Directory of Open Access Journals (Sweden)
Z. Pashazadeh Atabakan
2013-01-01
Full Text Available Spectral homotopy analysis method (SHAM as a modification of homotopy analysis method (HAM is applied to obtain solution of high-order nonlinear Fredholm integro-differential problems. The existence and uniqueness of the solution and convergence of the proposed method are proved. Some examples are given to approve the efficiency and the accuracy of the proposed method. The SHAM results show that the proposed approach is quite reasonable when compared to homotopy analysis method, Lagrange interpolation solutions, and exact solutions.
Directory of Open Access Journals (Sweden)
Şuayip Yüzbaşı
2017-03-01
Full Text Available In this paper, we suggest a matrix method for obtaining the approximate solutions of the delay linear Fredholm integro-differential equations with constant coefficients using the shifted Legendre polynomials. The problem is considered with mixed conditions. Using the required matrix operations, the delay linear Fredholm integro-differential equation is transformed into a matrix equation. Additionally, error analysis for the method is presented using the residual function. Illustrative examples are given to demonstrate the efficiency of the method. The results obtained in this study are compared with the known results.
ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations
Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil
2018-04-01
In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.
Energy Technology Data Exchange (ETDEWEB)
Bobodzhanov, A A; Safonov, V F [National Research University " Moscow Power Engineering Institute" , Moscow (Russian Federation)
2013-07-31
The paper deals with extending the Lomov regularization method to classes of singularly perturbed Fredholm-type integro-differential systems, which have not so far been studied. In these the limiting operator is discretely noninvertible. Such systems are commonly known as problems with unstable spectrum. Separating out the essential singularities in the solutions to these problems presents great difficulties. The principal one is to give an adequate description of the singularities induced by 'instability points' of the spectrum. A methodology for separating singularities by using normal forms is developed. It is applied to the above type of systems and is substantiated in these systems. Bibliography: 10 titles.
Stability analysis of Runge-Kutta methods for nonlinear neutral delay integro-differential equations
Institute of Scientific and Technical Information of China (English)
2007-01-01
The sufficient conditions for the stability and asymptotic stability of Runge-Kutta methods for nonlinear neutral delay integro-differential equations are derived. A numerical test that confirms the theoretical results is given in the end.
Directory of Open Access Journals (Sweden)
Berenguer MI
2010-01-01
Full Text Available This paper deals with obtaining a numerical method in order to approximate the solution of the nonlinear Volterra integro-differential equation. We define, following a fixed-point approach, a sequence of functions which approximate the solution of this type of equation, due to some properties of certain biorthogonal systems for the Banach spaces and .
International Nuclear Information System (INIS)
Aruchunan, E.
2015-01-01
In this paper, we have examined the effectiveness of the quarter-sweep iteration concept on conjugate gradient normal residual (CGNR) iterative method by using composite Simpson's (CS) and finite difference (FD) discretization schemes in solving Fredholm integro-differential equations. For comparison purposes, Gauss- Seidel (GS) and the standard or full- and half-sweep CGNR methods namely FSCGNR and HSCGNR are also presented. To validate the efficacy of the proposed method, several analyses were carried out such as computational complexity and percentage reduction on the proposed and existing methods. (author)
A Numerical Algorithm for Solving a Four-Point Nonlinear Fractional Integro-Differential Equations
Gao, Er; Song, Songhe; Zhang, Xinjian
2012-01-01
We provide a new algorithm for a four-point nonlocal boundary value problem of nonlinear integro-differential equations of fractional order q∈(1,2] based on reproducing kernel space method. According to our work, the analytical solution of the equations is represented in the reproducing kernel space which we construct and so the n-term approximation. At the same time, the n-term approximation is proved to converge to the analytical solution. An illustrative example is also presented, which sh...
A Numerical Algorithm for Solving a Four-Point Nonlinear Fractional Integro-Differential Equations
Directory of Open Access Journals (Sweden)
Er Gao
2012-01-01
Full Text Available We provide a new algorithm for a four-point nonlocal boundary value problem of nonlinear integro-differential equations of fractional order q∈(1,2] based on reproducing kernel space method. According to our work, the analytical solution of the equations is represented in the reproducing kernel space which we construct and so the n-term approximation. At the same time, the n-term approximation is proved to converge to the analytical solution. An illustrative example is also presented, which shows that the new algorithm is efficient and accurate.
A pertinent approach to solve nonlinear fuzzy integro-differential equations.
Narayanamoorthy, S; Sathiyapriya, S P
2016-01-01
Fuzzy integro-differential equations is one of the important parts of fuzzy analysis theory that holds theoretical as well as applicable values in analytical dynamics and so an appropriate computational algorithm to solve them is in essence. In this article, we use parametric forms of fuzzy numbers and suggest an applicable approach for solving nonlinear fuzzy integro-differential equations using homotopy perturbation method. A clear and detailed description of the proposed method is provided. Our main objective is to illustrate that the construction of appropriate convex homotopy in a proper way leads to highly accurate solutions with less computational work. The efficiency of the approximation technique is expressed via stability and convergence analysis so as to guarantee the efficiency and performance of the methodology. Numerical examples are demonstrated to verify the convergence and it reveals the validity of the presented numerical technique. Numerical results are tabulated and examined by comparing the obtained approximate solutions with the known exact solutions. Graphical representations of the exact and acquired approximate fuzzy solutions clarify the accuracy of the approach.
Nonlinear Ritz approximation for Fredholm functionals
Directory of Open Access Journals (Sweden)
Mudhir A. Abdul Hussain
2015-11-01
Full Text Available In this article we use the modify Lyapunov-Schmidt reduction to find nonlinear Ritz approximation for a Fredholm functional. This functional corresponds to a nonlinear Fredholm operator defined by a nonlinear fourth-order differential equation.
Directory of Open Access Journals (Sweden)
Alsaedi Ahmed
2009-01-01
Full Text Available A generalized quasilinearization technique is developed to obtain a sequence of approximate solutions converging monotonically and quadratically to a unique solution of a boundary value problem involving Duffing type nonlinear integro-differential equation with integral boundary conditions. The convergence of order for the sequence of iterates is also established. It is found that the work presented in this paper not only produces new results but also yields several old results in certain limits.
International Nuclear Information System (INIS)
Savel'ev, M.V.
1988-01-01
Continual ''extensions'' of two-dimensional Toda lattices are proposed. They are described by integro-differential equations, generally speaking, with singular kernels, depending on new (third) variable. The problem of their integrability on the corresponding class of the initial discrete system solutions is discussed. The latter takes place, in particular, for the kernel coinciding with the causal function
International Nuclear Information System (INIS)
Zhang, Yu-Juan; Zhao, Dun; Luo, Hong-Gang
2014-01-01
We consider a wide class of integrable nonautonomous nonlinear integro-differential Schrödinger equation which contains the models for the soliton management in Bose–Einstein condensates, nonlinear optics, and inhomogeneous Heisenberg spin chain. With the help of the nonisospectral AKNS hierarchy, we obtain the N-fold Darboux transformation and the N-fold soliton-like solutions for the equation. The soliton management, especially the synchronized dispersive and nonlinear management in optical fibers is discussed. It is found that in the situation without external potential, the synchronized dispersive and nonlinear management can keep the integrability of the nonlinear Schrödinger equation; this suggests that in optical fibers, the synchronized dispersive and nonlinear management can control and maintain the propagation of a multi-soliton. - Highlights: • We consider a unified model for soliton management by an integrable integro-differential Schrödinger equation. • Using Lax pair, the N-fold Darboux transformation for the equation is presented. • The multi-soliton management is considered. • The synchronized dispersive and nonlinear management is suggested
Directory of Open Access Journals (Sweden)
Haiyan Yuan
2013-01-01
Full Text Available This paper introduces the stability and convergence of two-step Runge-Kutta methods with compound quadrature formula for solving nonlinear Volterra delay integro-differential equations. First, the definitions of (k,l-algebraically stable and asymptotically stable are introduced; then the asymptotical stability of a (k,l-algebraically stable two-step Runge-Kutta method with 0
International Nuclear Information System (INIS)
Nakahara, Yasuaki; Ise, Takeharu; Kobayashi, Kensuke; Itoh, Yasuyuki
1975-12-01
A new method has been developed for numerical solution of a class of nonlinear Volterra integro-differential equations with quadratic nonlinearity. After dividing the domain of the variable into subintervals, piecewise approximations are applied in the subintervals. The equation is first integrated over a subinterval to obtain the piecewise equation, to which six approximate treatments are applied, i.e. fully explicit, fully implicit, Crank-Nicolson, linear interpolation, quadratic and cubic spline. The numerical solution at each time step is obtained directly as a positive root of the resulting algebraic quadratic equation. The point reactor kinetics with a ramp reactivity insertion, linear temperature feedback and delayed neutrons can be described by one of this type of nonlinear Volterra integro-differential equations. The algorithm is applied to the Argonne benchmark problem and a model problem for a fast reactor without delayed neutrons. The fully implicit method has been found to be unconditionally stable in the sense that it always gives the positive real roots. The cubic spline method is divergent, and the other four methods are intermediate in between. From the estimation of the stability, convergency, accuracy and CPU time, it is concluded that the Crank-Nicolson method is best, then the linear interpolation method comes closely next to it. Discussions are also made on the possibility of applying the algorithm to the fusion reactor kinetics in the form of a nonlinear partial differential equation. (auth.)
Directory of Open Access Journals (Sweden)
Omar Abu Arqub
2012-01-01
Full Text Available This paper investigates the numerical solution of nonlinear Fredholm-Volterra integro-differential equations using reproducing kernel Hilbert space method. The solution ( is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximate solution ( is obtained and it is proved to converge to the exact solution (. Furthermore, the proposed method has an advantage that it is possible to pick any point in the interval of integration and as well the approximate solution and its derivative will be applicable. Numerical examples are included to demonstrate the accuracy and applicability of the presented technique. The results reveal that the method is very effective and simple.
Analysis of stability for stochastic delay integro-differential equations.
Zhang, Yu; Li, Longsuo
2018-01-01
In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.
Lipschitz Regularity of Solutions for Mixed Integro-Differential Equations
Barles, Guy; Chasseigne, Emmanuel; Ciomaga, Adina; Imbert, Cyril
2011-01-01
We establish new Hoelder and Lipschitz estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii-Lions's method. We thus extend the Hoelder regularity results recently obtained by Barles, Chasseigne and Imbert (2011). In addition, we deal with a new class of nonlocal equations that we term mixed integro-differential equations. These equations are particularly interesting, as they are degenerate both in the loc...
Integro-differential transport approaches
International Nuclear Information System (INIS)
Stepanek, J.; Arkuszewski, J.; Boffi, V.; Matausek, M.V.
1981-01-01
This chapter summarizes the work done in Italy, Poland, Switzerland and Yugoslavia in the field of integro-differential neutron transport theory. It reflects different viewpoints in the handling of the subject. Some of the methods are based only on the solution of the integro-differential equation, others use only the integral form of the transport equation. Use of the characteristic solution closely related to the integral equation (ARKUSZEWSKI et al.,(1979)) seems to be a rather effective way to accelerate the 2 dimensional discrete ordinates (Ssub(n)) transport methods and supress one of the main disadvantages, the ray effect. The advanced ''Surface Currents'' (MAEDER (1975)) and ''Surface Flux'' (STEPANEK (1979)) methods are based on the solution of both the integro-differential and integral form of the transport equation. As long as the spatial fluxes were considered to be flat in each region only the integral form of the transport equation was considered. The solution seems to be the best method of simple handling the higher order Legendre polynomials used to approximate spatial and angular flux distribution. The coupling of the Bsub(n) integral transport equations with the related Psub(n) equations removes the greatest disadvantage of the Psub(n) theory and closes the system of the Psub(n) equations (LIGOU, STEPANEK (1974))
Nonlinear Fredholm Integral Equation of the Second Kind with Quadrature Methods
Directory of Open Access Journals (Sweden)
M. Jafari Emamzadeh
2010-06-01
Full Text Available In this paper, a numerical method for solving the nonlinear Fredholm integral equation is presented. We intend to approximate the solution of this equation by quadrature methods and by doing so, we solve the nonlinear Fredholm integral equation more accurately. Several examples are given at the end of this paper
Matrix form of Legendre polynomials for solving linear integro-differential equations of high order
Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.
2017-04-01
This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.
N-th order impulsive integro-differential equations in Banach spaces
Directory of Open Access Journals (Sweden)
Manfeng Hu
2004-03-01
Full Text Available We investigate the maximal and minimal solutions of initial value problem for N-th order nonlinear impulsive integro-differential equation in Banach space by establishing a comparison result and using the upper and lower solutions methods.
New stability and boundedness results to Volterra integro-differential equations with delay
Directory of Open Access Journals (Sweden)
Cemil Tunç
2016-04-01
Full Text Available In this paper, we consider a certain non-linear Volterra integro-differential equations with delay. We study stability and boundedness of solutions. The technique of proof involves defining suitable Lyapunov functionals. Our results improve and extend the results obtained in literature.
Triple positive solutions of nth order impulsive integro-differential equations
Directory of Open Access Journals (Sweden)
Zeyong Qiu
2011-07-01
Full Text Available In this paper, we prove the existence of at least three positive solutions of boundary value problems for nth order nonlinear impulsive integro-differential equations of mixed type on infinite interval with infinite number of impulsive times. Our results are obtained by applying a new fixed point theorem introduced by Avery and Peterson.
Xu, Run; Ma, Xiangting
2017-01-01
In this paper, we establish some new retarded nonlinear Volterra-Fredholm type integral inequalities with maxima in two independent variables, and we present the applications to research the boundedness of solutions to retarded nonlinear Volterra-Fredholm type integral equations.
Numerical Treatment of Fixed Point Applied to the Nonlinear Fredholm Integral Equation
Directory of Open Access Journals (Sweden)
Berenguer MI
2009-01-01
Full Text Available The authors present a method of numerical approximation of the fixed point of an operator, specifically the integral one associated with a nonlinear Fredholm integral equation, that uses strongly the properties of a classical Schauder basis in the Banach space .
Directory of Open Access Journals (Sweden)
Cemil Tunç
2017-10-01
Full Text Available In this article, the authors obtain some clear assumptions for the asymptotic stability (AS and boundedness (B of solutions of non-linear retarded Volterra integro-differential equations (VIDEs of first order by constructing a new Lyapunov functional (LF. The results obtained are new and differ from those found in the literature, and they also contain and improve a result found in the literature under more less restrictive conditions. We establish an example and give a discussion to indicate the applicability of the weaker conditions obtained. We also employ MATLAB-Simulink to display the behaviors of the orbits of the (VIDEs considered. Keywords: Nonlinear, Volterra integro-differential equations, First order, Asymptotic stability, Boundedness, Lyapunov functional, MSC: 34D05, 34K20, 45J05
Continuous Multistep Methods for Volterra Integro-Differential
African Journals Online (AJOL)
Kamoh et al.
DIFFERENTIAL EQUATIONS OF THE SECOND ORDER. 1Kamoh N.M. ... methods, Volterra integro-differential equation, Convergent, ...... Research of a Multistep Method Applied to Numerical Solution of. Volterra ... Congress on Engineering.
Directory of Open Access Journals (Sweden)
Behzad Ghanbari
2014-01-01
Full Text Available We aim to study the convergence of the homotopy analysis method (HAM in short for solving special nonlinear Volterra-Fredholm integrodifferential equations. The sufficient condition for the convergence of the method is briefly addressed. Some illustrative examples are also presented to demonstrate the validity and applicability of the technique. Comparison of the obtained results HAM with exact solution shows that the method is reliable and capable of providing analytic treatment for solving such equations.
Directory of Open Access Journals (Sweden)
Diem Dang Huan
2015-12-01
Full Text Available The current paper is concerned with the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps in Hilbert spaces. Using the theory of a strongly continuous cosine family of bounded linear operators, stochastic analysis theory and with the help of the Banach fixed point theorem, we derive a new set of sufficient conditions for the controllability of nonlocal second-order impulsive neutral stochastic functional integro-differential equations with infinite delay and Poisson jumps. Finally, an application to the stochastic nonlinear wave equation with infinite delay and Poisson jumps is given.
Effective quadrature formula in solving linear integro-differential equations of order two
Eshkuvatov, Z. K.; Kammuji, M.; Long, N. M. A. Nik; Yunus, Arif A. M.
2017-08-01
In this note, we solve general form of Fredholm-Volterra integro-differential equations (IDEs) of order 2 with boundary condition approximately and show that proposed method is effective and reliable. Initially, IDEs is reduced into integral equation of the third kind by using standard integration techniques and identity between multiple and single integrals then truncated Legendre series are used to estimate the unknown function. For the kernel integrals, we have applied Gauss-Legendre quadrature formula and collocation points are chosen as the roots of the Legendre polynomials. Finally, reduce the integral equations of the third kind into the system of algebraic equations and Gaussian elimination method is applied to get approximate solutions. Numerical examples and comparisons with other methods reveal that the proposed method is very effective and dominated others in many cases. General theory of existence of the solution is also discussed.
Integro-differential equation approach extended to larger nuclei
International Nuclear Information System (INIS)
Adam, R.M.; Sofianos, S.A.; Fiedeldey, H.; Fabre de la Ripelle, M.
1992-01-01
We extend the integro-differential equation approach (IDEA) from few-nucleon to closed-shell and closed-subshell nuclei and outline the analytical methods required for the calculation of the density functions, which enter into the integro-differential equations. These contain all the physics for a system of fermions associated with the Pauli principle. In order to test the accuracy of the IDEA comparisons are made of the binding energies of 4 He, 12 C and 16 O obtained with effective potentials using the hypercentral approximation (HCA) providing a variational solution without correlations, the IDEA which fully includes the two-body correlations, the S-states integro-differential equation (SIDE) valid for potentials operating only on pairs in the S-state and those calculated by several variational or perturbative methods in the literature. (author)
Continuous multistep methods for volterra integro-differential ...
African Journals Online (AJOL)
A new class of numerical methods for Volterra integro-differential equations of the second order is developed. The methods are based on interpolation and collocation of the shifted Legendre polynomial as basis function with Trapezoidal quadrature rules. The convergence analysis revealed that the methods are consistent ...
Singularly perturbed volterra integro-differential equations | Bijura ...
African Journals Online (AJOL)
Several investigations have been made on singularly perturbed integral equations. This paper aims at presenting an algorithm for the construction of asymptotic solutions and then provide a proof asymptotic correctness to singularly perturbed systems of Volterra integro-differential equations. Mathematics Subject
Dielectric metasurfaces solve differential and integro-differential equations.
Abdollahramezani, Sajjad; Chizari, Ata; Dorche, Ali Eshaghian; Jamali, Mohammad Vahid; Salehi, Jawad A
2017-04-01
Leveraging subwavelength resonant nanostructures, plasmonic metasurfaces have recently attracted much attention as a breakthrough concept for engineering optical waves both spatially and spectrally. However, inherent ohmic losses concomitant with low coupling efficiencies pose fundamental impediments over their practical applications. Not only can all-dielectric metasurfaces tackle such substantial drawbacks, but also their CMOS-compatible configurations support both Mie resonances that are invariant to the incident angle. Here, we report on a transmittive metasurface comprising arrayed silicon nanodisks embedded in a homogeneous dielectric medium to manipulate phase and amplitude of incident light locally and almost independently. By taking advantage of the interplay between the electric/magnetic resonances and employing general concepts of spatial Fourier transformation, a highly efficient metadevice is proposed to perform mathematical operations including solution of ordinary differential and integro-differential equations with constant coefficients. Our findings further substantiate dielectric metasurfaces as promising candidates for miniaturized, two-dimensional, and planar optical analog computing systems that are much thinner than their conventional lens-based counterparts.
Method for solving the periodic problem for integro-differential equations
Directory of Open Access Journals (Sweden)
Snezhana G. Hristova
1989-05-01
Full Text Available In the paper a monotone-iterative method for approximate finding a couple of minimal and maximal quasisolutions of the periodic problem for a system of integro-differential equations of Volterra type is justified.
Zhou, L.-Q.; Meleshko, S. V.
2017-07-01
The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.
A bridge between hyperspherical and integro-differential approaches to the many-body bound states
International Nuclear Information System (INIS)
Fabre de la Ripelle, M.
1986-01-01
The solution of the Schroedinger equation can be obtained from the one of a system of coupled differential equations generated from the potential harmonic expansion of the bound-state wave function of a system of identical particles governed by two-body central interactions. It is shown that the system of coupled equations can be transformed into an equivalent integro-differential equation. For three bosons in S states this equation is identical to the Faddeev equation as written by Noyes. The integro-differential equations describing the triton for non-central realistic N-N forces are explicitly given. (Auth.)
Barrera, Begoña Barrios; Figalli, Alessio; Valdinoci, Enrico
2012-01-01
We prove that $C^{1,\\alpha}$ $s$-minimal surfaces are automatically $C^\\infty$. For this, we develop a new bootstrap regularity theory for solutions of integro-differential equations of very general type, which we believe is of independent interest.
Approximate solution of integro-differential equation of fractional (arbitrary order
Directory of Open Access Journals (Sweden)
Asma A. Elbeleze
2016-01-01
Full Text Available In the present paper, we study the integro-differential equations which are combination of differential and Fredholm–Volterra equations that have the fractional order with constant coefficients by the homotopy perturbation and the variational iteration. The fractional derivatives are described in Caputo sense. Some illustrative examples are presented.
Directory of Open Access Journals (Sweden)
A. Anguraj
2014-02-01
Full Text Available We study in this paper,the existence of solutions for fractional integro differential equations with impulsive and integral conditions by using fixed point method. We establish the Sufficient conditions and unique solution for given problem. An Example is also explained to the main results.
On a non classical oblique derivative problem for parabolic singular integro-differential operators
International Nuclear Information System (INIS)
Nguyen Minh Chuong; Le Quang Trung
1989-10-01
In this paper an oblique derivative problem for parabolic singular integro-differential operators was studied. In this problem the direction of the derivative may be tangent to the boundary of the domain. By the large parameter method theorems of existence and uniqueness of solutions of the problem were obtained. (author). 10 refs
Directory of Open Access Journals (Sweden)
Yan-Tao Bian
2014-04-01
Full Text Available In this article, we study weighted asymptotic behavior of solutions to the semilinear integro-differential equation $$ u'(t=Au(t+\\alpha\\int_{-\\infty}^{t}e^{-\\beta(t-s}Au(sds+f(t,u(t, \\quad t\\in \\mathbb{R}, $$ where $\\alpha, \\beta \\in \\mathbb{R}$, with $\\beta > 0, \\alpha \
Directory of Open Access Journals (Sweden)
Selvaraj Suganya
2017-01-01
Full Text Available In this manuscript, we implement Bohnenblust–Karlin’s fixed point theorem to demonstrate the existence of mild solutions for a class of impulsive fractional integro-differential inclusions (IFIDI with state-dependent delay (SDD in Banach spaces. An example is provided to illustrate the obtained abstract results.
Abstract fractional integro-differential equations involving nonlocal initial conditions in α-norm
Directory of Open Access Journals (Sweden)
Wang Rong-Nian
2011-01-01
Full Text Available Abstract In the present paper, we deal with the Cauchy problems of abstract fractional integro-differential equations involving nonlocal initial conditions in α-norm, where the operator A in the linear part is the generator of a compact analytic semigroup. New criterions, ensuring the existence of mild solutions, are established. The results are obtained by using the theory of operator families associated with the function of Wright type and the semigroup generated by A, Krasnoselkii's fixed point theorem and Schauder's fixed point theorem. An application to a fractional partial integro-differential equation with nonlocal initial condition is also considered. Mathematics subject classification (2000 26A33, 34G10, 34G20
Mikhailov, SE
2006-01-01
Copyright @ 2006 Tech Science Press A quasi-static mixed boundary value problem of elastic damage mechanics for a continuously inhomogeneous body is considered. Using the two-operator Green-Betti formula and the fundamental solution of an auxiliary homogeneous linear elasticity with frozen initial, secant or tangent elastic coe±cients, a boundary-domain integro-differential formulation of the elasto-plastic problem with respect to the displacement rates and their gradients is derived. Usin...
On choice of trial functions in integro-differential variational principles of transport theory
International Nuclear Information System (INIS)
Loyalka, S.K.; Cipolla, J.W. Jr.
1988-01-01
In several problems of particle transport, quantities of macroscopic interest can be related to stationary values of variational functionals based on general integro-differential equations and boundary conditions. Within the context of the jump (Milne's) problem, it is shown how highly accurate results can be obtained by using trial functions based on the eigenfunctions of the relevant integrodifferential equations. Such choices of trial functions should apply equally effectively to problems in curved geometries, both internal and external
Directory of Open Access Journals (Sweden)
Salih Yalcinbas
2016-01-01
Full Text Available In this paper, a new collocation method based on the Fibonacci polynomials is introduced to solve the high-order linear Volterra integro-differential equations under the conditions. Numerical examples are included to demonstrate the applicability and validity of the proposed method and comparisons are made with the existing results. In addition, an error estimation based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation.
Some properties for integro-differential operator defined by a fractional formal.
Abdulnaby, Zainab E; Ibrahim, Rabha W; Kılıçman, Adem
2016-01-01
Recently, the study of the fractional formal (operators, polynomials and classes of special functions) has been increased. This study not only in mathematics but extended to another topics. In this effort, we investigate a generalized integro-differential operator [Formula: see text] defined by a fractional formal (fractional differential operator) and study some its geometric properties by employing it in new subclasses of analytic univalent functions.
Existence results for fractional integro-differential inclusions with state-dependent delay
Directory of Open Access Journals (Sweden)
Siracusa Giovana
2017-10-01
Full Text Available In this paper we are concerned with a class of abstract fractional integro-differential inclusions with infinite state-dependent delay. Our approach is based on the existence of a resolvent operator for the homogeneous equation.We establish the existence of mild solutions using both contractive maps and condensing maps. Finally, an application to the theory of heat conduction in materials with memory is given.
A variational Integro-Differential Equation for three identical particles in an S-state
International Nuclear Information System (INIS)
Fabre de la Ripelle, M.; Braun, M.; Sofianos, S.A.
1997-01-01
Starting from the Schroedinger equation, a new Variational Integro-Differential Equation (VIDE) for three bosons in S-state is derived. The wave function has the simple structure of a sum of two-body amplitudes. It is shown that the new equation gives results which are three orders of magnitude better than the corresponding results obtained from a single Faddeev equation, where the pairs are in an S-state. The latter equation generates an exact solution only for S-state projected potentials. Moreover, the ghost contributions occurring in the Faddeev amplitudes for three bosons in an S-state do not exist in the new equation. (author)
Reproducing kernel method with Taylor expansion for linear Volterra integro-differential equations
Directory of Open Access Journals (Sweden)
Azizallah Alvandi
2017-06-01
Full Text Available This research aims of the present a new and single algorithm for linear integro-differential equations (LIDE. To apply the reproducing Hilbert kernel method, there is made an equivalent transformation by using Taylor series for solving LIDEs. Shown in series form is the analytical solution in the reproducing kernel space and the approximate solution $ u_{N} $ is constructed by truncating the series to $ N $ terms. It is easy to prove the convergence of $ u_{N} $ to the analytical solution. The numerical solutions from the proposed method indicate that this approach can be implemented easily which shows attractive features.
On an integro-differential model for pest control in a heterogeneous environment.
Rodríguez, Nancy
2015-04-01
Insect pests pose a major threat to a balanced ecology as it can threaten local species as well as spread human diseases; thus, making the study of pest control extremely important. In practice, the sterile insect release method (SIRM), where a sterile population is introduced into the wild population with the aim of significantly reducing the growth of the population, has been a popular technique used to control pest invasions. In this work we introduce an integro-differential equation to model the propagation of pests in a heterogeneous environment, where this environment is divided into three regions. In one region SIRM is not used making this environment conducive to propagation of the insects. A second region is the eradication zone where there is an intense release of sterile insects, leading to decay of the population in this region. In the final region we explore two scenarios. In the first case, there is a small release of sterile insects and we prove that if the eradication zone is sufficiently large the pests will not invade. In the second case, when SIRM is not used at all in this region we show that invasions always occur regardless of the size of the eradication zone. Finally, we consider the limiting equation of the integro-differential equation and prove that in this case there is a critical length of the eradication zone which separates propagation from obstruction. Moreover, we provide some upper and lower bound for the critical length.
GOSWAMI, DEEPJYOTI; PANI, AMIYA K.; YADAV, SANGITA
2014-01-01
AWe propose and analyse an alternate approach to a priori error estimates for the semidiscrete Galerkin approximation to a time-dependent parabolic integro-differential equation with nonsmooth initial data. The method is based on energy arguments combined with repeated use of time integration, but without using parabolic-type duality techniques. An optimal L2-error estimate is derived for the semidiscrete approximation when the initial data is in L2. A superconvergence result is obtained and then used to prove a maximum norm estimate for parabolic integro-differential equations defined on a two-dimensional bounded domain. © 2014 Australian Mathematical Society.
An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations
Pani, Amiya K.
2010-06-06
In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.
An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations
Pani, Amiya K.; Yadav, Sangita
2010-01-01
In this article, a priori error bounds are derived for an hp-local discontinuous Galerkin (LDG) approximation to a parabolic integro-differential equation. It is shown that error estimates in L 2-norm of the gradient as well as of the potential are optimal in the discretizing parameter h and suboptimal in the degree of polynomial p. Due to the presence of the integral term, an introduction of an expanded mixed type Ritz-Volterra projection helps us to achieve optimal estimates. Further, it is observed that a negative norm estimate of the gradient plays a crucial role in our convergence analysis. As in the elliptic case, similar results on order of convergence are established for the semidiscrete method after suitably modifying the numerical fluxes. The optimality of these theoretical results is tested in a series of numerical experiments on two dimensional domains. © 2010 Springer Science+Business Media, LLC.
