WorldWideScience

Sample records for nonlinear force-free solutions

  1. Magneto-frictional Modeling of Coronal Nonlinear Force-free Fields. I. Testing with Analytic Solutions

    Science.gov (United States)

    Guo, Y.; Xia, C.; Keppens, R.; Valori, G.

    2016-09-01

    We report our implementation of the magneto-frictional method in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC). The method aims at applications where local adaptive mesh refinement (AMR) is essential to make follow-up dynamical modeling affordable. We quantify its performance in both domain-decomposed uniform grids and block-adaptive AMR computations, using all frequently employed force-free, divergence-free, and other vector comparison metrics. As test cases, we revisit the semi-analytic solution of Low and Lou in both Cartesian and spherical geometries, along with the topologically challenging Titov-Démoulin model. We compare different combinations of spatial and temporal discretizations, and find that the fourth-order central difference with a local Lax-Friedrichs dissipation term in a single-step marching scheme is an optimal combination. The initial condition is provided by the potential field, which is the potential field source surface model in spherical geometry. Various boundary conditions are adopted, ranging from fully prescribed cases where all boundaries are assigned with the semi-analytic models, to solar-like cases where only the magnetic field at the bottom is known. Our results demonstrate that all the metrics compare favorably to previous works in both Cartesian and spherical coordinates. Cases with several AMR levels perform in accordance with their effective resolutions. The magneto-frictional method in MPI-AMRVAC allows us to model a region of interest with high spatial resolution and large field of view simultaneously, as required by observation-constrained extrapolations using vector data provided with modern instruments. The applications of the magneto-frictional method to observations are shown in an accompanying paper.

  2. Nonlinear Force-free Coronal Magnetic Stereoscopy

    Science.gov (United States)

    Chifu, Iulia; Wiegelmann, Thomas; Inhester, Bernd

    2017-03-01

    Insights into the 3D structure of the solar coronal magnetic field have been obtained in the past by two completely different approaches. The first approach are nonlinear force-free field (NLFFF) extrapolations, which use photospheric vector magnetograms as boundary condition. The second approach uses stereoscopy of coronal magnetic loops observed in EUV coronal images from different vantage points. Both approaches have their strengths and weaknesses. Extrapolation methods are sensitive to noise and inconsistencies in the boundary data, and the accuracy of stereoscopy is affected by the ability of identifying the same structure in different images and by the separation angle between the view directions. As a consequence, for the same observational data, the 3D coronal magnetic fields computed with the two methods do not necessarily coincide. In an earlier work (Paper I) we extended our NLFFF optimization code by including stereoscopic constrains. The method was successfully tested with synthetic data, and within this work, we apply the newly developed code to a combined data set from SDO/HMI, SDO/AIA, and the two STEREO spacecraft. The extended method (called S-NLFFF) contains an additional term that monitors and minimizes the angle between the local magnetic field direction and the orientation of the 3D coronal loops reconstructed by stereoscopy. We find that when we prescribe the shape of the 3D stereoscopically reconstructed loops, the S-NLFFF method leads to a much better agreement between the modeled field and the stereoscopically reconstructed loops. We also find an appreciable decrease by a factor of two in the angle between the current and the magnetic field. This indicates the improved quality of the force-free solution obtained by S-NLFFF.

  3. Stability of Nonlinear Force-Free Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    胡友秋

    2001-01-01

    Based on the magnetohydrodynamic energy principle, it is proved that Gold-Hoyle's nonlinear force-free magnetic field is unstable. This disproves the sufficient criterion for stability of nonlinear force-free magnetic fields given by Kriiger that a nonlinear force-free field is stable if the maximum absolute value of the force-free factor is smaller than the lowest eigenvalue associated with the domain of interest.

  4. A Fluid Dynamics Approach for the Computation of Non-linear Force-Free Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Jing-Qun Li; Jing-Xiu Wang; Feng-Si Wei

    2003-01-01

    Inspired by the analogy between the magnetic field and velocity fieldof incompressible fluid flow, we propose a fluid dynamics approach for comput-ing nonlinear force-free magnetic fields. This method has the advantage that thedivergence-free condition is automatically satisfied, which is a sticky issue for manyother algorithms, and we can take advantage of modern high resolution algorithmsto process the force-free magnetic field. Several tests have been made based on thewell-known analytic solution proposed by Low & Lou. The numerical results arein satisfactory agreement with the analytic ones. It is suggested that the newlyproposed method is promising in extrapolating the active region or the whole sunmagnetic fields in the solar atmosphere based on the observed vector magnetic fieldon the photosphere.

  5. Separable solutions of force-free spheres and applications to solar active regions

    CERN Document Server

    Prasad, A; Ravindra, B

    2014-01-01

    In this paper, we present a systematic study of the force-free field equation for simple axisymmetric configurations in spherical geometry and apply it to the solar active regions. The condition of separability of solutions in the radial and angular variables leads to two classes of solutions: linear and non-linear force-free fields. We have studied these linear solutions Chandrasekhar (1956) and extended the non-linear solutions given in Low & Lou (1990) for the radial power law index to the irreducible rational form $n= p/q$, which is allowed for all cases of odd $p$ and cases of $q>p$ for even $p$ (the poloidal flux $\\psi\\propto1/r^n$ and field $\\mathbf{B}\\propto 1/r^{n+2}$). We apply these solutions to simulate photospheric vector magnetograms obtained using the spectro-polarimeter onboard Hinode. The effectiveness of our search strategy is first demonstrated on test inputs of dipolar, axisymmetric and non-axisymmetric linear force-free fields. Using the best fit to these magnetograms, we build 3D axi...

  6. Nonlinear Force-Free Magnetic Field Modeling of AR 10953: A Critical Assessment

    Science.gov (United States)

    De Rosa, Marc L.; Schrijver, C. J.; Barnes, G.; Leka, K. D.; Lites, B. W.; Aschwanden, M. J.; Amari, T.; Canou, A.; McTiernan, J. M.; Régnier, S.; Thalmann, J. K.; Valori, G.; Wheatland, M. S.; Wiegelmann, T.; Cheung, M. C. M.; Conlon, P. A.; Fuhrmann, M.; Inhester, B.; Tadesse, T.

    2009-05-01

    Nonlinear force-free field (NLFFF) modeling seeks to provide accurate representations of the structure of the magnetic field above solar active regions, from which estimates of physical quantities of interest (e.g., free energy and helicity) can be made. However, the suite of NLFFF algorithms have failed to arrive at consistent solutions when applied to (thus far, two) cases using the highest-available-resolution vector magnetogram data from Hinode/SOT-SP (in the region of the modeling area of interest) and line-of-sight magnetograms from SOHO/MDI (where vector data were not available). One issue is that NLFFF models require consistent, force-free vector magnetic boundary data, and vector magnetogram data sampling the photosphere do not satisfy this requirement. Consequently, several problems have arisen that are believed to affect such modeling efforts. We use AR 10953 to illustrate these problems, namely: (1) some of the far-reaching, current-carrying connections are exterior to the observational field of view, (2) the solution algorithms do not (yet) incorporate the measurement uncertainties in the vector magnetogram data, and/or (3) a better way is needed to account for the Lorentz forces within the layer between the photosphere and coronal base. In light of these issues, we conclude that it remains difficult to derive useful and significant estimates of physical quantities from NLFFF models.

  7. The Influence of Spatial Resolution on Nonlinear Force-Free Modeling

    CERN Document Server

    DeRosa, M L; Leka, K D; Barnes, G; Amari, T; Canou, A; Gilchrist, S A; Thalmann, J K; Valori, G; Wiegelmann, T; Schrijver, C J; Malanushenko, A; Sun, X; Régnier, S

    2015-01-01

    The nonlinear force-free field (NLFFF) model is often used to describe the solar coronal magnetic field, however a series of earlier studies revealed difficulties in the numerical solution of the model in application to photospheric boundary data. We investigate the sensitivity of the modeling to the spatial resolution of the boundary data, by applying multiple codes that numerically solve the NLFFF model to a sequence of vector magnetogram data at different resolutions, prepared from a single Hinode/SOT-SP scan of NOAA Active Region 10978 on 2007 December 13. We analyze the resulting energies and relative magnetic helicities, employ a Helmholtz decomposition to characterize divergence errors, and quantify changes made by the codes to the vector magnetogram boundary data in order to be compatible with the force-free model. This study shows that NLFFF modeling results depend quantitatively on the spatial resolution of the input boundary data, and that using more highly resolved boundary data yields more self-c...

  8. Nonlinear Force-Free Magnetic Field Modeling of the Solar Corona: A Critical Assessment

    Science.gov (United States)

    De Rosa, M. L.; Schrijver, C. J.; Barnes, G.; Leka, K. D.; Lites, B. W.; Aschwanden, M. J.; McTiernan, J. M.; Régnier, S.; Thalmann, J.; Valori, G.; Wheatland, M. S.; Wiegelmann, T.; Cheung, M.; Conlon, P. A.; Fuhrmann, M.; Inhester, B.; Tadesse, T.

    2008-12-01

    Nonlinear force-free field (NLFFF) modeling promises to provide accurate representations of the structure of the magnetic field above solar active regions, from which estimates of physical quantities of interest (e.g., free energy and helicity) can be made. However, the suite of NLFFF algorithms have so far failed to arrive at consistent solutions when applied to cases using the highest-available-resolution vector magnetogram data from Hinode/SOT-SP (in the region of the modeling area of interest) and line-of-sight magnetograms from SOHO/MDI (where vector data were not been available). It is our view that the lack of robust results indicates an endemic problem with the NLFFF modeling process, and that this process will likely continue to fail until (1) more of the far-reaching, current-carrying connections are within the observational field of view, (2) the solution algorithms incorporate the measurement uncertainties in the vector magnetogram data, and/or (3) a better way is found to account for the Lorentz forces within the layer between the photosphere and coronal base. In light of these issues, we conclude that it remains difficult to derive useful and significant estimates of physical quantities from NLFFF models.

  9. Nonlinear force-free modelling: influence of inaccuracies in the measured magnetic vector

    CERN Document Server

    Wiegelmann, T; Solanki, S K; Lagg, A

    2009-01-01

    Context: Solar magnetic fields are regularly extrapolated into the corona starting from photospheric magnetic measurements that can suffer from significant uncertainties. Aims: Here we study how inaccuracies introduced into the maps of the photospheric magnetic vector from the inversion of ideal and noisy Stokes parameters influence the extrapolation of nonlinear force-free magnetic fields. Methods: We compute nonlinear force-free magnetic fields based on simulated vector magnetograms, which have been produced by the inversion of Stokes profiles, computed froma 3-D radiation MHD simulation snapshot. These extrapolations are compared with extrapolations starting directly from the field in the MHD simulations, which is our reference. We investigate how line formation and instrumental effects such as noise, limited spatial resolution and the effect of employing a filter instrument influence the resulting magnetic field structure. The comparison is done qualitatively by visual inspection of the magnetic field dis...

  10. Full-disk nonlinear force-free field extrapolation of SDO/HMI and SOLIS/VSM magnetograms

    Science.gov (United States)

    Tadesse, T.; Wiegelmann, T.; Inhester, B.; MacNeice, P.; Pevtsov, A.; Sun, X.

    2013-02-01

    Context. The magnetic field configuration is essential for understanding solar explosive phenomena, such as flares and coronal mass ejections. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Two complications of this approach are that the measured photospheric magnetic field is not force-free and that one has to apply a preprocessing routine to achieve boundary conditions suitable for the force-free modeling. Furthermore the nonlinear force-free extrapolation code should take uncertainties into account in the photospheric field data. They occur due to noise, incomplete inversions, or azimuth ambiguity-removing techniques. Aims: Extrapolation codes in Cartesian geometry for modeling the magnetic field in the corona do not take the curvature of the Sun's surface into account and can only be applied to relatively small areas, e.g., a single active region. Here we apply a method for nonlinear force-free coronal magnetic field modeling and preprocessing of photospheric vector magnetograms in spherical geometry using the optimization procedure to full disk vector magnetograms. We compare the analysis of the photospheric magnetic field and subsequent force-free modeling based on full-disk vector maps from Helioseismic and Magnetic Imager (HMI) onboard the solar dynamics observatory (SDO) and Vector Spectromagnetograph (VSM) of the Synoptic Optical Long-term Investigations of the Sun (SOLIS). Methods: We used HMI and VSM photospheric magnetic field measurements to model the force-free coronal field above multiple solar active regions, assuming magnetic forces to dominate. We solved the nonlinear force-free field equations by minimizing a functional in spherical coordinates over a full disk and excluding the poles. After searching for the optimum modeling parameters for the particular data sets, we compared the resulting nonlinear force-free model fields. We compared

  11. First use of synoptic vector magnetograms for global nonlinear force free coronal magnetic field models

    CERN Document Server

    Tadesse, Tilaye; Gosain, S; MacNeice, P; Pevtsov, Alexei A

    2013-01-01

    The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently there are several modelling techniques being used to calculate three-dimension of the field lines into the solar atmosphere. For the first time, synoptic maps of photospheric vector magnetic field synthesized from Vector Spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. We solve the nonlinear force-free field equations using optimizatio...

  12. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    Science.gov (United States)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  13. How to optimize nonlinear force-free coronal magnetic field extrapolations from SDO/HMI vector magnetograms?

    CERN Document Server

    Wiegelmann, T; Inhester, B; Tadesse, T; Sun, X; Hoeksema, J T

    2012-01-01

    The SDO/HMI instruments provide photospheric vector magnetograms with a high spatial and temporal resolution. Our intention is to model the coronal magnetic field above active regions with the help of a nonlinear force-free extrapolation code. Our code is based on an optimization principle and has been tested extensively with semi-analytic and numeric equilibria and been applied before to vector magnetograms from Hinode and ground based observations. Recently we implemented a new version which takes measurement errors in photospheric vector magnetograms into account. Photospheric field measurements are often due to measurement errors and finite nonmagnetic forces inconsistent as a boundary for a force-free field in the corona. In order to deal with these uncertainties, we developed two improvements: 1.) Preprocessing of the surface measurements in order to make them compatible with a force-free field 2.) The new code keeps a balance between the force-free constraint and deviation from the photospheric field m...

  14. Magneto-frictional Modeling of Coronal Nonlinear Force-free Fields. II. Application to Observations

    Science.gov (United States)

    Guo, Y.; Xia, C.; Keppens, R.

    2016-09-01

    A magneto-frictional module has been implemented and tested in the Message Passing Interface Adaptive Mesh Refinement Versatile Advection Code (MPI-AMRVAC) in the first paper of this series. Here, we apply the magneto-frictional method to observations to demonstrate its applicability in both Cartesian and spherical coordinates, and in uniform and block-adaptive octree grids. We first reconstruct a nonlinear force-free field (NLFFF) on a uniform grid of 1803 cells in Cartesian coordinates, with boundary conditions provided by the vector magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) at 06:00 UT on 2010 November 11 in active region NOAA 11123. The reconstructed NLFFF successfully reproduces the sheared and twisted field lines and magnetic null points. Next, we adopt a three-level block-adaptive grid to model the same active region with a higher spatial resolution on the bottom boundary and a coarser treatment of regions higher up. The force-free and divergence-free metrics obtained are comparable to the run with a uniform grid, and the reconstructed field topology is also very similar. Finally, a group of active regions, including NOAA 11401, 11402, 11405, and 11407, observed at 03:00 UT on 2012 January 23 by SDO/HMI is modeled with a five-level block-adaptive grid in spherical coordinates, where we reach a local resolution of 0\\buildrel{\\circ}\\over{.} 06 pixel-1 in an area of 790 Mm × 604 Mm. Local high spatial resolution and a large field of view in NLFFF modeling can be achieved simultaneously in parallel and block-adaptive magneto-frictional relaxations.

