calculate easily uncertainties in the estimated azimuth and angle of incidence. We apply this algorithm to data from the Anza Seismic Telemetered Array in the frequency band 0 ≤ ƒ ≤ 30 Hz. The polarization is not always a smooth function of frequency and can exhibit sharp jumps, suggesting the existence of scattered modes within the crustal waveguide and/or receiver site resonances.
Energy Technology Data Exchange (ETDEWEB)
Hebner, Gregory A [Sandia National Laboratories, Albuquerque NM 87185-1423 (United States); Barnat, Edward V [Sandia National Laboratories, Albuquerque NM 87185-1423 (United States); Miller, Paul A [Sandia National Laboratories, Albuquerque NM 87185-1423 (United States); Paterson, Alex M [Applied Materials, 974 Arques Avenue, Sunnyvale CA, 94086 (United States); Holland, John P [Applied Materials, 974 Arques Avenue, Sunnyvale CA, 94086 (United States)
2006-11-01
Argon plasma characteristics in a dual-frequency, capacitively coupled, 300 mm-wafer plasma processing system were investigated for rf drive frequencies between 10 and 190 MHz. We report spatial and frequency dependent changes in plasma parameters such as line-integrated electron density, ion saturation current, optical emission and argon metastable density. For the conditions investigated, the line-integrated electron density was a nonlinear function of drive frequency at constant rf power. In addition, the spatial distribution of the positive ions changed from uniform to peaked in the centre as the frequency was increased. Spatially resolved optical emission increased with frequency and the relative optical emission at several spectral lines depended on frequency. Argon metastable density and spatial distribution were not a strong function of drive frequency. Metastable temperature was approximately 400 K.
Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties
Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon
2012-01-01
Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…
Joglekar, D. M.; Mitra, Mira
2017-02-01
The nonlinear interaction of a dual frequency flexural wave with a breathing crack generates a peculiar frequency mixing phenomena, which is manifested in form of the side bands or peaks at combinations frequencies in frequency spectrum of the response. Although these peaks have been proven useful in ascertaining the presence of crack, they barely carry any information about the crack location. In this regards, the present article analyzes the time domain representation of the response obtained by employing a wavelet spectral finite element method. The study reveals that the combination tones generated at the crack location travel with dissimilar speeds along the waveguide, owing to its dispersive nature. The separation between the lobes corresponding to these combination tones therefore, depends on the distance that they have travelled. This observation is then used to formulate a method to predict the crack location with respect to the sensor. A brief parametric study shows marginal errors in predicting the crack location, which ascertains the validity of the method. This article also studies the frequency spectrum of the response. The peaks at combination tones are quantified in terms of a modulate parameter which depends on the severity of the crack. The inferences drawn from the time and the frequency domain study can be instrumental in designing a robust strategy for detecting location and severity of the crack.
Goertz, David E.; Frijlink, Martijn E.; de Jong, N.; van der Steen, A.F.W.
2006-01-01
An experimental lipid encapsulated contrast agent comprised substantially of micrometer to submicrometer diameter bubbles was evaluated for its capacity to produce nonlinear scattering in response to high transmit frequencies. Agent characterization experiments were conducted at transmit frequencies
Numerical and experimental investigation of nonlinear ultrasonic Lamb waves at low frequency
Zuo, Peng; Zhou, Yu; Fan, Zheng
2016-07-01
Nonlinear ultrasonic Lamb waves are popular to characterize the nonlinearity of materials. However, the widely used nonlinear Lamb mode suffers from two associated complications: inherent dispersive and multimode natures. To overcome these, the symmetric Lamb mode (S0) at low frequency region is explored. At the low frequency region, the S0 mode is little dispersive and easy to generate. However, the secondary mode still exists, and increases linearly for significant distance. Numerical simulations and experiments are used to validate the nonlinear features and therefore demonstrate an easy alternative for nonlinear Lamb wave applications.
Sudarshanam, V. S.; Claus, Richard O.
1993-03-01
A new cylindrical coil configuration for polyvinylidene flouride (PVF2) film based fiber optic phase modulator is studied for the frequency response and nonlinearity of phase shift at the resonance frequency. This configuration, hitherto unapproached for PVF2 film modulators, offers resonance at well defined, controllable and higher frequencies than possible for the flat-strip configuration. Two versions of this configuration are presented that differ strongly in both the resonance frequency and the phase shift nonlinearity coefficient.
An exponential ESS model and its application to frequency-dependent selection.
Li, J; Liu, L
1989-10-01
A nonlinear ESS model is put forward, that is, a nonnegative exponential ESS model. For a simple case, we discuss the existence, uniqueness, and stability of an ESS. As an application of the model, we give a quantitative analysis of frequency-dependent selection in population genetics when the rare type has an advantage.
IDENTIFICATION OF NONLINEAR DYNAMIC SYSTEMS:TIME-FREQUENCY FILTERING AND SKELETON CURVES
Institute of Scientific and Technical Information of China (English)
王丽丽; 张景绘
2001-01-01
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O . F nonlinear system.A masking operator on definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system ( GSLS ). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. More over, an identification method is proposed through the skeleton curves and the time frequency filtering technique.
Energy transport in weakly nonlinear wave systems with narrow frequency band excitation.
Kartashova, Elena
2012-10-01
A novel discrete model (D model) is presented describing nonlinear wave interactions in systems with small and moderate nonlinearity under narrow frequency band excitation. It integrates in a single theoretical frame two mechanisms of energy transport between modes, namely, intermittency and energy cascade, and gives the conditions under which each regime will take place. Conditions for the formation of a cascade, cascade direction, conditions for cascade termination, etc., are given and depend strongly on the choice of excitation parameters. The energy spectra of a cascade may be computed, yielding discrete and continuous energy spectra. The model does not require statistical assumptions, as all effects are derived from the interaction of distinct modes. In the example given-surface water waves with dispersion function ω(2)=gk and small nonlinearity-the D model predicts asymmetrical growth of side-bands for Benjamin-Feir instability, while the transition from discrete to continuous energy spectrum, excitation parameters properly chosen, yields the saturated Phillips' power spectrum ~g(2)ω(-5). The D model can be applied to the experimental and theoretical study of numerous wave systems appearing in hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc.
Liquid-state acoustically-nonlinear nanoplasmonic source of optical frequency combs
Maksymov, Ivan S
2016-01-01
Nonlinear acoustic interactions in liquids are effectively stronger than nonlinear optical interactions in solids. Thus, harnessing these interactions will offer new possibilities in the design of ultra-compact nonlinear photonic devices. We theoretically demonstrate a hybrid, liquid-state and nanoplasmonic, source of optical frequency combs compatible with fibre-optic technology. This source relies on a nanoantenna to harness the strength of nonlinear acoustic effects and synthesise optical spectra from ultrasound.
The dependency of timbre on fundamental frequency
Marozeau, Jeremy; de Cheveigné, Alain; McAdams, Stephen; Winsberg, Suzanne
2003-11-01
The dependency of the timbre of musical sounds on their fundamental frequency (F0) was examined in three experiments. In experiment I subjects compared the timbres of stimuli produced by a set of 12 musical instruments with equal F0, duration, and loudness. There were three sessions, each at a different F0. In experiment II the same stimuli were rearranged in pairs, each with the same difference in F0, and subjects had to ignore the constant difference in pitch. In experiment III, instruments were paired both with and without an F0 difference within the same session, and subjects had to ignore the variable differences in pitch. Experiment I yielded dissimilarity matrices that were similar at different F0's, suggesting that instruments kept their relative positions within timbre space. Experiment II found that subjects were able to ignore the salient pitch difference while rating timbre dissimilarity. Dissimilarity matrices were symmetrical, suggesting further that the absolute displacement of the set of instruments within timbre space was small. Experiment III extended this result to the case where the pitch difference varied from trial to trial. Multidimensional scaling (MDS) of dissimilarity scores produced solutions (timbre spaces) that varied little across conditions and experiments. MDS solutions were used to test the validity of signal-based predictors of timbre, and in particular their stability as a function of F0. Taken together, the results suggest that timbre differences are perceived independently from differences of pitch, at least for F0 differences smaller than an octave. Timbre differences can be measured between stimuli with different F0's.
Generation of squeezed-state superpositions via time-dependent Kerr nonlinearities
León-Montiel, R de J
2015-01-01
We put forward an experimental scheme for direct generation of optical squeezed coherent-state superpositions. The proposed setup makes use of an optical cavity, filled with a nonlinear Kerr medium, whose frequency is allowed to change during time evolution. By exactly solving the corresponding time-dependent anharmonic-oscillator Hamiltonian, we demonstrate that squeezed-state superpositions can be generated in an optical cavity. Furthermore, we show that the squeezing degree of the produced states can be tuned by properly controlling the frequency shift of the cavity, a feature that could be useful in many quantum information protocols, such as quantum teleportation and quantum computing.
Research on nonlinear characteristics of strata collapse because of the multi-frequency mining
Institute of Scientific and Technical Information of China (English)
YANG Fan; HU Zhen-qi; YANG Lun; MA Feng-hai
2008-01-01
Based on the complexity of mine stratum and coupling of the multi-frequency for the damage of mine stratum, using the method of on-site inspection and mathematical statistics, the regulation and nonlinear characteristics of strata collapse in mine stratum's multi-frequency mining were put forward and systemically studied. Study result shows that the influence of multi-frequency mining in mine stratum has the feature of multi-frequency incontinuity, multi-characteristic and multi-type nonlinear collapse, strata collapse activation turned worse, presenting an accumulation effect of multi-frequency mining for the strata damage. With the example of multi-frequency mining in the mine, the real characteristics of strata collapse by multi-frequency mining and nonlinear characteristics of accumulative response damage were analyzed. Research achievements about the surface recover and controlling of strata collapse by the multi-frequency mining have instruction meaning.
Frequency-domain L2-stability conditions for time-varying linear and nonlinear MIMO systems
Institute of Scientific and Technical Information of China (English)
Zhihong HUANG; Y. V. VENKATESH; Cheng XIANG; Tong Heng LEE
2014-01-01
The paper deals with the L2-stability analysis of multi-input-multi-output (MIMO) systems, governed by integral equations, with a matrix of periodic/aperiodic time-varying gains and a vector of monotone, non-monotone and quasi-monotone nonlin-earities. For nonlinear MIMO systems that are described by differential equations, most of the literature on stability is based on an application of quadratic forms as Lyapunov-function candidates. In contrast, a non-Lyapunov framework is employed here to derive new and more general L2-stability conditions in the frequency domain. These conditions have the following features:i) They are expressed in terms of the positive definiteness of the real part of matrices involving the transfer function of the linear time-invariant block and a matrix multiplier function that incorporates the minimax properties of the time-varying linear/nonlinear block. ii) For certain cases of the periodic time-varying gain, they contain, depending on the multiplier function chosen, no restrictions on the normalized rate of variation of the time-varying gain, but, for other periodic/aperiodic time-varying gains, they do. Overall, even when specialized to periodic-coefficient linear and nonlinear MIMO systems, the stability conditions are distinct from and less restrictive than recent results in the literature. No comparable results exist in the literature for aperiodic time-varying gains. Furthermore, some new stability results concerning the dwell-time problem and time-varying gain switching in linear and nonlinear MIMO systems with periodic/aperiodic matrix gains are also presented. Examples are given to illustrate a few of the stability theorems.
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
Energy Technology Data Exchange (ETDEWEB)
Densmore, Jeffrey D [Los Alamos National Laboratory; Kelly, Thompson G [Los Alamos National Laboratory; Urbatish, Todd J [Los Alamos National Laboratory
2010-11-17
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.
He, Fei; Wei, Hua-Liang; Billings, Stephen A.
2015-08-01
This paper introduces a new approach for nonlinear and non-stationary (time-varying) system identification based on time-varying nonlinear autoregressive moving average with exogenous variable (TV-NARMAX) models. The challenging model structure selection and parameter tracking problems are solved by combining a multiwavelet basis function expansion of the time-varying parameters with an orthogonal least squares algorithm. Numerical examples demonstrate that the proposed approach can track rapid time-varying effects in nonlinear systems more accurately than the standard recursive algorithms. Based on the identified time domain model, a new frequency domain analysis approach is introduced based on a time-varying generalised frequency response function (TV-GFRF) concept, which enables the analysis of nonlinear, non-stationary systems in the frequency domain. Features in the TV-GFRFs which depend on the TV-NARMAX model structure and time-varying parameters are investigated. It is shown that the high-dimensional frequency features can be visualised in a low-dimensional time-frequency space.
A SIMPLIFIED CALCULATING METHOD OF NONLINEAR FREQUENCY OF CABLE NET UNDER MEAN WIND LOAD
Institute of Scientific and Technical Information of China (English)
Feng Ruoqiang; Wu Yue; Shen Shizhao
2006-01-01
The cable net supported glass curtain wallas the most advanced technique in dot point supported glass curtain wall, is widely used in China. Because of its large deflection and high nonlinearity under wind load, the dynamic performance of the cable net is greatly different from that of the conventional linear structures. The continuous membrane theory is used to construct the nonlinear vibration differential equation of the cable net, and the harmonic balance method is used to solve the analytic formula of the nonlinear frequency. In order to verify the accuracy of the above analytic formula, the results of the formula and the nonlinear FEM time-history method are compared and found to be in good agreement. Furthermore, the nonlinear vibration differential equation and the nonlinear frequency obtained in this paper are the basis for the wind-induced response analysis of a cable net under fluctuating wind load.
Qing Wang, Yan; Zu, Jean W.
2017-10-01
This work investigates the porosity-dependent nonlinear forced vibrations of functionally graded piezoelectric material (FGPM) plates by using both analytical and numerical methods. The FGPM plates contain porosities owing to the technical issues during the preparation of FGPMs. Two types of porosity distribution, namely, even and uneven distribution, are considered. A modified power law model is adopted to describe the material properties of the porous FGPM plates. Using D’Alembert’s principle, the out-of-plane equation of motion is derived by taking into account the Kármán nonlinear geometrical relations. After that, the Galerkin method is used to discretize the equation of motion, resulting in a set of ordinary differential equations with respect to time. These ordinary differential equations are solved analytically by employing the harmonic balance method. The approximate analytical results are verified by using the adaptive step-size fourth-order Runge–Kutta method. By means of the perturbation technique, the stability of approximate analytical solutions is examined. An interesting nonlinear broadband vibration phenomenon is detected in the FGPM plates with porosities. Nonlinear frequency-response characteristics of the present smart structures are investigated for various system parameters including the porosity type, the porosity volume fraction, the electric potential, the external excitation, the damping and the constituent volume fraction. It is found that these parameters have significant effects on the nonlinear vibration characteristics of porous FGPM plates.
Short pulse equations and localized structures in frequency band gaps of nonlinear metamaterials
Energy Technology Data Exchange (ETDEWEB)
Tsitsas, N.L. [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografos, Athens 15773 (Greece); Horikis, T.P. [Department of Mathematics, University of Ioannina, Ioannina 45110 (Greece); Shen, Y.; Kevrekidis, P.G.; Whitaker, N. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Frantzeskakis, D.J., E-mail: dfrantz@phys.uoa.g [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece)
2010-03-01
We consider short pulse propagation in nonlinear metamaterials characterized by a weak Kerr-type nonlinearity in their dielectric response. Two short-pulse equations (SPEs) are derived for the high- and low-frequency 'band gaps' (where linear electromagnetic waves are evanescent) with linear effective permittivity epsilon<0 and permeability mu>0. The structure of the solutions of the SPEs is also briefly discussed, and connections with the soliton solutions of the nonlinear Schroedinger equation are made.
Nonlinear beam clean-up using resonantly enhanced sum-frequency mixing
DEFF Research Database (Denmark)
Karamehmedovic, Emir; Pedersen, Christian; Jensen, Ole Bjarlin;
2009-01-01
We investigate the possibility of improving the beam quality and obtaining high conversion efficiency in nonlinear sum-frequency generation. A 765 nm beam from an external cavity tapered diode laser is single-passed through a nonlinear crystal situated in the high intracavity field of a 1342 nm Nd...
Frequency Dependent Losses in Transmission Cable Conductors
DEFF Research Database (Denmark)
Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdóttir, Unnur Stella
2011-01-01
, such as thermal conditions in and around the cable, as well as the heat generated in conductors, screens, armours etc., taking into account proximity and skin effects. The work performed and presented in this paper is concerned with an improved determination of the losses generated in the conductor, by means...... of better calculation of the AC resistance of transmission cable conductors, in particular regarding higher frequencies. In this way, also losses under harmonics can be covered. Furthermore, the model is suitable for modelling of transient attenuation in high voltage cables. The AC resistance is calculated...
Hays, J. R.
1969-01-01
Lumped parametric system models are simplified and computationally advantageous in the frequency domain of linear systems. Nonlinear least squares computer program finds the least square best estimate for any number of parameters in an arbitrarily complicated model.
Frequency-Dependent Streaming Potentials: A Review
Directory of Open Access Journals (Sweden)
L. Jouniaux
2012-01-01
which both formation factor and permeability are measured, is predicted to depend on the permeability as inversely proportional to the permeability. We review the experimental setups built to be able to perform dynamic measurements. And we present some measurements and calculations of the dynamic streaming potential.
Directory of Open Access Journals (Sweden)
Christophe eMagnani
2014-08-01
Full Text Available The neurons in layer II of the medial entorhinal cortex are part of the grid cell network involved in the representation of space. Many of these neurons are likely to be stellate cells with specific oscillatory and firing properties important for their function. A fundamental understanding of the nonlinear basis of these oscillatory properties is critical for the development of theories of grid cell firing. In order to evaluate the behavior of stellate neurons, measurements of their quadratic responses were used to estimate a second order Volterra kernel. This paper uses an operator theory, termed quadratic sinusoidal analysis (QSA, which quantitatively determines that the quadratic response accounts for a major part of the nonlinearity observed at membrane potential levels characteristic of normal synaptic events. Practically, neurons were probed with multi-sinusoidal stimulations to determine a Hermitian operator that captures the quadratic function in the frequency domain. We have shown that the frequency content of the stimulation plays an important role in the characteristics of the nonlinear response, which can distort the linear response as well. Stimulations with enhanced low frequency amplitudes evoked a different nonlinear response than broadband profiles. The nonlinear analysis was also applied to spike frequencies and it was shown that the nonlinear response of subthreshold membrane potential at resonance frequencies near the threshold is similar to the nonlinear response of spike trains.
Saletes, Izella; Gilles, Bruno; Bera, Jean-Christophe
2011-01-01
Enhancing cavitation activity with minimal acoustic intensities could be interesting in a variety of therapeutic applications where mechanical effects of cavitation are needed with minimal heating of surrounding tissues. The present work focuses on the relative efficiency of a signal combining two neighbouring frequencies and a one-frequency signal for initiating ultrasound inertial cavitation. Experiments were carried out in a water tank, using a 550kHz piezoelectric composite spherical transducer focused on targets with 46μm roughness. The acoustic signal scattered, either by the target or by the cavitation bubbles, is filtered using a spectral and cepstral-like method to obtain an inertial cavitation activity measurement. The ultrasound excitations consist of 1.8ms single bursts of single frequency f(0)=550kHz excitation, in the monofrequency case, and of dual frequency f(1)=535kHz and f(2)=565kHz excitation, in the bifrequency case. It is shown that depending on the value of the monofrequency cavitation threshold intensity the bifrequency excitation can increase or reduce the cavitation threshold. The analysis of the thresholds indicates that the mechanisms involved are nonlinear. The progress of the cavitation activity beyond the cavitation threshold is also studied. The slope of the cavitation activity considered as a function of the acoustic intensity is always steeper in the case of the bifrequency excitation. This means that the delimitation of the region where cavitation occurs should be cleaner than with a classical monofrequency excitation.
Gumber, Sukirti; Gambhir, Monica; Jha, Pradip Kumar; Mohan, Man
2016-10-01
We study the combined effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency in quantum ring. The high flexibility in size and shape of ring makes it possible to fabricate a nearly perfect two-dimensional quantum structure. We also explore the dependence of frequency conversion, measured in terms of third order nonlinear susceptibility χ(3) , on coupling field, hydrostatic pressure and magnetic field. Although, a dip in χ(3) is observed with the introduction of strong coupling field, it renders the ring structure transparent to generated wave thus effectively enhancing the output of nonlinear frequency conversion process. At a fixed coupling strength, the output can be further enhanced by increasing the magnetic field while it shows an inverse relationship with pressure. These parameters, being externally controlled, provide an easy handle to control the output of quantum ring which can be used as frequency converter in communication networks.
Scalar and Vector Nonlinear Decays of Low-frequency Alfvén Waves
Zhao, J. S.; Voitenko, Y.; De Keyser, J.; Wu, D. J.
2015-02-01
We found several efficient nonlinear decays for Alfvén waves in the solar wind conditions. Depending on the wavelength, the dominant decay is controlled by the nonlinearities proportional to either scalar or vector products of wavevectors. The two-mode decays of the pump MHD Alfvén wave into co- and counter-propagating product Alfvén and slow waves are controlled by the scalar nonlinearities at long wavelengths ρ i2k0\\perp 2background magnetic field, ω0 is frequency of the pump Alfvén wave, ρ i is ion gyroradius, and ω ci is ion-cyclotron frequency). The scalar decays exhibit both local and nonlocal properties and can generate not only MHD-scale but also kinetic-scale Alfvén and slow waves, which can strongly accelerate spectral transport. All waves in the scalar decays propagate in the same plane, hence these decays are two-dimensional. At shorter wavelengths, ρ i2k0\\perp 2\\gtω 0/ω ci, three-dimensional vector decays dominate generating out-of-plane product waves. The two-mode decays dominate from MHD up to ion scales ρ i k 0 ~= 0.3; at shorter scales the one-mode vector decays become stronger and generate only Alfvén product waves. In the solar wind the two-mode decays have high growth rates >0.1ω0 and can explain the origin of slow waves observed at kinetic scales.
SCALAR AND VECTOR NONLINEAR DECAYS OF LOW-FREQUENCY ALFVÉN WAVES
Energy Technology Data Exchange (ETDEWEB)
Zhao, J. S.; Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Voitenko, Y.; De Keyser, J., E-mail: js_zhao@pmo.ac.cn [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan 3 Avenue Circulaire, B-1180 Brussels (Belgium)
2015-02-01
We found several efficient nonlinear decays for Alfvén waves in the solar wind conditions. Depending on the wavelength, the dominant decay is controlled by the nonlinearities proportional to either scalar or vector products of wavevectors. The two-mode decays of the pump MHD Alfvén wave into co- and counter-propagating product Alfvén and slow waves are controlled by the scalar nonlinearities at long wavelengths ρ{sub i}{sup 2}k{sub 0⊥}{sup 2}<ω{sub 0}/ω{sub ci} (k {sub 0} is wavenumber perpendicular to the background magnetic field, ω{sub 0} is frequency of the pump Alfvén wave, ρ {sub i} is ion gyroradius, and ω {sub ci} is ion-cyclotron frequency). The scalar decays exhibit both local and nonlocal properties and can generate not only MHD-scale but also kinetic-scale Alfvén and slow waves, which can strongly accelerate spectral transport. All waves in the scalar decays propagate in the same plane, hence these decays are two-dimensional. At shorter wavelengths, ρ{sub i}{sup 2}k{sub 0⊥}{sup 2}>ω{sub 0}/ω{sub ci}, three-dimensional vector decays dominate generating out-of-plane product waves. The two-mode decays dominate from MHD up to ion scales ρ {sub i} k {sub 0} ≅ 0.3; at shorter scales the one-mode vector decays become stronger and generate only Alfvén product waves. In the solar wind the two-mode decays have high growth rates >0.1ω{sub 0} and can explain the origin of slow waves observed at kinetic scales.
Nonlinear Low Frequency Water Waves in a Cylindrical Shell
Peng, H. W.; Wang, D. J.; Lee, C. B.
The experiment was carried out to study the low frequency surface waves due to the horizontal high frequency excitation. The feature of the phenomenon was that the big amplitude axisymmetric surface wave frequency was typically about 1/50 of the excitation frequency. The viscous effect of water was neglected as a first approximation in the earlier papers on this subject. In contrast, we found the viscosity was important to achieve the low frequency water wave with the cooperation of hundreds of "finger" waves. Photographs were taken with stroboscopic lighting and thereafter relevant quantitative results were obtained based on the measurements with Polytec Scanning Vibrometer PSV 400.
Modelling Nonlinearities and Reference Dependence in General Practitioners' Income Preferences.
Holte, Jon Helgheim; Sivey, Peter; Abelsen, Birgit; Olsen, Jan Abel
2016-08-01
This paper tests for the existence of nonlinearity and reference dependence in income preferences for general practitioners. Confirming the theory of reference dependent utility within the context of a discrete choice experiment, we find that losses loom larger than gains in income for Norwegian general practitioners, i.e. they value losses from their current income level around three times higher than the equivalent gains. Our results are validated by comparison with equivalent contingent valuation values for marginal willingness to pay and marginal willingness to accept compensation for changes in job characteristics. Physicians' income preferences determine the effectiveness of 'pay for performance' and other incentive schemes. Our results may explain the relative ineffectiveness of financial incentive schemes that rely on increasing physicians' incomes. Copyright © 2015 John Wiley & Sons, Ltd.
Frequency Dependent Losses in Transmission Cable Conductors
DEFF Research Database (Denmark)
Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdóttir, Unnur Stella
2011-01-01
Denmark is taking on the exciting project of undergrounding the electricity transmission grid. In 2009 it was decided by the Danish government to underground large parts of the 400 kV and the entire 132-150 kV transmission network before the end of 2030. For ensuring network stability...... and economical gain, such severe network changes necessitate correct estimation and optimisation of load conditions in the cable grid. Both IEC and IEEE have published standards for rating transmission cables' current carrying capacity. These standards are based on assumptions of a number of parameters...... of better calculation of the AC resistance of transmission cable conductors, in particular regarding higher frequencies. In this way, also losses under harmonics can be covered. Furthermore, the model is suitable for modelling of transient attenuation in high voltage cables. The AC resistance is calculated...
Experimental Demonstration of Nonlinear Frequency Division Multiplexed Transmission
Aref, Vahid; Schuh, Karsten; Idler, Wilfried
2015-01-01
We experimentally demonstrate an NFDM optical system with modulation over nonlinear discrete spectrum. Particularly, each symbol carries 4-bits from multiplexing two eigenvalues modulated by QPSK constellation. We show a low error performance using NFT detection with 4Gbps rate over 640km.
Optimized frequency dependent photothermal beam deflection spectroscopy
Korte, D.; Cabrera, H.; Toro, J.; Grima, P.; Leal, C.; Villabona, A.; Franko, M.
2016-12-01
In the letter the optimization of the experimental setup for photothermal beam deflection spectroscopy is performed by analyzing the influence of its geometrical parameters (detector and sample position, probe beam radius and its waist position etc) on the detected signal. Furthermore, the effects of the fluid’s thermo-optical properties, for optimized geometrical configuration, on the measurement sensitivity and uncertainty determination of sample thermal properties is also studied. The examined sample is a recently developed CuFeInTe3 material. It is seen from the obtained results, that it is a complex problem to choose the proper geometrical configuration as well as sensing fluid to enhance the sensitivity of the method. A signal enhancement is observed at low modulation frequencies by placing the sample in acetonitrile (ACN), while at high modulation frequencies the sensitivity is higher for measurements made in air. For both, detection in air and acetonitrile the determination of CuFeInTe3 thermal properties is performed. The determined values of thermal diffusivity and thermal conductivity are (0.048 ± 0.002) × 10-4 m2 s-1 and 4.6 ± 0.2 W m-1 K-1 and (0.056 ± 0.005) × 10-4 m2 s-1 and 4.8 ± 0.4 W m-1 K-1 for ACN and air, respectively. It is seen, that the determined values agree well within the range of their measurement uncertainties for both cases, although the measurement uncertainty is two times lower for the measurements in ACN providing more accurate results. The analysis is performed by the use of recently developed theoretical description based on the complex geometrical optics. It is also shown, how the presented work fits into the current status of photothermal beam deflection spectroscopy.
Nonlinear system identification NARMAX methods in the time, frequency, and spatio-temporal domains
Billings, Stephen A
2013-01-01
Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) modelThe orthogonal least squares algorithm that allows models to be built term by
Nonlinear optics at low powers: Alternative mechanism of on-chip optical frequency comb generation
Rogov, Andrei S.; Narimanov, Evgenii E.
2016-12-01
Nonlinear optical effects provide a natural way of light manipulation and interaction and form the foundation of applied photonics, from high-speed signal processing and telecommunication to ultrahigh-bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers or boosting efficiency of nonlinear parametric processes by enhancing local-field intensity with high-quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multiphoton absorption. We present an alternative to this conventional approach, with strong nonlinear optical effects at low local intensities, based on period-doubling bifurcations near nonlinear cavity antiresonance and apply it to low-power optical frequency comb generation in a silicon chip.
Frequency domain stability analysis of nonlinear active disturbance rejection control system.
Li, Jie; Qi, Xiaohui; Xia, Yuanqing; Pu, Fan; Chang, Kai
2015-05-01
This paper applies three methods (i.e., root locus analysis, describing function method and extended circle criterion) to approach the frequency domain stability analysis of the fast tool servo system using nonlinear active disturbance rejection control (ADRC) algorithm. Root locus qualitative analysis shows that limit cycle is generated because the gain of the nonlinear function used in ADRC varies with its input. The parameters in the nonlinear function are adjustable to suppress limit cycle. In the process of root locus analysis, the nonlinear function is transformed based on the concept of equivalent gain. Then, frequency domain description of the nonlinear function via describing function is presented and limit cycle quantitative analysis including estimating prediction error is presented, which virtually and theoretically demonstrates that the describing function method cannot guarantee enough precision in this case. Furthermore, absolute stability analysis based on extended circle criterion is investigated as a complement.
Intensity dependences of the nonlinear optical excitation of plasmons in graphene.
Constant, T J; Hornett, S M; Chang, D E; Hendry, E
2017-03-28
Recently, we demonstrated an all-optical coupling scheme for plasmons, which takes advantage of the intrinsic nonlinear optical response of graphene. Frequency mixing using free-space, visible light pulses generates surface plasmons in a planar graphene sample, where the phase matching condition can define both the wavevector and energy of surface waves and intraband transitions. Here, we also show that the plasmon generation process is strongly intensity-dependent, with resonance features washed out for absorbed pulse fluences greater than 0.1 J m(-2) This implies a subtle interplay between the nonlinear generation process and sample heating. We discuss these effects in terms of a non-equilibrium charge distribution using a two-temperature model.This article is part of the themed issue 'New horizons for nanophotonics'.
Linear and nonlinear properties of chalcogenide glasses in the terahertz frequency
DEFF Research Database (Denmark)
Zalkovskij, Maksim; Malureanu, Radu; Popescu, A.;
2014-01-01
used a standard THz-TDS setup based on photoconductive switches while in the higher frequency domain we used an air biased coherent detection (ABCD) setup. This allowed for a wide frequency range (from 0.2 to 18 THz) investigation of the refractive index of the glasses. The nonlinear coefficient...
Vortex precession frequency and its amplitude-dependent shift in cylindrical nanomagnets
Energy Technology Data Exchange (ETDEWEB)
Metlov, Konstantin L., E-mail: metlov@fti.dn.ua [Donetsk Institute for Physics and Technology NAS, Donetsk 83114 (Ukraine)
2013-12-14
Frequency of free magnetic vortex precession in circular soft ferromagnetic nano-cylinders (magnetic dots) of various sizes is an important parameter, used in design of spintronic devices (such as spin-torque microwave nano-oscillators) and characterization of magnetic nanostructures. Here, using a recently developed collective-variable approach to non-linear dynamics of magnetic textures in planar nano-magnets, this frequency and its amplitude-dependent shift are computed analytically and plotted for the full range of cylinder geometries. The frequency shift is positive in large planar dots, but becomes negative in smaller and more elongated ones. At certain dot dimensions, a zero frequency shift is realized, which can be important for enhancing frequency stability of magnetic nano-oscillators.
Frequency-Dependent Attenuation of Blasting Vibration Waves
Zhou, Junru; Lu, Wenbo; Yan, Peng; Chen, Ming; Wang, Gaohui
2016-10-01
The dominant frequency, in addition to the peak particle velocity, is a critical factor for assessing adverse effects of the blasting vibration on surrounding structures; however, it has not been fully considered in blasting design. Therefore, the dominant frequency-dependent attenuation mechanism of blast-induced vibration is investigated in the present research. Starting with blasting vibration induced by a spherical charge propagating in an infinite viscoelastic medium, a modified expression of the vibration amplitude spectrum was derived to reveal the frequency dependency of attenuation. Then, ground vibration induced by more complex and more commonly used cylindrical charge that propagates in a semi-infinite viscoelastic medium was analyzed by numerical simulation. Results demonstrate that the absorptive property of the medium results in the frequency attenuation versus distance, whereas a rapid drop or fluctuation occurs during the attenuation of ground vibration. Fluctuation usually appears at moderate to far field, and the dominant frequency generally decreases to half the original value when rapid drop occurs. The decay rate discrepancy between different frequency components and the multimodal structure of vibration spectrum lead to the unsmooth frequency-dependent attenuation. The above research is verified by two field experiments. Furthermore, according to frequency-based vibration standards, frequency drop and fluctuation should be considered when evaluating blast safety. An optimized piecewise assessment is proposed for more accurate evaluation: With the frequency drop point as the breakpoint, the assessment is divided into two independent sections along the propagating path.
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse
Energy Technology Data Exchange (ETDEWEB)
Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)
2017-03-15
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.
Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties
Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon
2014-01-01
Purpose The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency during anterior-posterior stretching. Method Three materially linear and three materially nonlinear models were created and stretched up to 10 mm in 1 mm increments. Phonation onset pressure (Pon) and fundamental frequency (F0) at Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1 mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models. Results Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length. Conclusions Nonlinear synthetic models appear to more accurately represent the human vocal folds than linear models, especially with respect to F0 response. PMID:22271874
Direct generation of optical frequency combs in $\\chi^{(2)}$ nonlinear cavities
Mosca, S; Parisi, M; Maddaloni, P; Santamaria, L; De Natale, P; De Rosa, M
2015-01-01
Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously-pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on $\\chi^{(2)}$ frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although at a very early stage, our work lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.
Direct generation of optical frequency combs in χ(2 nonlinear cavities
Directory of Open Access Journals (Sweden)
Mosca Simona
2016-06-01
Full Text Available Quadratic nonlinear processes are currently exploited for frequency comb transfer and extension from the visible and near infrared regions to other spectral ranges where direct comb generation cannot be accomplished. However, frequency comb generation has been directly observed in continuously pumped quadratic nonlinear crystals placed inside an optical cavity. At the same time, an introductory theoretical description of the phenomenon has been provided, showing a remarkable analogy with the dynamics of third-order Kerr microresonators. Here, we give an overview of our recent work on χ(2 frequency comb generation. Furthermore, we generalize the preliminary three-wave spectral model to a many-mode comb and present a stability analysis of different cavity field regimes. Although our work is a very early stage, it lays the groundwork for a novel class of highly efficient and versatile frequency comb synthesizers based on second-order nonlinear materials.
Task, muscle and frequency dependent vestibular control of posture
Forbes, P.A.; Siegmund, G.P.; Schouten, A.C.; Blouin, J.S.
2015-01-01
The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular
Intelligent modeling and control for nonlinear systems with rate-dependent hysteresis
Institute of Scientific and Technical Information of China (English)
MAO JianQin; DING HaiShan
2009-01-01
A new modeling approach for nonlinear systems with rate-dependent hysteresis is proposed. The ap-proach is used for the modeling of the giant magnetostrictive actuator, which has the rate-dependent nonlinear property. The models built are simpler than the existed approaches. Compared with the exper-intent result, the model built can well describe the hysteresis nonlinear of the actuator for Input signals with complex frequency. An adaptive direct inverse control approach is proposed based on the fuzzy tree model and Inverse learning and special learning that are used in neural network broadly. In this approach, the inverse model of the plant is identified to be the initial controller firstly. Then, the inverse model Is connected with the plant in series and the linear parameters of the controller are adjusted using the least mean square algorithm by on-line manner. The direct Inverse control approach based on the fuzzy tree model is applied on the tracing control of the actuator by simulation. The simulation results show the correctness of the approach.
Frequency Dependence of Attenuation Constant of Dielectric Materials
Directory of Open Access Journals (Sweden)
A. S. Zadgaonkar
1975-01-01
Full Text Available Different dielectric materials have been studied for frequency dependence of attenuation constant. The sensitive cathode ray oscillograph method has been used to evaluate to the dielectric constant and loss factor, and from these attenuation constants have been calculated. The temperature remaining constant, a regular increase has been observed in attenuation constant, at higher frequencies of electro-magnetic propagating wave.
A molecular explanation of frequency-dependent selection in Drosophila.
Haj-Ahmad, Y; Hickey, D A
1982-09-23
Frequency-dependent selection provides a means for maintaining genetic variability within populations, without incurring a large genetic load. There is a wealth of experimental evidence for the existence of frequency-dependent changes in genotypic fitness among a wide variety of organisms. Examples of traits which have been shown to be subject to frequency-dependent selection include the self-incompatibility alleles of plants, chromosomal rearrangements in Drosophila, visible mutations, enzyme variants and rare-male mating advantage in Drosophila. These experiments have been interpreted in a number of different ways. Principally, frequency dependence of genotype fitness may result from intergenotype facilitation due to the production of biotic residues, or from the differential use of resources by the competing genotypes. However, it has proved extremely difficult to isolate and identify any biotic residue of importance or, alternatively, to understand the manner in which genotypes partition the environment. Thus, the difficulty in the interpretation of experiments which show frequency-dependent selective effects stems largely from our lack of understanding of the exact physiological mechanisms which produce these frequency-dependent effects. The principal aim of this study was to investigate the mechanisms associated with frequency-dependent selection at the amylase locus in Drosophila melanogaster. The excretion of catalytically active amylase enzyme and its effect on food medium composition were correlated with the outcome of intraspecific competition between amylase-deficient and amylase-producing genotypes. Amylase-producing genotypes were shown to excrete enzymatically active amylase protein into the food medium. The excreted amylase causes the external digestion of dietary starch; this accounts for the frequency-dependent increase in the viability of the amylase-deficient mutants in mixed cultures, maintained on a starch-rich diet.
Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators
Matsko, Andrey B; Savchenkov, Anatoliy A; Maleki, Lute
2012-01-01
We theoretically and experimentally investigate the chaotic regime of optical frequency combs generated in nonlinear ring microresonators pumped with continuous wave light. We show that the chaotic regime reveals itself, in an apparently counter-intuitive way, by a flat top symmetric envelope of the frequency spectrum, when observed by means of an optical spectrum analyzer. The comb demodulated on a fast photodiode produces a noisy radio frequency signal with an spectral width significantly exceeding the linear bandwidth of the microresonator mode.
A frequency up-converting harvester based on internal resonance in 2-DOF nonlinear systems
Wu, Yipeng; Qiu, Jinhao; Ji, Hongli
2016-11-01
This paper reports the design and experimental testing of a novel frequency up- converting piezoelectric energy harvester. The harvester is firstly approximated as a 2-degree- of-freedom cubic nonlinear system instead of the general Duffing systems. A 1:3 internal resonance innovatively applied in the frequency up-conversion approach is thoroughly investigated. Finally, the theoretical dynamic model confirmed by the experimental results clearly shows the effect of the frequency up-conversion.
Optical frequency conversion in quasi-phase-matched stacks of nonlinear crystals
Rustagi, K. C.; Mehendale, S. C.; Meenakshi, S.
1982-06-01
The paper presents a quantitative theory of nonlinear frequency conversion in stacks of crystals in which the phase mismatch due to dispersion is compensated by changing the sign of the nonlinear coupling coefficient in successive crystals. The effects of systematic and random departures in crystal lengths are studied with emphasis on the evolution of the relative phase. It is shown that with the appropriate choice of the signs of the nonlinear coupling coefficient in various crystals, high efficiency frequency conversion should be possible using almost any sufficiently large set of nonlinear crystals. In addition, the theory of second harmonic generation in periodic stacks and in rotating twinned crystals of zinc-blend structure is described.
New nonlinear mechanisms of midlatitude atmospheric low-frequency variability
Sterk, A. E.; Vitolo, R.; Broer, H. W.; Simo, C.; Dijkstra, H. A.
2010-01-01
This paper studies the dynamical mechanisms potentially involved in the so-called atmospheric low-frequency variability, occurring at midlatitudes in the Northern Hemisphere This phenomenon is characterised by recurrent non-propagating and temporally persistent flow patterns, with typical spatial an
New nonlinear mechanisms of midlatitude atmospheric low-frequency variability
Sterk, A. E.; Vitolo, R.; Broer, H.W.; Simó, C.; Dijkstra, H.A.|info:eu-repo/dai/nl/073504467
2010-01-01
This paper studies the dynamical mechanisms potentially involved in the so-called atmospheric low-frequency variability, occurring at midlatitudes in the Northern Hemisphere. This phenomenon is characterised by recurrent non-propagating and temporally persistent flow patterns, with typical spatial a
Nonlinear optics at low powers: new mechanism of on-chip optical frequency comb generation
Rogov, Andrei
2016-01-01
Nonlinear optical effects provide a natural way of light manipulation and interaction, and form the foundation of applied photonics -- from high-speed signal processing and telecommunication, to ultra-high bandwidth interconnects and information processing. However, relatively weak nonlinear response at optical frequencies calls for operation at high optical powers, or boosting efficiency of nonlinear parametric processes by enhancing local field intensity with high quality-factor resonators near cavity resonance, resulting in reduced operational bandwidth and increased loss due to multi-photon absorption. Here, we present an alternative to this conventional approach, with strong nonlinear optical effects at substantially lower local intensities, based on period-doubling bifurcations near nonlinear cavity anti-resonance, and apply it to low-power optical comb generation in a silicon chip.
Parametrically Excited Nonlinear Two-Degree-of-Freedom Systems with Repeated Natural Frequencies
Directory of Open Access Journals (Sweden)
A. H. Nayfeh
1995-01-01
Full Text Available The method of normal forms is used to study the nonlinear response of two-degree-of-freedom systems with repeated natural frequencies and cubic nonlinearity to a principal parametric excitation. The linear part of the system has a nonsemisimple one-to-one resonance. The character of the stability and various types of bifurcation including the formation of a homoclinic orbit are analyzed. The results are applied to the flutter of a simply supported panel in a supersonic airstream.
Nonlinear interferometer for tailoring the frequency spectrum of bright squeezed vacuum
Iskhakov, T Sh; Perez, A; Boyd, R W; Leuchs, G; Chekhova, M
2015-01-01
We propose a method for tailoring the frequency spectrum of bright squeezed vacuum by generating it in a nonlinear interferometer, consisting of two down-converting nonlinear crystals separated by a dispersive medium. Due to a faster dispersive spreading of higher-order Schmidt modes, the spectral width of the radiation at the output is reduced as the length of the dispersive medium is increased. Preliminary results show 30\\% spectral narrowing.
DEFF Research Database (Denmark)
Ghasemi, Negareh; Zare, Firuz; Davari, Pooya
2017-01-01
Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectri...... receiver is a function of a voltage across the resistor in the RLC branches and is related to the resonance frequencies of the ultrasound transducer....