Directory of Open Access Journals (Sweden)
Bashir Ahmad
2013-02-01
Full Text Available In this article, we discuss the existence of solutions for a boundary-value problem of integro-differential equations of fractional order with nonlocal fractional boundary conditions by means of some standard tools of fixed point theory. Our problem describes a more general form of fractional stochastic dynamic model for financial asset. An illustrative example is also presented.
Goswami, Deepjyoti; Pani, Amiya K.; Yadav, Sangita
2013-01-01
In the first part of this article, a new mixed method is proposed and analyzed for parabolic integro-differential equations (PIDE) with nonsmooth initial data. Compared to the standard mixed method for PIDE, the present method does not bank on a
International Nuclear Information System (INIS)
Ng, Felix S.L.
2016-01-01
We develop a statistical-mechanical model of one-dimensional normal grain growth that does not require any drift-velocity parameterization for grain size, such as used in the continuity equation of traditional mean-field theories. The model tracks the population by considering grain sizes in neighbour pairs; the probability of a pair having neighbours of certain sizes is determined by the size-frequency distribution of all pairs. Accordingly, the evolution obeys a partial integro-differential equation (PIDE) over ‘grain size versus neighbour grain size’ space, so that the grain-size distribution is a projection of the PIDE's solution. This model, which is applicable before as well as after statistically self-similar grain growth has been reached, shows that the traditional continuity equation is invalid outside this state. During statistically self-similar growth, the PIDE correctly predicts the coarsening rate, invariant grain-size distribution and spatial grain size correlations observed in direct simulations. The PIDE is then reducible to the standard continuity equation, and we derive an explicit expression for the drift velocity. It should be possible to formulate similar parameterization-free models of normal grain growth in two and three dimensions.
Directory of Open Access Journals (Sweden)
Elhassan Eljaoui
2018-01-01
Full Text Available We introduce the Aumann fuzzy improper integral to define the convolution product of a fuzzy mapping and a crisp function in this paper. The Laplace convolution formula is proved in this case and used to solve fuzzy integro-differential equations with kernel of convolution type. Then, we report and correct an error in the article by Salahshour et al. dealing with the same topic.
International Nuclear Information System (INIS)
El Doma, M.
1995-05-01
An age-structured epidemic model of an SI type that incorporate vertical transmission is investigated when the fertility and mortality rates depend on age. We determine the steady states and examine their stabilities. (author). 13 refs
Kudryavtsev, O.; Rodochenko, V.
2018-03-01
We propose a new general numerical method aimed to solve integro-differential equations with variable coefficients. The problem under consideration arises in finance where in the context of pricing barrier options in a wide class of stochastic volatility models with jumps. To handle the effect of the correlation between the price and the variance, we use a suitable substitution for processes. Then we construct a Markov-chain approximation for the variation process on small time intervals and apply a maturity randomization technique. The result is a system of boundary problems for integro-differential equations with constant coefficients on the line in each vertex of the chain. We solve the arising problems using a numerical Wiener-Hopf factorization method. The approximate formulae for the factors are efficiently implemented by means of the Fast Fourier Transform. Finally, we use a recurrent procedure that moves backwards in time on the variance tree. We demonstrate the convergence of the method using Monte-Carlo simulations and compare our results with the results obtained by the Wiener-Hopf method with closed-form expressions of the factors.
Pouchol, Camille
2017-10-27
We consider a system of two coupled integro-differential equations modelling populations of healthy and cancer cells under chemotherapy. Both populations are structured by a phenotypic variable, representing their level of resistance to the treatment. We analyse the asymptotic behaviour of the model under constant infusion of drugs. By designing an appropriate Lyapunov function, we prove that both cell densities converge to Dirac masses. We then define an optimal control problem, by considering all possible infusion protocols and minimising the number of cancer cells over a prescribed time frame. We provide a quasi-optimal strategy and prove that it solves this problem for large final times. For this modelling framework, we illustrate our results with numerical simulations, and compare our optimal strategy with periodic treatment schedules.
Energy Technology Data Exchange (ETDEWEB)
Alvarez, Gustavo [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Concepcion Univ. (Chile). Dept. de Fisica; Cvetic, Gorazd [Univ. Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor [Univ. del Bio-Bio, Chillan (Chile). Grupo de Matematica Aplicada; Univ. del Bio-Bio, Chillan (Chile). Grupo de Fisica de Altas Energias; Parra-Ferrada, Ivan [Talca Univ. (Chile). Inst. de Matematica y Fisica
2016-11-15
We consider a simple model for QCD dynamics in which DGLAP integro-differential equation may be solved analytically. This is a gauge model which possesses dominant evolution of gauge boson (gluon) distribution and in which the gauge coupling does not run. This may be N=4 supersymmetric gauge theory with softly broken supersymmetry, other finite supersymmetric gauge theory with lower level of supersymmetry, or topological Chern-Simons field theories. We maintain only one term in the splitting function of unintegrated gluon distribution and solve DGLAP analytically for this simplified splitting function. The solution is found by use of the Cauchy integral formula. The solution restricts form of the unintegrated gluon distribution as function of transfer momentum and of Bjorken x. Then we consider an almost realistic splitting function of unintegrated gluon distribution as an input to DGLAP equation and solve it by the same method which we have developed to solve DGLAP equation for the toy-model. We study a result obtained for the realistic gluon distribution and find a singular Bessel-like behaviour in the vicinity of the point x=0 and a smooth behaviour in the vicinity of the point x=1.
Goswami, Deepjyoti
2013-05-01
In the first part of this article, a new mixed method is proposed and analyzed for parabolic integro-differential equations (PIDE) with nonsmooth initial data. Compared to the standard mixed method for PIDE, the present method does not bank on a reformulation using a resolvent operator. Based on energy arguments combined with a repeated use of an integral operator and without using parabolic type duality technique, optimal L2 L2-error estimates are derived for semidiscrete approximations, when the initial condition is in L2 L2. Due to the presence of the integral term, it is, further, observed that a negative norm estimate plays a crucial role in our error analysis. Moreover, the proposed analysis follows the spirit of the proof techniques used in deriving optimal error estimates for finite element approximations to PIDE with smooth data and therefore, it unifies both the theories, i.e., one for smooth data and other for nonsmooth data. Finally, we extend the proposed analysis to the standard mixed method for PIDE with rough initial data and provide an optimal error estimate in L2, L 2, which improves upon the results available in the literature. © 2013 Springer Science+Business Media New York.
International Nuclear Information System (INIS)
Sakamoto, Tatsuya; Endo, Tomohiro; Yamamoto, Akio
2014-01-01
In the current core analysis, spatial homogenization is utilized to reduce the computational time. The discontinuity factor (DF) is one of the effective correction factors to reduce spatial homogenization error. The DF in diffusion equation is widely used; on the other hand the DF in transport equation has not been put to practical use although several efforts have been carried out. In this paper, the angular flux discontinuity factor (AFDF) as the DF for the integro-differential transport equation (e.g., the discrete-ordinate method, the method of characteristics) is theoretically described and its applicability is discussed. The AFDF is used to preserve the region-wise neutron leakage at each spatial mesh and defined as a ratio of heterogeneous and homogeneous angular fluxes at the homogenized region surface. In a homogeneous calculation with the AFDF, the angular flux is discontinuous at the region surface. In this paper the applicability of the AFDF to fuel pin cell homogenization is verified for one-dimensional slab geometry. As a result of this verification, it is confirmed that the AFDF has the capability to reduce the spatial homogenization error of fuel pin cell homogenization. (author)
A degree theory for a class of perturbed Fredholm maps II
Directory of Open Access Journals (Sweden)
Calamai Alessandro
2006-01-01
Full Text Available In a recent paper we gave a notion of degree for a class of perturbations of nonlinear Fredholm maps of index zero between real infinite dimensional Banach spaces. Our purpose here is to extend that notion in order to include the degree introduced by Nussbaum for local -condensing perturbations of the identity, as well as the degree for locally compact perturbations of Fredholm maps of index zero recently defined by the first and third authors.
elative controllability of nonlinear neutral Volterra Integrodiferential ...
African Journals Online (AJOL)
In this paper we established sufficient conditions for the relative controllability of the nonlinear neutral volterra integro-differential systems with distributed delays in the control. The results were established using the Schauder's fixed point theorem which is an extension of known results. Journal of the Nigerian Association of ...
Pecina, P.
2016-12-01
The integro-differential equation for the polarization vector P inside the meteor trail, representing the analytical solution of the set of Maxwell equations, is solved for the case of backscattering of radio waves on meteoric ionization. The transversal and longitudinal dimensions of a typical meteor trail are small in comparison to the distances to both transmitter and receiver and so the phase factor appearing in the kernel of the integral equation is large and rapidly changing. This allows us to use the method of stationary phase to obtain an approximate solution of the integral equation for the scattered field and for the corresponding generalized radar equation. The final solution is obtained by expanding it into the complete set of Bessel functions, which results in solving a system of linear algebraic equations for the coefficients of the expansion. The time behaviour of the meteor echoes is then obtained using the generalized radar equation. Examples are given for values of the electron density spanning a range from underdense meteor echoes to overdense meteor echoes. We show that the time behaviour of overdense meteor echoes using this method is very different from the one obtained using purely numerical solutions of the Maxwell equations. Our results are in much better agreement with the observations performed e.g. by the Ondřejov radar.
Institute of Scientific and Technical Information of China (English)
张铁; 李长军
2001-01-01
The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.
Fredholm theory in ordered Banach algebras | Benjamin ...
African Journals Online (AJOL)
This paper illustrates some initial steps taken in the effort of unifying the theory of positivity in ordered Banach algebas (OBAs) with the general Fred-holm theory in Banach algebras. We introduce here upper Weyl and upper Browder elements in an OBA relative to an arbitrary Banach algebra homomorphism and investigate ...
Atlas, Glen; Li, John K-J; Amin, Shawn; Hahn, Robert G
2017-01-01
A closed-form integro-differential equation (IDE) model of plasma dilution (PD) has been derived which represents both the intravenous (IV) infusion of crystalloid and the postinfusion period. Specifically, PD is mathematically represented using a combination of constant ratio, differential, and integral components. Furthermore, this model has successfully been applied to preexisting data, from a prior human study, in which crystalloid was infused for a period of 30 minutes at the beginning of thyroid surgery. Using Euler's formula and a Laplace transform solution to the IDE, patients could be divided into two distinct groups based on their response to PD during the infusion period. Explicitly, Group 1 patients had an infusion-based PD response which was modeled using an exponentially decaying hyperbolic sine function, whereas Group 2 patients had an infusion-based PD response which was modeled using an exponentially decaying trigonometric sine function. Both Group 1 and Group 2 patients had postinfusion PD responses which were modeled using the same combination of hyperbolic sine and hyperbolic cosine functions. Statistically significant differences, between Groups 1 and 2, were noted with respect to the area under their PD curves during both the infusion and postinfusion periods. Specifically, Group 2 patients exhibited a response to PD which was most likely consistent with a preoperative hypovolemia. Overall, this IDE model of PD appears to be highly "adaptable" and successfully fits clinically-obtained human data on a patient-specific basis, during both the infusion and postinfusion periods. In addition, patient-specific IDE modeling of PD may be a useful adjunct in perioperative fluid management and in assessing clinical volume kinetics, of crystalloid solutions, in real time.
Stochastic Analysis of Gaussian Processes via Fredholm Representation
Directory of Open Access Journals (Sweden)
Tommi Sottinen
2016-01-01
Full Text Available We show that every separable Gaussian process with integrable variance function admits a Fredholm representation with respect to a Brownian motion. We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. We show the convenience of the Fredholm representation by giving applications to equivalence in law, bridges, series expansions, stochastic differential equations, and maximum likelihood estimations.
Fredholm Modules over Graph C^{∗}-Algebras
DEFF Research Database (Denmark)
Crisp, Tyrone
2015-01-01
We present two applications of explicit formulas, due to Cuntz and Krieger, for computations in K-homology of graph C∗-algebras. We prove that every K-homology class for such an algebra is represented by a Fredholm module having finite-rank commutators, and we exhibit generating Fredholm modules...
Eddy current modeling in linear and nonlinear multifilamentary composite materials
Menana, Hocine; Farhat, Mohamad; Hinaje, Melika; Berger, Kevin; Douine, Bruno; Lévêque, Jean
2018-04-01
In this work, a numerical model is developed for a rapid computation of eddy currents in composite materials, adaptable for both carbon fiber reinforced polymers (CFRPs) for NDT applications and multifilamentary high temperature superconductive (HTS) tapes for AC loss evaluation. The proposed model is based on an integro-differential formulation in terms of the electric vector potential in the frequency domain. The high anisotropy and the nonlinearity of the considered materials are easily handled in the frequency domain.
Institute of Scientific and Technical Information of China (English)
LI Shoufu
2005-01-01
A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.
On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation
Directory of Open Access Journals (Sweden)
Mesloub Said
2008-01-01
Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.
On Fredholm-Stieltjes quadratic integral equation with supremum
International Nuclear Information System (INIS)
Darwish, M.A.
2007-08-01
We prove an existence theorem of monotonic solutions for a quadratic integral equation of Fredholm-Stieltjes type in C[0,1]. The concept of measure of non-compactness and a fixed point theorem due to Darbo are the main tools in carrying out our proof. (author)
Perturbation Results on Semi-Fredholm Operators and Applications
Directory of Open Access Journals (Sweden)
Abdelmoumen Boulbeba
2009-01-01
Full Text Available We give some results concerning stability in the Fredholm operators and Browder operators set, via the concept of measure of noncompactness. Moreover, we prove some localization results on the essential spectra of bounded operators on Banach space. As application, we describe the essential spectra of weighted shift operators. Finally, we describe the spectra of polynomially compact operators, and we use the obtained results to study the solvability for operator equations in Banach spaces.
on differential operators on w 1,2 space and fredholm operators
African Journals Online (AJOL)
A selfadjoint differential operator defined over a closed and bounded interval on Sobolev space which is a dense linear subspace of a Hilbert space over the same interval is considered and shown to be a Fredholm operator with index zero. KEY WORDS: Sobolev space, Hilbert space, dense subspace, Fredholm operator
A hybrid iterative scheme for optimal control problems governed by ...
African Journals Online (AJOL)
MRT
KEY WORDS: Optimal control problem; Fredholm integral equation; ... control problems governed by Fredholm integral and integro-differential equations is given in (Brunner and Yan, ..... The exact optimal trajectory and control functions are. 2.
Directory of Open Access Journals (Sweden)
Mohammad Almousa
2013-01-01
Full Text Available The aim of this study is to present the use of a semi analytical method called the optimal homotopy asymptotic method (OHAM for solving the linear Fredholm integral equations of the first kind. Three examples are discussed to show the ability of the method to solve the linear Fredholm integral equations of the first kind. The results indicated that the method is very effective and simple.
Numerical method for solving linear Fredholm fuzzy integral equations of the second kind
Energy Technology Data Exchange (ETDEWEB)
Abbasbandy, S. [Department of Mathematics, Imam Khomeini International University, P.O. Box 288, Ghazvin 34194 (Iran, Islamic Republic of)]. E-mail: saeid@abbasbandy.com; Babolian, E. [Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618 (Iran, Islamic Republic of); Alavi, M. [Department of Mathematics, Arak Branch, Islamic Azad University, Arak 38135 (Iran, Islamic Republic of)
2007-01-15
In this paper we use parametric form of fuzzy number and convert a linear fuzzy Fredholm integral equation to two linear system of integral equation of the second kind in crisp case. We can use one of the numerical method such as Nystrom and find the approximation solution of the system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples.
Saaty, Thomas L
1981-01-01
Covers major types of classical equations: operator, functional, difference, integro-differential, and more. Suitable for graduate students as well as scientists, technologists, and mathematicians. "A welcome contribution." - Math Reviews. 1964 edition.
On Dirichlet-to-Neumann Maps and Some Applications to Modified Fredholm Determinants
Gesztesy, Fritz; Mitrea, Marius; Zinchenko, Maxim
2010-01-01
We consider Dirichlet-to-Neumann maps associated with (not necessarily self-adjoint) Schrodinger operators in $L^2(\\Omega; d^n x)$, $n=2,3$, where $\\Omega$ is an open set with a compact, nonempty boundary satisfying certain regularity conditions. As an application we describe a reduction of a certain ratio of modified Fredholm perturbation determinants associated with operators in $L^2(\\Omega; d^n x)$ to modified Fredholm perturbation determinants associated with operators in $L^2(\\partial\\Om...
Optimal Homotopy Asymptotic Method for Solving System of Fredholm Integral Equations
Directory of Open Access Journals (Sweden)
Bahman Ghazanfari
2013-08-01
Full Text Available In this paper, optimal homotopy asymptotic method (OHAM is applied to solve system of Fredholm integral equations. The effectiveness of optimal homotopy asymptotic method is presented. This method provides easy tools to control the convergence region of approximating solution series wherever necessary. The results of OHAM are compared with homotopy perturbation method (HPM and Taylor series expansion method (TSEM.
Introducing Differential Equations Students to the Fredholm Alternative--In Staggered Doses
Savoye, Philippe
2011-01-01
The development, in an introductory differential equations course, of boundary value problems in parallel with initial value problems and the Fredholm Alternative. Examples are provided of pairs of homogeneous and nonhomogeneous boundary value problems for which existence and uniqueness issues are considered jointly. How this heightens students'…
Directory of Open Access Journals (Sweden)
V. Vijayakumar
2012-09-01
Full Text Available n this paper, we study the global existence of solutions for the initial value problems for Volterra-Fredholm type neutral impulsive functional integrodifferential equations. Using the Leray-Schauder's Alternative theorem, we derive conditions under which a solution exists globally. An application is provided to illustrate the theory.
Nonlinear wave propagation through a ferromagnet with damping in ...
Indian Academy of Sciences (India)
magnetic waves in a ferromagnet can be reduced to an integro-differential equation. Keywords. Solitons; integro-differential equations; reductive perturbation method. PACS Nos 41.20 Jb; 05.45 Yv; 03.50 De; 78.20 Ls. 1. Introduction. The phenomenon of propagation of electromagnetic waves in ferromagnets are not only.
Voytishek, Anton V.; Shipilov, Nikolay M.
2017-11-01
In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.
Solvability in the sense of sequences to some non-Fredholm operators
Directory of Open Access Journals (Sweden)
Vitaly Volpert
2013-07-01
Full Text Available We study the solvability of certain linear nonhomogeneous elliptic problems and show that under reasonable technical conditions the convergence in $L^2(mathbb{R}^d$ of their right sides implies the existence and the convergence in $H^2(mathbb{R}^d$ of the solutions. The equations involve second order differential operators without Fredholm property and we use the methods of spectral and scattering theory for Schrodinger type operators analogously to our preceding work [17].
On the recovering of a coupled nonlinear Schroedinger potential
Energy Technology Data Exchange (ETDEWEB)
Corona, Gulmaro Corona [Area de Analisis Matematico y sus Aplicaciones, Universidad Autonoma Metropolitana, Atzcapotzalco, DF (Mexico)]. E-mail: ccg@hp9000a1.uam.mx
2000-04-28
We establish a priori conditions for a Gel'fand-Levitan (GL) integral using some results of the Fredholm theory. As consequence, we obtain a recovering formula for the potential of the coupled nonlinear Schroedinger equations. The remarkable fact is that the recovering formula is given in terms of the solutions of a classical GL-integral equation. (author)
A Special Variant of the Moment Method for Fredholm Integral Equations of the Second Kind
Directory of Open Access Journals (Sweden)
S. A. Solov’eva
2015-01-01
Full Text Available We consider the linear Fredholm integral equation of the second kind, where the kernel and the free term are smooth functions. We find the unknown function in this class as well.Exact and approximate methods for the solution of linear Fredholm integral equations of the second kind are well developed. However, classical methods do not take into account the structural properties of the kernel and the free term of equation.In this paper we develop and justify a special variant of the moment method to solve this equation, which takes into account the differential properties of initial data. The proposed paper furthers studies of N.S Gabbasov, I.P. Kasakina, and S.A Solov’eva. We use approximation theory, version of the general theory of approximate methods of analysis that Gabdulkhayev B.G suggested, and methods of functional analysis to prove theorems. In addition, we use N.S. Gabbasov’s ideas and methods in papers that are devoted to the Fredholm equations of the first kind, as well as N.S. Gabbasov and S.A Solov’eva’s investigations on the Fredholm equations of the third kind in the space of distributions.The first part of the paper provides a description of the basic function space and elements of the theory of approximation in it.In the second part we propose and theoretically justify a generalized moment method. We have demonstrated that the improvement of differential properties of the initial data improves the approximation accuracy. Since, in practice, the approximate equations are solved, as a rule, only approximately, we prove the stability and causality of the proposed method. The resulting estimate of the paper is in good agreement with the estimate for the ordinary moment method for equations of the second kind in the space of continuous functions.In the final section we have shown that a developed method is optimal in order of accuracy among all polynomial projection methods to solve Fredholm integral equations of the second
Solution of stochastic nonlinear PDEs using Wiener-Hermite expansion of high orders
El Beltagy, Mohamed
2016-01-06
In this work, the Wiener-Hermite Expansion (WHE) is used to solve stochastic nonlinear PDEs excited with noise. The generation of the equivalent set of deterministic integro-differential equations is automated and hence allows for high order terms of WHE. The automation difficulties are discussed, solved and implemented to output the final system to be solved. A numerical Pikard-like algorithm is suggested to solve the resulting deterministic system. The automated WHE is applied to the 1D diffusion equation and to the heat equation. The results are compared with previous solutions obtained with WHEP (WHE with perturbation) technique. The solution obtained using the suggested WHE technique is shown to be the limit of the WHEP solutions with infinite number of corrections. The automation is extended easily to account for white-noise of higher dimension and for general nonlinear PDEs.
On the conditions for the onset of nonlinear chirping structures in NSTX
Duarte, Vinicius; Podesta, Mario; Berk, Herbert; Gorelenkov, Nikolai
2015-11-01
The nonlinear dynamics of phase space structures is a topic of interest in tokamak physics in connection with fast ion loss mechanisms. The onset of phase-space holes and clumps has been theoretically shown to be associated with an explosive solution of an integro-differential, nonlocal cubic equation that governs the early mode amplitude evolution in the weakly nonlinear regime. The existence and stability of the solutions of the cubic equation have been theoretically studied as a function of Fokker-Planck coefficients for the idealized case of a single resonant point of a localized mode. From realistic computations of NSTX mode structures and resonant surfaces, we calculate effective pitch angle scattering and slowing-down (drag) collisional coefficients and analyze NSTX discharges for different cases with respect to chirping experimental observation. Those results are confronted to the theory that predicts the parameters region that allow for chirping to take place.
Solution of stochastic nonlinear PDEs using Wiener-Hermite expansion of high orders
El Beltagy, Mohamed
2016-01-01
In this work, the Wiener-Hermite Expansion (WHE) is used to solve stochastic nonlinear PDEs excited with noise. The generation of the equivalent set of deterministic integro-differential equations is automated and hence allows for high order terms of WHE. The automation difficulties are discussed, solved and implemented to output the final system to be solved. A numerical Pikard-like algorithm is suggested to solve the resulting deterministic system. The automated WHE is applied to the 1D diffusion equation and to the heat equation. The results are compared with previous solutions obtained with WHEP (WHE with perturbation) technique. The solution obtained using the suggested WHE technique is shown to be the limit of the WHEP solutions with infinite number of corrections. The automation is extended easily to account for white-noise of higher dimension and for general nonlinear PDEs.
Asymptotics for the Fredholm Determinant of the Sine Kernel on a Union of Intervals
Widom, Harold
1994-01-01
In the bulk scaling limit of the Gaussian Unitary Ensemble of Hermitian matrices the probability that an interval of length $s$ contains no eigenvalues is the Fredholm determinant of the sine kernel $\\sin(x-y)\\over\\pi(x-y)$ over this interval. A formal asymptotic expansion for the determinant as $s$ tends to infinity was obtained by Dyson. In this paper we replace a single interval of length $s$ by $sJ$ where $J$ is a union of $m$ intervals and present a proof of the asymptotics up to second ...
Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves
Gaillard, Pierre
2016-06-01
We construct solutions to the Kadomtsev-Petviashvili equation (KPI) in terms of Fredholm determinants. We deduce solutions written as a quotient of Wronskians of order 2N. These solutions, called solutions of order N, depend on 2N - 1 parameters. When one of these parameters tends to zero, we obtain N order rational solutions expressed as a quotient of two polynomials of degree 2N(N + 1) in x, y, and t depending on 2N - 2 parameters. So we get with this method an infinite hierarchy of solutions to the KPI equation.
Numerical treatments for solving nonlinear mixed integral equation
Directory of Open Access Journals (Sweden)
M.A. Abdou
2016-12-01
Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.
International Nuclear Information System (INIS)
Feinberg, Joshua
2004-01-01
We study the Fredholm minors associated with a Fredholm equation of the second type. We present a couple of new linear recursion relations involving the nth and (n - 1)th minors, whose solution is a representation of the nth minor as an n x n determinant of resolvents. The latter is given a simple interpretation in terms of a path integral over non-interacting fermions. We also provide an explicit formula for the functional derivative of a Fredholm minor of order n with respect to the kernel. Our formula is a linear combination of the nth and the (n ± 1)th minors
On form factors of the conjugated field in the non-linear Schroedinger model
Energy Technology Data Exchange (ETDEWEB)
Kozlowski, K.K.
2011-05-15
Izergin-Korepin's lattice discretization of the non-linear Schroedinger model along with Oota's inverse problem provides one with determinant representations for the form factors of the lattice discretized conjugated field operator. We prove that these form factors converge, in the zero lattice spacing limit, to those of the conjugated field operator in the continuous model. We also compute the large-volume asymptotic behavior of such form factors in the continuous model. These are in particular characterized by Fredholm determinants of operators acting on closed contours. We provide a way of defining these Fredholm determinants in the case of generic paramaters. (orig.)
Existence of solutions for nonlinear mixed type integrodifferential equation of second order
Directory of Open Access Journals (Sweden)
Haribhau Laxman Tidke
2010-04-01
Full Text Available In this paper, we investigate the existence of solutions for nonlinear mixed Volterra-Fredholm integrodifferential equation of second order with nonlocal conditions in Banach spaces. Our analysis is based on Leray-Schauder alternative, rely on a priori bounds of solutions and the inequality established by B. G. Pachpatte.
Nonlinear physics of shear Alfvén waves
International Nuclear Information System (INIS)
Zonca, Fulvio; Chen, Liu
2014-01-01
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results
Nonlinear physics of shear Alfvén waves
Zonca, Fulvio; Chen, Liu
2014-02-01
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These "nonlinear equilibria" or "phase-space zonal structures" dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.
Lévy flights in an infinite potential well as a hypersingular Fredholm problem.
Kirichenko, Elena V; Garbaczewski, Piotr; Stephanovich, Vladimir; Żaba, Mariusz
2016-05-01
We study Lévy flights with arbitrary index 0potential well of infinite depth. Such a problem appears in many physical systems ranging from stochastic interfaces to fracture dynamics and multifractality in disordered quantum systems. The major technical tool is a transformation of the eigenvalue problem for initial fractional Schrödinger equation into that for Fredholm integral equation with hypersingular kernel. The latter equation is then solved by means of expansion over the complete set of orthogonal functions in the domain D, reducing the problem to the spectrum of a matrix of infinite dimensions. The eigenvalues and eigenfunctions are then obtained numerically with some analytical results regarding the structure of the spectrum.
Asymptotics for the Fredholm determinant of the sine kernel on a union of intervals
Widom, Harold
1995-07-01
In the bulk scaling limit of the Gaussian Unitary Ensemble of hermitian matrices the probability that an interval of length s contains no eigenvalues is the Fredholm determinant of the sine kernel{sin (x - y)}/{π (x - y)} over this interval. A formal asymptotic expansion for the determinant as s tends to infinity was obtained by Dyson. In this paper we replace a single interval of length s by sJ, where J is a union of m intervals and present a proof of the asymptotics up to second order. The logarithmic derivative with respect to s of the determinant equals a constant (expressible in terms of hyperelliptic integrals) times s, plus a bounded oscillatory function of s (zero if m=1, periodic if m=2, and in general expressible in terms of the solution of a Jacobi inversion problem), plus o(1). Also determined are the asymptotics of the trace of the resolvent operator, which is the ratio in the same model of the probability that the set contains exactly one eigenvalue to the probability that it contains none. The proofs use ideas from orthogonal polynomial theory.
Cieslinski, Jan L.; Ferapontov, Eugene V.; Kitaev, Alexander V.; Nimmo, Jonathan J. C.
2009-10-01
-component dispersionless Boussinesq-type system. T E Kouloukas and V G Papageorgiou introduce a family of nonparametric Yang-Baxter maps obtained by re-factorization of matrix polynomials of first degree. These maps are Poisson with respect to the Sklyanin bracket, and their degenerations are connected to known integrable systems on quad-graphs. S V Manakov and P M Santini apply a novel version of the inverse scattering transform based on Lax pairs in multidimensional commuting vector fields to the heavenly and Pavlov equations, establishing that their localized solutions evolve without breaking, and constructing the long-time behaviour of the corresponding Cauchy problems. Discretizations of integrable geometric models depend heavily on the coordinates used. M Nieszporski and A Sym show how to discretize Bianchi surfaces (associated with an elliptic version of the Ernst equation) in arbitrary parametrization. C Rogers and A Szereszewski study the Bäcklund transformation for L-isothermic surfaces in the original Bianchi formulation. They establish a connection between this transformation and a nonhomogeneous linear Schrödinger equation and construct a class of generalized Dupin cyclides. W K Schief, A Szereszewski and C Rogers study a classical system of equilibrium equations for shell membranes. Various examples of viable membrane geometries lead to remarkable geometric configurations such as generalized Dupin cyclides and L-minimal surfaces. A Sergyeyev constructs infinite hierarchies of nonlocal higher symmetries for the oriented associativity equations using the spectral problem. The hierarchies in question generalize those constructed by Chen, Kontsevich and Schwarz for the WDVV equations. J Shiraishi and Y Tutiya study an integro-differential equation which generalizes the periodic intermediate long wave equation. The kernel of the singular integral involved is a second order difference of the Weierstrass ζ-function. Using Sato's formulation, the authors
Benhammouda, Brahim
2016-01-01
Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.