  15. Expanded solutions of force-free electrodynamics on general Kerr black holes

    Science.gov (United States)

    Li, Huiquan; Wang, Jiancheng

    2017-07-01

    In this work, expanded solutions of force-free magnetospheres on general Kerr black holes are derived through a radial distance expansion method. From the regular conditions both at the horizon and at spatial infinity, two previously known asymptotical solutions (one of them is actually an exact solution) are identified as the only solutions that satisfy the same conditions at the two boundaries. Taking them as initial conditions at the boundaries, expanded solutions up to the first few orders are derived by solving the stream equation order by order. It is shown that our extension of the exact solution can (partially) cure the problems of the solution: it leads to magnetic domination and a mostly timelike current for restricted parameters.

  16. Ideal MHD(-Einstein) Solutions Obeying The Force-Free Condition

    CERN Document Server

    Chu, Yi-Zen

    2016-01-01

    We find two families of analytic solutions to the ideal magnetohydrodynamics (iMHD) equations, in a class of 4-dimensional (4D) curved spacetimes. The plasma current is null, and as a result, the stress-energy tensor of the plasma itself can be chosen to take a cosmological-constant-like form. Despite the presence of a plasma, the force-free condition - where the electromagnetic current is orthogonal to the Maxwell tensor - continues to be maintained. Moreover, a special case of one of these two families leads us to a fully self-consistent solution to the Einstein-iMHD equations: we obtain the Vaidya-(anti-)de Sitter metric sourced by the plasma and a null electromagnetic stress tensor. We also provide a Mathematica code that researchers may use to readily verify analytic solutions to these iMHD equations in any curved 4D geometry.

  17. NONLINEAR FORCE-FREE MODELING OF A THREE-DIMENSIONAL SIGMOID OBSERVED ON THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, S.; Watari, S. [National Institute of Information and Communications Technology (NICT), 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795 (Japan); Magara, T.; Choe, G. S., E-mail: inosato@khu.ac.kr [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-do 446-701 (Korea, Republic of)

    2012-03-01

    In this work, we analyze the characteristics of the three-dimensional magnetic structure of a sigmoid observed over an active region (AR 10930) and followed by X-class flares. This is accomplished by combining a nonlinear force-free field (NLFFF) model of a coronal magnetic field and the high-resolution vector-field measurement of a photospheric magnetic field by Hinode. The key findings of our analysis reveal that the value of the X-ray intensity associated with the sigmoid is more sensitive to the strength of the electric current rather than the twist of the field lines. The strong electric current flows along the magnetic field lines and composes the central part of the sigmoid, even though the twist of the field lines is weak in that region. On the other hand, the outer region (i.e., the elbow part) of the sigmoid is basically occupied by field lines of strong twist and weak current density. Consequently, weak X-ray emission is observed. As the initial Ca II illumination basically occurs from the central part of the sigmoid, this region plays an important role in determining the onset mechanism of the flare despite its weak twisted field-line configuration. We also compare our results with the magnetohydrodynamic simulation for the formation of a sigmoid. Although the estimated values of the twist from the simulation are found to be a little higher than the values obtained from the NLFFF, we find that the field-line configurations generated by the simulation and NLFFF are remarkably analogous as long as we deal with the lower coronal region.

  18. Solutions of the Force-Free Duffing-van der Pol Oscillator Equation

    Directory of Open Access Journals (Sweden)

    Najeeb Alam Khan

    2011-01-01

    Full Text Available A new approximate method for solving the nonlinear Duffing-van der pol oscillator equation is proposed. The proposed scheme depends only on the two components of homotopy series, the Laplace transformation and, the Padé approximants. The proposed method introduces an alternative framework designed to overcome the difficulty of capturing the behavior of the solution and give a good approximation to the solution for a large time. The Runge-Kutta algorithm was used to solve the governing equation via numerical solution. Finally, to demonstrate the validity of the proposed method, the response of the oscillator, which was obtained from approximate solution, has been shown graphically and compared with that of numerical solution.

  19. Structure and Stability of Magnetic Fields in Solar Active Region12192 Based on Nonlinear Force-Free Field Modeling

    CERN Document Server

    Inoue, S; Kusano, K

    2016-01-01

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region(AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains multiple-flux-tube system, {\\it e.g.}, a large flux tube, both of whose footpoints are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the later are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the oth...

  20. Formation and Eruption of an Active Region Sigmoid: I. Study by Nonlinear Force-Free Field Modeling

    CERN Document Server

    Jiang, Chaowei; Feng, Xueshang; Hu, Qiang

    2013-01-01

    We present a magnetic analysis of the formation and eruption of an active region (AR) sigmoid in AR 11283 from 2011 September 4 to 6. To follow the quasi-static evolution of the coronal magnetic field, we reconstruct a time sequence of static fields using a recently developed nonlinear force-free field model constrained by the SDO/HMI vector magnetograms. A detailed analysis of the fields compared with the SDO/AIA observations suggests the following scenario for the evolution of the region. Initially, a new bipole emerges into the negative polarity of a pre-existing bipolar AR, forming a null point topology between the two flux systems. A weakly twisted flux rope (FR) is then built up slowly in the embedded core region, largely through flux-cancellation photospheric reconnections, forming a bald patch separatrix surface (BPSS) separating the FR from its ambient field. The FR grows gradually until its axis runs into a torus instability (TI) domain near the end of the third day, and the BPSS also develops a ful...

  1. Force-free Currents and the Newman-Penrose Tetrad of a Kerr Black Hole: Exact Local Solutions

    CERN Document Server

    Menon, Govind

    2015-01-01

    In a previous article we derived a class of solutions to the force-free magnetosphere in a Kerr background. Here, the streaming surface, defined by constant values of the toriodal component of the electromagnetic vector potential $A$, were generated by constant values of $\\theta$. The electromagnetic current vector flowed along the in-falling principle null geodesic vector of the geometry. Subsequently, we generalized this to obtain an out-going principle null geodesic vector as well. In this article, we derive solutions that are complimentary to the above mentioned criteria. Namely, here the solution has a streaming surface generated by spheres of constant radial coordinate $r$, and the current vector is generated by linear combinations of $m$ and $m^\\star$, the remaining bases vectors in the Newman-Penrose null tetrad.

  2. STRUCTURE AND STABILITY OF MAGNETIC FIELDS IN SOLAR ACTIVE REGION 12192 BASED ON NONLINEAR FORCE-FREE FIELD MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, S. [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3 D-37077 Göttingen Germany (Germany); Hayashi, K.; Kusano, K., E-mail: inoue@mps.mpg.de [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan)

    2016-02-20

    We analyze a three-dimensional (3D) magnetic structure and its stability in large solar active region (AR) 12192, using the 3D coronal magnetic field constructed under a nonlinear force-free field (NLFFF) approximation. In particular, we focus on the magnetic structure that produced an X3.1-class flare, which is one of the X-class flares observed in AR 12192. According to our analysis, the AR contains a multiple-flux-tube system, e.g., a large flux tube, with footpoints that are anchored to the large bipole field, under which other tubes exist close to a polarity inversion line (PIL). These various flux tubes of different sizes and shapes coexist there. In particular, the latter are embedded along the PIL, which produces a favorable shape for the tether-cutting reconnection and is related to the X-class solar flare. We further found that most of magnetic twists are not released even after the flare, which is consistent with the fact that no observational evidence for major eruptions was found. On the other hand, the upper part of the flux tube is beyond a critical decay index, essential for the excitation of torus instability before the flare, even though no coronal mass ejections were observed. We discuss the stability of the complicated flux tube system and suggest the reason for the existence of the stable flux tube. In addition, we further point out a possibility for tracing the shape of flare ribbons, on the basis of a detailed structural analysis of the NLFFF before a flare.

  3. Force-Free Foliations

    CERN Document Server

    Compère, Geoffrey; Lupsasca, Alexandru

    2016-01-01

    Electromagnetic field configurations with vanishing Lorentz force density are known as force-free and appear in terrestrial, space, and astrophysical plasmas. We explore a general method for finding such configurations based on formulating equations for the field lines rather than the field itself. The basic object becomes a foliation of spacetime or, in the stationary axisymmetric case, of the half-plane. We use this approach to find some new stationary and axisymmetric solutions, one of which could represent a rotating plasma vortex near a magnetic null point.

  4. Spacetime approach to force-free magnetospheres

    CERN Document Server

    Gralla, Samuel E

    2014-01-01

    Force-Free Electrodynamics (FFE) describes magnetically dominated relativistic plasma via non-linear equations for the electromagnetic field alone. Such plasma is thought to play a key role in the physics of pulsars and active black holes. Despite its simple covariant formulation, FFE has primarily been studied in 3+1 frameworks, where spacetime is split into space and time. In this article we systematically develop the theory of force-free magnetospheres taking a spacetime perspective. Using a suite of spacetime tools and techniques (notably exterior calculus) we cover 1) the basics of the theory, 2) exact solutions that demonstrate the extraction and transport of the rotational energy of a compact object (in the case of a black hole, the Blandford-Znajek mechanism), 3) the behavior of current sheets, 4) the general theory of stationary, axisymmetric magnetospheres and 5) general properties of pulsar and black hole magnetospheres. We thereby synthesize, clarify and generalize known aspects of the physics of ...

  5. Solar Force-free Magnetic Fields

    CERN Document Server

    Wiegelmann, Thomas

    2012-01-01

    The structure and dynamics of the solar corona is dominated by the magnetic field. In most areas in the corona magnetic forces are so dominant that all non-magnetic forces like plasma pressure gradient and gravity can be neglected in the lowest order. This model assumption is called the force-free field assumption, as the Lorentz force vanishes. This can be obtained by either vanishing electric currents (leading to potential fields) or the currents are co-aligned with the magnetic field lines. First we discuss a mathematically simpler approach that the magnetic field and currents are proportional with one global constant, the so-called linear force-free field approximation. In the generic case, however, the relation between magnetic fields and electric currents is nonlinear and analytic solutions have been only found for special cases, like 1D or 2D configurations. For constructing realistic nonlinear force-free coronal magnetic field models in 3D, sophisticated numerical computations are required and boundar...

  6. Force-Free Electromagnetic Fields within Spinor Framework

    Directory of Open Access Journals (Sweden)

    V. N. Trishin

    2016-01-01

    Full Text Available The article deals with spinor representation of the force-free electrodynamics. The equations of the force-free electromagnetic field describe the physics of pulsars and black holes whose magnetospheres are filled with magnetically dominated relativistic plasma.The paper is a brief pedagogical introduction to the mathematics of the subject, based on 2-spinor calculi. The objective is to present the nonlinear theory of force-free fields in a compact and elegant form that the spinor framework provides. First, the algebraic classification of the Maxwell tensor is presented. Then, the reduced system of differential equations is obtained for two types of electromagnetic field and the basic features of the solutions are described.  The null force-free field is connected with the shear-free geodesic null congruence in a space-time and is derived from a linear equation for a complex function. The magnetic force-free field is associated with the time-like 2-surface that represents the world-sheet of magnetic field line. The simplified system includes 4 linear differential equations for a real function. The article is educational in nature and there are no new solutions of force-free equations obtained.

  7. The Vertical Current Approximation Nonlinear Force-Free Field Code - Description, Performance Tests, and Measurements of Magnetic Energies Dissipated in Solar Flares

    CERN Document Server

    Aschwanden, Markus J

    2016-01-01

    In this work we provide an updated description of the Vertical Current Approximation Nonlinear Force-Free Field (VCA-NLFFF) code, which is designed to measure the evolution of the potential, nonpotential, free energies, and the dissipated magnetic energies during solar flares. This code provides a complementary and alternative method to existing traditional NLFFF codes. The chief advantages of the VCA-NLFFF code over traditional NLFFF codes are the circumvention of the unrealistic assumption of a force-free photosphere in the magnetic field extrapolation method, the capability to minimize the misalignment angles between observed coronal loops (or chromospheric fibril structures) and theoretical model field lines, as well as computational speed. In performance tests of the VCA-NLFFF code, by comparing with the NLFFF code of Wiegelmann (2004), we find agreement in the potential, nonpotential, and free energy within a factor of about 1.3, but the Wiegelmann code yields in the average a factor of 2 lower flare en...

  8. The Vertical-current Approximation Nonlinear Force-free Field Code—Description, Performance Tests, and Measurements of Magnetic Energies Dissipated in Solar Flares

    Science.gov (United States)

    Aschwanden, Markus J.

    2016-06-01

    In this work we provide an updated description of the Vertical-Current Approximation Nonlinear Force-Free Field (VCA-NLFFF) code, which is designed to measure the evolution of the potential, non-potential, free energies, and the dissipated magnetic energies during solar flares. This code provides a complementary and alternative method to existing traditional NLFFF codes. The chief advantages of the VCA-NLFFF code over traditional NLFFF codes are the circumvention of the unrealistic assumption of a force-free photosphere in the magnetic field extrapolation method, the capability to minimize the misalignment angles between observed coronal loops (or chromospheric fibril structures) and theoretical model field lines, as well as computational speed. In performance tests of the VCA-NLFFF code, by comparing with the NLFFF code of Wiegelmann, we find agreement in the potential, non-potential, and free energy within a factor of ≲ 1.3, but the Wiegelmann code yields in the average a factor of 2 lower flare energies. The VCA-NLFFF code is found to detect decreases in flare energies in most X, M, and C-class flares. The successful detection of energy decreases during a variety of flares with the VCA-NLFFF code indicates that current-driven twisting and untwisting of the magnetic field is an adequate model to quantify the storage of magnetic energies in active regions and their dissipation during flares. The VCA-NLFFF code is also publicly available in the Solar SoftWare.

  9. Strong nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2017-01-01

    This book outlines an analytical solution procedure of the pure nonlinear oscillator system, offering a solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter. Includes exercises.

  10. Differentially rotating force-free magnetosphere of an aligned rotator: analytical solutions in split-monopole approximation

    CERN Document Server

    Timokhin, Andrey

    2007-01-01

    In this paper we consider stationary force-free magnetosphere of an aligned rotator when plasma in the open field line region rotates differentially due to presence of a zone with the accelerating electric field in the polar cap of pulsar. We study the impact of differential rotation on the current density distribution in the magnetosphere. Using split-monopole approximation we obtain analytical expressions for physical parameters of differentially rotating magnetosphere. We find the range of admitted current density distributions under the requirement that the potential drop in the polar cap is less than the vacuum potential drop. We show that the current density distribution could deviate significantly from the ``classical'' Michel distribution and could be made almost constant over the polar cap even when the potential drop in the accelerating zone is of the order of 10 per cents of the vacuum potential drop. We argue that differential rotation of the open magnetic field lines could play an important role ...