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri
2008-01-01
The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear s...... spring-mass chains with non-linear inclusions. The presented analytical and numerical results suggest that the effective material properties can easily be altered by establishing finite amplitude HF standing waves in the non-linear regions of the chain....
Intermittency and transient chaos from simple frequency-dependent selection.
Gavrilets, S; Hastings, A
1995-08-22
Frequency-dependent selection is an important determinant of the evolution of gametophytic self-incompatibility systems in plants, aposematic (warning) and cryptic coloration, systems of mimicry, competitive interactions among members of a population, mating preferences, predator-prey and host-parasite interactions, aggression and other behavioural traits. Past theoretical studies of frequency-dependent selection have shown it to be a plausible mechanism for the maintenance of genetic variability in natural populations. Here, through an analysis of a simple deterministic model for frequency-dependent selection, we demonstrate that complex dynamic behaviour is possible under a broad range of parameter values. In particular we show that the model exhibits not only cycles and chaos but also, for a more restricted set of parameters, transient chaos and intermittency: alterations between an apparently deterministic behaviour and apparently chaotic fluctuations. This behaviour, which has not been stressed within the population genetics literature, provides an explanation for erratic dynamics of gene frequencies.
On the Casimir Energy of Frequency Dependent Interactions
Graham, N; Weigel, H
2014-01-01
Vacuum polarization (or Casimir) energies can be straightforwardly computed from scattering data for static field configurations whose interactions with the fluctuating field are frequency independent. In effective theories, however,such interactions are typically frequency dependent. As a consequence, the relationship between scattering data and the Green's function is modified, which may or may not induce additional contributions to the vacuum polarization energy. We discuss several examples that naturally include frequency dependent interactions: (i) scalar electrodynamics with a static background potential, (ii) an effective theory that emerges from integrating out a heavy degree of freedom, and (iii) quantum electrodynamics coupled to a frequency dependent dielectric material. In the latter case, we argue that introducing dissipation as required by the Kramers-Kronig relations requires the consideration of the Casimir energy within a statistical mechanics formalism, while in the absence of dissipation we...
Zhu, H.; Shan, G. C.; Shek, C. H.; Lee, J. E.-Y.
2012-07-01
The frequency response of a single crystal silicon resonator under nonlinear vibration is investigated and related to the shear property of the material. The shear stress-strain relation of bulk silicon is studied using a first-principles approach. By incorporating the calculated shear property into a device-level model, our simulation closely predicts the frequency response of the device obtained by experiments and further captures the nonlinear features. These results indicate that the observed nonlinearity stems from the material's mechanical property. Given the high quality factor (Q) of the device reported here (˜2 × 106), this makes it highly susceptible to such mechanical nonlinear effects.
Lacot, Eric; Girardeau, Vadim; Hugon, Olivier; Jacquin, Olivier
2016-01-01
In this article, we study the non-linear coupling between the stationary (i.e. the beating modulation signal) and transient (i.e. the laser quantum noise) dynamics of a laser subjected to frequency shifted optical feedback. We show how the noise power spectrum and more specifically the relaxation oscillation frequency of the laser are modified under different optical feedback condition. Specifically we study the influence of (i) the amount of light returning to the laser cavity and (ii) the initial detuning between the frequency shift and intrinsic relaxation frequency. The present work shows how the relaxation frequency is related to the strength of the beating signal and the shape of the noise power spectrum gives an image of the Transfer Modulation Function (i.e. of the amplification gain) of the nonlinear-laser dynamics.The theoretical predictions, confirmed by numerical resolutions, are in good agreements with the experimental data.
Phase stabilization of Kerr frequency comb internally without nonlinear optical interferometry
Huang, S -W; Yang, J; Yu, M; Kwong, D -L; Wong, C W
2016-01-01
Optical frequency comb (OFC) technology has been the cornerstone for scientific breakthroughs such as precision frequency metrology, redefinition of time, extreme light-matter interaction, and attosecond sciences. While the current mode-locked laser-based OFC has had great success in extending the scientific frontier, its use in real-world applications beyond the laboratory setting remains an unsolved challenge. Microresonator-based OFCs, or Kerr frequency comb, have recently emerged as a candidate solution to the challenge because of their preferable size, weight, and power consumption (SWaP). On the other hand, the current phase stabilization technology requires either external optical references or power-demanding nonlinear processes, overturning the SWaP benefit of Kerr frequency combs. Introducing a new concept in phase control, here we report an internally phase stabilized Kerr frequency comb without the need of any optical references or nonlinear processes. We describe the comb generation analytically ...
Directory of Open Access Journals (Sweden)
MUHAMMAD ARIF
2017-01-01
Full Text Available Ultrasound imaging with the subharmonic component from contrast microbubbles provide improved CTR (Contrast-to-Tissue Ratio, however it is susceptible to the low amplitude of the subharmonic component. In this simulation study, NLFM (Nonlinear Frequency Modulated signals are proposed in order to enhance the subharmonic response from microbubbles. NLFM signals having fractional bandwidths of 10, 20, and 40% with up and down sweeps were used as excitation. The performance of NLFM signals were compared with the reference tone-burst and LFM (Linear Frequency Modulated signals. The results show that the ultrasound contrast microbubbles can produce subharmonic response which is dependent on the applied signal pressure and bandwidth. It is observed that the subharmonic component of the scattered NLFM signal is 3.2dB higher than the LFM signal, whereas it is 9dB higher compared to the sinusoidal tone-burst signal. The results are also presented which show that the up and down sweeps NLFM signals performed better than the LFM signals at the same acoustic pressure and bandwidth.
Frequency-Dependent Spherical-Wave Reflection in Acoustic Media: Analysis and Inversion
Li, Jingnan; Wang, Shangxu; Wang, Jingbo; Dong, Chunhui; Yuan, Sanyi
2017-02-01
Spherical-wave reflectivity (SWR), which describes the seismic wave reflection in real subsurface media more accurately than plane-wave reflectivity (PWR), recently, again attracts geophysicists' attention. The recent studies mainly focus on the amplitude variation with offset/angle (AVO/AVA) attributes of SWR. For a full understanding of the reflection mechanism of spherical wave, this paper systematically investigates the frequency-dependent characteristics of SWR in a two-layer acoustic medium model with a planar interface. Two methods are used to obtain SWR. The first method is through the calculation of classical Sommerfeld integral. The other is by 3D wave equation numerical modeling. To enhance computation efficiency, we propose to perform wave equation simulation in cylindrical coordinates, wherein we for the first time implement unsplit convolutional perfectly matched layer as the absorbing boundary. Both methods yield the same results, which demonstrate the validity and accuracy of the computation. From both the numerical tests and the theoretical demonstration, we find that the necessary condition when frequency dependence of SWR occurs is that the upper and lower media have different velocities. At the precritical small angle, the SWR exhibits complicated frequency-dependent characteristics for varying medium parameters. Especially when the impedance of upper medium equals that of lower one, the PWR is zero according to geometric seismics. Whereas the SWR is nonzero: the magnitude of SWR decreases with growing frequency, and approaches that of the corresponding PWR at high frequency; the phase of SWR increases with growing frequency, but approaches 90° or -90° at high frequency. At near- and post-critical angles, large difference exists between SWR and PWR, and the difference is particularly great at low frequencies. Finally, we propose a nonlinear inversion method to estimate physical parameters and interface depth of media by utilizing the frequency-dependent
Measurements and Modeling of the Nonlinear Behavior of a Guitar Pickup at Low Frequencies †
Directory of Open Access Journals (Sweden)
Antonin Novak
2017-01-01
Full Text Available Description of the physical behavior of electric guitars is still not very widespread in the scientific literature. In particular, the physical models describing a nonlinear behavior of pickups still requires some refinements. The study presented in this paper is focused on nonlinear modeling of the pickups. Two main issues are raised. First, is the currently most used nonlinear model (a Hammerstein model sufficient for the complex nonlinear behavior of the pickup? In other words, would a more complex model, such as a Generalized Hammerstein that can deal better with the nonlinear memory, yield better results? The second troublesome issue is how to measure the nonlinear behavior of a pickup correctly. A specific experimental set-up allowing for driving the pickup in a controlled way (string displacement perpendicular to the pickup and to separate the nonlinear model of the pickup from other nonlinearities in the measurement chain is proposed. Thanks to this experimental set-up, a Generalized Hammerstein model of the pickup is estimated for frequency range 15–500 Hz and the results are compared with a simple Hammerstein model. A comparison with experimental results shows that both models succeed in describing the pickup when used in realistic conditions.
Computation of the frequency response of a nonlinearly loaded antenna within a cavity
Directory of Open Access Journals (Sweden)
F. Gronwald
2004-01-01
Full Text Available We analyze a nonlinearly loaded dipole antenna which is located within a rectangular cavity and excited by an electromagnetic signal. The signal is composed from two different frequencies. In order to calculate the spectrum of the resulting electromagnetic field within the resonator we transform the antenna problem into a network problem. This requires to precisely determine the antenna impedance within the cavity. The resulting nonlinear equivalent network is solved by means of the harmonic balance technique. As a result the occurrence of low intermodulation frequencies within the spectrum is verified.
Linear and Nonlinear Time-Frequency Analysis for Parameter Estimation of Resident Space Objects
2017-02-22
AFRL-AFOSR-UK-TR-2017-0023 Linear and Nonlinear Time-Frequency Analysis for Parameter Estimation of Resident Space Objects Marco Martorella... UNIVERSITY DI PISA, DEPARTMENT DI INGEGNERIA Final Report 02/22/2017 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research...Nonlinear Time-Frequency Analysis for Parameter Estimation of Resident Space Objects 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-14-1-0183 5c. PROGRAM
Low-frequency band gaps in chains with attached non-linear oscillators
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard
2007-01-01
in structures with periodic or random inclusions are located mainly in the high frequency range, as the wavelength has to be comparable with the distance between the alternating parts. Band gaps may also exist in structures with locally attached oscillators. In the linear case the gap is located around......The aim of this article is to investigate the wave propagation in one-dimensional chains with attached non-linear local oscillators by using analytical and numerical models. The focus is on the influence of non-linearities on the filtering properties of the chain in the low frequency range...
Intracavity frequency doubling of CW Ti:Sapphire laser utilising BiBO nonlinear crystal
DEFF Research Database (Denmark)
Thorhauge, Morten; Mortensen, Jesper Liltorp; Tidemand-Lichtenberg, Peter
Utilising BiBO nonlinear crystal frequency doubling a Ti:Sapphire CW laser gave 100 mW at 405 nm and 53 mW at 392 nm. Stability proved excellent without servo control. Broad tunability was shown around 392 nm.......Utilising BiBO nonlinear crystal frequency doubling a Ti:Sapphire CW laser gave 100 mW at 405 nm and 53 mW at 392 nm. Stability proved excellent without servo control. Broad tunability was shown around 392 nm....
New nonlinear mechanisms of midlatitude atmospheric low-frequency variability
Sterk, A. E.; Vitolo, R.; Broer, H. W.; Simó, C.; Dijkstra, H. A.
2010-05-01
This paper studies the dynamical mechanisms potentially involved in the so-called atmospheric low-frequency variability, occurring at midlatitudes in the Northern Hemisphere. This phenomenon is characterised by recurrent non-propagating and temporally persistent flow patterns, with typical spatial and temporal scales of 6000-10 000 km and 10-50 days, respectively. We study a low-order model derived from the 2-layer shallow-water equations on a β-plane channel. The main ingredients of the low-order model are a zonal flow, a planetary scale wave, orography, and a baroclinic-like forcing. A systematic analysis of the dynamics of the low-order model is performed using techniques and concepts from dynamical systems theory. Orography height ( h0) and magnitude of zonal wind forcing ( U0) are used as control parameters to study the bifurcations of equilibria and periodic orbits. Along two curves of Hopf bifurcations an equilibrium loses stability ( U0≥12.5 m/s) and gives birth to two distinct families of periodic orbits. These periodic orbits bifurcate into strange attractors along three routes to chaos: period doubling cascades, breakdown of 2-tori by homo- and heteroclinic bifurcations, or intermittency ( U0≥14.5 m/s and h0≥800 m). The observed attractors exhibit spatial and temporal low-frequency patterns comparing well with those observed in the atmosphere. For h0≤800 m the periodic orbits have a period of about 10 days and patterns in the vorticity field propagate eastward. For h0≥800 m, the period is longer (30-60 days) and patterns in the vorticity field are non-propagating. The dynamics on the strange attractors are associated with low-frequency variability: the vorticity fields show weakening and strengthening of non-propagating planetary waves on time scales of 10-200 days. The spatio-temporal characteristics are “inherited” (by intermittency) from the two families of periodic orbits and are detected in a relatively large region of the parameter
Feng, Q S; Wang, Q; Zheng, C Y; Liu, Z J; Cao, L H; He, X T
2016-01-01
The properties of the nonlinear frequency shift (NFS) especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas have been researched by Vlasov simulation. The pictures of the nonlinear frequency shift from harmonic generation and particles trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given and the results of Vlasov simulation are consistent to the theoretical result of multi-ion species plasmas. When the wave number $k\\lambda_{De}$ is small, such as $k\\lambda_{De}=0.1$, the fluid NFS dominates in the total NFS and will reach as large as nearly $15\\%$ when the wave amplitude $|e\\phi/T_e|\\sim0.1$, which indicates that in the condition of small $k\\lambda_{De}$, the fluid NFS dominates in the saturation of stimulated Brillouin scattering especially when the nonlinear IAW amplitude is large.
Prandtl-Ishlinskii hysteresis models for complex time dependent hysteresis nonlinearities
Al Janaideh, M.; Krejčí, P
2012-01-01
We introduce a new class of time dependent hysteresis models by combining the time dependent Prandtl–Ishlinskii model with functional nonlinearities. This combination improves the capability of the time dependent Prandtl–Ishlinskii model to characterize a class of complex time dependent hysteresis nonlinearities in smart actuators. The analytical inversion for the proposed time dependent hysteresis model is also presented in order to extend the inversion algorithm of the inverse time dependen...
Non-linear equation: energy conservation and impact parameter dependence
Kormilitzin, Andrey
2010-01-01
In this paper we address two questions: how energy conservation affects the solution to the non-linear equation, and how impact parameter dependence influences the inclusive production. Answering the first question we solve the modified BK equation which takes into account energy conservation. In spite of the fact that we used the simplified kernel, we believe that the main result of the paper: the small ($\\leq 40%$) suppression of the inclusive productiondue to energy conservation, reflects a general feature. This result leads us to believe that the small value of the nuclear modification factor is of a non-perturbative nature. In the solution a new scale appears $Q_{fr} = Q_s \\exp(-1/(2 \\bas))$ and the production of dipoles with the size larger than $2/Q_{fr}$ is suppressed. Therefore, we can expect that the typical temperature for hadron production is about $Q_{fr}$ ($ T \\approx Q_{fr}$). The simplified equation allows us to obtain a solution to Balitsky-Kovchegov equation taking into account the impact pa...
Westergaard, Philip G; Tieri, David; Matin, Rastin; Cooper, John; Holland, Murray; Ye, Jun; Thomsen, Jan W
2014-01-01
As an alternative to state-of-the-art laser frequency stabilisation using ultra-stable cavities, it has been proposed to exploit the non-linear effects from coupling of atoms with a narrow atomic transition to an optical cavity. Here we have constructed such a system and observed non-linear phase shifts of a narrow optical line by strong coupling of a sample of strontium-88 atoms to an optical cavity. The sample temperature of a few mK provides a domain where the Doppler energy scale is several orders of magnitude larger than the narrow linewidth of the optical transition. This makes the system sensitive to velocity dependent multi-photon scattering events (Dopplerons) that affect the cavity transmission significantly while leaving the phase signature relatively unaffected. By varying the number of atoms and the intra-cavity power we systematically study this non-linear phase signature which displays roughly the same features as for much lower temperature samples. This demonstration in a relatively simple sys...
Energy Technology Data Exchange (ETDEWEB)
Hong Qin and Ronald C. Davidson
2011-07-19
In a linear trap confining a one-component nonneutral plasma, the external focusing force is a linear function of the configuration coordinates and/or the velocity coordinates. Linear traps include the classical Paul trap and the Penning trap, as well as the newly proposed rotating-radio- frequency traps and the Mobius accelerator. This paper describes a class of self-similar nonlinear solutions of nonneutral plasma in general time-dependent linear focusing devices, with self-consistent electrostatic field. This class of nonlinear solutions includes many known solutions as special cases.
2016-07-01
Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9
Hybrid time/frequency domain modeling of nonlinear components
DEFF Research Database (Denmark)
Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth
2007-01-01
model is used as a basis for its implementation. First, the linear network part is replaced with an ideal voltage source and a time domain (EMT) simulation is performed. During the initial oscillations, harmonic content of the converter currents is calculated at every period by a fast Fourier transform...... and the periodic steady state is identified. Obtained harmonic currents are assigned to current sources and used in the frequency domain calculation in the linear network. The obtained three-phase bus voltage is then inverse Fourier transformed and assigned to the voltage source and the time domain simulation...... is performed again. This process is repeated until the change in the magnitudes and phase angles of the fundamental and low order characteristic harmonics of the bus voltage is smaller then predefined precision indexes. The method is verified against precise time domain simulation. The convergence properties...
The frequency dependence of scattering imprints on pulsar observations
Geyer, Marisa
2016-01-01
Observations of pulsars across the radio spectrum are revealing a dependence of the characteristic scattering time ($\\tau$) on frequency, which is more complex than the simple power law with a theoretically predicted power law index. In this paper we investigate these effects using simulated pulsar data at frequencies below 300 MHz. We investigate different scattering mechanisms, namely isotropic and anisotropic scattering, by thin screens along the line of sight, and the particular frequency dependent impact on pulsar profiles and scattering time scales of each. We also consider how the screen shape, location and offset along the line of sight lead to specific observable effects. We evaluate how well forward fitting techniques perform in determining $\\tau$. We investigate the systematic errors in $\\tau$ associated with the use of an incorrect fitting method and with the determination of an off-pulse baseline. Our simulations provide examples of average pulse profiles at various frequencies. Using these we co...
Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals
Yeh, Chien-Hung; Lo, Men-Tzung; Hu, Kun
2016-07-01
Recent studies of brain activities show that cross-frequency coupling (CFC) plays an important role in memory and learning. Many measures have been proposed to investigate the CFC phenomenon, including the correlation between the amplitude envelopes of two brain waves at different frequencies - cross-frequency amplitude-amplitude coupling (AAC). In this short communication, we describe how nonstationary, nonlinear oscillatory signals may produce spurious cross-frequency AAC. Utilizing the empirical mode decomposition, we also propose a new method for assessment of AAC that can potentially reduce the effects of nonlinearity and nonstationarity and, thus, help to avoid the detection of artificial AACs. We compare the performances of this new method and the traditional Fourier-based AAC method. We also discuss the strategies to identify potential spurious AACs.
Comment on “Frequency-dependent dispersion in porous media”
Davit, Yohan
2012-07-10
In a recent paper, Valdès-Parada and Alvarez-Ramirez used the technique of volume averaging to derive a "frequency-dependent" dispersion tensor, Dγ*, the goal of which is to describe solute transport in porous media undergoing periodic processes. We describe two issues related to this dispersion tensor. First, we demonstrate that the definition of Dγ* is erroneous and derive a corrected version, Dγ*c. With this modification, the approach of Valdès-Parada and Alvarez-Ramirez becomes strictly equivalent to the one devised by Moyne. Second, we show that the term "frequency-dependent dispersion" is misleading because Dγ* and Dγ*c do not depend on the process operating frequency, χ. The study carried out by Valdès-Parada and Alvarez-Ramirez represents a spectral analysis of the relaxation of Dγ* towards its steady-state, independent of any periodic operation or excitation. © 2012 American Physical Society.
Fluctuation-dissipation theorem for frequency-dependent specific heat
DEFF Research Database (Denmark)
Dyre, Jeppe; Nielsen, Johannes K.
1996-01-01
A derivation of the fluctuation-dissipation (FD) theorem for the frequency-dependent specific heat of a system described by a master equation is presented. The FD theorem is illustrated by a number of simple examples, including a system described by a linear Langevin equation, a two-level system......, and a system described by the energy master equation. It is shown that for two quite different models with low-energy cutoffsa collection of two-level systems and a system described by the energy master equationthe frequency-dependent specific heat in dimensionless units becomes universal at low temperatures......, i.e., independent of both energy distribution and temperature. These two models give almost the same universal frequency-dependent specific heat, which compares favorably to experiments on supercooled alcohols....
Frequency-dependent signal transmission and modulation by neuromodulators
Directory of Open Access Journals (Sweden)
Hiroshi T Ito
2008-12-01
Full Text Available The brain uses a strategy of labor division, which may allow it to accomplish more elaborate and complicated tasks, but in turn, imposes a requirement for central control to integrate information among different brain areas. Anatomically, the divergence of long-range neuromodulator projections appears well-suited to coordinate communication between brain areas. Oscillatory brain activity is a prominent feature of neural transmission. Thus, the ability of neuromodulators to modulate signal transmission in a frequency-dependent manner adds an additional level of regulation. Here, we review the significance of frequency-dependent signal modulation in brain function and how a neuronal network can possess such properties. We also describe how a neuromodulator, dopamine, changes frequency-dependent signal transmission, controlling information flow from the entorhinal cortex to the hippocampus.
Frequency-dependent effective hydraulic conductivity of strongly heterogeneous media.
Caspari, E; Gurevich, B; Müller, T M
2013-10-01
The determination of the transport properties of heterogeneous porous rocks, such as an effective hydraulic conductivity, arises in a range of geoscience problems, from groundwater flow analysis to hydrocarbon reservoir modeling. In the presence of formation-scale heterogeneities, nonstationary flows, induced by pumping tests or propagating elastic waves, entail localized pressure diffusion processes with a characteristic frequency depending on the pressure diffusivity and size of the heterogeneity. Then, on a macroscale, a homogeneous equivalent medium exists, which has a frequency-dependent effective conductivity. The frequency dependence of the conductivity can be analyzed with Biot's equations of poroelasticity. In the quasistatic frequency regime of this framework, the slow compressional wave is a proxy for pressure diffusion processes. This slow compressional wave is associated with the out-of-phase motion of the fluid and solid phase, thereby creating a relative fluid-solid displacement vector field. Decoupling of the poroelasticity equations gives a diffusion equation for the fluid-solid displacement field valid in a poroelastic medium with spatial fluctuations in hydraulic conductivity. Then, an effective conductivity is found by a Green's function approach followed by a strong-contrast perturbation theory suggested earlier in the context of random dielectrics. This theory leads to closed-form expressions for the frequency-dependent effective conductivity as a function of the one- and two-point probability functions of the conductivity fluctuations. In one dimension, these expressions are consistent with exact solutions in both low- and high-frequency limits for arbitrary conductivity contrast. In 3D, the low-frequency limit depends on the details of the microstructure. However, the derived approximation for the effective conductivity is consistent with the Hashin-Shtrikman bounds.
A Closed form Solution for Nonlinear Oscillators’ Frequencies Using Amplitude-Frequency Formulation
DEFF Research Database (Denmark)
Barari, Amin; Kimiaeifar, Amin; Nejad, M.G
2012-01-01
an analytical approach with a closed form expression for system response would be very useful in different applications. Some analytical techniques have been presented in the literature for the solution of strong nonlinear oscillators as well as approximate and numerical solutions. In this paper, Amplitude...
Frequency-difference-dependent stochastic resonance in neural systems
Guo, Daqing; Perc, Matjaž; Zhang, Yangsong; Xu, Peng; Yao, Dezhong
2017-08-01
Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.
Dynamical gap generation in graphene with frequency dependent renormalization effects
Carrington, M E; von Smekal, L; Thoma, M H
2016-01-01
We study the frequency dependencies in the renormalization of the fermion Greens function for the $\\pi$-band electrons in graphene and their influence on the dynamical gap generation at sufficiently strong interaction. Adopting the effective QED-like description for the low-energy excitations within the Dirac-cone region we self consistently solve the fermion Dyson-Schwinger equation in various approximations for the photon propagator and the vertex function with special emphasis on frequency dependent Lindhard screening and retardation effects.
Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals
DEFF Research Database (Denmark)
Hansen, Anders Kragh; Andersen, Peter E.; Jensen, Ole Bjarlin;
2015-01-01
, despite differences in the phase relations of the involved fields. An unprecedented 5.5 W of continuous-wave diffraction-limited green light is generated from the single-pass sum frequency mixing of two diode lasers in two periodically poled nonlinear crystals (conversion efficiency 50%). The technique......The cascading of nonlinear crystals has been established as a simple method to greatly increase the conversion efficiency of single-pass second-harmonic generation compared to a single-crystal scheme. Here, we show for the first time that the technique can be extended to sum frequency generation...... is generally applicable and can be applied to any combination of fundamental wavelengths and nonlinear crystals....
High frequency analysis of a plate carrying a concentrated nonlinear spring-mass system
Culver, Dean; Dowell, Earl
2016-09-01
Examining the behavior of dynamical systems with many degrees of freedom undergoing random excitation at high frequency often requires substantial computation. These requirements are even more stringent for nonlinear systems. One approach for describing linear systems, Asymptotic Modal Analysis (AMA), has been extended to nonlinear systems in this paper. A prototypical system, namely a thin plate carrying a concentrated hardening cubic spring-mass, is explored. The study focuses on the response of three principal variables to random, frequency-bounded excitation: the displacement of the mounting location of the discrete spring-mass, the relative displacement of the discrete mass to this mounting location, and the absolute displacement of the discrete mass. The results indicate that extending AMA to nonlinear systems for input frequency bands containing a large number of modes is feasible. Several advantageous properties of nonlinear AMA are found, and an additional reduced frequency-domain modal method, Dominance-Reduced Classical Modal Analysis (DRCMA), is proposed that is intermediate in accuracy and the cost of computation between AMA and Classical Modal Analysis (CMA).
Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres
Ducros, Nicolas; Morin, Franck; Cook, Kevin; Labruyère, Alexis; Février, Sébastien; Humbert, Georges; Druon, Fréderic; Hanna, Marc; Georges, Patrick; Canning, J.; Buczynski, Ryszard; Pysz, Dariusz; Stepien, Ryszard
2010-04-01
Chalcogenide or heavy metal oxide glasses are well known for their good transparency in the mid-infrared (MIR) domain as well as their high nonlinear refractive index (n2) tens to hundreds times higher than that of silica. We have investigated the nonlinear frequency conversion processes, based upon either stimulated Raman scattering (SRS) or soliton fission and soliton self-frequency shift (SSFS) in fibres made up with such highly nonlinear infrared transmitting glasses. First, SRS has been investigated in a chalcogenide As2S3 step index fibre. In the single pass configuration, under quasi continuous wave 1550 nm pumping, Raman cascade up to the forth Stokes order has been obtained in a 3 m long piece of fibre. The possibility to build a Raman laser thanks to in-fibre written Bragg gratings has also been investigated. A 5 dB Bragg grating has been written successfully in the core. Then, nonlinear frequency conversion in ultra-short pulse regime has been studied in a heavy metal oxide (lead-bismuth-gallium ternary system) glass photonic crystal fibre. Broadband radiation, from 800 nm up to 2.8 μm, has been obtained by pumping an 8 cm long piece of fibre at 1600 nm in sub-picosecond pulsed regime. The nonlinear frequency conversion process was assessed by numerical modelling taking into account the actual fibre cross-section as well as the measured linear and nonlinear parameters and was found to be due to soliton fission and Raman-induced SSFS.
Ouali, D.; Chebana, F.; Ouarda, T. B. M. J.
2017-06-01
The high complexity of hydrological systems has long been recognized. Despite the increasing number of statistical techniques that aim to estimate hydrological quantiles at ungauged sites, few approaches were designed to account for the possible nonlinear connections between hydrological variables and catchments characteristics. Recently, a number of nonlinear machine-learning tools have received attention in regional frequency analysis (RFA) applications especially for estimation purposes. In this paper, the aim is to study nonlinearity-related aspects in the RFA of hydrological variables using statistical and machine-learning approaches. To this end, a variety of combinations of linear and nonlinear approaches are considered in the main RFA steps (delineation and estimation). Artificial neural networks (ANNs) and generalized additive models (GAMs) are combined to a nonlinear ANN-based canonical correlation analysis (NLCCA) procedure to ensure an appropriate nonlinear modeling of the complex processes involved. A comparison is carried out between classical linear combinations (CCAs combined with linear regression (LR) model), semilinear combinations (e.g., NLCCA with LR) and fully nonlinear combinations (e.g., NLCCA with GAM). The considered models are applied to three different data sets located in North America. Results indicate that fully nonlinear models (in both RFA steps) are the most appropriate since they provide best performances and a more realistic description of the physical processes involved, even though they are relatively more complex than linear ones. On the other hand, semilinear models which consider nonlinearity either in the delineation or estimation steps showed little improvement over linear models. The linear approaches provided the lowest performances.
Martin, Christopher H
2016-06-01
The adaptive landscape provides the foundational bridge between micro- and macroevolution. One well-known caveat to this perspective is that fitness surfaces depend on ecological context, including competitor frequency, traits measured, and resource abundance. However, this view is based largely on intraspecific studies. It is still unknown how context-dependence affects the larger features of peaks and valleys on the landscape which ultimately drive speciation and adaptive radiation. Here, I explore this question using one of the most complex fitness landscapes measured in the wild in a sympatric pupfish radiation endemic to San Salvador Island, Bahamas by tracking survival and growth of laboratory-reared F2 hybrids. I present new analyses of the effects of competitor frequency, dietary isotopes, and trait subsets on this fitness landscape. Contrary to expectations, decreasing competitor frequency increased survival only among very common phenotypes, whereas less common phenotypes rarely survived despite few competitors, suggesting that performance, not competitor frequency, shapes large-scale features of the fitness landscape. Dietary isotopes were weakly correlated with phenotype and growth, but did not explain additional survival variation. Nonlinear fitness surfaces varied substantially among trait subsets, revealing one-, two-, and three-peak landscapes, demonstrating the complexity of selection in the wild, even among similar functional traits. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Frequency-dependent effects of gravitational lensing within plasma
Rogers, Adam
2015-07-01
The interaction between refraction from a distribution of inhomogeneous plasma and gravitational lensing introduces novel effects to the paths of light rays passing by a massive object. The plasma contributes additional terms to the equations of motion, and the resulting ray trajectories are frequency-dependent. Lensing phenomena and circular orbits are investigated for plasma density distributions N ∝ 1/rh with h ≥ 0 in the Schwarzschild space-time. For rays passing by the mass near the plasma frequency refractive effects can dominate, effectively turning the gravitational lens into a mirror. We obtain the turning points, circular orbit radii and angular momentum for general h. Previous results have shown that light rays behave like massive particles with an effective mass given by the plasma frequency for a constant density h = 0. We study the behaviour for general h and show that when h = 2 the plasma term acts like an additional contribution to the angular momentum of the passing ray. When h = 3 the potential and radii of circular orbits are analogous to those found in studies of massless scalar fields on the Schwarzschild background. As a physically motivated example we study the pulse profiles of a compact object with antipodal hotspots sheathed in a dense plasma, which shows dramatic frequency-dependent shifts from the behaviour in vacuum. Finally, we consider the potential observability and applications of such frequency-dependent plasma effects in general relativity for several types of neutron star.
Frequency dependent Lg attenuation in south-central Alaska
McNamara, D.E.
2000-01-01
The characteristics of seismic energy attenuation are determined using high frequency Lg waves from 27 crustal earthquakes, in south-central Alaska. Lg time-domain amplitudes are measured in five pass-bands and inverted to determine a frequency-dependent quality factor, Q(f), model for south-central Alaska. The inversion in this study yields the frequency-dependent quality factor, in the form of a power law: Q(f) = Q0fη = 220(±30) f0.66(±0.09) (0.75≤f≤12Hz). The results from this study are remarkably consistent with frequency dependent quality factor estimates, using local S-wave coda, in south-central Alaska. The consistency between S-coda Q(f) and Lg Q(f) enables constraints to be placed on the mechanism of crustal attenuation in south-central Alaska. For the range of frequencies considered in this study both scattering and intrinsic attenuation mechanisms likely play an equal role.
System Identification for Nonlinear FOPDT Model with Input-Dependent Dead-Time
DEFF Research Database (Denmark)
Sun, Zhen; Yang, Zhenyu
2011-01-01
. In order to identify these parameters in an online manner, the considered system is discretized at first. Then, the nonlinear FOPDT identification problem is formulated as a stochastic Mixed Integer Non-Linear Programming problem, and an identification algorithm is proposed by combining the Branch......An on-line iterative method of system identification for a kind of nonlinear FOPDT system is proposed in the paper. The considered nonlinear FOPDT model is an extension of the standard FOPDT model by means that its dead time depends on the input signal and the other parameters are time dependent...
Task, muscle and frequency dependent vestibular control of posture
Forbes, P.A.; Siegmund, G.P.; Schouten, A.C.; Blouin, J.S.
2015-01-01
The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular informati
Frequency-dependent dynamic effective properties of porous materials
Institute of Scientific and Technical Information of China (English)
Peijun Wei; Zhuping Huang
2005-01-01
The frequency-dependent dynamic effective properties (phase velocity, attenuation and elastic modulus) of porous materials are studied numerically. The coherent plane longitudinal and shear wave equations, which are obtained by averaging on the multiple scattering fields, are used to evaluate the frequency-dependent dynamic effective properties of a porous material. It is found that the prediction of the dynamic effective properties includes the size effects of voids which are not included in most prediction of the traditional static effective properties. The prediction of the dynamic effective elastic modulus at a relatively low frequency range is compared with that of the traditional static effective elastic modulus, and the dynamic effective elastic modulus is found to be very close to the Hashin-Shtrikman upper bound.
Jing, Xingjian
2015-01-01
This book is a systematic summary of some new advances in the area of nonlinear analysis and design in the frequency domain, focusing on the application oriented theory and methods based on the GFRF concept, which is mainly done by the author in the past 8 years. The main results are formulated uniformly with a parametric characteristic approach, which provides a convenient and novel insight into nonlinear influence on system output response in terms of characteristic parameters and thus facilitate nonlinear analysis and design in the frequency domain. The book starts with a brief introduction to the background of nonlinear analysis in the frequency domain, followed by recursive algorithms for computation of GFRFs for different parametric models, and nonlinear output frequency properties. Thereafter the parametric characteristic analysis method is introduced, which leads to the new understanding and formulation of the GFRFs, and nonlinear characteristic output spectrum (nCOS) and the nCOS based analysis a...
Generation of High Frequency Response in a Dynamically Loaded, Nonlinear Soil Column
Energy Technology Data Exchange (ETDEWEB)
Spears, Robert Edward [Idaho National Laboratory; Coleman, Justin Leigh [Idaho National Laboratory
2015-08-01
Detailed guidance on linear seismic analysis of soil columns is provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998),” which is currently under revision. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain analysis which includes evaluation of soil columns. When performing linear analysis, a given soil column is typically evaluated with a linear, viscous damped constitutive model. When submitted to a sine wave motion, this constitutive model produces a smooth hysteresis loop. For nonlinear analysis, the soil column can be modelled with an appropriate nonlinear hysteretic soil model. For the model in this paper, the stiffness and energy absorption result from a defined post yielding shear stress versus shear strain curve. This curve is input with tabular data points. When submitted to a sine wave motion, this constitutive model produces a hysteresis loop that looks similar in shape to the input tabular data points on the sides with discontinuous, pointed ends. This paper compares linear and nonlinear soil column results. The results show that the nonlinear analysis produces additional high frequency response. The paper provides additional study to establish what portion of the high frequency response is due to numerical noise associated with the tabular input curve and what portion is accurately caused by the pointed ends of the hysteresis loop. Finally, the paper shows how the results are changed when a significant structural mass is added to the top of the soil column.
A non-linear frequency transform and its application to speaker recognition
Institute of Scientific and Technical Information of China (English)
YU Yibiao; YUAN Dongmei; XUE Feng
2009-01-01
Based on analyzing contribution of short-time spectrum in different frequency sub-bands to speaker recognition and using of polynomial curve matching techniques, a non-linear frequency transform and feature detection algorithm are proposed to highlight the speaker's individuality in short-time spectrum of speech. The experimental results show that the perfor-mance of speaker recognition system is improved effectively, the average error rate of recognition relatively falls about 70.5%, 60.8% and 70.5% in comparison with classical frequency transform of Mel, Bark and ERB (Equivalent Rectangular Bandwidth) respectively.
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Thomsen, Jon Juel
2009-01-01
We investigate how high-frequency (HF) excitation combined with strongly non-linear elasticity may influence the effective properties for low-frequency wave propagation. The HF effects are demonstrated for linear spring-mass chains with embedded non-linear parts. The investigated mechanical syste...
FREQUENCY-DEPENDENT DISPERSION MEASURES AND IMPLICATIONS FOR PULSAR TIMING
Energy Technology Data Exchange (ETDEWEB)
Cordes, J. M. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Shannon, R. M. [CSIRO Astronomy and Space Science, Box 76, Epping, NSW 1710 (Australia); Stinebring, D. R., E-mail: cordes@astro.cornell.edu, E-mail: ryan.shannon@csiro.au, E-mail: dan.stinebring@oberlin.edu [Department of Physics and Astronomy, Oberlin College, Oberlin, OH 44074 (United States)
2016-01-20
The dispersion measure (DM), the column density of free electrons to a pulsar, is shown to be frequency dependent because of multipath scattering from small-scale electron-density fluctuations. DMs vary between propagation paths whose transverse extent varies strongly with frequency, yielding arrival times that deviate from the high-frequency scaling expected for a cold, uniform, unmagnetized plasma (1/frequency{sup 2}). Scaling laws for thin phase screens are verified with simulations; extended media are also analyzed. The rms DM difference across an octave band near 1.5 GHz is ∼ 4 × 10{sup −5} pc cm{sup −3} for pulsars at ∼1 kpc distance. The corresponding arrival-time variations are a few to hundreds of nanoseconds for DM ≲ 30 pc cm{sup −3} but increase rapidly to microseconds or more for larger DMs and wider frequency ranges. Chromatic DMs introduce correlated noise into timing residuals with a power spectrum of “low pass” form. The correlation time is roughly the geometric mean of the refraction times for the highest and lowest radio frequencies used, ranging from days to years, depending on the pulsar. We discuss implications for methodologies that use large frequency separations or wide bandwidth receivers for timing measurements. Chromatic DMs are partially mitigable by including an additional chromatic term in arrival time models. Without mitigation, an additional term in the noise model for pulsar timing is implied. In combination with measurement errors from radiometer noise, an arbitrarily large increase in total frequency range (or bandwidth) will yield diminishing benefits and may be detrimental to overall timing precision.
2015-03-01
AFRL-RY-WP-TP-2015-0068 GROWTH AND STUDY OF NONLINEAR OPTICAL MATERIALS FOR FREQUENCY CONVERSION DEVICES WITH APPLICATIONS IN DEFENCE AND...2015 Technical Paper 1 August 2013 – 1 August 2014 4. TITLE AND SUBTITLE GROWTH AND STUDY OF NONLINEAR OPTICAL MATERIALS FOR FREQUENCY CONVERSION...SUBJECT TERMS hydride vapor phase epitaxy, nonlinear optical materials , quasi-phase matching 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
On Polarization and Frequency Dependence of Diffuse Indoor Propagation
DEFF Research Database (Denmark)
Nielsen, Jesper Ødum; Andersen, Jørgen Bach; Pedersen, Gert Frølund
2011-01-01
The room electromagnetics (RE) theory describes the radio propagation in a single room assuming diffuse scat- tering. A main characteristic is the exponential power-delay profile (PDP) decaying with the so-called reverberation time (RT) parameter, depending only on the wall area, the volume...... of the room and an absorption coefficient. The PDP is independent on the location in the room, except for the arrival time. Based on measurements in a room with a spherical array of 16 dual- polarized wideband horn antennas, the current work studies how the RE parameters depend on the receiver (Rx) antenna...... polarization and orientation. Also the frequency dependence is investigated, with measurements done at both 2.3 GHz and 5.8 GHz center frequencies. The RE theory was found to fit well to the measurements with a RT in the range 22-25 ns. Only small differences were found due to the polarization and the channel...
Improving Planck calibration by including frequency-dependent relativistic corrections
Quartin, Miguel
2015-01-01
The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10^(-3), due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.
Improving Planck calibration by including frequency-dependent relativistic corrections
Quartin, Miguel; Notari, Alessio
2015-09-01
The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10-3, due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.
Institute of Scientific and Technical Information of China (English)
GUO Qintao; ZHANG Lingmi; TAO Zheng
2008-01-01
Thin wall component is utilized to absorb impact energy of a structure. However, the dynamic behavior of such thin-walled structure is highly non-linear with material, geometry and boundary non-linearity. A model updating and validation procedure is proposed to build accurate finite element model of a frame structure with a non-linear thin-walled component for dynamic analysis. Design of experiments (DOE) and principal component decomposition (PCD) approach are applied to extract dynamic feature from nonlinear impact response for correlation of impact test result and FE model of the non-linear structure. A strain-rate-dependent non-linear model updating method is then developed to build accurate FE model of the structure. Computer simulation and a real frame structure with a highly non-linear thin-walled component are employed to demonstrate the feasibility and effectiveness of the proposed approach.
Non-linear swept frequency technique for CO2 measurements using a CW laser system
Campbell, Joel F
2013-01-01
A system using a non-linear multi-swept sine wave system is described which employs a multi-channel, multi-swept orthogonal waves, to separate channels and make multiple, simultaneous online/offline CO2 measurements. An analytic expression and systematic method for determining the orthogonal frequencies for the unswept, linear swept and non-linear swept cases is presented. It is shown that one may reduce sidelobes of the autocorrelation function while preserving cross channel orthogonality, for thin cloud rejection.
Non-linear Vibration of Oscillation Systems using Frequency-Amplitude Formulation
DEFF Research Database (Denmark)
Fereidoon, A.; Ghadimi, M.; Barari, Amin
2012-01-01
In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifthorder nonlinearity for two examples using He’s Frequency Amplitude Formulation (HFAF).The effectiveness and convenience of the method is illustrated in these examples. It will be shown...... that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems....
Garai, S.; Janaki, M. S.; Chakrabarti, N.
2016-09-01
The nonlinear propagation of low frequency waves, in a collisionless, strongly coupled dusty plasma (SCDP) with a density dependent viscosity, has been studied with a proper Galilean invariant generalized hydrodynamic (GH) model. The well known reductive perturbation technique (RPT) has been employed in obtaining the solutions of the longitudinal and transverse perturbations. It has been found that the nonlinear propagation of the acoustic perturbations govern with the modified Korteweg-de Vries (KdV) equation and are decoupled from the sheared fluctuations. In the regions, where transversal gradients of the flow exists, coupling between the longitudinal and transverse perturbations occurs due to convective nonlinearity which is true for the homogeneous case also. The results, obtained here, can have relative significance to astrophysical context as well as in laboratory plasmas.
A fast continuation scheme for accurate tracing of nonlinear oscillator frequency response functions
Chen, Guoqiang; Dunne, J. F.