Simulating propagation of coherent light in random media using the Fredholm type integral equation
Kraszewski, Maciej; Pluciński, Jerzy
2017-06-01
Studying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g. Radiative Transfer Theory and Monte Carlo methods) but they do not treat coherence properties of light directly. Some variations of these methods allows to predict behavior of coherent light but only for an averaged realization of the scattering medium. This limits their application in studying many physical phenomena connected to a specific distribution of scattering particles (e.g. laser speckle). In general, numerical simulation of coherent light propagation in a specific realization of random medium is a time- and memory-consuming problem. The goal of the presented research was to develop new efficient method for solving this problem. The method, presented in our earlier works, is based on solving the Fredholm type integral equation, which describes multiple light scattering process. This equation can be discretized and solved numerically using various algorithms e.g. by direct solving the corresponding linear equations system, as well as by using iterative or Monte Carlo solvers. Here we present recent development of this method including its comparison with well-known analytical results and a finite-difference type simulations. We also present extension of the method for problems of multiple scattering of a polarized light on large spherical particles that joins presented mathematical formalism with Mie theory.
Nonlinear interaction between a pair of oblique modes in a supersonic mixing layer: Long-wave limit
Balsa, Thomas F.; Gartside, James
1995-01-01
The nonlinear interaction between a pair of symmetric, oblique, and spatial instability modes is studied in the long-wave limit using asymptotic methods. The base flow is taken to be a supersonic mixing layer whose Mach number is such that the corresponding vortex sheet is marginally stable according to Miles' criterion. It is shown that the amplitude of the mode obeys a nonlinear integro-differential equation. Numerical solutions of this equation show that, when the obliqueness angle is less than pi/4, the effect of the nonlinearity is to enhance the growth rate of the instability. The solution terminates in a singularity at a finite streamwise location. This result is reminiscent of that obtained in the vicinity of the neutral point by other authors in several different types of flows. On the other hand, when the obliqueness angle is more than pi/4, the streamwise development of the amplitude is characterized by a series of modulations. This arises from the fact that the nonlinear term in the amplitude equation may be either stabilizing or destabilizing, depending on the value of the streamwise coordinate. However, even in this case the amplitude of the disturbance increases, though not as rapidly as in the case for which the angle is less than pi/4. Quite generally then, the nonlinear interaction between two oblique modes in a supersonic mixing layer enhances the growth of the disturbance.
International Nuclear Information System (INIS)
Arsenault, Louis-François; Millis, Andrew J; Neuberg, Richard; Hannah, Lauren A
2017-01-01
We present a supervised machine learning approach to the inversion of Fredholm integrals of the first kind as they arise, for example, in the analytic continuation problem of quantum many-body physics. The approach provides a natural regularization for the ill-conditioned inverse of the Fredholm kernel, as well as an efficient and stable treatment of constraints. The key observation is that the stability of the forward problem permits the construction of a large database of outputs for physically meaningful inputs. Applying machine learning to this database generates a regression function of controlled complexity, which returns approximate solutions for previously unseen inputs; the approximate solutions are then projected onto the subspace of functions satisfying relevant constraints. Under standard error metrics the method performs as well or better than the Maximum Entropy method for low input noise and is substantially more robust to increased input noise. We suggest that the methodology will be similarly effective for other problems involving a formally ill-conditioned inversion of an integral operator, provided that the forward problem can be efficiently solved. (paper)
International Nuclear Information System (INIS)
Prykarpatsky, A.K.; Blackmore, D.L.; Bogolubov, N.N. Jr.
2007-05-01
The infinite-dimensional operator Lie algebras of the related integrable nonlocal differential-difference dynamical systems are treated as their hidden symmetries. As a result of their dimerization the Lax type representations for both local differential-difference equations and nonlocal ones are obtained. An alternative approach to the Lie-algebraic interpretation of the integrable local differential-difference systems is also proposed. The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the centrally extended Lie algebra of integro-differential operators with matrix-valued coefficients coupled with suitable eigenfunctions and adjoint eigenfunctions evolutions of associated spectral problems is obtained by means of a specially constructed Baecklund transformation. The Hamiltonian description for the corresponding set of additional symmetry hierarchies is represented. The relation of these hierarchies with Lax type integrable (3+1)-dimensional nonlinear dynamical systems and their triple Lax type linearizations is analyzed. The Lie-algebraic structures, related with centrally extended current operator Lie algebras are discussed with respect to constructing new nonlinear integrable dynamical systems on functional manifolds and super-manifolds. Special Poisson structures and related with them factorized integrable operator dynamical systems having interesting applications in modern mathematical physics, quantum computing mathematics and other fields are constructed. The previous purely computational results are explained within the approach developed. (author)
The breakdown of the weakly-nonlinear regime for kinetic instabilities
Sanz-Orozco, David; Berk, Herbert; Wang, Ge
2017-10-01
The evolution of marginally-unstable waves that interact resonantly with populations of energetic particles is governed by a well-known cubic integro-differential equation for the mode amplitude. One of the outcomes predicted by the equation is the so-called ``explosive'' regime, where the amplitude grows indefinitely, eventually taking the equation outside of its domain of validity. Beyond this point, only full Vlasov simulations will accurately describe the evolution of the mode amplitude. In this work, we study the breakdown of the cubic equation in detail. We find that, while the cubic equation is still valid, the distribution function of the energetic particles locally flattens or ``folds'' in phase space. This feature is unexpected in view of the assumptions of the theory that are given in. We also derive fifth-order terms in the wave equation, which not only give us a more accurate description of the marginally-unstable modes, but they also allow us to predict the breakdown of the cubic equation. Our findings allow us to better understand the transition between weakly-nonlinear modes and the long-term chirping modes that ultimately emerge.
Some stability and boundedness criteria for a class of Volterra integro-differential systems
Directory of Open Access Journals (Sweden)
Jito Vanualailai
2002-01-01
Full Text Available Using Lyapunov and Lyapunov-like functionals, we study the stability and boundedness of the solutions of a system of Volterra integrodifferential equations. Our results, also extending some of the more well-known criteria, give new sufficient conditions for stability of the zero solution of the nonperturbed system, and prove that the same conditions for the perturbed system yield boundedness when the perturbation is $L^2$.
Thermoacoustic tomography for an integro-differential wave equation modeling attenuation
Acosta, Sebastián; Palacios, Benjamín
2018-02-01
In this article we study the inverse problem of thermoacoustic tomography (TAT) on a medium with attenuation represented by a time-convolution (or memory) term, and whose consideration is motivated by the modeling of ultrasound waves in heterogeneous tissue via fractional derivatives with spatially dependent parameters. Under the assumption of being able to measure data on the whole boundary, we prove uniqueness and stability, and propose a convergent reconstruction method for a class of smooth variable sound speeds. By a suitable modification of the time reversal technique, we obtain a Neumann series reconstruction formula.
Deterministic factor analysis: methods of integro-differentiation of non-integral order
Directory of Open Access Journals (Sweden)
Valentina V. Tarasova
2016-12-01
Full Text Available Objective to summarize the methods of deterministic factor economic analysis namely the differential calculus and the integral method. nbsp Methods mathematical methods for integrodifferentiation of nonintegral order the theory of derivatives and integrals of fractional nonintegral order. Results the basic concepts are formulated and the new methods are developed that take into account the memory and nonlocality effects in the quantitative description of the influence of individual factors on the change in the effective economic indicator. Two methods are proposed for integrodifferentiation of nonintegral order for the deterministic factor analysis of economic processes with memory and nonlocality. It is shown that the method of integrodifferentiation of nonintegral order can give more accurate results compared with standard methods method of differentiation using the first order derivatives and the integral method using the integration of the first order for a wide class of functions describing effective economic indicators. Scientific novelty the new methods of deterministic factor analysis are proposed the method of differential calculus of nonintegral order and the integral method of nonintegral order. Practical significance the basic concepts and formulas of the article can be used in scientific and analytical activity for factor analysis of economic processes. The proposed method for integrodifferentiation of nonintegral order extends the capabilities of the determined factorial economic analysis. The new quantitative method of deterministic factor analysis may become the beginning of quantitative studies of economic agents behavior with memory hereditarity and spatial nonlocality. The proposed methods of deterministic factor analysis can be used in the study of economic processes which follow the exponential law in which the indicators endogenous variables are power functions of the factors exogenous variables including the processes described by the Cobb ndash Douglas production function since these methods allow to more accurately describe the total influence of the factors in comparison with the standard method. The proposed methods can be used in the study of economic processes described by equations with a powerlaw nonlocality in factor space and in state space.
Qualitative analysis of an integro-differential equation model of periodic chemotherapy
Jain, Harsh Vardhan; Byrne, Helen M.
2012-01-01
An existing model of tumor growth that accounts for cell cycle arrest and cell death induced by chemotherapy is extended to simulate the response to treatment of a tumor growing in vivo. The tumor is assumed to undergo logistic growth in the absence
International Nuclear Information System (INIS)
McMillan, B.F.; Jolliet, S.; Tran, T.M.; Villard, L.; Bottino, A.; Angelino, P.
2010-01-01
Fluctuating quantities in magnetic confinement geometries often inherit a strong anisotropy along the field lines. One technique for describing these structures is the use of a certain set of Fourier components on the tori of nested flux surfaces. We describe an implementation of this approach for solving partial differential equations, like Poisson's equation, where a different set of Fourier components may be chosen on each surface according to the changing safety factor profile. Allowing the resolved components to change to follow the anisotropy significantly reduces the total number of degrees of freedom in the description. This can permit large gains in computational performance. We describe, in particular, how this approach can be applied to rapidly solve the gyrokinetic Poisson equation in a particle code, ORB5 (Jolliet et al. (2007) [5]), with a regular (non-field-aligned) mesh. (authors)
Singular Cauchy Initial Value Problem for Certain Classes of Integro-Differential Equations
Directory of Open Access Journals (Sweden)
Zdeněk Šmarda
2010-01-01
Full Text Available The existence and uniqueness of solutions and asymptotic estimate of solution formulas are studied for the following initial value problem: g(ty′(t=ay(t[1+f(t,y(t,∫0+tK(t,s,y(t,y(sds], y(0+=0, t∈(0,t0], where a>0 is a constant and t0>0. An approach which combines topological method of T. Ważewski and Schauder's fixed point theorem is used.
Singular Cauchy Initial Value Problem for Certain Classes of Integro-Differential Equations
Directory of Open Access Journals (Sweden)
Šmarda Zdeněk
2010-01-01
Full Text Available The existence and uniqueness of solutions and asymptotic estimate of solution formulas are studied for the following initial value problem: , , , where is a constant and . An approach which combines topological method of T. Ważewski and Schauder's fixed point theorem is used.
Integro-differential equation analysis and radioisotope imaging systems. Research proposal
International Nuclear Information System (INIS)
Hart, H.
1976-01-01
Design modifications of a five-probe focusing collimator coincidence radioisotope scanning system are described. Clinical applications of the system were tested in phantoms using radioisotopes with short biological half-lives, including 75 Se, 192 Ir, 43 K, 130 I, and 82 Br. Data processing methods are also described
Energy Technology Data Exchange (ETDEWEB)
Besse, Nicolas, E-mail: Nicolas.Besse@oca.eu [Laboratoire J.-L. Lagrange, UMR CNRS/OCA/UCA 7293, Université Côte d’Azur, Observatoire de la Côte d’Azur, Bd de l’Observatoire CS 34229, 06304 Nice Cedex 4 (France); Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex (France); Coulette, David, E-mail: David.Coulette@ipcms.unistra.fr [Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex (France); Institut de Physique et Chimie des Matériaux de Strasbourg, UMR CNRS/US 7504, Université de Strasbourg, 23 Rue du Loess, 67034 Strasbourg (France)
2016-08-15
Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov–Poisson and Vlasov–Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to the VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, “Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry” (submitted)] and were found to be surprisingly close to those for the original gyrokinetic-Vlasov equations. The purpose of the present paper is to make these new ideas accessible to two readerships: applied mathematicians and plasma physicists.
The Form of the Solutions of the Linear Integro-Differential Equations of Subsonic Aeroelasticity.
1979-09-01
coefficients w (0) are given in Table 3; it V follows that, for T > 0 and (E - K v2) non-singular, the inverse transform of M- ) has the form, using (B-I) V...degree of freedom system by expanding )M- I in the form of equation (35), obtaining its inverse transform using the v -1results of Appendix A and hence...obtaining the inverse transform of M- l . The two-dimensional case, when the characteristic equation has a zero root, is not as simple. * Assuming all
Qualitative analysis of an integro-differential equation model of periodic chemotherapy
Jain, Harsh Vardhan
2012-12-01
An existing model of tumor growth that accounts for cell cycle arrest and cell death induced by chemotherapy is extended to simulate the response to treatment of a tumor growing in vivo. The tumor is assumed to undergo logistic growth in the absence of therapy, and treatment is administered periodically rather than continuously. Necessary and sufficient conditions for the global stability of the cancer-free equilibrium are derived and conditions under which the system evolves to periodic solutions are determined. © 2012 Elsevier Ltd. All rights reserved.
Nonlinear Elliptic Boundary Value Problems at Resonance with Nonlinear Wentzell Boundary Conditions
Directory of Open Access Journals (Sweden)
Ciprian G. Gal
2017-01-01
Full Text Available Given a bounded domain Ω⊂RN with a Lipschitz boundary ∂Ω and p,q∈(1,+∞, we consider the quasilinear elliptic equation -Δpu+α1u=f in Ω complemented with the generalized Wentzell-Robin type boundary conditions of the form bx∇up-2∂nu-ρbxΔq,Γu+α2u=g on ∂Ω. In the first part of the article, we give necessary and sufficient conditions in terms of the given functions f, g and the nonlinearities α1, α2, for the solvability of the above nonlinear elliptic boundary value problems with the nonlinear boundary conditions. In other words, we establish a sort of “nonlinear Fredholm alternative” for our problem which extends the corresponding Landesman and Lazer result for elliptic problems with linear homogeneous boundary conditions. In the second part, we give some additional results on existence and uniqueness and we study the regularity of the weak solutions for these classes of nonlinear problems. More precisely, we show some global a priori estimates for these weak solutions in an L∞-setting.
International Nuclear Information System (INIS)
Boyd, R.W.
1992-01-01
Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics
Energy Technology Data Exchange (ETDEWEB)
Hart, H.
1976-03-09
Design modifications of a five-probe focusing collimator coincidence radioisotope scanning system are described. Clinical applications of the system were tested in phantoms using radioisotopes with short biological half-lives, including /sup 75/Se, /sup 192/Ir, /sup 43/K, /sup 130/I, and /sup 82/Br. Data processing methods are also described. (CH)
International Nuclear Information System (INIS)
Le Mehaute, Alain; El Kaabouchi, Abdelaziz; Nivanen, Laurent
2008-01-01
Advances in fractional analysis suggest a new way for the physics understanding of Riemann's conjecture. It asserts that, if s is a complex number, the non trivial zeros of zeta function 1/(ζ(s)) =Σ n=1 ∞ (μ(n))/(n s ) in the gap [0, 1], is characterized by s=1/2 (1+2iθ). This conjecture can be understood as a consequence of 1/2-order fractional differential characteristics of automorph dynamics upon opened punctuated torus with an angle at infinity equal to π/4. This physical interpretation suggests new opportunities for revisiting the cryptographic methodologies
Pouchol, Camille; Clairambault, Jean; Lorz, Alexander; Tré lat, Emmanuel
2017-01-01
to the treatment. We analyse the asymptotic behaviour of the model under constant infusion of drugs. By designing an appropriate Lyapunov function, we prove that both cell densities converge to Dirac masses. We then define an optimal control problem, by considering
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Fymat, A. L.
1976-01-01
The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús
2018-01-01
This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
National Research Council Canada - National Science Library
Drazin, P. G
1992-01-01
This book is an introduction to the theories of bifurcation and chaos. It treats the solution of nonlinear equations, especially difference and ordinary differential equations, as a parameter varies...
Gasinski, Leszek
2005-01-01
Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.
Zemlyanova, A. Y.
2013-03-08
A problem of an interface crack between two semi-planes made out of different materials under an action of an in-plane loading of general tensile-shear type is treated in a semi-analytical manner with the help of Dirichlet-to-Neumann mappings. The boundaries of the crack and the interface between semi-planes are subjected to a curvature-dependent surface tension. The resulting system of six singular integro-differential equations is reduced to the system of three Fredholm equations. It is shown that the introduction of the curvature-dependent surface tension eliminates both classical integrable power singularity of the order 1/2 and an oscillating singularity present in a classical linear elasticity solutions. The numerical results are obtained by solving the original system of singular integro-differential equations by approximating unknown functions with Taylor polynomials. © 2013 The Author.
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...
Microscopic tunneling theory of long Josephson junctions
DEFF Research Database (Denmark)
Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm
1992-01-01
We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the detai......We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...
Approximate and renormgroup symmetries
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling
2009-07-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Approximate and renormgroup symmetries
International Nuclear Information System (INIS)
Ibragimov, Nail H.; Kovalev, Vladimir F.
2009-01-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities
Indian Academy of Sciences (India)
In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...
PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena
Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo
2010-10-01
one can generalize or adapt this construction to different settings like the integro-differential, discrete or super-symmetric ones. The emphasis is usually to find auxiliary linear systems defining an infinite set of linear commuting flows whose solutions, if some asymptotic conditions are imposed, are named wave or Baker-Akhiezer functions. These linear flows determine the so called Lax equations, another infinite set of commuting equations whose compatibility leads to the so called Zakharov-Shabat system. An alternative description of the hierarchies is achieved with the use of the bilinear equations directly linked with the tau-function description of the hierarchy. There are two paradigmatic integrable hierarchies, namely the KP and 2-dimensional Toda lattice (2DTL). These hierarchies are treated within this volume in three contributions. In particular, Takasaki [5] reconsiders the extended Toda hierarchy of Carlet, Dubrovin and Zhang in the light of Ogawa's 2 + 1D extension of the 1D Toda hierarchy. It turns out that the former may be thought of as some sort of dimensional reduction of the latter. This explains the structure of the bilinear formalism proposed by Milanov. Carlet and Manas [6] study the 2-component KP and 2D Toda hierarchies and solve explicitly several implicit constraints present in the usual Lax formulation of the hierarchy, thus identifying a set of free dependent variables for such hierarchies. Finally, the KP hierarchy is considered in the paper by Lin et al [7], which explores the extended flows of a q-deformed modified KP hierarchy leading to the introduction of self-consistent sources. By a combination of the dressing method and the method of variation of constants, the authors are able through a dressing approach to find a scheme for the construction of solutions of the corresponding integrable equations with self-consistent sources. The study of dispersionless integrable hierarchies is an active field of research, and this special issue
Fu, Y. B.; Ogden, R. W.
2001-05-01
This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
[Nonlinear magnetohydrodynamics
International Nuclear Information System (INIS)
1994-01-01
Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday's law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm's law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile
Westra, H.J.R.
2012-01-01
In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like
The problem of evolution of toroidal plasma equilibrium
International Nuclear Information System (INIS)
Kostomarov, D.; Zaitsev, F.; Shishkin, A.
1999-03-01
This paper is devoted to an advanced mathematical model for a self-consistent description of the evolution of free boundary toroidal plasmas, with a description of numerical algorithms for the solution of the appropriate non-linear system of integro-differential equations, and discussion of some results from the model. (author)
International Nuclear Information System (INIS)
Frankel, J.I.
1997-01-01
This investigation used sysmbolic manipulation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular integral and integro-differential equations which appear in radiative and mixed-mode energy transport. Contained in this report are seven papers which present the technical results as individual modules
Czech Academy of Sciences Publication Activity Database
Pecina, Petr
2016-01-01
Roč. 463, č. 2 (2016), s. 1185-1198 ISSN 0035-8711 Institutional support: RVO:67985815 Keywords : scattering * radar astronomy * meteorites * meteors * meteoroids Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016
On Poisson Nonlinear Transformations
Directory of Open Access Journals (Sweden)
Nasir Ganikhodjaev
2014-01-01
Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.
Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong
2015-01-01
This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.
Hanamura, Eiichi; Yamanaka, Akio
2007-01-01
This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. Based on the quantum theory of radiation, Quantum Nonlinear Optics incorporates the exciting developments in novel nonlinear responses of materials (plus laser oscillation and superradiance) developed over the past decade. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, mutual manipulation of light and matter, laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. Also considered are Q-switching, mode locking and pulse compression. Experimental and theoretical aspects are intertwined throughout.
Nonlinear dynamics and complexity
Luo, Albert; Fu, Xilin
2014-01-01
This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.
Distributed nonlinear optical response
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov
2005-01-01
of bound states of out of phase bright solitons and dark solitons. Also, the newly introduced analogy between the nonlocal cubic nonlinear and the quadratic nonlinear media, presented in paper B and Chapter 3 is discussed. In particular it supplies intuitive physical meaning of the formation of solitons...... in quadratic nonlinear media. In the second part of the report (Chapter 4), the possibility to obtain light with ultrabroad spectrum due to the interplay of many nonlinear effects based on cubic nonlinearity is investigated thoroughly. The contribution of stimulated Raman scattering, a delayed nonlinear...... a modified nonlinear Schroedinger model equation. Chapter 4 and papers D and E are dedicated to this part of the research....
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
Ooi, Kelvin J. A.; Tan, Dawn T. H.
2017-10-01
The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.
Stationary nonlinear Airy beams
International Nuclear Information System (INIS)
Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.
2011-01-01
We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-01-01
With the aim of considering models with persistent memory we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macrovolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth...
Uraltseva, N N
1995-01-01
This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p
Kono, Mitsuo
2010-01-01
A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.
Nonlinear optics at interfaces
International Nuclear Information System (INIS)
Chen, C.K.
1980-12-01
Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory
International Nuclear Information System (INIS)
Zelenyj, L.M.; Kuznetsova, M.M.
1989-01-01
Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed
Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers
International Nuclear Information System (INIS)
Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.
2005-01-01
The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized πelectrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized π electrons along an extended group of atoms in such molecules
Nonlinear dynamics in Nuclotron
International Nuclear Information System (INIS)
Dinev, D.
1997-01-01
The paper represents an extensive study of the nonlinear beam dynamics in the Nuclotron. Chromatic effects, including the dependence of the betatron tunes on the amplitude, and chromatic perturbations have been investigated taking into account the measured field imperfections. Beam distortion, smear, dynamic aperture and nonlinear acceptance have been calculated for different particle energies and betatron tunes
Nonlinear Optics and Applications
Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)
2007-01-01
Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Nonlinear photonic metasurfaces
Li, Guixin; Zhang, Shuang; Zentgraf, Thomas
2017-03-01
Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the 'meta-atoms'), enable the manipulation of light-matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing.
International Nuclear Information System (INIS)
Khoroshun, L.P.
1995-01-01
The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero
On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity
Directory of Open Access Journals (Sweden)
Nikolai N. Bogoliubov (Jr.
2007-01-01
Full Text Available A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed.
Li, Tatsien
2017-01-01
This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.
Photostable nonlinear optical polycarbonates
Faccini, M.; Balakrishnan, M.; Diemeer, Mart; Torosantucci, Riccardo; Driessen, A.; Reinhoudt, David; Verboom, Willem
2008-01-01
Highly thermal and photostable nonlinear optical polymers were obtained by covalently incorporating the tricyanovinylidenediphenylaminobenzene (TCVDPA) chromophore to a polycarbonate backbone. NLO polycarbonates with different chromophore attachment modes and flexibilities were synthesized. In spite
Nonlinear singular elliptic equations
International Nuclear Information System (INIS)
Dong Minh Duc.
1988-09-01
We improve the Poincare inequality, the Sobolev imbedding theorem and the Trudinger imbedding theorem and prove a Mountain pass theorem. Applying these results we study a nonlinear singular mixed boundary problem. (author). 22 refs
Nonlinear Optical Terahertz Technology
National Aeronautics and Space Administration — We develop a new approach to generation of THz radiation. Our method relies on mixing two optical frequency beams in a nonlinear crystalline Whispering Gallery Mode...
Nonlinear differential equations
Struble, Raimond A
2017-01-01
Detailed treatment covers existence and uniqueness of a solution of the initial value problem, properties of solutions, properties of linear systems, stability of nonlinear systems, and two-dimensional systems. 1962 edition.
Terahertz semiconductor nonlinear optics
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias
2013-01-01
In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz...... nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...... to a decrease of plasma frequency in semiconductor and produces a substantial modification of THz-range material dielectric function, described by the Drude model. As a result, the nonlinearity of both absorption coefficient and refractive index of the semiconductor is observed. In particular we demonstrate...
Leburn, Christopher; Reid, Derryck
2013-01-01
The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...
Nonlinear surface Alfven waves
International Nuclear Information System (INIS)
Cramer, N.F.
1991-01-01
The problem of nonlinear surface Alfven waves propagating on an interface between a plasma and a vacuum is discussed, with dispersion provided by the finite-frequency effect, i.e. the finite ratio of the frequency to the ion-cyclotron frequency. A set of simplified nonlinear wave equations is derived using the method of stretched co-ordinates, and another approach uses the generation of a second-harmonic wave and its interaction with the first harmonic to obtain a nonlinear dispersion relation. A nonlinear Schroedinger equation is then derived, and soliton solutions found that propagate as solitary pulses in directions close to parallel and antiparallel to the background magnetic field. (author)
Indian Academy of Sciences (India)
The Structures Panel of the Aeronautics Research and Development Board of India ... A great variety of topics was covered, including themes such as nonlinear finite ... or shell structures, and three are on the composite form of construction, ...
A nonlinear oscillatory problem
International Nuclear Information System (INIS)
Zhou Qingqing.
1991-10-01
We have studied the nonlinear oscillatory problem of orthotropic cylindrical shell, we have analyzed the character of the oscillatory system. The stable condition of the oscillatory system has been given. (author). 6 refs
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
Introduction to nonlinear science
Nicolis, G
1995-01-01
One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...
2015-05-07
associated with the lattice background; the nonlinearity is derived from the inclusion of cubic nonlinearity. Often the background potential is periodic...dispersion branch we can find discrete evolution equations for the envelope associated with the lattice NLS equation (1) by looking for solutions of...spatial operator in the above NLS equation can be elliptic, hyperbolic or parabolic . We remark that further reduction is possible by going into a moving
Nonlinear dynamics and astrophysics
International Nuclear Information System (INIS)
Vallejo, J. C.; Sanjuan, M. A. F.
2000-01-01
Concepts and techniques from Nonlinear Dynamics, also known as Chaos Theory, have been applied successfully to several astrophysical fields such as orbital motion, time series analysis or galactic dynamics, providing answers to old questions but also opening a few new ones. Some of these topics are described in this review article, showing the basis of Nonlinear Dynamics, and how it is applied in Astrophysics. (Author)
Pescara benchmarks: nonlinear identification
Gandino, E.; Garibaldi, L.; Marchesiello, S.
2011-07-01
Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled "Monitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing", financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.
Nonlinear Multiantenna Detection Methods
Directory of Open Access Journals (Sweden)
Chen Sheng
2004-01-01
Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.
Pescara benchmarks: nonlinear identification
International Nuclear Information System (INIS)
Gandino, E; Garibaldi, L; Marchesiello, S
2011-01-01
Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled M onitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing , financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.
Introduction to nonlinear acoustics
Bjørnø, Leif
2010-01-01
A brief review of the basic principles of fluid mechanics needed for development of linear and nonlinear ultrasonic concepts will be given. The fundamental equations of nonlinear ultrasonics will be derived and their physical properties explained. It will be shown how an originally monochromatic finite-amplitude ultrasonic wave, due to nonlinear effects, will distort during its propagation in time and space to form higher harmonics to its fundamental frequency. The concepts of shock formation will be presented. The material nonlinearity, described by the nonlinearity parameter B/A of the material, and the convective nonlinearity, described by the ultrasonic Mach Number, will be explained. Two procedures for determination of B/A will briefly be described and some B/A-values characterizing biological materials will be presented. Shock formation, described by use of the Goldberg Number,and Ultrasonic Saturation will be discussed.. An introduction to focused ultrasonic fields will be given and it will be shown how the ultrasonic intensity will vary axially and laterally in and near the focal region and how the field parameters of interest to biomedical applications may be described by use of the KZK-Model. Finally, an introduction will be given to the parametric acoustic array formed by mixing and interaction of two monochromatic, finite-amplitude ultrasonic waves in a liquid and the potentials of this mixing process in biomedical ultrasound will briefly be mentioned.
Fundamentals of nonlinear optical materials
Indian Academy of Sciences (India)
Nonlinear optics; nonlinear polarization; optical fiber communication; optical switch- ing. PACS Nos 42.65Tg; ... The importance of nonlinear optics is to understand the nonlinear behavior in the induced polarization and to ..... but much work in material development and characterization remains to be done. 16. Conclusion.
Nonlinear Approaches in Engineering Applications
Jazar, Reza
2012-01-01
Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...