  11. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2014-01-01

    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  12. Non-linear force-free field modeling of a solar active region around the time of a major flare and coronal mass ejection

    CERN Document Server

    Schrijver, C J; Metcalf, T; Barnes, G; Lites, B; Tarbell, T; McTiernan, J; Valori, G; Wiegelmann, T; Wheatland, M S; Amari, T; Aulanier, G; Demoulin, P; Fuhrmann, M; Kusano, K; Régnier, S; Thalmann, J K

    2007-01-01

    Solar flares and coronal mass ejections are associated with rapid changes in field connectivity and powered by the partial dissipation of electrical currents in the solar atmosphere. A critical unanswered question is whether the currents involved are induced by the motion of pre-existing atmospheric magnetic flux subject to surface plasma flows, or whether these currents are associated with the emergence of flux from within the solar convective zone. We address this problem by applying state-of-the-art nonlinear force-free field (NLFFF) modeling to the highest resolution and quality vector-magnetographic data observed by the recently launched Hinode satellite on NOAA Active Region 10930 around the time of a powerful X3.4 flare. We compute 14 NLFFF models with 4 different codes and a variety of boundary conditions. We find that the model fields differ markedly in geometry, energy content, and force-freeness. We discuss the relative merits of these models in a general critique of present abilities to model the ...

  13. Nonlinear force-free field modeling of the solar magnetic carpet and comparison with SDO/HMI and Sunrise/IMAX observations

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Kariyappa, R. [Indian Institute of Astrophysics, Bangalore 560 034 (India); Van Ballegooijen, A. A.; DeLuca, E. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-58, Cambridge, MA 02138 (United States); Solanki, S. K. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2014-10-01

    In the quiet solar photosphere, the mixed polarity fields form a magnetic carpet that continuously evolves due to dynamical interaction between the convective motions and magnetic field. This interplay is a viable source to heat the solar atmosphere. In this work, we used the line-of-sight (LOS) magnetograms obtained from the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory, and the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory, as time-dependent lower boundary conditions, to study the evolution of the coronal magnetic field. We use a magneto-frictional relaxation method, including hyperdiffusion, to produce a time series of three-dimensional nonlinear force-free fields from a sequence of photospheric LOS magnetograms. Vertical flows are added up to a height of 0.7 Mm in the modeling to simulate the non-force-freeness at the photosphere-chromosphere layers. Among the derived quantities, we study the spatial and temporal variations of the energy dissipation rate and energy flux. Our results show that the energy deposited in the solar atmosphere is concentrated within 2 Mm of the photosphere and there is not sufficient energy flux at the base of the corona to cover radiative and conductive losses. Possible reasons and implications are discussed. Better observational constraints of the magnetic field in the chromosphere are crucial to understand the role of the magnetic carpet in coronal heating.

  14. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta

    Energy Technology Data Exchange (ETDEWEB)

    Allanson, O., E-mail: oliver.allanson@st-andrews.ac.uk; Neukirch, T., E-mail: tn3@st-andrews.ac.uk; Wilson, F., E-mail: fw237@st-andrews.ac.uk; Troscheit, S., E-mail: s.troscheit@st-andrews.ac.uk [School of Mathematics and Statistics, University of St Andrews, St. Andrews, KY16 9SS (United Kingdom)

    2015-10-15

    We present a first discussion and analysis of the physical properties of a new exact collisionless equilibrium for a one-dimensional nonlinear force-free magnetic field, namely, the force-free Harris sheet. The solution allows any value of the plasma beta, and crucially below unity, which previous nonlinear force-free collisionless equilibria could not. The distribution function involves infinite series of Hermite polynomials in the canonical momenta, of which the important mathematical properties of convergence and non-negativity have recently been proven. Plots of the distribution function are presented for the plasma beta modestly below unity, and we compare the shape of the distribution function in two of the velocity directions to a Maxwellian distribution.

  15. An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta

    CERN Document Server

    Allanson, O; Wilson, F; Troscheit, S

    2015-01-01

    We present a first discussion and analysis of the physical properties of a new exact collisionless equilibrium for a one-dimensional nonlinear force-free magnetic field, namely the Force-Free Harris Sheet. The solution allows any value of the plasma beta, and crucially below unity, which previous nonlinear force-free collisionless equilibria could not. The distribution function involves infinite series of Hermite Polynomials in the canonical momenta, of which the important mathematical properties of convergence and non-negativity have recently been proven. Plots of the distribution function are presented for the plasma beta modestly below unity, and we compare the shape of the distribution function in two of the velocity directions to a Maxwellian distribution.

  16. Generalized solutions of nonlinear partial differential equations

    CERN Document Server

    Rosinger, EE

    1987-01-01

    During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research.The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concernin

  17. Solution and Positive Solution to Nonlinear Cantilever Beam Equations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using the decomposition technique of equation and the fixed point theorem, the existence of solution and positive solution is studied for a nonlinear cantilever beam equation. The equation describes the deformation of the elastic beam with a fixed end and a free end. The main results show that the equation has at least one solution or positive solution, provided that the "height" of nonlinear term is appropriate on a bounded set.

  18. Effect of Size of the Computational Domain on Spherical Nonlinear Force-Free Modeling of Coronal Magnetic Field Using SDO/HMI Data

    CERN Document Server

    Tadesse, Tilaye; MacNeice, Peter

    2014-01-01

    The solar coronal magnetic field produces solar activity, including extremely energetic solar flares and coronal mass ejections (CMEs). Knowledge of the structure and evolution of the magnetic field of the solar corona is important for investigating and understanding the origins of space weather. Although the coronal field remains difficult to measure directly, there is considerable interest in accurate modeling of magnetic fields in and around sunspot regions on the Sun using photospheric vector magnetograms as boundary data. In this work, we investigate effects of the size of the domain chosen for coronal magnetic field modeling on resulting model solution. We apply spherical Optimization procedure to vector magnetogram data of Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO) with four Active Region observed on 09 March 2012 at 20:55UT. The results imply that quantities like magnetic flux density, electric current density and free magnetic energy density of ARs of interest are...

  19. Symmetrized solutions for nonlinear stochastic differential equations

    Directory of Open Access Journals (Sweden)

    G. Adomian

    1981-01-01

    Full Text Available Solutions of nonlinear stochastic differential equations in series form can be put into convenient symmetrized forms which are easily calculable. This paper investigates such forms for polynomial nonlinearities, i.e., equations of the form Ly+ym=x where x is a stochastic process and L is a linear stochastic operator.

  20. ANALYTICAL SOLUTION OF NONLINEAR BAROTROPIC VORTICITY EQUATION

    Institute of Scientific and Technical Information of China (English)

    WANG Yue-peng; SHI Wei-hui

    2008-01-01

    The stability of nonlinear barotropic vorticity equation was proved. The necessary and sufficient conditions for the initial value problem to be well-posed were presented. Under the conditions of well-posedness, the corresponding analytical solution was also gained.

  1. GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Ye Yaojun

    2005-01-01

    In this paper we study the existence of global solutions to the Cauchy problem of nonlinear Schrodinger equation by establishing time weight function spaces and using the contraction mapping principle.

  2. Covariant Hyperbolization of Force-free Electrodynamics

    CERN Document Server

    Carrasco, Federico

    2016-01-01

    Force-Free Flectrodynamics (FFE) is a non-linear system of equations modeling the evolution of the electromagnetic field, in the presence of a magnetically dominated relativistic plasma. This configuration arises on several astrophysical scenarios, which represent exciting laboratories to understand physics in extreme regimes. We show that this system, when restricted to the correct constraint submanifold, is symmetric hyperbolic. In numerical applications is not feasible to keep the system in that submanifold, and so, it is necessary to analyze its structure first in the tangent space of that submanifold and then in a whole neighborhood of it. As already shown by Pfeiffer, a direct (or naive) formulation of this system (in the whole tangent space) results in a weakly hyperbolic system of evolution equations for which well-possednes for the initial value formulation does not follows. Using the generalized symmetric hyperbolic formalism due to Geroch, we introduce here a covariant hyperbolization for the FFE s...

  3. Analytic solutions of nonlinear Cournot duopoly game

    Directory of Open Access Journals (Sweden)

    Akio Matsumoto

    2005-01-01

    Full Text Available We construct a Cournot duopoly model with production externality in which reaction functions are unimodal. We consider the case of a Cournot model which has a stable equilibrium point. Then we show the existence of analytic solutions of the model. Moreover, we seek general solutions of the model in the form of nonlinear second-order difference equation.

  4. Explicit solutions of nonlinear wave equation systems

    Institute of Scientific and Technical Information of China (English)

    Ahmet Bekir; Burcu Ayhan; M.Naci (O)zer

    2013-01-01

    We apply the (G'/G)-expansion method to solve two systems of nonlinear differential equations and construct traveling wave solutions expressed in terms of hyperbolic functions,trigonometric functions,and rational functions with arbitrary parameters.We highlight the power of the (G'/G)-expansion method in providing generalized solitary wave solutions of different physical structures.It is shown that the (G'/G)-expansion method is very effective and provides a powerful mathematical tool to solve nonlinear differential equation systems in mathematical physics.

  5. Exact solutions for nonlinear foam drainage equation

    Science.gov (United States)

    Zayed, E. M. E.; Al-Nowehy, Abdul-Ghani

    2016-09-01

    In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the Riccati equation expansion method and the ( G^' }/G) -expansion method are used to construct exact solutions with parameters of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential equations in mathematical physics. We compare our results together with each other yielding from these integration tools. Also, our results have been compared with the well-known results of others.

  6. Exact solutions for nonlinear foam drainage equation

    Science.gov (United States)

    Zayed, E. M. E.; Al-Nowehy, Abdul-Ghani

    2017-02-01

    In this paper, the modified simple equation method, the exp-function method, the soliton ansatz method, the Riccati equation expansion method and the ( G^' }/G)-expansion method are used to construct exact solutions with parameters of the nonlinear foam drainage equation. When these parameters are taken to be special values, the solitary wave solutions and the trigonometric function solutions are derived from the exact solutions. The obtained results confirm that the proposed methods are efficient techniques for analytic treatments of a wide variety of nonlinear partial differential equations in mathematical physics. We compare our results together with each other yielding from these integration tools. Also, our results have been compared with the well-known results of others.

  7. Periodic solutions of nonlinear vibrating beams

    Directory of Open Access Journals (Sweden)

    J. Berkovits

    2003-01-01

    Full Text Available The aim of this paper is to prove new existence and multiplicity results for periodic semilinear beam equation with a nonlinear time-independent perturbation in case the period is not prescribed. Since the spectrum of the linear part varies with the period, the solvability of the equation depends crucially on the period which can be chosen as a free parameter. Since the period of the external forcing is generally unknown a priori, we consider the following natural problem. For a given time-independent nonlinearity, find periods T for which the equation is solvable for any T-periodic forcing. We will also deal with the existence of multiple solutions when the nonlinearity interacts with the spectrum of the linear part. We show that under certain conditions multiple solutions do exist for any small forcing term with suitable period T. The results are obtained via generalized Leray-Schauder degree and reductions to invariant subspaces.

  8. EXACT SOLUTIONS TO NONLINEAR WAVE EQUATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,we use an invariant set to construct exact solutions to a nonlinear wave equation with a variable wave speed. Moreover,we obtain conditions under which the equation admits a nonclassical symmetry. Several different nonclassical symmetries for equations with different diffusion terms are presented.

  9. The approximate solutions of nonlinear Boussinesq equation

    Science.gov (United States)

    Lu, Dianhen; Shen, Jie; Cheng, Yueling

    2016-04-01

    The homotopy analysis method (HAM) is introduced to solve the generalized Boussinesq equation. In this work, we establish the new analytical solution of the exponential function form. Applying the homotopy perturbation method to solve the variable coefficient Boussinesq equation. The results indicate that this method is efficient for the nonlinear models with variable coefficients.

  10. Solitons in nonlocal nonlinear media: Exact solutions

    DEFF Research Database (Denmark)

    Krolikowski, Wieslaw; Bang, Ole

    2001-01-01

    We investigate the propagation of one-dimensional bright and dark spatial solitons in a nonlocal Kerr-like media, in which the nonlocality is of general form. We find an exact analytical solution to the nonlinear propagation equation in the case of weak nonlocality. We study the properties...

  11. Analytical solution of strongly nonlinear Duffing oscillators

    Directory of Open Access Journals (Sweden)

    A.M. El-Naggar

    2016-06-01

    Full Text Available In this paper, a new perturbation technique is employed to solve strongly nonlinear Duffing oscillators, in which a new parameter α=α(ε is defined such that the value of α is always small regardless of the magnitude of the original parameter ε. Therefore, the strongly nonlinear Duffing oscillators with large parameter ε are transformed into a small parameter system with respect to α. Approximate solution obtained by the present method is compared with the solution of energy balance method, homotopy perturbation method, global error minimization method and lastly numerical solution. We observe from the results that this method is very simple, easy to apply, and gives a very good accuracy not only for small parameter εbut also for large values of ε.

  12. Solutions manual to accompany Nonlinear programming

    CERN Document Server

    Bazaraa, Mokhtar S; Shetty, C M

    2014-01-01

    As the Solutions Manual, this book is meant to accompany the main title, Nonlinear Programming: Theory and Algorithms, Third Edition. This book presents recent developments of key topics in nonlinear programming (NLP) using a logical and self-contained format. The volume is divided into three sections: convex analysis, optimality conditions, and dual computational techniques. Precise statements of algortihms are given along with convergence analysis. Each chapter contains detailed numerical examples, graphical illustrations, and numerous exercises to aid readers in understanding the concepts a

  13. Explicit Traveling Wave Solutions to Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    Linghai ZHANG

    2011-01-01

    First of all,some technical tools are developed. Then the author studies explicit traveling wave solutions to nonlinear dispersive wave equations,nonlinear dissipative dispersive wave equations,nonlinear convection equations,nonlinear reaction diffusion equations and nonlinear hyperbolic equations,respectively.

  14. Robinson-Trautman solution with nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tahamtan, T.; Svitek, O. [Charles University in Prague, Faculty of Mathematics and Physics, Institute of Theoretical Physics, Prague 8 (Czech Republic)

    2016-06-15

    Explicit Robinson-Trautman solutions with an electromagnetic field satisfying nonlinear field equations are derived and analyzed. The solutions are generated from the spherically symmetric ones. In all studied cases the electromagnetic field singularity is removed while the gravitational one persists. The models resolving the curvature singularity in spherically symmetric spacetimes could not be generalized to the Robinson-Trautman geometry using the generating method developed in this paper, which indicates that the removal of a singularity in the associated spherically symmetric case might be just a consequence of high symmetry. We show that the obtained solutions are generally of algebraic type II and reduce to type D in spherical symmetry. Asymptotically they tend to the spherically symmetric case as well. (orig.)

  15. Asymptotic behavior of solutions to nonlinear parabolic equation with nonlinear boundary conditions

    Directory of Open Access Journals (Sweden)

    Diabate Nabongo

    2008-01-01

    Full Text Available We show that solutions of a nonlinear parabolic equation of second order with nonlinear boundary conditions approach zero as t approaches infinity. Also, under additional assumptions, the solutions behave as a function determined here.