2016-12-01
A new algorithm is proposed to combine the split-frequency harmonic balance method (SF-HBM) with arc-length continuation (ALC) for accurate tracing of the frequency response of oscillators with non-expansible nonlinearities. ALC is incorporated into the SF-HBM in a two-stage procedure: Stage I involves finding a reasonably accurate response frequency and solution using a relatively large number of low-frequency harmonics. This step is achieved using the SF-HBM in conjunction with ALC. Stage II uses the SF-HBM to obtain a very accurate solution at the frequency obtained in Stage I. To guarantee rapid path tracing, the frequency axis is appropriately subdivided. This gives high chance of success in finding a globally optimum set of harmonic coefficients. When approaching a turning point however, arc-lengths are adaptively reduced to obtain a very accurate solution. The combined procedure is tested on three hardening stiffness examples: a Duffing model; an oscillator with non-expansible stiffness and single harmonic forcing; and an oscillator with non-expansible stiffness and multiple-harmonic forcing. The results show that for non-expansible nonlinearities and multiple-harmonic forcing, the proposed algorithm is capable of tracing-out frequency response functions with high accuracy and efficiency.
Wang, X.; Zheng, G. T.
2016-02-01
A simple and general Equivalent Dynamic Stiffness Mapping technique is proposed for identifying the parameters or the mathematical model of a nonlinear structural element with steady-state primary harmonic frequency response functions (FRFs). The Equivalent Dynamic Stiffness is defined as the complex ratio between the internal force and the displacement response of unknown element. Obtained with the test data of responses' frequencies and amplitudes, the real and imaginary part of Equivalent Dynamic Stiffness are plotted as discrete points in a three dimensional space over the displacement amplitude and the frequency, which are called the real and the imaginary Equivalent Dynamic Stiffness map, respectively. These points will form a repeatable surface as the Equivalent Dynamic stiffness is only a function of the corresponding data as derived in the paper. The mathematical model of the unknown element can then be obtained by surface-fitting these points with special functions selected by priori knowledge of the nonlinear type or with ordinary polynomials if the type of nonlinearity is not pre-known. An important merit of this technique is its capability of dealing with strong nonlinearities owning complicated frequency response behaviors such as jumps and breaks in resonance curves. In addition, this technique could also greatly simplify the test procedure. Besides there is no need to pre-identify the underlying linear parameters, the method uses the measured data of excitation forces and responses without requiring a strict control of the excitation force during the test. The proposed technique is demonstrated and validated with four classical single-degree-of-freedom (SDOF) numerical examples and one experimental example. An application of this technique for identification of nonlinearity from multiple-degree-of-freedom (MDOF) systems is also illustrated.
Frequency- dependent cell responses to an electromagnetic stimulus
Taghian, Toloo; Sheikh, Abdul; Narmoneva, Daria; Kogan, Andrei
2013-03-01
External electric field (EF) acting on cells in the ionic environment can trigger a variety of mechanical and chemical cell responses that regulate cell functions, such as adhesion, migration and cell signaling; thus manipulation of EF can be used in therapeutic applications. To optimize this process, realistic studies of EF interaction with cells are essential. We have developed a combined theoretical-experimental approach to study cell response to the external EF in the native configuration. The cell is modeled as a membrane-enclosed hemisphere which is cultured on a substrate and is surrounded by electrolyte. Maxwell's equations are solved numerically (ANSYS-HFSS) to obtain 3D EF distribution inside and near the cell subjected to an external EF. Theoretical results indicate that the cell response is frequency dependent, where at low frequency EF is excluded from the cell interior while EF penetration into the cell increases for higher frequencies. In both regimes the spatial distribution and strength of induced EF in membrane varies with frequency. Experimental results are consistent with theoretical predictions and show frequency-dependent cell response, including both membrane-initiated and intracellular pathway activation and growth factor release. The authors acknowledge the financial support from the NSF (DMR-1206784 & DMR-0804199 to AK); the NIH (1R21 DK078814-01A1 to DN) and the University of Cincinnati (Interdisciplinary Faculty Research Support Grant to DN and AK).
Energy Technology Data Exchange (ETDEWEB)
Cloutier, J.R.; D`Souza, C.N.; Mracek, C.P. [Air Force Armament Directorate, Eglin, FL (United States)
1994-12-31
A little known technique for systematically designing nonlinear regulators is analyzed. The technique consists of first using direct parameterization to bring the nonlinear system to a linear structure having state-dependent coefficients (SDC). A state-dependent Riccati equation (SDRE) is then solved at each point x along the trajectory to obtain a nonlinear feedback controller of the form u = -R{sup -1}(x)B{sup T}(x)P(x)x, where P(x) is the solution of the SDRE. In the case of scalar x, it is shown that the SDRE approach yields a control solution which satisfies all of the necessary conditions for optimality even when the state and control weightings are functions of the state. It is also shown that the solution is globally asymptotically stable. In the multivariable case, the optimality, suboptimality and stability properties of the SDRE method are investigated. Under various mild assumptions of controllability and observability, the following is shown: (a) concerning the necessary conditions for optimality, where H is the Hamiltonian of the system, H{sub u} = 0 is always satisfied and, under stability, {lambda} = -H{sub x} is asymptotically satisfied at a quadratic rate as the states are driven toward the origin, (b) if it exists, a parameter-dependent SDC parameterization can be computed such that the multivariable SDRE closed loop solution satisfies all of the necessary conditions for optimality for a given initial condition, and (c) the method is locally asymptotically stable. A general nonlinear minimum-energy (nonlinear H{sub {infinity}}) problem is then posed. For this problem, the SDRF, method involves the solution of two coupled state-dependent Riccati equations at each point x along the trajectory. In the case of full state information, again under mild assumptions of controllability and observability, it is shown that the SDRE non-linear H{sub {infinity}} controller is internally locally asymptotically stable.
2015-08-27
The high voltage diodes D5 to D10 are used to protect the HV switch against negative back swing voltage, while D4 diode for reverse current ...AFRL-AFOSR-CL-TR-2015-0001 STUDY OF HV DIELECTRICS FOR HIGH FREQUENCY OPERATION IN LINEAR & NONLINEAR TRANSMISSION LINES & SIMULATION & DEVELOPMENT...AFOSR Final Performance Report Study of HV Dielectrics for High Frequency Operation in Linear and Nonlinear Transmission Lines and Simulation
Spatial-frequency dependent binocular imbalance in amblyopia
Kwon, MiYoung; Wiecek, Emily; Dakin, Steven C.; Bex, Peter J.
2015-01-01
While amblyopia involves both binocular imbalance and deficits in processing high spatial frequency information, little is known about the spatial-frequency dependence of binocular imbalance. Here we examined binocular imbalance as a function of spatial frequency in amblyopia using a novel computer-based method. Binocular imbalance at four spatial frequencies was measured with a novel dichoptic letter chart in individuals with amblyopia, or normal vision. Our dichoptic letter chart was composed of band-pass filtered letters arranged in a layout similar to the ETDRS acuity chart. A different chart was presented to each eye of the observer via stereo-shutter glasses. The relative contrast of the corresponding letter in each eye was adjusted by a computer staircase to determine a binocular Balance Point at which the observer reports the letter presented to either eye with equal probability. Amblyopes showed pronounced binocular imbalance across all spatial frequencies, with greater imbalance at high compared to low spatial frequencies (an average increase of 19%, p amblyopia and as an outcome measure for recovery of binocular vision following therapy. PMID:26603125
Differential Frequency-dependent Delay from the Pulsar Magnetosphere
Hassall, T E; Weltevrede, P; Hessels, J W T; Alexov, A; Coenen, T; Karastergiou, A; Kramer, M; Keane, E F; Kondratiev, V I; van Leeuwen, J; Noutsos, A; Pilia, M; Serylak, M; Sobey, C; Zagkouris, K; Fender, R; Bell, M E; Broderick, J; Eisloffel, J; Falcke, H; Griessmeier, J -M; Kuniyoshi, M; Miller-Jones, J C A; Wise, M W; Wucknitz, O; Zarka, P; Asgekar, A; Batejat, F; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Bruggen, M; Butcher, H R; Ciardi, B; de Gasperin, F; de Reijer, J -P; Duscha, S; Fallows, R A; Ferrari, C; Frieswijk, W; Garrett, M A; Gunst, A W; Heald, G; Hoeft, M; Juette, E; Maat, P; McKean, J P; Norden, M J; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Rottgering, H; Sluman, J; Tang, Y; Tasse, C; Vermeulen, R; van Weeren, R J; Wijnholds, S J; Yatawatta, S
2013-01-01
Some radio pulsars show clear drifting subpulses, in which subpulses are seen to drift in pulse longitude in a systematic pattern. Here we examine how the drifting subpulses of PSR B0809+74 evolve with time and observing frequency. We show that the subpulse period (P3) is constant on timescales of days, months and years, and between 14-5100 MHz. Despite this, the shapes of the driftbands change radically with frequency. Previous studies have concluded that, while the subpulses appear to move through the pulse window approximately linearly at low frequencies ( 820 MHz) near to the peak of the average pulse profile. We use LOFAR, GMRT, GBT, WSRT and Effelsberg 100-m data to explore the frequency-dependence of this phase step. We show that the size of the subpulse phase step increases gradually, and is observable even at low frequencies. We attribute the subpulse phase step to the presence of two separate driftbands, whose relative arrival times vary with frequency - one driftband arriving 30 pulses earlier at 2...
Spatial and frequency dependence of plasma currents in a 300 mm capacitively coupled plasma reactor
Energy Technology Data Exchange (ETDEWEB)
Miller, Paul A [Sandia National Laboratories, MS 1423, PO Box 5800, Albuquerque, NM 87185-1423 (United States); Barnat, Edward V [Sandia National Laboratories, MS 1423, PO Box 5800, Albuquerque, NM 87185-1423 (United States); Hebner, Gregory A [Sandia National Laboratories, MS 1423, PO Box 5800, Albuquerque, NM 87185-1423 (United States); Paterson, Alex M [Applied Materials, Inc., 974 Arques Avenue, Sunnyvale, CA 94086 (United States); Holland, John P [Applied Materials, Inc., 974 Arques Avenue, Sunnyvale, CA 94086 (United States)
2006-11-01
There is much interest in scaling rf-excited capacitively coupled plasma reactors to larger sizes and to higher frequencies. As the size approaches operating wavelength, concerns arise about non-uniformity across the work piece, particularly in light of the well-documented slow-surface-wave phenomenon. We present measurements and calculations of spatial and frequency dependence of rf magnetic fields inside argon plasma in an industrially relevant, 300 mm plasma-processing chamber. The results show distinct differences in the spatial distributions and harmonic content of rf fields in the plasma at the three frequencies studied (13.56, 60 and 176 MHz). Evidence of a slow-wave structure was not apparent. The results suggest that interaction between the plasma and the rf excitation circuit may strongly influence the structures of these magnetic fields and that this interaction is frequency dependent. At the higher frequencies, wave propagation becomes extremely complex; it is controlled by the strong electrical nonlinearity of the sheath and is not explained simply by previous models.
Nonlinear frequency conversion effect in a one-dimensional graphene-based photonic crystal
Wicharn, S.; Buranasiri, P.
2015-07-01
In this research, the nonlinear frequency conversion effect based on four-wave mixing (FWM) principle in a onedimensional graphene-based photonics crystal (1D-GPC) has been investigated numerically. The 1D-GPC structure is composed of two periodically alternating material layers, which are graphene-silicon dioxide bilayer system and silicon membrane. Since, the third-order nonlinear susceptibility χ(3) of bilayer system is hundred time higher than pure silicon dioxide layer, so the enhancement of FWM response can be achieved inside the structure with optimizing photon energy being much higher than a chemical potential level (μ) of graphene sheet. In addition, the conversion efficiencies of 1DGPC structure are compared with chalcogenide based photonic structure for showing that 1D-GPC structure can enhance nonlinear effect by a factor of 100 above the chalcogenide based structure with the same structure length.
Nonlinear mixing of Nd:YAG lasers; harmonic and sum frequency generation
Walsh, Brian M.
2017-03-01
Nonlinear optical materials give rise to a number of phenomena under high intensity of the incident electric field, with nonlinear mixing being a prominent example. This article discusses such nonlinear mixing processes of Nd:YAG lasers in BBO outside the more common harmonics of the 1.064 μm transition (0.532 μm, 0.366 μm and 0.266 μm). In particular, harmonics of the less common 0.946 μm transition (0.473 μm and 0.315 μm) as well as sum frequency of the 1.052 and 1.319 μm transitions (0.585 μm) and its second harmonic (0.293 μm) is discussed.
Frequency dependent topological patterns of resting-state brain networks.
Directory of Open Access Journals (Sweden)
Long Qian
Full Text Available The topological organization underlying brain networks has been extensively investigated using resting-state fMRI, focusing on the low frequency band from 0.01 to 0.1 Hz. However, the frequency specificities regarding the corresponding brain networks remain largely unclear. In the current study, a data-driven method named complementary ensemble empirical mode decomposition (CEEMD was introduced to separate the time series of each voxel into several intrinsic oscillation rhythms with distinct frequency bands. Our data indicated that the whole brain BOLD signals could be automatically divided into five specific frequency bands. After applying the CEEMD method, the topological patterns of these five temporally correlated networks were analyzed. The results showed that global topological properties, including the network weighted degree, network efficiency, mean characteristic path length and clustering coefficient, were observed to be most prominent in the ultra-low frequency bands from 0 to 0.015 Hz. Moreover, the saliency of small-world architecture demonstrated frequency-density dependency. Compared to the empirical mode decomposition method (EMD, CEEMD could effectively eliminate the mode-mixing effects. Additionally, the robustness of CEEMD was validated by the similar results derived from a split-half analysis and a conventional frequency division method using the rectangular window band-pass filter. Our findings suggest that CEEMD is a more effective method for extracting the intrinsic oscillation rhythms embedded in the BOLD signals than EMD. The application of CEEMD in fMRI data analysis will provide in-depth insight in investigations of frequency specific topological patterns of the dynamic brain networks.
Sorokin, Vladislav S; Thomsen, Jon Juel
2016-02-01
The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli-Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature, nonlinear material and nonlinear inertia owing to longitudinal motions of the beam are taken into account, and (ii) mid-plane stretching nonlinearity. A novel approach is employed, the method of varying amplitudes. As a result, the isolated as well as combined effects of the considered sources of nonlinearities are revealed. It is shown that nonlinear inertia has the most substantial impact on the dispersion relation of a non-uniform beam by removing all frequency band-gaps. Explanations of the revealed effects are suggested, and validated by experiments and numerical simulation.
Doping dependent frequency response of MQW infrared photodetector
Billaha, Md. Aref; Das, Mukul K.; Kumar, S.
2017-04-01
This work is to study the effect of doping concentration in the active layer on the performance of multiple quantum well (MQW) infrared photodetector based on inter sub-band transitions. A theoretical model for the photocurrent and hence, responsivity of the detector in frequency domain is developed considering the effect of doping dependent absorption and carrier capture at the hetero-interfaces. Transit time and capture time limited bandwidth of the detector is computed from the frequency dependent photocurrent. Results show that, besides the usual effect of capture time, doping concentration in the active layer has an important effect on the bandwidth and responsivity of the device particularly for high value of capture time.
De Filippis, G.; Noël, J. P.; Kerschen, G.; Soria, L.; Stephan, C.
2017-09-01
The introduction of the frequency-domain nonlinear subspace identification (FNSI) method in 2013 constitutes one in a series of recent attempts toward developing a realistic, first-generation framework applicable to complex structures. If this method showed promising capabilities when applied to academic structures, it is still confronted with a number of limitations which needs to be addressed. In particular, the removal of nonphysical poles in the identified nonlinear models is a distinct challenge. In the present paper, it is proposed as a first contribution to operate directly on the identified state-space matrices to carry out spurious pole removal. A modal-space decomposition of the state and output matrices is examined to discriminate genuine from numerical poles, prior to estimating the extended input and feedthrough matrices. The final state-space model thus contains physical information only and naturally leads to nonlinear coefficients free of spurious variations. Besides spurious variations due to nonphysical poles, vibration modes lying outside the frequency band of interest may also produce drifts of the nonlinear coefficients. The second contribution of the paper is to include residual terms, accounting for the existence of these modes. The proposed improved FNSI methodology is validated numerically and experimentally using a full-scale structure, the Morane-Saulnier Paris aircraft.
Frequency-Dependent Dispersion Measures and Implications for Pulsar Timing
Cordes, J M; Stinebring, D R
2016-01-01
We analyze the frequency dependence of the dispersion measure (DM), the column density of free electrons to a pulsar, caused by multipath scattering from small scale electron-density fluctuations. The DM is slightly different along each propagation path and the transverse spread of paths varies greatly with frequency, yielding time-of-arrival (TOA) perturbations that scale differently than the inverse square of the frequency, the expected dependence for a cold, unmagnetized plasma. We quantify DM and TOA perturbations analytically for thin phase screens and extended media and verify the results with simulations of thin screens. The rms difference between DMs across an octave band near 1.5~GHz $\\sim 4\\times10^{-5}\\,{\\rm pc\\ cm^{-3}}$ for pulsars at $\\sim 1$~kpc distance. TOA errors from chromatic DMs are of order a few to hundreds of nanoseconds for pulsars with DM $\\lesssim 30$~pc~cm$^{-3}$ observed across an octave band but increase rapidly to microseconds or larger for larger DMs and wider frequency ranges....
Task, muscle and frequency dependent vestibular control of posture
Patrick A Forbes; Gunter P Siegmund; Schouten, Alfred C.; Jean-Sébastien eBlouin
2015-01-01
The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwid...
Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media
Phillips, C R; Gallmann, L; Keller, U
2015-01-01
Advances in the amplification and manipulation of ultrashort laser pulses has led to revolutions in several areas. Examples include chirped pulse amplification for generating high peak-power lasers, power-scalable amplification techniques, pulse shaping via modulation of spatially-dispersed laser pulses, and efficient frequency-mixing in quasi-phase-matched nonlinear crystals to access new spectral regions. In this work, we introduce and demonstrate a new platform for nonlinear optics which has the potential to combine all of these separate functionalities (pulse amplification, frequency transfer, and pulse shaping) into a single monolithic device. Moreover, our approach simultaneously offers solutions to the performance-limiting issues in the conventionally-used techniques, and supports scaling in power and bandwidth of the laser source. The approach is based on two-dimensional patterning of quasi-phase-matching gratings combined with optical parametric interactions involving spatially dispersed laser pulses...
Combinatorial Frequency Generation in Quasi-Periodic Stacks of Nonlinear Dielectric Layers
Directory of Open Access Journals (Sweden)
Oksana Shramkova
2014-07-01
Full Text Available Three-wave mixing in quasi-periodic structures (QPSs composed of nonlinear anisotropic dielectric layers, stacked in Fibonacci and Thue-Morse sequences, has been explored at illumination by a pair of pump waves with dissimilar frequencies and incidence angles. A new formulation of the nonlinear scattering problem has enabled the QPS analysis as a perturbed periodic structure with defects. The obtained solutions have revealed the effects of stack composition and constituent layer parameters, including losses, on the properties of combinatorial frequency generation (CFG. The CFG features illustrated by the simulation results are discussed. It is demonstrated that quasi-periodic stacks can achieve a higher efficiency of CFG than regular periodic multilayers.
Institute of Scientific and Technical Information of China (English)
Lidong Lü; Yuejiang Song; Fan Zhu; Xuping Zhang
2012-01-01
The nonlinear effects that limit the performance of the multi-frequency probe (MFP) based coherent optical time domain reflectometry (C-OTDR) are investigated.Based on theoretical analysis and experimental results,compared with conventional C-OTDR,when the probe pulse has power gradient within the pulse width,self-phase modulation (SPM) and cross-phase modulation (XPM) are strengthened in the new COTDR scheme.The generation of four-wave mixing (FWM) is dependent on SPM and XPM,and with modulation frequency of phase modulator higher than 40 MHz,the stimulated Brillouin scattering (SBS) threshold can be enhanced by more than 5 dB,which benefits the maximum dynamic range of the MFP C-OTDR.
Nonlinear modeling of low-to-high-frequency noise up-conversion in microwave electron devices
Filicori, Fabio; Traverso, Pier A.; Florian, Corrado
2003-05-01
Measurement-based, circuit-oriented non-linear noise modeling of microwave electron devices is still an open field of research, since existing approaches are not always suitable for the accurate prediction of low-frequency noise up-conversion to RF, which represents an essential information for the non-linear circuit analyses performed in the CAD of low phase-noise oscillators. In this paper a technology-independent, empirical approach to the modeling of noise contributions at the ports of electron devices, operating under strongly non-linear conditions, is proposed. Details concerning the analytical formulation of the model, which is derived by considering randomly time-varying perturbations in the basic equations of an otherwise conventional charge-controlled non-linear model, are presented, along with a discussion about the measurement techniques devoted to its experimental characterization. An example of application of the proposed Charge-Controlled Non-linear Noise (CCNN) model is considered in the case of a HBT transistor. Techniques devoted to the implementation of the obtained model in the framework of commercial CAD tools for circuit analysis and design are provided as well.
Kougioumtzoglou, I. A.; Fragkoulis, V. C.; Pantelous, A. A.; Pirrotta, A.
2017-09-01
A frequency domain methodology is developed for stochastic response determination of multi-degree-of-freedom (MDOF) linear and nonlinear structural systems with singular matrices. This system modeling can arise when a greater than the minimum number of coordinates/DOFs is utilized, and can be advantageous, for instance, in cases of complex multibody systems where the explicit formulation of the equations of motion can be a nontrivial task. In such cases, the introduction of additional/redundant DOFs can facilitate the formulation of the equations of motion in a less labor intensive manner. Specifically, relying on the generalized matrix inverse theory, a Moore-Penrose (M-P) based frequency response function (FRF) is determined for a linear structural system with singular matrices. Next, relying on the M-P FRF a spectral input-output (excitation-response) relationship is derived in the frequency domain for determining the linear system response power spectrum. Further, the above methodology is extended via statistical linearization to account for nonlinear systems. This leads to an iterative determination of the system response mean vector and covariance matrix. Furthermore, to account for singular matrices, the generalization of a widely utilized formula that facilitates the application of statistical linearization is proved as well. The formula relates to the expectation of the derivatives of the system nonlinear function and is based on a Gaussian response assumption. Several linear and nonlinear MDOF structural systems with singular matrices are considered as numerical examples for demonstrating the validity and applicability of the developed frequency domain methodology.
Frequency map analysis of resonances in a nonlinear lattice with space charge
Energy Technology Data Exchange (ETDEWEB)
Turchetti, G. E-mail: turchetti@bo.infn.it; Bazzani, A.; Bergamini, F.; Rambaldi, S.; Hofmann, I.; Bongini, L.; Franchetti, G
2001-05-21
In storage rings for heavy ion fusion beam losses must be minimized. During bunch compression high space charge is reached and the reciprocal effects between the collective modes of the beam and the single particle lattice nonlinearities must be considered to understand the problem of resonance crossing and halo formation. We show that the frequency map analysis of particle in core models gives an adequate description of the resonance network and of the chaotic regions where the halo particles can diffuse.
Frequency and Phase Noise in Non-Linear Microwave Oscillator Circuits
Tannous, C.
2003-01-01
We have developed a new methodology and a time-domain software package for the estimation of the oscillation frequency and the phase noise spectrum of non-linear noisy microwave circuits based on the direct integration of the system of stochastic differential equations representing the circuit. Our theoretical evaluations can be used in order to make detailed comparisons with the experimental measurements of phase noise spectra in selected oscillating circuits.
Size-dependent nonlinear absorption and refraction of Ag nanoparticles excited by femtosecond lasers
Institute of Scientific and Technical Information of China (English)
Fan Guang-Hua; Qu Shi-Liang; Guo Zhong-Yi; Wang Qiang; Li Zhong-Guo
2012-01-01
Silver (Ag) nanoparticles with different average sizes are prepared,and the nonlinear absorption and refraction of these nanoparticles are investigated with femtosecond laser pulses at 800 nm.The smallest Ag nanoparticles show insignificant nonlinear absorption,whereas the larger ones show saturable absorption.By considering the previously reported positive nonlinear absorption of 9 nm Ag nanoparticles,the nonlinear absorptions of Ag nanoparticles are found to be size-dependent.All these nonlinear absorptions can be compatibly explained from the viewpoints of electronic transitions,energy bands and electronic structures in the conduction band of Ag nanoparticles.The nonlinear refraction is attributed to the effect of hot electrons arising from the intraband transition in the s-p conduction band of Ag nanoparticles.
Directory of Open Access Journals (Sweden)
Bin Wang
2016-01-01
Full Text Available This paper studies the application of frequency distributed model for finite time control of a fractional order nonlinear hydroturbine governing system (HGS. Firstly, the mathematical model of HGS with external random disturbances is introduced. Secondly, a novel terminal sliding surface is proposed and its stability to origin is proved based on the frequency distributed model and Lyapunov stability theory. Furthermore, based on finite time stability and sliding mode control theory, a robust control law to ensure the occurrence of the sliding motion in a finite time is designed for stabilization of the fractional order HGS. Finally, simulation results show the effectiveness and robustness of the proposed scheme.
Using strong nonlinearity and high-frequency vibrations to control effective mechanical stiffness
DEFF Research Database (Denmark)
Thomsen, Jon Juel
2008-01-01
High-frequency excitation (HFE) can be used to change the effective stiffness of an elastic structure, and related quanti-ties such as resonance frequencies, wave speed, buckling loads, and equilibrium states. There are basically two ways to do this: By using parametrical HFE (with or without non...... the method of direct separation of motions with results of a modified multiple scales ap-proach, valid also for strong nonlinearity, the stiffening ef-fect is predicted for a generic 1-dof system, and results are tested against numerical simulation and ((it is planned)) laboratory experiments....
Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides
DEFF Research Database (Denmark)
Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.;
2013-01-01
in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second-order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process...... in this optimal regime. We also find an operating regime in which high-efficiency frequency conversion without temporal-shape selectivity can be achieved while preserving the shapes of a wide class of input pulses. The results are applicable to both classical and quantum frequency conversion....
Two-beam nonlinear Kerr effect to stabilize laser frequency with sub-Doppler resolution
Martins, Weliton Soares; de Silans, Thierry Passerat; Oriá, Marcos; Chevrollier, Martine; 10.1364/AO.51.005080
2012-01-01
Avoiding laser frequency drifts is a key issue in many atomic physics experiments. Several techniques have been developed to lock the laser frequency using sub-Doppler dispersive atomic lineshapes as error signals in a feedback loop. We propose here a two-beam technique that uses non-linear properties of an atomic vapor around sharp resonances to produce sub-Doppler dispersive-like lineshapes that can be used as error signals. Our simple and robust technique has the advantage of not needing either modulation or magnetic fields.
Ulvila, Ville; Halonen, Lauri; Vainio, Markku
2015-01-01
We present an experimental study of optical frequency comb generation based on cascaded quadratic nonlinearities inside a continuous-wave-pumped optical parametric oscillator. We demonstrate comb states which produce narrow-linewidth intermode beat note signals, and we verify the mode spacing uniformity of the comb at the Hz level. We also show that spectral quality of the comb can be improved by modulating the parametric gain at a frequency that corresponds to the comb mode spacing. We have reached a high average output power of over 4 W in the near-infrared region, at ~2 {\\mu}m.
Quasi-periodic solutions of nonlinear beam equation with prescribed frequencies
Energy Technology Data Exchange (ETDEWEB)
Chang, Jing [College of Information Technology, Jilin Agricultural University, Changchun 130118 (China); Gao, Yixian, E-mail: gaoyx643@nenu.edu.cn; Li, Yong [School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024 (China)
2015-05-15
Consider the one dimensional nonlinear beam equation u{sub tt} + u{sub xxxx} + mu + u{sup 3} = 0 under Dirichlet boundary conditions. We show that for any m > 0 but a set of small Lebesgue measure, the above equation admits a family of small-amplitude quasi-periodic solutions with n-dimensional Diophantine frequencies. These Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proofs are based on an infinite dimensional Kolmogorov-Arnold-Moser iteration procedure and a partial Birkhoff normal form. .
Using strong nonlinearity and high-frequency vibrations to control effective mechanical stiffness
DEFF Research Database (Denmark)
Thomsen, Jon Juel
2008-01-01
High-frequency excitation (HFE) can be used to change the effective stiffness of an elastic structure, and related quanti-ties such as resonance frequencies, wave speed, buckling loads, and equilibrium states. There are basically two ways to do this: By using parametrical HFE (with or without non...... the method of direct separation of motions with results of a modified multiple scales ap-proach, valid also for strong nonlinearity, the stiffening ef-fect is predicted for a generic 1-dof system, and results are tested against numerical simulation and ((it is planned)) laboratory experiments....
Development of coherent tunable source in 2–16 m region using nonlinear frequency mixing processes
Indian Academy of Sciences (India)
Udit Chatterjee
2014-01-01
A very convenient way to obtain widely tunable source of coherent radiation in the infrared region is through nonlinear frequency mixing processes like second harmonic generation (SHG), difference-frequency mixing (DFM) or optical parametric oscillation (OPO). Using commonly available Nd:YAG laser and its harmonic pumped dye laser radiation as parent beams, we have been able to generate coherent tunable infrared radiation (IR) in 2–16 m region using different nonlinear crystals by DFM and OPO. We have also generated such IR source in the 4–5 m region through SHG of CO2 laser in different infrared crystals. In the process we have characterized a large number of nonlinear crystals like different borate group of crystals, KTP, KTA, LiIO3, MgO:LiNbO3, GaSe, AgGaSe2, ZnGeP2, AgGa1−InSe2, HgGa2S4 etc. To improve the conversion efficiencies of such frequency conversion processes, we have developed some novel schemes, like multipass configuration (MC) and positive optical feedback (POF). The significance of the obtained results lies in the fact that to get the same conversion in SHG or DFM, one now requires fundamental input radiation with much lower intensity.
Castaños, Octavio; Schuch, Dieter; Rosas-Ortiz, Oscar
2013-02-01
Based on the Gaussian wave packet solution for the harmonic oscillator and the corresponding creation and annihilation operators, a generalization is presented that also applies for wave packets with time-dependent width as they occur for systems with different initial conditions, time-dependent frequency or in contact with a dissipative environment. In all these cases, the corresponding coherent states, position and momentum uncertainties and quantum mechanical energy contributions can be obtained in the same form if the creation and annihilation operators are expressed in terms of a complex variable that fulfils a nonlinear Riccati equation which determines the time-evolution of the wave packet width. The solutions of this Riccati equation depend on the physical system under consideration and on the (complex) initial conditions and have close formal similarities with general superpotentials leading to isospectral potentials in supersymmetric quantum mechanics. The definition of the generalized creation and annihilation operator is also in agreement with a factorization of the operator corresponding to the Ermakov invariant that exists in all cases considered.
Ege, Kerem; Boutillon, Xavier; Rébillat, Marc
2013-03-01
The piano soundboard transforms the string vibration into sound and therefore, its vibrations are of primary importance for the sound characteristics of the instrument. An original vibro-acoustical method is presented to isolate the soundboard nonlinearity from that of the exciting device (here: a loudspeaker) and to measure it. The nonlinear part of the soundboard response to an external excitation is quantitatively estimated for the first time, at ≈-40 dB below the linear part at the ff nuance. Given this essentially linear response, a modal identification is performed up to 3 kHz by means of a novel high resolution modal analysis technique [K. Ege, X. Boutillon, B. David, High-resolution modal analysis, Journal of Sound and Vibration 325 (4-5) (2009) 852-869]. Modal dampings (which, so far, were unknown for the piano in this frequency range) are determined in the mid-frequency domain where FFT-based methods fail to evaluate them with an acceptable precision. They turn out to be close to those imposed by wood. A finite-element modelling of the soundboard is also presented. The low-order modal shapes and the comparison between the corresponding experimental and numerical modal frequencies suggest that the boundary conditions can be considered as blocked, except at very low frequencies. The frequency-dependency of the estimated modal densities and the observation of modal shapes reveal two well-separated regimes. Below ≈1 kHz, the soundboard vibrates more or less like a homogeneous plate. Above that limit, the structural waves are confined by ribs, as already noticed by several authors, and localised in restricted areas (one or a few inter-rib spaces), presumably due to a slightly irregular spacing of the ribs across the soundboard.
Nonlinear model calibration of a shear wall building using time and frequency data features
Asgarieh, Eliyar; Moaveni, Babak; Barbosa, Andre R.; Chatzi, Eleni
2017-02-01
This paper investigates the effects of different factors on the performance of nonlinear model updating for a seven-story shear wall building model. The accuracy of calibrated models using different data features and modeling assumptions is studied by comparing the time and frequency responses of the models with the exact simulated ones. Simplified nonlinear finite element models of the shear wall building are calibrated so that the misfit between the considered response data features of the models and the structure is minimized. A refined FE model of the test structure, which was calibrated manually to match the shake table test data, is used instead of the real structure for this performance evaluation study. The simplified parsimonious FE models are composed of simple nonlinear beam-column fiber elements with nonlinearity infused in them by assigning generated hysteretic nonlinear material behaviors to uniaxial stress-strain relationship of the fibers. Four different types of data features and their combinations are used for model calibration: (1) time-varying instantaneous modal parameters, (2) displacement time histories, (3) acceleration time histories, and (4) dissipated hysteretic energy. It has been observed that the calibrated simplified FE models can accurately predict the nonlinear structural response in the absence of significant modeling errors. In the last part of this study, the physics-based models are further simplified for casting into state-space formulation and a real-time identification is performed using an Unscented Kalman filter. It has been shown that the performance of calibrated state-space models can be satisfactory when reasonable modeling assumptions are used.
Frequency dependent electrical properties of nano-CdS/Ag junctions
Mohanta, D.; Choudhury, A.
2005-05-01
Polymer embedded cadmium sulfide nanoparticles/quantum dots were synthesized by a chemical route using polyvinyl alcohol (lmw) as the desired matrix. In an attempt to measure the electrical properties of nano-CdS/Ag samples, we propose that contribution from surface traps are mainly responsible in determining the I˜ V and C˜ V characteristics in high frequency ranges. To be specific, beyond 1.2 MHz, the carrier injection from the trap centers of the embedded quantum dots is ensured by large current establishment even at negative biasing condition of the junction. The unexpected nonlinear signature of C˜ V response is believed to be due to the fact that while trying to follow very high signal frequency (at least 10-3 of recombination frequency), there is complete abruptness in carrier trapping (charging) or/and detrapping (decay) in a given CdS nanoparticle assembly. The frequency dependent unique role of the trap carriers certainly find application in nanoelectronic devices at a desirable frequency of operation.
Nonlinear series resonance and standing waves in dual-frequency capacitive discharges
Wen, De-Qi; Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Wang, You-Nian
2017-01-01
It is well-known that the nonlinear series resonance in a high frequency capacitive discharge enhances the electron power deposition and also creates standing waves which produce radially center-high rf voltage profiles. In this work, the dynamics of series resonance and wave effects are examined in a dual-frequency driven discharge, using an asymmetric radial transmission line model incorporating a Child law sheath. We consider a cylindrical argon discharge with a conducting electrode radius of 15 cm, gap length of 3 cm, with a base case having a 60 MHz high frequency voltage of 250 V and a 10 MHz low frequency voltage of 1000 V, with a high frequency phase shift {φ\\text{H}}=π between the two frequencies. For this phase shift there is only one sheath collapse, and the time-averaged spectral peaks of the normalized current density at the center are mainly centered on harmonic numbers 30 and 50 of the low frequency, corresponding to the first standing wave resonance frequency and the series resonance frequency, respectively. The effects of the waves on the series resonance dynamics near the discharge center give rise to significant enhancements in the electron power deposition, compared to that near the discharge edge. Adjusting the phase shift from π to 0, or decreasing the low frequency from 10 to 2 MHz, results in two or more sheath collapses, respectively, making the dynamics more complex. The sudden excitation of the perturbed series resonance current after the sheath collapse results in a current oscillation amplitude that is estimated from analytical and numerical calculations. Self-consistently determining the dc bias and including the conduction current is found to be important. The subsequent slow time variation of the high frequency oscillation is analyzed using an adiabatic theory.
Size-Dependent Elastic Modulus and Vibration Frequency of Nanocrystals
Directory of Open Access Journals (Sweden)
Lihong Liang
2011-01-01
Full Text Available The elastic properties and the vibration characterization are important for the stability of materials and devices, especially for nanomaterials with potential and broad application. Nanomaterials show different properties from the corresponding bulk materials; the valid theoretical model about the size effect of the elastic modulus and the vibration frequency is significant to guide the application of nanomaterials. In this paper, a unified analytical model about the size-dependent elastic modulus and vibration frequency of nanocrystalline metals, ceramics and semiconductors is established based on the inherent lattice strain and the binding energy change of nanocrystals compared with the bulk crystals, and the intrinsic correlation between the elasticity and the vibration properties is discussed. The theoretical predictions for Cu, Ag, Si thin films, nanoparticles, and TiO2 nanoparticles agree with the experimental results, the computational simulations, and the other theoretical models.
Furumachi, S.; Ueno, T.
2016-04-01
We study magnetostrictive vibration based power generator using iron-gallium alloy (Galfenol). The generator is advantages over conventional, such as piezoelectric material in the point of high efficiency highly robust and low electrical impedance. Generally, the generator exhibits maximum power when its resonant frequency matches the frequency of ambient vibration. In other words, the mismatch of these frequencies results in significant decrease of the output. One solution is making the spring characteristics nonlinear using magnetic force, which distorts the resonant peak toward higher or lower frequency side. In this paper, vibrational generator consisting of Galfenol plate of 6 by 0.5 by 13 mm wound with coil and U shape-frame accompanied with plates and pair of permanent magnets was investigated. The experimental results show that lean of resonant peak appears attributed on the non-linear spring characteristics, and half bandwidth with magnets is 1.2 times larger than that without. It was also demonstrated that the addition of proof mass is effective to increase the sensitivity but also the bandwidth. The generator with generating power of sub mW order is useful for power source of wireless heath monitoring for bridge and factory machine.
Optical and Acoustical Frequencies in a Nonlinear Helicoidal Model of DNA Molecules
Institute of Scientific and Technical Information of China (English)
ZDRAVKOVI(C) S.; SATARI(C) M.V.
2005-01-01
@@ We compare optical and acoustical frequencies in the Peyrard-Bishop-Dauxois model, i.e.an extended Peyrard-Bishop model, of DNA molecules.We discuss how ratio of those frequencies depends on a value of the harmonic constant of the helicoidal spring K.Also, we suggest that the most favourable mode could be a resonance mode.
Volterra series truncation and kernel estimation of nonlinear systems in the frequency domain
Zhang, B.; Billings, S. A.
2017-02-01
The Volterra series model is a direct generalisation of the linear convolution integral and is capable of displaying the intrinsic features of a nonlinear system in a simple and easy to apply way. Nonlinear system analysis using Volterra series is normally based on the analysis of its frequency-domain kernels and a truncated description. But the estimation of Volterra kernels and the truncation of Volterra series are coupled with each other. In this paper, a novel complex-valued orthogonal least squares algorithm is developed. The new algorithm provides a powerful tool to determine which terms should be included in the Volterra series expansion and to estimate the kernels and thus solves the two problems all together. The estimated results are compared with those determined using the analytical expressions of the kernels to validate the method. To further evaluate the effectiveness of the method, the physical parameters of the system are also extracted from the measured kernels. Simulation studies demonstrates that the new approach not only can truncate the Volterra series expansion and estimate the kernels of a weakly nonlinear system, but also can indicate the applicability of the Volterra series analysis in a severely nonlinear system case.
Energy Technology Data Exchange (ETDEWEB)
He, Zhaoguo [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zong, Qiugang, E-mail: qgzong@gmail.com; Wang, Yongfu [Institute of Space Physics and Applied Technology, Peking University, Beijing 100871 (China); Liu, Siqing; Lin, Ruilin; Shi, Liqin [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)
2014-12-15
Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = –9.3°) region. For the three cases, the time-dependent wave amplitude, cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.
He, Zhaoguo; Zong, Qiugang; Liu, Siqing; Wang, Yongfu; Lin, Ruilin; Shi, Liqin
2014-12-01
Resonant pitch angle scattering by electromagnetic ion cyclotron (EMIC) waves has been suggested to account for the rapid loss of ring current ions and radiation belt electrons. For the rising tone EMIC wave (classified as triggered EMIC emission), its frequency sweep rate strongly affects the efficiency of pitch-angle scattering. Based on the Cluster observations, we analyze three typical cases of rising tone EMIC waves. Two cases locate at the nightside (22.3 and 22.6 magnetic local time (MLT)) equatorial region and one case locates at the duskside (18MLT) higher magnetic latitude (λ = -9.3°) region. For the three cases, the time-dependent wave amplitude, cold electron density, and cold ion density ratio are derived from satellite data; while the ambient magnetic field, thermal proton perpendicular temperature, and the wave spectral can be directly provided by observation. These parameters are input into the nonlinear wave growth model to simulate the time-frequency evolutions of the rising tones. The simulated results show good agreements with the observations of the rising tones, providing further support for the previous finding that the rising tone EMIC wave is excited through the nonlinear wave growth process.
Dependence of enhanced asymmetry-induced transport on collision frequency
Energy Technology Data Exchange (ETDEWEB)
Eggleston, D. L. [Occidental College, Physics Department, Los Angeles, California 90041 (United States)
2014-07-15
A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ{sub 1}(r) cos(kz) cos(ωt−lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ω{sub R}, is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ν (banana) regime, the radial oscillations have amplitude Δr ≈ v{sub r}/ω{sub T}, so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles.
Frequency-dependent Drude damping in Casimir force calculations
Energy Technology Data Exchange (ETDEWEB)
Esquivel-Sirvent, R, E-mail: raul@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, Mexico D.F. 01000 (Mexico)
2009-04-01
The Casimir force is calculated between Au thin films that are described by a Drude model with a frequency dependent damping function. The model parameters are obtained from available experimental data for Au thin films. Two cases are considered; annealed and nonannealed films that have a different damping function. Compared with the calculations using a Drude model with a constant damping parameter, we observe changes in the Casimir force of a few percent. This behavior is only observed in films of no more than 300 A thick.