International Nuclear Information System (INIS)
Shen Yuanrang
2011-01-01
This article presents a brief introduction to the birth and early investigations of nonlinear optics, such as second harmonic generation,sum and difference frequency generation, stimulated Raman scattering,and self-action of light etc. Several important research achievements and applications of nonlinear optics are presented as well, including nonlinear optical spectroscopy, phase conjugation and adaptive optics, coherent nonlinear optics, and high-order harmonic generation. In the end, current and future research topics in nonlinear optics are summarized. (authors)
Nonlinear dynamics of structures
Oller, Sergio
2014-01-01
This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics. This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects. Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution are studied, and the theoretical concepts and its programming algorithms are presented.
Rodrigues, Nils; Weiskopf, Daniel
2018-01-01
Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and logarithmic histograms. Finally, we include feedback from an expert review.
Multidimensional nonlinear descriptive analysis
Nishisato, Shizuhiko
2006-01-01
Quantification of categorical, or non-numerical, data is a problem that scientists face across a wide range of disciplines. Exploring data analysis in various areas of research, such as the social sciences and biology, Multidimensional Nonlinear Descriptive Analysis presents methods for analyzing categorical data that are not necessarily sampled randomly from a normal population and often involve nonlinear relations. This reference not only provides an overview of multidimensional nonlinear descriptive analysis (MUNDA) of discrete data, it also offers new results in a variety of fields. The first part of the book covers conceptual and technical preliminaries needed to understand the data analysis in subsequent chapters. The next two parts contain applications of MUNDA to diverse data types, with each chapter devoted to one type of categorical data, a brief historical comment, and basic skills peculiar to the data types. The final part examines several problems and then concludes with suggestions for futu...
DEFF Research Database (Denmark)
Nguyen-Duy, Khiem
of a proposed NSE system with high dynamic performance. The goal of the work is to achieve a state-of-the art transient time of 10 µs. In order to produce the arbitrary nonlinear curve, the exponential function of a typical diode is used, but the diode can be replaced by other nonlinear curve reference...... of conductive common-mode current produced by the high rate of change of voltage over time (high dv/dt) at the NSE output. v/xvii The contributions of the thesis are based on the development of both units: the low Cio isolated power supply and the high dynamic performance NSE. Both units are investigated......-of-the-art dynamic performance among devices of the same kind. It also offers a complete solution for simulation of nonlinear source systems of different sizes, both in terrestrial and non-terrestrial applications. Key words: Current transformers, dc-dc power converters, hysteresis, parasitic capacitance, system...
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Nonlinear excitations in biomolecules
International Nuclear Information System (INIS)
Peyrard, M.
1995-01-01
The aim of the workshop entitled ''Nonlinear Excitations in Biomolecules'' is to attempt to bridge the gap between the physicists and biologists communities which is mainly due to language and cultural barriers. The progress of nonlinear science in the last few decades which have shown that the combination of nonlinearity, which characterize most biological phenomena, and cooperative effects in a system having a large number of degrees of freedom, can give rise to coherent excitations with remarkable properties. New concepts, such as solitons nd nonlinear energy localisation have become familiar to physicists and applied mathematicians. It is thus tempting to make an analogy between these coherent excitations and the exceptional stability of some biological processes, such as for instance DNA transcription, which require the coordination of many events in the ever changing environment of a cell. Physicists are now invoking nonlinear excitations to describe and explain many bio-molecular processes while biologists often doubt that the seemingly infinite variety of phenomena that they are attempting to classify can be reduced to such simple concepts. A large part of the meeting is devoted to tutorial lectures rather than to latest research results. The book provides a pedagogical introduction to the two topics forming the backbone of the meeting: the theory of nonlinear excitations and solitons, and their application in biology; and the structure and function of biomolecules, as well as energy and charge transport in biophysics. In order to emphasize the link between physics and biology, the volume is not divided along these two topics but according to biological subjects. Each chapter starts with a short introduction attempting to help the reader to find his way among the contributions and point out the connection between them. 23 lectures over the 32 presented have been selected and refers to quantum properties of macro-molecules. (J.S.)
Oscillations in nonlinear systems
Hale, Jack K
2015-01-01
By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction to the theory of nonlinear oscillations provides a unified approach to obtaining periodic solutions to nonautonomous and autonomous differential equations. It also indicates key relationships with other related procedures and probes the consequences of the methods of averaging and integral manifolds.Part I of the text features introductory material, including discussions of matrices, linear systems of differential equations, and stability of solutions of nonlinear systems. Pa
Nonlinearity in nanomechanical cantilevers
DEFF Research Database (Denmark)
Villanueva Torrijo, Luis Guillermo; Karabalin, R. B.; Matheny, M. H.
2013-01-01
Euler-Bernoulli beam theory is widely used to successfully predict the linear dynamics of micro-and nanocantilever beams. However, its capacity to characterize the nonlinear dynamics of these devices has not yet been rigorously assessed, despite its use in nanoelectromechanical systems developmen....... These findings underscore the delicate balance between inertial and geometric nonlinear effects in the fundamental mode, and strongly motivate further work to develop theories beyond the Euler-Bernoulli approximation. DOI: 10.1103/PhysRevB.87.024304...
Energy Technology Data Exchange (ETDEWEB)
Chandra, J; Scott, A C
1983-01-01
Topics discussed include transitions in weakly coupled nonlinear oscillators, singularly perturbed delay-differential equations, and chaos in simple laser systems. Papers are presented on truncated Navier-Stokes equations in a two-dimensional torus, on frequency locking in Josephson point contacts, and on soliton excitations in Josephson tunnel junctions. Attention is also given to the nonlinear coupling of radiation pulses to absorbing anharmonic molecular media, to aspects of interrupted coarse-graining in stimulated excitation, and to a statistical analysis of long-term dynamic irregularity in an exactly soluble quantum mechanical model.
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Christiansen, Peter Leth; Torner, L.
1999-01-01
We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear...... discrete equation. The proposed structure therefore provides an experimental setting for exploring discrete effects in a controlled manner. In particular, we show propagation of breathers that are eventually trapped by discreteness. When the stripes are wide the beams evolve in a structure we term...
Agrawal, Govind
2012-01-01
Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o
Tsia, Kevin K.; Jalali, Bahram
2010-05-01
An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.
Ritz, Christian; Parmigiani, Giovanni
2009-01-01
R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.
Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.
2017-09-01
Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-11-01
With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.
Intramolecular and nonlinear dynamics
Energy Technology Data Exchange (ETDEWEB)
Davis, M.J. [Argonne National Laboratory, IL (United States)
1993-12-01
Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.
Balancing for nonlinear systems
Scherpen, J.M.A.
1993-01-01
We present a method of balancing for nonlinear systems which is an extension of balancing for linear systems in the sense that it is based on the input and output energy of a system. It is a local result, but gives 'broader' results than we obtain by just linearizing the system. Furthermore, the
Identification of nonlinear anelastic models
International Nuclear Information System (INIS)
Draganescu, G E; Bereteu, L; Ercuta, A
2008-01-01
A useful nonlinear identification technique applied to the anelastic and rheologic models is presented in this paper. First introduced by Feldman, the method is based on the Hilbert transform, and is currently used for identification of the nonlinear vibrations
Nonlinear chaos control and synchronization
Huijberts, H.J.C.; Nijmeijer, H.; Schöll, E.; Schuster, H.G.
2007-01-01
This chapter contains sections titled: Introduction Nonlinear Geometric Control Some Differential Geometric Concepts Nonlinear Controllability Chaos Control Through Feedback Linearization Chaos Control Through Input-Output Linearization Lyapunov Design Lyapunov Stability and Lyapunov's First Method
Nonlinearity and disorder: Classification and stability of nonlinear impurity modes
DEFF Research Database (Denmark)
Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole
2001-01-01
We study the effects produced by competition of two physical mechanisms of energy localization in inhomogeneous nonlinear systems. As an example, we analyze spatially localized modes supported by a nonlinear impurity in the generalized nonlinear Schrödinger equation and describe three types of no...... the case of a power-law nonlinearity in detail. We discuss several scenarios of the instability-induced dynamics of the nonlinear impurity modes, including the mode decay or switching to a new stable state, and collapse at the impurity site....
Terahertz Nonlinear Optics in Semiconductors
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.
2013-01-01
We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...... breathing of a single-cycle THz pulse in a semiconductor....
FRF decoupling of nonlinear systems
Kalaycıoğlu, Taner; Özgüven, H. Nevzat
2018-03-01
Structural decoupling problem, i.e. predicting dynamic behavior of a particular substructure from the knowledge of the dynamics of the coupled structure and the other substructure, has been well investigated for three decades and led to several decoupling methods. In spite of the inherent nonlinearities in a structural system in various forms such as clearances, friction and nonlinear stiffness, all decoupling studies are for linear systems. In this study, decoupling problem for nonlinear systems is addressed for the first time. A method, named as FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed for calculating FRFs of a substructure decoupled from a coupled nonlinear structure where nonlinearity can be modeled as a single nonlinear element. Depending on where nonlinear element is, i.e., either in the known or unknown subsystem, or at the connection point, the formulation differs. The method requires relative displacement information between two end points of the nonlinear element, in addition to point and transfer FRFs at some points of the known subsystem. However, it is not necessary to excite the system from the unknown subsystem even when the nonlinear element is in that subsystem. The validation of FDM-NS is demonstrated with two different case studies using nonlinear lumped parameter systems. Finally, a nonlinear experimental test structure is used in order to show the real-life application and accuracy of FDM-NS.
Rogue waves in nonlinear science
International Nuclear Information System (INIS)
Yan Zhenya
2012-01-01
Rogue waves, as a special type of solitary waves, play an important role in nonlinear optics, Bose-Einstein condensates, ocean, atmosphere, and even finance. In this report, we mainly review on the history of the rogue wave phenomenon and recent development of rogue wave solutions in some nonlinear physical models arising in the fields of nonlinear science.
H∞ Balancing for Nonlinear Systems
Scherpen, Jacquelien M.A.
1996-01-01
In previously obtained balancing methods for nonlinear systems a past and a future energy function are used to bring the nonlinear system in balanced form. By considering a different pair of past and future energy functions that are related to the H∞ control problem for nonlinear systems we define
Nonlinear differential equations
Energy Technology Data Exchange (ETDEWEB)
Dresner, L.
1988-01-01
This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.
Nonlinear (Anharmonic Casimir Oscillator
Directory of Open Access Journals (Sweden)
Habibollah Razmi
2011-01-01
Full Text Available We want to study the dynamics of a simple linear harmonic micro spring which is under the influence of the quantum Casimir force/pressure and thus behaves as a (an nonlinear (anharmonic Casimir oscillator. Generally, the equation of motion of this nonlinear micromechanical Casimir oscillator has no exact solvable (analytical solution and the turning point(s of the system has (have no fixed position(s; however, for particular values of the stiffness of the micro spring and at appropriately well-chosen distance scales and conditions, there is (are approximately sinusoidal solution(s for the problem (the variable turning points are collected in a very small interval of positions. This, as a simple and elementary plan, may be useful in controlling the Casimir stiction problem in micromechanical devices.
DEFF Research Database (Denmark)
Mosegaard, Klaus
2012-01-01
For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our......-heuristics are inefficient for large-scale, non-linear inverse problems, and that the 'no-free-lunch' theorem holds. We discuss typical objections to the relevance of this theorem. A consequence of the no-free-lunch theorem is that algorithms adapted to the mathematical structure of the problem perform more efficiently than...... pure meta-heuristics. We study problem-adapted inversion algorithms that exploit the knowledge of the smoothness of the misfit function of the problem. Optimal sampling strategies exist for such problems, but many of these problems remain hard. © 2012 Springer-Verlag....
Nonlinear Photonics 2014: introduction.
Akhmediev, N; Kartashov, Yaroslav
2015-01-12
International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.
Van Leeuwen, Peter Jan; Reich, Sebastian
2015-01-01
This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.
Essentials of nonlinear optics
Murti, Y V G S
2014-01-01
Current literature on Nonlinear Optics varies widely in terms of content, style, and coverage of specific topics, relative emphasis of areas and the depth of treatment. While most of these books are excellent resources for the researchers, there is a strong need for books appropriate for presenting the subject at the undergraduate or postgraduate levels in Universities. The need for such a book to serve as a textbook at the level of the bachelors and masters courses was felt by the authors while teaching courses on nonlinear optics to students of both science and engineering during the past two decades. This book has emerged from an attempt to address the requirement of presenting the subject at college level. A one-semester course covering the essentials can effectively be designed based on this.
Nonlinear differential equations
International Nuclear Information System (INIS)
Dresner, L.
1988-01-01
This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics
The forced nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Kaup, D.J.; Hansen, P.J.
1985-01-01
The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)
Nonlinear electrodynamics and cosmology
International Nuclear Information System (INIS)
Breton, Nora
2010-01-01
Nonlinear electrodynamics (NLED) generalizes Maxwell's theory for strong fields. When coupled to general relativity NLED presents interesting features like the non-vanishing of the trace of the energy-momentum tensor that leads to the possibility of violation of some energy conditions and of acting as a repulsive contribution in the Raychaudhuri equation. This theory is worth to study in cosmological and astrophysical situations characterized by strong electromagnetic and gravitational fields.
Nonlinear fibre optics overview
DEFF Research Database (Denmark)
Travers, J. C.; Frosz, Michael Henoch; Dudley, J. M.
2010-01-01
The optical fiber based supercontinuum source has recently become a significant scientific and commercial success, with applications ranging from frequency comb production to advanced medical imaging. This one-of-a-kind book explains the theory of fiber supercontinuum broadening, describes......, provides a background to the associated nonlinear optical processes, treats the generation mechanisms from continuous wave to femtosecond pulse pump regimes and highlights the diverse applications. A full discussion of numerical methods and comprehensive computer code are also provided, enabling readers...
Damped nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Nicholson, D.R.; Goldman, M.V.
1976-01-01
High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time
International Nuclear Information System (INIS)
Foroutan, A.
1992-05-01
The essential mathematical challenge in transport theory is based on the nonlinearity of the integro-differential equations governing classical thermodynamic systems on molecular kinetic level. It is the aim of this thesis to gain exact analytical solutions to the model Boltzmann equation suggested by Tjon and Wu. Such solutions afford a deeper insight into the dynamics of rarefied gases. Tjon and Wu have provided a stochastic model of a Boltzmann equation. Its transition probability depends only on the relative speed of the colliding particles. This assumption leads in the case of two translational degrees of freedom to an integro-differential equation of convolution type. According to this convolution structure the integro-differential equation is Laplace transformed. The result is a nonlinear partial differential equation. The investigation of the symmetries of this differential equation by means of Lie groups of transformation enables us to transform the originally nonlinear partial differential equation into ordinary differential equation into ordinary differential equations of Bernoulli type. (author)
Nonlinearity without superluminality
International Nuclear Information System (INIS)
Kent, Adrian
2005-01-01
Quantum theory is compatible with special relativity. In particular, though measurements on entangled systems are correlated in a way that cannot be reproduced by local hidden variables, they cannot be used for superluminal signaling. As Czachor, Gisin, and Polchinski pointed out, this is not generally true of general nonlinear modifications of the Schroedinger equation. Excluding superluminal signaling has thus been taken to rule out most nonlinear versions of quantum theory. The no-superluminal-signaling constraint has also been used for alternative derivations of the optimal fidelities attainable for imperfect quantum cloning and other operations. These results apply to theories satisfying the rule that their predictions for widely separated and slowly moving entangled systems can be approximated by nonrelativistic equations of motion with respect to a preferred time coordinate. This paper describes a natural way in which this rule might fail to hold. In particular, it is shown that quantum readout devices which display the values of localized pure states need not allow superluminal signaling, provided that the devices display the values of the states of entangled subsystems as defined in a nonstandard, although natural, way. It follows that any locally defined nonlinear evolution of pure states can be made consistent with Minkowski causality
Nonlinear robust hierarchical control for nonlinear uncertain systems
Directory of Open Access Journals (Sweden)
Leonessa Alexander
1999-01-01
Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.
Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, Kim Ø; Salerno, M.
2006-01-01
-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.......A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz...
Birth-jump processes and application to forest fire spotting.
Hillen, T; Greese, B; Martin, J; de Vries, G
2015-01-01
Birth-jump models are designed to describe population models for which growth and spatial spread cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two different derivations of this equation, one based on a random walk approach and the other based on a two-compartmental reaction-diffusion model. In the case that the redistribution kernels are highly concentrated, we show that the integro-differential equation can be approximated by a reaction-diffusion equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We completely solve the corresponding critical domain size problem and the minimal wave speed problem. Birth-jump models can be applied in many areas in mathematical biology. We highlight an application of our results in the context of forest fire spread through spotting. We show that spotting increases the invasion speed of a forest fire front.
Diamond, Jared M.
1966-01-01
1. The relation between osmotic gradient and rate of osmotic water flow has been measured in rabbit gall-bladder by a gravimetric procedure and by a rapid method based on streaming potentials. Streaming potentials were directly proportional to gravimetrically measured water fluxes. 2. As in many other tissues, water flow was found to vary with gradient in a markedly non-linear fashion. There was no consistent relation between the water permeability and either the direction or the rate of water flow. 3. Water flow in response to a given gradient decreased at higher osmolarities. The resistance to water flow increased linearly with osmolarity over the range 186-825 m-osM. 4. The resistance to water flow was the same when the gall-bladder separated any two bathing solutions with the same average osmolarity, regardless of the magnitude of the gradient. In other words, the rate of water flow is given by the expression (Om — Os)/[Ro′ + ½k′ (Om + Os)], where Ro′ and k′ are constants and Om and Os are the bathing solution osmolarities. 5. Of the theories advanced to explain non-linear osmosis in other tissues, flow-induced membrane deformations, unstirred layers, asymmetrical series-membrane effects, and non-osmotic effects of solutes could not explain the results. However, experimental measurements of water permeability as a function of osmolarity permitted quantitative reconstruction of the observed water flow—osmotic gradient curves. Hence non-linear osmosis in rabbit gall-bladder is due to a decrease in water permeability with increasing osmolarity. 6. The results suggest that aqueous channels in the cell membrane behave as osmometers, shrinking in concentrated solutions of impermeant molecules and thereby increasing membrane resistance to water flow. A mathematical formulation of such a membrane structure is offered. PMID:5945254
Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning
2001-01-01
Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which
Bellman, Richard Ernest
1970-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Nonlinear optimal control theory
Berkovitz, Leonard David
2012-01-01
Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also dis
DEFF Research Database (Denmark)
Mosekilde, Erik
Through a significant number of detailed and realistic examples this book illustrates how the insights gained over the past couple of decades in the fields of nonlinear dynamics and chaos theory can be applied in practice. Aomng the topics considered are microbiological reaction systems, ecological...... food-web systems, nephron pressure and flow regulation, pulsatile secretion of hormones, thermostatically controlled radiator systems, post-stall maneuvering of aircrafts, transfer electron devices for microwave generation, economic long waves, human decision making behavior, and pattern formation...... in chemical reaction-diffusion systems....
Nonlinear dynamics in psychology
Directory of Open Access Journals (Sweden)
Stephen J. Guastello
2001-01-01
Full Text Available This article provides a survey of the applications of nonlinear dynamical systems theory to substantive problems encountered in the full scope of psychological science. Applications are organized into three topical areas – cognitive science, social and organizational psychology, and personality and clinical psychology. Both theoretical and empirical studies are considered with an emphasis on works that capture the broadest scope of issues that are of substantive interest to psychological theory. A budding literature on the implications of NDS principles in professional practice is reported also.
DEFF Research Database (Denmark)
Jørgensen, Michael Finn
1995-01-01
It is generally very difficult to solve nonlinear systems, and such systems often possess chaotic solutions. In the rare event that a system is completely solvable, it is said to integrable. Such systems never have chaotic solutions. Using the Inverse Scattering Transform Method (ISTM) two...... particular configurations of the Discrete Self-Trapping (DST) system are shown to be completely solvable. One of these systems includes the Toda lattice in a certain limit. An explicit integration is carried through for this Near-Toda lattice. The Near-Toda lattice is then generalized to include singular...
Nonlinear surface electromagnetic phenomena
Ponath, H-E
1991-01-01
In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are
Oscillators from nonlinear realizations
Kozyrev, N.; Krivonos, S.
2018-02-01
We construct the systems of the harmonic and Pais-Uhlenbeck oscillators, which are invariant with respect to arbitrary noncompact Lie algebras. The equations of motion of these systems can be obtained with the help of the formalism of nonlinear realizations. We prove that it is always possible to choose time and the fields within this formalism in such a way that the equations of motion become linear and, therefore, reduce to ones of ordinary harmonic and Pais-Uhlenbeck oscillators. The first-order actions, that produce these equations, can also be provided. As particular examples of this construction, we discuss the so(2, 3) and G 2(2) algebras.
Global Analysis of Nonlinear Dynamics
Luo, Albert
2012-01-01
Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.
Nonlinearity management in higher dimensions
International Nuclear Information System (INIS)
Kevrekidis, P G; Pelinovsky, D E; Stefanov, A
2006-01-01
In the present paper, we revisit nonlinearity management of the time-periodic nonlinear Schroedinger equation and the related averaging procedure. By means of rigorous estimates, we show that the averaged nonlinear Schroedinger equation does not blow up in the higher dimensional case so long as the corresponding solution remains smooth. In particular, we show that the H 1 norm remains bounded, in contrast with the usual blow-up mechanism for the focusing Schroedinger equation. This conclusion agrees with earlier works in the case of strong nonlinearity management but contradicts those in the case of weak nonlinearity management. The apparent discrepancy is explained by the divergence of the averaging procedure in the limit of weak nonlinearity management
Collapse of nonlinear Langmuir waves
International Nuclear Information System (INIS)
Malkin, V.M.
1986-01-01
The dispersion of sufficiently intensive Langmuir waves is determined by intrinsic (electron) nonlinearity. During Langmuir collapse the wave energy density required for the appearance of electron nonlinearity is attained, generally speaking, prior to the development of dissipative processes. Up to now, the effect of electron nonlinearity on the collapse dynamics and spectrum of strong Langmuir turbulence ( which may be very appreciable ) has not been studied extensively because of the difficulty of describing nonlinear Langmuir waves. In the present paper the positive determinacy of the electron nonlinear hamiltonian is proven, the increment of modulation instability of a nonlinear Langmuir wave cluster localized in a cavity is calculated, and the universal law of their collapse is found
Applications of nonlinear fiber optics
Agrawal, Govind
2008-01-01
* The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo
Recent topics in nonlinear PDE
International Nuclear Information System (INIS)
Mimura, Masayasu; Nishida, Takaaki
1984-01-01
The meeting on the subject of nonlinear partial differential equations was held at Hiroshima University in February, 1983. Leading and active mathematicians were invited to talk on their current research interests in nonlinear pdes occuring in the areas of fluid dynamics, free boundary problems, population dynamics and mathematical physics. This volume contains the theory of nonlinear pdes and the related topics which have been recently developed in Japan. (Auth.)
Perspectives of nonlinear dynamics
International Nuclear Information System (INIS)
Jackson, E.A.
1985-03-01
Four lectures were given weekly in October and November, 1984, and some of the ideas presented here will be of use in the future. First, a brief survey of the historical development of nonlinear dynamics since about 1890 was given, and then, a few topics were discussed in detail. The objective was to introduce some of many concepts and methods which are presently used for describing nonlinear dynamics. The symbiotic relationship between sciences of all types and mathematics, two main categories of the models describing nature, the method for describing the dynamics of a system, the idea of control parameters and topological dimension, the asymptotic properties of dynamics, abstract dynamics, the concept of embedding, singular perturbation theory, strange attractor, Fermi-Pasta-Ulam phenomena, an example of computer heuristics, the idea of elementary catastrophe theory and so on were explained. The logistic map is the simplest introduction to complex dynamics. The complicated dynamics is referred to as strange attractors. Two-dimensional maps are the highest dimensional maps commonly studied. These were discussed in detail. (Kako, I.)
Nonlinearities in Behavioral Macroeconomics.
Gomes, Orlando
2017-07-01
This article undertakes a journey across the literature on behavioral macroeconomics, with attention concentrated on the nonlinearities that the behavioral approach typically suggests or implies. The emphasis is placed on thinking the macro economy as a living organism, composed of many interacting parts, each one having a will of its own, which is in sharp contrast with the mechanism of the orthodox view (well represented by the neoclassical or new Keynesian dynamic stochastic general equilibrium - DSGE - model). The paper advocates that a thorough understanding of individual behavior in collective contexts is the only possible avenue to further explore macroeconomic phenomena and the often observed 'anomalies' that the benchmark DSGE macro framework is unable to explain or justify. After a reflection on the role of behavioral traits as a fundamental component of a new way of thinking the economy, the article proceeds with a debate on some of the most relevant frameworks in the literature that somehow link macro behavior and nonlinearities; covered subjects include macro models with disequilibrium rules, agent-based models that highlight interaction and complexity, evolutionary switching frameworks, and inattention based decision problems. These subjects have, as a fundamental point in common, the use of behavioral elements to transform existing interpretations of the economic reality, making it more evident how irregular fluctuations emerge and unfold on the aggregate.
Nonlinear Waves in Complex Systems
DEFF Research Database (Denmark)
2007-01-01
The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations...
Problems in nonlinear resistive MHD
International Nuclear Information System (INIS)
Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L.
1998-01-01
Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1
Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion
Directory of Open Access Journals (Sweden)
Jun Wang
2013-01-01
Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.
Perspectives on Nonlinear Filtering
Law, Kody
2015-01-01
The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).
Nonlinear Photonic Crystal Fibers
DEFF Research Database (Denmark)
Hansen, Kim Per
2004-01-01
Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....
Nonlinear estimation and classification
Hansen, Mark; Holmes, Christopher; Mallick, Bani; Yu, Bin
2003-01-01
Researchers in many disciplines face the formidable task of analyzing massive amounts of high-dimensional and highly-structured data This is due in part to recent advances in data collection and computing technologies As a result, fundamental statistical research is being undertaken in a variety of different fields Driven by the complexity of these new problems, and fueled by the explosion of available computer power, highly adaptive, non-linear procedures are now essential components of modern "data analysis," a term that we liberally interpret to include speech and pattern recognition, classification, data compression and signal processing The development of new, flexible methods combines advances from many sources, including approximation theory, numerical analysis, machine learning, signal processing and statistics The proposed workshop intends to bring together eminent experts from these fields in order to exchange ideas and forge directions for the future
2016-01-01
This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...
Perspectives on Nonlinear Filtering
Law, Kody
2015-01-07
The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).
Wave transmission in nonlinear lattices
International Nuclear Information System (INIS)
Hennig, D.; Tsironis, G.P.
1999-01-01
The interplay of nonlinearity with lattice discreteness leads to phenomena and propagation properties quite distinct from those appearing in continuous nonlinear systems. For a large variety of condensed matter and optics applications the continuous wave approximation is not appropriate. In the present review we discuss wave transmission properties in one dimensional nonlinear lattices. Our paradigmatic equations are discrete nonlinear Schroedinger equations and their study is done through a dynamical systems approach. We focus on stationary wave properties and utilize well known results from the theory of dynamical systems to investigate various aspects of wave transmission and wave localization. We analyze in detail the more general dynamical system corresponding to the equation that interpolates between the non-integrable discrete nonlinear Schroedinger equation and the integrable Albowitz-Ladik equation. We utilize this analysis in a nonlinear Kronig-Penney model and investigate transmission and band modification properties. We discuss the modifications that are effected through an electric field and the nonlinear Wannier-Stark localization effects that are induced. Several applications are described, such as polarons in one dimensional lattices, semiconductor superlattices and one dimensional nonlinear photonic band gap systems. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Solving Nonlinear Coupled Differential Equations
Mitchell, L.; David, J.
1986-01-01
Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.
Nonlinear Elasticity of Doped Semiconductors
2017-02-01
AFRL-RY-WP-TR-2016-0206 NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS Mark Dykman and Kirill Moskovtsev Michigan State University...2016 4. TITLE AND SUBTITLE NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS 5a. CONTRACT NUMBER FA8650-16-1-7600 5b. GRANT NUMBER 5c. PROGRAM...vibration amplitude. 15. SUBJECT TERMS semiconductors , microresonators, microelectromechanical 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Nonlinear evolution of MHD instabilities
International Nuclear Information System (INIS)
Bateman, G.; Hicks, H.R.; Wooten, J.W.; Dory, R.A.
1975-01-01
A 3-D nonlinear MHD computer code was used to study the time evolution of internal instabilities. Velocity vortex cells are observed to persist into the nonlinear evolution. Pressure and density profiles convect around these cells for a weak localized instability, or convect into the wall for a strong instability. (U.S.)
Nonlinear theory of elastic shells
International Nuclear Information System (INIS)
Costa Junior, J.A.
1979-08-01
Nonlinear theory of elastic shells is developed which incorporates both geometric and physical nonlinearities and which does not make use of the well known Love-Kirchhoff hypothesis. The resulting equations are formulated in tensorial notation and are reduced to the ones of common use when simplifying assumptions encountered in the especific litterature are taken. (Author) [pt
Balancing for Unstable Nonlinear Systems
Scherpen, J.M.A.
1993-01-01
A previously obtained method of balancing for stable nonlinear systems is extended to unstable nonlinear systems. The similarity invariants obtained by the concept of LQG balancing for an unstable linear system can also be obtained by considering a past and future energy function of the system. By
Nonlinear hyperbolic waves in multidimensions
Prasad, Phoolan
2001-01-01
The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...
Cubication of conservative nonlinear oscillators
International Nuclear Information System (INIS)
Belendez, Augusto; Alvarez, Mariela L; Fernandez, Elena; Pascual, Inmaculada
2009-01-01
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.
Breatherlike impurity modes in discrete nonlinear lattices
DEFF Research Database (Denmark)
Hennig, D.; Rasmussen, Kim; Tsironis, G. P.