  16. Force-Free Magnetosphere of an Accreting Kerr Black Hole

    CERN Document Server

    Uzdensky, D A

    2005-01-01

    I consider a stationary axisymmetric force-free degenerate magnetosphere of a rotating Kerr black hole surrounded by a thin Keplerian infinitely-conducting accretion disk. I focus on the closed-field geometry with a direct magnetic coupling between the disk and the event horizon. I first present a simple physical argument that shows how the black hole's rotation limits the radial extent of the force-free link. I then confirm this result by solving numerically the general-relativistic force-free Grad--Shafranov equation in the magnetosphere, using the regularity condition at the inner light cylinder to determine the poloidal current. I indeed find that force-free solutions exist only when the magnetic link between the hole and the disk has a limited extent on the disk surface. I chart out the maximum allowable size of this magnetically-connected part of the disk as a function of the black hole spin. I also compute the angular momentum and energy transfer between the hole and the disk that takes place via the d...

  17. Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2013-01-01

    Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.

  18. Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation[

    Institute of Scientific and Technical Information of China (English)

    HUANGDing-Jiang; ZHANGHong-Qing

    2004-01-01

    By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.

  19. Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation

    Institute of Scientific and Technical Information of China (English)

    HUANG Ding-Jiang; ZHANG Hong-Qing

    2004-01-01

    By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.

  20. Extension of Variable Separable Solutions for Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    JIA Hua-Bing; ZHANG Shun-Li; XU Wei; ZHU Xiao-Ning; WANG Yong-Mao; LOU Sen-Yue

    2008-01-01

    We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional separablecation, we classify the generalized nonlinear diffusion equations that admit special functional separable solutions and obtain some exact solutions to the resulting equations.

  1. NONLINEAR WAVES AND PERIODIC SOLUTION IN FINITE DEFORMATION ELASTIC ROD

    Institute of Scientific and Technical Information of China (English)

    Liu Zhifang; Zhang Shanyuan

    2006-01-01

    A nonlinear wave equation of elastic rod taking account of finite deformation, transverse inertia and shearing strain is derived by means of the Hamilton principle in this paper. Nonlinear wave equation and truncated nonlinear wave equation are solved by the Jacobi elliptic sine function expansion and the third kind of Jacobi elliptic function expansion method. The exact periodic solutions of these nonlinear equations are obtained, including the shock wave solution and the solitary wave solution. The necessary condition of exact periodic solutions, shock solution and solitary solution existence is discussed.

  2. Exact Solution of a Generalized Nonlinear Schrodinger Equation Dimer

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Maniadis, P.; Tsironis, G.P.

    1998-01-01

    We present exact solutions for a nonlinear dimer system defined throught a discrete nonlinear Schrodinger equation that contains also an integrable Ablowitz-Ladik term. The solutions are obtained throught a transformation that maps the dimer into a double Sine-Gordon like ordinary nonlinear...... differential equation....

  3. The spectral simulations of axisymmetric force-free pulsar magnetosphere

    CERN Document Server

    Cao, Gang; Sun, Sineng

    2015-01-01

    A pseudo-spectral method with an absorbing outer boundary is used to solve a set of the time-dependent force-free equations. In the method, both electric and magnetic fields are expanded in terms of the vector spherical harmonic (VSH) functions in spherical geometry and the divergencelessness of magnetic field is analytically enforced by a projection method. Our simulations show that the Deutsch vacuum solution and the Michel monopole solution can be well reproduced by our pseudo-spectral code. Further the method is used to present the time-dependent simulation of the force-free pulsar magnetosphere for an aligned rotator. The simulations show that the current sheet in the equatorial plane can be resolved well, and the obtained spin-down luminosity in the steady state is in good agreement with the value given by Spitkovsky (2006).

  4. Energy Method to Obtain Approximate Solutions of Strongly Nonlinear Oscillators

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    Full Text Available We introduce a nonlinearization procedure that replaces the system potential energy by an equivalent representation form that is used to derive analytical solutions of strongly nonlinear conservative oscillators. We illustrate the applicability of this method by finding the approximate solutions of two strongly nonlinear oscillators and show that this procedure provides solutions that follow well the numerical integration solutions of the corresponding equations of motion.

  5. Generalized Analytical Solutions for Nonlinear Positive-Negative Index Couplers

    Directory of Open Access Journals (Sweden)

    Zh. Kudyshev

    2012-01-01

    Full Text Available We find and analyze a generalized analytical solution for nonlinear wave propagation in waveguide couplers with opposite signs of the linear refractive index, nonzero phase mismatch between the channels, and arbitrary nonlinear coefficients.

  6. The exact solutions for a nonisospectral nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Ning Tongke [Finance College, Shanghai Normal University, Shanghai 200234 (China)], E-mail: tkning@shnu.edu.cn; Zhang Weiguo; Jia Gao [Science College, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2009-10-30

    In this paper, lax pair for the nonisospectral nonlinear Schroedinger hierarchy is given, the time dependence of nonisospectral scattering data is derived and exact solutions for the nonisospectral nonlinear Schroedinger hierarchy are obtained through the inverse scattering transform.

  7. SPHERICAL NONLINEAR PULSES FOR THE SOLUTIONS OF NONLINEAR WAVE EQUATIONS Ⅱ, NONLINEAR CAUSTIC

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows that the nonlinearities have a strong effect at the focal point. Scattering operator is introduced to describe the caustic crossing. With the aid of the L∞ norms, it analyzes the relative errors in approximate solutions.

  8. Solutions of some class of nonlinear PDEs in mathematical physics

    Directory of Open Access Journals (Sweden)

    Shoukry El-Ganaini

    2016-04-01

    As a result, exact traveling wave solutions involving parameters have been obtained for the considered nonlinear equations in a concise manner. When these parameters are chosen as special values, the solitary wave solutions are derived. It is shown that the proposed technique provides a more powerful mathematical tool for constructing exact solutions for a broad variety of nonlinear PDEs in mathematical physics.

  9. Exact solutions for some nonlinear systems of partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, A.A. [Department of Mathematics, Faculty of Science, Helwan University (Egypt)], E-mail: profdarwish@yahoo.com; Ramady, A. [Department of Mathematics, Faculty of Science, Beni-Suef University (Egypt)], E-mail: aramady@yahoo.com

    2009-04-30

    A direct and unified algebraic method for constructing multiple travelling wave solutions of nonlinear systems of partial differential equations (PDEs) is used and implemented in a computer algebraic system. New solutions for some nonlinear partial differential equations (NLPDEs) are obtained. Graphs of the solutions are displayed.

  10. Some new solutions of nonlinear evolution equations with variable coefficients

    Science.gov (United States)

    Virdi, Jasvinder Singh

    2016-05-01

    We construct the traveling wave solutions of nonlinear evolution equations (NLEEs) with variable coefficients arising in physics. Some interesting nonlinear evolution equations are investigated by traveling wave solutions which are expressed by the hyperbolic functions, the trigonometric functions and rational functions. The applied method will be used in further works to establish more entirely new solutions for other kinds of such nonlinear evolution equations with variable coefficients arising in physics.

  11. Exact solitary wave solutions of nonlinear wave equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The hyperbolic function method for nonlinear wave equations ispresented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. The method is based on the fact that the solitary wave solutions are essentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear system of algebraic equations. The system can be solved via Wu Elimination or Grbner base method. The exact solitary wave solutions of the nonlinear wave equation are obtained including many new exact solitary wave solutions.

  12. A Family of Exact Solutions for the Nonlinear Schrodinger Equation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the nonlinear Schrodinger (NLS) equation was analytically solved. Firstly, the stationary solutions of NLSequation were explicitly given by the elliptic functions. Then a family of exact solutions of NLS equation were obtained from these sta-tionary solutions by a method for finding new exact solutions from the stationary solutions of integrable evolution equations.

  13. Exact periodic wave solutions for some nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    El-Wakil, S.A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Elgarayhi, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: elgarayhi@yahoo.com; Elhanbaly, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)

    2006-08-15

    The periodic wave solutions for some nonlinear partial differential equations, including generalized Klein-Gordon equation, Kadomtsev-Petviashvili (KP) equation and Boussinesq equations, are obtained by using the solutions of Jacobi elliptic equation. Under limit conditions, exact solitary wave solutions, shock wave solutions and triangular periodic wave solutions have been recovered.

  14. Exact Solutions of the Two-Dimensional Discrete Nonlinear Schr\\"odinger Equation with Saturable Nonlinearity

    CERN Document Server

    Khare, Avinash; Samuelsen, Mogens R; Saxena, Avadh; 10.1088/1751-8113/43/37/375209

    2010-01-01

    We show that the two-dimensional, nonlinear Schr\\"odinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the effective Peierls-Nabarro barrier for the pulse-like soliton solution is zero.

  15. Exact solutions for the quintic nonlinear Schroedinger equation with time and space modulated nonlinearities and potentials

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte-Beitia, Juan [Departamento de Matematicas, E.T.S. de Ingenieros Industriales and Instituto de Matematica Aplicada a la Ciencia y la Ingenieria (IMACI), Avda. Camilo Jose Cela 3, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: juan.belmonte@uclm.es; Calvo, Gabriel F. [Departamento de Matematicas, E.T.S. de Ingenieros Industriales and Instituto de Matematica Aplicada a la Ciencia y la Ingenieria (IMACI), Avda. Camilo Jose Cela 3, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: gabriel.fernandez@uclm.es

    2009-01-19

    In this Letter, by means of similarity transformations, we construct explicit solutions to the quintic nonlinear Schroedinger equation with potentials and nonlinearities depending both on time and on the spatial coordinates. We present the general approach and use it to study some examples and find nontrivial explicit solutions such as periodic (breathers), quasiperiodic and bright and dark soliton solutions.

  16. ALMOST PERIODIC SOLUTIONS TO SOME NONLINEAR DELAY DIFFERENTIAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The existence of an almost periodic solutions to a nonlinear delay diffierential equation is considered in this paper. A set of sufficient conditions for the existence and uniqueness of almost periodic solutions to some delay diffierential equations is obtained.

  17. Exact solutions for nonlinear partial fractional differential equations

    Institute of Scientific and Technical Information of China (English)

    Khaled A.Gepreel; Saleh Omran

    2012-01-01

    In this article,we use the fractional complex transformation to convert nonlinear partial fractional differential equations to nonlinear ordinary differential equations.We use the improved (G’/G)-expansion function method to calculate the exact solutions to the time-and space-fractional derivative foam drainage equation and the time-and space-fractional derivative nonlinear KdV equation.This method is efficient and powerful for solving wide classes of nonlinear evolution fractional order equations.

  18. Three positive doubly periodic solutions of a nonlinear telegraph system

    Institute of Scientific and Technical Information of China (English)

    Fang-lei WANG; Yu-kun AN

    2009-01-01

    This paper studies existence of at least three positive doubly periodic solutions of a coupled nonlinear telegraph system with doubly periodic boundary conditions. First, by using the Green function and maximum principle, existence of solutions of a nonlinear telegraph system is equivalent to existence of fixed points of an operator. By imposing growth conditions on the nonlinearities, existence of at least three fixed points in cone is obtained by using the Leggett-Williams fixed point theorem to cones in ordered Banach spaces. In other words, there exist at least three positive doubly periodic solutions of nonlinear telegraph system.

  19. Solution of continuous nonlinear PDEs through order completion

    CERN Document Server

    Oberguggenberger, MB

    1994-01-01

    This work inaugurates a new and general solution method for arbitrary continuous nonlinear PDEs. The solution method is based on Dedekind order completion of usual spaces of smooth functions defined on domains in Euclidean spaces. However, the nonlinear PDEs dealt with need not satisfy any kind of monotonicity properties. Moreover, the solution method is completely type independent. In other words, it does not assume anything about the nonlinear PDEs, except for the continuity of their left hand term, which includes the unkown function. Furthermore the right hand term of such nonlinear PDEs can in fact be given any discontinuous and measurable function.

  20. Exact solutions of the two-dimensional discrete nonlinear Schrodinger equation with saturable nonlinearity

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, K. O.; Samuelsen, Mogens Rugholm

    2010-01-01

    We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the e......We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show...

  1. Approximate solution of a nonlinear partial differential equation

    NARCIS (Netherlands)

    Vajta, M.

    2007-01-01

    Nonlinear partial differential equations (PDE) are notorious to solve. In only a limited number of cases can we find an analytic solution. In most cases, we can only apply some numerical scheme to simulate the process described by a nonlinear PDE. Therefore, approximate solutions are important for t

  2. Positive periodic solutions for third-order nonlinear differential equations

    Directory of Open Access Journals (Sweden)

    Jingli Ren

    2011-05-01

    Full Text Available For several classes of third-order constant coefficient linear differential equations we obtain existence and uniqueness of periodic solutions utilizing explicit Green's functions. We discuss an iteration method for constant coefficient nonlinear differential equations and provide new conditions for the existence of periodic positive solutions for third-order time-varying nonlinear and neutral differential equations.

  3. A NEW SOLUTION MODEL OF NONLINEAR DYNAMIC LEAST SQUARE ADJUSTMENT

    Institute of Scientific and Technical Information of China (English)

    陶华学; 郭金运

    2000-01-01

    The nonlinear least square adjustment is a head object studied in technology fields. The paper studies on the non-derivative solution to the nonlinear dynamic least square adjustment and puts forward a new algorithm model and its solution model. The method has little calculation load and is simple. This opens up a theoretical method to solve the linear dynamic least square adjustment.

  4. Logarithmic singularities of solutions to nonlinear partial differential equations

    CERN Document Server

    Tahara, Hidetoshi

    2007-01-01

    We construct a family of singular solutions to some nonlinear partial differential equations which have resonances in the sense of a paper due to T. Kobayashi. The leading term of a solution in our family contains a logarithm, possibly multiplied by a monomial. As an application, we study nonlinear wave equations with quadratic nonlinearities. The proof is by the reduction to a Fuchsian equation with singular coefficients.

  5. Nonlinear stability of cosmological solutions in massive gravity

    CERN Document Server

    De Felice, Antonio; Lin, Chunshan; Mukohyama, Shinji

    2013-01-01

    We investigate nonlinear stability of two classes of cosmological solutions in massive gravity: isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) solutions and anisotropic FLRW solutions. For this purpose we construct the linear cosmological perturbation theory around axisymmetric Bianchi type--I backgrounds. We then expand the background around the two classes of solutions, which are fixed points of the background evolution equation, and analyze linear perturbations on top of it. This provides a consistent truncation of nonlinear perturbations around these fixed point solutions and allows us to analyze nonlinear stability in a simple way. In particular, it is shown that isotropic FLRW solutions exhibit nonlinear ghost instability. On the other hand, anisotropic FLRW solutions are shown to be ghost-free for a range of parameters and initial conditions.

  6. Exact solutions for the cubic-quintic nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jiamin [Department of Physics, Zhejiang Lishui University, Lishui 323000 (China)]. E-mail: zjm64@163.com; Ma Zhengyi [Department of Physics, Zhejiang Lishui University, Lishui 323000 (China); Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072 (China)

    2007-08-15

    In this paper, the cubic-quintic nonlinear Schroedinger equation is solved through the extended elliptic sub-equation method. As a consequence, many types of exact travelling wave solutions are obtained which including bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions.