Luo, Ting
As optical communications approach more data bandwidth, longer transmission distance, and more reconfigurability, dispersion, nonlinearity and polarization-dependent effects are becoming key issues for future all-optical fiber optic systems and networks. For ≥10 Gbit/s optical fiber transmission systems, it is critical that chromatic dispersion and polarization-mode-dispersion be well monitored and compensated using some type of dispersion monitoring and compensation. On the other hand, dispersive and nonlinear effects in optical fiber systems can also be beneficial and have applications on pulse management, all-optical signal processing and network function, which will be essential for high bite-rate optical networks and replacing the expensive optical-electrical-optical (O/E/O) conversion. In this Ph.D. dissertation, we present a detailed research on dispersion, nonlinearity, and polarization-dependent effects in high-speed optical communication systems. We have demonstrated: (i) A dynamic channel-spacing tunable multi-wavelength Erbium-doped fiber laser; (ii) Chromatic-dispersion-insensitive PMD monitoring by tracking the radio-frequency extracted from the vestigial-sideband; (iii) A method for simultaneous chromatic and polarization-mode dispersions monitoring by adding a frequency-shifted carrier; (iv) Polarization-insensitive optical parametric amplification by depolarizing the pump; (v) All optical chromatic dispersion monitoring potential for ultra-high speed (>40 Gbit/s) optical systems using cross-phase modulation in a highly nonlinear fiber; (vi) A novel fiber-based autocorrelator using polarimetric four-wave mixing effect and a tunable differential-group-delay element; (vii) A simple all-fiber-based autocorrelator by measuring the degree-of-polarization; and (viii) Reduction of pattern dependent data distortion in a stimulated Brillouin scattering based slow light element. These techniques will play key roles in future high-speed dynamic WDM optical
A Suspended Stripline Frequency Tripler Using a Left-Handed Nonlinear Transmission Line
Directory of Open Access Journals (Sweden)
In Bok Kim
2015-01-01
Full Text Available A suspended stripline frequency tripler using a left-handed nonlinear transmission line (LH NLTL is presented. The proposed tripler using the LH NLTL is composed of a series of varactor diodes, shunt inductances, and a high-pass filter implemented with suspended stripline (SSL. An ultrawideband microstrip-to-suspended stripline transition is also utilized. The fabricated LH NLTL provides the minimum insertion loss of 1.7 dB and the maximum insertion loss of 4.7 dB for a wide frequency band from 2.6 to 18 GHz. As a tripler, the measured minimum third harmonic conversion loss is 15.3 dB at an input frequency of 2.4 GHz and typically 17 dB from 2 to 3.1 GHz.
Ecological prediction with nonlinear multivariate time-frequency functional data models
Yang, Wen-Hsi; Wikle, Christopher K.; Holan, Scott H.; Wildhaber, Mark L.
2013-01-01
Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction. We illustrate the effectiveness of our approach through simulation and by application to predicting spawning success of shovelnose sturgeon in the Lower Missouri River.
DEFF Research Database (Denmark)
Sorokin, Vladislav S.; Thomsen, Jon Juel
2016-01-01
The paper deals with analytically predicting the effects of weak nonlinearity on the dispersion relation and frequency band-gaps of a periodic Bernoulli– Euler beam performing bending oscillations. Two cases are considered: (i) large transverse deflections, where nonlinear (true) curvature...
Institute of Scientific and Technical Information of China (English)
Abhijit Sinha; Sourangshu Mukhopadhyay
2004-01-01
In optical soliton propagation through a single mode optical fiber,it is established that self-phase mod ulation is maintained by the third order non-linearity of the silica-based glass material of the fiber.In this paper we show that the fifth order non-linearity has also some contribution in frequency variation of self-phase modulation.
Frequency-Dependent Selection at Rough Expanding Fronts
Kuhr, Jan-Timm
2015-01-01
Microbial colonies are experimental model systems for studying the colonization of new territory by biological species through range expansion. We study a generalization of the two-species Eden model, which incorporates local frequency-dependent selection, in order to analyze how social interactions between two species influence surface roughness of growing microbial colonies. The model includes several classical scenarios from game theory. We then concentrate on an expanding public goods game, where either cooperators or defectors take over the front depending on the system parameters. We analyze in detail the critical behavior of the nonequilibrium phase transition between global cooperation and defection and thereby identify a new universality class of phase transitions dealing with absorbing states. At the transition, the number of boundaries separating sectors decays with a novel power law in time and their superdiffusive motion crosses over from Eden scaling to a nearly ballistic regime. In parallel, th...
Frequency conversion, nonlinear absorption and carrier dynamics of GaSe:B/Er crystals
Yuksek, Mustafa; Karatay, Ahmet; Ertap, Hüseyin; Elmali, Ayhan; Karabulut, Mevlut
2017-04-01
We aimed to investigate the influence of Er3+ rare earth element on the frequency conversion wavelength in boron doped GaSe crystals. It was found that by substitution of Er3+ with B3+, SHG signal shifted to higher wavelength. In addition, the nonlinear absorption properties and ultrafast dynamics of pure, 0.5 at% B3+ and 0.25 at% B3+ + 0.25 at% Er3+ doped GaSe crystals have been studied by open aperture Z-scan and ultrafast pump probe spectroscopy techniques. All of the studied crystals showed nonlinear absorption (NA). It was observed that 0.5 at% B3+ doped GaSe crystal showed bleach signal. This signal switched to NA signal with long life after substitution of 0.25 at% Er3+ with 0.25 at% B3+.
Time-Frequency (Wigner Analysis of Linear and Nonlinear Pulse Propagation in Optical Fibers
Directory of Open Access Journals (Sweden)
José Azaña
2005-06-01
Full Text Available Time-frequency analysis, and, in particular, Wigner analysis, is applied to the study of picosecond pulse propagation through optical fibers in both the linear and nonlinear regimes. The effects of first- and second-order group velocity dispersion (GVD and self-phase modulation (SPM are first analyzed separately. The phenomena resulting from the interplay between GVD and SPM in fibers (e.g., soliton formation or optical wave breaking are also investigated in detail. Wigner analysis is demonstrated to be an extremely powerful tool for investigating pulse propagation dynamics in nonlinear dispersive systems (e.g., optical fibers, providing a clearer and deeper insight into the physical phenomena that determine the behavior of these systems.
Nonlinear Superconducting Metamaterials in Free-Space at mm-wave Frequencies
Anlage, Steven; Zhang, Daimeng; Trepanier, Melissa; Mukhanov, Oleg; Delfanazari, K.; Savinov, V.; Zheludev, N.
2014-03-01
Superconducting metamaterials show the promise of low loss, compact size and extreme tunability and nonlinearity, allowing for new applications. Most demonstrations of these metamaterials have been conducted in waveguide geometries, either in co-planar form or three-dimensional single-conductor structures. Here we demonstrate for the first time a widely tunable superconducting metamaterial operating under the free-space illumination of a quasi-optical beam in the 100 GHz regime. The meta-atoms are Radio Frequency Superconducting QUantum Interference Devices (RF SQUIDs) that form compact self-resonant objects endowed with the nonlinearity of the Josephson effect. The metamaterial is tuned with dc magnetic flux, temperature and mm-wave power, and holds promise for a new generation of mm-wave agile devices. This work is supported by the NSF-GOALI and OISE programs through grant # ECCS-1158644, and CNAM.
Indian Academy of Sciences (India)
Hari Prakash; Devendra K Singh
2010-03-01
It is shown that all optical polarization states of light except plane and circular polarization states undergo an intensity-dependent change in normal incidence of light in an isotropic nonlinear Kerr medium. This effect should be detectable and we propose an experiment for detecting nonlinear susceptibility involved in that part of nonlinear polarization, which depends on the polarization state of light also.
Task, muscle and frequency dependent vestibular control of posture
Directory of Open Access Journals (Sweden)
Patrick A Forbes
2015-01-01
Full Text Available The vestibular system is crucial for postural control; however there are considerable differences in the task dependence and frequency response of vestibular reflexes in appendicular and axial muscles. For example, vestibular reflexes are only evoked in appendicular muscles when vestibular information is relevant to postural control, while in neck muscles they are maintained regardless of the requirement to maintain head on trunk balance. Recent investigations have also shown that the bandwidth of vestibular input on neck muscles is much broader than appendicular muscles (up to a factor of 3. This result challenges the notion that vestibular reflexes only contribute to postural control across the behavioral and physiological frequency range of the vestibular organ (i.e., 0-20 Hz. In this review, we explore and integrate these task-, muscle- and frequency-related differences in the vestibular system’s contribution to posture, and propose that the human nervous system has adapted vestibular signals to match the mechanical properties of the system that each group of muscles controls.
RWM Critical Rotation Frequency and Beta Dependence in NSTX
Sontag, Aaron; Sabbagh, S. A.; Menard, J. E.; Battaglia, D. J.
2005-10-01
The resistive wall mode (RWM) can be stabilized by maintaining the plasma toroidal rotation frequency (φφ) above a critical rotation frequency (φcrit). Recent experiments on NSTX seek to determine φcrit and rotation profile effects through actively braking plasma rotation by the application of external magnetic fields. Results from these experiments indicate that maintaining φφ at the q = 2 surface above φA/4q^2 is a necessary condition for RWM stability where φA is the local Alfven frequency. This result is in agreement with a theoretical model derived from a drift-kinetic energy principle. Similarity experiments with DIII-D are being performed to examine the aspect ratio dependence of the φcrit scaling. When φφ at the q = 2 surface drops below φcrit, the growth of internal kink/ballooning modes can prevent the RWM from terminating the discharge. A small beta collapse which drops φcrit, accompanies this mode growth allowing a recovery of RWM rotational stabilization while maintaining βN> βN^no-wall.
Frequency-dependent effects of gravitational lensing within plasma
Rogers, Adam
2015-01-01
The interaction between refraction from a distribution of inhomogeneous plasma and gravitational lensing introduces novel effects to the paths of light rays passing by a massive object. The plasma contributes additional terms to the equations of motion, and the resulting ray trajectories are frequency-dependent. Lensing phenomena and circular orbits are investigated for plasma density distributions $N \\propto 1/r^h$ with $h \\geq 0$ in the Schwarzschild space-time. For rays passing by the mass near the plasma frequency refractive effects can dominate, effectively turning the gravitational lens into a mirror. We obtain the turning points, circular orbit radii, and angular momentum for general $h$. Previous results have shown that light rays behave like massive particles with an effective mass given by the plasma frequency for a constant density $h=0$. We study the behaviour for general $h$ and show that when $h=2$ the plasma term acts like an additional contribution to the angular momentum of the passing ray. W...
Time and frequency dependent rheology of reactive silica gels.
Wang, Miao; Winter, H Henning; Auernhammer, Günter K
2014-01-01
In a mixture of sodium silicate and low concentrated sulfuric acid, nano-sized silica particles grow and may aggregate to a system spanning gel network. We studied the influence of the finite solubility of silica at high pH on the mechanical properties of the gel with classical and piezo-rheometers. Direct preparation of the gel sample in the rheometer cell avoided any pre-shear of the gel structure during the filling of the rheometer. The storage modulus of the gel grew logarithmically with time with two distinct growth laws. The system passes the gel point very quickly but still shows relaxation at low frequency, typically below 6 rad/s. We attribute this as a sign of structural rearrangements due to the finite solubility of silica at high pH. The reaction equilibrium between bond formation and dissolution maintains a relatively large bond dissolution rate, which leads to a finite life time of the bonds and behavior similar to physical gels. This interpretation is also compatible with the logarithmic time dependence of the storage modulus. The frequency dependence was more pronounced for lower water concentrations, higher temperatures and shorter reaction times. With two relaxation models (the modified Cole-Cole model and the empirical Baumgaertel-Schausberger-Winter model) we deduced characteristic times from the experimental data. Both models approximately described the data and resulted in similar relaxation times.
Nonlinear Response of Unbiased and Biased Bilayer Graphene at Terahertz Frequencies
McGouran, Riley
The main focus of this thesis is the investigation of the nonlinear response of unbiased and biased bilayer graphene to incident radiation at terahertz frequencies. We present a tight-binding model of biased and unbiased bilayer graphene that is used to calculate the nonlinear terahertz response. Dynamic equations are developed for the electron density matrix within the length gauge. These equations facilitate the calculation of interband and intraband carrier dynamics. We then obtain nonlinear transmitted and reflected terahertz fields using the calculated nonlinear interband and intraband current densities. We examine the nonlinear response of unbiased bilayer graphene as a function of the incident field amplitude. In this case the sample is taken to be undoped. In the reflected field, we find the maximum third harmonic amplitude to be approximately 30% of the fundamental frequency for an incident field of 1.5 kV cm-1, which is greater than that found in undoped monolayer graphene at the same field amplitude. To examine the nonlinear response of biased bilayer graphene, we investigate two different scenarios. In the first scenario, we consider an undoped sample at fixed temperature. We find that when the external bias has a value of 2 meV, the generated third harmonic in the reflected field is approximately 45% of the fundamental for an incident field amplitude of 2 kV cm-1 . When we increase the external bias further to 8 meV, we find the generated third harmonic field is approximately 38% of the fundamental for an incident field amplitude of 1 kV cm-1. For both of these bias values, the generated third harmonic is greater than that found in undoped monolayer graphene. In that system, the generated third harmonic field is approximately 32% of the fundamental for an incident field amplitude of 200 V cm-1. In the second scenario, we consider doped biased bilayer graphene. We fix the carrier density at 2x1012 cm-2, the incident field amplitude at 50 kV cm-1, and
An analysis of a new nonlinear estimation technique: The state-dependent Ricatti equation method
Ewing, Craig Michael
1999-10-01
Research into nonlinear estimation techniques for terminal homing missiles has been conducted for many decades. The terminal state estimator, also called the guidance filter, is responsible for providing accurate estimates of target motion for use in guiding the missile to a collision course with the target. Some form of the extended-Kalman filter (EKF) has become the standard estimation technique employed in most modern weapon guidance systems. EKF linearization of nonlinear dynamics and/or measurements can cause problems of divergence when confronted by highly nonlinear conditions. The objective of this dissertation is to analyze a new nonlinear estimation technique that is based on the parameterization of the nonlinearities. This parameterization converts the nonlinear estimation problem into the form of a steady-state continuous Kalman filtering problem with state-dependent coefficients. This new technique, called the state-dependent Ricatti equation filter (SDREF), allows the nonlinearities of the system to be fully incorporated into the filter design, before stochastic uncertainties are imposed, without the need for linearization. The SDREF was investigated in three problems: an exoatmospheric, terminal homing, ballistic-missile intercept problem; a highly nonlinear pendulum example; and an algorithmic loss of observability problem. The exoatmospheric guidance problem examined nonlinear measurements with linear dynamics. To investigate the SDREF when used with a combination of nonlinear dynamics and nonlinear measurements, a highly nonlinear, two-state pendulum problem was also examined. While these problems were useful in gaining insight into the performance characteristics of the SDREF, no formal proof of stability could be determined for the original formulation of the estimator. The original SDREF solved an algebraic SDRE that arose from an infinite-time horizon formulation of the nonlinear filtering problem. A modification to the SDREF formulation was
Windhorst, U; Kokkoroyiannis, T; Laouris, Y; Meyer-Lohmann, J
1994-03-01
Spinal recurrent inhibition via Renshaw cells and proprioceptive feedback via skeletal muscle and muscle spindle afferents have been hypothesized to constitute a compound feedback system [Windhorst (1989) Afferent Control of Posture and Locomotion; Windhorst (1993) Robots and Biological Systems--Towards a New Bionics]. To assess their detailed functions, it is necessary to know their dynamic characteristics. Previously we have extensively described the properties of signal transmission from motor axons to Renshaw cells using random motor axon stimulation and data analysis methods based thereupon. Using the same methods, we here compare these properties, in the cat, with those between motor axons and group Ia muscle spindle afferents in terms of frequency responses and nonlinear features. The frequency responses depend on the mean rate (carrier rate) of activation of motor axons and on the strength of coupling between motor units and spindles. In general, they are those of a second-order low-pass system with a cut-off at fairly low frequencies. This contrasts with the dynamics of motor axon-Renshaw cell couplings which are those of a much broader band-pass with its peak in the range of c. 2-15 Hz [Christakos (1987) Neuroscience 23, 613-623]. The second-order non-linearities in motor unit-muscle spindle signal lines are much more diverse than those in motor axon-Renshaw cell couplings. Although the average strength of response declines with mean stimulus rate in both subsystems, there is no systematic relationship between the amount of non-linearity and the average response in the former, whilst there is in the latter. The qualitative appearance of motor unit-muscle spindle non-linearities was complicated as was the average response to motor unit twitches. Thus, whilst Renshaw cells appear to dynamically reflect motor output rather faithfully, muscle spindles seem to signal local muscle fibre length changes and their dynamics. This would be consistent with the
Directory of Open Access Journals (Sweden)
Espen R. Jakobsen
2002-05-01
Full Text Available Using the maximum principle for semicontinuous functions [3,4], we prove a general ``continuous dependence on the nonlinearities'' estimate for bounded Holder continuous viscosity solutions of fully nonlinear degenerate elliptic equations. Furthermore, we provide existence, uniqueness, and Holder continuity results for bounded viscosity solutions of such equations. Our results are general enough to encompass Hamilton-Jacobi-Bellman-Isaacs's equations of zero-sum, two-player stochastic differential games. An immediate consequence of the results obtained herein is a rate of convergence for the vanishing viscosity method for fully nonlinear degenerate elliptic equations.
Barut—Girardello Coherent States for Nonlinear Oscillator with Position-Dependent Mass
Amir, Naila; Iqbal, Shahid
2016-07-01
Using ladder operators for the non-linear oscillator with position-dependent effective mass, realization of the dynamic group SU(1,1) is presented. Keeping in view the algebraic structure of the non-linear oscillator, coherent states are constructed using Barut—Girardello formalism and their basic properties are discussed. Furthermore, the statistical properties of these states are investigated by means of Mandel parameter and second order correlation function. Moreover, it is shown that in the harmonic limit, all the results obtained for the non-linear oscillator with spatially varying mass reduce to corresponding results of the linear oscillator with constant mass.
Thankappan, Aparna; Nampoori, V. P. N.; Thomas, Sabu
2016-09-01
In this report, we report the intensity dependant nonlinear absorption properties of bio-inspired hybrid materials (betanin-ZnO) embedded in polymeric matrices through the Z-scan technique using an Nd: YAG laser (532 nm, 7 ns, 10 Hz). We observed a change over in the sign of nonlinearity due to the interplay of exciton bleaching and optical limiting mechanisms. Light confinement effect and ship-in-a bottle effect play crucial roles. Theoretical analysis has been performed using a model based on nonlinear absorption coefficient and saturation intensity. The result of present study gives an additional mechanism for the gain enhancement in dye doped ZnO matrix.
Rogue Waves of Nonlinear Schrödinger Equation with Time-Dependent Linear Potential Function
Directory of Open Access Journals (Sweden)
Ni Song
2016-01-01
Full Text Available The rogue waves of the nonlinear Schrödinger equation with time-dependent linear potential function are investigated by using the similarity transformation in this paper. The first-order and second-order rogue waves solutions are obtained and the nonlinear dynamic behaviors of these solutions are discussed in detail. In addition, the amplitudes of the rogue waves under the effect of the gravity field and external magnetic field changing with the time are analyzed by using numerical simulation. The results can be used to study the matter rogue waves in the Bose-Einstein condensates and other fields of nonlinear science.
Temperature dependent nonlinear Hall effect in macroscopic Si-MOS antidot array
Kuntsevich, A. Yu.; Shupltetsov, A. V.; Nunuparov, M. S.
2015-01-01
By measuring magnetoresistance and Hall effect in classically moderate perpendicular magnetic field in Si-MOSFET-type macroscopic antidot array we found a novel effect: nonlinear with field, temperature- and density-dependent Hall resistivity. We discuss qualitative explanation of the phenomenon and suggest that it might originate from strong temperature dependence of the resistivity and mobility in the shells of the antidots.
Nariyuki, Y; Nariyuki, Yasuhiro; Hada, Tohru
2006-01-01
Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfven waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfven waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation.
NONLINEAR OPTICAL FREQUENCY CONVERTER OF LASER RADIATION ON THE LBO TYPE I CRYSTALS
Directory of Open Access Journals (Sweden)
N. V. Kondratyuk
2014-01-01
Full Text Available Describes nonlinear optical frequency converter of laser radiation based on the two LBO type I crystals allowing to receive pulses of radiation at three wavelengths of 1064 nm, 532 nm and 355 nm with an adjustable pulse energy. For fine adjustment of the output pulse energy used two dual phase plates that change the orientation of the plane of polarization of the two waves in cascade third harmonic generation. Measured the efficiency of the generation of harmonics of the intensity of radiation at 1064 nm.
High-frequency effects in 1D spring-mass systems with strongly non-linear inclusions
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Snaeland, S.O.; Thomsen, Jon Juel
2010-01-01
-like systems with embedded non-linear parts, where the masses interact with a limited set of neighbour masses. The presented analytical and numerical results show that the effective properties for LF wave propagation can be altered by establishing HF standing waves in the non-linear regions of the chain......This work generalises the possibilities to change the effective material or structural properties for low frequency (LF) wave propagation, by using high-frequency (HF) external excitation combined with strong non-linear and non-local material behaviour. The effects are demonstrated on 1D chain....... The changes affect the effective stiffness and damping of the system....
Uncovering Discrete Non-Linear Dependence with Information Theory
Directory of Open Access Journals (Sweden)
Anton Golub
2015-04-01
Full Text Available In this paper, we model discrete time series as discrete Markov processes of arbitrary order and derive the approximate distribution of the Kullback-Leibler divergence between a known transition probability matrix and its sample estimate. We introduce two new information-theoretic measurements: information memory loss and information codependence structure. The former measures the memory content within a Markov process and determines its optimal order. The latter assesses the codependence among Markov processes. Both measurements are evaluated on toy examples and applied on high frequency foreign exchange data, focusing on 2008 financial crisis and 2010/2011 Euro crisis.
Symmetries and invariants of the oscillator and envelope equations with time-dependent frequency
Directory of Open Access Journals (Sweden)
Hong Qin
2006-05-01
Full Text Available The single-particle dynamics in a time-dependent focusing field is examined. The existence of the Courant-Snyder invariant, a fundamental concept in accelerator physics, is fundamentally a result of the corresponding symmetry admitted by the harmonic oscillator equation with linear time-dependent frequency. It is demonstrated that the Lie algebra of the symmetry group for the oscillator equation with time-dependent frequency is eight dimensional, and is composed of four independent subalgebras. A detailed analysis of the admitted symmetries reveals a deeper connection between the nonlinear envelope equation and the oscillator equation. A general theorem regarding the symmetries and invariants of the envelope equation, which includes the existence of the Courant-Snyder invariant as a special case, is demonstrated. As an application to accelerator physics, the symmetries of the envelope equation enable a fast numerical algorithm for finding matched solutions without using the conventional iterative Newton’s method, where the envelope equation needs to be numerically integrated once for every iteration, and the Jacobi matrix needs to be calculated for the envelope perturbation.
Time-dependent exact solutions of the nonlinear Kompaneets equation
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, N H, E-mail: nib@bth.s [Department of Mathematics and Science, Blekinge Institute of Technology, 371 79 Karlskrona (Sweden)
2010-12-17
Time-dependent exact solutions of the Kompaneets photon diffusion equation are obtained for several approximations of this equation. One of the approximations describes the case when the induced scattering is dominant. In this case, the Kompaneets equation has an additional symmetry which is used for constructing some exact solutions as group invariant solutions. (fast track communication)
Liu, Yunqiao; Calvisi, Michael L.; Wang, Qianxi
2017-04-01
Encapsulated microbubbles (EMBs) are widely used in medical ultrasound imaging as contrast-enhanced agents. However, the potential damaging effects of violent collapsing EMBs to cells and tissues in clinical settings have remained a concern. Dual-frequency ultrasound is a promising technique for improving the efficacy and safety of sonography. The system modeled consists of the external liquid, membrane and internal gases of an EMB. The microbubble dynamics are simulated using a simple nonlinear interactive theory, considering the compressibility of the internal gas, viscosity of the liquid flow and viscoelasticity of the membrane. The radial oscillation and interfacial stability of an EMB under single- and dual-frequency excitations are compared. The simulation results show that the dual-frequency technique produces larger backscatter pressure at higher harmonics of the primary driving frequency—this enriched acoustic spectrum can enhance blood-tissue contrast and improve the quality of sonographic images. The results further show that the acoustic pressure threshold associated with the onset of shape instability is greater for dual-frequency driving. This suggests that the dual-frequency technique stabilizes the encapsulated bubble, thereby improving the efficacy and safety of contrast-enhanced agents.
Nonlinear propagation of high-frequency energy from blast waves as it pertains to bat hearing
Loubeau, Alexandra
Close exposure to blast noise from military weapons training can adversely affect the hearing of both humans and wildlife. One concern is the effect of high-frequency noise from Army weapons training on the hearing of endangered bats. Blast wave propagation measurements were conducted to investigate nonlinear effects on the development of blast waveforms as they propagate from the source. Measurements were made at ranges of 25, 50, and 100 m from the blast. Particular emphasis was placed on observation of rise time variation with distance. Resolving the fine shock structure of blast waves requires robust transducers with high-frequency capability beyond 100 kHz, hence the limitations of traditional microphones and the effect of microphone orientation were investigated. Measurements were made with a wide-bandwidth capacitor microphone for comparison with conventional 3.175-mm (⅛-in.) microphones with and without baffles. The 3.175-mm microphone oriented at 90° to the propagation direction did not have sufficient high-frequency response to capture the actual rise times at a range of 50 m. Microphone baffles eliminate diffraction artifacts on the rise portion of the measured waveform and therefore allow for a more accurate measurement of the blast rise time. The wide-band microphone has an extended high-frequency response and can resolve shorter rise times than conventional microphones. For a source of 0.57 kg (1.25 lb) of C-4 plastic explosive, it was observed that nonlinear effects steepened the waveform, thereby decreasing the shock rise time, from 25 to 50 m. At 100m, the rise times had increased slightly. For comparison to the measured blast waveforms, several models of nonlinear propagation are applied to the problem of finite-amplitude blast wave propagation. Shock front models, such as the Johnson and Hammerton model, and full-waveform marching algorithms, such as the Anderson model, are investigated and compared to experimental results. The models
In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio
2012-12-01
The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.
Energy Technology Data Exchange (ETDEWEB)
Gould, A.; Huang, M.; Bhagat, S.M. (Department of Physics, University of Maryland, College Park, Maryland 20742-4111 (USA) Center for Superconductivity Research, University of Maryland, College Park, Maryland 20742-4111 (USA)); Tyagi, S. (Department of Physics and Atmospheric Science, Drexel University, Philadelphia, Pennsylvania 11004 (USA))
1991-04-15
Hysteresis in the microwave-power absorption of HTSC powders was studied as a function of temperature ({ital T}), field-sweep amplitude ({ital H}{sub max}), and orientation between the dc field ({bold H}{sub dc}) and the wave vector of the microwaves ({bold k}). It was found that (i) the sizable low-temperature hysteresis effects occur only if {bold H}{sub dc}{parallel}{bold k}, (ii) the temperature and frequency dependence of the hysteresis is strongly affected by {ital H}{sub max}, (iii) the high- and low-temperature virgin curves are quite different, and (iv) the minimum of the absorption signal increases with {ital H}{sub max} and {ital T}. The low-temperature hysteresis loops were found to be similar to loops obtained from nonlinear equations describing cusp catastrophes.
Nonlinear Dependence of Global Warming Prediction on Ocean State
Liang, M.; Lin, L.; Tung, K. K.; Yung, Y. L.; Sun, S.
2010-12-01
Global temperature has increased by 0.8 C since the pre-industrial era, and is likely to increase further if greenhouse gas emission continues unchecked. Various mitigation efforts are being negotiated among nations to keep the increase under 2 C, beyond which the outcome is believed to be catastrophic. Such policy efforts are currently based on predictions by the state-of-the-art coupled atmosphere ocean models (AOGCM). Caution is advised for their use for the purpose of short-term (less than a century) climate prediction as the predicted warming and spatial patterns vary depending on the initial state of the ocean, even in an ensemble mean. The range of uncertainty in such predictions by Intergovernmental Panel on Climate Change (IPCC) models may be underreported when models were run with their oceans at various stages of adjustment with their atmospheres. By comparing a very long run (> 1000 years) of the coupled Goddard Institute for Space Studies (GISS) model with what was reported to IPCC Fourth Assessment Report (AR4), we show that the fully adjusted model transient climate sensitivity should be 30% higher for the same model, and the 2 C warming should occur sooner than previously predicted. Using model archives we further argue that this may be a common problem for the IPCC AR4 models, since few, if any, of the models has a fully adjusted ocean. For all models, multi-decadal climate predictions to 2050 are highly dependent on the initial ocean state (and so are unreliable). Such dependence cannot be removed simply by subtracting the climate drift from control runs.
Jiao, J. P.; Drinkwater, B. W.; Neild, S. A.; Wilcox, P. D.
2009-06-01
Guided wave structural health monitoring offers the prospect of continuous interrogation of large plate-like structures with a sparse network of permanently attached sensors. Currently, the most common approach is to monitor changes in the received signals by subtraction from a reference signal obtained when the structure was known to be defect-free. In this paper a comparison is made between this defect-free subtraction approach and a technique in which low-frequency vibration modulation of guided wave signals is used to detect nonlinear scatterers. The modulation technique potentially overcomes the need for the defect-free reference measurement as the subtraction is now made between different parts of an externally applied low-frequency vibration. Linear defects were simulated by masses bonded onto a plate and nonlinear scatterers were simulated by loading a similar mass against the plate. The experimental results show that the defect-free subtraction technique performs well in detecting the bonded mass whereas the modulation technique is able to discriminate between the bonded and loaded masses. Furthermore, because the modulation technique does not require a defect-free reference, it is shown to be relatively independent of temperature effects, a significant problem for reference based subtraction techniques.
Daeichin, Verya; Bosch, Johan G; Needles, Andrew; Foster, F Stuart; van der Steen, Antonius; de Jong, Nico
2015-02-01
There is increasing use of ultrasound contrast agent in high-frequency ultrasound imaging. However, conventional contrast detection methods perform poorly at high frequencies. We performed systematic in vitro comparisons of subharmonic, non-linear fundamental and ultraharmonic imaging for different depths and ultrasound contrast agent concentrations (Vevo 2100 system with MS250 probe and MicroMarker ultrasound contrast agent, VisualSonics, Toronto, ON, Canada). We investigated 4-, 6- and 10-cycle bursts at three power levels with the following pulse sequences: B-mode, amplitude modulation, pulse inversion and combined pulse inversion/amplitude modulation. The contrast-to-tissue (CTR) and contrast-to-artifact (CAR) ratios were calculated. At a depth of 8 mm, subharmonic pulse-inversion imaging performed the best (CTR = 26 dB, CAR = 18 dB) and at 16 mm, non-linear amplitude modulation imaging was the best contrast imaging method (CTR = 10 dB). Ultraharmonic imaging did not result in acceptable CTRs and CARs. The best candidates from the in vitro study were tested in vivo in chicken embryo and mouse models, and the results were in a good agreement with the in vitro findings.
Energy decay of a variable-coefficient wave equation with nonlinear time-dependent localized damping
Directory of Open Access Journals (Sweden)
Jieqiong Wu
2015-09-01
Full Text Available We study the energy decay for the Cauchy problem of the wave equation with nonlinear time-dependent and space-dependent damping. The damping is localized in a bounded domain and near infinity, and the principal part of the wave equation has a variable-coefficient. We apply the multiplier method for variable-coefficient equations, and obtain an energy decay that depends on the property of the coefficient of the damping term.
Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps
Directory of Open Access Journals (Sweden)
Katarzyna Krupa
2012-01-01
Full Text Available We experimentally study four-wave mixing in highly nonlinear fibers using two independent and partially coherent laser pumps and a third coherent signal. We focus our attention on the Bragg-scattering frequency conversion. The two pumps were obtained by amplifying two Intracavity frequency-shifted feedback lasers working in a continuous wave regime.
Directional dependence of nonlinear surface acoustic waves in the (001) plane of cubic crystals.
Kumon, R E; Hamilton, M F
2002-05-01
Spectral evolution equations are used to perform analytical and numerical studies of nonlinear surface acoustic waves in the (001) plane of a variety of nonpiezoelectric cubic crystals. The basic theory underlying the model equations is outlined, and quasilinear solutions of the equations are presented. Expressions are also developed for a characteristic length scale for nonlinear distortion and a nonlinearity coefficient. A time-domain equation corresponding to the spectral equations is derived. Numerical calculations based on measured second- and third-order elastic constants taken from the literature are performed to predict the evolution of initially monofrequency surface waves. Nonlinearity matrix elements that indicate the coupling strength of harmonic interactions are shown to provide a useful tool for characterizing waveform distortion. The formation of compression or rarefaction shocks can be strongly dependent on the direction of propagation, and harmonic generation is suppressed or increased in certain directions.
Substituent Dependence of Third-Order Optical Nonlinearity in Chalcone Derivatives
Kiran, Anthony John; Satheesh Rai, Nooji; Chandrasekharan, Keloth; Kalluraya, Balakrishna; Rotermund, Fabian
2008-08-01
The third-order nonlinear optical properties of derivatives of dibenzylideneacetone were investigated using the single beam z-scan technique at 532 nm. A strong dependence of third-order optical nonlinearity on electron donor and acceptor type of substituents was observed. An enhancement in χ(3)-value of one order of magnitude was achieved upon the substitution of strong electron donors compared to that of the molecule substituted with an electron acceptor. The magnitude of nonlinear refractive index of these chalcones is as high as of 10-11 esu. Their nonlinear optical coefficients are larger than those of widely used thiophene oligomers and trans-1-[p-(p-dimethylaminobenzyl-azo)-benzyl]-2-(N-methyl-4-pyridinium)-ethene iodide (DABA-PEI) organic compounds.
Directory of Open Access Journals (Sweden)
YIWEN SUN
2013-10-01
Full Text Available T-rays is sensitive to covalently cross-linked proteins and can be used to probe unique dynamic properties of water surrounding a protein. In this paper, we demonstrate the unique absorption properties of the dynamic hydration shells determined by hemagglutinin (HA protein in terahertz frequency. We study the changes arising from different concentrations in detail and show that nonlinear absorption coefficient is induced by the dynamic hydration water. The binary and ternary component model were used to interpret the nonlinearity absorption behaviors and predict the thickness of the hydration shells around the HA protein in aqueous phase.
Said, Christopher P; Baron, Sean G; Todorov, Alexander
2009-03-01
Previous neuroimaging research has shown amygdala sensitivity to the perceived trustworthiness of neutral faces, with greater responses to untrustworthy compared with trustworthy faces. This observation is consistent with the common view that the amygdala encodes fear and is preferentially responsive to negative stimuli. However, some studies have shown greater amygdala activation to positive compared with neutral stimuli. The first goal of this study was to more fully characterize the amygdala response to face trustworthiness by modeling its activation with both linear and nonlinear predictors. Using fMRI, we report a nonmonotonic response profile, such that the amygdala responds strongest to highly trustworthy and highly untrustworthy faces. This finding complicates future attempts to make inferences about mental states based on activation in the amygdala. The second goal of the study was to test for modulatory effects of image spatial frequency filtering on the amygdala response. We predicted greater amygdala sensitivity to face trustworthiness for low spatial frequency images compared with high spatial frequency images. Instead, we found that both frequency ranges provided sufficient information for the amygdala to differentiate faces on trustworthiness. This finding is consistent with behavioral results and suggests that trustworthiness information may reach the amygdala through pathways carrying both coarse and fine resolution visual signals.
Botti, Teresa; Sisto, Renata; Sanjust, Filippo; Moleti, Arturo; D'Amato, Luisa
2016-02-01
In this study, a systematic analysis of the dependence on stimulus level and primary frequency ratio r of the different components of human distortion product otoacoustic emissions has been performed, to check the validity of theoretical models of their generation, as regards the localization of the sources and the relative weight of distortion and reflection generation mechanisms. 2f1 - f2 and 2f2 - f1 distortion product otoacoustic emissions of 12 normal hearing ears from six human subjects have been measured at four different levels, in the range [35, 65] dB sound pressure level, at eight different ratios, in the range [1.1, 1.45]. Time-frequency filtering was used to separate distortion and reflection components. Numerical simulations have also been performed using an active nonlinear cochlear model. Both in the experiment and in the simulations, the behavior of the 2f1 - f2 distortion and reflection components was in agreement with previous measurements and with the predictions of the two-source model. The 2f2 - f1 response showed a rotating-phase component only, whose behavior was in general agreement with that predicted for a component generated and reflected within a region basal to the characteristic place of frequency 2f2 - f1, although alternative interpretations, which are also discussed, cannot be ruled out.
Institute of Scientific and Technical Information of China (English)
Qiao Yao-Jun; Liu Xue-Jun; Ji Yue-Feng
2011-01-01
This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems.The research results show that this method can reduce the walkoff effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method,the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system,but also effective for highdispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation.The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method.For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system,the suggested method can improve the nonlinear threshold (for Q ＞ 10 dB) about 2.7,1.2 and 1.0 dB,and the maximum Q factor about 1.2,0.4 and 0.3 dB,for 2,8 and 16 ps/(nm·km) dispersion coefficients.
Auditory perceptual efficacy of nonlinear frequency compression used in hearing aids: A review
Directory of Open Access Journals (Sweden)
Yitao Mao
2017-09-01
Full Text Available Many patients with sensorineural hearing loss have a precipitous high-frequency loss with relatively good thresholds in the low frequencies. This present paper briefly introduces and compares the basic principles of four types of frequency lowering algorithms with emphasis on nonlinear frequency compression (NLFC. A review of the effects of the NLFC algorithm on speech and music perception and sound quality appraisal is then provided. For vowel perception, it seems that the benefits provided by NLFC are limited, which are probably related to the parameter settings of the compression. For consonant perception, several studies have shown that NLFC provides improved perception of high-frequency consonants such as /s/ and /z/. However, a few other studies have demonstrated negative results in consonant perception. In terms of sentence recognition, persistent use of NLFC might provide improved performance. Compared to the conventional processing, NLFC does not alter the speech sound quality appraisal and music perception as long as the compression setting is not too aggressive. In the subsequent section, the relevant factors with regard to NLFC settings, time-course of acclimatization, listener characteristics, and perceptual tasks are discussed. Although the literature shows mixed results on the perceptual efficacy of NLFC, this technique improved certain aspects of speech understanding in certain hearing-impaired listeners. Little research is available on speech perception outcomes in languages other than English. More clinical data are needed to verify the perceptual efficacy of NLFC in patients with precipitous high-frequency hearing loss. Such knowledge will help guide clinical rehabilitation of those patients.
Analysis of the frequency-dependent response to wave forcing in the extratropics
Directory of Open Access Journals (Sweden)
A. J. Haklander
2006-01-01
Full Text Available A quasigeostrophic model for the frequency-dependent response of the zonal-mean flow to planetary-wave forcing at Northern Hemisphere (NH midlatitudes is applied to 4-D-Var ECMWF analysis data for six extended winter seasons. The theoretical response is a non-linear function of the frequency of the forcing, the thermal damping time α−1, and a scaling parameter µ which includes the aspect ratio of the meridional to the vertical length scale of the response. Regression of the calculated response from the analyses onto the theoretical response yields height-dependent estimates for both α−1 and µ. The thermal damping time estimated from this dynamical model is about 2 days in the troposphere, 7–10 days in the stratosphere, and 2–4 days in the lower mesosphere. For the stratosphere and lower mesosphere, the estimates lie within the range of existing radiative damping time estimates, but for the troposphere they are significantly smaller.
Forsberg, Flemming; Shi, William T; Jadidian, Bahram; Winder, Alan A
2004-12-01
Nonlinear contrast imaging modes such as second harmonic imaging (HI) and subharmonic imaging (SHI) are increasingly important for clinical applications. However, the performance of currently available transducers for HI and SHI is significantly constrained by their limited bandwidth. To bypass this constraint, a novel transducer concept termed multi-frequency harmonic transducer arrays (MFHA's) has been designed and a preliminary evaluation has been conducted. The MFHA may ultimately be used for broadband contrast enhanced HI and SHI with high dynamic range and consists of three multi-element piezo-composite sub-arrays (A-C) constructed so the center frequencies are 4f(A) = 2f(B) = f(C) (specifically 2.5/5.0/10.0 MHz and 1.75/3.5/7.0 MHz). In principle this enables SHI by transmitting on sub-array C receiving on B and, similarly, from B to A as well as HI by transmitting on A receiving on B and, likewise, from B to C. Initially transmit and receive pressure levels of the arrays were measured with the elements of each sub-array wired in parallel. Following contrast administration, preliminary in vitro HI and SHI signal-to-noise ratios of up to 40 dB were obtained. In conclusion, initial design and in vitro characterization of two MFHA's have been performed. They have an overall broad frequency bandwidth of at least two octaves. Due to the special design of the array assembly, the SNR for HI and SHI was comparable to that of regular B-mode and better than commercially available HI systems. However, further research on multi-element MFHA's is required before their potential for in vivo nonlinear contrast imaging can be assessed.
Energy Technology Data Exchange (ETDEWEB)
Oudalova, A.A.; Geras' kin, S.A.; Dikarev, V.G.; Nesterov, Y.B.; Dikareva, N.S
2002-07-01
The low dose region was evaluated for meristem cells of spring barley. A study of the cytogenetic damage in the low dose range was carried out to determine the genuine shape of the dose curve. The relationship between the frequency of aberrant cells and the absorbed dose is shown to be non-linear with a site at low doses within which the cytogenetic damage exceeds the control level significantly and does not depend on dose value. Within the tested exposure region, the aberrant cell frequency is found to decrease with increasing dose rate, but the shape of the dose curve remained invariable. The piecewise linear model fits the experimental data much better than the linear one. (author)
Nonlinear closed loop optimal control: a modified state-dependent Riccati equation.
Rafee Nekoo, S
2013-03-01
The state-dependent Riccati equation (SDRE), as a controller, has been introduced and implemented since the 90s. In this article, the other aspects of this controller are declared which shows the capability of this technique. First, a general case which has control nonlinearities and time varying weighting matrix Q is solved with three approaches: exact solution (ES), online control update (OCU) and power series approximation (PSA). The proposed PSA in this paper is able to deal with time varying or state-dependent Q in nonlinear systems. As a result of having the solution of nonlinear systems with complex Q containing constraints, using OCU and proposed PSA, a method is introduced to prevent the collision of an end-effector of a robot and an obstacle which shows the adaptability of the SDRE controller. Two examples to support the idea are presented and conferred. Supplementing constraints to the SDRE via matrix Q, this approach is named a modified SDRE.
A DELAY-DEPENDENT STABILITY CRITERION FOR NONLINEAR STOCHASTIC DELAY-INTEGRO-DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
Niu Yuanling; Zhang Chengjian; Duan Jinqiao
2011-01-01
A type of complex systems under both random influence and memory effects is considered.The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations.A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small enough.Numerical simulations are presented to illustrate the theoretical result.
A new differential equations-based model for nonlinear history-dependent magnetic behaviour
Aktaa, J
2000-01-01
The paper presents a new kind of numerical model describing nonlinear magnetic behaviour. The model is formulated as a set of differential equations taking into account history dependence phenomena like the magnetisation hysteresis as well as saturation effects. The capability of the model is demonstrated carrying out comparisons between measurements and calculations.
Advanced Reservoir Imaging Using Frequency-Dependent Seismic Attributes
Energy Technology Data Exchange (ETDEWEB)
Fred Hilterman; Tad Patzek; Gennady Goloshubin; Dmitriy Silin; Charlotte Sullivan; Valeri Korneev
2007-12-31
Our report concerning advanced imaging and interpretation technology includes the development of theory, the implementation of laboratory experiments and the verification of results using field data. We investigated a reflectivity model for porous fluid-saturated reservoirs and demonstrated that the frequency-dependent component of the reflection coefficient is asymptotically proportional to the reservoir fluid mobility. We also analyzed seismic data using different azimuths and offsets over physical models of fractures filled with air and water. By comparing our physical model synthetics to numerical data we have identified several diagnostic indicators for quantifying the fractures. Finally, we developed reflectivity transforms for predicting pore fluid and lithology using rock-property statistics from 500 reservoirs in both the shelf and deep-water Gulf of Mexico. With these transforms and seismic AVO gathers across the prospect and its down-dip water-equivalent reservoir, fluid saturation can be estimated without a calibration well that ties the seismic. Our research provides the important additional mechanisms to recognize, delineate, and validate new hydrocarbon reserves and assist in the development of producing fields.