1995-01-01
We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...
Spatial solitons in nonlinear photonic crystals
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2000-01-01
We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....
LDRD report nonlinear model reduction
Energy Technology Data Exchange (ETDEWEB)
Segalman, D.; Heinstein, M.
1997-09-01
The very general problem of model reduction of nonlinear systems was made tractable by focusing on the very large subclass consisting of linear subsystems connected by nonlinear interfaces. Such problems constitute a large part of the nonlinear structural problems encountered in addressing the Sandia missions. A synthesis approach to this class of problems was developed consisting of: detailed modeling of the interface mechanics; collapsing the interface simulation results into simple nonlinear interface models; constructing system models by assembling model approximations of the linear subsystems and the nonlinear interface models. These system models, though nonlinear, would have very few degrees of freedom. A paradigm problem, that of machine tool vibration, was selected for application of the reduction approach outlined above. Research results achieved along the way as well as the overall modeling of a specific machine tool have been very encouraging. In order to confirm the interface models resulting from simulation, it was necessary to develop techniques to deduce interface mechanics from experimental data collected from the overall nonlinear structure. A program to develop such techniques was also pursued with good success.
Nonlinear time heteronymous damping in nonlinear parametric planetary systems
Czech Academy of Sciences Publication Activity Database
Hortel, Milan; Škuderová, Alena
2014-01-01
Roč. 225, č. 7 (2014), s. 2059-2073 ISSN 0001-5970 Institutional support: RVO:61388998 Keywords : nonlinear dynamics * planetary systems * heteronymous damping Subject RIV: JT - Propulsion, Motors ; Fuels Impact factor: 1.465, year: 2014
Design with Nonlinear Constraints
Tang, Chengcheng
2015-12-10
Most modern industrial and architectural designs need to satisfy the requirements of their targeted performance and respect the limitations of available fabrication technologies. At the same time, they should reflect the artistic considerations and personal taste of the designers, which cannot be simply formulated as optimization goals with single best solutions. This thesis aims at a general, flexible yet e cient computational framework for interactive creation, exploration and discovery of serviceable, constructible, and stylish designs. By formulating nonlinear engineering considerations as linear or quadratic expressions by introducing auxiliary variables, the constrained space could be e ciently accessed by the proposed algorithm Guided Projection, with the guidance of aesthetic formulations. The approach is introduced through applications in different scenarios, its effectiveness is demonstrated by examples that were difficult or even impossible to be computationally designed before. The first application is the design of meshes under both geometric and static constraints, including self-supporting polyhedral meshes that are not height fields. Then, with a formulation bridging mesh based and spline based representations, the application is extended to developable surfaces including origami with curved creases. Finally, general approaches to extend hard constraints and soft energies are discussed, followed by a concluding remark outlooking possible future studies.
Deimling, Klaus
1985-01-01
topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in § 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical languag...
Scalable Nonlinear Compact Schemes
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Debojyoti [Argonne National Lab. (ANL), Argonne, IL (United States); Constantinescu, Emil M. [Univ. of Chicago, IL (United States); Brown, Jed [Univ. of Colorado, Boulder, CO (United States)
2014-04-01
In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.
Acoustic-gravity nonlinear structures
Directory of Open Access Journals (Sweden)
D. Jovanović
2002-01-01
Full Text Available A catalogue of nonlinear vortex structures associated with acoustic-gravity perturbations in the Earth's atmosphere is presented. Besides the previously known Kelvin-Stewart cat's eyes, dipolar and tripolar structures, new solutions having the form of a row of counter-rotating vortices, and several weakly two-dimensional vortex chains are given. The existence conditions for these nonlinear structures are discussed with respect to the presence of inhomogeneities of the shear flows. The mode-coupling mechanism for the nonlinear generation of shear flows in the presence of linearly unstable acoustic-gravity waves, possibly also leading to intermittency and chaos, is presented.
Nonlinear Dynamic Phenomena in Mechanics
Warminski, Jerzy; Cartmell, Matthew P
2012-01-01
Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinear
Saravanan, R
2018-01-01
Non-linear optical materials have widespread and promising applications, but the efforts to understand the local structure, electron density distribution and bonding is still lacking. The present work explores the structural details, the electron density distribution and the local bond length distribution of some non-linear optical materials. It also gives estimation of the optical band gap, the particle size, crystallite size, and the elemental composition from UV-Visible analysis, SEM, XRD and EDS of some non-linear optical materials respectively.
Nonlinear modulation of ionization waves
International Nuclear Information System (INIS)
Bekki, Naoaki
1981-01-01
In order to investigate the nonlinear characteristics of ionization waves (moving-striations) in the positive column of glow discharge, a nonlinear modulation of ionization waves in the region of the Pupp critical current is analysed by means of the reductive perturbation method. The modulation of ionization waves is described by a nonlinear Schroedinger type equation. The coefficients of the equation are evaluated using the data of the low pressure Argon-discharge, and the simple solutions (plane wave and envelope soliton type solutions) are presented. Under a certain condition an envelope soliton is propagated through the positive column. (author)
Single-shot measurement of nonlinear absorption and nonlinear refraction.
Jayabalan, J; Singh, Asha; Oak, Shrikant M
2006-06-01
A single-shot method for measurement of nonlinear optical absorption and refraction is described and analyzed. A spatial intensity variation of an elliptical Gaussian beam in conjugation with an array detector is the key element of this method. The advantages of this single-shot technique were demonstrated by measuring the two-photon absorption and free-carrier absorption in GaAs as well as the nonlinear refractive index of CS2 using a modified optical Kerr setup.
Nonlinear optics principles and applications
Li, Chunfei
2017-01-01
This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...
Nonlinear Dynamics in Spear Wigglers
International Nuclear Information System (INIS)
2002-01-01
BL11, the most recently installed wiggler in the SPEAR storage ring at SSRL, produces a large nonlinear perturbation of the electron beam dynamics, which was not directly evident in the integrated magnetic field measurements. Measurements of tune shifts with betatron oscillation amplitude and with closed orbit shifts were used to characterize the nonlinear fields of the SPEAR insertion devices (IDs). Because of the narrow pole width in BL11, the nonlinear fields seen along the wiggling electron trajectory are dramatically different than the flip coil measurements made along a straight line. This difference explains the tune shift measurements and the observed degradation in dynamic aperture. Corrector magnets to cancel the BL11 nonlinear fields are presently under construction
Device Applications of Nonlinear Dynamics
Baglio, Salvatore
2006-01-01
This edited book is devoted specifically to the applications of complex nonlinear dynamic phenomena to real systems and device applications. While in the past decades there has been significant progress in the theory of nonlinear phenomena under an assortment of system boundary conditions and preparations, there exist comparatively few devices that actually take this rich behavior into account. "Device Applications of Nonlinear Dynamics" applies and exploits this knowledge to make devices which operate more efficiently and cheaply, while affording the promise of much better performance. Given the current explosion of ideas in areas as diverse as molecular motors, nonlinear filtering theory, noise-enhanced propagation, stochastic resonance and networked systems, the time is right to integrate the progress of complex systems research into real devices.
Nonlinear programming analysis and methods
Avriel, Mordecai
2012-01-01
This text provides an excellent bridge between principal theories and concepts and their practical implementation. Topics include convex programming, duality, generalized convexity, analysis of selected nonlinear programs, techniques for numerical solutions, and unconstrained optimization methods.
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 3 ... Keywords. Nonlinear dynamics; logistic map; -deformation; Tsallis statistics. ... As a specific example, a -deformation procedure is applied to the logistic map. Compared ...
Born-Infeld Nonlinear Electrodynamics
International Nuclear Information System (INIS)
Bialynicki-Birula, I.
1999-01-01
This is only a summary of a lecture delivered at the Infeld Centennial Meeting. In the lecture the history of the Born-Infeld nonlinear electrodynamics was presented and some general features of the theory were discussed. (author)
Nonlinear compression of optical solitons
Indian Academy of Sciences (India)
linear pulse propagation is the nonlinear Schrödinger (NLS) equation [1]. There are ... Optical pulse compression finds important applications in optical fibres. The pulse com ..... to thank CSIR, New Delhi for financial support in the form of SRF.
Nonlinear transformations of random processes
Deutsch, Ralph
2017-01-01
This concise treatment of nonlinear noise techniques encountered in system applications is suitable for advanced undergraduates and graduate students. It is also a valuable reference for systems analysts and communication engineers. 1962 edition.
Extreme Nonlinear Optics An Introduction
Wegener, Martin
2005-01-01
Following the birth of the laser in 1960, the field of "nonlinear optics" rapidly emerged. Today, laser intensities and pulse durations are readily available, for which the concepts and approximations of traditional nonlinear optics no longer apply. In this regime of "extreme nonlinear optics," a large variety of novel and unusual effects arise, for example frequency doubling in inversion symmetric materials or high-harmonic generation in gases, which can lead to attosecond electromagnetic pulses or pulse trains. Other examples of "extreme nonlinear optics" cover diverse areas such as solid-state physics, atomic physics, relativistic free electrons in a vacuum and even the vacuum itself. This book starts with an introduction to the field based primarily on extensions of two famous textbook examples, namely the Lorentz oscillator model and the Drude model. Here the level of sophistication should be accessible to any undergraduate physics student. Many graphical illustrations and examples are given. The followi...
Nonlinear dynamics: Challenges and perspectives
Indian Academy of Sciences (India)
fields such as economics, social dynamics and so on [6–10]. These nonlinear ..... developing all-optical computers in homogeneous bulk media such as pho- ... suggestions have been given to develop effective chaos-based cryptographic.
Nonlinear Optics: Principles and Applications
DEFF Research Database (Denmark)
Rottwitt, Karsten; Tidemand-Lichtenberg, Peter
of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...... and matter, this text focuses on the physical understanding of nonlinear optics, and explores optical material response functions in the time and frequency domain....
Dynamics of nonlinear feedback control
Snippe, H.P.; Hateren, J.H. van
2007-01-01
Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input step...
On nonlinear periodic drift waves
International Nuclear Information System (INIS)
Kauschke, U.; Schlueter, H.
1990-09-01
Nonlinear periodic drift waves are investigated on the basis of a simple perturbation scheme for both the amplitude and inverse frequency. The coefficients for the generation of the forced harmonics are derived, a nonlinear dispersion relation is suggested and a criterion for the onset of the modulational instability is obtained. The results are compared with the ones obtained with the help of a standard KBM-treatment. Moreover cnoidal drift waves are suggested and compared to an experimental observation. (orig.)
Competitive nonlinear pricing and bundling
Armstrong, Mark; Vickers, John
2006-01-01
We examine the impact of multiproduct nonlinear pricing on profit, consumer surplus and welfare in a duopoly. When consumers buy all their products from one firm (the one-stop shopping model), nonlinear pricing leads to higher profit and welfare, but often lower consumer surplus, than linear pricing. By contrast, in a unit-demand model where consumers may buy one product from one firm and another product from another firm, bundling generally acts to reduce profit and welfare and to boost cons...
Nonlinear optics principles and applications
Rottwitt, Karsten
2014-01-01
IntroductionReview of linear opticsInduced polarizationHarmonic oscillator modelLocal field correctionsEstimated nonlinear responseSummaryTime-domain material responseThe polarization time-response functionThe Born-Oppenheimer approximationRaman scattering response function of silicaSummaryMaterial response in the frequency domain, susceptibility tensorsThe susceptibility tensorThe induced polarization in the frequency domainSum of monochromatic fieldsThe prefactor to the induced polarizationThird-order polarization in the Born-Oppenheimer approximation in the frequency domainKramers-Kronig relationsSummarySymmetries in nonlinear opticsSpatial symmetriesSecond-order materialsThird-order nonlinear materialsCyclic coordinate-systemContracted notation for second-order susceptibility tensorsSummaryThe nonlinear wave equationMono and quasi-monochromatic beamsPlane waves - the transverse problemWaveguidesVectorial approachNonlinear birefringenceSummarySecond-order nonlinear effectsGeneral theoryCoupled wave theoryP...
Modeling nonlinearities in MEMS oscillators.
Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A
2013-08-01
We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.
BOOK REVIEW: Nonlinear Magnetohydrodynamics
Shafranov, V.
1998-08-01
Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium
Nonlinear transport of dynamic system phase space
International Nuclear Information System (INIS)
Xie Xi; Xia Jiawen
1993-01-01
The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example
A reliable treatment for nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Khani, F.; Hamedi-Nezhad, S.; Molabahrami, A.
2007-01-01
Exp-function method is used to find a unified solution of nonlinear wave equation. Nonlinear Schroedinger equations with cubic and power law nonlinearity are selected to illustrate the effectiveness and simplicity of the method. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving nonlinear equation
Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities
Directory of Open Access Journals (Sweden)
Y. N. Pavlov
2015-01-01
Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic
Final report. [Nonlinear magnetohydrodynamics
International Nuclear Information System (INIS)
Montgomery, D.C.
1998-01-01
This is a final report on the research activities carried out under the above grant at Dartmouth. During the period considered, the grant was identified as being for nonlinear magnetohydrodynamics, considered as the most tractable theoretical framework in which the plasma problems associated with magnetic confinement of fusion plasmas could be studied. During the first part of the grant's lifetime, the author was associated with Los Alamos National Laboratory as a consultant and the work was motivated by the reversed-field pinch. Later, when that program was killed at Los Alamos, the problems became ones that could be motivated by their relation to tokamaks. Throughout the work, the interest was always on questions that were as fundamental as possible, compatible with those motivations. The intent was always to contribute to plasma physics as a science, as well as to the understanding of mission-oriented confined fusion plasmas. Twelve Ph.D. theses were supervised during this period and a comparable number of postdoctoral research associates were temporarily supported. Many of these have gone on to distinguished careers, though few have done so in the context of the controlled fusion program. Their work was a combination of theory and numerical computation, in gradually less and less idealized settings, moving from rectangular periodic boundary conditions in two dimensions, through periodic straight cylinders and eventually, before the grant was withdrawn, to toroids, with a gradually more prominent role for electrical and mechanical boundary conditions. The author never had access to a situation where he could initiate experiments and relate directly to the laboratory data he wanted. Computers were the laboratory. Most of the work was reported in referred publications in the open literature, copies of which were transmitted one by one to DOE at the time they appeared. The Appendix to this report is a bibliography of published work which was carried out under the
Complex motions and chaos in nonlinear systems
Machado, José; Zhang, Jiazhong
2016-01-01
This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.
Cascaded nonlinearities for ultrafast nonlinear optical science and applications
DEFF Research Database (Denmark)
Bache, Morten
the cascading nonlinearity is investigated in detail, especially with focus on femtosecond energetic laser pulses being subjected to this nonlinear response. Analytical, numerical and experimental results are used to understand the cascading interaction and applications are demonstrated. The defocusing soliton...... observations with analogies in fiber optics are observed numerically and experimentally, including soliton self-compression, soliton-induced resonant radiation, supercontinuum generation, optical wavebreaking and shock-front formation. All this happens despite no waveguide being present, thanks...... is of particular interest here, since it is quite unique and provides the solution to a number of standing challenges in the ultrafast nonlinear optics community. It solves the problem of catastrophic focusing and formation of a filaments in bulk glasses, which even under controlled circumstances is limited...
Input saturation in nonlinear multivariable processes resolved by nonlinear decoupling
Directory of Open Access Journals (Sweden)
Jens G. Balchen
1995-04-01
Full Text Available A new method is presented for the resolution of the problem of input saturation in nonlinear multivariable process control by means of elementary nonlinear decoupling (END. Input saturation can have serious consequences particularly in multivariable control because it may lead to very undesirable system behaviour and quite often system instability. Many authors have searched for systematic techniques for designing multivariable control systems in which saturation may occur in any of the control variables (inputs, manipulated variables. No generally accepted method seems to have been presented so far which gives a solution in closed form. The method of elementary nonlinear decoupling (END can be applied directly to the case of saturation control variables by deriving as many control strategies as there are combinations of saturating control variables. The method is demonstrated by the multivariable control of a simulated Fluidized Catalytic Cracker (FCC with very convincing results.
Nonlinear analysis of pupillary dynamics.
Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo
2016-02-01
Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (pnonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.
Introduction to nonlinear dispersive equations
Linares, Felipe
2015-01-01
This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introdu...
Nonlinear dynamics in biological systems
Carballido-Landeira, Jorge
2016-01-01
This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...
Neoclassical transport including collisional nonlinearity.
Candy, J; Belli, E A
2011-06-10
In the standard δf theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction δf is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlüter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.
Nonlinear photoacoustic spectroscopy of hemoglobin.
Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P; Xia, Jun; Wang, Lihong V
2015-05-18
As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.
Nonlinear photoacoustic spectroscopy of hemoglobin
International Nuclear Information System (INIS)
Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.
2015-01-01
As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography
Nonlinear Deformable-body Dynamics
Luo, Albert C J
2010-01-01
"Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of non...
NONLINEAR DYNAMICS OF ORGANIZATION DEVELOPMENT
Directory of Open Access Journals (Sweden)
Денис Антонович БУШУЕВ
2016-02-01
Full Text Available The nonlinear behavior of organizations in development projects is considered. The nonlinear behavior is initiated in the growth of organizations and requires a restructuring of governance in identifying dysfunctions. Such a restructuring is needed in the area of soft components, determining the organizational levels of competence in the management of projects, programs, portfolios and heads of the Project Management Office. An important component of the strategic development of the organization is the proposed concept for formation and management of development programs in the context according to their life cycle. It should take into account the non-linear behavior of the soft components of the system and violation of functional processes of the organization. The specific management syndromes of projects and programs are considered. Such as syndromes time management project linked to the singular points of the project. These syndromes are "shift to the right", "point of no return", "braking at the end of the project" and others.
Nonlinear operators and their propagators
International Nuclear Information System (INIS)
Schwartz, C.
1997-01-01
Mathematical physicists are familiar with a large set of tools designed for dealing with linear operators, which are so common in both the classical and quantum theories; but many of those tools are useless with nonlinear equations of motion. In this work a general algebra and calculus is developed for working with nonlinear operators: The basic new tool being the open-quotes slash product,close quotes defined by A(1+εB) =A+εA/B+O(ε 2 ). For a generic time development equation, the propagator is constructed and then there follows the formal version of time dependent perturbation theory, in remarkable similarity to the linear situation. A nonperturbative approximation scheme capable of producing high accuracy computations, previously developed for linear operators, is shown to be applicable as well in the nonlinear domain. A number of auxiliary mathematical properties and examples are given. copyright 1997 American Institute of Physics
Nonlinear optics an analytical approach
Mandel, Paul
2010-01-01
Based on the author's extensive teaching experience and lecture notes, this textbook provides a substantially analytical rather than descriptive presentation of nonlinear optics. Divided into five parts, with most chapters corresponding to a two-hour lecture, the book begins with a unique account of the historical development from Kirchhoff's law for the black-body radiation to Planck's quantum hypothesis and Einstein's discovery of spontaneous emission - providing all the explicit proofs. The subsequent sections deal with matter quantization, ultrashort pulse propagation in 2-level media, cavity nonlinear optics, chi(2) and chi(3) media. For graduate and PhD students in nonlinear optics or photonics, while also representing a valuable reference for researchers in these fields.
Nonlinear photoacoustic spectroscopy of hemoglobin
Energy Technology Data Exchange (ETDEWEB)
Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V., E-mail: LHWANG@WUSTL.EDU [Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130 (United States)
2015-05-18
As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.
Optimization for nonlinear inverse problem
International Nuclear Information System (INIS)
Boyadzhiev, G.; Brandmayr, E.; Pinat, T.; Panza, G.F.
2007-06-01
The nonlinear inversion of geophysical data in general does not yield a unique solution, but a single model, representing the investigated field, is preferred for an easy geological interpretation of the observations. The analyzed region is constituted by a number of sub-regions where the multi-valued nonlinear inversion is applied, which leads to a multi-valued solution. Therefore, combining the values of the solution in each sub-region, many acceptable models are obtained for the entire region and this complicates the geological interpretation of geophysical investigations. In this paper are presented new methodologies, capable to select one model, among all acceptable ones, that satisfies different criteria of smoothness in the explored space of solutions. In this work we focus on the non-linear inversion of surface waves dispersion curves, which gives structural models of shear-wave velocity versus depth, but the basic concepts have a general validity. (author)
Nonlinear elasticity in resonance experiments
Li, Xun; Sens-Schönfelder, Christoph; Snieder, Roel
2018-04-01
Resonant bar experiments have revealed that dynamic deformation induces nonlinearity in rocks. These experiments produce resonance curves that represent the response amplitude as a function of the driving frequency. We propose a model to reproduce the resonance curves with observed features that include (a) the log-time recovery of the resonant frequency after the deformation ends (slow dynamics), (b) the asymmetry in the direction of the driving frequency, (c) the difference between resonance curves with the driving frequency that is swept upward and downward, and (d) the presence of a "cliff" segment to the left of the resonant peak under the condition of strong nonlinearity. The model is based on a feedback cycle where the effect of softening (nonlinearity) feeds back to the deformation. This model provides a unified interpretation of both the nonlinearity and slow dynamics in resonance experiments. We further show that the asymmetry of the resonance curve is caused by the softening, which is documented by the decrease of the resonant frequency during the deformation; the cliff segment of the resonance curve is linked to a bifurcation that involves a steep change of the response amplitude when the driving frequency is changed. With weak nonlinearity, the difference between the upward- and downward-sweeping curves depends on slow dynamics; a sufficiently slow frequency sweep eliminates this up-down difference. With strong nonlinearity, the up-down difference results from both the slow dynamics and bifurcation; however, the presence of the bifurcation maintains the respective part of the up-down difference, regardless of the sweep rate.
Periodic waves in nonlinear metamaterials
International Nuclear Information System (INIS)
Liu, Wen-Jun; Xiao, Jing-Hua; Yan, Jie-Yun; Tian, Bo
2012-01-01
Periodic waves are presented in this Letter. With symbolic computation, equations for monochromatic waves are studied, and analytic periodic waves are obtained. Factors affecting properties of periodic waves are analyzed. Nonlinear metamaterials, with the continuous distribution of the dielectric permittivity obtained, are different from the ones with the discrete distribution. -- Highlights: ► Equations for the monochromatic waves in transverse magnetic polarization have been studied. ► Analytic periodic waves for the equations have been obtained. ► Periodic waves are theoretically presented and studied in the nonlinear metamaterials.
Nonlinear Optics of Hexaphenyl Nanofibers
DEFF Research Database (Denmark)
Balzer, Frank; Al-Shamery, Katharina; Neuendorf, Rolf
2003-01-01
The nonlinear optical response of films of needle-shaped para-hexaphenyl nanoaggregates on mica surfaces is investigated. Two-photon luminescence as well as optical second harmonic generation (SHG) are observed following excitation with femtosecond pulses at 770 nm. Polarization dependent...... measurements reveal that the nonlinear optical transition dipole moment is oriented with an angle of 75° with respect to the needles long axes. The absolute value of the macroscopic second-order susceptibility, averaged over a size distribution of p-6P nanoaggregates, is estimated to be of the order of 6...
Nonlinear waves and weak turbulence
Zakharov, V E
1997-01-01
This book is a collection of papers on dynamical and statistical theory of nonlinear wave propagation in dispersive conservative media. Emphasis is on waves on the surface of an ideal fluid and on Rossby waves in the atmosphere. Although the book deals mainly with weakly nonlinear waves, it is more than simply a description of standard perturbation techniques. The goal is to show that the theory of weakly interacting waves is naturally related to such areas of mathematics as Diophantine equations, differential geometry of waves, Poincaré normal forms, and the inverse scattering method.
Nonlinear Control of Heartbeat Models
Directory of Open Access Journals (Sweden)
Witt Thanom
2011-02-01
Full Text Available This paper presents a novel application of nonlinear control theory to heartbeat models. Existing heartbeat models are investigated and modified by incorporating the control input as a pacemaker to provide the control channel. A nonlinear feedback linearization technique is applied to force the output of the systems to generate artificial electrocardiogram (ECG signal using discrete data as the reference inputs. The synthetic ECG may serve as a flexible signal source to assess the effectiveness of a diagnostic ECG signal-processing device.
Nonlinear phenomena at cyclotron resonance
International Nuclear Information System (INIS)
Subbarao, D.; Uma, R.
1986-01-01
Finite amplitude electromagnetic waves in a magnetoplasma which typically occur in situations as in present day wave heating, current drives and other schemes in magnetically confined fusion systems, can show qualitatively different absorption and emission characteristics around resonant frequencies of the plasma because of anharmonicity. Linear wave plasma coupling as well as weak nonlinear effects such as parametric instabilities generally overlook this important effect even though the thresholds for the two phenomena as shown here are comparable. Though the effects described here are relevant to a host of nonlinear resonance effects in fusion plasmas, the authors mainly limit themselves to ECRH
Field guide to nonlinear optics
Powers, Peter E
2013-01-01
Optomechanics is a field of mechanics that addresses the specific design challenges associated with optical systems. This [i]Field Guide [/i]describes how to mount optical components, as well as how to analyze a given design. It is intended for practicing optical and mechanical engineers whose work requires knowledge in both optics and mechanics. This Field Guide is designed for those looking for a condensed and concise source of key concepts, equations, and techniques for nonlinear optics. Topics covered include technologically important effects, recent developments in nonlinear optics
Time series with tailored nonlinearities
Räth, C.; Laut, I.
2015-10-01
It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations.
Finite elements of nonlinear continua
Oden, John Tinsley
1972-01-01
Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view.The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical s
Stability analysis of nonlinear systems with slope restricted nonlinearities.
Liu, Xian; Du, Jiajia; Gao, Qing
2014-01-01
The problem of absolute stability of Lur'e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP) lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.
Stability Analysis of Nonlinear Systems with Slope Restricted Nonlinearities
Directory of Open Access Journals (Sweden)
Xian Liu
2014-01-01
Full Text Available The problem of absolute stability of Lur’e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.
Nonlinear optical properties of silicon waveguides
International Nuclear Information System (INIS)
Tsang, H K; Liu, Y
2008-01-01
Recent work on two-photon absorption (TPA), stimulated Raman scattering (SRS) and optical Kerr effect in silicon-on-insulator (SOI) waveguides is reviewed and some potential applications of these optical nonlinearities, including silicon-based autocorrelation detectors, optical amplifiers, high speed optical switches, optical wavelength converters and self-phase modulation (SPM), are highlighted. The importance of free carriers generated by TPA in nonlinear devices is discussed, and a generalized definition of the nonlinear effective length to cater for nonlinear losses is proposed. How carrier lifetime engineering, and in particular the use of helium ion implantation, can enhance the nonlinear effective length for nonlinear devices is also discussed
Nonlinearity and nonclassicality in a nanomechanical resonator
Energy Technology Data Exchange (ETDEWEB)
Teklu, Berihu [Clermont Universite, Blaise Pascal University, CNRS, PHOTON-N2, Institut Pascal, Aubiere Cedex (France); Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy); Ferraro, Alessandro; Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Paris, Matteo G.A. [Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy)
2015-12-15
We address quantitatively the relationship between the nonlinearity of a mechanical resonator and the nonclassicality of its ground state. In particular, we analyze the nonclassical properties of the nonlinear Duffing oscillator (being driven or not) as a paradigmatic example of a nonlinear nanomechanical resonator. We first discuss how to quantify the nonlinearity of this system and then show that the nonclassicality of the ground state, as measured by the volume occupied by the negative part of the Wigner function, monotonically increases with the nonlinearity in all the working regimes addressed in our study. Our results show quantitatively that nonlinearity is a resource to create nonclassical states in mechanical systems. (orig.)
Application of the Green's function method for 2- and 3-dimensional steady transonic flows
Tseng, K.
1984-01-01
A Time-Domain Green's function method for the nonlinear time-dependent three-dimensional aerodynamic potential equation is presented. The Green's theorem is being used to transform the partial differential equation into an integro-differential-delay equation. Finite-element and finite-difference methods are employed for the spatial and time discretizations to approximate the integral equation by a system of differential-delay equations. Solution may be obtained by solving for this nonlinear simultaneous system of equations in time. This paper discusses the application of the method to the Transonic Small Disturbance Equation and numerical results for lifting and nonlifting airfoils and wings in steady flows are presented.
Pole solutions for flame front propagation
Kupervasser, Oleg
2015-01-01
This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.
A multilevel method for conductive-radiative heat transfer
Energy Technology Data Exchange (ETDEWEB)
Banoczi, J.M.; Kelley, C.T. [North Carolina State Univ., Raleigh, NC (United States)
1996-12-31
We present a fast multilevel algorithm for the solution of a system of nonlinear integro-differential equations that model steady-state combined radiative-conductive heat transfer. The equations can be formulated as a compact fixed point problem with a fixed point map that requires both a solution of the linear transport equation and the linear heat equation for its evaluation. We use fast transport solvers developed by the second author, to construct an efficient evaluation of the fixed point map and then apply the Atkinson-Brakhage, method, with Newton-GMRES as the coarse mesh solver, to the full nonlinear system.
Statistical methods in nonlinear dynamics
Indian Academy of Sciences (India)
Sensitivity to initial conditions in nonlinear dynamical systems leads to exponential divergence of trajectories that are initially arbitrarily close, and hence to unpredictability. Statistical methods have been found to be helpful in extracting useful information about such systems. In this paper, we review briefly some statistical ...
Cosmological effects of nonlinear electrodynamics
International Nuclear Information System (INIS)
Novello, M; Goulart, E; Salim, J M; Bergliaffa, S E Perez
2007-01-01
It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology
Nonlinearity, Conservation Law and Shocks
Indian Academy of Sciences (India)
However, genuine nonlinearity is always present in an ideal gas. The conservation form of the equation (25) brings in shocks which cut off the growing part of the amplitUde as shown in. Figure 15. Acknowledgements. The author sincerely thanks the two referees whose valuable comments led to an improvement of the ...