  7. Some remarks on singular solutions of nonlinear elliptic equations. III: viscosity solutions, including parabolic operators

    CERN Document Server

    Caffarelli, Luis; Nirenberg, Louis

    2011-01-01

    The paper concerns singular solutions of nonlinear elliptic equations, which include removable singularities for viscosity solutions, a strengthening of the Hopf Lemma including parabolic equations, Strong maximum principle and Hopf Lemma for viscosity solutions including also parabolic equations.

  8. New traveling wave solutions for nonlinear evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    El-Wakil, S.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Madkour, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt)]. E-mail: m_abdou_eg@yahoo.com

    2007-06-11

    The generalized Jacobi elliptic function expansion method is used with a computerized symbolic computation for constructing the new exact traveling wave solutions. The validity and reliability of the method is tested by its applications on a class of nonlinear evolution equations of special interest in mathematical physics. As a result, many exact traveling wave solutions are obtained which include the kink-shaped solutions, bell-shaped solutions, singular solutions and periodic solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.

  9. Exact travelling wave solutions for some important nonlinear physical models

    Indian Academy of Sciences (India)

    Jonu Lee; Rathinasamy Sakthivel

    2013-05-01

    The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and numerical studies. In this paper, the Kudryashov method is used to seek exact travelling wave solutions of such physical models. Further, three-dimensional plots of some of the solutions are also given to visualize the dynamics of the equations. The results reveal that the method is a very effective and powerful tool for solving nonlinear partial differential equations arising in mathematical physics.

  10. New travelling wave solutions for nonlinear stochastic evolution equations

    Indian Academy of Sciences (India)

    Hyunsoo Kim; Rathinasamy Sakthivel

    2013-06-01

    The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the (′/)-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic Broer–Kaup equation and stochastic coupled Korteweg–de Vries (KdV) equation. The study highlights the significant features of the method employed and its capability of handling nonlinear stochastic problems.

  11. Jacobi elliptic function solutions of some nonlinear PDEs

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jianbin; Yang Lei; Yang Kongqing

    2004-05-17

    Based on a subtle balance method, a given function expansion is applied to several nonlinear PDEs, which contain generalized KdV equations, coupled equations and complex equations and so on. A series of periodic solutions, solitary wave solutions and singular solutions are obtained by the aid of symbolic computation.

  12. The Peridic Wave Solutions for Two Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Liang; WANG Ming-Liang; CHENG Dong-Ming; FANG Zong-De

    2003-01-01

    By using the F-expansion method proposed recently, the periodic wave solutions expressed by Jacobielliptic functions for two nonlinear evolution equations are derived. In the limit cases, the solitary wave solutions andthe other type of traveling wave solutions for the system are obtained.

  13. A Comprehensive Analytical Solution of the Nonlinear Pendulum

    Science.gov (United States)

    Ochs, Karlheinz

    2011-01-01

    In this paper, an analytical solution for the differential equation of the simple but nonlinear pendulum is derived. This solution is valid for any time and is not limited to any special initial instance or initial values. Moreover, this solution holds if the pendulum swings over or not. The method of approach is based on Jacobi elliptic functions…

  14. Existence of solutions for a nonlinear degenerate elliptic system

    Directory of Open Access Journals (Sweden)

    Nguyen Minh

    2004-07-01

    Full Text Available In this paper, we study the existence of solutions for degenerate elliptic systems. We use the sub-super solution method, and the existence of classical and weak solutions. Some sub-supersolutions are constructed explicitly, when the nonlinearities have critical or supercritical growth.

  15. Analytic solutions of a class of nonlinearly dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M-C [System Engineering Institute of Tianjin University, Tianjin, 300072 (China); Zhao, X-S; Liu, X [Tianjin University of Technology and Education, Tianjin, 300222 (China)], E-mail: mchwang123@163.com.cn, E-mail: xszhao@mail.nwpu.edu.cn, E-mail: liuxinhubei@163.com.cn

    2008-02-15

    In this paper, the homotopy perturbation method (HPM) is applied to solve a coupled system of two nonlinear differential with first-order similar model of Lotka-Volterra and a Bratus equation with a source term. The analytic approximate solutions are derived. Furthermore, the analytic approximate solutions obtained by the HPM with the exact solutions reveals that the present method works efficiently.

  16. A Comprehensive Analytical Solution of the Nonlinear Pendulum

    Science.gov (United States)

    Ochs, Karlheinz

    2011-01-01

    In this paper, an analytical solution for the differential equation of the simple but nonlinear pendulum is derived. This solution is valid for any time and is not limited to any special initial instance or initial values. Moreover, this solution holds if the pendulum swings over or not. The method of approach is based on Jacobi elliptic functions…

  17. Elliptic Equation and New Solutions to Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    FU Zun-Tao; LIU Shi-Kuo; LIU Shi-Da

    2004-01-01

    The new solutions to elliptic equation are shown, and then the elliptic equation is taken as a transformationand is applied to solve nonlinear wave equations. It is shown that more kinds of solutions are derived, such as periodicsolutions of rational form, solitary wave solutions of rational form, and so on.

  18. Almost Periodic Viscosity Solutions of Nonlinear Parabolic Equations

    Directory of Open Access Journals (Sweden)

    Zhang Shilin

    2009-01-01

    Full Text Available We generalize the comparison result 2007 on Hamilton-Jacobi equations to nonlinear parabolic equations, then by using Perron's method to study the existence and uniqueness of time almost periodic viscosity solutions of nonlinear parabolic equations under usual hypotheses.

  19. Bounds for solutions to retarded nonlinear double integral inequalities

    Directory of Open Access Journals (Sweden)

    Sabir Hussain

    2014-12-01

    Full Text Available We present bounds for the solution to three types retarded nonlinear integral inequalities in two variables. By doing this, we generalizing the results presented in [3,12]. To illustrate our results, we present some applications.

  20. The Force-Free Magnetosphere of a Rotating Black Hole

    Science.gov (United States)

    Contopoulos, Ioannis; Kazanas, Demosthenes; Papadopoulos, Demetrios B.

    2013-01-01

    We revisit the Blandford-Znajek process and solve the fundamental equation that governs the structure of the steady-state force-free magnetosphere around a Kerr black hole. The solution depends on the distributions of the magnetic field angular velocity and the poloidal electric current. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem: the inner "light surface" located inside the ergosphere and the outer "light surface" which is the generalization of the pulsar light cylinder.We find the solution for the simplest possible magnetic field configuration, the split monopole, through a numerical iterative relaxation method analogous to the one that yields the structure of the steady-state axisymmetric force-free pulsar magnetosphere. We obtain the rate of electromagnetic extraction of energy and confirm the results of Blandford and Znajek and of previous time-dependent simulations. Furthermore, we discuss the physical applicability of magnetic field configurations that do not cross both "light surfaces."

  1. Stochasticity in numerical solutions of the nonlinear Schroedinger equation

    Science.gov (United States)

    Shen, Mei-Mei; Nicholson, D. R.

    1987-01-01

    The cubically nonlinear Schroedinger equation is an important model of nonlinear phenomena in fluids and plasmas. Numerical solutions in a spatially periodic system commonly involve truncation to a finite number of Fourier modes. These solutions are found to be stochastic in the sense that the largest Liapunov exponent is positive. As the number of modes is increased, the size of this exponent appears to converge to zero, in agreement with the recent demonstration of the integrability of the spatially periodic case.

  2. The theorem on existence of singular solutions to nonlinear equations

    Directory of Open Access Journals (Sweden)

    Prusinska А.

    2005-01-01

    Full Text Available The aim of this paper is to present some applications of pregularity theory to investigations of nonlinear multivalued mappings. The main result addresses to the problem of existence of solutions to nonlinear equations in the degenerate case when the linear part is singular at the considered initial point. We formulate conditions for existence of solutions of equation F(x = 0 when first p - 1 derivatives of F are singular.

  3. Periodic Solutions for Highly Nonlinear Oscillation Systems

    DEFF Research Database (Denmark)

    Ghadimi, M; Barari, Amin; Kaliji, H.D

    2012-01-01

    In this paper, Frequency-Amplitude Formulation is used to analyze the periodic behavior of tapered beam as well as two complex nonlinear systems. Many engineering structures, such as offshore foundations, oil platform supports, tower structures and moving arms, are modeled as tapered beams...

  4. Travelling Wave Solutions in Nonlinear Diffusive and Dispersive Media

    CERN Document Server

    Bazeia, D; Raposo, and E.P.

    1998-01-01

    We investigate the presence of soliton solutions in some classes of nonlinear partial differential equations, namely generalized Korteweg-de Vries-Burgers, Korteveg-de Vries-Huxley, and Korteveg-de Vries-Burgers-Huxley equations, which combine effects of diffusion, dispersion, and nonlinearity. We emphasize the chiral behavior of the travelling solutions, whose velocities are determined by the parameters that define the equation. For some appropriate choices, we show that these equations can be mapped onto equations of motion of relativistic 1+1 dimensional phi^{4} and phi^{6} field theories of real scalar fields. We also study systems of two coupled nonlinear equations of the types mentioned.

  5. Magnetic brane solutions of Lovelock gravity with nonlinear electrodynamics

    CERN Document Server

    Hendi, Seyed Hossein; Panahiyan, Shahram

    2015-01-01

    In this paper, we consider logarithmic and exponential forms of nonlinear electrodynamics as a source and obtain magnetic brane solutions of the Lovelock gravity. Although these solutions have no curvature singularity and no horizon, they have a conic singularity with a deficit angle. We investigate the effects of nonlinear electrodynamics and the Lovelock gravity on the value of deficit angle and find that various terms of Lovelock gravity do not affect deficit angle. Next, we generalize our solutions to spinning cases with maximum rotating parameters in arbitrary dimensions and calculate the conserved quantities of the solutions. Finally, we consider nonlinear electrodynamics as a correction of the Maxwell theory and investigate the properties of the solutions.

  6. Solutions to a nonlinear drift-diffusion model for semiconductors

    Directory of Open Access Journals (Sweden)

    Weifu Fang

    1999-05-01

    Full Text Available A nonlinear drift-diffusion model for semiconductors is analyzed to show the existence of non-vacuum global solutions and stationary solutions. The long time behavior of the solutions is studied by establishing the existence of an absorbing set and a compact attractor of the dynamical system. Parallel results on vacuum solutions are also obtained under weaker conditions on model parameters.

  7. Generalized Nonlinear Proca Equation and its Free-Particle Solutions

    CERN Document Server

    Nobre, F D

    2016-01-01

    We introduce a non-linear extension of Proca's field theory for massive vector (spin $1$) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schroedinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter $q$ (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit $q \\rightarrow 1$. We derive the nonlinear Proca equation from a Lagrangian that, besides the usual vectorial field $\\Psi^{\\mu}(\\vec{x},t)$, involves an additional field $\\Phi^{\\mu}(\\vec{x},t)$. We obtain exact time dependent soliton-like solutions for these fields having the...

  8. On the exact solutions of nonlinear diffusion-reaction equations with quadratic and cubic nonlinearities

    Indian Academy of Sciences (India)

    R S Kaushal; Ranjit Kumar; Awadhesh Prasad

    2006-08-01

    Attempts have been made to look for the soliton content in the solutions of the recently studied nonlinear diffusion-reaction equations [R S Kaushal, J. Phys. 38, 3897 (2005)] involving quadratic or cubic nonlinearities in addition to the convective flux term which renders the system nonconservative and the corresponding Hamiltonian non-Hermitian.

  9. Spike-layer solutions to nonlinear fractional Schrodinger equations with almost optimal nonlinearities

    Directory of Open Access Journals (Sweden)

    Jinmyoung Seok

    2015-07-01

    Full Text Available In this article, we are interested in singularly perturbed nonlinear elliptic problems involving a fractional Laplacian. Under a class of nonlinearity which is believed to be almost optimal, we construct a positive solution which exhibits multiple spikes near any given local minimum components of an exterior potential of the problem.

  10. Analytical exact solution of the non-linear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Fisica. Grupo de Fisica e Matematica

    2011-07-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  11. REDUCTION OF NONLINEAR PARTIAL DIFFERENTIAL EQUATION AND EXACT SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    YeCaier; PanZuliang

    2003-01-01

    Nonlinear partial differetial equation(NLPDE)is converted into ordinary differential equation(ODE)via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.

  12. NEW EXACT TRAVELLING WAVE SOLUTIONS TO THREE NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Sirendaoreji

    2004-01-01

    Based on the computerized symbolic computation, some new exact travelling wave solutions to three nonlinear evolution equations are explicitly obtained by replacing the tanhξ in tanh-function method with the solutions of a new auxiliary ordinary differential equation.

  13. Viscosity solutions of fully nonlinear functional parabolic PDE

    Directory of Open Access Journals (Sweden)

    Liu Wei-an

    2005-01-01

    Full Text Available By the technique of coupled solutions, the notion of viscosity solutions is extended to fully nonlinear retarded parabolic equations. Such equations involve many models arising from optimal control theory, economy and finance, biology, and so forth. The comparison principle is shown. Then the existence and uniqueness are established by the fixed point theory.

  14. Stable Solution of Nonlinear Age-structuredForest Evolution System

    Institute of Scientific and Technical Information of China (English)

    WANGDing-jiang; ZHAOTing-fang

    2004-01-01

    This paper studies the dynamical behavior of a class of total area dependent nonlinear age-structured forest evolution model. We give the problem of equal value for the forest system, and discuss the stable solution of system. We obtained the necessary and sufficient conditions for there exists the stable solution.

  15. Singular solutions of fully nonlinear elliptic equations and applications

    CERN Document Server

    Armstrong, Scott N; Smart, Charles K

    2011-01-01

    We study the properties of solutions of fully nonlinear, positively homogeneous elliptic equations near boundary points of Lipschitz domains at which the solution may be singular. We show that these equations have two positive solutions in each cone of $\\mathbb{R}^n$, and the solutions are unique in an appropriate sense. We introduce a new method for analyzing the behavior of solutions near certain Lipschitz boundary points, which permits us to classify isolated boundary singularities of solutions which are bounded from either above or below. We also obtain a sharp Phragm\\'en-Lindel\\"of result as well as a principle of positive singularities in certain Lipschitz domains.

  16. A procedure to construct exact solutions of nonlinear evolution equations

    Indian Academy of Sciences (India)

    Adem Cengiz Çevikel; Ahmet Bekir; Mutlu Akar; Sait San

    2012-09-01

    In this paper, we implemented the functional variable method for the exact solutions of the Zakharov-Kuznetsov-modified equal-width (ZK-MEW), the modified Benjamin-Bona-Mohany (mBBM) and the modified kdV-Kadomtsev-Petviashvili (kdV-KP) equation. By using this scheme, we found some exact solutions of the above-mentioned equation. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions. The functional variable method presents a wider-applicability for handling nonlinear wave equations.

  17. Traveling wave solutions for some factorized nonlinear PDEs

    Science.gov (United States)

    Cornejo-Pérez, Octavio

    2009-01-01

    In this work, some new special traveling wave solutions of the convective Fisher equation, the time-delayed Burgers-Fisher equation, the Burgers-Fisher equation and a nonlinear dispersive-dissipative equation (Kakutani and Kawahara 1970 J. Phys. Soc. Japan 29 1068) are obtained through the factorization technique. All of them share the same type of factorization scheme, which reduces the original equation to a Riccati equation of the same kind, whose general solution is given in terms of Bessel and Neumann functions. In addition, some novel particular solutions of the nonlinear dispersive-dissipative equation are provided.