Elwakil, Ahmed S.
2009-04-28
Two novel sinusoidal oscillator structures with an explicit tanh(x) nonlinearity are proposed. The oscillators have the attractive feature: the higher the operating frequency, the lower the necessary gain required to start oscillations. A nonlinear model for the two oscillators is derived and verified numerically. Spice simulations using AMS BiCMOS 0.35 μ model parameters and experimental results are shown. Copyright © 2009 John Wiley & Sons, Ltd.
Solid-State Radio Frequency Plasma Heating Using a Nonlinear Transmission Line
Miller, Kenneth; Ziemba, Timothy; Prager, James; Slobodov, Ilia
2015-11-01
Radio Frequency heating systems are rarely used by the small-scale validation platform experiments due to the high cost and complexity of these systems, which typically require high power gyrotrons or klystrons, associated power supplies, waveguides and vacuum systems. The cost and complexity of these systems can potentially be reduced with a nonlinear transmission line (NLTL) based system. In the past, NLTLs have lacked a high voltage driver that could produce long duration high voltage pulses with fast rise times at high pulse repetition frequency. Eagle Harbor Technologies, Inc. (EHT) has created new high voltage nanosecond pulser, which combined with NLTL technology will produce a low-cost, fully solid-state architecture for the generation of the RF frequencies (0.5 to 10 GHz) and peak power levels (~ 10 MW) necessary for plasma heating and diagnostic systems for the validation platform experiments within the fusion science community. The proposed system does not require the use of vacuum tube technology, is inherently lower cost, and is more robust than traditional high power RF heating schemes. Design details and initial bench testing results for the new RF system will be presented. This work is supported under DOE Grant # DE-SC0013747.
Nanoscale displacement sensing based on nonlinear frequency mixing in quantum cascade lasers
Mezzapesa, F P; De Risi, G; Brambilla, M; Dabbicco, M; Spagnolo, V; Scamarcio, G
2015-01-01
We demonstrate a sensor scheme for nanoscale target displacement that relies on a single Quantum Cascade Laser (QCL) subject to optical feedback. The system combines the inherent sensitivity of QCLs to optical re-injection and their ultra-stability in the strong feedback regime where nonlinear frequency mixing phenomena are enhanced. An experimental proof of principle in the micrometer wavelength scale is provided. We perform real-time measurements of displacement with {\\lambda}/100 resolution by inserting a fast-shifting reference etalon in the external cavity. The resulting signal dynamics at the QCL terminals shows a stroboscopic-like effect that relates the sensor resolution with the reference etalon speed. Intrinsic limits to the measurement algorithm and to the reference speed are discussed, disclosing that nanoscale ranges are attainable.
An improved wave-vector frequency-domain method for nonlinear wave modeling.
Jing, Yun; Tao, Molei; Cannata, Jonathan
2014-03-01
In this paper, a recently developed wave-vector frequency-domain method for nonlinear wave modeling is improved and verified by numerical simulations and underwater experiments. Higher order numeric schemes are proposed that significantly increase the modeling accuracy, thereby allowing for a larger step size and shorter computation time. The improved algorithms replace the left-point Riemann sum in the original algorithm by the trapezoidal or Simpson's integration. Plane waves and a phased array were first studied to numerically validate the model. It is shown that the left-point Riemann sum, trapezoidal, and Simpson's integration have first-, second-, and third-order global accuracy, respectively. A highly focused therapeutic transducer was then used for experimental verifications. Short high-intensity pulses were generated. 2-D scans were conducted at a prefocal plane, which were later used as the input to the numerical model to predict the acoustic field at other planes. Good agreement is observed between simulations and experiments.
Designing Non-linear Frequency Modulated Signals For Medical Ultrasound Imaging
DEFF Research Database (Denmark)
Gran, Fredrik; Jensen, Jørgen Arendt
2006-01-01
is tested experimentally using the RASMUS ultrasound system with a 7 MHz linear array transducer. Synthetic transmit aperture ultrasound imaging is applied to acquire data. The proposed design method was compared to a linear FM signal. Due to more efficient spectral usage, a gain in SNR of 4.3plusmn1.2 d......In this paper a new method for designing non-linear frequency modulated (NLFM) waveforms for ultrasound imaging is proposed. The objective is to control the amplitude spectrum of the designed waveform and still keep a constant transmit amplitude, so that the transmitted energy is maximized...... in the transducer can be decreased. Secondly, by choosing an appropriate amplitude spectrum, no additional temporal tapering has to be applied to the matched filter to achieve sufficient range sidelobe suppression. Proper design results in waveforms with a range sidelobe level beyond -80 dB. The design method...
Strubbe, David A.; Andrade, Xavier; Rubio, Angel; Louie, Steven G.
2010-03-01
Chloroform is often used as a solvent when measuring non-linear optical properties of organic molecules. We assess the influence of the solution environment on the molecular properties by calculating directly the non-linear susceptibilities of liquid chloroform at optical frequencies. We use the Sternheimer equation in time-dependent density-functional theory [J. Chem. Phys. 126, 184106 (2007)], on snapshots from ab initio molecular dynamics. We compare the results to those in the gas and solid phases, and to experimental values. We also calculate ab initio local-field factors, used to analyze electric-field-induced second-harmonic generation (EFISH) and hyper-Rayleigh scattering (HRS) experiments.
Third-order nonlinear and linear time-dependent dynamical diffraction of X-rays in crystals.
Balyan, Minas K
2016-07-01
For the first time the third-order nonlinear time-dependent Takagi's equations of X-rays in crystals are obtained and investigated. The third-order nonlinear and linear time-dependent dynamical diffraction of X-rays spatially restricted in the diffraction plane pulses in crystals is investigated theoretically. A method of solving the linear and the third-order nonlinear time-dependent Takagi's equations is proposed. Based on this method, results of analytical and numerical calculations for both linear and nonlinear diffraction cases are presented and compared.
Generation of green frequency comb from chirped χ{sup (2)} nonlinear photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Lai, C.-M. [Department of Electronic Engineering, Ming Chuan University, Taoyuan, Taiwan (China); Chang, K.-H.; Yang, Z.-Y.; Fu, S.-H.; Tsai, S.-T.; Hsu, C.-W.; Peng, L.-H. [Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China); Yu, N. E. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Boudrioua, A. [LPL, CNRS - UMR 7538, Université Paris 13, Sorbone Paris Cité (France); Kung, A. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan (China); Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan (China)
2014-12-01
Spectrally broad frequency comb generation over 510–555 nm range was reported on chirped quasi-phase-matching (QPM) χ{sup (2)} nonlinear photonic crystals of 12 mm length with periodicity stepwise increased from 5.9 μm to 7.1 μm. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040 nm to 1090 nm wavelength range, the 520 nm to 545 nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted green frequency comb to have the same mode spacing of 450 GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (1020–1040 nm) and the idler (1090–1110 nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510–520 nm and the 545–555 nm spectral regime. Additional 530–535 nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ∼10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.
Directory of Open Access Journals (Sweden)
P. A. Johnson
1996-01-01
Full Text Available Nonlinear elastic response in rock is established as a robust and representative characteristic rock rather than a curiosity. We show measurements of this behaviour from a variety of experiments on rock taken over many orders of magnitude in strain and frequency. The evidence leads to a pattern of unifying behaviour in rock: (1 Nonlinear response in rock is ubiquitous. (2 The response takes place over a large frequency interval (dc to 105 kHz at least. (3 The response not only occurs, as is commonly appreciated, large strains but also at small strains where this behaviour and the manifestations of this behaviour are commonly disregarded.
Institute of Scientific and Technical Information of China (English)
ZHAO Shuang; WU Chong-Qing; WANG Yong-Jun
2009-01-01
Linewidth enhancement factors (LEFs) of the transverse electric mode and the transverse magnetic mode in bulk semiconductor optical amplifiers are measured using the nonlinear optical loop mirror method and the principal state of polarization vector method.The polarization dependence of LEFs plays an important role in the nonlinear polarization rotation.The relationship between the polarization-dependence of LEFs and nonlinear polarization rotation in the Stokes space is demonstrated.
Doping dependent nonlinear Hall effect in SmFeAsO(1-x)F(x).
Riggs, Scott C; McDonald, R D; Kemper, J B; Stegen, Z; Boebinger, G S; Balakirev, F F; Kohama, Y; Migliori, A; Chen, H; Liu, R H; Chen, X H
2009-10-14
We report the Hall resistivity, ρ(xy), of polycrystalline SmFeAsO(1-x)F(x) for four different fluorine concentrations from the onset of superconductivity through the collapse of the structural phase transition. For the two more highly doped samples, ρ(xy) is linear in magnetic field up to 50 T with only weak temperature dependence, reminiscent of a simple Fermi liquid. For the lightly doped samples with x<0.15, we find a low temperature regime characterized as ρ(xy)(H) being both nonlinear in magnetic field and strongly temperature-dependent even though the Hall angle is small. The onset temperature for this nonlinear regime is in the vicinity of the structural phase (SPT)/magnetic ordering (MO) transitions. The temperature dependence of the Hall resistivity is consistent with a thermal activation of carriers across an energy gap. The evolution of the energy gap with doping is reported.
Directory of Open Access Journals (Sweden)
Anju K. Augustine
2014-01-01
Full Text Available We present third-order optical nonlinear absorption in CdSe quantum dots (QDs with particle sizes in the range of 4.16–5.25 nm which has been evaluated by the Z-scan technique. At an excitation irradiance of 0.54 GW/cm2 the CdSe QDs exhibit reverse saturation indicating a clear nonlinear behavior. Nonlinearity increases with particle size in CdSe QDs within the range of our investigations which in turn depends on the optical band gap. The optical limiting threshold of the QDs varies from 0.35 GW/cm2 to 0.57 GW/cm2 which makes CdSe QDs a promising candidate for reverse-saturable absorption based devices at high laser intensities such as optical limiters.
Time-Dependent Nonlinear Optical Susceptibility of an Out-of-Equilibrium Soft Material
Ghofraniha, Neda; Conti, Claudio; Ruocco, Giancarlo; Zamponi, Francesco
2009-01-01
We investigate the time-dependent nonlinear optical absorption of a clay dispersion (Laponite) in an organic dye (rhodamine B) water solution displaying liquid-arrested state transition. Specifically, we determine the characteristic time τD of the nonlinear susceptibility buildup due to the Soret effect. By comparing τD with the relaxation time provided by standard dynamic light scattering measurements we report on the decoupling of the two collective diffusion times at the two very different length scales during the aging of the out-of-equilibrium system. With this demonstration experiment we also show the potentiality of nonlinear optics measurements in the study of the late stage of arrest in soft materials.
Delay-dependent passive control of linear systems with nonlinear perturbation
Institute of Scientific and Technical Information of China (English)
Li Caina; Cui Baotong
2008-01-01
The problem of delay-dependent passive control of a class of linear systems with nonlinear perturbation and time-varying delay in states is studied. The main idea aims at designing a state-feedback controller such that for a time-varying delay in states, the linear system with nonlinear perturbation remains robustly stable and passive.In the system, the delay is time-varying. And the derivation of delay has the maximum and minimum value. The time-varying nonlinear perturbation is allowed to be norm-bounded. Using the effective linear matrix inequality methodology, the sufficient condition is primarily obtained for the system to have robust stability and passivity.Subsequently the existent condition of a state feedback controller is given, and the explicit expression of the controller is obtained by means of the solution of linear matrix inequalities (LMIs). In the end, a numerical example is given to demonstrate the validity and applicability of the proposed approach.
Ultrasonic Characterization of Tissues via Backscatter Frequency Dependence
DEFF Research Database (Denmark)
Stetson, Paul F.; Sommer, F.G.
1997-01-01
, significantly lower mean frequency of ultrasound backscattered from cirrhotic, compared to normal, liver tissue was noted, Studies of benign and malignant liver tumors (hemangiomas and metastases, respectively) indicated differences in frequency content of these tumors, compared to the adjacent normal liver...
Institute of Scientific and Technical Information of China (English)
应阳君; 黄祖洽
2001-01-01
Frequency catastrophe is found in a cell Ca2+ nonlinear oscillation model with time delay. The relation of the frequency transition to the time delay is studied by numerical simulations and theoretical analysis. There is a range of parameters in which two kinds of attractors with great frequency differences co-exist in the system. Along with parameter changes, a critical phenomenon occurs and the oscillation frequency changes greatly. This mechanism helps us to deepen the understanding of the complex dynamics of delay systems, and might be of some meaning in cell signalling.
Phase-dependent audiometry with low-frequency masking revisited.
Rahne, Torsten; Rasinski, Christine; Neumann, Kerstin
2010-05-15
Low-frequency masking is a psychoacoustical phenomenon, describing the modulation of a high-frequency probe tone burst by a low-frequency masker tone. The probe tone threshold is increased, if the probe tone is presented at a low-frequency phases around 90 degrees and 270 degrees . At these phases, the low-frequency masker tone induces a displacement of the basilar membrane of the inner ear which modulates the sensitivity of the inner hair cells. Measuring the modulation depth is partially applied in clinical routine to diagnose the endolymphatic hydrops. Although the modulation depth differs between normal ears and those which reveal an endolymphatic hydrops, the significance of these tests seems debatable. Here, we describe a new experimental setup, completely consisting of commercially available devices. Further, a user interface was developed to enable the application in the clinical routine. The experimental setup was approved with ten normal hearing listeners. All reveal a modulation of the probe stimulus threshold by different phases of the low-frequency masker stimulus. With this experimental setup, custom-made modifications of the essential parameters are feasible. This would be a contribution to solve open questions on the clinical relevance of the low-frequency masking phenomenon.
Indian Academy of Sciences (India)
Arindam Saha; R E Amritkar
2014-12-01
Kuramoto oscillators have been proposed earlier as a model for interacting systems that exhibit synchronization. In this article, we study the difference between networks with symmetric and asymmetric distribution of natural frequencies. We first indicate that synchronization frequency of oscillators in a completely connected network is always equal to the mean of the natural frequency distribution. In particular, shape of the natural frequency distribution does not affect the synchronization frequency in this case. Then, we analyse the case of oscillators in a directed ring network, where asymmetry in the natural frequency distribution is seen to shift the synchronization frequency of the network. We also present an estimate of the shift in the frequencies for slightly asymmetric distributions.
Frequency and Magnetic Field Dependence of the Skin Depth in Co-rich Soft Magnetic Microwires
Directory of Open Access Journals (Sweden)
A. Zhukov
2016-11-01
Full Text Available We studied giant magnetoimpedance (GMI effect in magnetically soft amorphous Co-rich microwires in the extended frequency range. From obtained experimentally dependences of GMI ratio on magnetic field and different frequencies we estimated the penetration depth and its dependence on applied magnetic field and frequency
Phased-Array Antenna Beam Squinting Related to Frequency Dependency of Delay Circuits
Garakoui, S.K.; Klumperink, E.A.M.; Nauta, B.; Vliet, F.E. van
2011-01-01
Practical time delay circuits do not have a perfectly linear phase-frequency characteristic. When these delay circuits are applied in a phased-array system, this frequency dependency shows up as a frequency dependent beam direction (“beam squinting”). This paper quantifies beam squinting for a linea
Modeling frequency dependence of GaAs MESFET characteristics
Conger, Jeff; Peczalski, Andrzej; Shur, Michael S.
1994-01-01
We present a new method of modeling the output conductance dispersion of GaAs MESFET's. High frequency model parameters are extracted and then used to model high frequency output conductance over a wide range of bias conditions. The model is then used to simulate and analyze the effect of output conductance dispersion on the performance of DCFL and SCFL logic gates. Whereas the DCFL performance is not significantly affected by the high frequency effects, the noise margin of SCFL decreases by almost a factor of 30% above 100 kHz, with an associated decrease in the voltage swing and gate delay.
Frequency-Dependent Viscosity of Xenon Near the Critical Point
Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.
1999-01-01
We used a novel, overdamped oscillator aboard the Space Shuttle to measure the viscosity eta of xenon near its critical density rho(sub c), and temperature T(sub c). In microgravity, useful data were obtained within 0.1 mK of T(sub c), corresponding to a reduced temperature t = (T -T(sub c))/T(sub c) = 3 x 10(exp -7). The data extend two decades closer to T(sub c) than the best ground measurements, and they directly reveal the expected power-law behavior eta proportional to t(sup -(nu)z(sub eta)). Here nu is the correlation length exponent, and our result for the small viscosity exponent is z(sub eta) = 0.0690 +/- 0.0006. (All uncertainties are one standard uncertainty.) Our value for z(sub eta) depends only weakly on the form of the viscosity crossover function, and it agrees with the value 0.067 +/- 0.002 obtained from a recent two-loop perturbation expansion. The measurements spanned the frequency range 2 Hz less than or equal to f less than or equal to 12 Hz and revealed viscoelasticity when t less than or equal to 10(exp -1), further from T(sub c) than predicted. The viscoelasticity scales as Af(tau), where tau is the fluctuation-decay time. The fitted value of the viscoelastic time-scale parameter A is 2.0 +/- 0.3 times the result of a one-loop perturbation calculation. Near T(sub c), the xenon's calculated time constant for thermal diffusion exceeded days. Nevertheless, the viscosity results were independent of the xenon's temperature history, indicating that the density was kept near rho(sub c), by judicious choices of the temperature vs. time program. Deliberately bad choices led to large density inhomogeneities. At t greater than 10(exp -5), the xenon approached equilibrium much faster than expected, suggesting that convection driven by microgravity and by electric fields slowly stirred the sample.
Zhou, Kai-Ge; Zhao, Min; Chang, Meng-Jie; Wang, Qiang; Wu, Xin-Zhi; Song, Yinglin; Zhang, Hao-Li
2015-02-11
Size-dependent nonlinear optical properties of modification-free transition metal dichalcogenide (TMD) nanosheets are reported, including MoS2 , WS2 , and NbSe2 . Firstly, a gradient centrifugation method is demonstrated to separate the TMD nanosheets into different sizes. The successful size separation allows the study of size-dependent nonlinear optical properties of nanoscale TMD materials for the first time. Z-scan measurements indicate that the dispersion of MoS2 and WS2 nanosheets that are 50-60 nm thick leads to reverse saturable absorption (RSA), which is in contrast to the saturable absorption (SA) seen in the thicker samples. Moreover, the NbSe2 nanosheets show no size-dependent effects because of their metallic nature. The mechanism behind the size-dependent nonlinear optical properties of the semiconductive TMD nanosheets is revealed by transient transmission spectra measurements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
Oliver Pabst
2013-03-01
Full Text Available Reasoned by its dynamical behavior, the memristor enables a lot of new applications in analog circuit design. Since some realizations have been shown (e.g. 2007 by Hewlett Packard, the development of applications with memristors becomes more and more interesting. Besides applications in neural networks and storage devices, analog memristive circuits also promise further applications. Therefore, this article proposes a frequency dependent rectifier memristor bridge for different purposes, for example, using as a programmable synaptic membrane voltage generator for Spike-Time-Dependent-Plasticity and describes the circuit theory. In this context it is shown that the Picard Iteration is one possibility to analytically solve the system of nonlinear state equations of memristor circuits. An intuitive picture of how a memristor works in a network in general is given as well and in this context some research on the dynamical behavior of a HP memristor should be done. After all it is suggested to use the memristor bridge as a neuron.
Frequency Dependence of Measured Massive MIMO Channel Properties
DEFF Research Database (Denmark)
Oliveras Martínez, Àlex; Carvalho, Elisabeth De; Nielsen, Jesper Ødum;
2016-01-01
A multi-user massive MIMO measurement campaign is conducted to study the channel propagation characteristics (e.g. user correlation, sum of eigenvalues and condition number), focusing on the stability over frequencies and the impact of the array aperture. We use 3 arrays with 64 antennas (6m linear...... array, 2m linear array and 25cm by 28cm squared 2D array) serving 8 users holding a handset with 2 antennas. The study of the measurements shows that the propagation characteristics of the channel are stable for all the measured frequencies. We also observe that user proximity and user handgrip...... stabilize the studied properties of the channel across the frequencies, and in such case the larger the aperture of the array the more stable the properties. The number of base station antennas improves the propagation characteristics of the channel and stabilizes the properties in the frequency domain....
Andrzejak, Ralph G.; Schindler, Kaspar; Rummel, Christian
2012-10-01
To derive tests for randomness, nonlinear-independence, and stationarity, we combine surrogates with a nonlinear prediction error, a nonlinear interdependence measure, and linear variability measures, respectively. We apply these tests to intracranial electroencephalographic recordings (EEG) from patients suffering from pharmacoresistant focal-onset epilepsy. These recordings had been performed prior to and independent from our study as part of the epilepsy diagnostics. The clinical purpose of these recordings was to delineate the brain areas to be surgically removed in each individual patient in order to achieve seizure control. This allowed us to define two distinct sets of signals: One set of signals recorded from brain areas where the first ictal EEG signal changes were detected as judged by expert visual inspection (“focal signals”) and one set of signals recorded from brain areas that were not involved at seizure onset (“nonfocal signals”). We find more rejections for both the randomness and the nonlinear-independence test for focal versus nonfocal signals. In contrast more rejections of the stationarity test are found for nonfocal signals. Furthermore, while for nonfocal signals the rejection of the stationarity test increases the rejection probability of the randomness and nonlinear-independence test substantially, we find a much weaker influence for the focal signals. In consequence, the contrast between the focal and nonfocal signals obtained from the randomness and nonlinear-independence test is further enhanced when we exclude signals for which the stationarity test is rejected. To study the dependence between the randomness and nonlinear-independence test we include only focal signals for which the stationarity test is not rejected. We show that the rejection of these two tests correlates across signals. The rejection of either test is, however, neither necessary nor sufficient for the rejection of the other test. Thus, our results suggest that
Frequency-Dependent Blanking with Digital Linear Chirp Waveform Synthesis
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin Walter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Andrews, John M. [General Atomics Aeronautical Systems, Inc., San Diego, CA (United States)
2014-07-01
Wideband radar systems, especially those that operate at lower frequencies such as VHF and UHF, are often restricted from transmitting within or across specific frequency bands in order to prevent interference to other spectrum users. Herein we describe techniques for notching the transmitted spectrum of a generated and transmitted radar waveform. The notches are fully programmable as to their location, and techniques are given that control the characteristics of the notches.
Energy Technology Data Exchange (ETDEWEB)
Duan Zhisheng [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)], E-mail: duanzs@pku.edu.cn; Wang Jinzhi; Yang Ying; Huang Lin [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)
2009-04-30
This paper surveys frequency-domain and time-domain methods for feedback nonlinear systems and their possible applications to chaos control, coupled systems and complex dynamical networks. The absolute stability of Lur'e systems with single equilibrium and global properties of a class of pendulum-like systems with multi-equilibria are discussed. Time-domain and frequency-domain criteria for the convergence of solutions are presented. Some latest results on analysis and control of nonlinear systems with multiple equilibria and applications to chaos control are reviewed. Finally, new chaotic oscillating phenomena are shown in a pendulum-like system and a new nonlinear system with an attraction/repulsion function.
Nonlinear magnetic metamaterials.
Shadrivov, Ilya V; Kozyrev, Alexander B; van der Weide, Daniel W; Kivshar, Yuri S
2008-12-08
We study experimentally nonlinear tunable magnetic metamaterials operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators where a varactor diode is introduced into each resonator so that the magnetic resonance can be tuned dynamically by varying the input power. We demonstrate that at higher powers the transmission of the metamaterial becomes power-dependent and, as a result, such metamaterial can demonstrate various nonlinear properties. In particular, we study experimentally the power-dependent shift of the transmission band and demonstrate nonlinearity-induced enhancement (or suppression) of wave transmission. (c) 2008 Optical Society of America
Polarization dependence of nonlinear wave mixing of spinor polaritons in semiconductor microcavities
Lewandowski, Przemyslaw; Baudin, Emmanuel; Chan, Chris K P; Leung, P T; Luk, Samuel M H; Galopin, Elisabeth; Lemaitre, Aristide; Bloch, Jacqueline; Tignon, Jerome; Roussignol, Philippe; Kwong, N H; Binder, Rolf; Schumacher, Stefan
2015-01-01
The pseudo-spin dynamics of propagating exciton-polaritons in semiconductor microcavities are known to be strongly influenced by TE-TM splitting. As a vivid consequence, in the Rayleigh scattering regime, the TE-TM splitting gives rise to the optical spin Hall effect (OSHE). Much less is known about its role in the nonlinear optical regime in which four-wave mixing for example allows the formation of spatial patterns in the polariton density, such that hexagons and two-spot patterns are observable in the far field. Here we present a detailed analysis of spin-dependent four-wave mixing processes, by combining the (linear) physics of TE-TM splitting with spin-dependent nonlinear processes, i.e., exciton-exciton interaction and fermionic phase-space filling. Our combined theoretical and experimental study elucidates the complex physics of the four-wave mixing processes that govern polarization and orientation of off-axis modes.
Ranjbaran, Mina; Galiana, Henrietta L
2013-11-01
Studies of the vestibulo-ocular reflex (VOR) have revealed that this type of involuntary eye movement is influenced by viewing distance. This paper presents a bilateral model for the horizontal angular VOR in the dark based on realistic physiological mechanisms. It is shown that by assigning proper nonlinear neural computations at the premotor level, the model is capable of replicating target-distance-dependent VOR responses that are in agreement with geometrical requirements. Central premotor responses in the model are also shown to be consistent with experimental observations. Moreover, the model performance after simulated unilateral canal plugging also reproduces experimental observations, an emerging property. Such local nonlinear computations could similarly generate context-dependent behaviors in other more complex motor systems.
Soliton solutions of some nonlinear evolution equations with time-dependent coefficients
Indian Academy of Sciences (India)
Hitender Kumar; Anand Malik; Fakir Chand
2013-02-01
In this paper, we obtain exact soliton solutions of the modified KdV equation, inho-mogeneous nonlinear Schrödinger equation and (, ) equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the solitons to exist. Numerical simulations for dark and bright soliton solutions for the mKdV equation are also given.
Size dependent nonlinear optical properties of YCrO{sub 3} nanosystems
Energy Technology Data Exchange (ETDEWEB)
Krishnan, Shiji, E-mail: shijikrish@gmail.com [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam-686 560, Kerala (India); Shafakath, K.; Philip, Reji [Light and Matter Physics Group, Raman Research Institute, Bangalore- 560 080, Karnataka (India); Kalarikkal, Nandakumar, E-mail: nkkalarikkal@mgu.ac.in [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam-686 560, Kerala and Center for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam-686 560, Kerala (India)
2014-01-28
We report size-dependent optical limiting response of YCrO{sub 3} nanosystems upon illumination by nanosecond laser pulses at 532 nm. The limiting properties were investigated using the open aperture z-scan technique. Three-photon absorption coefficient is found to increase with particle size within the range of our investigations. We propose that the obtained nonlinearity is caused by two photon absorption, followed by excited state absorption.
Frequency selective non-linear blending to improve image quality in liver CT
Energy Technology Data Exchange (ETDEWEB)
Bongers, M.N.; Bier, G.; Kloth, C.; Schabel, C.; Nikolaou, K.; Horger, M. [University Hospital of Tuebingen (Germany). Dept. of Diagnostic and Interventional Radiology; Fritz, J. [Johns Hopkins University School of Medicine, Baltimore, MD (United States). Russell H. Morgan Dept. of Radiology and Radiological Science
2016-12-15
To evaluate the effects of a new frequency selective non-linear blending (NLB) algorithm on the contrast resolution of liver CT with low intravascular concentration of iodine contrast. Our local ethics committee approved this retrospective study. The informed consent requirement was waived. CT exams of 25 patients (60% female, mean age: 65±16 years of age) with late phase CT scans of the liver were included as a model for poor intrahepatic vascular contrast enhancement. Optimal post-processing settings to enhance the contrast of hepatic vessels were determined. Outcome variables included signal-to-noise (SNR) and contrast-to-noise ratios (CNR) of hepatic vessels and SNR of liver parenchyma of standard and post-processed images. Image quality was quantified by two independent readers using Likert scales. The post-processing settings for the visualization of hepatic vasculature were optimal at a center of 115HU, delta of 25HU, and slope of 5. Image noise was statistically indifferent between standard and post-processed images. The CNR between the hepatic vasculature (HV) and liver parenchyma could be significantly increased for liver veins (CNR{sub Standard} 1.62±1.10, CNR{sub NLB} 3.6±2.94, p=0.0002) and portal veins (CNR{sub Standard} 1.31±0.85, CNR{sub NLB} 2.42±3.03, p=0.046). The SNR of liver parenchyma was significantly higher on post-processed images (SNR{sub NLB} 11.26±3.16, SNR{sub Standard} 8.85± 2.27, p=0.008). The overall image quality and depiction of HV were significantly higher on post-processed images (NLB{sub DHV}: 4 [3-4.75], S{sub tandardDHV}: 2 [1.3-2.5], p=<0.0001; {sub NLBIQ}: 4 [4-4], {sub StandardIQ}: 2 [2-3], p=<0.0001). The use of a frequency selective non-linear blending algorithm increases the contrast resolution of liver CT and can improve the visibility of the hepatic vasculature in the setting of a low contrast ratio between vessels and the parenchyma.
Refined Monte Carlo method for simulating angle-dependent partial frequency redistributions
Lee, J.-S.
1982-01-01
A refined algorithm for generating emission frequencies from angle-dependent partial frequency redistribution functions R sub II and R sub III is described. The improved algorithm has as its basis a 'rejection' technique that, for absorption frequencies x less than 5, involves no approximations. The resulting procedure is found to be essential for effective studies of radiative transfer in optically thick or temperature varying media involving angle-dependent partial frequency redistributions.
Frequency Dependent Harmonic Powers in a Modified Uni-Traveling Carrier (MUTC) Photodetector
2017-01-27
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5651--17-9712 Frequency Dependent Harmonic Powers in a Modified Uni-Traveling Carrier...TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Frequency Dependent Harmonic Powers in a...N. Hutchinson (202) 767-9549 Fiber optics Analog photonics We use a drift-diffusion model to study frequency dependent harmonic powers in a
Frequency dependence of orthogonal polarisation modes in pulsars
Smits, J.M.; Stappers, B.W.; Edwards, R.T.; Kuijpers, J.; Ramachandran, R.
2006-01-01
We have carried out a study of the orthogonal polarisation mode behaviour as afunction of frequency of 18pulsars, using average pulsar data from the European Pulsar Network(EPN). Assuming that the radiation consists of two100% polarised completely orthogonal superposed modes we separated these
Neuron firing frequency dependence on the static magnetic field intensity
Azanza, M. J.; del Moral, A.
1995-02-01
The effects of static magnetic field (SMF) of B intensity ( B = 0.003-0.72 T) on neurons are studied. The firing frequency f decreases exponentially with B2 and a threshold field B0 (≈ 0.57 T), where f abruptly drops to zero, is observed. A suitable model is developed where SMF's liberate membrane bounded Ca 2+ ions.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Temperature dependence of the magnetization M(T) of two-band superconductors is studied in the vicinity of upper critical field Hc2 by using a two-band Ginzburg-Landau (GL) theory. It is shown that magnetization M(T) has a nonlinear character due to positive curvature of upper critical field Hc2(T) and temperature dependence of effective Ginzburg-Landau parameter (n)eff(T). The results are shown to be in qualitative agreement with experimental data for the superconducting magnesium diboride, MgB2.
Nonlinear pressure dependence of TN in almost multiferroic EuTiO3
Guguchia, Z.; Caslin, K.; Kremer, R. K.; Keller, H.; Shengelaya, A.; Maisuradze, A.; Bettis, J. L., Jr.; Köhler, J.; Bussmann-Holder, A.; Whangbo, M.-H.
2013-09-01
The antiferromagnetic (AFM) phase transition temperature TN of EuTiO3 has been studied as a function of pressure p. The data reveal a nonlinear dependence of TN on p with TN increasing with increasing pressure. The exchange interactions exhibit an analogous dependence on p as TN (if the absolute value of the nearest neighbor interaction is considered) and there is evidence that the AFM transition is robust with increasing pressure. The corresponding Weiss temperature ΘW remains anomalous since it always exhibits positive values. The data are analyzed within the Bloch power law model and provide excellent agreement with experiment.
Amir, Naila; Iqbal, Shahid
2017-08-01
We develop generalized coherent states for a class of nonlinear oscillators with position-dependent effective mass in the context of the Gazeau-Klauder formalism and discuss some of their properties. In order to investigate the temporal evolution we first explore the statistical properties by means of weighting distribution and the Mandel parameter. It is found that the temporal evolution of the coherent states may exhibit the phenomena of quantum revivals and fractional revivals for a particular choice of position-dependent mass oscillator.
Input-Dependent Integral Nonlinearity Modeling for Pipelined Analog-Digital Converters
Samer Medawar; Peter Händel; Niclas Björsell; Magnus Jansson
2010-01-01
Integral nonlinearity (INL) for pipelined analog-digital converters (ADCs) operating at RF is measured and characterized. A parametric model for the INL of pipelined ADCs is proposed, and the corresponding least-squares problem is formulated and solved. The INL is modeled both with respect to the converter output code and the frequency stimuli, which is dynamic modeling. The INL model contains a static and a dynamic part. The former comprises two 1-D terms in ADC code that are a sequence of z...
Sütterlin, R; Priori, R; Larsson, A; LoMauro, A; Frykholm, P; Aliverti, A
2014-01-01
Superimposed high-frequency jet ventilation (SHFJV) has proved to be safe and effective in clinical practice. However, it is unclear which frequency range optimizes ventilation and gas exchange. The aim of this study was to systematically compare high-frequency jet ventilation (HFJV) with HFJV by assessing chest wall volume variations (ΔEEV(CW)) and gas exchange in relation to variable high frequency. SHFJV or HFJV were used alternatively to ventilate the lungs of 10 anaesthetized pigs (21-25 kg). The low-frequency component was kept at 16 min(-1) in SHFJV. In both modes, high frequencies ranging from 100 to 1000 min(-1) were applied in random order and ventilation was maintained for 5 min in all modalities. Chest wall volume variations were obtained using opto-electronic plethysmography. Airway pressures and arterial blood gases were measured repeatedly. SHFJV increased ΔEEV(CW) compared with HFJV; the difference ranged from 43 to 68 ml. Tidal volume (V(T)) was always >240 ml during SHFJV whereas during HFJV ranged from 92 ml at the ventilation frequency of 100 min(-1) to negligible values at frequencies >300 min(-1). We observed similar patterns for Pa(O₂) and Pa(CO₂). SHFJV provided generally higher, frequency-independent oxygenation (Pa(O₂) at least 32.0 kPa) and CO₂ removal (Pa(CO₂) ∼5.5 kPa), whereas HFJV led to hypoxia and hypercarbia at higher rates (Pa(O₂) 10 kPa at f(HF)>300 min(-1)). In a porcine model, SHFJV was more effective in increasing end-expiratory volume than single-frequency HFJV, but both modes may provide adequate ventilation in the absence of airway obstruction and respiratory disease, except for HFJV at frequencies ≥300 min(-1).
Zaheer, Muhammad Hamad; Rehan, Muhammad; Mustafa, Ghulam; Ashraf, Muhammad
2014-11-01
This paper proposes a novel state feedback delay-range-dependent control approach for chaos synchronization in coupled nonlinear time-delay systems. The coupling between two systems is esteemed to be nonlinear subject to time-lags. Time-varying nature of both the intrinsic and the coupling delays is incorporated to broad scope of the present study for a better-quality synchronization controller synthesis. Lyapunov-Krasovskii (LK) functional is employed to derive delay-range-dependent conditions that can be solved by means of the conventional linear matrix inequality (LMI)-tools. The resultant control approach for chaos synchronization of the master-slave time-delay systems considers non-zero lower bound of the intrinsic as well as the coupling time-delays. Further, the delay-dependent synchronization condition has been established as a special case of the proposed LK functional treatment. Furthermore, a delay-range-dependent condition, independent of the delay-rate, has been provided to address the situation when upper bound of the delay-derivative is unknown. A robust state feedback control methodology is formulated for synchronization of the time-delay chaotic networks against the L2 norm bounded perturbations by minimizing the L2 gain from the disturbance to the synchronization error. Numerical simulation results are provided for the time-delay chaotic networks to show effectiveness of the proposed delay-range-dependent chaos synchronization methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Cue-dependency and Frequency Effects: Evidence from Chinese
Institute of Scientific and Technical Information of China (English)
Gao Dingguo; Yang Zhiliang
2005-01-01
The present study disclosed that a) prime stimuli had a significant effect on the object in implicit tests, but not in the explicit condition, and b) greater priming occurred when the study and test fonts coincided than whey they differeds, Moreover,the performance in implicit memory tests was more impaired by a shift from official to printed fonts than by a shift in the reverse direction. In addition, the results also revealed that low frequency materials produced more priming than did high frequency materials in implicit memory tests, but less effect of this variable on priming in explicit memory tests could be obtained with the same target characters. The above results implied that a transfer appropriate processing approach suggested by Roediger, Weldon and Challis (1989) is more acceptable to interpret the dissociation between implicit and explicit memory. The authors also critically commented on the implicit memory tests of Chinese widely used by researchers.
Frequency Dependence of Damping and Compliance in Loudspeaker Suspensions
DEFF Research Database (Denmark)
Thorborg, Knud; Tinggaard, Carsten; Agerkvist, Finn T.
2010-01-01
textiles used for spiders - have more or less visco-elastic properties; best known is the “creep” effect. This phenomenon in itself is normally of little interest in the audio frequency range. It is mainly a DC phenomenon. As such it manifests itself when a static (DC) force probes the speaker voice coil...... resonances, but less used in high quality loudspeakers today – where “Low Loss Rubber Surround” is currently seen as a marketing feature, as it is expected to have positive impact on sound quality. The plasticized type of surround shows significant creep, followed by compliance and damping increasing towards...... lower frequencies. The LOG-model is found to give good agreement with measurements, also for loudspeakers with low loss surrounds. However, it is not supported by a theory explaining visco-elastic properties in a physical way. Surrounds today are mostly made from SBR rubber for which...
Context specificity of conflict frequency-dependent control.
Vietze, Ina; Wendt, Mike
2009-07-01
Interference in the Eriksen flanker task has been shown to be reduced when the (relative) frequency of conflicting stimuli is increased, a modulation thought to reflect a higher degree of processing selectivity under conditions of frequent conflict (Botvinick, Braver, Barch, Carter, & Cohen, 2001). Previous studies suggest that stimulus location acts as a contextual cue, resulting in location-specific adjustment of processing selectivity when different locations are associated with differential conflict frequencies (Corballis & Gratton, 2003; Wendt, Kluwe, & Vietze, 2008). In the current study we extend these findings by showing that not only stimulus location but also stimulus colour can be used for context-specific adjustments. These findings suggest that processing selectivity is adjusted in parallel with current stimulus processing, potentially serving to resolve a current conflict rather than to prepare for an upcoming new conflict.
Joglekar, D. M.; Mitra, M.
2015-11-01
A breathing crack, due to its bilinear stiffness characteristics, modifies the frequency spectrum of a propagating dual-frequency elastic wave, and gives rise to sidebands around the probing frequency. This paper presents an analytical-numerical method to investigate such nonlinear frequency mixing resulting from the modulation effects induced by a breathing crack in 1D waveguides, such as axial rods and the Euler-Bernoulli beams. A transverse edge-crack is assumed to be present in both the waveguides, and the local flexibility caused by the crack is modeled using an equivalent spring approach. A simultaneous treatment of both the waveguides, in the framework of the Fourier transform based spectral finite element method, is presented for analyzing their response to a dual frequency excitation applied in the form of a tone-burst signal. The intermittent contact between the crack surfaces is accounted for by introducing bilinear contact forces acting at the nodes of the damage spectral element. Subsequently, an iterative approach is outlined for solving the resulting system of nonlinear simultaneous equations. Applicability of the proposed method is demonstrated by considering several test cases. The existence of sidebands and the higher order harmonics is confirmed in the frequency domain response of both the waveguides under investigation. A qualitative comparison with the previous experimental observations accentuates the utility of the proposed solution method. Additionally, the influence of the two constituent frequencies in the dual frequency excitation is assessed by varying the relative strengths of their amplitudes. A brief parametric study is performed for bringing out the effects of the relative crack depth and crack location on the degree of modulation, which is quantified in terms of the modulation parameter. Results of the present investigation can find their potential use in providing an analytical-numerical support to the studies geared towards the
Goldberg, Robert K.
2000-01-01
There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.
Delay-Dependent Observers for Uncertain Nonlinear Time-Delay Systems
Directory of Open Access Journals (Sweden)
Dongmei Yan
2013-05-01
Full Text Available This paper is concerned with the observer design problem for a class of discrete-time uncertain nonlinear systems with time-varying delay. The nonlinearities are assumed to satisfy global Lipschitz conditions which appear in both the state and measurement equations. The uncertainties are assumed to be time-varying but norm-bounded. Two Luenberger-like observers are proposed. One is delay observer and the other is delay-free observer. The delay observer which has an internal time delay is applicable when the time delay is known. The delay-free observer which does not use delayed information is especially applicable when the time delay is not known explicitly. Delay-dependent conditions for the existences of these two observers are derived based on Lyapunpv functional approach. Based on these conditions, the observer gains are obtained using the cone complementarity linearization algorithm. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.
Surfactant and gravity dependent instability of two-layer Couette flows and its nonlinear saturation
Frenkel, Alexander L
2016-01-01
A horizontal flow of two immiscible fluid layers with different densities, viscosities and thicknesses, subject to vertical gravitational forces and with an insoluble surfactant present at the interface, is investigated. The base Couette flow is driven by the horizontal motion of the channel walls. Linear and nonlinear stages of the (inertialess) surfactant and gravity dependent long-wave instability are studied using the lubrication approximation, which leads to a system of coupled nonlinear evolution equations for the interface and surfactant disturbances. The linear stability is determined by an eigenvalue problem for the normal modes. The growth rates and the amplitudes of disturbances of the interface, surfactant, velocities, and pressures are found analytically. For each wavenumber, there are two active normal modes. For each mode, the instability threshold conditions in terms of the system parameters are determined. In particular, it transpires that for certain parametric ranges, even arbitrarily stron...