Impurity solitons with quadratic nonlinearities
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Torres, Juan P-; Torner, Lluis
1998-01-01
We fmd families of solitary waves mediated by parametric mixing in quadratic nonlinear media that are localized at point-defect impurities. Solitons localized at attractive impurities are found to be dynamically stable. It is shown that localization at the impurity modifies strongly the soliton...
Nonlinear materials for frequency conversion
International Nuclear Information System (INIS)
Velsko, S.P.; Eimerl, D.
1988-01-01
Two figures of merit, the threshold power (P/sub th/) and the limiting volume (V/sub min/) can be used to compare the relative efficiency and economy of new harmonic generating crystals. The properties of barium metaborate and L-Arginine phosphate are used to illustrate the effect of nonlinearity, birefringence, and damage threshold on these figures of merit
Dynamics of nonlinear feedback control
Snippe, H.P.; Hateren, J.H. van
Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain
Nonlinear Markov processes: Deterministic case
International Nuclear Information System (INIS)
Frank, T.D.
2008-01-01
Deterministic Markov processes that exhibit nonlinear transition mechanisms for probability densities are studied. In this context, the following issues are addressed: Markov property, conditional probability densities, propagation of probability densities, multistability in terms of multiple stationary distributions, stability analysis of stationary distributions, and basin of attraction of stationary distribution
Nonlinear Dynamics of Nanomechanical Resonators
Ramakrishnan, Subramanian; Gulak, Yuiry; Sundaram, Bala; Benaroya, Haym
2007-03-01
Nanoelectromechanical systems (NEMS) offer great promise for many applications including motion and mass sensing. Recent experimental results suggest the importance of nonlinear effects in NEMS, an issue which has not been addressed fully in theory. We report on a nonlinear extension of a recent analytical model by Armour et al [1] for the dynamics of a single-electron transistor (SET) coupled to a nanomechanical resonator. We consider the nonlinear resonator motion in both (a) the Duffing and (b) nonlinear pendulum regimes. The corresponding master equations are derived and solved numerically and we consider moment approximations as well. In the Duffing case with hardening stiffness, we observe that the resonator is damped by the SET at a significantly higher rate. In the cases of softening stiffness and the pendulum, there exist regimes where the SET adds energy to the resonator. To our knowledge, this is the first instance of a single model displaying both negative and positive resonator damping in different dynamical regimes. The implications of the results for SET sensitivity as well as for, as yet unexplained, experimental results will be discussed. 1. Armour et al. Phys.Rev.B (69) 125313 (2004).
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
The study of solitons in those physical systems reveals some exciting .... With the following power series expansions for g(z,t) and f(z,t): g(z,t) = εg1(z,t) + ... If nonlinearity γ (z) is also taken as a function in figure 1b, the periodic and oscillation.
Oscillating solitons in nonlinear optics
Indian Academy of Sciences (India)
... are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.
Nonlinear dynamics and plasma transport
International Nuclear Information System (INIS)
Antonsen, T.M. Jr.; Drake, J.F.; Finn, J.M.; Guzdar, P.N.; Hassam, A.B.; Sagdeev, R.Z.
1992-01-01
In this paper we summarize the progress made over the last year in three different areas of research: (a) shear flow generation and reduced transport in fluids and plasma, (b) nonlinear dynamics and visualization of 3D flows, and (c) application of wavelet analysis to the study of fractal dimensions in experimental and numerical data
Analysis of Nonlinear Dynamic Structures
African Journals Online (AJOL)
Bheema
work a two degrees of freedom nonlinear system with zero memory was ... FRF is the most widely used method in structural dynamics which gives information about the ..... 3.6, which is the waterfall diagram of the same response, as well.
Nonlinear Multigrid for Reservoir Simulation
DEFF Research Database (Denmark)
Christensen, Max la Cour; Eskildsen, Klaus Langgren; Engsig-Karup, Allan Peter
2016-01-01
efficiency for a black-oil model. Furthermore, the use of the FAS method enables a significant reduction in memory usage compared with conventional techniques, which suggests new possibilities for improved large-scale reservoir simulation and numerical efficiency. Last, nonlinear multilevel preconditioning...
Halo Mitigation Using Nonlinear Lattices
Sonnad, Kiran G
2005-01-01
This work shows that halos in beams with space charge effects can be controlled by combining nonlinear focusing and collimation. The study relies on Particle-in-Cell (PIC) simulations for a one dimensional, continuous focusing model. The PIC simulation results show that nonlinear focusing leads to damping of the beam oscillations thereby reducing the mismatch. It is well established that reduced mismatch leads to reduced halo formation. However, the nonlinear damping is accompanied by emittance growth causing the beam to spread in phase space. As a result, inducing nonlinear damping alone cannot help mitigate the halo. To compensate for this expansion in phase space, the beam is collimated in the simulation and further evolution of the beam shows that the halo is not regenerated. The focusing model used in the PIC is analysed using the Lie Transform perturbation theory showing that by averaging over a lattice period, one can reuduce the focusing force to a form that is identical to that used in the PIC simula...
Nonlinear laser-plasma interactions
Kaw, P. K.
2017-12-01
Soon after lasers were invented, there was tremendous curiosity on the nonlinear phenomena which would result in their interaction with a fully ionized plasma. Apart from the basic interest, it was realized that it could be used for the achievement of nuclear fusion in the laboratory. This led us to a paper on the propagation of a laser beam into an inhomogeneous fusion plasma, where it was first demonstrated that light would go up to the critical layer (where the frequency matches the plasma frequency) and get reflected from there with a reflection coefficient of order unity. The reflection coefficient was determined by collisional effects. Since the wave was expected to slow down to near zero group speed at the reflection point, the dominant collision frequency determining the reflection coefficient was the collision frequency at the reflection point. It turned out that the absorption of light was rather small for fusion temperatures. This placed a premium on investigation of nonlinear phenomena which might contribute to the absorption and penetration of the light into high-density plasma. An early investigation showed that electron jitter with respect to ions would be responsible for the excitation of decay instabilities which convert light waves into electrostatic plasma waves and ion waves near the critical frequency. These electrostatic waves would then get absorbed into the plasma even in the collisionless case and lead to plasma heating which is nonlinear. Detailed estimates of this heating were made. Similar nonlinear processes which could lead to stimulated scattering of light in the underdense region (ω >ω _p) were investigated together with a number of other workers. All these nonlinear processes need a critical threshold power for excitation. Another important process which was discovered around the same time had to do with filamentation and trapping of light when certain thresholds were exceeded. All of this work has been extensively verified in
Dynamics of nonlinear feedback control.
Snippe, H P; van Hateren, J H
2007-05-01
Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.
Nonlinear Optical Fiber Arrays for Limiting Application
National Research Council Canada - National Science Library
Khoo, Iam-Choon
2006-01-01
.... Measurements show that they possess desirable nonlinear optical such as low-freezing pint, non-volatile, transparent for low light level and possess large effective nonlinear absorption coefficients...
Nonlinear dynamics between linear and impact limits
Pilipchuk, Valery N; Wriggers, Peter
2010-01-01
This book examines nonlinear dynamic analyses based on the existence of strongly nonlinear but simple counterparts to the linear models and tools. Discusses possible application to periodic elastic structures with non-smooth or discontinuous characteristics.
International Conference on Applications in Nonlinear Dynamics
Longhini, Patrick; Palacios, Antonio
2017-01-01
This book presents collaborative research works carried out by experimentalists and theorists around the world in the field of nonlinear dynamical systems. It provides a forum for applications of nonlinear systems while solving practical problems in science and engineering. Topics include: Applied Nonlinear Optics, Sensor, Radar & Communication Signal Processing, Nano Devices, Nonlinear Biomedical Applications, Circuits & Systems, Coupled Nonlinear Oscillator, Precision Timing Devices, Networks, and other contemporary topics in the general field of Nonlinear Science. This book provides a comprehensive report of the various research projects presented at the International Conference on Applications in Nonlinear Dynamics (ICAND 2016) held in Denver, Colorado, 2016. It can be a valuable tool for scientists and engineering interested in connecting ideas and methods in nonlinear dynamics with actual design, fabrication and implementation of engineering applications or devices.
SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS
Desmal, Abdulla; Bagci, Hakan
2015-01-01
minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two
Nonlinear diffraction from a virtual beam
DEFF Research Database (Denmark)
Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw
2010-01-01
We observe experimentally a novel type of nonlinear diffraction in the process of two-wave mixing on a nonlinear quadratic grating.We demonstrate that when the nonlinear grating is illuminated simultaneously by two noncollinear beams, a second-harmonic diffraction pattern is generated by a virtual...... beam propagating along the bisector of the two pump beams. The observed iffraction phenomena is a purely nonlinear effect that has no analogue in linear diffraction...
Nonlinear temporal modulation of pulsar radioemission
International Nuclear Information System (INIS)
Chian, A.C.-L.
1984-01-01
A nonlinear theory is discussed for self-modulation of pulsar radio pulses. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron-positron plasma. The nonlinearities arising from wave intensity induced relativistic particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary wave forms may account for the formation of pulsar microstructures. (Author) [pt
Nonlinear Michelson interferometer for improved quantum metrology
Luis, Alfredo; Rivas, Ángel
2015-01-01
We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the ene...
Solitons in quadratic nonlinear photonic crystals
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2001-01-01
We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families....... Because of these induced cubic terms, solitons still exist even when the effective quadratic nonlinearity vanishes and conventional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these solitons can propagate stably....
Nonlinear waves in solar plasmas - a review
International Nuclear Information System (INIS)
Ballai, I
2006-01-01
Nonlinearity is a direct consequence of large scale dynamics in the solar plasmas. When nonlinear steepening of waves is balanced by dispersion, solitary waves are generated. In the vicinity of resonances, waves can steepen into nonlinear waves influencing the efficiency of energy deposition. Here we review recent theoretical breakthroughs that have lead to a greater understanding of many aspects of nonlinear waves arising in homogeneous and inhomogeneous solar plasmas
Frequency response functions for nonlinear convergent systems
Pavlov, A.V.; Wouw, van de N.; Nijmeijer, H.
2007-01-01
Convergent systems constitute a practically important class of nonlinear systems that extends the class of asymptotically stable linear time-invariant systems. In this note, we extend frequency response functions defined for linear systems to nonlinear convergent systems. Such nonlinear frequency
Nonlinear dynamics aspects of particle accelerators
International Nuclear Information System (INIS)
Araki, H.; Ehlers, J.; Hepp, K.; Kippenhahn, R.; Weidenmuller, A.; Zittartz, J.
1986-01-01
This book contains 18 selections. Some of the titles are: Integrable and Nonintegrable Hamiltonian Systems; Nonlinear Dynamics Aspects of Modern Storage Rings; Nonlinear Beam-Beam Resonances; Synchro-Betatron Resonances; Review of Beam-Beam Simulations; and Perturbation Method in Nonlinear Dynamics
Nonlinear approaches in engineering applications 2
Jazar, Reza N
2013-01-01
Provides updated principles and applications of the nonlinear approaches in solving engineering and physics problems Demonstrates how nonlinear approaches may open avenues to better, safer, cheaper systems with less energy consumption Has a strong emphasis on the application, physical meaning, and methodologies of nonlinear approaches in different engineering and science problems
Averaging of nonlinearity-managed pulses
International Nuclear Information System (INIS)
Zharnitsky, Vadim; Pelinovsky, Dmitry
2005-01-01
We consider the nonlinear Schroedinger equation with the nonlinearity management which describes Bose-Einstein condensates under Feshbach resonance. By using an averaging theory, we derive the Hamiltonian averaged equation and compare it with other averaging methods developed for this problem. The averaged equation is used for analytical approximations of nonlinearity-managed solitons
Nonlinear science as a fluctuating research frontier
International Nuclear Information System (INIS)
He Jihuan
2009-01-01
Nonlinear science has had quite a triumph in all conceivable applications in science and technology, especially in high energy physics and nanotechnology. COBE, which was awarded the physics Nobel Prize in 2006, might be probably more related to nonlinear science than the Big Bang theory. Five categories of nonlinear subjects in research frontier are pointed out.
Variational principles for nonlinear piezoelectric materials
Energy Technology Data Exchange (ETDEWEB)
Rodriguez-Ramos, R.; Guinovart-Diaz, R. [Universidad de la Habana, Facultad de Matematica y Computacion, Vedado, Habana (Cuba); Pobedria, B.E. [Moscow State University M. V. Lomonosov, Composites Department, Moscow (Russian Federation); Padilla, P. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas (IIMAS), Cd. Universitaria, Mexico D.F. (Mexico); Bravo-Castillero, J. [Universidad de la Habana, Facultad de Matematica y Computacion, Vedado, Habana (Cuba); Campus Estado de Mexico. Division de Arquitectura e Ingenieria, Instituto Tecnologico de Estudios Superiores de Monterrey, Atizapan de Zaragoza, Estado de Mexico (Mexico); Maugin, G.A. [Universite Pierre et Marie Curie. Case 162, UMR 7607 CNRS, Laboratoire de Modelisation en Mecanique, Paris Cedex 05 (France)
2004-12-01
In the present paper, we consider the behavior of nonlinear piezoelectric materials by generalization for this case of the Hashin-Shtrikman variational principles. The new general formulation used here differs from others, because, it gives the possibility to evaluate the upper and lower Hashin-Shtrikman bounds for specific physical nonlinearities of piezoelectric materials. Geometrical nonlinearities are not considered. (orig.)
Lie Symmetries and Solitons in Nonlinear Systems with Spatially Inhomogeneous Nonlinearities
International Nuclear Information System (INIS)
Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym; Torres, Pedro J.
2007-01-01
Using Lie group theory and canonical transformations, we construct explicit solutions of nonlinear Schroedinger equations with spatially inhomogeneous nonlinearities. We present the general theory, use it to show that localized nonlinearities can support bound states with an arbitrary number solitons, and discuss other applications of interest to the field of nonlinear matter waves
Nonlinear PT-symmetric plaquettes
International Nuclear Information System (INIS)
Li Kai; Kevrekidis, P G; Malomed, Boris A; Günther, Uwe
2012-01-01
We introduce four basic two-dimensional (2D) plaquette configurations with onsite cubic nonlinearities, which may be used as building blocks for 2D PT-symmetric lattices. For each configuration, we develop a dynamical model and examine its PTsymmetry. The corresponding nonlinear modes are analyzed starting from the Hamiltonian limit, with zero value of the gain–loss coefficient, γ. Once the relevant waveforms have been identified (chiefly, in an analytical form), their stability is examined by means of linearization in the vicinity of stationary points. This reveals diverse and, occasionally, fairly complex bifurcations. The evolution of unstable modes is explored by means of direct simulations. In particular, stable localized modes are found in these systems, although the majority of identified solutions are unstable. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Oscillating nonlinear acoustic shock waves
DEFF Research Database (Denmark)
Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth
2016-01-01
We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....
An efficient nonlinear Feshbach engine
Li, Jing; Fogarty, Thomás; Campbell, Steve; Chen, Xi; Busch, Thomas
2018-01-01
We investigate a thermodynamic cycle using a Bose-Einstein condensate (BEC) with nonlinear interactions as the working medium. Exploiting Feshbach resonances to change the interaction strength of the BEC allows us to produce work by expanding and compressing the gas. To ensure a large power output from this engine these strokes must be performed on a short timescale, however such non-adiabatic strokes can create irreversible work which degrades the engine’s efficiency. To combat this, we design a shortcut to adiabaticity which can achieve an adiabatic-like evolution within a finite time, therefore significantly reducing the out-of-equilibrium excitations in the BEC. We investigate the effect of the shortcut to adiabaticity on the efficiency and power output of the engine and show that the tunable nonlinearity strength, modulated by Feshbach resonances, serves as a useful tool to enhance the system’s performance.
Simulating nonlinear neutrino flavor evolution
Duan, H.; Fuller, G. M.; Carlson, J.
2008-10-01
We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev Smirnov Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle θ13.
New approaches to nonlinear waves
2016-01-01
The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3). In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5). The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system. The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments. All the chapters are illustrated by ample constructive examples demonstrating the app...
A solution to nonlinearity problems
International Nuclear Information System (INIS)
Neuffer, D.V.
1989-01-01
New methods of correcting dynamic nonlinearities resulting from the multipole content of a synchrotron or transport line are presented. In a simplest form, correction elements are places at the center (C) of the accelerator half-cells as well as near the focusing (F) and defocusing (D) quadrupoles. In a first approximation, the corrector strengths follow Simpson's Rule, forming an accurate quasi-local canceling approximation to the nonlinearity. The F, C, and D correctors may also be used to obtain precise control of the horizontal, coupled, and vertical motion. Correction by three or more orders of magnitude can be obtained, and simple solutions to a fundamental problem in beam transport have been obtained. 13 refs., 1 fig., 1 tab
Nonlinear waves and pattern dynamics
Pelinovsky, Efim; Mutabazi, Innocent
2018-01-01
This book addresses the fascinating phenomena associated with nonlinear waves and spatio-temporal patterns. These appear almost everywhere in nature from sand bed forms to brain patterns, and yet their understanding still presents fundamental scientific challenges. The reader will learn here, in particular, about the current state-of-the art and new results in: Nonlinear water waves: resonance, solitons, focusing, Bose-Einstein condensation, as well as and their relevance for the sea environment (sea-wind interaction, sand bed forms, fiber clustering) Pattern formation in non-equilibrium media: soap films, chimera patterns in oscillating media, viscoelastic Couette-Taylor flow, flow in the wake behind a heated cylinder, other pattern formation. The editors and authors dedicate this book to the memory of Alexander Ezersky, Professor of Fluid Mechanics at the University of Caen Normandie (France) from September 2007 to July 2016. Before 2007, he had served as a Senior Scientist at the Institute of Applied Physi...
A programmable nonlinear acoustic metamaterial
Directory of Open Access Journals (Sweden)
Tianzhi Yang
2017-09-01
Full Text Available Acoustic metamaterials with specifically designed lattices can manipulate acoustic/elastic waves in unprecedented ways. Whereas there are many studies that focus on passive linear lattice, with non-reconfigurable structures. In this letter, we present the design, theory and experimental demonstration of an active nonlinear acoustic metamaterial, the dynamic properties of which can be modified instantaneously with reversibility. By incorporating active and nonlinear elements in a single unit cell, a real-time tunability and switchability of the band gap is achieved. In addition, we demonstrate a dynamic “editing” capability for shaping transmission spectra, which can be used to create the desired band gap and resonance. This feature is impossible to achieve in passive metamaterials. These advantages demonstrate the versatility of the proposed device, paving the way toward smart acoustic devices, such as logic elements, diode and transistor.
Some nonlinear space decomposition algorithms
Energy Technology Data Exchange (ETDEWEB)
Tai, Xue-Cheng; Espedal, M. [Univ. of Bergen (Norway)
1996-12-31
Convergence of a space decomposition method is proved for a general convex programming problem. The space decomposition refers to methods that decompose a space into sums of subspaces, which could be a domain decomposition or a multigrid method for partial differential equations. Two algorithms are proposed. Both can be used for linear as well as nonlinear elliptic problems and they reduce to the standard additive and multiplicative Schwarz methods for linear elliptic problems. Two {open_quotes}hybrid{close_quotes} algorithms are also presented. They converge faster than the additive one and have better parallelism than the multiplicative method. Numerical tests with a two level domain decomposition for linear, nonlinear and interface elliptic problems are presented for the proposed algorithms.
Nonlinear beam expander for ESNIT
International Nuclear Information System (INIS)
Rusthoi, D.P.; Blind, B.; Garnett, R.W.; Hanna, D.S.; Jason, A.J.; Kraus, R.H. Jr.; Neri, F.
1994-01-01
We describe the design of a beam-redistribution and expansion system for the Japanese Atomic Energy Research Institute (JAERI) Energy Selective Neutron Irradiation Test Facility (ESNIT). The system tailors the beam exiting a deuteron accelerator at energies from 20 to 35 MeV for deposition on a lithium neutron-production target. A uniform beam-intensity distribution in a well-defined irradiation area is inquired at the target and is achieved by the use of nonlinear elements. The design of the high-energy beam transport (HEBT) for ESNIT includes a 90 degree achromatic bend, a matching section with an energy-compacting cavity, a nonlinear beam expander, a target imager, a shielding dipole, and an rf-cavity system to add energy spread to the beam before it impinges on the target. The system meets performance requirements at multiple energies and currents, and for different spot sizes on target
Nonlinear electromagnetic susceptibilities of unmagnetized plasmas
International Nuclear Information System (INIS)
Yoon, Peter H.
2005-01-01
Fully electromagnetic nonlinear susceptibilities of unmagnetized plasmas are analyzed in detail. Concrete expressions of the second-order nonlinear susceptibility are found in various forms in the literature, usually in connection with the discussions of various three-wave decay processes, but the third-order susceptibilities are rarely discussed. The second-order susceptibility is pertinent to nonlinear wave-wave interactions (i.e., the decay/coalescence), whereas the third-order susceptibilities affect nonlinear wave-particle interactions (i.e., the induced scattering). In the present article useful approximate analytical expressions of these nonlinear susceptibilities that can be readily utilized in various situations are derived
Nonlinear plasma waves excited near resonance
International Nuclear Information System (INIS)
Cohen, B.I.; Kaufman, A.N.
1977-01-01
The nonlinear resonant response of a uniform plasma to an external plane-wave field is formulated in terms of the mismatch Δ/sub n l/ between the driving frequency and the time-dependent, complex, nonlinear normal mode frequency at the driving wavenumber. This formalism is applied to computer simulations of this process, yielding a deduced nonlinear frequency shift. The time dependence of the nonlinear phenomena, at frequency Δ/sub n l/ and at the bounce frequency of the resonant particles, is analyzed. The interdependence of the nonlinear features is described by means of energy and momentum relations
Generalized solutions of nonlinear partial differential equations
Rosinger, EE
1987-01-01
During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research.The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concernin
Nonlinear fiber optics formerly quantum electronics
Agrawal, Govind
1995-01-01
The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is
Nonlinear Pricing with Random Participation
Jean-Charles Rochet; Lars A. Stole
2002-01-01
The canonical selection contracting programme takes the agent's participation decision as deterministic and finds the optimal contract, typically satisfying this constraint for the worst type. Upon weakening this assumption of known reservation values by introducing independent randomness into the agents' outside options, we find that some of the received wisdom from mechanism design and nonlinear pricing is not robust and the richer model which allows for stochastic participation affords a m...
Nonlinear dynamics in cardiac conduction
Kaplan, D. T.; Smith, J. M.; Saxberg, B. E.; Cohen, R. J.
1988-01-01
Electrical conduction in the heart shows many phenomena familiar from nonlinear dynamics. Among these phenomena are multiple basins of attraction, phase locking, and perhaps period-doubling bifurcations and chaos. We describe a simple cellular-automation model of electrical conduction which simulates normal conduction patterns in the heart as well as a wide range of disturbances of heart rhythm. In addition, we review the application of percolation theory to the analysis of the development of complex, self-sustaining conduction patterns.
Nonlinear positron acoustic solitary waves
International Nuclear Information System (INIS)
Tribeche, Mouloud; Aoutou, Kamel; Younsi, Smain; Amour, Rabia
2009-01-01
The problem of nonlinear positron acoustic solitary waves involving the dynamics of mobile cold positrons is addressed. A theoretical work is presented to show their existence and possible realization in a simple four-component plasma model. The results should be useful for the understanding of the localized structures that may occur in space and laboratory plasmas as new sources of cold positrons are now well developed.
Статья Редакционная
2014-01-01
The workshop of the Nonlinear Dynamics scientific-educational center continued its work in 2014, focusing on methods of the dynamical system analysis and studies of their behavior. More than 30 talks in the field of scientific-educational center research have been made this year. The talk topics included numerical analysis of traveling waves in the Fisher–KPP equation with delay and simulations of the twophase heat distribution problem using heterogeneous computing architectures. In a number ...
Nonlinear Pricing to Produce Information
David J. Braden; Shmuel S. Oren
1994-01-01
We investigate the firm's dynamic nonlinear pricing problem when facing consumers whose tastes vary according to a scalar index. We relax the standard assumption that the firm knows the distribution of this index. In general the firm should determine its marginal price schedule as if it were myopic, and produce information by lowering the price schedule; “bunching” consumers at positive purchase levels should be avoided. As a special case we also consider a market characterized by homogeneous...
Nonlinear Relaxation in Population Dynamics
Cirone, Markus A.; de Pasquale, Ferdinando; Spagnolo, Bernardo
We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the ith population and on the distribution of the population and of the local field.
Nonlinear problems in theoretical physics
International Nuclear Information System (INIS)
Ranada, A.F.
1979-01-01
This volume contains the lecture notes and review talks delivered at the 9th GIFT international seminar on theoretical physics on the general subject 'Nonlinear Problems in Theoretical Physics'. Mist contributions deal with recent developments in the theory of the spectral transformation and solitons, but there are also articles from the field of transport theory and plasma physics and an unconventional view of classical and quantum electrodynamics. All contributions to this volume will appear under their corresponding subject categories. (HJ)
Scalable Nonlinear AUC Maximization Methods
Khalid, Majdi; Ray, Indrakshi; Chitsaz, Hamidreza
2017-01-01
The area under the ROC curve (AUC) is a measure of interest in various machine learning and data mining applications. It has been widely used to evaluate classification performance on heavily imbalanced data. The kernelized AUC maximization machines have established a superior generalization ability compared to linear AUC machines because of their capability in modeling the complex nonlinear structure underlying most real world-data. However, the high training complexity renders the kernelize...
Interactive Nonlinear Multiobjective Optimization Methods
Miettinen, Kaisa; Hakanen, Jussi; Podkopaev, Dmitry
2016-01-01
An overview of interactive methods for solving nonlinear multiobjective optimization problems is given. In interactive methods, the decision maker progressively provides preference information so that the most satisfactory Pareto optimal solution can be found for her or his. The basic features of several methods are introduced and some theoretical results are provided. In addition, references to modifications and applications as well as to other methods are indicated. As the...
Nonlinear filtering with particle filters
Haslehner, Mylène
2014-01-01
Convective phenomena in the atmosphere, such as convective storms, are characterized by very fast, intermittent and seemingly stochastic processes. They are thus difficult to predict with Numerical Weather Prediction (NWP) models, and difficult to estimate with data assimilation methods that combine prediction and observations. In this thesis, nonlinear data assimilation methods are tested on two idealized convective scale cloud models, developed in [58] and [59]. The aim of this work was to ...
Some nonlinear challenges in biology
International Nuclear Information System (INIS)
Mosconi, Francesco; Julou, Thomas; Desprat, Nicolas; Sinha, Deepak Kumar; Allemand, Jean-François; Croquette, Vincent; Bensimon, David
2008-01-01
Driven by a deluge of data, biology is undergoing a transition to a more quantitative science. Making sense of the data, building new models, asking the right questions and designing smart experiments to answer them are becoming ever more relevant. In this endeavour, nonlinear approaches can play a fundamental role. The biochemical reactions that underlie life are very often nonlinear. The functional features exhibited by biological systems at all levels (from the activity of an enzyme to the organization of a colony of ants, via the development of an organism or a functional module like the one responsible for chemotaxis in bacteria) are dynamically robust. They are often unaffected by order of magnitude variations in the dynamical parameters, in the number or concentrations of actors (molecules, cells, organisms) or external inputs (food, temperature, pH, etc). This type of structural robustness is also a common feature of nonlinear systems, exemplified by the fundamental role played by dynamical fixed points and attractors and by the use of generic equations (logistic map, Fisher–Kolmogorov equation, the Stefan problem, etc.) in the study of a plethora of nonlinear phenomena. However, biological systems differ from these examples in two important ways: the intrinsic stochasticity arising from the often very small number of actors and the role played by evolution. On an evolutionary time scale, nothing in biology is frozen. The systems observed today have evolved from solutions adopted in the past and they will have to adapt in response to future conditions. The evolvability of biological system uniquely characterizes them and is central to biology. As the great biologist T Dobzhansky once wrote: 'nothing in biology makes sense except in the light of evolution'. (open problem)
Nonlinear Single Spin Spectrum Analayzer
Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee
2014-05-01
Qubits are excellent probes of their environment. When operating in the linear regime, they can be used as linear spectrum analyzers of the noise processes surrounding them. These methods fail for strong non-Gaussian noise where the qubit response is no longer linear. Here we solve the problem of nonlinear spectral analysis, required for strongly coupled environments. Our non-perturbative analytic model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We developed a noise characterization scheme adapted to this non-linearity. We then applied it using a single trapped 88Sr+ ion as the a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. With this method, we attained a ten fold improvement over the standard Fourier limit. Finally, we experimentally compared the performance of equidistant vs. Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013), Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: National Institute of Standards and Tehcnology, Boulder, CO.
Focus issue introduction: nonlinear photonics.
Akhmediev, Nail; Rottwitt, Karsten
2012-11-19
It is now 23 years since the first Topical Meeting "Nonlinear Guided Wave Phenomena" (Houston, TX, February 2-4, 1989) has been organised by George Stegeman and Allan Boardman with support of the Optical Society of America. These series of the OSA conferences known as NLGW, continued under the name "Nonlinear Photonics" starting from 2007. The latest one, in Colorado Springs in June 17-21, 2012 has been a great success despite the fierce fires advancing around the city at the time of the conference. This Focus issue is a collection of several papers presented at the conference with extended content submitted to Optics Express. Although this collection is small in comparison to the total number of papers presented at the conference, it gives a flavor of the topics considered at the meeting. It is also worthy to mention here that the next meeting "Nonlinear Photonics" is planned to be held in Barcelona - one of the main European centers on this subject.