  18. Wormhole Solutions in the Presence of Nonlinear Maxwell Field

    Directory of Open Access Journals (Sweden)

    S. H. Hendi

    2014-01-01

    Full Text Available In generalizing the Maxwell field to nonlinear electrodynamics, we look for the magnetic solutions. We consider a suitable real metric with a lower bound on the radial coordinate and investigate the properties of the solutions. We find that in order to have a finite electromagnetic field near the lower bound, we should replace the Born-Infeld theory with another nonlinear electrodynamics theory. Also, we use the cut-and-paste method to construct wormhole structure. We generalize the static solutions to rotating spacetime and obtain conserved quantities.

  19. ON THE FORCE-FREE NATURE OF PHOTOSPHERIC SUNSPOT MAGNETIC FIELDS AS OBSERVED FROM HINODE (SOT/SP)

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Sanjiv Kumar, E-mail: tiwari@mps.mpg.de [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur 313 001 (India)

    2012-01-01

    A magnetic field is force-free if there is no interaction between it and the plasma in the surrounding atmosphere, i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. The computation of various magnetic parameters, such as magnetic energy (using the virial theorem), gradient of twist of sunspot magnetic fields (computed from the force-free parameter {alpha}), and any kind of extrapolation, heavily hinges on the force-free approximation of the photospheric sunspot magnetic fields. Thus, it is of vital importance to inspect the force-free behavior of sunspot magnetic fields. The force-free nature of sunspot magnetic fields has been examined earlier by some researchers, ending with incoherent results. Accurate photospheric vector field measurements with high spatial resolution are required to inspect the force-free nature of sunspots. For this purpose, we use several vector magnetograms of high spatial resolution obtained from the Solar Optical Telescope/Spectro-Polarimeter on board Hinode. Both the necessary and sufficient conditions for force-free nature are examined by checking the global and local nature of equilibrium magnetic forces over sunspots. We find that sunspot magnetic fields are not very far from the force-free configuration, although they are not completely force-free on the photosphere. The umbral and inner penumbral fields are more force-free than the middle and outer penumbral fields. During their evolution, sunspot magnetic fields are found to maintain their proximity to force-free field behavior. Although a dependence of net Lorentz force components is seen on the evolutionary stages of the sunspots, we do not find a systematic relationship between the nature of sunspot magnetic fields and the associated flare activity. Further, we examine whether the fields at the photosphere follow linear or nonlinear force-free conditions. After examining this in various complex and simple sunspots, we conclude that

  20. Approximate Series Solutions for Nonlinear Free Vibration of Suspended Cables

    Directory of Open Access Journals (Sweden)

    Yaobing Zhao

    2014-01-01

    Full Text Available This paper presents approximate series solutions for nonlinear free vibration of suspended cables via the Lindstedt-Poincare method and homotopy analysis method, respectively. Firstly, taking into account the geometric nonlinearity of the suspended cable as well as the quasi-static assumption, a mathematical model is presented. Secondly, two analytical methods are introduced to obtain the approximate series solutions in the case of nonlinear free vibration. Moreover, small and large sag-to-span ratios and initial conditions are chosen to study the nonlinear dynamic responses by these two analytical methods. The numerical results indicate that frequency amplitude relationships obtained with different analytical approaches exhibit some quantitative and qualitative differences in the cases of motions, mode shapes, and particular sag-to-span ratios. Finally, a detailed comparison of the differences in the displacement fields and cable axial total tensions is made.

  1. Solitary wave solutions to nonlinear evolution equations in mathematical physics

    Indian Academy of Sciences (India)

    Anwar Ja’afar Mohamad Jawad; M Mirzazadeh; Anjan Biswas

    2014-10-01

    This paper obtains solitons as well as other solutions to a few nonlinear evolution equations that appear in various areas of mathematical physics. The two analytical integrators that are applied to extract solutions are tan–cot method and functional variable approaches. The soliton solutions can be used in the further study of shallow water waves in (1+1) as well as (2+1) dimensions.

  2. Power Series Solution for Solving Nonlinear Burgers-Type Equations

    Directory of Open Access Journals (Sweden)

    E. López-Sandoval

    2015-01-01

    Full Text Available Power series solution method has been traditionally used to solve ordinary and partial linear differential equations. However, despite their usefulness the application of this method has been limited to this particular kind of equations. In this work we use the method of power series to solve nonlinear partial differential equations. The method is applied to solve three versions of nonlinear time-dependent Burgers-type differential equations in order to demonstrate its scope and applicability.

  3. Bifurcation of solutions of nonlinear Sturm–Liouville problems

    Directory of Open Access Journals (Sweden)

    Gulgowski Jacek

    2001-01-01

    Full Text Available A global bifurcation theorem for the following nonlinear Sturm–Liouville problem is given Moreover we give various versions of existence theorems for boundary value problems The main idea of these proofs is studying properties of an unbounded connected subset of the set of all nontrivial solutions of the nonlinear spectral problem , associated with the boundary value problem , in such a way that .

  4. Nonlinear dynamics of DNA - Riccati generalized solitary wave solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alka, W.; Goyal, Amit [Department of Physics, Panjab University, Chandigarh-160014 (India); Nagaraja Kumar, C., E-mail: cnkumar@pu.ac.i [Department of Physics, Panjab University, Chandigarh-160014 (India)

    2011-01-17

    We study the nonlinear dynamics of DNA, for longitudinal and transverse motions, in the framework of the microscopic model of Peyrard and Bishop. The coupled nonlinear partial differential equations for dynamics of DNA model, which consists of two long elastic homogeneous strands connected with each other by an elastic membrane, have been solved for solitary wave solution which is further generalized using Riccati parameterized factorization method.

  5. Nonlinear dynamics of DNA - Riccati generalized solitary wave solutions

    Science.gov (United States)

    Alka, W.; Goyal, Amit; Nagaraja Kumar, C.

    2011-01-01

    We study the nonlinear dynamics of DNA, for longitudinal and transverse motions, in the framework of the microscopic model of Peyrard and Bishop. The coupled nonlinear partial differential equations for dynamics of DNA model, which consists of two long elastic homogeneous strands connected with each other by an elastic membrane, have been solved for solitary wave solution which is further generalized using Riccati parameterized factorization method.

  6. Power Series Solution for Solving Nonlinear Burgers-Type Equations

    OpenAIRE

    López-Sandoval, E.; Mello, A.; Godina-Nava, J. J.; Samana, A. R.

    2015-01-01

    Power series solution method has been traditionally used to solve ordinary and partial linear differential equations. However, despite their usefulness the application of this method has been limited to this particular kind of equations. In this work we use the method of power series to solve nonlinear partial differential equations. The method is applied to solve three versions of nonlinear time-dependent Burgers-type differential equations in order to demonstrate its scope and applicability.

  7. ANALYTICAL SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    胡建兰; 张汉林

    2003-01-01

    The following partial differential equations are studied: generaliz ed fifth-orderKdV equation, water wave equation, Kupershmidt equation, couples KdV equation. Theanalytical solutions to these problems via using various ansaiz es by introducing a second-order ordinary differential equation are found out.

  8. Imbalanced Relativistic Force-Free Magnetohydrodynamic Turbulence

    CERN Document Server

    Cho, Jungyeon

    2013-01-01

    When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfv\\'enic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., \\$b_+^2/b_-^2 \\propto (\\epsilon_+/\\epsilon_-)^n \\$ with n>2). These result...

  9. Magnetic Helicity of Self-Similar Axisymmetric Force-free Fields

    CERN Document Server

    Zhang, Mei; Low, Boon Chye

    2012-01-01

    In this paper we continue our theoretical studies on addressing what are the possible consequences of magnetic helicity accumulation in the solar corona. Our previous studies suggest that coronal mass ejections (CMEs) are natural products of coronal evolution as a consequence of magnetic helicity accumulation and the triggering of CMEs by surface processes such as flux emergence also have their origin in magnetic helicity accumulation. Here we use the same mathematical approach to study the magnetic helicity of axisymmetric power-law force-free fields, but focus on a family whose surface flux distributions are defined by self-similar force-free fields. The semi-analytical solutions of the axisymmetric self-similar force-free fields enable us to discuss the properties of force-free fields possessing a huge amount of accumulated magnetic helicity. Our study suggests that there may be an absolute upper bound on the total magnetic helicity of all bipolar axisymmetric force-free fields. And with the increase of ac...

  10. Global solution for coupled nonlinear Klein-Gordon system

    Institute of Scientific and Technical Information of China (English)

    GAN Zai-hui; ZHANG Jian

    2007-01-01

    The global solution for a coupled nonlinear Klein-Gordon system in twodimensional space was studied.First,a sharp threshold of blowup and global existenoe for the system was obtained by constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow.Then the result of how small the initial data for which the solution exists globally was proved by using the scaling argument.

  11. Exact solutions to a nonlinear dispersive model with variable coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Yin Jun [Department of Applied Mathematics, Southwestern University of Finance and Economics, Chengdu 610074 (China); Lai Shaoyong [Department of Applied Mathematics, Southwestern University of Finance and Economics, Chengdu 610074 (China)], E-mail: laishaoy@swufe.edu.cn; Qing Yin [Department of Applied Mathematics, Southwestern University of Finance and Economics, Chengdu 610074 (China)

    2009-05-15

    A mathematical technique based on an auxiliary differential equation and the symbolic computation system Maple is employed to investigate a prototypical and nonlinear K(n, n) equation with variable coefficients. The exact solutions to the equation are constructed analytically under various circumstances. It is shown that the variable coefficients and the exponent appearing in the equation determine the quantitative change in the physical structures of the solutions.

  12. SINGULAR AND RAREFACTIVE SOLUTIONS TO A NONLINEAR VARIATIONAL WAVE EQUATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Following a recent paper of the authors in Communications in Partial Differential Equations, this paper establishes the global existence of weak solutions to a nonlinear variational wave equation under relaxed conditions on the initial data so that the solutions can contain singularities (blow-up). Propagation of local oscillations along one family of characteristics remains under control despite singularity formation in the other family of characteristics.

  13. Travelling wave solutions for ( + 1)-dimensional nonlinear evolution equations

    Indian Academy of Sciences (India)

    Jonu Lee; Rathinasamy Sakthivel

    2010-10-01

    In this paper, we implement the exp-function method to obtain the exact travelling wave solutions of ( + 1)-dimensional nonlinear evolution equations. Four models, the ( + 1)-dimensional generalized Boussinesq equation, ( + 1)-dimensional sine-cosine-Gordon equation, ( + 1)-double sinh-Gordon equation and ( + 1)-sinh-cosinh-Gordon equation, are used as vehicles to conduct the analysis. New travelling wave solutions are derived.

  14. Adomian solution of a nonlinear quadratic integral equation

    Directory of Open Access Journals (Sweden)

    E.A.A. Ziada

    2013-04-01

    Full Text Available We are concerned here with a nonlinear quadratic integral equation (QIE. The existence of a unique solution will be proved. Convergence analysis of Adomian decomposition method (ADM applied to these type of equations is discussed. Convergence analysis is reliable enough to estimate the maximum absolute truncated error of Adomian’s series solution. Two methods are used to solve these type of equations; ADM and repeated trapezoidal method. The obtained results are compared.

  15. Iterative Solution for Systems of Nonlinear Two Binary Operator Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANGZhi-hong; LIWen-feng

    2004-01-01

    Using the cone and partial ordering theory and mixed monotone operator theory, the existence and uniqueness of solutions for some classes of systems of nonlinear two binary operator equations in a Banach space with a partial ordering are discussed. And the error estimates that the iterative sequences converge to solutions are also given. Some relevant results of solvability of two binary operator equations and systems of operator equations are imnroved and generalized.

  16. EXACT SOLITARY WAVE SOLUTIONS OF THETWO NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    ZhuYanjuan; ZhangChunhua

    2005-01-01

    The solitary wave solutions of the combined KdV-mKdV-Burgers equation and the Kolmogorov-Petrovskii-Piskunov equation are obtained by means of the direct algebra method, which can be generalized to deal with high dimensional nonlinear evolution equations.

  17. Linear iterative technique for solution of nonlinear thermal network problems

    Energy Technology Data Exchange (ETDEWEB)

    Seabourn, C.M.

    1976-11-01

    A method for rapid and accurate solution of linear and/or nonlinear thermal network problems is described. It is a matrix iterative process that converges for nodal temperatures and variations of thermal conductivity with temperature. The method is computer oriented and can be changed easily for design studies.

  18. Multiple solutions to some singular nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Monica Lazzo

    2001-01-01

    Full Text Available We consider the equation $$ - h^2 Delta u + V_varepsilon(x u = |u|^{p-2} u $$ which arises in the study of standing waves of a nonlinear Schrodinger equation. We allow the potential $V_varepsilon$ to be unbounded below and prove existence and multiplicity results for positive solutions.

  19. The Local Stability of Solutions for a Nonlinear Equation

    Directory of Open Access Journals (Sweden)

    Haibo Yan

    2014-01-01

    Full Text Available The approach of Kruzkov’s device of doubling the variables is applied to establish the local stability of strong solutions for a nonlinear partial differential equation in the space L1(R by assuming that the initial value only lies in the space L1(R∩L∞(R.

  20. Exact periodic solution in coupled nonlinear Schrodinger equations

    Institute of Scientific and Technical Information of China (English)

    Li Qi-Liang; Chen Jun-Lang; Sun Li-Li; Yu Shu-Yi; Qian Sheng

    2007-01-01

    The coupled nonlinear Schrodinger equations (CNLSEs) of two symmetrical optical fibres are nonintegrable, however the transformed CNLSEs have integrability. Integrability of the transformed CNLSEs is proved by the Hamilton dynamics theory and Galilei transform. Making use of a transform for CNLSEs and using the ansatz with Jacobi elliptic function form, this paper obtains the exact optical pulse solutions.

  1. Exact solutions for some nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yan-Ze

    2003-08-11

    Exact solutions to some nonlinear partial differential equations, including (2+1)-dimensional breaking soliton equation, sine-Gordon equation and double sine-Gordon equation, are studied by means of the mapping method proposed by the author recently. Many new results are presented. A simple review of the method is finally given.

  2. EXISTENCE OF SOLUTIONS OF NONLINEAR FRACTIONAL PANTOGRAPH EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    K. BALACHANDRAN; S. KIRUTHIKA; J.J. TRUJILLO

    2013-01-01

    This article deals with the existence of solutions of nonlinear fractional pantograph equations.Such model can be considered suitable to be applied when the corresponding process occurs through strongly anomalous media.The results are obtained using fractional calculus and fixed point theorems.An example is provided to illustrate the main result obtained in this article.