Kim, Dong-Hyun; Chauhan, Munish; Kim, Min-Oh; Jeong, Woo Chul; Kim, Hyung Joong; Sersa, Igor; Kwon, Oh In; Woo, Eung Je
2015-02-01
Electrical conductivities of biological tissues show frequency-dependent behaviors, and these values at different frequencies may provide clinically useful diagnostic information. MR-based tissue property mapping techniques such as magnetic resonance electrical impedance tomography (MREIT) and magnetic resonance electrical property tomography (MREPT) are widely used and provide unique conductivity contrast information over different frequency ranges. Recently, a new method for data acquisition and reconstruction for low- and high-frequency conductivity images from a single MR scan was proposed. In this study, we applied this simultaneous dual-frequency range conductivity mapping MR method to evaluate its utility in a designed phantom and two in vivo animal disease models. Magnetic flux density and B(1)(+) phase map for dual-frequency conductivity images were acquired using a modified spin-echo pulse sequence. Low-frequency conductivity was reconstructed from MREIT data by the projected current density method, while high-frequency conductivity was reconstructed from MREPT data by B(1)(+) mapping. Two different conductivity phantoms comprising varying ion concentrations separated by insulating films with or without holes were used to study the contrast mechanism of the frequency-dependent conductivities related to ion concentration and mobility. Canine brain abscess and ischemia were used as in vivo models to evaluate the capability of the proposed method to identify new electrical properties-based contrast at two different frequencies. The simultaneous dual-frequency range conductivity mapping MR method provides unique contrast information related to the concentration and mobility of ions inside tissues. This method has potential to monitor dynamic changes of the state of disease.
Photonic band gap enhancement in frequency-dependent dielectrics.
Toader, Ovidiu; John, Sajeev
2004-10-01
We illustrate a general technique for evaluating photonic band structures in periodic d -dimensional microstructures in which the dielectric constant epsilon (omega) exhibits rapid variations with frequency omega . This technique involves the evaluation of generalized electromagnetic dispersion surfaces omega ( k--> ,epsilon) in a (d+1) -dimensional space consisting of the physical d -dimensional space of wave vectors k--> and an additional dimension defined by the continuous, independent, variable epsilon . The physical band structure for the photonic crystal is obtained by evaluating the intersection of the generalized dispersion surfaces with the "cutting surface" defined by the function epsilon (omega) . We apply this method to evaluate the band structure of both two- and three-dimensional (3D) periodic microstructures. We consider metallic photonic crystals with free carriers described by a simple Drude conductivity and verify the occurrence of electromagnetic pass bands below the plasma frequency of the bulk metal. We also evaluate the shift of the photonic band structure caused by free carrier injection into semiconductor-based photonic crystals. We apply our method to two models in which epsilon (omega) describes a resonant radiation-matter interaction. In the first model, we consider the addition of independent, resonant oscillators to a photonic crystal with an otherwise frequency-independent dielectric constant. We demonstrate that for an inhomogeneously broadened distribution of resonators impregnated within an inverse opal structure, the full 3D photonic band gap (PBG) can be considerably enhanced. In the second model, we consider a coupled resonant oscillator mode in a photonic crystal. When this mode is an optical phonon, there can be a synergetic interplay between the polaritonic resonance and the geometrical scattering resonances of the structured dielectric, leading to PBG enhancement. A similar effect may arise when resonant atoms that are
Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease.
Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A
2006-03-15
The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13-20 Hz) and the high-beta rhythm (20-35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also
Frequency-dependent optical steering from subwavelength plasmonic structures.
Djalalian-Assl, A; Gómez, D E; Roberts, A; Davis, T J
2012-10-15
We show theoretically and with numerical simulations that the direction of the in-plane scattering from a subwavelength optical antenna system can be controlled by the frequency of the incident light. This optical steering effect does not rely on propagation phase shifts or diffraction but arises from phase shifts in the localized surface plasmon modes of the antenna. An analytical model is developed to optimize the parameters for the configuration, showing good agreement with a rigorous numerical simulation. The simulation predicts a 25° angular shift in the direction of the light scattered from two gold nanorods for a wavelength change of 12 nm.
Jackson, M B; Konnerth, A; Augustine, G J
1991-01-15
Hormone release from nerve terminals in the neurohypophysis is a sensitive function of action potential frequency. We have investigated the cellular mechanisms responsible for this frequency-dependent facilitation by combining patch clamp and fluorimetric Ca2+ measurements in single neurosecretory terminals in thin slices of the rat posterior pituitary. In these terminals both action potential-induced changes in the intracellular Ca2+ concentration ([Ca2+]i) and action potential duration were enhanced by high-frequency stimuli, all with a frequency dependence similar to that of hormone release. Furthermore, brief voltage clamp pulses inactivated a K+ current with a very similar frequency dependence. These results support a model for frequency-dependent facilitation in which the inactivation of a K+ current broadens action potentials, leading to an enhancement of [Ca2+]i signals. Further experiments tested for a causal relationship between action potential broadening and facilitation of [Ca2+]i changes. First, increasing the duration of depolarization, either by broadening action potentials with the K(+)-channel blocker tetraethylammonium or by applying longer depolarizing voltage clamp steps, increased [Ca2+]i changes. Second, eliminating frequency-dependent changes in duration, by voltage clamping the terminal with constant duration pulses, substantially reduced the frequency-dependent enhancement of [Ca2+]i changes. These results indicate that action potential broadening contributes to frequency-dependent facilitation of [Ca2+]i changes. However, the small residual frequency dependence of [Ca2+]i changes seen with constant duration stimulation suggests that a second process, distinct from action potential broadening, also contributes to facilitation. These two frequency-dependent mechanisms may also contribute to activity-dependent plasticity in synaptic terminals.
Frequency response areas in the inferior colliculus: nonlinearity and binaural interaction
Yu, Jane J.; Young, Eric D.
2013-01-01
The tuning, binaural properties, and encoding characteristics of neurons in the central nucleus of the inferior colliculus (CNIC) were investigated to shed light on nonlinearities in the responses of these neurons. Results were analyzed for three types of neurons (I, O, and V) in the CNIC of decerebrate cats. Rate responses to binaural stimuli were characterized using a 1st- plus 2nd-order spectral integration model. Parameters of the model were derived using broadband stimuli with random spectral shapes (RSS). This method revealed four characteristics of CNIC neurons: (1) Tuning curves derived from broadband stimuli have fixed (i. e., level tolerant) bandwidths across a 50–60 dB range of sound levels; (2) 1st-order contralateral weights (particularly for type I and O neurons) were usually larger in magnitude than corresponding ipsilateral weights; (3) contralateral weights were more important than ipsilateral weights when using the model to predict responses to untrained noise stimuli; and (4) 2nd-order weight functions demonstrate frequency selectivity different from that of 1st-order weight functions. Furthermore, while the inclusion of 2nd-order terms in the model usually improved response predictions related to untrained RSS stimuli, they had limited impact on predictions related to other forms of filtered broadband noise [e. g., virtual-space stimuli (VS)]. The accuracy of the predictions varied considerably by response type. Predictions were most accurate for I neurons, and less accurate for O and V neurons, except at the lowest stimulus levels. These differences in prediction performance support the idea that type I, O, and V neurons encode different aspects of the stimulus: while type I neurons are most capable of producing linear representations of spectral shape, type O and V neurons may encode spectral features or temporal stimulus properties in a manner not easily explained with the low-order model. Supported by NIH grant DC00115. PMID:23675323
Temperature Dependence of Biological Tissues Complex Permitivity at Microwave Frequencies
Directory of Open Access Journals (Sweden)
Dagmar Faktorova
2008-01-01
Full Text Available In the paper an universal overview of polarizing mechanisms with an emphasis on dipolar materials as the investigated tissues are regarded. Experimental apparatus is presented with giving its specificity as well as the method used at calculation of complex permittivity. The experimental part is aimed at temperature dependence of complex permittivity measurement of pig biological tissues with different properties. Experimental results are presented graphically with the commentary for courses of particular tissues.
Temperature Dependence of Biological Tissues Complex Permitivity at Microwave Frequencies
Dagmar Faktorova
2008-01-01
In the paper an universal overview of polarizing mechanisms with an emphasis on dipolar materials as the investigated tissues are regarded. Experimental apparatus is presented with giving its specificity as well as the method used at calculation of complex permittivity. The experimental part is aimed at temperature dependence of complex permittivity measurement of pig biological tissues with different properties. Experimental results are presented graphically with the commentary for courses o...
Park, Harold S
2009-03-18
There are two major objectives to the present work. The first objective is to demonstrate that, in contrast to predictions from linear surface elastic theory, when nonlinear, finite deformation kinematics are considered, the residual surface stress does impact the resonant frequencies of silicon nanowires. The second objective of this work is to delineate, as a function of nanowire size, the relative contributions of both the residual (strain-independent) and the surface elastic (strain-dependent) parts of the surface stress to the nanowire resonant frequencies. Both goals are accomplished by using the recently developed surface Cauchy-Born model, which accounts for nanoscale surface stresses through a nonlinear, finite deformation continuum mechanics model that leads to the solution of a standard finite element eigenvalue problem for the nanowire resonant frequencies. In addition to demonstrating that the residual surface stress does impact the resonant frequencies of silicon nanowires, we further show that there is a strong size dependence to its effect; in particular, we find that consideration of the residual surface stress alone leads to significant errors in predictions of the nanowire resonant frequency, with an increase in error with decreasing nanowire size. Correspondingly, the strain-dependent part of the surface stress is found to have an increasingly important effect on the resonant frequencies of the nanowires with decreasing nanowire size.
Baldi, Marco
2010-01-01
We present a complete numerical study of cosmological models with a time dependent coupling between the dark energy component driving the present accelerated expansion of the Universe and the Cold Dark Matter (CDM) fluid. Depending on the functional form of the coupling strength, these models show a range of possible intermediate behaviors between the standard LCDM background evolution and the widely studied case of interacting dark energy models with a constant coupling. These different background evolutions play a crucial role in the growth of cosmic structures, and determine strikingly different effects of the coupling on the internal dynamics of nonlinear objects. By means of a suitable modification of the cosmological N-body code GADGET-2 we have performed a series of high-resolution N-body simulations of structure formation in the context of interacting dark energy models with variable couplings. Depending on the type of background evolution, the halo density profiles are found to be either less or more...
Temperature dependence of the Raman-active phonon frequencies in indium sulfide
Gasanly, N. M.; Özkan, H.; Aydinli, A.; Yilmaz, İ.
1999-03-01
The temperature dependence of the Raman-active mode frequencies in indium sulfide was measured in the range from 10 to 300 K. The analysis of the temperature dependence of the A g intralayer optical modes show that Raman frequency shift results from the change of harmonic frequency with volume expansion and anharmonic coupling to phonons of other branches. The pure-temperature contribution (phonon-phonon coupling) is due to three- and four-phonon processes.
Simandoux, Oliver; Gâteau, Jérôme; Bossy, Emmanuel
2013-01-01
In the thermoelastic regime, photoacoustic sensing of optical absorption relies on conversion from light to acoustic energy via the coefficient of thermal expansion \\beta. In this work, we confront confront experimental measurements to theoretical predictions of nonlinear photoacoustic generation based on the dynamic variation of \\beta(T) during the optical excitation of absorbers in aqueous solution. The photoacoustic generation from solutions of organic dye and gold nanospheres (with same optical densities), illuminated with 532 nm nanosecond pulses, was detected using a high frequency ultrasound transducer (center frequency 20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence (a few mJ/cm2) for an equilibrium temperature around 4{\\deg}C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. Under the same condition, no emission was observed with the absorbing organic dye. At a fixed fluence of 5 mJ/cm2, th...
Lee, Ho-Jun; Saravanos, Dimitris A.
1997-01-01
Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.
Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations
Energy Technology Data Exchange (ETDEWEB)
Mikaelian, K O
2009-09-28
We extend our earlier model for Rayleigh-Taylor and Richtmyer-Meshkov instabilities to the more general class of hydrodynamic instabilities driven by a time-dependent acceleration g(t) . Explicit analytic solutions for linear as well as nonlinear amplitudes are obtained for several g(t)'s by solving a Schroedinger-like equation d{sup 2}{eta}/dt{sup 2} - g(t)kA{eta} = 0 where A is the Atwood number and k is the wavenumber of the perturbation amplitude {eta}(t). In our model a simple transformation k {yields} k{sub L} and A {yields} A{sub L} connects the linear to the nonlinear amplitudes: {eta}{sup nonlinear} (k,A) {approx} (1/k{sub L})ln{eta}{sup linear} (k{sub L}, A{sub L}). The model is found to be in very good agreement with direct numerical simulations. Bubble amplitudes for a variety of accelerations are seen to scale with s defined by s = {integral} {radical}g(t)dt, while spike amplitudes prefer scaling with displacement {Delta}x = {integral}[{integral}g(t)dt]dt.
Directory of Open Access Journals (Sweden)
Xiao eLin
2015-09-01
Full Text Available Neuroimaging studies have revealed that the task-related functional brain activities are impaired in Internet gaming disorder (IGD subjects. However, little is known about the alternations in spontaneous brain activities about them. Recent studies have proposed that the brain activities of different frequency ranges are generated by different nervous activities and have different physiological and psychological functions. Thus, in this study, we set to explore the spontaneous brain activities in IGD subjects by measuring the fractional amplitude of low-frequency fluctuation (fALFF, to investigate band-specific changes of resting-state fALFF. We subdivided the frequency range into five bands based on literatures. Comparing to healthy controls, the IGD group showed decreased fALFF values in the cerebellum posterior lobe and increased fALFF values in superior temporal gyrus. Significant interactions between frequency bands and groups were found in the cerebellum, the anterior cingulate, the lingual gyrus, the middle temporal gyrus and the middle frontal gyrus. Those brain regions are proved related to the executive function and decision-making. These results revealed the changed spontaneous brain activity of IGD, which contributed to understanding the underlying pathophysiology of IGD.
Zhan, Yihong; Cao, Zhenning; Bao, Ning; Li, Jianbo; Wang, Jun; Geng, Tao; Lin, Hao; Lu, Chang
2012-06-28
Conventional electroporation has been conducted by employing short direct current (dc) pulses for delivery of macromolecules such as DNA into cells. The use of alternating current (ac) field for electroporation has mostly been explored in the frequency range of 10kHz-1MHz. Based on Schwan equation, it was thought that with low ac frequencies (10Hz-10kHz), the transmembrane potential does not vary with the frequency. In this report, we utilized a flow-through electroporation technique that employed continuous 10Hz-10kHz ac field (based on either sine waves or square waves) for electroporation of cells with defined duration and intensity. Our results reveal that electropermeabilization becomes weaker with increased frequency in this range. In contrast, transfection efficiency with DNA reaches its maximum at medium frequencies (100-1000Hz) in the range. We postulate that the relationship between the transfection efficiency and the ac frequency is determined by combined effects from electrophoretic movement of DNA in the ac field, dependence of the DNA/membrane interaction on the ac frequency, and variation of transfection under different electropermeabilization intensities. The fact that ac electroporation in this frequency range yields high efficiency for transfection (up to ~71% for Chinese hamster ovary cells) and permeabilization suggests its potential for gene delivery.
2015-09-17
processing - optical frequency conversion and optical DSB -to-SSB conversion 5a. CONTRACT NUMBER FA2386-14-1-0006 5b. GRANT NUMBER Grant 134113...nonlinear dynamics of semiconductor lasers for certain optical signal processing functionalities, including optical DSB -to-SSB conversion, photonic...conversion and optical DSB -to-SSB conversion Performance Period May 30, 2014 ~ May 29, 2015 Principal Investigator Name: Sheng-Kwang Hwang Position
Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition
Malakyan, Y P; Budker, D; Kimball, D F; Yashchuk, V V; Malakyan, Yu. P.
2003-01-01
A low-light-power theory of nonlinear magneto-optical rotation of frequency-modulated light resonant with a J=1->J'=0 transition is presented. The theory is developed for a Doppler-free transition, and then modified to account for Doppler broadening and velocity mixing due to collisions. The results of the theory are shown to be in qualitative agreement with experimental data obtained for the rubidium D1 line.
Directory of Open Access Journals (Sweden)
Ohanyan G.G.
2010-09-01
Full Text Available The quasi-adiabatic and quasi-isotherm regimes of propagation of high-frequency perturbation are considered in a thermal relaxing gas–fluid mixture. The simplified non-linear equations are obtained. It is shown that in the absence of heat transfer and under the quasi-adiabatic regime the form of propagation is soliton, or the shock wave in quasi-isotherm regime.
Ohanyan G.G.
2010-01-01
The quasi-adiabatic and quasi-isotherm regimes of propagation of high-frequency perturbation are considered in a thermal relaxing gas–fluid mixture. The simplified non-linear equations are obtained. It is shown that in the absence of heat transfer and under the quasi-adiabatic regime the form of propagation is soliton, or the shock wave in quasi-isotherm regime.
Nonlinear magnetoinductive transmission lines
Lazarides, Nikos; Tsironis, G P
2011-01-01
Power transmission in one-dimensional nonlinear magnetic metamaterials driven at one end is investigated numerically and analytically in a wide frequency range. The nonlinear magnetic metamaterials are composed of varactor-loaded split-ring resonators which are coupled magnetically through their mutual inductances, forming thus a magnetoiductive transmission line. In the linear limit, significant power transmission along the array only appears for frequencies inside the linear magnetoinductive wave band. We present analytical, closed form solutions for the magnetoinductive waves transmitting the power in this regime, and their discrete frequency dispersion. When nonlinearity is important, more frequency bands with significant power transmission along the array may appear. In the equivalent circuit picture, the nonlinear magnetoiductive transmission line driven at one end by a relatively weak electromotive force, can be modeled by coupled resistive-inductive-capacitive (RLC) circuits with voltage-dependent cap...
Loures, Cristian Redondo; Biancalana, Fabio
2014-01-01
We study the influence of third-harmonic generation (THG) and negative frequency polarization terms in the self-phase modulation (SPM) of short and intense pulses in Kerr media. We find that THG induces additional symmetric lobes in the SPM process. The amplitude of these new sidebands are greatly enhanced by the contributions of the negative frequency Kerr (NFK) term and the shock operator. We compare our theoretical predictions based on the analytical nonlinear phase with simulations carried out by using the full unidirectional pulse propagation equation (UPPE).
Institute of Scientific and Technical Information of China (English)
ZHANG Shao-hua; YAO Jian-quan; ZHOU Rui; WEN Wu-qi; XU De-gang; WANG Peng
2011-01-01
Using nanosecond pulse near-infrared and mid-infrared laser pulses as the pump source,we obtain terahertz wave sources via four-wave difference frequency mixing.From the coupled wave theory,.we analyze the four-wave mixing process of GaSe crystal and alkali metal vapor in detail,get the analytical expression of terahertz wave output power,and discuss the conditions for achieving phase matching.By adjusting the pump frequency,the third-order nonlinear polarization of alkali metal vapor is resonance-enhanced.This program offers a new type of high-power terahertz radiation source.
Non-reciprocal nonlinear optic induced transparency and frequency conversion on a chip
Guo, Xiang; Jung, Hojoong; Tang, Hong X
2015-01-01
Developments in photonic chips have spurred photon based classical and quantum information processing, attributing to the high stability and scalability of integrated photonic devices [1, 2]. Optical nonlinearity [3] is indispensable in these complex photonic circuits, because it allows for classical and quantum light sources, all-optical switch, modulation, and non-reciprocity in ambient environments. It is commonly known that nonlinear interactions are often greatly enhanced in the microcavities [4]. However, the manifestations of coherent photon-photon interaction in a cavity, analogous to the electromagnetically induced transparency [5], have never been reported on an integrated platform. Here, we present an experimental demonstration of the coherent photon-photon interaction induced by second order optical nonlinearity (\\chi^{(2)} ) on an aluminum nitride photonic chip. The non-reciprocal nonlinear optic induced transparency is demonstrated as a result of the coherent interference between photons with di...
2017-04-03
Naftaly NPL MANAGEMENT LTD Final Report 04/02/2017 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOE...ADDRESS(ES) NPL MANAGEMENT LTD HAMPTON RD TEDDINGTON, TW11 0LW GB 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...refractive index and () is the incident electric field. The imaginary component of nonlinear refractive index, i.e. nonlinear or multi-photon
Strings on a Violin: Location Dependence of Frequency Tuning in Active Dendrites
Das, Anindita; Rathour, Rahul K.; Narayanan, Rishikesh
2017-01-01
Strings on a violin are tuned to generate distinct sound frequencies in a manner that is firmly dependent on finger location along the fingerboard. Sound frequencies emerging from different violins could be very different based on their architecture, the nature of strings and their tuning. Analogously, active neuronal dendrites, dendrites endowed with active channel conductances, are tuned to distinct input frequencies in a manner that is dependent on the dendritic location of the synaptic inputs. Further, disparate channel expression profiles and differences in morphological characteristics could result in dendrites on different neurons of the same subtype tuned to distinct frequency ranges. Alternately, similar location-dependence along dendritic structures could be achieved through disparate combinations of channel profiles and morphological characteristics, leading to degeneracy in active dendritic spectral tuning. Akin to strings on a violin being tuned to different frequencies than those on a viola or a cello, different neuronal subtypes exhibit distinct channel profiles and disparate morphological characteristics endowing each neuronal subtype with unique location-dependent frequency selectivity. Finally, similar to the tunability of musical instruments to elicit distinct location-dependent sounds, neuronal frequency selectivity and its location-dependence are tunable through activity-dependent plasticity of ion channels and morphology. In this morceau, we explore the origins of neuronal frequency selectivity, and survey the literature on the mechanisms behind the emergence of location-dependence in distinct forms of frequency tuning. As a coda to this composition, we present some future directions for this exciting convergence of biophysical mechanisms that endow a neuron with frequency multiplexing capabilities.
Institute of Scientific and Technical Information of China (English)
赵应桥; 朱鹤元; 刘建华; 孙迭篪; 李富铭
1997-01-01
A time-resolved cross-phase modulation method combined with a modified nonlinear Schrodinger equation is used to study the effects of nonlinear response time on the propagation of ultrashort pulses in nonlinear dispersion media. Evolution of cross-phase modulation spectrum with the different time delay between the probe pulse and pump pulse is simulated using split-step Fourier method. It is shown that both normal self-frequency-shift-red-shift and abnormal self-frequency-shift-blue-shift can occur in the frequency domain for the probe pulse, and a satisfactory theoretical interpretation is given.
Di Lillo, Luigi; Bergamini, Andrea; Albino Carnelli, Dario; Ermanni, Paolo
2012-07-01
A physical model for the frequency-dependent dielectric response of multilayered structures is reported. Two frequency regimes defined by the relative permittivities and volume resistivities of the layers have been analytically identified and experimentally investigated on a structure consisting of polyimide and poly(vinilydenefluoride) layers. The relative permittivity follows an effective medium model at high frequency while showing a dependence on the volume resistivity at low frequency. In this regime, relative permittivities exceeding those expected from effective medium model are recorded. These findings provide insights into inhomogeneous dielectrics behavior for the development of high energy density dielectric films.
Temperature-Dependent Sellmeier Equations of IR Nonlinear Optical Crystal BaGa4Se7
Directory of Open Access Journals (Sweden)
Naixia Zhai
2017-02-01
Full Text Available The thermal dependent principal refractive indices of a new promising IR nonlinear optical crystal BaGa4Se7 at wavelengths of 0.546, 0.5806, 0.644, 0.7065, 1.530, 1.970, and 2.325μm were measured by using the vertical incidence method within the temperature range from 25 to 150 °C. We derived equations of thermal refractive index coefficients as a function of wavelength that could be used to calculate the principal thermal refractive indices at different wavelengths. The temperature-dependent Sellmeier equations were also obtained and used to calculate the phase matching angles for the optical parametric process of BaGa4Se7 crystal at different temperatures.
Nonlinear Behaviors of Tail Dependence and Cross-Correlation of Financial Time Series Model
Directory of Open Access Journals (Sweden)
Wei Deng
2014-01-01
Full Text Available Nonlinear behaviors of tail dependence and cross-correlation of financial time series are reproduced and investigated by stochastic voter dynamic system. The voter process is a continuous-time Markov process and is one of the interacting dynamic systems. The tail dependence of return time series for pairs of Chinese stock markets and the proposed financial models is studied by copula analysis, in an attempt to detect and illustrate the existence of relevant correlation relationships. Further, the multifractality of cross-correlations for return series is studied by multifractal detrended cross-correlation analysis, which indicates the analogous cross-correlations and some fractal characters for both actual data and simulative data and provides an intuitive evidence for market inefficiency.
Martirosyan, Varsik; Baghdasaryan, Naira; Ayrapetyan, Sinerik
2013-09-01
In the present work, the frequency-dependent effects of extremely low-frequency electromagnetic field (ELF EMF) on Escherichia coli K-12 growth have been studied. The frequency-dependent effects of ELF EMF have shown that it can either stimulate or inhibit the growth of microbes. However, the mechanism by which the ELF EMF affects the bacterial cells is not clear yet. It was suggested that the aqua medium can serve as a target through which the biological effect of ELF EMF on microbes may be realized. To check this hypothesis, the frequency-dependent effects (2, 4, 6, 8, 10 Hz, B = 0.4 mT, 30 min) of ELF EMF on the bacterial growth were studied in both cases where the microbes were in the culture media during the exposure and where culture media was preliminarily exposed to the ELF EMF before the addition of bacteria. For investigating the cell proliferation, the radioactive [(3)H]-thymidine assay was carried out. It has been shown that EMF at 4 Hz exposure has pronounced stimulation while at 8 Hz it has inhibited cell proliferation.
Zhang, Jun-Hua; Li, Jun; Xiao, Wen; Tan, Ming-You; Zhang, Yun-Ying; Cui, Shi-Ling; Qu, Zhi-Peng
2016-06-01
The phase velocity of seismic waves varies with the propagation frequency, and thus frequency-dependent phenomena appear when CO2 gas is injected into a reservoir. By dynamically considering these phenomena with reservoir conditions it is thus feasible to extract the frequency-dependent velocity factor with the aim of monitoring changes in the reservoir both before and after CO2 injection. In the paper, we derive a quantitative expression for the frequency-dependent factor based on the Robinson seismic convolution model. In addition, an inversion equation with a frequency-dependent velocity factor is constructed, and a procedure is implemented using the following four processing steps: decomposition of the spectrum by generalized S transform, wavelet extraction of cross-well seismic traces, spectrum equalization processing, and an extraction method for frequency-dependent velocity factor based on the damped least-square algorithm. An attenuation layered model is then established based on changes in the Q value of the viscoelastic medium, and spectra of migration profiles from forward modeling are obtained and analyzed. Frequency-dependent factors are extracted and compared, and the effectiveness of the method is then verified using a synthetic data. The frequency-dependent velocity factor is finally applied to target processing and oil displacement monitoring based on real seismic data obtained before and after CO2 injection in the G89 well block within Shengli oilfield. Profiles and slices of the frequency-dependent factor determine its ability to indicate differences in CO2 flooding, and the predicting results are highly consistent with those of practical investigations within the well block.
Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander
2016-05-01
The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.
Tracey, Brian; Williams, Michael
2011-06-01
Standard bioelectric field models assume that the tissue is purely resistive and frequency independent, and that capacitance, induction, and propagation effects can be neglected. However, real tissue properties are frequency dependent, and tissue capacitance can be important for problems involving short stimulation pulses. A straightforward interpolation scheme is introduced here that can account for frequency-dependent effects, while reducing runtime over a direct computation by several orders of magnitude. The exact Helmholtz solution is compared to several approximate field solutions and is used to study neural stimulation. Results show that frequency-independent tissue capacitance always acts to attenuate the stimulation pulse, thereby increasing firing thresholds, while the dispersion effects introduced by frequency-dependent capacitance may decrease firing thresholds.
Stoeckel, Solenn; Klein, Etienne K; Oddou-Muratorio, Sylvie; Musch, Brigitte; Mariette, Stéphanie
2012-02-01
Negative frequency dependent selection (NFDS) is supposed to be the main force controlling allele evolution at the gametophytic self-incompatibility locus (S-locus) in strictly outcrossing species. Genetic drift also influences S-allele evolution. In perennial sessile organisms, evolution of allelic frequencies over two generations is mainly shaped by individual fecundities and spatial processes. Using wild cherry populations between two successive generations, we tested whether S-alleles evolved following NFDS qualitative and quantitative predictions. We showed that allelic variation was negatively correlated with parental allelic frequency as expected under NFDS. However, NFDS predictions in finite population failed to predict more than half S-allele quantitative evolution. We developed a spatially explicit mating model that included the S-locus. We studied the effects of self-incompatibility and local drift within populations due to pollen dispersal in spatially distributed individuals, and variation in male fecundity on male mating success and allelic frequency evolution. Male mating success was negatively related to male allelic frequency as expected under NFDS. Spatial genetic structure combined with self-incompatibility resulted in higher effective pollen dispersal. Limited pollen dispersal in structured distributions of individuals and genotypes and unequal pollen production significantly contributed to S-allele frequency evolution by creating local drift effects strong enough to counteract the NFDS effect on some alleles.
Sun, Wenjun; Jiang, Song; Xu, Kun; Li, Shu
2015-12-01
This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region the transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP) scheme in all
Bao, Bin; Guyomar, Daniel; Lallart, Mickaël
2016-09-01
This article proposes a nonlinear tri-interleaved piezoelectric topology based on the synchronized switch damping on inductor (SSDI) technique, which can be applied to phononic metamaterials for elastic wave control and effective low-frequency vibration reduction. A comparison of the attenuation performance is made between piezoelectric phononic metamaterial with distributed SSDI topology (each SSDI shunt being independently connected to a single piezoelectric element) and piezoelectric phononic metamaterial with the proposed electronic topology. Theoretical results show excellent band gap hybridization (near-coupling between Bragg scattering mechanism and wideband resonance mechanism induced by synchronized switch damping networks in piezoelectric phononic metamaterials) with the proposed electronic topology over the investigated frequency domain. Furthermore, piezoelectric phononic metamaterials with proposed electronic topology generated a better low-frequency broadband gap, which is experimentally validated by measuring the harmonic response of a piezoelectric phononic metamaterial beam under clamped-clamped boundary conditions.
The long-term evolution of multilocus traits under frequency-dependent disruptive selection
Van Doorn, G. Sander; Dieckmann, Ulf
2006-01-01
Frequency-dependent disruptive selection is widely recognized as an important source of genetic variation. Its evolutionary consequences have been extensively studied using phenotypic evolutionary models, based on quantitative genetics, game theory, or adaptive dynamics. However, the genetic
Smalø, Hans S.; Åstrand, Per-Olof; Mayer, Alexandre
2013-07-01
A molecular mechanics model for the frequency-dependent polarisability is presented. It is a combination of a recent model for the frequency dependence in a charge-dipole model [Nanotechnology 19, 025203, 2008] and a nonmetallic modification of the electronegativity equalisation model rephrased as atom-atom charge-transfer terms [J. Chem. Phys. 131, 044101, 2009]. An accurate model for the frequency-dependent polarisability requires a more accurate partitioning into charge and dipole contributions than the static polarisability, which has resulted in several modifications of the charge-transfer model. Results are presented for hydrocarbons, including among others, alkanes, polyenes and aromatic systems. Although their responses to an electric field are quite different in terms of the importance of charge-transfer contributions, it is demonstrated that their frequency-dependent polarisabilities can be described with the same model and the same set of atom-type parameters.
Strongly Frequency-dependent Photoinduced Magnetic Disaccommodation in YIG: 0.001 Ca
Institute of Scientific and Technical Information of China (English)
2000-01-01
By measuring frequency dependence of photoinduced double peaks of disaccommodation, DA as a function of temperature was observed at very Iow frequency: 0.07～0.30 kHz, in a single crystal of yttrium iron garnet, YIG with small amounts of Ca: 0.001, while only single peak existed at the higher frequency 0.5 kHz. The behavior is explained based on theoretical approach on a domain wall dynamics.
Band-structure-dependent nonlinear giant magnetoresistance in Ni1-xFex dual spin valves
Banerjee, N.; Robinson, J. W. A.; Aziz, A.; Ali, M.; Hickey, B. J.; Blamire, M. G.
2012-10-01
Conventional giant magnetoresistance (GMR) in spin valves is current-independent, so the resistance of a device depends only on the relative orientation of the magnetic layers. In dual spin valves consisting of three ferromagnetic (FM) layers separated by nonmagnetic (NM) spacers (i.e., a FM1/NM/FM2/NM/FM1), GMR can be current-dependent if spin can accumulate in FM2 when outer FM1 layers are aligned antiparallel. Currently the underlying physics is poorly understood, although spin accumulation in FM2 is likely to depend on the gradient in the density of states at the Fermi energy of the ferromagnet. To investigate this hypothesis, we have measured a series of dual spin valves with Ni1-xFex as FM2 layers of varying composition. We show that both the magnitude and sign of the nonlinear GMR depend strongly on the Fe content and thus on the band structure of the ferromagnet FM2.
Energy Technology Data Exchange (ETDEWEB)
Liu, Han-Chun; Ye, Tianyu; Mani, R. G. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States); Wegscheider, W. [Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich (Switzerland)
2015-02-14
Linear polarization angle, θ, dependent measurements of the microwave radiation-induced oscillatory magnetoresistance, R{sub xx}, in high mobility GaAs/AlGaAs 2D electron devices have shown a θ dependence in the oscillatory amplitude along with magnetic field, frequency, and extrema-dependent phase shifts, θ{sub 0}. Here, we suggest a microwave frequency dependence of θ{sub 0}(f) using an analysis that averages over other smaller contributions, when those contributions are smaller than estimates of the experimental uncertainty.
Frequency-dependent moment release of very low frequency earthquakes in the Cascadia subduction zone
Takeo, A.; Houston, H.
2014-12-01
Episodic tremor and slip (ETS) has been observed in Cascadia subduction zone at two different time scales: tremor at a high-frequency range of 2-8 Hz and slow slip events at a geodetic time-scale of days-months. The intermediate time scale is needed to understand the source spectrum of slow earthquakes. Ghosh et al. (2014, IRIS abs) recently reported the presence of very low frequency earthquakes (VLFEs) in Cascadia. In southwest Japan, VLFEs are usually observed at a period range around 20-50 s, and coincide with tremors (e.g., Ito et al. 2007). In this study, we analyzed VLFEs in and around the Olympic Peninsula to confirm their presence and estimate their moment release. We first detected VLFE events by using broadband seismograms with a band-pass filter of 20-50 s. The preliminary result shows that there are at least 16 VLFE events with moment magnitudes of 3.2-3.7 during the M6.8 2010 ETS. The focal mechanisms are consistent with the thrust earthquakes at the subducting plate interface. To detect signals of VLFEs below noise level, we further stacked long-period waveforms at the peak timings of tremor amplitudes for tremors within a 10-15 km radius by using tremor catalogs in 2006-2010, and estimated the focal mechanisms for each tremor source region as done in southwest Japan (Takeo et al. 2010 GRL). As a result, VLFEs could be detected for almost the entire tremor source region at a period range of 20-50 s with average moment magnitudes in each 5-min tremor window of 2.4-2.8. Although the region is limited, we could also detect VLFEs at a period range of 50-100 s with average moment magnitudes of 3.0-3.2. The moment release at 50-100 s is 4-8 times larger than that at 20-50 s, roughly consistent with an omega-squared spectral model. Further study including tremor, slow slip events and characteristic activities, such as rapid tremor reversal and tremor streaks, will reveal the source spectrum of slow earthquakes in a broader time scale from 0.1 s to days.
A trapped ion with time-dependent frequency interaction with a laser field
Energy Technology Data Exchange (ETDEWEB)
MartInez, J M Vargas; Moya-Cessa, H [INAOE, Apartado Postal 51 y 216, 72000 Puebla (Mexico)
2004-06-01
We analyse the problem of a trapped ion with time-dependent frequency interacting with a laser field. By using a set of unitary time-dependent transformations we show that this system is equivalent to the interaction between a quantized field and a double level with time-dependent interaction parameters. In passing, we show that in the on-resonance case different vibrational transitions may be achieved by using time-dependent parameters.
DEFF Research Database (Denmark)
Cardoso, J. F.; Delabrouille, J.; Ganga, K.;
2015-01-01
Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We use these data to characterize the frequency dependence of dust emission. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them w...
Directory of Open Access Journals (Sweden)
Raymond eVan De Berg
2015-01-01
Full Text Available The Vestibulo-Ocular Reflex (VOR shows frequency-dependent behavior. This study investigated whether the characteristics of the electrically evoked VOR (eVOR elicited by a vestibular implant, showed the same frequency-dependency.Twelve vestibular electrodes implanted in 7 patients with bilateral vestibular hypofunction were tested. Stimuli consisted of amplitude-modulated electrical stimulation with a sinusoidal profile at frequencies of 0.5Hz, 1Hz, and 2Hz. The main characteristics of the eVOR were evaluated and compared to the natural VOR characteristics measured in a group of age-matched healthy volunteers who were subjected to horizontal whole body rotations with equivalent sinusoidal velocity profiles at the same frequencies.A strong and significant effect of frequency was observed in the total peak eye velocity of the eVOR. This effect was similar to that observed in the natural VOR. Other characteristics of the (eVOR (angle, habituation-index, and asymmetry showed no significant frequency-dependent effect. In conclusion, this study demonstrates that, at least at the specific (limited frequency range tested, responses elicited by a vestibular implant closely mimic the frequency-dependency of the normal vestibular system.
van de Berg, Raymond; Guinand, Nils; Nguyen, T A Khoa; Ranieri, Maurizio; Cavuscens, Samuel; Guyot, Jean-Philippe; Stokroos, Robert; Kingma, Herman; Perez-Fornos, Angelica
2014-01-01
The vestibulo-ocular reflex (VOR) shows frequency-dependent behavior. This study investigated whether the characteristics of the electrically evoked VOR (eVOR) elicited by a vestibular implant, showed the same frequency-dependency. Twelve vestibular electrodes implanted in seven patients with bilateral vestibular hypofunction (BVH) were tested. Stimuli consisted of amplitude-modulated electrical stimulation with a sinusoidal profile at frequencies of 0.5, 1, and 2 Hz. The main characteristics of the eVOR were evaluated and compared to the "natural" VOR characteristics measured in a group of age-matched healthy volunteers who were subjected to horizontal whole body rotations with equivalent sinusoidal velocity profiles at the same frequencies. A strong and significant effect of frequency was observed in the total peak eye velocity of the eVOR. This effect was similar to that observed in the "natural" VOR. Other characteristics of the (e)VOR (angle, habituation-index, and asymmetry) showed no significant frequency-dependent effect. In conclusion, this study demonstrates that, at least at the specific (limited) frequency range tested, responses elicited by a vestibular implant closely mimic the frequency-dependency of the "normal" vestibular system.
DEFF Research Database (Denmark)
Cardoso, J. F.; Delabrouille, J.; Ganga, K.
2015-01-01
Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We use these data to characterize the frequency dependence of dust emission. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and cross-correlate them...
Frequency dependence of the pump-to-signal RIN transfer in fiber optical parametric amplifiers
DEFF Research Database (Denmark)
Pakarzadeh Dezfuli Nezhad, Hassan; Rottwitt, Karsten; Zakery, A.
2009-01-01
Using a numerical model, the frequency dependence of the pump-to-signal RIN transfer in FOPAs has been investigated. The model includes fiber loss, pump depletion as well as difference in group velocity among interacting beams.......Using a numerical model, the frequency dependence of the pump-to-signal RIN transfer in FOPAs has been investigated. The model includes fiber loss, pump depletion as well as difference in group velocity among interacting beams....
Mohamed, Mohamed Sabry; Carlin, Jean-François; Minkov, Momchil; Gerace, Dario; Savona, Vincenzo; Grandjean, Nicolas; Galli, Matteo; Houdré, Romuald
2016-01-01
We report on nonlinear frequency conversion from the telecom range via second harmonic generation (SHG) and third harmonic generation (THG) in suspended gallium nitride slab photonic crystal (PhC) cavities on silicon, under continuous-wave resonant excitation. Optimized two-dimensional PhC cavities with augmented far-field coupling have been characterized with quality factors as high as 4.4$\\times10^{4}$, approaching the computed theoretical values. The strong enhancement in light confinement has enabled efficient SHG, achieving normalized conversion efficiency of 2.4$\\times10^{-3}$ $W^{-1}$, as well as simultaneous THG. SHG emission power of up to 0.74 nW has been detected without saturation. The results herein validate the suitability of gallium nitride for integrated nonlinear optical processing.
DEFF Research Database (Denmark)
Rahman, Imadur Mohamed; Marchetti, Nicola; Fitzek, Frank;
2005-01-01
In this work, we have analyzed a joint spatial diversity and multiplexing transmission structure for MIMO-OFDM system, where Orthogonal Space-Frequency Block Coding (OSFBC) is used across all spatial multiplexing branches. We have derived a BLAST-like non-linear Successive Interference Cancellation...... in this paper. We have found that a linear two-stage receiver for the proposed system [1] performs very close to the non-linear receiver studied in this work. Finally, we compared the system performance in spatially correlated scenario. It is found that higher amount of spatial correlation at the transmitter...... (SIC) receiver where the detection is done on subcarrier by sub-carrier basis based on both Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) nulling criterion for the system. In terms of Frame Error Rate (FER), MMSE based SIC receiver performs better than all other receivers compared...
Sinex, Donal G
2013-04-01
Binary time-frequency (TF) masks can be applied to separate speech from noise. Previous studies have shown that with appropriate parameters, ideal TF masks can extract highly intelligible speech even at very low speech-to-noise ratios (SNRs). Two psychophysical experiments provided additional information about the dependence of intelligibility on the frequency resolution and threshold criteria that define the ideal TF mask. Listeners identified AzBio Sentences in noise, before and after application of TF masks. Masks generated with 8 or 16 frequency bands per octave supported nearly-perfect identification. Word recognition accuracy was slightly lower and more variable with 4 bands per octave. When TF masks were generated with a local threshold criterion of 0 dB SNR, the mean speech reception threshold was -9.5 dB SNR, compared to -5.7 dB for unprocessed sentences in noise. Speech reception thresholds decreased by about 1 dB per dB of additional decrease in the local threshold criterion. Information reported here about the dependence of speech intelligibility on frequency and level parameters has relevance for the development of non-ideal TF masks for clinical applications such as speech processing for hearing aids.
P300 ERP Component Depends on Both Spatial Frequency and Contrast
Directory of Open Access Journals (Sweden)
Li-Ting Tsai
2011-05-01
Full Text Available Contrast perception depends on not only the early visual responses, but also top-down modulations. We measured how does P300, a well-documented event-related potential (ERP index for top-down influence, change with both spatial frequency and contrast. ERP were acquired from 10 participants, aged 18–50 years, when they were performing a visual oddball task. The target was a Gabor patch whose spatial frequency was either 4 or 8 cy/degree and contrasts 90% or 30%. The probability of target presence in a trial was 30%. All target stimuli produced a reliable P300 component. At the low spatial frequency, the amplitude of P300 was larger and the latency was shorter for the low contrast patterns than for the higher contrast ones for all electrodes. Such difference was not observed in high spatial frequency patterns. The latency was slightly longer for high spatial frequency patterns than the low spatial frequency ones. Our results showed an interaction between spatial frequency and contrast in P300. The characteristics of P300 at low spatial frequency correlated with task difficulty, but not at high spatial frequency. This suggests that the top-down influence on contrast perception may be spatial frequency depended.