Nonlinear effects in water waves
International Nuclear Information System (INIS)
Janssen, P.A.E.M.
1989-05-01
This set of lecture notes on nonlinear effects in water waves was written on the occasion of the first ICTP course on Ocean Waves and Tides held from 26 September until 28 October 1988 in Trieste, Italy. It presents a summary and unification of my knowledge on nonlinear effects of gravity waves on an incompressible fluid without vorticity. The starting point of the theory is the Hamiltonian for water waves. The evolution equations of both weakly nonlinear, shallow water and deep water gravity waves are derived by suitable approximation of the energy of the waves, resulting in the Korteweg-de Vries equation and the Zakharov equation, respectively. Next, interesting properties of the KdV equation (solitons) and the Zakharov equation (instability of a finite amplitude wave train) are discussed in some detail. Finally, the evolution of a homogeneous, random wave field due to resonant four wave processes is considered and the importance of this process for ocean wave prediction is pointed out. 38 refs, 21 figs
Adaptive regression for modeling nonlinear relationships
Knafl, George J
2016-01-01
This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...
Topology optimization of nonlinear optical devices
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2011-01-01
This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation and an incremen......This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation...... limiter. Here, air, a linear and a nonlinear material are distributed so that the wave transmission displays a strong sensitivity to the amplitude of the incoming wave....
Nonlinear filtering for LIDAR signal processing
Directory of Open Access Journals (Sweden)
D. G. Lainiotis
1996-01-01
Full Text Available LIDAR (Laser Integrated Radar is an engineering problem of great practical importance in environmental monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper, the Lainiotis's multi-model partitioning methodology and the related approximate but effective nonlinear filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman filter (EKF, which has been the standard nonlinear filter in past engineering applications.
Evaluation of nonlinearity and validity of nonlinear modeling for complex time series.
Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo
2007-10-01
Even if an original time series exhibits nonlinearity, it is not always effective to approximate the time series by a nonlinear model because such nonlinear models have high complexity from the viewpoint of information criteria. Therefore, we propose two measures to evaluate both the nonlinearity of a time series and validity of nonlinear modeling applied to it by nonlinear predictability and information criteria. Through numerical simulations, we confirm that the proposed measures effectively detect the nonlinearity of an observed time series and evaluate the validity of the nonlinear model. The measures are also robust against observational noises. We also analyze some real time series: the difference of the number of chickenpox and measles patients, the number of sunspots, five Japanese vowels, and the chaotic laser. We can confirm that the nonlinear model is effective for the Japanese vowel /a/, the difference of the number of measles patients, and the chaotic laser.
Gurbatov, S N; Saichev, A I
2012-01-01
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...
Probing hysteretic elasticity in weakly nonlinear materials
Energy Technology Data Exchange (ETDEWEB)
Johnson, Paul A [Los Alamos National Laboratory; Haupert, Sylvain [UPMC UNIV PARIS; Renaud, Guillaume [UPMC UNIV PARIS; Riviere, Jacques [UPMC UNIV PARIS; Talmant, Maryline [UPMC UNIV PARIS; Laugier, Pascal [UPMC UNIV PARIS
2010-12-07
Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.
Augmented nonlinear differentiator design and application to nonlinear uncertain systems.
Shao, Xingling; Liu, Jun; Li, Jie; Cao, Huiliang; Shen, Chong; Zhang, Xiaoming
2017-03-01
In this paper, an augmented nonlinear differentiator (AND) based on sigmoid function is developed to calculate the noise-less time derivative under noisy measurement condition. The essential philosophy of proposed AND in achieving high attenuation of noise effect is established by expanding the signal dynamics with extra state variable representing the integrated noisy measurement, then with the integral of measurement as input, the augmented differentiator is formulated to improve the estimation quality. The prominent advantages of the present differentiation technique are: (i) better noise suppression ability can be achieved without appreciable delay; (ii) the improved methodology can be readily extended to construct augmented high-order differentiator to obtain multiple derivatives. In addition, the convergence property and robustness performance against noises are investigated via singular perturbation theory and describing function method, respectively. Also, comparison with several classical differentiators is given to illustrate the superiority of AND in noise suppression. Finally, the robust control problems of nonlinear uncertain systems, including a numerical example and a mass spring system, are addressed to demonstrate the effectiveness of AND in precisely estimating the disturbance and providing the unavailable differential estimate to implement output feedback based controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Nonlinear Optimization with Financial Applications
Bartholomew-Biggs, Michael
2005-01-01
The book introduces the key ideas behind practical nonlinear optimization. Computational finance - an increasingly popular area of mathematics degree programs - is combined here with the study of an important class of numerical techniques. The financial content of the book is designed to be relevant and interesting to specialists. However, this material - which occupies about one-third of the text - is also sufficiently accessible to allow the book to be used on optimization courses of a more general nature. The essentials of most currently popular algorithms are described, and their performan
Jefrey, A
1964-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Modelling Loudspeaker Non-Linearities
DEFF Research Database (Denmark)
Agerkvist, Finn T.
2007-01-01
This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...
Nonlinear classical theory of electromagnetism
International Nuclear Information System (INIS)
Pisello, D.
1977-01-01
A topological theory of electric charge is given. Einstein's criteria for the completion of classical electromagnetic theory are summarized and their relation to quantum theory and the principle of complementarity is indicated. The inhibiting effect that this principle has had on the development of physical thought is discussed. Developments in the theory of functions on nonlinear spaces provide the conceptual framework required for the completion of electromagnetism. The theory is based on an underlying field which is a continuous mapping of space-time into points on the two-sphere. (author)
Nonlinear Pricing of Information Goods
Arun Sundararajan
2003-01-01
This paper analyzes optimal pricing for information goods under incomplete information, when both unlimited-usage (fixed-fee) pricing and usage-based pricing are feasible, and administering usage-based pricing may involve transaction costs. It is shown that offering fixed- fee pricing in addition to a non-linear usage-based pricing scheme is always profit-improving in the presence of any non-zero transaction costs, and there may be markets in which a pure fixed-fee is optimal. This implies th...
Nonlinear waves: some biomedical applications
International Nuclear Information System (INIS)
Rudenko, Oleg V
2007-01-01
The field of nonlinear physics, item No. 11 on Ginzburg's list of 'the most important and interesting problems', is reviewed. An example at the intersection of applied physics, medicine, and instrument engineering is discussed to illustrate the range and scope of the field and how deep the ideas and approaches it involves are incorporated in modern natural science and engineering. Results of relevant research and development, which has attracted much recent interest and financial support, are briefly examined. (oral issue of the journal 'uspekhi fizicheskikh nauk')
Beams on nonlinear elastic foundation
International Nuclear Information System (INIS)
Lukkassen, Dag; Meidell, Annette
2014-01-01
In order to determination vertical deflections and rail bending moments the Winkler model (1867) is often used. This linear model neglects several conditions. For example, by using experimental results, it has been observed that there is a substantial increase in the maximum rail deflection and rail bending moment when considering the nonlinearity of the track support system. A deeper mathematical analysis of the models is necessary in order to obtain better methods for more accurate numerical solutions in the determination of deflections and rail bending moments. This paper is intended to be a small step in this direction
Nonlinear dynamics aspects of particle accelerators
International Nuclear Information System (INIS)
Jowett, J.M.; Turner, S.; Month, M.
1986-01-01
These proceedings contain the lectures presented at the named winter school. They deal with the application of dynamical systems to accelerator theory. Especially considered are the statistical description of charged-beam plasmas, integrable and nonintegrable Hamiltonian systems, single particle dynamics and nonlinear resonances in circular accelerators, nonlinear dynamics aspects of modern storage rings, nonlinear beam-beam resonances, synchro-betatron resonances, observations of the beam-beam interactions, the dynamics of the beam-beam interactions, beam-beam simulations, the perturbation method in nonlinear dynamics, theories of statistical equilibrium in electron-positron storage rings, nonlinear dissipative phenomena in electron storage rings, the dynamical aperture, the transition to chaos for area-preserving maps, special processors for particle tracking, algorithms for tracking of charged particles in circular accelerators, the breakdown of stability, and a personal perspective of nonlinear dynamics. (HSI)
Nonlinear optical crystals a complete survey
Nikogosyan, David N
2005-01-01
Nonlinear optical crystals are widely used in modern optical science and technology for frequency conversion of laser light, i.e. to generate laser radiation at any specific wavelength in visible, UV or IR spectral regions. This unrivalled reference book contains the most complete and up-to-date information on properties of nonlinear optical crystals. It includes: * Database of 63 common and novel nonlinear optical crystals * Periodically-poled and self-frequency-doubling materials * Full description of linear and nonlinear optical properties * Significant amount of crystallophysical, thermophysical, spectroscopic, electro-optic and magneto-optic information * 7 mini-reviews on novel applications, such as deep-UV light generation, terahertz-wave generation, ultrashort laser pulse compression, photonic band-gap crystals, x3 nonlinearity, etc. * More than 1500 different references with full titles It is a vital source of information for scientists and engineers dealing with modern applications of nonlinear opti...
A nonlinear plate control without linearization
Directory of Open Access Journals (Sweden)
Yildirim Kenan
2017-03-01
Full Text Available In this paper, an optimal vibration control problem for a nonlinear plate is considered. In order to obtain the optimal control function, wellposedness and controllability of the nonlinear system is investigated. The performance index functional of the system, to be minimized by minimum level of control, is chosen as the sum of the quadratic 10 functional of the displacement. The velocity of the plate and quadratic functional of the control function is added to the performance index functional as a penalty term. By using a maximum principle, the nonlinear control problem is transformed to solving a system of partial differential equations including state and adjoint variables linked by initial-boundary-terminal conditions. Hence, it is shown that optimal control of the nonlinear systems can be obtained without linearization of the nonlinear term and optimal control function can be obtained analytically for nonlinear systems without linearization.
Introduction to nonlinear finite element analysis
Kim, Nam-Ho
2015-01-01
This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: · Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems · Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory · ...
Mathematical modeling and applications in nonlinear dynamics
Merdan, Hüseyin
2016-01-01
The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...
Nonlinear dynamics aspects of particle accelerators. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Jowett, J M; Turner, S; Month, M
1986-01-01
These proceedings contain the lectures presented at the named winter school. They deal with the application of dynamical systems to accelerator theory. Especially considered are the statistical description of charged-beam plasmas, integrable and nonintegrable Hamiltonian systems, single particle dynamics and nonlinear resonances in circular accelerators, nonlinear dynamics aspects of modern storage rings, nonlinear beam-beam resonances, synchro-betatron resonances, observations of the beam-beam interactions, the dynamics of the beam-beam interactions, beam-beam simulations, the perturbation method in nonlinear dynamics, theories of statistical equilibrium in electron-positron storage rings, nonlinear dissipative phenomena in electron storage rings, the dynamical aperture, the transition to chaos for area-preserving maps, special processors for particle tracking, algorithms for tracking of charged particles in circular accelerators, the breakdown of stability, and a personal perspective of nonlinear dynamics. (HSI).
Nonlinear magnetohydrodynamics of edge localized mode precursors
Energy Technology Data Exchange (ETDEWEB)
Guo, Z. B., E-mail: guozhipku@gmail.com [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China); WCI Center for Fusion Theory, NFRI, Gwahangno 113, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Wang, Lu [SEEE, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang, X. G. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China)
2015-02-15
A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ω{sub pre}∼x{sup 1/3}ξ{sup ^}{sub ψ,in}{sup 2/3}n, with x position in radial direction, ξ{sup ^}{sub ψ,in} strength of initial perturbation, and n toroidal mode number.
Experimental studies of nonlinear beam dynamics
International Nuclear Information System (INIS)
Caussyn, D.D.; Ball, M.; Brabson, B.; Collins, J.; Curtis, S.A.; Derenchuck, V.; DuPlantis, D.; East, G.; Ellison, M.; Ellison, T.; Friesel, D.; Hamilton, B.; Jones, W.P.; Lamble, W.; Lee, S.Y.; Li, D.; Minty, M.G.; Sloan, T.; Xu, G.; Chao, A.W.; Ng, K.Y.; Tepikian, S.
1992-01-01
The nonlinear beam dynamics of transverse betatron oscillations were studied experimentally at the Indiana University Cyclotron Facility cooler ring. Motion in one dimension was measured for betatron tunes near the third, fourth, fifth, and seventh integer resonances. This motion is described by coupling between the transverse modes of motion and nonlinear field errors. The Hamiltonian for nonlinear particle motion near the third- and fourth-integer-resonance conditions has been deduced
Nonlinear beam dynamics experimental program at SPEAR
International Nuclear Information System (INIS)
Tran, P.; Pellegrini, C.; Cornacchia, M.; Lee, M.; Corbett, W.
1995-01-01
Since nonlinear effects can impose strict performance limitations on modern colliders and storage rings, future performance improvements depend on further understanding of nonlinear beam dynamics. Experimental studies of nonlinear beam motion in three-dimensional space have begun in SPEAR using turn-by-turn transverse and longitudinal phase-space monitors. This paper presents preliminary results from an on-going experiment in SPEAR
Relation between nonlinear models and gauge ambiguities
International Nuclear Information System (INIS)
Balachandran, A.P.; Ramachandran, R.; Rupertsberger, H.; Skagerstam, B.S.
1980-01-01
We show that the solutions of a class of nonlinear models also generate gauge ambiguities in the vacuum sector of Yang-Mills theories. Our results extend known connections between gauge ambiguities and certain nonlinear sigma-models, and clarify the underlying group theory. For many nonlinear models, we also give a simple, intrinsic parametrization of physical fields (which have values in a homogeneous space of a group). (orig.)
Second-order nonlinearity induced transparency.
Zhou, Y H; Zhang, S S; Shen, H Z; Yi, X X
2017-04-01
In analogy to electromagnetically induced transparency, optomechanically induced transparency was proposed recently in [Science330, 1520 (2010)SCIEAS0036-807510.1126/science.1195596]. In this Letter, we demonstrate another form of induced transparency enabled by second-order nonlinearity. A practical application of the second-order nonlinearity induced transparency is to measure the second-order nonlinear coefficient. Our scheme might find applications in quantum optics and quantum information processing.
Nonlinear optical interactions in silicon waveguides
Directory of Open Access Journals (Sweden)
Kuyken B.
2017-03-01
Full Text Available The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.
Spurious Solutions Of Nonlinear Differential Equations
Yee, H. C.; Sweby, P. K.; Griffiths, D. F.
1992-01-01
Report utilizes nonlinear-dynamics approach to investigate possible sources of errors and slow convergence and non-convergence of steady-state numerical solutions when using time-dependent approach for problems containing nonlinear source terms. Emphasizes implications for development of algorithms in CFD and computational sciences in general. Main fundamental conclusion of study is that qualitative features of nonlinear differential equations cannot be adequately represented by finite-difference method and vice versa.
Nonlinear Phononic Periodic Structures and Granular Crystals
2012-02-10
and boron-nitride nanotubes, and attributed the rectification to nonlinear processes [21]. Based on these studies, several following works have...nonlinear mass-spring lattices by E. Fermi, J. Pasta , and S. Ulam in 1955 [27], there has been a wealth of interest in the dynamics of nonlinear...lattices. Using one of the first modern computers, Fermi, Pasta , and Ulam (FPU) studied a system where the restoring (spring) force between two adjacent
Boundary controllability for a nonlinear beam equation
Directory of Open Access Journals (Sweden)
Xiao-Min Cao
2015-09-01
Full Text Available This article concerns a nonlinear system modeling the bending vibrations of a nonlinear beam of length $L>0$. First, we derive the existence of long time solutions near an equilibrium. Then we prove that the nonlinear beam is locally exact controllable around the equilibrium in $H^4(0,L$ and with control functions in $H^2(0,T$. The approach we used are open mapping theorem, local controllability established by linearization, and the induction.
Nonlinear analysis of dynamic signature
Rashidi, S.; Fallah, A.; Towhidkhah, F.
2013-12-01
Signature is a long trained motor skill resulting in well combination of segments like strokes and loops. It is a physical manifestation of complex motor processes. The problem, generally stated, is that how relative simplicity in behavior emerges from considerable complexity of perception-action system that produces behavior within an infinitely variable biomechanical and environmental context. To solve this problem, we present evidences which indicate that motor control dynamic in signing process is a chaotic process. This chaotic dynamic may explain a richer array of time series behavior in motor skill of signature. Nonlinear analysis is a powerful approach and suitable tool which seeks for characterizing dynamical systems through concepts such as fractal dimension and Lyapunov exponent. As a result, they can be analyzed in both horizontal and vertical for time series of position and velocity. We observed from the results that noninteger values for the correlation dimension indicates low dimensional deterministic dynamics. This result could be confirmed by using surrogate data tests. We have also used time series to calculate the largest Lyapunov exponent and obtain a positive value. These results constitute significant evidence that signature data are outcome of chaos in a nonlinear dynamical system of motor control.
Nonlinear generalization of special relativity
International Nuclear Information System (INIS)
Winterberg, F.
1985-01-01
In Poincares axiomatic formulation special relativity is a derived consequence of a true Lorentz contraction, for a rod in absolute motion through a substratum. Furthermore, Lorentz had shown that the rod contraction can be understood by an inverse square law interaction and therefore special relativity derived from more fundamental principles. The derivation by Lorentz shows that the root of the divergence problems is the singular inverse square law. By replacing the inverse square law with a regular one through the introduction of a finite length, the author has succeeded in deriving a nonlinear generalization of special relativity which eliminates all infinities. Besides the relative velocities, these nonlinear transformation equations also contain absolute velocities against a substratum, but in the limit of small energies they go over into the linear Lorentz transformations. Depending on the smallness of the fundamental length, departures from special relativity can be observed only at very high energies. The theorem that the velocity of light is the same in all reference systems still holds and likewise the conservation laws for energy and momentum
Nonlinear electrodynamics and CMB polarization
Energy Technology Data Exchange (ETDEWEB)
Cuesta, Herman J. Mosquera [Departmento de Física Universidade Estadual Vale do Acaraú, Avenida da Universidade 850, Campus da Betânia, CEP 62.040-370, Sobral, Ceará (Brazil); Lambiase, G., E-mail: herman@icra.it, E-mail: lambiase@sa.infn.it [Dipartimento di Fisica ' ' E.R. Caianiello' ' , Università di Salerno, 84081 Baronissi (Italy)
2011-03-01
Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.
The Nonlinear Field Space Theory
Energy Technology Data Exchange (ETDEWEB)
Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)
2016-08-10
In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.
Nonlinear dynamics and plasma transport
International Nuclear Information System (INIS)
Liu, C.S.; Sagdeev, R.; Antonsen, T.; Drake, J.; Hassma, A.; Guzdar, P.N.
1995-12-01
This progress report reports work done on a program in nonlinear dynamical aspects of plasma turbulence and transport funded by DOE from 1992-1995. The purpose of this program has been to promote the utilization of recent pathbreaking developments in nonlinear science in plasma turbulence and transport and to fully utilize the scientific expertise of Russian fusion and plasma community in collaboration with our group to address outstanding fusion theory problems. In the work reported in our progress report, we have studied simple models which are motivated by observation on actual fusion devices. The models focus on the important physical processes without incorporating the complexity of the geometry of real devices. We have also studied linear stability problems which incorporated important physics issues related to geometry involving closed field lines and open field lines. This allows for a deeper analysis and understanding of the system both analytically and numerically. The strong collaboration between the Russian visitors and the US participants has led to a fruitful and strong research program that taps the complementary analytic and numerical capabilities of the two groups. Over the years several distinguished Russian visitors have interacted with various members of the group and set up collaborative work which forms a significant part of proposed research. Dr. Galeev, Director of the Space Research Institute of Moscow and Dr. Novakovskii from the Kurchatov Institute are two such ongoing collaborations. 21 refs
Nonlinear secret image sharing scheme.
Shin, Sang-Ho; Lee, Gil-Je; Yoo, Kee-Young
2014-01-01
Over the past decade, most of secret image sharing schemes have been proposed by using Shamir's technique. It is based on a linear combination polynomial arithmetic. Although Shamir's technique based secret image sharing schemes are efficient and scalable for various environments, there exists a security threat such as Tompa-Woll attack. Renvall and Ding proposed a new secret sharing technique based on nonlinear combination polynomial arithmetic in order to solve this threat. It is hard to apply to the secret image sharing. In this paper, we propose a (t, n)-threshold nonlinear secret image sharing scheme with steganography concept. In order to achieve a suitable and secure secret image sharing scheme, we adapt a modified LSB embedding technique with XOR Boolean algebra operation, define a new variable m, and change a range of prime p in sharing procedure. In order to evaluate efficiency and security of proposed scheme, we use the embedding capacity and PSNR. As a result of it, average value of PSNR and embedding capacity are 44.78 (dB) and 1.74t⌈log2 m⌉ bit-per-pixel (bpp), respectively.
The Nonlinear Field Space Theory
International Nuclear Information System (INIS)
Mielczarek, Jakub; Trześniewski, Tomasz
2016-01-01
In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.
Nonlinear spectroscopy of trapped ions
Schlawin, Frank; Gessner, Manuel; Mukamel, Shaul; Buchleitner, Andreas
2014-08-01
Nonlinear spectroscopy employs a series of laser pulses to interrogate dynamics in large interacting many-body systems, and it has become a highly successful method for experiments in chemical physics. Current quantum optical experiments approach system sizes and levels of complexity that require the development of efficient techniques to assess spectral and dynamical features with scalable experimental overhead. However, established methods from optical spectroscopy of macroscopic ensembles cannot be applied straightforwardly to few-atom systems. Based on the ideas proposed in M. Gessner et al., (arXiv:1312.3365), we develop a diagrammatic approach to construct nonlinear measurement protocols for controlled quantum systems, and we discuss experimental implementations with trapped ion technology in detail. These methods, in combination with distinct features of ultracold-matter systems, allow us to monitor and analyze excitation dynamics in both the electronic and vibrational degrees of freedom. They are independent of system size, and they can therefore reliably probe systems in which, e.g., quantum state tomography becomes prohibitively expensive. We propose signals that can probe steady-state currents, detect the influence of anharmonicities on phonon transport, and identify signatures of chaotic dynamics near a quantum phase transition in an Ising-type spin chain.
Simulating nonlinear neutrino flavor evolution
Energy Technology Data Exchange (ETDEWEB)
Duan, H [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195 (United States); Fuller, G M [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Carlson, J [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: hduan@phys.washington.edu, E-mail: gfuller@ucsd.edu, E-mail: carlson@lanl.gov
2008-10-01
We discuss a new kind of astrophysical transport problem: the coherent evolution of neutrino flavor in core collapse supernovae. Solution of this problem requires a numerical approach which can simulate accurately the quantum mechanical coupling of intersecting neutrino trajectories and the associated nonlinearity which characterizes neutrino flavor conversion. We describe here the two codes developed to attack this problem. We also describe the surprising phenomena revealed by these numerical calculations. Chief among these is that the nonlinearities in the problem can engineer neutrino flavor transformation which is dramatically different to that in standard Mikheyev-Smirnov-Wolfenstein treatments. This happens even though the neutrino mass-squared differences are measured to be small, and even when neutrino self-coupling is sub-dominant. Our numerical work has revealed potential signatures which, if detected in the neutrino burst from a Galactic core collapse event, could reveal heretofore unmeasurable properties of the neutrinos, such as the mass hierarchy and vacuum mixing angle {theta}{sub 13}.
The nonlinear universe chaos, emergence, life
Scott, A C
2007-01-01
Written in Alwyn Scott’s inimitable style – lucid and accessible – The Nonlinear Universe surveys and explores the explosion of activity in nonlinear science that began in the 1970s and 1980s and continues today. The book explains the wide-ranging implications of nonlinear phenomena for future developments in many areas of modern science, including mathematics, physics, engineering, chemistry, biology, and neuroscience. Arguably as important as quantum theory, modern nonlinear science – and an appreciation of its implications – is essential for understanding scientific developments of the twenty-first century.
Design of a nonlinear torsional vibration absorber
Tahir, Ammaar Bin
Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...... dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed....
Nonlinear dynamics of quadratically cubic systems
International Nuclear Information System (INIS)
Rudenko, O V
2013-01-01
We propose a modified form of the well-known nonlinear dynamic equations with quadratic relations used to model a cubic nonlinearity. We show that such quadratically cubic equations sometimes allow exact solutions and sometimes make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and Hopf, Burgers, Korteweg–de Vries, and nonlinear Schrödinger partial differential equations. Some problems are solved exactly in the space–time and spectral representations. Unsolved problems potentially solvable by the proposed approach are listed. (methodological notes)
Nonlinearly stacked low noise turbofan stator
Schuster, William B. (Inventor); Nolcheff, Nick A. (Inventor); Gunaraj, John A. (Inventor); Kontos, Karen B. (Inventor); Weir, Donald S. (Inventor)
2009-01-01
A nonlinearly stacked low noise turbofan stator vane having a characteristic curve that is characterized by a nonlinear sweep and a nonlinear lean is provided. The stator is in an axial fan or compressor turbomachinery stage that is comprised of a collection of vanes whose highly three-dimensional shape is selected to reduce rotor-stator and rotor-strut interaction noise while maintaining the aerodynamic and mechanical performance of the vane. The nonlinearly stacked low noise turbofan stator vane reduces noise associated with the fan stage of turbomachinery to improve environmental compatibility.
Multiorder nonlinear diffraction in frequency doubling processes
DEFF Research Database (Denmark)
Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw
2009-01-01
We analyze experimentally light scattering from 2 nonlinear gratings and observe two types of second-harmonic frequency-scattering processes. The first process is identified as Raman–Nath type nonlinear diffraction that is explained by applying only transverse phase-matching conditions. The angular...... position of this type of diffraction is defined by the ratio of the second-harmonic wavelength and the grating period. In contrast, the second type of nonlinear scattering process is explained by the longitudinal phase matching only, being insensitive to the nonlinear grating...
Chaos and Structures in Nonlinear Plasmas
Chen, James
In recent decades, the concepts and applications of chaos, complexity, and nonlinear dynamics have profoundly influenced scientific as well as literary thinking. Some aspects of these concepts are used in almost all of the geophysical disciplines. Chaos and Structures in Nonlinear Plasmas, written by two respected plasma physicists, focuses on nonlinear phenomena in laboratory and space plasmas, which are rich in nonlinear and complex collective effects. Chaos is treated only insofar as it relates to some aspects of nonlinear plasma physics.At the outset, the authors note that plasma physics research has made fundamental contributions to modern nonlinear sciences. For example, the Poincare surface of section technique was extensively used in studies of stochastic field lines in magnetically confined plasmas and turbulence. More generally, nonlinearity in plasma waves and wave-wave and wave-particle interactions critically determines the propagation of energy through a plasma medium. The book also makes it clear that the importance of understanding nonlinear waves goes beyond plasma physics, extending to such diverse fields as solid state physics, fluid dynamics, atmospheric physics, and optics. In space physics, non-linear plasma physics is essential for interpreting in situ as well as remote-sensing data.
Nonlinear dynamics of resistive electrostatic drift waves
DEFF Research Database (Denmark)
Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.
1999-01-01
The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... polarity, i.e. a pair of electrostatic convective cells....
Nonlinear optics quantum computing with circuit QED.
Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M
2013-02-08
One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.
Superspace formulation of new nonlinear sigma models
International Nuclear Information System (INIS)
Gates, S.J. Jr.
1983-07-01
The superspace formulation of two classes of supersymmetric nonlinear σ-models are presented. Two alternative N=1 superspace formulations are given for the d=2 supersymmetric nonlinear σ-models with Killing vector potentials: (a) formulation uses an active central charge and, (b) formulation uses a spurion superfield without inducing a classical breakdown of supersymmetry. The N=2 vector multiplet is used to construct a new class of d=4 nonlinear σ-models which when reduced to d=2 possess N=4 supersymmetry. Implications of these two classes of nonlinear σ-models for N>=4 superfield supergravity are discussed. (author)
Nonlinear Photonics and Novel Optical Phenomena
Morandotti, Roberto
2012-01-01
Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.
Nonlinear acceleration of transport criticality problems
International Nuclear Information System (INIS)
Park, H.; Knoll, D.A.; Newman, C.K.
2011-01-01
We present a nonlinear acceleration algorithm for the transport criticality problem. The algorithm combines the well-known nonlinear diffusion acceleration (NDA) with a recently developed, Newton-based, nonlinear criticality acceleration (NCA) algorithm. The algorithm first employs the NDA to reduce the system to scalar flux, then the NCA is applied to the resulting drift-diffusion system. We apply a nonlinear elimination technique to eliminate the eigenvalue from the Jacobian matrix. Numerical results show that the algorithm reduces the CPU time a factor of 400 in a very diffusive system, and a factor of 5 in a non-diffusive system. (author)
Biological applications of novel nonlinear optical microscopy
International Nuclear Information System (INIS)
Kajiyama, Shin'ichiro; Ozeki, Yasuyuki; Itoh, Kazuyoshi; Fukui, Kiichi
2010-01-01
Two types of newly developed nonlinear optical microscopes namely stimulated parametric emission (SPE) microscope and stimulated Raman scattering (SRS) microscope were presented together with their biological applications.
Nonlinear and stochastic dynamics of coherent structures
DEFF Research Database (Denmark)
Rasmussen, Kim
1997-01-01
This Thesis deals with nonlinear and stochastic dynamics in systems which can be described by nonlinear Schrödinger models. Basically three different models are investigated. The first is the continuum nonlinear Schröndinger model in one and two dimensions generalized by a tunable degree of nonli......This Thesis deals with nonlinear and stochastic dynamics in systems which can be described by nonlinear Schrödinger models. Basically three different models are investigated. The first is the continuum nonlinear Schröndinger model in one and two dimensions generalized by a tunable degree...... introduces the nonlinear Schrödinger model in one and two dimensions, discussing the soliton solutions in one dimension and the collapse phenomenon in two dimensions. Also various analytical methods are described. Then a derivation of the nonlinear Schrödinger equation is given, based on a Davydov like...... system described by a tight-binding Hamiltonian and a harmonic lattice coupled b y a deformation-type potential. This derivation results in a two-dimensional nonline ar Schrödinger model, and considering the harmonic lattice to be in thermal contact with a heat bath w e show that the nonlinear...