  3. Multiple solutions for inhomogeneous nonlinear elliptic problems arising in astrophyiscs

    Directory of Open Access Journals (Sweden)

    Marco Calahorrano

    2004-04-01

    Full Text Available Using variational methods we prove the existence and multiplicity of solutions for some nonlinear inhomogeneous elliptic problems on a bounded domain in $mathbb{R}^n$, with $ngeq 2$ and a smooth boundary, and when the domain is $mathbb{R}_+^n$

  4. Riccati-parameter solutions of nonlinear second-order ODEs

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, M A [Instituto de Fisica, Universidad de Guanajuato, Leon, Guanajuato (Mexico); Rosu, H C [PotosIInstitute of Science and Technology, Apdo Postal 3-74 Tangamanga, 78231 San Luis PotosI (Mexico)], E-mail: hcr@ipicyt.edu.mx

    2008-07-18

    It has been proven by Rosu and Cornejo-Perez (Rosu and Cornejo-Perez 2005 Phys. Rev. E 71 046607, Cornejo-Perez and Rosu 2005 Prog. Theor. Phys. 114 533) that for some nonlinear second-order ODEs it is a very simple task to find one particular solution once the nonlinear equation is factorized with the use of two first-order differential operators. Here, it is shown that an interesting class of parametric solutions is easy to obtain if the proposed factorization has a particular form, which happily turns out to be the case in many problems of physical interest. The method that we exemplify with a few explicitly solved cases consists in using the general solution of the Riccati equation, which contributes with one parameter to this class of parametric solutions. For these nonlinear cases, the Riccati parameter serves as a 'growth' parameter from the trivial null solution up to the particular solution found through the factorization procedure.

  5. Generalized nonlinear Proca equation and its free-particle solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, F.D. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil); Plastino, A.R. [Universidad Nacional Buenos Aires-Noreoeste, CeBio y Secretaria de Investigacion, Junin (Argentina)

    2016-06-15

    We introduce a nonlinear extension of Proca's field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schroedinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q → 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ{sup μ}(vector x,t), involves an additional field Φ{sup μ}(vector x,t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E{sup 2} = p{sup 2}c{sup 2} + m{sup 2}c{sup 4} for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed. (orig.)

  6. Interpolation inequalities for weak solutions of nonlinear parabolic systems

    Directory of Open Access Journals (Sweden)

    Floridia Giuseppe

    2011-01-01

    Full Text Available Abstract The authors investigate differentiability of the solutions of nonlinear parabolic systems of order 2 m in divergence form of the following type ∑ | α | ≤ m ( - 1 | α | D α a α X , D u + ∂ u ∂ t = 0 . The achieved results are inspired by the paper of Marino and Maugeri 2008, and the methods there applied. This note can be viewed as a continuation of the study of regularity properties for solutions of systems started in Ragusa 2002, continued in Ragusa 2003 and Floridia and Ragusa 2012 and also as a generalization of the paper by Capanato and Cannarsa 1981, where regularity properties of the solutions of nonlinear elliptic systems with quadratic growth are reached. Mathematics Subject Classification (2000 Primary 35K41, 35K55. Secondary 35B65, 35B45, 35D10

  7. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    Science.gov (United States)

    Indekeu, Joseph O.; Smets, Ruben

    2017-08-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.

  8. Positive solutions of quasilinear parabolic systems with nonlinear boundary conditions

    Science.gov (United States)

    Pao, C. V.; Ruan, W. H.

    2007-09-01

    The aim of this paper is to investigate the existence, uniqueness, and asymptotic behavior of solutions for a coupled system of quasilinear parabolic equations under nonlinear boundary conditions, including a system of quasilinear parabolic and ordinary differential equations. Also investigated is the existence of positive maximal and minimal solutions of the corresponding quasilinear elliptic system as well as the uniqueness of a positive steady-state solution. The elliptic operators in both systems are allowed to be degenerate in the sense that the density-dependent diffusion coefficients Di(ui) may have the property Di(0)=0 for some or all i. Our approach to the problem is by the method of upper and lower solutions and its associated monotone iterations. It is shown that the time-dependent solution converges to the maximal solution for one class of initial functions and it converges to the minimal solution for another class of initial functions; and if the maximal and minimal solutions coincide then the steady-state solution is unique and the time-dependent solution converges to the unique solution. Applications of these results are given to three model problems, including a porous medium type of problem, a heat-transfer problem, and a two-component competition model in ecology. These applications illustrate some very interesting distinctive behavior of the time-dependent solutions between density-independent and density-dependent diffusions.

  9. Exact travelling wave solutions of nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish) Suez Canal University, AL-Arish 45111 (Egypt)]. E-mail: asoliman_99@yahoo.com; Abdou, M.A. [Theoretical Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: m_abdou_eg@yahoo.com

    2007-04-15

    An extended Fan-sub equation method is developed for searching exact travelling wave solutions of nonlinear partial differential equations. The key idea of this method is to take full advantage of the general elliptic equation, involving five parameters, which has more new solutions and whose degeneracies can lead to special sub equation involving three parameters. As an illustration of the extended Fan method, more new solutions are obtained for three models namely, generalized KdV, Drinfeld-Sokolov system and RLW equation.

  10. TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR DISPERSIVE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical systems to do qualitative analysis,all possible phase portraits in the parametric space for the traveling wave systems are obtained.It can be shown that the existence of a singular straight line in the traveling wave system is the reason why smooth solitary wave solutions converge to solitary cusp wave solution when parameters are varied.The different parameter conditions for the existence of solitary and periodic wave solutions of different kinds are rigorously determined.

  11. Properties of positive solutions to a nonlinear parabolic problem

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper deals with the properties of positive solutions to a quasilinear parabolic equation with the nonlinear absorption and the boundary flux. The necessary and sufficient conditions on the global existence of solutions are described in terms of different parameters appearing in this problem. Moreover, by a result of Chasseign and Vazquez and the comparison principle, we deduce that the blow-up occurs only on the boundary (?)Ω. In addition, for a bounded Lipschitz domainΩ, we establish the blow-up rate estimates for the positive solution to this problem with a= 0.

  12. Force-free black hole jet power from impedance matching

    CERN Document Server

    Penna, Robert F

    2015-01-01

    The standard model of spin-powered black hole jets is the Blandford-Znajek (BZ) model. Unfortunately, the BZ jet power depends on an arbitrary function, $\\Omega_F(\\theta)$, which controls the angular distribution of field line velocities at the horizon. In practice, this function is fixed by finding exact solutions of force-free electrodynamics (FFE) and reading off $\\Omega_F(\\theta)$. We prove that all stationary, axisymmetric solutions of FFE with roughly uniform distributions of field lines at the horizon and at infinity have $\\Omega_F/\\Omega_H\\approx 0.5$, where $\\Omega_H$ is the angular velocity of the horizon. We derive a formula for $\\Omega_F(\\theta)$ that depends only on the angular distribution of field lines at the horizon and at infinity (the full FFE solution is not needed). We give a physical interpretation of our results using the black hole membrane paradigm and a recent extension which treats future null infinity as a resistive membrane. We show that $\\Omega_F/\\Omega_H$ is controlled by impeda...

  13. Exact solutions of certain nonlinear chemotaxis diffusion reaction equations

    Indian Academy of Sciences (India)

    MISHRA AJAY; KAUSHAL R S; PRASAD AWADHESH

    2016-05-01

    Using the auxiliary equation method, we obtain exact solutions of certain nonlinear chemotaxis diffusion reaction equations in the presence of a stimulant. In particular, we account for the nonlinearities arising not only from the density-dependent source terms contributed by the particles and the stimulant but also from the coupling term of the stimulant. In addition to this, the diffusion of the stimulant and the effect of long-range interactions are also accounted for in theconstructed coupled differential equations. The results obtained here could be useful in the studies of several biological systems and processes, e.g., in bacterial infection, chemotherapy, etc.

  14. The periodic wave solutions and solitary wave solutions for a class of nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yubin; Wang Mingliang; Miao Tiande

    2004-03-15

    The periodic wave solutions for a class of nonlinear partial differential equations, including the Davey-Stewartson equations and the generalized Zakharov equations, are obtained by using the F-expansion method, which can be regarded as an overall generalization of the Jacobi elliptic function expansion method recently proposed. In the limit cases the solitary wave solutions of the equations are also obtained.

  15. The force-free twisted magnetosphere of a neutron star

    CERN Document Server

    Akgün, Taner; Pons, José A; Cerdá-Durán, Pablo

    2016-01-01

    We present a detailed analysis of the properties of twisted, force-free magnetospheres of non-rotating neutron stars, which are of interest in the modelling of magnetar properties and evolution. In our models the magnetic field smoothly matches to a current-free (vacuum) solution at some large external radius, and they are specifically built to avoid pathological surface currents at any of the interfaces. By exploring a large range of parameters, we find a few remarkable general trends. We find that the total dipolar moment can be increased by up to 40% with respect to a vacuum model with the same surface magnetic field, due to the contribution of magnetospheric currents to the global magnetic field. Thus, estimates of the surface magnetic field based on the large scale dipolar braking torque are slightly overestimating the surface value by the same amount. Consistently, there is a moderate increase in the total energy of the model with respect to the vacuum solution of up to 25%, which would be the available...

  16. Positive Solutions and Eigenvalue Intervals for Nonlinear Systems

    Indian Academy of Sciences (India)

    Jifeng Chu; Donal O'Regan; Meirong Zhang

    2007-02-01

    This paper deals with the existence of positive solutions for the nonlinear system $$(q(t)(p(t){u'}_i(t)))'+f^i(t,u)=0, \\quad 0 < t < 1, \\quad i=1,2,\\ldots,n.$$ This system often arises in the study of positive radial solutions of nonlinear elliptic system. Here $u=(u_1,...,u_n)$ and $f^i,i=1,2,\\ldots,n$ are continuous and nonnegative functions, $p(t), q(t):[0, 1]→(0,∞)$ are continuous functions. Moreover, we characterize the eigenvalue intervals for $$(q(t)(p(t){u'}_i(t)))'+ h_i(t)g^i(u)=0,\\quad 0 < t < 1, \\quad i=1,2,\\ldots,n.$$ The proof is based on a well-known fixed point theorem in cones.

  17. Analytic Solution to Nonlinear Dynamical System of Dragon Washbasin

    Institute of Scientific and Technical Information of China (English)

    贾启芬; 李芳; 于雯; 刘习军; 王大钧

    2004-01-01

    Based on phase-plane orbit analysis, the mathematical model of piecewise-smooth systems of multi-degree-of-freedom under the mode coordinate is established. Approximate analytical solution under the physical coordinate of multi-degree-of-freedom self-excited vibration induced by dry friction of piecewise-smooth nonlinear systems is derived by means of average method, the results of which agree with those of the numerical solution. An effective and reliable analytical method investigating piecewise-smooth nonlinear systems of multi-degree-of-freedom has been given. Furthermore, this paper qualitatively analyses the curves about stationary amplitude versus rubbing velocity of hands and versus natural frequency of hands, and about angular frequency versus rubbing velocity of hands. The results provide a theoretical basis for identifying parameters of the system and the analysis of steady region.

  18. Solution of Contact Problems for Nonlinear Gao Beam and Obstacle

    Directory of Open Access Journals (Sweden)

    J. Machalová

    2015-01-01

    Full Text Available Contact problem for a large deformed beam with an elastic obstacle is formulated, analyzed, and numerically solved. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao, while the obstacle is considered as the elastic foundation of Winkler’s type in some distance under the beam. The problem is static without a friction and modeled either using Signorini conditions or by means of normal compliance contact conditions. The problems are then reformulated as optimal control problems which is useful both for theoretical aspects and for solution methods. Discretization is based on using the mixed finite element method with independent discretization and interpolations for foundation and beam elements. Numerical examples demonstrate usefulness of the presented solution method. Results for the nonlinear Gao beam are compared with results for the classical Euler-Bernoulli beam model.

  19. New Exact Solutions for New Model Nonlinear Partial Differential Equation

    Directory of Open Access Journals (Sweden)

    A. Maher

    2013-01-01

    Full Text Available In this paper we propose a new form of Padé-II equation, namely, a combined Padé-II and modified Padé-II equation. The mapping method is a promising method to solve nonlinear evaluation equations. Therefore, we apply it, to solve the combined Padé-II and modified Padé-II equation. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions, trigonometric functions, rational functions, and elliptic functions.

  20. Multiple Positive Solutions for Nonlinear Semipositone Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Wen-Xue Zhou

    2012-01-01

    Full Text Available We present some new multiplicity of positive solutions results for nonlinear semipositone fractional boundary value problem D0+αu(t=p(tf(t,u(t-q(t,0

  1. Quasi-periodic solutions of nonlinear beam equations with quintic quasi-periodic nonlinearities

    Directory of Open Access Journals (Sweden)

    Qiuju Tuo

    2015-01-01

    Full Text Available In this article, we consider the one-dimensional nonlinear beam equations with quasi-periodic quintic nonlinearities $$ u_{tt}+u_{xxxx}+(B+ \\varepsilon\\phi(tu^5=0 $$ under periodic boundary conditions, where B is a positive constant, $\\varepsilon$ is a small positive parameter, $\\phi(t$ is a real analytic quasi-periodic function in t with frequency vector $\\omega=(\\omega_1,\\omega_2,\\dots,\\omega_m$. It is proved that the above equation admits many quasi-periodic solutions by KAM theory and partial Birkhoff normal form.

  2. Dual Solutions for Nonlinear Flow Using Lie Group Analysis.

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    Full Text Available `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD flow of an upper-convected Maxwell (UCM fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered.

  3. Dual Solutions for Nonlinear Flow Using Lie Group Analysis.

    Science.gov (United States)

    Awais, Muhammad; Hayat, Tasawar; Irum, Sania; Saleem, Salman

    2015-01-01

    `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM) fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered.

  4. Method of the Logistic Function for Finding Analytical Solutions of Nonlinear Differential Equations

    OpenAIRE

    Kudryashov, N. A.

    2015-01-01

    The method of the logistic function is presented for finding exact solutions of nonlinear differential equations. The application of the method is illustrated by using the nonlinear ordinary differential equation of the fourth order. Analytical solutions obtained by this method are presented. These solutions are expressed via exponential functions.logistic function, nonlinear wave, nonlinear ordinary differential equation, Painlev´e test, exact solution

  5. Rogue wave solutions for a generalized nonautonomous nonlinear equation in a nonlinear inhomogeneous fiber

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xi-Yang; Tian, Bo, E-mail: tian_bupt@163.com; Wang, Yu-Feng; Sun, Ya; Jiang, Yan

    2015-11-15

    In this paper, we investigate a generalized nonautonomous nonlinear equation which describes the ultrashort optical pulse propagating in a nonlinear inhomogeneous fiber. By virtue of the generalized Darboux transformation, the first- and second-order rogue-wave solutions for the generalized nonautonomous nonlinear equation are obtained, under some variable–coefficient constraints. Properties of the first- and second-order rogue waves are graphically presented and analyzed: When the coefficients are all chosen as the constants, we can observe the some functions, the shapes of wave crests and troughs for the first- and second-order rogue waves change. Oscillating behaviors of the first- and second-order rogue waves are observed when the coefficients are the trigonometric functions.

  6. New explicit exact solutions to a nonlinear dispersive-dissipative equation

    Institute of Scientific and Technical Information of China (English)

    Naranmandula; Wang Ke-Xie

    2004-01-01

    Using the first-integral method, we obtain a series of new explicit exact solutions such as exponential function solutions, triangular function solutions, singular solitary wave solution and kink solitary wave solution of a nonlinear dispersive-dissipative equation, which describes weak nonlinear ion-acoustic waves in plasma consisting of cold ions and warm electrons.