Stone, Emily; Haario, Heikki; Lawrence, J Josh
2014-12-01
In this paper we use a simple model of presynaptic neuromodulation of GABA signaling to decipher paired whole-cell recordings of frequency dependent cholinergic neuromodulation at CA1 parvalbumin-containing basket cell (PV BC)-pyramidal cell synapses. Variance-mean analysis is employed to normalize the data, which is then used to estimate parameters in the mathematical model. Various parameterizations and hidden parameter dependencies are investigated using Markov Chain Monte Carlo (MCMC) parameter estimation techniques. This analysis reveals that frequency dependence of cholinergic modulation requires both calcium-dependent recovery from depression and mAChR-induced inhibition of presynaptic calcium entry. A reduction in calcium entry into the presynaptic terminal in the kinetic model accounted for the frequency-dependent effects of mAChR activation.
Non trivial effect of strong high-frequency excitation on a nonlinear controlled system
DEFF Research Database (Denmark)
Fidlin, A.; Thomsen, Jon Juel
2004-01-01
due to control is usually high compared to uncontrolled systems. A standard optimal controller for a standard nonlinear system (a movable cart used to balance a pendulum vertically) is shown to exhibit pronounced bias error in presence of HF-excitation. The bias increases with increased excitation...
Nonlinear Cascades of Surface Oceanic Geostrophic Kinetic Energy in the Frequency Domain
2012-09-01
Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts ANDREW J. MORTEN Department of Physics, University of Michigan, Ann...compute spectra and spectral fluxes in Vtt * NLOM output, highlighted against the IS Feb 2002 snapshot of sea surface height (cm) in the model: mid... Technology - Woods Hole Oceanographic Institution Joint Program, 220 pp. Larichev, V., and G. Reznik, 1976a: Strongly nonlinear two- dimensional
On nonlinear evolution of low-frequency Alfvén waves in weakly-expanding solar wind plasmas
Energy Technology Data Exchange (ETDEWEB)
Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190 Toyama City, Toyama 930-8555 (Japan)
2015-02-15
A multi-dimensional nonlinear evolution equation for Alfvén waves in weakly-expanding solar wind plasmas is derived by using the reductive perturbation method. The expansion of solar wind plasma parcels is modeled by an expanding box model, which includes the accelerating expansion. It is shown that the resultant equation agrees with the Wentzel-Kramers-Brillouin prediction of the low-frequency Alfvén waves in the linear limit. In the cold and one-dimensional limit, a modified derivative nonlinear Schrodinger equation is obtained. Direct numerical simulations are carried out to discuss the effect of the expansion on the modulational instability of monochromatic Alfvén waves and the propagation of Alfvén solitons. By using the instantaneous frequency, it is quantitatively shown that as far as the expansion rate is much smaller than wave frequencies, effects of the expansion are almost adiabatic. It is also confirmed that while shapes of Alfvén solitons temporally change due to the expansion, some of them can stably propagate after their collision in weakly-expanding plasmas.
Periodicity in a Nonlinear Predator-prey System with State Dependent Delays
Institute of Scientific and Technical Information of China (English)
Feng-de Chen; Jin-lin Shi
2005-01-01
With the help of a continuation theorem based on Gainesand Mawhin's coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solutions of the following nonlinear state dependent delays predator-prey system{dN1(t)/dt=N1(t)[b1(t)-n∑i=1 ai(t)(N1(t-Ti(t,N1(t), N2(t))))ai-m∑cj(t)(N2(t-σj(t,Ni(t),N2(t))))βj],dN2(t)/dt=N2(t)[b2(t)-n∑i=1 di(t)(N1(t-Pi(t,N1(t), N2(t))))γi],where ai (t), cj (t), di(t) are continuous positive periodic functions with periodic ω＞ 0, b1 (t), b2 (t) are continuousare positive constants.
Institute of Scientific and Technical Information of China (English)
SUN Ren
2006-01-01
A slow thermocapillary migration of a droplet at vanishingly small Reynolds and Marangoni numbers was theoretically investigated. A force on the droplet released in another liquid subjected to arbitrary configuration of the gravitational field and an imposed thermal gradient for the case of constant liquid properties was derived using the general solutions given by Lamb. A solution to the migration was thereby obtained, which corresponds to the well-known YGB result as t →∞. In the case of variable physical properties with temperature, a nonlinear migration of the droplet was described by the dynamical equation of motion, and the numerical results were compared with available experimental data. The comparison exhibits a reasonable agreement between the theoretical prediction and the experimental results, which shows the dependence of physical properties on temperature is a primary cause of the continuous velocity variation in the thermocapillary droplet migration.
Time-domain analysis of frequency dependent inertial wave forces on cylinders
DEFF Research Database (Denmark)
Krenk, Steen
2013-01-01
-number, and the relevant range of waves shorter than about six times the diameter typically corresponds to deep water waves. This permits a universal non-dimensional frequency representation, that is converted to rational form to provide the relevant filter equation. Simple time-domain simulations demonstrate...... a simple time-domain procedure for the inertial force, in which the frequency dependence is represented via a simple explicit time filter on the wave particle acceleration or velocity. The frequency dependence of the inertia coefficient is known analytically as a function of the wave...
On the temperature dependence of amide I frequencies of peptides in solution.
Amunson, Krista E; Kubelka, Jan
2007-08-23
The temperature dependence of the amide I vibrational frequencies of peptides in solution was investigated. In D2O, the amide I' bands of both an alpha-helical oligopeptide, the random-coil poly(L-lysine), and the simplest amide, N-methyl acetamide (NMA), exhibit linear frequency shifts of approximately 0.07 cm(-1)/degrees C with increasing temperature. Similar amide I frequency shifts are also observed for NMA in both polar (acetonitrile and DMSO) and nonpolar (1,4-dioxane) organic solvents, thus ruling out hydrogen-bonding strength as the cause of these effects. The experimental NMA amide I frequencies in the organic solvents can be accurately described by a simple theory based on the Onsager reaction field with temperature-dependent solvent dielectric properties and a solute molecular cavity. DFT-level calculations (BPW91/cc-pVDZ) for NMA with an Onsager reaction field confirm the significant contribution of the molecular cavity to the predicted amide I frequencies. Comparison of the computations to experimental data shows that the frequency-dependent response of the reaction field, taken into account by the index of refraction, is crucial for describing the amide I frequencies in polar solvents. The poor predictions of the model for the NMA amide I band in D2O might be due, in part, to the unknown temperature dependence of the refractive index of D2O in the mid-IR range, which was approximated by the available values in the visible region.
Xin, Fu-Long; Bai, Xian-Xu; Qian, Li-Jun
2016-10-01
Magnetorheological elastomers (MREs), a smart composite, exhibit dual characteristics of both MR materials and particle reinforced composites, i.e., the viscoelasticity of MREs depends on external magnetic field as well as strain amplitude and excitation frequency. In this article, the principle of a frequency-, amplitude-, and magneto-dependent linear dynamic viscoelastic model for isotropic MREs is proposed and investigated. The viscoelasticity of MREs is divided into frequency- and amplitude-dependent mechanical viscoelasticity and frequency-, amplitude-, and magneto-dependent magnetic viscoelasticity. Based on the microstructures of ferrous particles and matrix, the relationships between mechanical shear modulus corresponding to the mechanical viscoelasticity and strain amplitude and excitation frequency are obtained. The relationships between magnetic shear modulus corresponding to the magnetic viscoelasticity with strain amplitude, excitation frequency, and further external magnetic field are derived using the magneto-elastic theory. The influence of magnetic saturation on the MR effect is also considered. The dynamic characteristics of a fabricated isotropic MRE sample under different strain amplitudes, excitation frequencies and external magnetic fields are tested. The parameters of the proposed model are identified with the experimental data and the theoretical expressions of shear storage modulus and shear loss modulus of the MRE sample are obtained. In the light of the theoretical expressions, the loss factors of the MRE sample under different loading conditions are analyzed and compared with the test results to evaluate the effectiveness of the proposed model.
DEFF Research Database (Denmark)
Liu, Xing; Zhou, Binbin; Guo, Hairun;
2015-01-01
in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between. lambda = 2.2-2.4 mu m as a resonant dispersive wave. This process relies...... on nondegenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation. (C) 2015 Optical Society of America...
Energy Technology Data Exchange (ETDEWEB)
Klofai, Yerima [Department of Physics, Higher Teacher Training College, University of Maroua, PO Box 46 Maroua (Cameroon); Essimbi, B Z [Department of Physics, Faculty of Science, University of Yaounde 1, PO Box 812 Yaounde (Cameroon); Jaeger, D, E-mail: bessimb@yahoo.fr [ZHO, Optoelectronik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)
2011-10-15
Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.
Sanbonmatsu, K. Y.; Goldman, M. V.; Newman, D. L.
A hybrid kinetic-fluid model is developed which is relevant to lower hybrid spikelets observed in the topside auroral ionosphere [Vago et al., 1992; Eriksson et al., 1994]. In contrast to previous fluid models [Shapiro et al., 1995; Tam and Chang, 1995; Seyler, 1994; Shapiro et al., 1993] our linear low frequency plasma response is magnetized and kinetic. Fluid theory is used to incorporate the nonlinear wave coupling. Performing a linear stability analysis, we calculate the growth rate for the modulational instability, driven by a lower hybrid wave pump. We find that both the magnetic and kinetic effects inhibit the modulational instability.
Negative frequency-dependent preferences and variation in male facial hair.
Janif, Zinnia J; Brooks, Robert C; Dixson, Barnaby J
2014-01-01
Negative frequency-dependent sexual selection maintains striking polymorphisms in secondary sexual traits in several animal species. Here, we test whether frequency of beardedness modulates perceived attractiveness of men's facial hair, a secondary sexual trait subject to considerable cultural variation. We first showed participants a suite of faces, within which we manipulated the frequency of beard thicknesses and then measured preferences for four standard levels of beardedness. Women and men judged heavy stubble and full beards more attractive when presented in treatments where beards were rare than when they were common, with intermediate preferences when intermediate frequencies of beardedness were presented. Likewise, clean-shaven faces were least attractive when clean-shaven faces were most common and more attractive when rare. This pattern in preferences is consistent with negative frequency-dependent selection.
Hlubek, M D; Cobbett, P
2000-09-15
Recordings were made from magnocellular neuroendocrine cells dissociated from the supraoptic nucleus of the adult guinea pig to determine the role of voltage gated K(+) channels in controlling the duration of action potentials and in mediating frequency-dependent action potential broadening exhibited by these neurons. The K(+) channel blockers charybdotoxin (ChTx), tetraethylammonium (TEA), and 4-aminopyridine (4-AP) increased the duration of individual action potentials indicating that multiple types of K(+) channel are important in controlling action potential duration. The effect of these K(+) channel blockers was almost completely reversed by simultaneous blockade of voltage gated Ca(2+) channels with Cd(2+). Frequency-dependent action potential broadening was exhibited by these neurons during trains of action potentials elicited by membrane depolarizing current pulses presented at 10 Hz but not at 1 Hz. 4-AP but not ChTx or TEA inhibited frequency-dependent action potential broadening indicating that frequency-dependent action potential broadening is dependent on increasing steady-state inactivation of A-type K(+) channels (which are blocked by 4-AP). A model of differential contributions of voltage gated K(+) channels and voltage gated Ca(2+) channels to frequency-dependent action potential broadening, in which an increase of Ca(2+) current during each successive action potential is permitted as a result of the increasing steady-state inactivation of A-type K(+) channels, is presented.
Murrell, J K J
2001-01-01
previously unexplored regions of parameter space. We show that these calculations predict a range of previously unreported dynamical I-V characterises for SQUID rings in the strongly hysteretic regime. Finally, we present the successful realisation of a novel experimental technique that permits the weak link of a SQUID to be probed independently of the associated ring structure by mechanically opening and closing the ring. We demonstrate that this process can be completed during the same experimental run without the need for warming and re-cooling of the sample. This thesis is concerned with the investigation of the non-linear behaviour of a Superconducting Quantum Interference Device (SQUID) coupled to a RF tank circuit. We consider two regimes, one where the underlying SQUID behaviour is non-hysteretic with respect to an externally applied magnetic flux, and the other where hysteretic (dissipative) behaviour is observed. We show that, by following non-linearities induced in the tank circuit response, the un...
The Frequency Dependence of the Added Mass of Quartz Tuning Fork Immersed in He II
Gritsenko, I.; Klokol, K.; Sokolov, S.; Sheshin, G.
2016-11-01
We measured the dependences of the resonance frequency of tuning forks immersed in liquid helium at T = 0.365 K in the pressure interval from saturated vapor pressure to 24.8 atm. The quartz tuning forks have been studied with different resonance frequencies of 6.65, 8.46, 12.1, 25.0 and 33.6 kHz in vacuum. The measurements were taken in the laminar flow regime. The experimental data allow us to determine the added mass of a quartz tuning fork in He II. It was found that the added mass per unit length of the prong fork is frequency dependent. Some possible qualitative explanations for such dependence are proposed. In addition, we observed, at T = 0.365 K, the changes in added mass with pressure according to the pressure dependence of He II density.
Directory of Open Access Journals (Sweden)
A. D. Pataraya
Full Text Available Non-linear α-ω; dynamo waves existing in an incompressible medium with the turbulence dissipative coefficients depending on temperature are studied in this paper. We investigate of α-ω solar non-linear dynamo waves when only the first harmonics of magnetic induction components are included. If we ignore the second harmonics in the non-linear equation, the turbulent magnetic diffusion coefficient increases together with the temperature, the coefficient of turbulent viscosity decreases, and for an interval of time the value of dynamo number is greater than 1. In these conditions a stationary solution of the non-linear equation for the dynamo wave's amplitude exists; meaning that the magnetic field is sufficiently excited. The amplitude of the dynamo waves oscillates and becomes stationary. Using these results we can explain the existence of Maunder's minimum.
Lu, Y.; Cottone, F.; Boisseau, S.; Galayko, D.; Marty, F.; Basset, P.
2015-12-01
This paper reports for the first time a MEMS electrostatic vibration energy harvester (e-VEH) with corona-charged vertical electrets on its electrodes. The bandwidth of the 1-cm2 device is extended in low and high frequencies by nonlinear elastic stoppers. With a bias voltage of 46 V (electret@21 V + DC external source@25 V) between the electrodes, the RMS power of the device reaches 0.89 μW at 33 Hz and 6.6 μW at 428 Hz. The -3dB frequency band including the hysteresis is 223∼432 Hz, the one excluding the hysteresis 88∼166 Hz. We also demonstrate the charging of a 47 μF capacitor used for powering a wireless and autonomous temperature sensor node with a data transmission beyond 10 m at 868 MHz.
Time-dependent density functional theory for nonlinear properties of open-shell systems.
Rinkevicius, Zilvinas; Jha, Prakash Chandra; Oprea, Corneliu I; Vahtras, Olav; Agren, Hans
2007-09-21
This paper presents response theory based on a spin-restricted Kohn-Sham formalism for computation of time-dependent and time-independent nonlinear properties of molecules with a high spin ground state. The developed approach is capable to handle arbitrary perturbations and constitutes an efficient procedure for evaluation of electric, magnetic, and mixed properties. Apart from presenting the derivation of the proposed approach, we show results from illustrating calculations of static and dynamic hyperpolarizabilities of small Si(3n+1)H(6n+3) (n=0,1,2) clusters which mimic Si(111) surfaces with dangling bond defects. The results indicate that the first hyperpolarizability tensor components of Si(3n+1)H(6n+3) have an ordering compatible with the measurements of second harmonic generation in SiO2/Si(111) interfaces and, therefore, support the hypothesis that silicon surface defects with dangling bonds are responsible for this phenomenon. The results exhibit a strong dependence on the quality of basis set and exchange-correlation functional, showing that an appropriate set of diffuse functions is required for reliable predictions of the first hyperpolarizability of open-shell compounds.
Fan, Xiaopeng; Zheng, Weihao; Liu, Hongjun; Zhuang, Xiujuan; Fan, Peng; Gong, Yanfang; Li, Honglai; Wu, Xueping; Jiang, Ying; Zhu, Xiaoli; Zhang, Qinglin; Zhou, Hong; Hu, Wei; Wang, Xiao; Duan, Xiangfeng; Pan, Anlian
2017-06-01
Recombination dynamics during photoluminescence (PL) in two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) are complicated and can be easily affected by the surroundings because of their atomically thin structures. Herein, we studied the excitation power and temperature dependence of the recombination dynamics on the chemical vapor deposition-grown monolayer WS2via a combination of Raman, PL, and time-resolved PL spectroscopies. We found a red shift and parabolic intensity increase in the PL emission of the monolayer WS2 with the increasing excitation power and the decay time constants corresponding to the recombination of trions and excitons from transient PL dynamics. We attributed the abovementioned nonlinear changes in the PL peak positions and intensities to the combination of increasing carrier interaction and band structure renormalization rather than to the thermal effect from a laser. Furthermore, the excitation power-dependent Raman measurements support our conclusion. These findings and understanding will provide important information for the development of TMD-based optoelectronics and photonics.
Shagoshtasbi, Hooman; Deng, Peigang; Lee, Yi-Kuen
2015-08-01
Electroporation (EP) is a process of applying a pulsed intense electric field on the cell membrane to temporarily induce nanoscale electropores on the plasma membrane of biological cells. A nonlinear size-dependent equivalent circuit model of a single-cell electroporation system is proposed to investigate dynamic electromechanical behavior of cells on microfluidic chips during EP. This model consists of size-dependent electromechanical components of a cell, electrical components of poration media, and a microfluidic chip. A single-cell microfluidic EP chip with 3D microelectrode arrays along a microchannel is designed and fabricated to experimentally analyze the permeabilization of a cell. Predicted electrical current responses of the model are in good agreement (average error of 6%) with that of single-cell EP. The proposed model can successfully predict the time responses of transmembrane voltage, pore diameter, and pore density at four different stages of permeabilization. These stages are categorized based on electromechanical changes of the lipid membrane. The current-voltage characteristic curve of the cell membrane during EP is also investigated at different EP stages in detail. The model can precisely predict the electric breakdown of different cell lines at a specific critical cell membrane voltage of the target cell lines.
Dependence of the ray transference of model eyes on the frequency of light
Directory of Open Access Journals (Sweden)
Tanya Evans
2016-03-01
Full Text Available The transference defines the first-order character of an optical system; almost all the system’s optical properties can be calculated from it. It is useful, therefore, to have some idea of how it depends on the frequency of light. We examine the dependence for two Gaussian eyes. It turns out to be nearly linear for all four fundamental properties. The result is an equation for the dependence of the transference on frequency which is almost symplectic. We also transform the transference into Hamiltonian space, obtain equations for the least-squares straight line for the three independent transformed properties and map them back to the group of transferences. The result is an equation for the dependence of the transference on frequency which is exactly symplectic and therefore representative of an optical system. The results may approximate those of real eyes and give estimates of the dependence of almost all optical properties on frequency.Keywords: ray transference; frequency; symplecticity
Simandoux, Olivier; Prost, Amaury; Gateau, Jérôme; Bossy, Emmanuel
2015-03-01
In this work, we experimentally investigate thermal-based nonlinear photoacoustic generation as a mean to discriminate between different types of absorbing particles. The photoacoustic generation from solutions of dye molecules and gold nanospheres (same optical densities) was detected using a high frequency ultrasound transducer (20 MHz). Photoacoustic emission was observed with gold nanospheres at low fluence for an equilibrium temperature around 4 °C, where the linear photoacoustic effect in water vanishes, highlighting the nonlinear emission from the solution of nanospheres. The photoacoustic amplitude was also studied as a function of the equilibrium temperature from 2 °C to 20 °C. While the photoacoustic amplitude from the dye molecules vanished around 4 °C, the photoacoustic amplitude from the gold nanospheres remained significant over the whole temperature range. Our preliminary results suggest that in the context of high frequency photoacoustic imaging, nanoparticles may be discriminated from molecular absorbers based on nanoscale temperature rises.
Frequency response of the Loschmidt echo decay in an open driven nonlinear oscillator
Zhang, Shi-Hui; Yan, Zhan-Yuan
2015-11-01
The decay of the Loschmidt echo and its relation to the frequency response of the underlying classical dynamics are investigated in an open Duffing system by means of the Wigner function. The initial Wigner function of the system is Gaussian and centered at a phase point (x 0, p 0). For different (x 0, p 0), significant peaks are observed in the frequency response curves of the Loschmidt echo decay during the evolution of the Wigner function. Furthermore, there is good correspondence between the frequency response curves of the Loschmidt echo decay and the underlying classical dynamics. This can be attributed to the increase of the fringes of the Wigner function by the external driving force, which can be revealed by the frequency response of the underlying classical dynamics.
Frequency-Uniform Decomposition, Function Spaces , and Applications to Nonlinear Evolution Equations
Directory of Open Access Journals (Sweden)
Shaolei Ru
2013-01-01
Full Text Available By combining frequency-uniform decomposition with (, we introduce a new class of function spaces (denoted by . Moreover, we study the Cauchy problem for the generalized NLS equations and Ginzburg-Landau equations in .
Nonlinear Frequency Compression: Effects on Sound Quality Ratings of Speech and Music
National Research Council Canada - National Science Library
Parsa, Vijay; Scollie, Susan; Glista, Danielle; Seelisch, Andreas
2013-01-01
...) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing...
Frequency and Temperature Dependence of Electrical Breakdown at 21, 30 and 39 GHz
Braun, Hans Heinrich; Wilson, Ian H; Wuensch, Walter
2003-01-01
A TeV-range e+e- linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39 GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.
Energy Technology Data Exchange (ETDEWEB)
Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao, E-mail: dzhang@nju.edu.cn, E-mail: wangzhibiao@haifu.com.cn [State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, Chongqing 401121 (China); Song, Dan; Lei, Guangrong [National Engineering Research Center of Ultrasound Medicine, Chongqing 401121 (China); Lin, Zhou; Zhang, Dong, E-mail: dzhang@nju.edu.cn, E-mail: wangzhibiao@haifu.com.cn [Institute of Acoustics, Key Laboratory of Modern Acoustics, MOE, Nanjing University, Nanjing 210093 (China); Wu, Junru [Department of Physics, University of Vermont, Burlington, VT 05405 (United States)
2015-12-15
Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.
Wang, Chao; Yuan, Yizhong; Tian, Xiaohui; Sun, Jinyu; Shao, Hongjuan; Sun, Zhenrong
2013-09-01
The linear and third-order nonlinear optical properties of four polymethine cyanines (PC-1-PC-4) were investigated by UV-visible absorption spectroscopy and degenerate four-wave mixing (DFWM) technique. The second-order hyperpolarizabilities γ of the four chromophores achieve 10-31 esu. The dependence of their third-order optical nonlinearities on the molecular structure was discussed based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. The calculated second-order hyperpolarizabilities γ well-reproduce the experimental trends. The results show that the third-order optical nonlinearities of the chromophores can be drastically enhanced by bulky heteroatom (such as selenium) with low electro-negativity, or extended π-conjugated terminal group.
Bazaru, Tatiana; Vlad, Valentin I.; Petris, Adrian; Miu, Mihaela
2010-05-01
In this paper, we study the dependence of effective optical linear and nonlinear refractive indices of nano-porous silicon layers on crystalline silicon substrates on fill fraction, at different light wavelengths in visible and near-infrared. Simple approximative formulae, in the frame of Bruggeman's formalism, that describe the dependences of effective optical linear and nonlinear refractive indices of nano-porous silicon on fill fractions and on wavelength, in the range of 620 - 1000 nm, are derived. Experimental results with reflection intensity scan show a good agreement with the data provided by our formulae and the exact results of Boyd-Bruggeman's formalism for the third order nonlinearity, in the case nanoporous silicon with different porosity and at light wavelengths in the mentioned spectral range.
Modelling long term rockslide displacements with non-linear time-dependent relationships
De Caro, Mattia; Volpi, Giorgio; Castellanza, Riccardo; Crosta, Giovanni; Agliardi, Federico
2015-04-01
Rockslides undergoing rapid changes in behaviour pose major risks in alpine areas, and require careful characterization and monitoring both for civil protection and mitigation activities. In particular, these instabilities can undergo very slow movement with occasional and intermittent acceleration/deceleration stages of motion potentially leading to collapse. Therefore, the analysis of such instabilities remains a challenging issue. Rockslide displacements are strongly conditioned by hydrologic factors as suggested by correlations with groundwater fluctuations, snowmelt, with a frequently observed delay between perturbation and system reaction. The aim of this work is the simulation of the complex time-dependent behaviour of two case studies for which also a 2D transient hydrogeological simulation has been performed: Vajont rockslide (1960 to 1963) and the recent Mt. de La Saxe rockslide (2009 to 2012). Non-linear time-dependent constitutive relationships have been used to describe long-term creep deformation. Analyses have been performed using a "rheological-mechanical" approach that fits idealized models (e.g. viscoelastic, viscoplastic, elasto-viscoplastic, Burgers, nonlinear visco-plastic) to the experimental behaviour of specific materials by means of numerical constants. Bidimensional simulations were carried out using the finite difference code FLAC. Displacements time-series, available for the two landslides, show two superimposed deformation mechanisms: a creep process, leading to movements under "steady state" conditions (e.g. constant groundwater level), and a "dynamic" process, leading to an increase in displacement rate due to changes of external loads (e.g. groundwater level). For both cases sliding mass is considered as an elasto-plastic body subject to its self-weight, inertial and seepage forces varying with time according to water table fluctuation (due to snowmelt or changing in reservoir level) and derived from the previous hydrogeological
DEFF Research Database (Denmark)
Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten
2013-01-01
Recently, we solved the coupled-mode equations for Bragg scattering (BS) in the low- and high-conversion regimes, but without the effects of nonlinear phase modulation (NPM). We now present solutions and Green functions in the low-conversion regime that include NPM. We find that NPM does not change...... are still possible, even when the effects of NPM are included. Finally, the effects of using different input signals are considered, and we conclude that using the natural input modes of the system drastically increases the efficiency. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers...
Institute of Scientific and Technical Information of China (English)
Fadhil H. T. Al-dulaimy; WANG Zuoying(王作英)
2003-01-01
This work demonstrates the use of the nonlinear time-frequency distribution (NLTFD) of a discrete time energy operator (DTEO) based on amplitude modulation-frequency modulation demodulation techniques as a feature in speech recognition. The duration distribution based hidden Markov module in a speaker independent large vocabulary mandarin speech recognition system was reconstructed from the feature vectors in the front-end detection stage. The goal was to improve the performance of the existing system by combining new features to the baseline feature vector. This paper also deals with errors associated with using a pre-emphasis filter in the front end processing of the present scheme, which causes an increase in the noise energy at high frequencies above 4 kHz and in some cases degrades the recognition accuracy. The experimental results show that eliminating the pre-emphasis filters from the pre-processing stage and using NLTFD with compensated DTEO combined with Mel frequency cepstrum components give a 21.95% reduction in the relative error rate compared to the conventional technique with 25 candidates used in the test.
Jackson, M B; Konnerth, A.; Augustine, G.J.
1991-01-01
Hormone release from nerve terminals in the neurohypophysis is a sensitive function of action potential frequency. We have investigated the cellular mechanisms responsible for this frequency-dependent facilitation by combining patch clamp and fluorimetric Ca2+ measurements in single neurosecretory terminals in thin slices of the rat posterior pituitary. In these terminals both action potential-induced changes in the intracellular Ca2+ concentration ([Ca2+]i) and action potential duration were...
Webster, M. J.; Easter, B.; Hornsby, J. S.
1990-02-01
A three element frequency dependent equivalent circuit which characterizes a symmetric step microstrip discontinuity is determined using the method of lines. This method was applied so as to exploit to the full the processing capabilities of the available Cyber 205 computer, and to obtain results with the highest possible accuracy at frequencies in the range 4-16 GHz. Numerical values of scattering parameters are given for three geometries.
DEFF Research Database (Denmark)
Silva, Filipe Miguel Faria da
2016-01-01
analyses the simulation errors of different Bergeron models to a reference frequency-dependent model for a 150kV cable. The simulations consider flat and trefoil installation, both-ends bonding and cross-bonding, ideal voltage source and modelling of the area around the cable. The Bergeron model...... the modelling of the area around the cable being energised, the Bergeron model has a small error if tuned for the right frequency....
Towards time-dependent current-density-functional theory in the non-linear regime.
Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E
2015-02-28
Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.
Nonlinear decline-rate dependence and intrinsic variation of typeIa supernova luminosities
Energy Technology Data Exchange (ETDEWEB)
Wang, Lifan; Strovink, Mark; Conley, Alexander; Goldhaber,Gerson; Kowalski, Marek; Perlmutter, Saul; Siegrist, James
2005-12-14
Published B and V fluxes from nearby Type Ia supernova are fitted to light-curve templates with 4-6 adjustable parameters. Separately, B magnitudes from the same sample are fitted to a linear dependence on B-V color within a post-maximum time window prescribed by the CMAGIC method. These fits yield two independent SN magnitude estimates B{sub max} and B{sub BV}. Their difference varies systematically with decline rate {Delta}m{sub 15} in a form that is compatible with a bilinear but not a linear dependence; a nonlinear form likely describes the decline-rate dependence of B{sub max} itself. A Hubble fit to the average of B{sub max} and B{sub BV} requires a systematic correction for observed B-V color that can be described by a linear coefficient R = 2.59 {+-} 0.24, well below the coefficient R{sub B} {approx} 4.1 commonly used to characterize the effects of Milky Way dust. At 99.9% confidence the data reject a simple model in which no color correction is required for SNe that are clustered at the blue end of their observed color distribution. After systematic corrections are performed, B{sub max} and B{sub BV} exhibit mutual rms intrinsic variation equal to 0.074 {+-} 0.019 mag, of which at least an equal share likely belongs to B{sub BV}. SN magnitudes measured using maximum-luminosity or cmagic methods show comparable rms deviations of order {approx}0.14 mag from the Hubble line. The same fit also establishes a 95% confidence upper limit of 486 km s{sup -1} on the rms peculiar velocity of nearby SNe relative to the Hubble flow.
Thorvaldsen, Andreas J.; Ruud, Kenneth; Rizzo, Antonio; Coriani, Sonia
2008-10-01
We present the first gauge-origin-independent, frequency-dependent calculations of the hypermagnetizability anisotropy, which determines the temperature-independent contribution to magnetic-field-induced linear birefringence, the so-called Cotton-Mouton effect. A density-matrix-based scheme for analytical calculations of frequency-dependent molecular properties for self-consistent field models has recently been developed, which is also valid with frequency- and field-dependent basis sets. Applying this scheme to Hartree-Fock wave functions and using London atomic orbitals in order to obtain gauge-origin-independent results, we have calculated the hypermagnetizability anisotropy. Our results show that the use of London orbitals leads to somewhat better basis-set convergence for the hypermagnetizability compared to conventional basis sets and that London orbitals are mandatory in order to obtain reliable magnetizability anisotropies.
A new algorithm for frequency-dependent shear-wave splitting parameters extraction
Zhang, Jian-li; Wang, Yun; Lu, Jun
2013-10-01
In the exploration of a fractured reservoir, it is very important for reservoir engineers to get information about fracture sizes, because macro-scale fractures are more significant to the control of reservoir storability and fluid flow even though both micro-scale cracks and macro-scale fractures contribute to the dominant anisotropy. Recently, a poroelastic equivalent medium model was proposed by Chapman, which describes the frequency-dependent anisotropy effect with the fracture size being one of the key parameters. Based on this model, geophysicists have done work to measure fracture sizes from seismic data. However, it is necessary to extract frequency-dependent anisotropy before inverting for fracture size. In this paper, a new algorithm is developed for extracting frequency-dependent anisotropic parameters from surface multi-component seismic data, especially from a common-receiver-gather. Compared with the conventional method of extracting the splitting parameters only for different frequency bands, it is possible to extract splitting parameters for each frequency with the new algorithm. To check the reliability of the algorithm, a common-receiver-all-azimuth-gather is synthesized by the vector convolution method, involving the splitting parameters dependent on frequency. Test results show that the frequency-dependent splitting parameters will be extracted accurately with a general level of noise (the signal to noise ratio, SNR for shot, equals 3). More importantly, under the joint constraints of multi-azimuth data, a satisfactory result will be obtained even if the noise is significant (SNR equals 1). The good performance of the algorithm in a model test indicates its potential for field applications.
Solookinejad, G.
2016-09-01
In this study, the linear and nonlinear susceptibility of a single-layer graphene nanostructure driven by a weak probe light and an elliptical polarized coupling field is discussed theoretically. The Landau levels of graphene can be separated in infrared or terahertz regions under the strong magnetic field. Therefore, by using the density matrix formalism in quantum optic, the linear and nonlinear susceptibility of the medium can be derived. It is demonstrated that by adjusting the elliptical parameter, one can manipulate the linear and nonlinear absorption as well as Kerr nonlinearity of the medium. It is realized that the enhanced Kerr nonlinearity can be possible with zero linear absorption and nonlinear amplification at some values of elliptical parameter. Our results may be having potential applications in quantum information science based on Nano scales devices.
Fredette, Luke; Dreyer, Jason T.; Rook, Todd E.; Singh, Rajendra
2016-06-01
The dynamic stiffness properties of automotive hydraulic bushings exhibit significant amplitude sensitivity which cannot be captured by linear time-invariant models. Quasi-linear and nonlinear models are therefore proposed with focus on the amplitude sensitivity in magnitude and loss angle spectra (up to 50 Hz). Since production bushing model parameters are unknown, dynamic stiffness tests and laboratory experiments are utilized to extract model parameters. Nonlinear compliance and resistance elements are incorporated, including their interactions in order to improve amplitude sensitive predictions. New solution approximations for the new nonlinear system equations refine the multi-term harmonic balance term method. Quasi-linear models yield excellent accuracy but cannot predict trends in amplitude sensitivity since they rely on available dynamic stiffness measurements. Nonlinear models containing both nonlinear resistance and compliance elements yield superior predictions to those of prior models (with a single nonlinearity) while also providing more physical insight. Suggestion for further work is briefly mentioned.
Energy Technology Data Exchange (ETDEWEB)
Solookinejad, G., E-mail: ghsolooki@gmail.com
2016-09-15
In this study, the linear and nonlinear susceptibility of a single-layer graphene nanostructure driven by a weak probe light and an elliptical polarized coupling field is discussed theoretically. The Landau levels of graphene can be separated in infrared or terahertz regions under the strong magnetic field. Therefore, by using the density matrix formalism in quantum optic, the linear and nonlinear susceptibility of the medium can be derived. It is demonstrated that by adjusting the elliptical parameter, one can manipulate the linear and nonlinear absorption as well as Kerr nonlinearity of the medium. It is realized that the enhanced Kerr nonlinearity can be possible with zero linear absorption and nonlinear amplification at some values of elliptical parameter. Our results may be having potential applications in quantum information science based on Nano scales devices.
DEFF Research Database (Denmark)
Backi, Christoph Josef; Bendtsen, Jan Dimon; Leth, John-Josef
2014-01-01
In this work the stability properties of a nonlinear partial differential equation (PDE) with state–dependent parameters is investigated. Among other things, the PDE describes freezing of foodstuff, and is closely related to the (Potential) Burgers’ Equation. We show that for certain forms...
Institute of Scientific and Technical Information of China (English)
Li Hua-Mei
2005-01-01
By using the mapping method and an appropriate transformation, we find new exact solutions of nonlinear Gross-Pitaevskii equation with weak bias magnetic and time-dependent laser fields. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions , triangular function solutions, bright and dark solitons, and soliton-like solutions.
Ranjbaran, Mina; Galiana, Henrietta L
2012-01-01
A bilateral model for the horizontal angular vestibulo-ocular reflex (AVOR) is presented in this paper. It is shown that by assigning proper non-linear neural computations at the premotor level, the model is capable of replicating target-distance dependent VOR responses. Moreover, the model behavior in case of sensory plugging is also consistent with reported experimental observations.
Frequency-dependent gating of synaptic transmission and plasticity by dopamine
Directory of Open Access Journals (Sweden)
Hiroshi T Ito
2007-11-01
Full Text Available The neurotransmitter dopamine (DA plays an important role in learning by enhancing the saliency of behaviorally relevant stimuli. How this stimulus selection is achieved on the cellular level, however, is not known. Here, in recordings from hippocampal slices, we show that DA acts specifically at the direct cortical input to hippocampal area CA1 (the temporoammonic (TA pathway to filter the excitatory drive onto pyramidal neurons based on the input frequency. During low-frequency patterns of stimulation, DA depressed excitatory TA inputs to both CA1 pyramidal neurons and local inhibitory GABAergic interneurons via presynaptic inhibition. In contrast, during high-frequency patterns of stimulation, DA potently facilitated the TA excitatory drive onto CA1 pyramidal neurons, owing to diminished feedforward inhibition. Analysis of DA's effects over a broad range of stimulus frequencies indicates that it acts as a high-pass filter, augmenting the response to high-frequency inputs while diminishing the impact of low-frequency inputs. These modulatory effects of DA exert a profound influence on activity-dependent forms of synaptic plasticity at both TA-CA1 and Schaffer-collateral (SC-CA1 synapses. Taken together, our data demonstrate that DA acts as a gate on the direct cortical input to the hippocampus, modulating information flow and synaptic plasticity in a frequency-dependent manner.
The Frequency-dependent Damping of Slow Magnetoacoustic Waves in a Sunspot Umbral Atmosphere
Krishna Prasad, S.; Jess, D. B.; Van Doorsselaere, T.; Verth, G.; Morton, R. J.; Fedun, V.; Erdélyi, R.; Christian, D. J.
2017-09-01
High spatial and temporal resolution images of a sunspot, obtained simultaneously in multiple optical and UV wavelengths, are employed to study the propagation and damping characteristics of slow magnetoacoustic waves up to transition region heights. Power spectra are generated from intensity oscillations in sunspot umbra, across multiple atmospheric heights, for frequencies up to a few hundred mHz. It is observed that the power spectra display a power-law dependence over the entire frequency range, with a significant enhancement around 5.5 mHz found for the chromospheric channels. The phase difference spectra reveal a cutoff frequency near 3 mHz, up to which the oscillations are evanescent, while those with higher frequencies propagate upward. The power-law index appears to increase with atmospheric height. Also, shorter damping lengths are observed for oscillations with higher frequencies suggesting frequency-dependent damping. Using the relative amplitudes of the 5.5 mHz (3 minute) oscillations, we estimate the energy flux at different heights, which seems to decay gradually from the photosphere, in agreement with recent numerical simulations. Furthermore, a comparison of power spectra across the umbral radius highlights an enhancement of high-frequency waves near the umbral center, which does not seem to be related to magnetic field inclination angle effects.
Dynamical gap generation in graphene with frequency-dependent renormalization effects
Carrington, M. E.; Fischer, C. S.; von Smekal, L.; Thoma, M. H.
2016-09-01
We study the frequency dependencies in the renormalization of the fermion Green's function for the π -band electrons in graphene and their influence on the dynamical gap generation at sufficiently strong interaction. Adopting the effective QED-like description for the low-energy excitations within the Dirac-cone region, we self-consistently solve the fermion Dyson-Schwinger equation in various approximations for the photon propagator and the vertex function with special emphasis on frequency-dependent Lindhard screening and retardation effects.
An angular frequency dependence on the Aharonov–Casher geometric phase
Energy Technology Data Exchange (ETDEWEB)
Barboza, P.M.T.; Bakke, K., E-mail: kbakke@fisica.ufpb.br
2015-10-15
A quantum effect characterized by a dependence of the angular frequency associated with the confinement of a neutral particle to a quantum ring on the quantum numbers of the system and the Aharonov–Casher geometric phase is discussed. Then, it is shown that persistent spin currents can arise in a two-dimensional quantum ring in the presence of a Coulomb-type potential. A particular contribution to the persistent spin currents arises from the dependence of the angular frequency on the geometric quantum phase.
DEFF Research Database (Denmark)
Yamauchi, Akira; Knott, Arnold; Jørgensen, Ivan Harald Holger
2014-01-01
In this paper, frequency dependent losses in switch-mode audio power amplifiers are analyzed and a loss model is improved by taking the voltage dependence of the parasitic capacitance of MOSFETs into account. The estimated power losses are compared to the measurement and great accuracy is achieved....... By choosing the optimal switching frequency based on the proposed analysis, the experimental results show that system power losses of the reference design are minimized and an efficiency improvement of 8 % in maximum is achieved without compromising audio performances....
Ansari, R.; Faraji Oskouie, M.; Gholami, R.
2016-01-01
In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.
Kink topology control by high-frequency external forces in nonlinear Klein-Gordon models
Alvarez-Nodarse, R.; Quintero, N. R.; Mertens, F. G.
2014-10-01
A method of averaging is applied to study the dynamics of a kink in the damped double sine-Gordon equation driven by both external (nonparametric) and parametric periodic forces at high frequencies. This theoretical approach leads to the study of a double sine-Gordon equation with an effective potential and an effective additive force. Direct numerical simulations show how the appearance of two connected π kinks and of an individual π kink can be controlled via the frequency. An anomalous negative mobility phenomenon is also predicted by theory and confirmed by simulations of the original equation.
Kink topology control by high-frequency external forces in nonlinear Klein-Gordon models.
Alvarez-Nodarse, R; Quintero, N R; Mertens, F G
2014-10-01
A method of averaging is applied to study the dynamics of a kink in the damped double sine-Gordon equation driven by both external (nonparametric) and parametric periodic forces at high frequencies. This theoretical approach leads to the study of a double sine-Gordon equation with an effective potential and an effective additive force. Direct numerical simulations show how the appearance of two connected π kinks and of an individual π kink can be controlled via the frequency. An anomalous negative mobility phenomenon is also predicted by theory and confirmed by simulations of the original equation.
Frequency-dependent signal processing in apical dendrites of hippocampal CA1 pyramidal cells.
Watanabe, H; Tsubokawa, H; Tsukada, M; Aihara, T
2014-10-10
Depending on an animal's behavioral state, hippocampal CA1 pyramidal cells receive distinct patterns of excitatory and inhibitory synaptic inputs. The time-dependent changes in the frequencies of these inputs and the nonuniform distribution of voltage-gated channels lead to dynamic fluctuations in membrane conductance. In this study, using a whole-cell patch-clamp method, we attempted to record and analyze the frequency dependencies of membrane responsiveness in Wistar rat hippocampal CA1 pyramidal cells following noise current injection directly into dendrites and somata under pharmacological blockade of all synaptic inputs. To estimate the frequency-dependent properties of membrane potential, membrane impedance was determined from the voltage response divided by the input current in the frequency domain. The cell membrane of most neurons showed low-pass filtering properties in all regions. In particular, the properties were strongly expressed in the somata or proximal dendrites. Moreover, the data revealed nonuniform distribution of dendritic impedance, which was high in the intermediate segment of the apical dendritic shaft (∼220-260μm from the soma). The low-pass filtering properties in the apical dendrites were more enhanced by membrane depolarization than those in the somata. Coherence spectral analysis revealed high coherence between the input signal and the output voltage response in the theta-gamma frequency range, and large lags emerged in the distal dendrites in the gamma frequency range. Our results suggest that apical dendrites of hippocampal CA1 pyramidal cells integrate synaptic inputs according to the frequency components of the input signal along the dendritic segments receiving the inputs.