Cavity nonlinear optics with layered materials
Directory of Open Access Journals (Sweden)
Fryett Taylor
2017-12-01
Full Text Available Unprecedented material compatibility and ease of integration, in addition to the unique and diverse optoelectronic properties of layered materials, have generated significant interest in their utilization in nanophotonic devices. While initial nanophotonic experiments with layered materials primarily focused on light sources, modulators, and detectors, recent efforts have included nonlinear optical devices. In this paper, we review the current state of cavity-enhanced nonlinear optics with layered materials. Along with conventional nonlinear optics related to harmonic generation, we report on emerging directions of nonlinear optics, where layered materials can potentially play a significant role.
Single-ion nonlinear mechanical oscillator
International Nuclear Information System (INIS)
Akerman, N.; Kotler, S.; Glickman, Y.; Dallal, Y.; Keselman, A.; Ozeri, R.
2010-01-01
We study the steady-state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate here the unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the laser-cooling parameters. Our observations pave the way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.
Algebraic relaxation of a time correlation function
International Nuclear Information System (INIS)
Srivastava, S.; Kumar, C.N.; Tankeshwar, K.
2004-06-01
A second order non-linear differential equation obtained from Mori's integro- differential equation is shown to transform to another form which provides algebraic decay to a time correlation function. Involved parameters in algebraic formula are related to exact properties of the corresponding correlation function. The model has been used to study a sol-gel system which is known, experimentally, to exhibit a power law decay to stress auto-correlation function. The expression obtained for the viscosity shows a logarithmic divergence at some critical value of the parameter. Some features of the model have also been tested using available information about Lennard-Jones fluids. (author)
A domian Decomposition Method for Transient Neutron Transport with Pomrning-Eddington Approximation
International Nuclear Information System (INIS)
Hendi, A.A.; Abulwafa, E.E.
2008-01-01
The time-dependent neutron transport problem is approximated using the Pomraning-Eddington approximation. This approximation is two-flux approximation that expands the angular intensity in terms of the energy density and the net flux. This approximation converts the integro-differential Boltzmann equation into two first order differential equations. The A domian decomposition method that used to solve the linear or nonlinear differential equations is used to solve the resultant two differential equations to find the neutron energy density and net flux, which can be used to calculate the neutron angular intensity through the Pomraning-Eddington approximation
On quantization, the generalised Schroedinger equation and classical mechanics
International Nuclear Information System (INIS)
Jones, K.R.W.
1991-01-01
A ψ-dependent linear functional operator, was defined, which solves the problem of quantization in non-relativistic quantum mechanics. Weyl ordering is implemented automatically and permits derivation of many of the quantum to classical correspondences. The parameter λ presents a natural C ∞ deformation of the dynamical structure of quantum mechanics via a non-linear integro-differential 'Generalised Schroedinger Equation', admitting an infinite family of soliton solutions. All these solutions are presented and it is shown that this equation gives an exact dynamic and energetic reproduction of classical mechanics with the correct measurement theoretic limit. 23 refs
Composite spectral functions for solving Volterra's population model
International Nuclear Information System (INIS)
Ramezani, M.; Razzaghi, M.; Dehghan, M.
2007-01-01
An approximate method for solving Volterra's population model for population growth of a species in a closed system is proposed. Volterra's model is a nonlinear integro-differential equation, where the integral term represents the effect of toxin. The approach is based upon composite spectral functions approximations. The properties of composite spectral functions consisting of few terms of orthogonal functions are presented and are utilized to reduce the solution of the Volterra's model to the solution of a system of algebraic equations. The method is easy to implement and yields very accurate result
International Nuclear Information System (INIS)
Habib, S.
1994-01-01
We consider a simple quantum system subjected to a classical random force. Under certain conditions it is shown that the noise-averaged Wigner function of the system follows an integro-differential stochastic Liouville equation. In the simple case of polynomial noise-couplings this equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new ''quantum diffusion'' terms rise that have no counterpart in the classical case. Two special examples that are not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with a spatially modulated noise source
Exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres
International Nuclear Information System (INIS)
Liu Chunping
2005-01-01
First, by using the generally projective Riccati equation method, many kinds of exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres are obtained in a unified way. Then, some relations among these solutions are revealed
Chong Li; Xiaoyong Hu; Hong Yang; Qihuang Gong
2017-01-01
We propose a scheme of unidirectional transmission in a 1D nonlinear topological photonic crystal based on the topological edge state and three order optical nonlinearity. The 1D photonic crystals consists of a nonlinear photonic crystal L and a linear photonic crystal R. In the backward direction, light is totally reflected for the photons transmission prohibited by the bandgap. While in the forward direction, light interacts with the nonlinear photonic crystal L by optical Kerr effect, brin...
Theory and design of nonlinear metamaterials
Rose, Alec Daniel
If electronics are ever to be completely replaced by optics, a significant possibility in the wake of the fiber revolution, it is likely that nonlinear materials will play a central and enabling role. Indeed, nonlinear optics is the study of the mechanisms through which light can change the nature and properties of matter and, as a corollary, how one beam or color of light can manipulate another or even itself within such a material. However, of the many barriers preventing such a lofty goal, the narrow and limited range of properties supported by nonlinear materials, and natural materials in general, stands at the forefront. Many industries have turned instead to artificial and composite materials, with homogenizable metamaterials representing a recent extension of such composites into the electromagnetic domain. In particular, the inclusion of nonlinear elements has caused metamaterials research to spill over into the field of nonlinear optics. Through careful design of their constituent elements, nonlinear metamaterials are capable of supporting an unprecedented range of interactions, promising nonlinear devices of novel design and scale. In this context, I cast the basic properties of nonlinear metamaterials in the conventional formalism of nonlinear optics. Using alternately transfer matrices and coupled mode theory, I develop two complementary methods for characterizing and designing metamaterials with arbitrary nonlinear properties. Subsequently, I apply these methods in numerical studies of several canonical metamaterials, demonstrating enhanced electric and magnetic nonlinearities, as well as predicting the existence of nonlinear magnetoelectric and off-diagonal nonlinear tensors. I then introduce simultaneous design of the linear and nonlinear properties in the context of phase matching, outlining five different metamaterial phase matching methods, with special emphasis on the phase matching of counter propagating waves in mirrorless parametric amplifiers
Few-cycle nonlinear mid-IR pulse generated with cascaded quadratic nonlinearities
DEFF Research Database (Denmark)
Bache, Morten; Liu, Xing; Zhou, Binbin
Generating few-cycle energetic and broadband mid-IR pulses is an urgent current challenge in nonlinear optics. Cascaded second-harmonic generation (SHG) gives access to an ultrafast and octave-spanning self-defocusing nonlinearity: when ΔkL >> 2π the pump experiences a Kerr-like nonlinear index...
Noise in nonlinear nanoelectromechanical resonators
Guerra Vidal, Diego N.
Nano-Electro-Mechanical Systems (NEMS), due to their nanometer scale size, possess a number of desirable attributes: high sensitivity to applied forces, fast response times, high resonance frequencies and low power consumption. However, ultra small size and low power handling result in unwanted consequences: smaller signal size and higher dissipation, making the NEMS devices more susceptible to external and intrinsic noise. The simplest version of a NEMS, a suspended nanomechanical structure with two distinct excitation states, can be used as an archetypal two state system to study a plethora of fundamental phenomena such as Duffing nonlinearity, stochastic resonance, and macroscopic quantum tunneling at low temperatures. From a technical perspective, there are numerous applications such nanomechanical memory elements, microwave switches and nanomechanical computation. The control and manipulation of the mechanical response of these two state systems can be realized by exploiting a (seemingly) counterintuitive physical phenomenon, Stochastic Resonance: in a noisy nonlinear mechanical system, the presence of noise can enhance the system response to an external stimulus. This Thesis is mainly dedicated to study possible applications of Stochastic Resonance in two-state nanomechanical systems. First, on chip signal amplification by 1/falpha is observed. The effectiveness of the noise assisted amplification is observed to decrease with increasing a. Experimental evidence shows an increase in asymmetry between the two states with increasing noise color. Considering the prevalence of 1/f alpha noise in the materials in integrated circuits, the signal enhancement demonstrated here, suggests beneficial use of the otherwise detrimental noise. Finally, a nanomechanical device, operating as a reprogrammable logic gate, and performing fundamental logic functions such as AND/OR and NAND/NOR is presented. The logic function can be programmed (from AND to OR) dynamically, by
Nonlinear Diffusion and Transient Osmosis
International Nuclear Information System (INIS)
Igarashi, Akira; Rondoni, Lamberto; Botrugno, Antonio; Pizzi, Marco
2011-01-01
We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call ''transient osmosis . We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Nonlinear stability of supersonic jets
Tiwari, S. N. (Principal Investigator); Bhat, T. R. S. (Principal Investigator)
1996-01-01
The stability calculations made for a shock-free supersonic jet using the model based on parabolized stability equations are presented. In this analysis the large scale structures, which play a dominant role in the mixing as well as the noise radiated, are modeled as instability waves. This model takes into consideration non-parallel flow effects and also nonlinear interaction of the instability waves. The stability calculations have been performed for different frequencies and mode numbers over a range of jet operating temperatures. Comparisons are made, where appropriate, with the solutions to Rayleigh's equation (linear, inviscid analysis with the assumption of parallel flow). The comparison of the solutions obtained using the two approaches show very good agreement.
Moment methods for nonlinear maps
International Nuclear Information System (INIS)
Pusch, G.D.; Atomic Energy of Canada Ltd., Chalk River, ON
1993-01-01
It is shown that Differential Algebra (DA) may be used to push moments of distributions through a map, at a computational cost per moment comparable to pushing a single particle. The algorithm is independent of order, and whether or not the map is symplectic. Starting from the known result that moment-vectors transform linearly - like a tensor - even under a nonlinear map, I suggest that the form of the moment transformation rule indicates that the moment-vectors are elements of the dual to DA-vector space. I propose several methods of manipulating moments and constructing invariants using DA. I close with speculations on how DA might be used to ''close the circle'' to solve the inverse moment problem, yielding an entirely DA-and-moment-based space-charge code. (Author)
Nonlinear image filtering within IDP++
Energy Technology Data Exchange (ETDEWEB)
Lehman, S.K.; Wieting, M.G.; Brase, J.M.
1995-02-09
IDP++, image and data processing in C++, is a set of a signal processing libraries written in C++. It is a multi-dimension (up to four dimensions), multi-data type (implemented through templates) signal processing extension to C++. IDP++ takes advantage of the object-oriented compiler technology to provide ``information hiding.`` Users need only know C, not C++. Signals or data sets are treated like any other variable with a defined set of operators and functions. We here some examples of the nonlinear filter library within IDP++. Specifically, the results of MIN, MAX median, {alpha}-trimmed mean, and edge-trimmed mean filters as applied to a real aperture radar (RR) and synthetic aperture radar (SAR) data set.
Directory of Open Access Journals (Sweden)
Статья Редакционная
2014-01-01
Full Text Available The workshop of the Nonlinear Dynamics scientific-educational center continued its work in 2014, focusing on methods of the dynamical system analysis and studies of their behavior. More than 30 talks in the field of scientific-educational center research have been made this year. The talk topics included numerical analysis of traveling waves in the Fisher–KPP equation with delay and simulations of the twophase heat distribution problem using heterogeneous computing architectures. In a number of talks normal and quasi-normal forms of differential equations with several delays were derived and studied, also one talk considered a problem of optimal control of a telescopic manipulator. The selected talk abstracts are presented in this issue of the journal.
Nanoplasmonic solution for nonlinear optics
DEFF Research Database (Denmark)
Bache, Morten; Lavrinenko, Andrei; Lysenko, Oleg
2014-01-01
for the silicon dioxide cladding. The blue, cyan and magenta curves correspond to the transmission spectra for the gold waveguides with the width of 10 μm and length of 2, 3, and 4 mm.The polarization of laser beam was tuned to match the transverse magnetic mode of surface plasmonpolaritons in the gold waveguides...... and is being under investigation in recent years [3].The purpose of our research is to study nonlinear optical properties of gold waveguides embedded intodielectric medium (silicon dioxide) using picosecond laser spectroscopy. The work includes modeling ofoptical properties of gold waveguides, fabrication...... of prototype samples, and optical characterization ofsamples using a picosecond laser source.The prototype samples of gold waveguides embedded into silicon dioxide were fabricated at DTUDanchip. A silicon wafer with pre-made 6.5 μm layer of silicon dioxide was used as a substrate and goldwaveguides (films...
Fluctuating nonlinear hydrodynamics of flocking
Yadav, Sunil Kumar; Das, Shankar P.
2018-03-01
Starting from a microscopic model, the continuum field theoretic description of the dynamics of a system of active ingredients or "particles" is presented. The equations of motion for the respective collective densities of mass and momentum follow exactly from that of a single element in the flock. The single-particle dynamics has noise and anomalous momentum dependence in its frictional terms. The equations for the collective densities are averaged over a local equilibrium distribution to obtain the corresponding coarse grained equations of fluctuating nonlinear hydrodynamics (FNH). The latter are the equations used frequently for describing active systems on the basis of intuitive arguments. The transport coefficients which appear in the macroscopic FNH equations are determined in terms of the parameters of the microscopic dynamics.
NONLINEAR ASTEROSEISMOLOGY OF RR LYRAE
Energy Technology Data Exchange (ETDEWEB)
Molnar, L.; Kollath, Z.; Szabo, R. [Konkoly Observatory, MTA CSFK, H-1121 Budapest, Konkoly Thege Miklos ut 15-17 (Hungary); Bryson, S.; Mullally, F.; Thompson, S. E. [NASA Ames Research Center, MS 244-30, Moffet Field, CA 94035 (United States); Kolenberg, K., E-mail: molnar.laszlo@csfk.mta.hu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States)
2012-09-20
The observations of the Kepler Space Telescope revealed that fundamental-mode RR Lyrae stars may show various radial overtones. The presence of multiple radial modes may allow us to conduct nonlinear asteroseismology: comparison of mode amplitudes and frequency shifts between observations and models. Here we report the detection of three radial modes in the star RR Lyr, the eponym of the class, using the Kepler short cadence data: besides the fundamental mode, both the first and the ninth overtones can be derived from the data set. RR Lyrae shows period doubling, but switches occasionally to a state where a pattern of six pulsation cycles repeats instead of two. We found hydrodynamic models that show the same three modes and the period-six state, allowing for comparison with the observations.
Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.
2018-04-01
The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.
Nonlinear optical studies of surfaces
International Nuclear Information System (INIS)
Shen, Y.R.
1994-07-01
The possibly of using nonlinear optical processes for surface studies has attracted increasing attention in recent years. Optical second harmonic generation (SHG) and sum frequency generation (SFG), in particular, have been well accepted as viable surface probes. They have many advantages over the conventional techniques. By nature, they are highly surface-specific and has a submonolayer sensitivity. As coherent optical processes, they are capable of in-situ probing of surfaces in hostile environment as well as applicable to all interfaces accessible by light. With ultrafast pump laser pulses, they can be employed to study surface dynamic processes with a subpicosecond time resolution. These advantages have opened the door to many exciting research opportunities in surface science and technology. This paper gives a brief overview of this fast-growing new area of research. Optical SHG from a surface was first studied theoretically and experimentally in the sixties. Even the submonolayer surface sensitivity of the process was noticed fairly early. The success was, however, limited because of difficulties in controlling the experimental conditions. It was not until the early 1980's that the potential of the process for surface analysis was duly recognized. The first surface study by SHG was actually motivated by the then active search for an understanding of the intriguing surface enhanced Raman scattering (SERS). It had been suspected that the enhancement in SERS mainly came from the local-field enhancement due to local plasmon resonances and pointing rod effect on rough metal surfaces. In our view, Raman scattering is a two-photon process and is therefore a nonlinear optical effect
Nonlinear control of magnetic signatures
Niemoczynski, Bogdan
Magnetic properties of ferrite structures are known to cause fluctuations in Earth's magnetic field around the object. These fluctuations are known as the object's magnetic signature and are unique based on the object's geometry and material. It is a common practice to neutralize magnetic signatures periodically after certain time intervals, however there is a growing interest to develop real time degaussing systems for various applications. Development of real time degaussing system is a challenging problem because of magnetic hysteresis and difficulties in measurement or estimation of near-field flux data. The goal of this research is to develop a real time feedback control system that can be used to minimize magnetic signatures for ferrite structures. Experimental work on controlling the magnetic signature of a cylindrical steel shell structure with a magnetic disturbance provided evidence that the control process substantially increased the interior magnetic flux. This means near field estimation using interior sensor data is likely to be inaccurate. Follow up numerical work for rectangular and cylindrical cross sections investigated variations in shell wall flux density under a variety of ambient excitation and applied disturbances. Results showed magnetic disturbances could corrupt interior sensor data and magnetic shielding due to the shell walls makes the interior very sensitive to noise. The magnetic flux inside the shell wall showed little variation due to inner disturbances and its high base value makes it less susceptible to noise. This research proceeds to describe a nonlinear controller to use the shell wall data as an input. A nonlinear plant model of magnetics is developed using a constant tau to represent domain rotation lag and a gain function k to describe the magnetic hysteresis curve for the shell wall. The model is justified by producing hysteresis curves for multiple materials, matching experimental data using a particle swarm algorithm, and
Method for nonlinear exponential regression analysis
Junkin, B. G.
1972-01-01
Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.
Polynomial solutions of nonlinear integral equations
International Nuclear Information System (INIS)
Dominici, Diego
2009-01-01
We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials
Polynomial solutions of nonlinear integral equations
Energy Technology Data Exchange (ETDEWEB)
Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu
2009-05-22
We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...
Synchronization of chaos by nonlinear feedback
International Nuclear Information System (INIS)
Cheng Yanxiang
1995-01-01
The authors point out that synchronization of chaos may also be achieved by a nonlinear feedback without decomposing the original system. They apply the idea to the Lorentz system, and discuss several forms of nonlinear feedbacks by Lyapunov function and numerical method
Broadband Nonlinear Signal Processing in Silicon Nanowires
DEFF Research Database (Denmark)
Yvind, Kresten; Pu, Minhao; Hvam, Jørn Märcher
The fast non-linearity of silicon allows Tbit/s optical signal processing. By choosing suitable dimensions of silicon nanowires their dispersion can be tailored to ensure a high nonlinearity at power levels low enough to avoid significant two-photon abso We have fabricated low insertion...
Nonlinear Poisson equation for heterogeneous media.
Hu, Langhua; Wei, Guo-Wei
2012-08-22
The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Lie Algebras for Constructing Nonlinear Integrable Couplings
International Nuclear Information System (INIS)
Zhang Yufeng
2011-01-01
Two new explicit Lie algebras are introduced for which the nonlinear integrable couplings of the Giachetti-Johnson (GJ) hierarchy and the Yang hierarchy are obtained, respectively. By employing the variational identity their Hamiltonian structures are also generated. The approach presented in the paper can also provide nonlinear integrable couplings of other soliton hierarchies of evolution equations. (general)
NR-code: Nonlinear reconstruction code
Yu, Yu; Pen, Ue-Li; Zhu, Hong-Ming
2018-04-01
NR-code applies nonlinear reconstruction to the dark matter density field in redshift space and solves for the nonlinear mapping from the initial Lagrangian positions to the final redshift space positions; this reverses the large-scale bulk flows and improves the precision measurement of the baryon acoustic oscillations (BAO) scale.
Time Variance of the Suspension Nonlinearity
DEFF Research Database (Denmark)
Agerkvist, Finn T.; Pedersen, Bo Rohde
2008-01-01
but recovers quickly. The the high power and long term measurements affect the non-linearity of the speaker, by incresing the compliance value for all values of displacement. This level dependency is validated with distortion measurements and it is demonstrated how improved accuracy of the non-linear model can...
Saturation at Low X and Nonlinear Evolution
International Nuclear Information System (INIS)
Stasto, A.M.
2002-01-01
In this talk the results of the analytical and numerical analysis of the nonlinear Balitsky-Kovchegov equation are presented. The characteristic BFKL diffusion into infrared regime is suppressed by the generation of the saturation scale Q s . We identify the scaling and linear regimes for the solution. We also study the impact of subleading corrections onto the nonlinear evolution. (author)
Non-linear realizations and bosonic branes
International Nuclear Information System (INIS)
West, P.
2001-01-01
In this very short note, following hep-th/0001216, we express the well known bosonic brane as a non-linear realization. The reader may also consult hep-th/9912226, 0001216 and 0005270 where the branes of M theory are constructed as a non-linear realisation. The automorphisms of the supersymmetry algebra play an essential role. (author)
Neural Networks for Non-linear Control
DEFF Research Database (Denmark)
Sørensen, O.
1994-01-01
This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....
Nonlinear models for autoregressive conditional heteroskedasticity
DEFF Research Database (Denmark)
Teräsvirta, Timo
This paper contains a brief survey of nonlinear models of autore- gressive conditional heteroskedasticity. The models in question are parametric nonlinear extensions of the original model by Engle (1982). After presenting the individual models, linearity testing and parameter estimation are discu...
Methods of stability analysis in nonlinear mechanics
International Nuclear Information System (INIS)
Warnock, R.L.; Ruth, R.D.; Gabella, W.; Ecklund, K.
1989-01-01
We review our recent work on methods to study stability in nonlinear mechanics, especially for the problems of particle accelerators, and compare our ideals to those of other authors. We emphasize methods that (1) show promise as practical design tools, (2) are effective when the nonlinearity is large, and (3) have a strong theoretical basis. 24 refs., 2 figs., 2 tabs
Solitons and Weakly Nonlinear Waves in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1985-01-01
Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...
The nonlinear CWFA [Cherenkov Wakefield Accelerator
International Nuclear Information System (INIS)
Schoessow, P.
1989-01-01
The possible use of nonlinear media to enhance the performance of the Cherenkov Wakefield Accelerator (CWFA) is considered. Numerical experiments have been performed using a new wakefield code which demonstrate larger gradients and transformer ratios in the nonlinear CWFA than are obtained in the linear case. 7 refs., 3 figs
Modulational instability in nonlocal nonlinear Kerr media
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Juul Rasmussen, Jens
2001-01-01
We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function. For a defoc...
Non-Linear Approximation of Bayesian Update
Litvinenko, Alexander
2016-01-01
We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.
Nonlinear transport of accelerator beam phase space
International Nuclear Information System (INIS)
Xie Xi; Xia Jiawen
1995-01-01
Based on the any order analytical solution of accelerator beam dynamics, the general theory for nonlinear transport of accelerator beam phase space is developed by inverse transformation method. The method is general by itself, and hence can also be applied to the nonlinear transport of various dynamic systems in physics, chemistry and biology
Nonlinear soliton matching between optical fibers
DEFF Research Database (Denmark)
Agger, Christian; Sørensen, Simon Toft; Thomsen, Carsten L.
2011-01-01
In this Letter, we propose a generic nonlinear coupling coefficient, η2 NL ¼ ηjγ=β2jfiber2=jγ=β2jfiber1, which gives a quantitative measure for the efficiency of nonlinear matching of optical fibers by describing how a fundamental soliton couples from one fiber into another. Specifically, we use η...
PT -symmetric dimer of coupled nonlinear oscillators
Indian Academy of Sciences (India)
We provide a systematic analysis of a prototypical nonlinear oscillator ... recently, a number of nonlinear variants have been explored, like split-ring resonator chain .... Note that these solutions are valid for any value of ǫ (and hence δ) including ǫ ..... [16] M Abramowitz and I A Stegun, Handbook of mathematical functions ...
On data transformations and evidence of nonlinearity
P. de Bruin (Paul); Ph.H.B.F. Franses (Philip Hans)
1998-01-01
textabstractIn this paper we examine the interaction between data transformation and the empirical evidence obtained when testing for (non-)linearity. For this purpose we examine nonlinear features in 64 monthly and 53 quarterly US macroeconomic variables for a range of Box-Cox data
Nuclear matter as a nonlinear optical medium
International Nuclear Information System (INIS)
Hefter, E.F.; Papini, G.
1986-01-01
This paper is concerned with the question whether nuclear matter should be considered as a nonlinear optical medium. Taking, in a pragmatic way, quality and quantity of the results of well-established linear and nonlinear approaches as the main criterion, an affirmative answer is seen to be consistent with long-standing practices adhered to in nuclear physics
A simple approach to nonlinear oscillators
International Nuclear Information System (INIS)
Ren Zhongfu; He Jihuan
2009-01-01
A very simple and effective approach to nonlinear oscillators is suggested. Anyone with basic knowledge of advanced calculus can apply the method to finding approximately the amplitude-frequency relationship of a nonlinear oscillator. Some examples are given to illustrate its extremely simple solution procedure and an acceptable accuracy of the obtained solutions.
Non-Linear Approximation of Bayesian Update
Litvinenko, Alexander
2016-06-23
We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.
Empirical Differential Balancing for Nonlinear Systems
Kawano, Yu; Scherpen, Jacquelien M.A.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri
In this paper, we consider empirical balancing of nonlinear systems by using its prolonged system, which consists of the original nonlinear system and its variational system. For the prolonged system, we define differential reachability and observability Gramians, which are matrix valued functions
Nonlinear waves in plasma with negative ion
International Nuclear Information System (INIS)
Saito, Maki; Watanabe, Shinsuke; Tanaca, Hiroshi.
1984-01-01
The propagation of nonlinear ion wave is investigated theoretically in a plasma with electron, positive ion and negative ion. The ion wave of long wavelength is described by a modified K-dV equation instead of a K-dV equation when the nonlinear coefficient of the K-dV equation vanishes at the critical density of negative ion. In the vicinity of the critical density, the ion wave is described by a coupled K-dV and modified K-dV equation. The transition from a compressional soliton to a rarefactive soliton and vice versa are examined by the coupled equation as a function of the negative ion density. The ion wave of short wavelength is described by a nonlinear Schroedinger equation. In the plasma with a negative ion, the nonlinear coefficient of the nonlinear Schroedinger equation changes the sign and the ion wave becomes modulationally unstable. (author)
Nonlinear dynamics experiment in the Tevatron
International Nuclear Information System (INIS)
Merminga, N.; Edwards, D.; Finley, D.
1989-01-01
Results of the continuing analysis of the nonlinear dynamics experiment E778 are presented. Sixteen special sextupoles introduced nonlinearities in the Tevatron. 'Smear,' which is one of the parameters used to quantify the degree of nonlinearity, was extracted from the data and compared with calculation. Injection efficiency in the presence of nonlinearities was studied. Measurements of the dynamic aperture were performed. The final results in one degree of freedom of the smear, the injection efficiency and the dynamic aperture are presented. Particles captured on nonlinear resonance islands were directly observed and measurements were performed. The capture efficiency was extracted from the data and compared with prediction. The influence of tune modulation on the stability of these islands was investigated. Plans for future measurements are discussed. 4 refs., 6 figs
Nonlinear dynamics aspects of modern storage rings
International Nuclear Information System (INIS)
Helleman, R.H.G.; Kheifets, S.A.
1986-01-01
It is argued that the nonlinearity of storage rings becomes an essential problem as the design parameters of each new machine are pushed further and further. Yet the familiar methods of classical mechanics do not allow determination of single particle orbits over reasonable lengths of time. It is also argued that the single particle dynamics of a storage ring is possibly one of the cleanest and simplest nonlinear dynamical systems available with very few degrees of freedom. Hence, reasons are found for accelerator physicists to be interested in nonlinear dynamics and for researchers in nonlinear dynamics to be interested in modern storage rings. The more familiar methods of treating nonlinear systems routinely used in acclerator theory are discussed, pointing out some of their limitations and pitfalls. 39 refs., 1 fig
Discontinuity and complexity in nonlinear physical systems
Baleanu, Dumitru; Luo, Albert
2014-01-01
This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....
Nonlinear Modeling by Assembling Piecewise Linear Models
Yao, Weigang; Liou, Meng-Sing
2013-01-01
To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.
Computational mechanics of nonlinear response of shells
Energy Technology Data Exchange (ETDEWEB)
Kraetzig, W.B. (Bochum Univ. (Germany, F.R.). Inst. fuer Statik und Dynamik); Onate, E. (Universidad Politecnica de Cataluna, Barcelona (Spain). Escuela Tecnica Superior de Ingenieros de Caminos) (eds.)
1990-01-01
Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs.
Nonlinear PDEs a dynamical systems approach
Schneider, Guido
2017-01-01
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced...
Spectral theory and nonlinear functional analysis
Lopez-Gomez, Julian
2001-01-01
This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.
Dynamics and vibrations progress in nonlinear analysis
Kachapi, Seyed Habibollah Hashemi
2014-01-01
Dynamical and vibratory systems are basically an application of mathematics and applied sciences to the solution of real world problems. Before being able to solve real world problems, it is necessary to carefully study dynamical and vibratory systems and solve all available problems in case of linear and nonlinear equations using analytical and numerical methods. It is of great importance to study nonlinearity in dynamics and vibration; because almost all applied processes act nonlinearly, and on the other hand, nonlinear analysis of complex systems is one of the most important and complicated tasks, especially in engineering and applied sciences problems. There are probably a handful of books on nonlinear dynamics and vibrations analysis. Some of these books are written at a fundamental level that may not meet ambitious engineering program requirements. Others are specialized in certain fields of oscillatory systems, including modeling and simulations. In this book, we attempt to strike a balance between th...