Dependence structure of the Korean stock market in high frequency data
Kim, Min Jae; Kwak, Young Bin; Kim, Soo Yong
2011-03-01
This paper analyzes the evolution of the dependence structure for various time window intervals, known as Epps effect, using the Trade and Quote data of 663 actively traded stocks in Korean stock market. It is found that the random matrix theory analysis could not represent the dependence structure of the stock market in the microstructure regime. The Cook-Johnson copula is introduced as a parsimonious alternative method to handle this problem, and the existence of the Epps effect is confirmed for the 663 stocks using high frequency data. It was also found that large capitalization companies tend to have a stronger dependence structure, except for the largest capitalization group, since the phenomenon of price level resistance leads to the weak dependence structure in the largest capitalization group. In addition, grouping the industry as a sub-portfolio is an appropriate approach for hour interval traders, whereas this approach is not a strategy recommended for high frequency traders.
Lin, Lizhi; Wan, Yongping; Li, Faxin
2012-07-01
In this work, we propose an analytical nonlinear model for laminate multiferroic composites in which the magnetic-field-induced strain in magnetostrictive phase is described by a standard square law taking the stress effect into account, whereas the ferroelectric phase retains a linear piezoelectric response. Furthermore, differing from previous models which assume uniform deformation, we take into account the stress attenuation and adopt non-uniform deformation along the layer thickness in both piezoelectric and magnetostrictive phases. Analysis of this model on L-T and L-L modes of sandwiched Terfenol-D/lead zirconate titanate/Terfenol-D composites can well reproduce the observed dc magnetic field (H(dc)) dependent magnetoelectric coefficients, which reach their maximum with the H(dc) all at about 500 Oe. The model also suggests that stress attenuation along the layer thickness in practical composites should be taken into account. Furthermore, the model also indicates that a high volume fraction of magnetostrictive phase is required to get giant magnetoelectric coupling, coinciding with existing models.
Directory of Open Access Journals (Sweden)
Mohsen Torabi
2013-01-01
Full Text Available Radiative radial fin with temperature-dependent thermal conductivity is analyzed. The calculations are carried out by using differential transformation method (DTM, which is a seminumerical-analytical solution technique that can be applied to various types of differential equations, as well as the Boubaker polynomials expansion scheme (BPES. By using DTM, the nonlinear constrained governing equations are reduced to recurrence relations and related boundary conditions are transformed into a set of algebraic equations. The principle of differential transformation is briefly introduced and then applied to the aforementioned equations. Solutions are subsequently obtained by a process of inverse transformation. The current results are then compared with previously obtained results using variational iteration method (VIM, Adomian decomposition method (ADM, homotopy analysis method (HAM, and numerical solution (NS in order to verify the accuracy of the proposed method. The findings reveal that both BPES and DTM can achieve suitable results in predicting the solution of such problems. After these verifications, we analyze fin efficiency and the effects of some physically applicable parameters in this problem such as radiation-conduction fin parameter, radiation sink temperature, heat generation, and thermal conductivity parameters.
Anchal, Abhishek; Kumar, Pradeep; Landais, Pascal
2016-10-01
We propose and numerically verify a scheme of frequency-shift free mid-span spectral inversion (MSSI) for nonlinearity mitigation in an optical transmission system. Spectral inversion is accomplished by optical phase conjugation, realized by counter-propagating dual pumped four-wave mixing in a highly nonlinear fiber. We examine the performance of MSSI due to critical parameters such as nonlinear fiber length, pump and signal power. We demonstrate the near complete nonlinearity mitigation of 40 Gbps DQPSK modulated data transmitted over 1000 km standard single mode fiber using our method of MSSI. We perform simulation of bit-error rate as a function of optical signal to noise ratio to corroborate the effect of frequency-shift free MSSI.
Numerical Study of Frequency-dependent Seismoelectric Coupling in Partially-saturated Porous Media
Directory of Open Access Journals (Sweden)
Djuraev Ulugbek
2017-01-01
Full Text Available The seismoelectric phenomenon associated with propagation of seismic waves in fluid-saturated porous media has been studied for many decades. The method has a great potential to monitor subsurface fluid saturation changes associated with production of hydrocarbons. Frequency of the seismic source has a significant impact on measurement of the seismoelectric effects. In this paper, the effects of seismic wave frequency and water saturation on the seismoelectric response of a partially-saturated porous media is studied numerically. The conversion of seismic wave to electromagnetic wave was modelled by extending the theoretically developed seismoelectric coupling coefficient equation. We assumed constant values of pore radius and zeta-potential of 80 micrometers and 48 microvolts, respectively. Our calculations of the coupling coefficient were conducted at various water saturation values in the frequency range of 10 kHz to 150 kHz. The results show that the seismoelectric coupling is frequency-dependent and decreases exponentially when frequency increases. Similar trend is seen when water saturation is varied at different frequencies. However, when water saturation is less than about 0.6, the effect of frequency is significant. On the other hand, when the water saturation is greater than 0.6, the coupling coefficient shows monotonous trend when water saturation is increased at constant frequency.
Self-consistent modeling of terahertz waveguide and cavity with frequency-dependent conductivity
Huang, Y. J.; Chu, K. R.; Thumm, M.
2015-01-01
The surface resistance of metals, and hence the Ohmic dissipation per unit area, scales with the square root of the frequency of an incident electromagnetic wave. As is well recognized, this can lead to excessive wall losses at terahertz (THz) frequencies. On the other hand, high-frequency oscillatory motion of conduction electrons tends to mitigate the collisional damping. As a result, the classical theory predicts that metals behave more like a transparent medium at frequencies above the ultraviolet. Such a behavior difference is inherent in the AC conductivity, a frequency-dependent complex quantity commonly used to treat electromagnetics of metals at optical frequencies. The THz region falls in the gap between microwave and optical frequencies. However, metals are still commonly modeled by the DC conductivity in currently active vacuum electronics research aimed at the development of high-power THz sources (notably the gyrotron), although a small reduction of the DC conductivity due to surface roughness is sometimes included. In this study, we present a self-consistent modeling of the gyrotron interaction structures (a metallic waveguide or cavity) with the AC conductivity. The resulting waveguide attenuation constants and cavity quality factors are compared with those of the DC-conductivity model. The reduction in Ohmic losses under the AC-conductivity model is shown to be increasingly significant as the frequency reaches deeper into the THz region. Such effects are of considerable importance to THz gyrotrons for which the minimization of Ohmic losses constitutes a major design consideration.
On Perceptual Distortion Minimization and Nonlinear Least-Squares Frequency Estimation
DEFF Research Database (Denmark)
Christensen, Mads Græsbøll; Jensen, Søren Holdt
2006-01-01
In this paper, we present a framework for perceptual error minimization and sinusoidal frequency estimation based on a new perceptual distortion measure, and we state its optimal solution. Using this framework, we relate a number of well-known practical methods for perceptual sinusoidal parameter...
Directory of Open Access Journals (Sweden)
Hesham Mahrous
2016-02-01
Full Text Available This paper proposes a compressive sensing (CS method for multi-channel electroencephalogram (EEG signals in Wireless Body Area Network (WBAN applications, where the battery life of sensors is limited. For the single EEG channel case, known as the single measurement vector (SMV problem, the Block Sparse Bayesian Learning-BO (BSBL-BO method has been shown to yield good results. This method exploits the block sparsity and the intra-correlation (i.e., the linear dependency within the measurement vector of a single channel. For the multichannel case, known as the multi-measurement vector (MMV problem, the Spatio-Temporal Sparse Bayesian Learning (STSBL-EM method has been proposed. This method learns the joint correlation structure in the multichannel signals by whitening the model in the temporal and the spatial domains. Our proposed method represents the multi-channels signal data as a vector that is constructed in a specific way, so that it has a better block sparsity structure than the conventional representation obtained by stacking the measurement vectors of the different channels. To reconstruct the multichannel EEG signals, we modify the parameters of the BSBL-BO algorithm, so that it can exploit not only the linear but also the non-linear dependency structures in a vector. The modified BSBL-BO is then applied on the vector with the better sparsity structure. The proposed method is shown to significantly outperform existing SMV and also MMV methods. It also shows significant lower compression errors even at high compression ratios such as 10:1 on three different datasets.
Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography
Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.
2016-10-01
Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and
Pysher, Matthew; Bahabad, Alon; Peng, Peng; Arie, Ady; Pfister, Olivier
2010-02-15
We report the successful design and experimental implementation of three coincident nonlinear interactions, namely ZZZ (type 0), ZYY (type I), and YYZ/YZY (type II) second-harmonic generation of 780 nm light from a 1560 nm pump beam in a single, multigrating, periodically poled KTiOPO(4) crystal. The resulting nonlinear medium is the key component for making a scalable quantum computer over the optical frequency comb of a single optical parametric oscillator.
Directory of Open Access Journals (Sweden)
L. Cafarella
2001-06-01
Full Text Available A statistical analysis of the polarization pattern of low-frequency geomagnetic field fluctuations (0.7-7.4 mHz covering the entire 24-h interval was performed at the Antarctic station Terra Nova Bay (80.0°S geomagnetic latitude throughout 1997 and 1998. The results show that the polarization pattern exhibits a frequency dependence, as can be expected from the frequency dependence of the latitude where the coupling between the magnetospheric compressional mode and the field line resonance takes place. The polarization analysis of single pulsation events shows that wave packets with different polarization sense, depending on frequency, can be simultaneously observed.
Energy Technology Data Exchange (ETDEWEB)
Lepidi, S.; Cafarella, L. [Istituto Nazionale di Geofisica e Vulcanologia, L' Aquila (Italy); Francia, P. [L' Aquila Univ., L' Aquila (Italy). Dipt. di Fisica
2001-06-01
A statistical analysis of the polarization pattern of low-frequency geomagnetic field fluctuations (0.7-7.4 m Hz) covering the entire 24-h interval was performed at the Antarctic station Terra Nova Bay (80.0{sup 0}S geomagnetic latitude) throughout 1997 and 1998. The results show that the polarization pattern exhibits a frequency dependence, as can be expected from the frequency dependence of the latitude where the coupling between the magnetospheric compressional mode and the field line resonance takes place. The polarization analysis of single pulsation events shows that wave packets with different polarization sense, depending on frequency, can be simultaneously observed.
Directory of Open Access Journals (Sweden)
Umberto Melia
Full Text Available The level of sedation in patients undergoing medical procedures evolves continuously, affected by the interaction between the effect of the anesthetic and analgesic agents and the pain stimuli. The monitors of depth of anesthesia, based on the analysis of the electroencephalogram (EEG, have been progressively introduced into the daily practice to provide additional information about the state of the patient. However, the quantification of analgesia still remains an open problem. The purpose of this work is to improve the prediction of nociceptive responses with linear and non-linear measures calculated from EEG signal filtered in frequency bands higher than the traditional bands. Power spectral density and auto-mutual information function was applied in order to predict the presence or absence of the nociceptive responses to different stimuli during sedation in endoscopy procedure. The proposed measures exhibit better performances than the bispectral index (BIS. Values of prediction probability of Pk above 0.75 and percentages of sensitivity and specificity above 70% were achieved combining EEG measures from the traditional frequency bands and higher frequency bands.
Institute of Scientific and Technical Information of China (English)
Ta Na; Qiu Jiajun; Cai Ganhua
2005-01-01
Zero mode natural frequency (ZMNF) is found during experiments. The ZMNF and vibrations resulted by it are studied. First, calculating method of the ZMNF excited by electromagnetic in vibrational system of coupled mechanics and electrics are given from the view of magnetic energy.Laws that the ZMNF varies with active power and exciting current are obtained and are verified by experiments. Then, coupled lateral and torsional vibration of rotor shaft system is studied by considering rest eccentricity, rotating eccentricity and swing eccentricity. Using Largrange-Maxwell equation when three phases are asymmetric derives differential equation of the coupled vibration. With energy method of nonlinear vibration, amplitude-frequency characteristics of resonance are studied when rotating speed of rotor equals to ZMNF. The results show that ZMNF will occur in turbine generators by the action of electromagnetic. Because ZMNF varies with electromagnetic parameters,resonance can occur when exciting frequency of the rotor speed is fixed whereas exciting current change. And also find that a generator is in the state of large amplitude in rated exciting current.
Frequency dependent attenuation of seismic waves for Delhi and surrounding area, India
Directory of Open Access Journals (Sweden)
Babita Sharma
2015-06-01
Full Text Available The attenuation properties of Delhi & surrounding region have been investigated using 62 local earthquakes recorded at nine stations. The frequency dependent quality factors Qa (using P-waves and Qb (using S-waves have been determined using the coda normalization method. Quality factor of coda-waves (Qc has been estimated using the single backscattering model in the frequency range from 1.5 Hz to 9 Hz. Wennerberg formulation has been used to estimate Qi (intrinsic attenuation parameter and Qs (scattering attenuation parameter for the region. The values Qa, Qb, Qc, Qi and Qs estimated are frequency dependent in the range of 1.5Hz-9Hz. Frequency dependent relations are estimated as Qa=52f1.03, Qb=98f1.07 and Qc=158f0.97. Qc estimates lie in between the values of Qi and Qs but closer to Qi at all central frequencies. Comparison between Qi and Qs shows that intrinsic absorption is predominant over scattering for Delhi and surrounding region.
Directory of Open Access Journals (Sweden)
Evgenia Sitnikova
2014-01-01
Full Text Available The risk of neurological diseases increases with age. In WAG/Rij rat model of absence epilepsy, the incidence of epileptic spike-wave discharges is known to be elevated with age. Considering close relationship between epileptic spike-wave discharges and physiologic sleep spindles, it was assumed that age-dependent increase of epileptic activity may affect time-frequency characteristics of sleep spindles. In order to examine this hypothesis, electroencephalograms (EEG were recorded in WAG/Rij rats successively at the ages 5, 7, and 9 months. Spike-wave discharges and sleep spindles were detected in frontal EEG channel. Sleep spindles were identified automatically using wavelet-based algorithm. Instantaneous (localized in time frequency of sleep spindles was determined using continuous wavelet transform of EEG signal, and intraspindle frequency dynamics were further examined. It was found that in 5-months-old rats epileptic activity has not fully developed (preclinical stage and sleep spindles demonstrated an increase of instantaneous frequency from beginning to the end. At the age of 7 and 9 months, when animals developed matured and longer epileptic discharges (symptomatic stage, their sleep spindles did not display changes of intrinsic frequency. The present data suggest that age-dependent increase of epileptic activity in WAG/Rij rats affects intrinsic dynamics of sleep spindle frequency.
Frequency-dependent modulation of KCNQ1 and HERG1 potassium channels
DEFF Research Database (Denmark)
Diness, Thomas Goldin; Hansen, Rie Schultz; Olesen, Søren-Peter
2006-01-01
of the beta-subunits KCNE1 and KCNE2. In addition, the functional role of HERG1 in native guinea pig cardiac myocytes was demonstrated at different pacing frequencies by application of 10microM of the new HERG1 activator, NS1643. In conclusion, we have demonstrated that HERG1 and hKCNQ1 channels are inversely......To obtain information about a possible frequency-dependent modulation of HERG1 and hKCNQ1 channels, we performed heterologous expression in Xenopus laevis oocytes. Channel activation was obtained by voltage protocols roughly imitating cardiac action potentials at frequencies of 1, 3, 5.8, and 8.3Hz....... The activity of HERG1 channels was inhibited down to 65% at high frequencies. In contrast, hKCNQ1 channel activity was increased up to 525% at high frequencies. The general frequency-dependent modulation of the channels was unaffected by both co-expression of hKCNQ1 and HERG1 channels, and by the presence...
Susan E. Meyer; David L. Nelson; Suzette Clement; Alisa Ramakrishnan
2010-01-01
Evolutionary processes that maintain genetic diversity in plants are likely to include selection imposed by pathogens. Negative frequency-dependent selection is a mechanism for maintenance of resistance polymorphism in plant - pathogen interactions. We explored whether such selection operates in the Bromus tectorum - Ustilago bullata pathosystem. Gene-for-gene...
Frequency-Dependent Social Dominance in a Color Polymorphic Cichlid Fish
Dijkstra, Peter; Lindström, Jan; Metcalfe, Neil B.; Hemelrijk, Charlotte K.; Brendel, Mischa; Seehausen, Ole; Groothuis, Ton G.G.
2010-01-01
A mechanism commonly suggested to explain the persistence of color polymorphisms in animals is negative frequency-dependent selection. It could result from a social dominance advantage to rare morphs. We tested for this in males of red and blue color morphs of the Lake Victoria cichlid, Pundamilia.
Temperature Dependence of the Radio-Frequency Dielectric Properties of Chicken Meat
Dielectric properties of chicken breast meat were measured with an open-ended coaxial-line probe between 200 MHz and 20 GHz at temperature ranging from -20 oC to +25 oC. At a given frequency, the temperature dependence reveals a sharp increase of the dielectric constant and dielectric loss factor a...
Frequency-dependent specific heat from thermal effusion in spherical geometry.
Jakobsen, Bo; Olsen, Niels Boye; Christensen, Tage
2010-06-01
We present a method of measuring the frequency-dependent specific heat at the glass transition applied to 5-polyphenyl-4-ether. The method employs thermal waves effusing radially out from the surface of a spherical thermistor that acts as both a heat generator and a thermometer. It is a merit of the method compared to planar effusion methods that the influence of the mechanical boundary conditions is analytically known. This implies that it is the longitudinal rather than the isobaric specific heat that is measured. As another merit the thermal conductivity and specific heat can be found independently. The method has highest sensitivity at a frequency where the thermal diffusion length is comparable to the radius of the heat generator. This limits in practice the frequency range to 2-3 decades. An account of the 3ω technique used including higher-order terms in the temperature dependence of the thermistor and in the power generated is furthermore given.
Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors.
Oelker, Eric; Isogai, Tomoki; Miller, John; Tse, Maggie; Barsotti, Lisa; Mavalvala, Nergis; Evans, Matthew
2016-01-29
Quantum vacuum fluctuations impose strict limits on precision displacement measurements, those of interferometric gravitational-wave detectors among them. Introducing squeezed states into an interferometer's readout port can improve the sensitivity of the instrument, leading to richer astrophysical observations. However, optomechanical interactions dictate that the vacuum's squeezed quadrature must rotate by 90° around 50 Hz. Here we use a 2-m-long, high-finesse optical resonator to produce frequency-dependent rotation around 1.2 kHz. This demonstration of audio-band frequency-dependent squeezing uses technology and methods that are scalable to the required rotation frequency and validates previously developed theoretical models, heralding application of the technique in future gravitational-wave detectors.
Ege, Kerem; Rébillat, Marc
2012-01-01
The piano soundboard transforms the string vibration into sound and therefore, its vibrations are of primary importance for the sound characteristics of the instrument. An original vibro-acoustical method is presented to isolate the soundboard nonlinearity from that of the exciting device (here: a loudspeaker) and to measure it. The nonlinear part of the soundboard response to an external excitation is quantitatively estimated for the first time, at \\approx -40 dB below the linear part at the ff nuance. Given this essentially linear response, a modal identification is performed up to 3 kHz by means of a novel high resolution modal analysis technique (Ege et al., High-resolution modal analysis, JSV, 325(4-5), 2009). Modal dampings (which, so far, were unknown for the piano in this frequency range) are determined in the midfrequency domain where FFT-based methods fail to evaluate them with an acceptable precision. They turn out to be close to those imposed by wood. A finite-element modelling of the soundboard i...
Liu, Xing; Guo, Hairun; Bache, Morten
2015-01-01
We show numerically that ultrashort self-defocusing temporal solitons colliding with a weak pulsed probe in the near-IR can convert the probe to the mid-IR. A near-perfect conversion efficiency is possible for a high effective soliton order. The near-IR self-defocusing soliton can form in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between $\\lambda=2.2-2.4~\\mu\\rm m$ as a resonant dispersive wave. This process relies on non-degenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation.
Natural Frequencies and Mode Shapes of a Nonlinear, Uniform Cantilevered Beam
2006-09-01
spectrum” [13]. The speaker is shown in Figure 11. 16 Figure 11: Excitation Force 3.1.6 Laser Vibrometer The Polytec Scanning...system. This investigation used the 3-D method. The 3-D laser vibrometer used Polytec software version 8.3 to analyze the data. Once the beam was...measured by the lasers were sent to the Polytec software which applied a Fast Fourier Transform (FFT) to find the frequencies. From the FFT the natural
Frequency dependence of signal power and spatial reach of the local field potential.
Directory of Open Access Journals (Sweden)
Szymon Łęski
Full Text Available Despite its century-old use, the interpretation of local field potentials (LFPs, the low-frequency part of electrical signals recorded in the brain, is still debated. In cortex the LFP appears to mainly stem from transmembrane neuronal currents following synaptic input, and obvious questions regarding the 'locality' of the LFP are: What is the size of the signal-generating region, i.e., the spatial reach, around a recording contact? How far does the LFP signal extend outside a synaptically activated neuronal population? And how do the answers depend on the temporal frequency of the LFP signal? Experimental inquiries have given conflicting results, and we here pursue a modeling approach based on a well-established biophysical forward-modeling scheme incorporating detailed reconstructed neuronal morphologies in precise calculations of population LFPs including thousands of neurons. The two key factors determining the frequency dependence of LFP are the spatial decay of the single-neuron LFP contribution and the conversion of synaptic input correlations into correlations between single-neuron LFP contributions. Both factors are seen to give low-pass filtering of the LFP signal power. For uncorrelated input only the first factor is relevant, and here a modest reduction (100 Hz compared to the near-DC ([Formula: see text] value of about [Formula: see text]. Much larger frequency-dependent effects are seen when populations of pyramidal neurons receive correlated and spatially asymmetric inputs: the low-frequency ([Formula: see text] LFP power can here be an order of magnitude or more larger than at 60 Hz. Moreover, the low-frequency LFP components have larger spatial reach and extend further outside the active population than high-frequency components. Further, the spatial LFP profiles for such populations typically span the full vertical extent of the dendrites of neurons in the population. Our numerical findings are backed up by an intuitive
Kumar, Sushil; Singh, Priyamvada; Singh, Pitam; Biswal, Shubhasmita; Parija, Mahesh Prasad
2016-03-01
Digital seismogram data of 82 earthquakes from the Northwestern Himalayan (India) region recorded at different stations during 2004-2006 were analyzed to study the seismic coda wave attenuation characteristics in this region. We used 132 seismic observations from local earthquakes with a hypocentral distance India) by the Wadia institute of Himalayan Geology, Dehradun. The QC values were estimated at 10 central frequencies: 1.5, 3, 5, 7, 9, 12, 16, 20, 24, and 28 Hz using starting lapse-times of 10, 20, 30, 40, 50, and 60 s and coda window-lengths of 10, 20, 30, 40, and 50 s. The QC fits the frequency dependent power-law, QC =Q0fn . For a 10 s lapse time with a 10-s coda window length QC = 47.42f1.012 and for a 50 s lapse time with a 50 s coda window length, QC = 204.1f0.934 . Q0 (QC at 1 Hz) varied from ∼47 for a 10 s lapse time and a 10 s window length, to ∼204 for a 50 s lapse time and a 50 s window length. An average frequency dependent power law fit for the study region may be given as QC = 116.716f0.9943 . The exponent of the frequency dependence law n ranged from 1.08 to 0.9, which correlates well with values obtained in other seismically and tectonically active and heterogeneous regions of the world. In our study region, QC increases both with respect to lapse time and frequency, i.e., the attenuation decreases as the quality factor is inversely proportional to attenuation. The low QC values or high attenuation at lower frequencies and high QC values or low attenuation at higher frequencies suggest that the heterogeneity decreases with increasing depth in our study region.
Directory of Open Access Journals (Sweden)
Kenneth D. Varian
2012-01-01
Full Text Available Myofilament calcium sensitivity decreases with frequency in intact healthy rabbit trabeculae and associates with Troponin I and Myosin light chain-2 phosphorylation. We here tested whether serine-threonine kinase activity is primarily responsible for this frequency-dependent modulations of myofilament calcium sensitivity. Right ventricular trabeculae were isolated from New Zealand White rabbit hearts and iontophoretically loaded with bis-fura-2. Twitch force-calcium relationships and steady state force-calcium relationships were measured at frequencies of 1 and 4 Hz at 37 °C. Staurosporine (100 nM, a nonspecific serine-threonine kinase inhibitor, or vehicle (DMSO was included in the superfusion solution before and during the contractures. Staurosporine had no frequency-dependent effect on force development, kinetics, calcium transient amplitude, or rate of calcium transient decline. The shift in the pCa50 of the force-calcium relationship was significant from 6.05±0.04 at 1 Hz versus 5.88±0.06 at 4 Hz under control conditions (vehicle, P<0.001 but not in presence of staurosporine (5.89±0.08 at 1 Hz versus 5.94±0.07 at 4 Hz, P=NS. Phosphoprotein analysis (Pro-Q Diamond stain confirmed that staurosporine significantly blunted the frequency-dependent phosphorylation at Troponin I and Myosin light chain-2. We conclude that frequency-dependent modulation of calcium sensitivity is mediated through a kinase-specific effect involving phosphorylation of myofilament proteins.
Frequency-dependent critical current and transport ac loss of superconductor strip and Roebel cable
Energy Technology Data Exchange (ETDEWEB)
Thakur, Kailash Prasad [Landcare Research, Palmerston North 4442 (New Zealand); Raj, Ashish [Computer Science in Radiology, Weill Medical College, Cornell University, NY 10022 (United States); Brandt, Ernst Helmut [Max-Planck-Institut fuer Metallforschung, PO B 800665, D-70506 Stuttgart (Germany); Kvitkovic, Jozef; Pamidi, Sastry V, E-mail: thakurk@landcareresearch.co.nz, E-mail: asr2004@med.cornell.edu, E-mail: ehb@mf.mpg.de, E-mail: kvitkovic@caps.fsu.edu, E-mail: pamidi@caps.fsu.edu [Center for Advanced Power System, Florida State University, Tallahassee, FL 32310 (United States)
2011-06-15
The frequency-dependent critical current of a superconductor strip and Roebel cable has been studied using a 2D finite element simulation. It is shown that the critical current of the superconductor increases with frequency as f{sup 1/n}, where n is the exponent of the power law flux creep model. Transport ac loss in a superconductor strip decreases with frequency as f{sup -2/n} when the amplitude of the applied ac current is far less than its critical current. However, when the applied current is large and becomes comparable to the critical current, the transport ac loss decreases with frequency as 1/f. The analytical results are substantiated with available experimental data and the results of a 2D finite element simulation.
Indian Academy of Sciences (India)
EMRULLAH YA¸SAR; YAKUP YILDIRIM; ILKER BURAK GIRESUNLU
2016-08-01
Fin materials can be observed in a variety of engineering applications. They are used to ease the dissipation of heat from a heated wall to the surrounding environment. In this work, we consider a nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. The equation(s) under study are highly nonlinear. Both the thermal conductivity and the heat transfer coefficient are given as arbitrary functions of temperature. Firstly, we consider the Lie group analysis for different cases of thermal conductivity and the heat transfer coefficients. These classifications are obtained from the Lie group analysis. Then, the first integrals of the nonlinear straight fin problem are constructed by three methods, namely, Noether’s classical method, partial Noether approach and Ibragimov’s nonlocal conservation method. Some exact analytical solutions are also constructed. The obtained result is also compared with the result obtained by other methods.
Fleming, David P.; Poplawski, J. V.
2002-01-01
Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for non-linear speed and load dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis - Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running 5 degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller beatings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.
Frequency-dependent amplification of stretch-evoked excitatory input in spinal motoneurons.
Powers, Randall K; Nardelli, Paul; Cope, T C
2012-08-01
Voltage-dependent calcium and sodium channels mediating persistent inward currents (PICs) amplify the effects of synaptic inputs on the membrane potential and firing rate of motoneurons. CaPIC channels are thought to be relatively slow, whereas the NaPIC channels have fast kinetics. These different characteristics influence how synaptic inputs with different frequency content are amplified; the slow kinetics of Ca channels suggest that they can only contribute to amplification of low frequency inputs (EPSPs), we measured the averaged stretch-evoked EPSPs in cat medial gastrocnemius motoneurons in decerebrate cats at different subthreshold levels of membrane potential. EPSPs were produced by muscle spindle afferents activated by stretching the homonymous and synergist muscles at frequencies of 5-50 Hz. We adjusted the stretch amplitudes at different frequencies to produce approximately the same peak-to-peak EPSP amplitude and quantified the amount of amplification by expressing the EPSP integral at different levels of depolarization as a percentage of that measured with the membrane hyperpolarized. Amplification was observed at all stretch frequencies but generally decreased with increasing stretch frequency. However, in many cells the amount of amplification was greater at 10 Hz than at 5 Hz. Fast amplification was generally reduced or absent when the lidocaine derivative QX-314 was included in the electrode solution, supporting a strong contribution from Na channels. These results suggest that NaPICs can combine with CaPICs to enhance motoneuron responses to modulations of synaptic drive over a physiologically significant range of frequencies.
Modeling and frequency domain analysis of nonlinear compliant joints for a passive dynamic swimmer
Carbajal, Juan Pablo; Ziegler, Marc; Lang, Zi-Qiang
2011-01-01
In this paper we present the study of the mathematical model of a real life joint used in an underwater robotic fish. Fluid-structure interaction is utterly simplified and the motion of the joint is approximated by D\\"uffing's equation. We compare the quality of analytical harmonic solutions previously reported, with the input-output relation obtained via truncated Volterra series expansion. Comparisons show a trade-off between accuracy and flexibility of the methods. The methods are discussed in detail in order to facilitate reproduction of our results. The approach presented herein can be used to verify results in nonlinear resonance applications and in the design of bio-inspired compliant robots that exploit passive properties of their dynamics. We focus on the potential use of this type of joint for energy extraction from environmental sources, in this case a K\\'arm\\'an vortex street shed by an obstacle in a flow. Open challenges and questions are mentioned throughout the document.
Premraj, D.; Suresh, K.; Palanivel, J.; Thamilmaran, K.
2017-09-01
A periodically forced series LCR circuit with Chua's diode as a nonlinear element exhibits slow passage through Hopf bifurcation. This slow passage leads to a delay in the Hopf bifurcation. The delay in this bifurcation is a unique quantity and it can be predicted using various numerical analysis. We find that when an additional periodic force is added to the system, the delay in bifurcation becomes chaotic which leads to an unpredictability in bifurcation delay. Further, we study the bifurcation of the periodic delay to chaotic delay in the slow passage effect through strange nonchaotic delay. We also report the occurrence of strange nonchaotic dynamics while varying the parameter of the additional force included in the system. We observe that the system exhibits a hitherto unknown dynamical transition to a strange nonchaotic attractor. With the help of Lyapunov exponent, we explain the new transition to strange nonchaotic attractor and its mechanism is studied by making use of rational approximation theory. The birth of SNA has also been confirmed numerically, using Poincaré maps, phase sensitivity exponent, the distribution of finite-time Lyapunov exponents and singular continuous spectrum analysis.
Smirnov, Sergey V; Kobtsev, Sergey M; Kukarin, Sergey V
2014-01-13
For the first time we report the results of both numerical simulation and experimental observation of second-harmonic generation as an example of non-linear frequency conversion of pulses generated by passively mode-locked fiber master oscillator in different regimes including conventional (stable) and double-scale (partially coherent and noise-like) ones. We show that non-linear frequency conversion efficiency of double-scale pulses is slightly higher than that of conventional picosecond laser pulses with the same energy and duration despite strong phase fluctuations of double-scale pulses.
Non-linear forecasting in high-frequency financial time series
Strozzi, F.; Zaldívar, J. M.
2005-08-01
A new methodology based on state space reconstruction techniques has been developed for trading in financial markets. The methodology has been tested using 18 high-frequency foreign exchange time series. The results are in apparent contradiction with the efficient market hypothesis which states that no profitable information about future movements can be obtained by studying the past prices series. In our (off-line) analysis positive gain may be obtained in all those series. The trading methodology is quite general and may be adapted to other financial time series. Finally, the steps for its on-line application are discussed.
Practical design of a nonlinear tuned vibration absorber
DEFF Research Database (Denmark)
Grappasonni, C.; Habib, G.; Detroux, T.
2014-01-01
The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog's equal-peak method is proposed to ensure equal...
Banerjee, N.; Aziz, A.; Ali, M.; Robinson, J. W. A.; Hickey, B. J.; Blamire, M. G.
2010-12-01
The recent discovery of nonlinear current-dependent magnetoresistance in dual spin valve devices [A. Aziz, O. P. Wessely, M. Ali, D. M. Edwards, C. H. Marrows, B. J. Hickey, and M. G. Blamire, Phys. Rev. Lett. 103, 237203 (2009)10.1103/PhysRevLett.103.237203] opens up the possibility for distinct physics which extends the standard model of giant magnetoresistance. When the outer ferromagnetic layers of a dual spin valve are antiparallel, the resulting accumulation of spin in the middle ferromagnetic layer strongly modifies its bulk and interfacial spin asymmetry and resistance. Here, we report experimental evidence of the role of bulk spin accumulation in this nonlinear effect and show that interfacial spin accumulation alone cannot account for the observed dependence of the effect on the thickness of the middle ferromagnetic layer. It is also shown that spin torque acting on the middle ferromagnetic layer combined with the nonlinear effect might be useful in understanding the dynamical features associated with the nonlinear behavior.
Mechanism of frequency-dependent broadening of molluscan neurone soma spikes.
Aldrich, R W; Getting, P A; Thompson, S H
1979-06-01
1. Action potentials recorded from isolated dorid neurone somata increase in duration, i.e. broaden, during low frequency repetitive firing. Spike broadening is substantially reduced by external Co ions and implicates an inward Ca current. 2. During repetitive voltage clamp steps at frequencies slower than 1 Hz, in 100 mM-tetraethyl ammonium ions (TEA) inward Ca currents do not increase in amplitude. 3. Repetitive action potentials result in inactivation of delayed outward current. Likewise, repetitive voltage clamp steps which cause inactivation of delayed outward current also result in longer duration action potentials. 4. The frequency dependence of spike broadening and inactivation of the voltage dependent component (IK) of delayed outward current are similar. 5. Inactivation of IK is observed in all cells, however, only cells with relative large inward Ca currents show significant spike broadening. Spike broadening apparently results from the frequency dependent inactivation of IK which increases the expression of inward Ca current as a prominent shoulder on the repolarizing phase of the action potential. In addition, the presence of a prolonged Ca current increases the duration of the first action potential thereby allowing sufficient time for inactivation of IK.
Energy Technology Data Exchange (ETDEWEB)
Huseynov, E.; Garibli, A., E-mail: elchin.huse@yahoo.com [National Nuclear Research Center, Department of Nanotechnology and Radiation Material Science, 1073, Inshaatchilar pr. 4, Baku (Azerbaijan)
2016-11-01
It has been reviewed the frequency dependencies of electrical conductivity of nanoparticles affected by neutron flux at different times and initial state, at various constant temperatures such as 100, 200, 300 and 400 K. Measurements have been carried out at each temperature at the different 97 values of frequency in the 1 Hz - 1 MHz range. From interdependence between real and imaginary parts of electrical conductivity it has been determined the type of conductivity. Moreover, in the work it is given the mechanism of electrical conductivity according to the obtained results. (Author)
DEFF Research Database (Denmark)
Christensen, Tage Emil; Behrens, Claus
The frequency dependent specific heat is a significant response function characterizing the glass transition. Contrary to the dielectric response it is not easily measured over many decades. The introduction of the 3-omega method, where the temperature oscillations at a planar oscillatoric heat...... generator is measured, made this possible. The method relied on a 1-d solution to the heat diffusion equation. There have been attempts to invoke the boundary effects to first order. However we present the fully 3-d solution to the problem including these effects. The frequency range can hereby...
Derkachova, A
2008-01-01
Multipolar plasmon oscillation frequencies and corresponding damping rates for nanospheres formed of the simplest free-electron metals are studied. The possibility of controlling plasmon features by choosing the size and dielectric properties of the sphere surroundings is discussed. Optical properties of the studied metals are described within the Drude-Sommerfeld model of the dielectric function with effective parameters acounting for the contribution of conduction electrons and of interband transitions. No approximation is made in respect of the size of a particle; plasmon size characteristics are described rigorously. The results of our experiment on sodium nanodroplets [1] are compared with the oscillation frequency size dependence of dipole and quadrupole plasmon.
Kamens, Helen M; Corley, Robin P; Richmond, Phillip A; Darlington, Todd M; Dowell, Robin; Hopfer, Christian J; Stallings, Michael C; Hewitt, John K; Brown, Sandra A; Ehringer, Marissa A
2016-09-01
Common SNPs in nicotinic acetylcholine receptor genes (CHRN genes) have been associated with drug behaviors and personality traits, but the influence of rare genetic variants is not well characterized. The goal of this project was to identify novel rare variants in CHRN genes in the Center for Antisocial Drug Dependence (CADD) and Genetics of Antisocial Drug Dependence (GADD) samples and to determine if low frequency variants are associated with antisocial drug dependence. Two samples of 114 and 200 individuals were selected using a case/control design including the tails of the phenotypic distribution of antisocial drug dependence. The capture, sequencing, and analysis of all variants in 16 CHRN genes (CHRNA1-7, 9, 10, CHRNB1-4, CHRND, CHRNG, CHRNE) were performed independently for each subject in each sample. Sequencing reads were aligned to the human reference sequence using BWA prior to variant calling with the Genome Analysis ToolKit (GATK). Low frequency variants (minor allele frequency antisocial drug behaviors.
Role of acoustic phonons in frequency dependent electronic thermal conductivity of graphene
Bhalla, Pankaj
2017-03-01
We study the effect of the electron-phonon interaction on the finite frequency dependent electronic thermal conductivity of two dimensional graphene. We calculate it for various acoustic phonons present in graphene and characterized by different dispersion relations using the memory function approach. It is found that the electronic thermal conductivity κe (T) in the zero frequency limit follows different power law for the longitudinal/transverse and the flexural acoustic phonons. For the longitudinal/transverse phonons, κe (T) ∼T-1 at the low temperature and saturates at the high temperature. These signatures qualitatively agree with the results calculated by solving the Boltzmann equation analytically and numerically. Similarly, for the flexural phonons, we find that κe (T) shows T 1 / 2 law at the low temperature and then saturates at the high temperature. In the finite frequency regime, we observe that the real part of the electronic thermal conductivity, Re [κe (ω , T) ] follows ω-2 behavior at the low frequency and becomes frequency independent at the high frequency.
Dmitriev, Mikhail G.; Makarov, Dmitry A.
2016-08-01
We carried out analysis of near optimality of one computationally effective nonlinear stabilizing control built for weakly nonlinear systems with coefficients depending on the state and the formal small parameter. First investigation of that problem was made in [M. G. Dmitriev, and D. A. Makarov, "The suboptimality of stabilizing regulator in a quasi-linear system with state-depended coefficients," in 2016 International Siberian Conference on Control and Communications (SIBCON) Proceedings, National Research University, Moscow, 2016]. In this paper, another optimal control and gain matrix representations were used and theoretical results analogous to cited work above were obtained. Also as in the cited work above the form of quality criterion on which this close-loop control is optimal was constructed.
Kramer, Sean; Bollt, Erik M
2013-09-01
Given multiple images that describe chaotic reaction-diffusion dynamics, parameters of a partial differential equation (PDE) model are estimated using autosynchronization, where parameters are controlled by synchronization of the model to the observed data. A two-component system of predator-prey reaction-diffusion PDEs is used with spatially dependent parameters to benchmark the methods described. Applications to modeling the ecological habitat of marine plankton blooms by nonlinear data assimilation through remote sensing are discussed.
Directory of Open Access Journals (Sweden)
Li Sheng
2014-01-01
Full Text Available This paper is concerned with the H∞ control problem for nonlinear stochastic Markov jump systems with state, control, and external disturbance-dependent noise. By means of inequality techniques and coupled Hamilton-Jacobi inequalities, both finite and infinite horizon H∞ control designs of such systems are developed. Two numerical examples are provided to illustrate the effectiveness of the proposed design method.
Kengne, Emmanuel; Saydé, Michel; Ben Hamouda, Fathi; Lakhssassi, Ahmed
2013-11-01
Analytical entire traveling wave solutions to the 1+1 density-dependent nonlinear reaction-diffusion equation via the extended generalized Riccati equation mapping method are presented in this paper. This equation can be regarded as an extension case of the Fisher-Kolmogoroff equation, which is used for studying insect and animal dispersal with growth dynamics. The analytical solutions are then used to investigate the effect of equation parameters on the population distribution.
Bollt, Erik
2012-01-01
Given multiple images that describe chaotic reaction-diffusion dynamics, parameters of a PDE model are estimated using autosynchronization, where parameters are controlled by synchronization of the model to the observed data. A two-component system of predator-prey reaction-diffusion PDEs is used with spatially dependent parameters to benchmark the methods described. Applications to modelling the ecological habitat of marine plankton blooms by nonlinear data assimilation through remote sensing is discussed.
Directory of Open Access Journals (Sweden)
Brajesh Kumar Singh
2016-01-01
Full Text Available This paper deals with an analytical solution of an initial value system of time dependent linear and nonlinear partial differential equations by implementing reduced differential transform (RDT method. The effectiveness and the convergence of RDT method are tested by means of five test problems, which indicates the validity and great potential of the reduced differential transform method for solving system of partial differential equations.
Yang, Linlin; Li, Nianbei; Li, Baowen
2014-12-01
The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law dependence of the thermal conductivities as a function of temperature are only determined by the exponents of the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive numerical simulations.
Yang, Linlin; Li, Nianbei; Li, Baowen
2014-12-01
The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law dependence of the thermal conductivities as a function of temperature are only determined by the exponents of the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive numerical simulations.
Smith, Tristan L
2016-01-01
We calculate the sensitivity to a circular polarization of an isotropic stochastic gravitational wave background (ISGWB) as a function of frequency for ground- and space-based interferometers and observations of the cosmic microwave background. The origin of a circularly polarized ISGWB may be due to exotic primordial physics (i.e., parity violation in the early universe) and may be strongly frequency dependent. We present calculations within a coherent framework which clarifies the basic requirements for sensitivity to circular polarization, in distinction from previous work which focused on each of these techniques separately. We find that the addition of an interferometer with the sensitivity of the Einstein Telescope in the southern hemisphere improves the sensitivity of the ground-based network to circular polarization by about a factor of two. The sensitivity curves presented in this paper make clear that the wide range in frequencies of current and planned observations ($10^{-18}\\ {\\rm Hz} \\lesssim f \\...
Frequency dependence of junction capacitance of BPW34 and BPW41 p-i-n photodiodes
Indian Academy of Sciences (India)
Habibe Bayhan; Şadan Özden
2007-04-01
This article investigates the frequency dependence of small-signal capacitance of silicon BPW34 and BPW41 (Vishay) p-i-n photodiodes. We show that the capacitance-frequency characteristics of these photodiodes are well-described by the Schibli and Milnes model. The activation energy and the concentration of the dominant trap levels detected in BPW34 and BPW41 are 280{330 meV and 1.1 × 1012 - 1.2 × 1012 cm-3, respectively. According to the high-frequency - measurements, the impurity concentrations are determined to be about 5.3 × 1012 and 1.9 × 1013 cm-3 in BPW41 and BPW34, respectively using the method of / (-2) vs. .