  7. Nonlinear optical properties of sodium copper chlorophyllin in aqueous solution.

    Science.gov (United States)

    Li, Jiangting; Peng, Yufeng; Han, Xueyun; Guo, Shaoshuai; Liang, Kunning; Zhang, Minggao

    2017-06-16

    Sodium copper chlorophyllin (SCC), as one of the derivatives of chlorophyll - with its inherent green features; good stability for heat, light, acids and alkalies; unique antimicrobial capability; and particular deodori zation performance - is widely applied in some fields such as the food industry, medicine and health care, daily cosmetic industry etc. SCC, as one of the metal porphyrins, has attracted much attention because of its unique electronic band structure and photon conversion performance. To promote the application of SCC in materials science; energy research and photonics, such as fast optical communications; and its use in nonlinear optical materials, solar photovoltaic cells, all-optical switches, optical limiters and saturable absorbers, great efforts should be dedicated to studying its nonlinear optical (NLO) properties. In this study, the absorption spectra and NLO properties of SCC in aqueous solution at different concentrations were measured. The Z-scan technique was used to determine NLO properties. The results indicated that the absorption spectra of SCC exhibit 2 characteristic absorption peaks located at the wavelengths 405 and 630 nm, and the values of the peaks increase with increasing SCC concentration. The results also showed that SCC exhibits reverse saturation absorption and negative nonlinear refraction (self-defocusing). It can be seen that SCC has good optical nonlinearity which will be convenient for applications in materials science, energy research and photonics.

  8. A novel look at the pulsar force-free magnetosphere

    CERN Document Server

    Petrova, S A

    2016-01-01

    The stationary axisymmetric force-free magnetosphere of a pulsar is considered. We present an exact dipolar solution of the pulsar equation, construct the magnetospheric model on its basis and examine its observational support. The new model has toroidal rather than common cylindrical geometry, in line with that of the plasma outflow observed directly as the pulsar wind nebula at much larger spatial scale. In its new configuration, the axisymmetric magnetosphere consumes the neutron star rotational energy much more efficiently, implying re-estimation of the stellar magnetic field, $B_{\\mathrm new}^0=3.3\\times 10^{-4}B/P$, where $P$ is the pulsar period. Then the 7-order scatter of the magnetic field derived from the rotational characteristics of the pulsars observed appears consistent with the $\\cot\\chi$-law, where $\\chi$ is a random quantity uniformly distributed in the interval $[0,\\pi/2]$. Our result is suggestive of a unique actual magnetic field strength of the neutron stars along with a random angle bet...

  9. Existence of solutions to second-order nonlinear coupled systems with nonlinear coupled boundary conditions

    Directory of Open Access Journals (Sweden)

    Imran Talib

    2015-12-01

    Full Text Available In this article, study the existence of solutions for the second-order nonlinear coupled system of ordinary differential equations $$\\displaylines{ u''(t=f(t,v(t,\\quad t\\in [0,1],\\cr v''(t=g(t,u(t,\\quad t\\in [0,1], }$$ with nonlinear coupled boundary conditions $$\\displaylines{ \\phi(u(0,v(0,u(1,v(1,u'(0,v'(0=(0,0, \\cr \\psi(u(0,v(0,u(1,v(1,u'(1,v'(1=(0,0, }$$ where $f,g:[0,1]\\times \\mathbb{R}\\to \\mathbb{R}$ and $\\phi,\\psi:\\mathbb{R}^6\\to \\mathbb{R}^2$ are continuous functions. Our main tools are coupled lower and upper solutions, Arzela-Ascoli theorem, and Schauder's fixed point theorem.

  10. The force-free twisted magnetosphere of a neutron star

    Science.gov (United States)

    Akgün, T.; Miralles, J. A.; Pons, J. A.; Cerdá-Durán, P.

    2016-10-01

    We present a detailed analysis of the properties of twisted, force-free magnetospheres of non-rotating neutron stars, which are of interest in the modelling of magnetar properties and evolution. In our models the magnetic field smoothly matches to a current-free (vacuum) solution at some large external radius, and they are specifically built to avoid pathological surface currents at any of the interfaces. By exploring a large range of parameters, we find a few remarkable general trends. We find that the total dipolar moment can be increased by up to 40 per cent with respect to a vacuum model with the same surface magnetic field, due to the contribution of magnetospheric currents to the global magnetic field. Thus, estimates of the surface magnetic field based on the large-scale dipolar braking torque are slightly overestimating the surface value by the same amount. Consistently, there is a moderate increase in the total energy of the model with respect to the vacuum solution of up to 25 per cent, which would be the available energy budget in the event of a fast, global magnetospheric reorganization commonly associated with magnetar flares. We have also found the interesting result of the existence of a critical twist (ϕmax ≲ 1.5 rad), beyond which we cannot find any more numerical solutions. Combining the models considered in this paper with the evolution of the interior of neutron stars will allow us to study the influence of the magnetosphere on the long-term magnetic, thermal, and rotational evolution.

  11. Multi-soliton rational solutions for some nonlinear evolution equations

    Directory of Open Access Journals (Sweden)

    Osman Mohamed S.

    2016-01-01

    Full Text Available The Korteweg-de Vries equation (KdV and the (2+ 1-dimensional Nizhnik-Novikov-Veselov system (NNV are presented. Multi-soliton rational solutions of these equations are obtained via the generalized unified method. The analysis emphasizes the power of this method and its capability of handling completely (or partially integrable equations. Compared with Hirota’s method and the inverse scattering method, the proposed method gives more general exact multi-wave solutions without much additional effort. The results show that, by virtue of symbolic computation, the generalized unified method may provide us with a straightforward and effective mathematical tool for seeking multi-soliton rational solutions for solving many nonlinear evolution equations arising in different branches of sciences.

  12. Nonlinear inertial oscillations of a multilayer eddy: An analytical solution

    Science.gov (United States)

    Dotsenko, S. F.; Rubino, A.

    2008-06-01

    Nonlinear axisymmetric oscillations of a warm baroclinic eddy are considered within the framework of an reduced-gravity model of the dynamics of a multilayer ocean. A class of exact analytical solutions describing pure inertial oscillations of an eddy formation is found. The thicknesses of layers in the eddy vary according to a quadratic law, and the horizontal projections of the velocity in the layers depend linearly on the radial coordinate. Owing to a complicated structure of the eddy, weak limitations on the vertical distribution of density, and an explicit form of the solution, the latter can be treated as a generalization of the exact analytical solutions of this form that were previously obtained for homogeneous and baroclinic eddies in the ocean.

  13. Numerical solution of control problems governed by nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Heinkenschloss, M. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1994-12-31

    In this presentation the author investigates an iterative method for the solution of optimal control problems. These problems are formulated as constrained optimization problems with constraints arising from the state equation and in the form of bound constraints on the control. The method for the solution of these problems uses the special structure of the problem arising from the bound constraint and the state equation. It is derived from SQP methods and projected Newton methods and combines the advantages of both methods. The bound constraint is satisfied by all iterates using a projection, the nonlinear state equation is satisfied in the limit. Only a linearized state equation has to be solved in every iteration. The solution of the linearized problems are done using multilevel methods and GMRES.

  14. Canonical Nonlinear Viscous Core Solution in pipe and elliptical geometry

    Science.gov (United States)

    Ozcakir, Ozge

    2016-11-01

    In an earlier paper (Ozcakir et al. (2016)), two new nonlinear traveling wave solutions were found with collapsing structure towards the center of the pipe as Reynolds number R -> ∞ , which were called Nonlinear Viscous Core (NVC) states. Asymptotic scaling arguments suggested that the NVC state collapse rate scales as R - 1 / 4 where axial, radial and azimuthal velocity perturbations from Hagen-Poiseuille flow scale as R - 1 / 2, R - 3 / 4 and R - 3 / 4 respectively, while (1 - c) = O (R - 1 / 2) where c is the traveling wave speed. The theoretical scaling results were roughly consistent with full Navier-Stokes numerical computations in the range 105 NVC states for pipes with elliptical cross-section and identify similar canonical structure in these cases. National Science Foundation NSF-DMS-1515755, EPSRC Grant EP/1037948/1.

  15. Quasi-periodic Solutions of the General Nonlinear Beam Equations

    Institute of Scientific and Technical Information of China (English)

    GAO YI-XIAN

    2012-01-01

    In this paper,one-dimensional (1D) nonlinear beam equations of the form utt - uxx + uxxxx + mu = f(u)with Dirichlet boundary conditions are considered,where the nonlinearity f is an analytic,odd function and f(u) = O(u3).It is proved that for all m ∈ (0,M*] (∈) R(M* is a fixed large number),but a set of small Lebesgue measure,the above equations admit small-amplitude quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dimensional dynamical system.The proof is based on an infinite dimensional KAM theory and a partial Birkhoff normal form technique.

  16. Nonlinear Helicons ---an analytical solution elucidating multi-scale structure

    CERN Document Server

    Abdelhamid, Hamdi M

    2016-01-01

    The helicon waves exhibit varying characters depending on plasma parameters, geometry, and wave numbers. Here we elucidate an intrinsic multi-scale property embodied by the combination of dispersive effect and nonlinearity. The extended magnetohydrodynamics model (exMHD) is capable of describing wide range of parameter space. By using the underlying Hamiltonian structure of exMHD, we construct an exact nonlinear solution which turns out to be a combination of two distinct modes, the helicon and Trivelpiece-Gould (TG) waves. In the regime of relatively low frequency or high density, however, the combination is made of the TG mode and an ion cyclotron wave (slow wave). The energy partition between these modes is determined by the helicities carried by the wave fields.

  17. THE RELATION BETWEEN SIGN-CHANGING SOLUTION AND POSITIVE-NEGATIVE SOLUTIONS FOR NONLINEAR OPERATOR EQUATIONS AND ITS APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    张克梅; 孙经先

    2004-01-01

    By fixed point index theory and a result obtained by Amann, existence of the solution for a class of nonlinear operator equations x = Ax is discussed. Under suitable conditions, a couple of positive and negative solutions are obtained. Finally, the abstract result is applied to nonlinear Sturm-Liouville boundary value problem, and at least four distinct solutions are obtained.

  18. An Efficient Series Solution for Nonlinear Multiterm Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Moh’d Khier Al-Srihin

    2017-01-01

    Full Text Available In this paper, we introduce an efficient series solution for a class of nonlinear multiterm fractional differential equations of Caputo type. The approach is a generalization to our recent work for single fractional differential equations. We extend the idea of the Taylor series expansion method to multiterm fractional differential equations, where we overcome the difficulty of computing iterated fractional derivatives, which are difficult to be computed in general. The terms of the series are obtained sequentially using a closed formula, where only integer derivatives have to be computed. Several examples are presented to illustrate the efficiency of the new approach and comparison with the Adomian decomposition method is performed.

  19. Nonzero solutions of nonlinear integral equations modeling infectious disease

    Energy Technology Data Exchange (ETDEWEB)

    Williams, L.R. (Indiana Univ., South Bend); Leggett, R.W.

    1982-01-01

    Sufficient conditions to insure the existence of periodic solutions to the nonlinear integral equation, x(t) = ..integral../sup t//sub t-tau/f(s,x(s))ds, are given in terms of simple product and product integral inequalities. The equation can be interpreted as a model for the spread of infectious diseases (e.g., gonorrhea or any of the rhinovirus viruses) if x(t) is the proportion of infectives at time t and f(t,x(t)) is the proportion of new infectives per unit time.

  20. New Exact Explicit Nonlinear Wave Solutions for the Broer-Kaup Equation

    Directory of Open Access Journals (Sweden)

    Zhenshu Wen

    2014-01-01

    Full Text Available We study the nonlinear wave solutions for the Broer-Kaup equation. Many exact explicit expressions of the nonlinear wave solutions for the equation are obtained by exploiting the bifurcation method and qualitative theory of dynamical systems. These solutions contain solitary wave solutions, singular solutions, periodic singular solutions, and kink-shaped solutions, most of which are new. Some previous results are extended.

  1. Exponential Polynomials as Solutions of Certain Nonlinear Difference Equations

    Institute of Scientific and Technical Information of China (English)

    Zhi Tao WEN; Janne HEITTOKANGAS; Ilpo LAINE

    2012-01-01

    Recently,C.-C.Yang and I.Laine have investigated finite order entire solutions f of nonlinear differential-difference equations of the form fn+L(z,f)=h,where n ≥ 2 is an integer.In particular,it is known that the equation f(z)2+q(z)f(z+1) =p(z),where p(z),q(z) are polynomials,has no transcendental entire solutions of finite order.Assuming that Q(z) is also a polynomial and c ∈ C,equations of the form f(z)n + q(z)eQ(z)f(z + c) =p(z) do posses finite order entire solutions.A classification of these solutions in terms of growth and zero distribution will be given.In particular,it is shown that any exponential polynomial solution must reduce to a rather specific form.This reasoning relies on an earlier paper due to N.Steinmetz.

  2. Asymptotic Reissner-Nordstr\\"om solution within nonlinear electrodynamics

    CERN Document Server

    Kruglov, S I

    2016-01-01

    A model of nonlinear electrodynamics coupled with the gravitational field is studied. We obtain the asymptotic black hole solutions at $r\\rightarrow 0$ and $r\\rightarrow \\infty$. The asymptotic at $r\\rightarrow 0$ is shown, and we find corrections to the Reissner-Nordstr\\"om solution and Coulomb's law at $r\\rightarrow\\infty$. The mass of the black hole is evaluated having the electromagnetic origin. We investigate the thermodynamics of charged black holes and their thermal stability. The critical point corresponding to the second-order phase transition (where heat capacity diverges) is found. If the mass of the black hole is greater than the critical mass, the black hole becomes unstable.

  3. Asymptotic Reissner-Nordström solution within nonlinear electrodynamics

    Science.gov (United States)

    Kruglov, S. I.

    2016-08-01

    A model of nonlinear electrodynamics coupled with the gravitational field is studied. We obtain the asymptotic black hole solutions at r →0 and r →∞ . The asymptotic at r →0 is shown, and we find corrections to the Reissner-Nordström solution and Coulomb's law at r →∞ . The mass of the black hole is evaluated having the electromagnetic origin. We investigate the thermodynamics of charged black holes and their thermal stability. The critical point corresponding to the second-order phase transition (where heat capacity diverges) is found. If the mass of the black hole is greater than the critical mass, the black hole becomes unstable.

  4. Nonlinear differential equations with exact solutions expressed via the Weierstrass function

    NARCIS (Netherlands)

    Kudryashov, NA

    2004-01-01

    A new problem is studied, that is to find nonlinear differential equations with special solutions expressed via the Weierstrass function. A method is discussed to construct nonlinear ordinary differential equations with exact solutions. The main step of our method is the assumption that nonlinear di

  5. Algebraic dynamics solution to and algebraic dynamics algorithm for nonlinear advection equation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Algebraic dynamics approach and algebraic dynamics algorithm for the solution of nonlinear partial differential equations are applied to the nonlinear advection equa-tion. The results show that the approach is effective for the exact analytical solu-tion and the algorithm has higher precision than other existing algorithms in nu-merical computation for the nonlinear advection equation.

  6. New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schr(o)dinger Equation

    Institute of Scientific and Technical Information of China (English)

    YANG Qin; DAI Chao-Qing; ZHANG Jie-Fang

    2005-01-01

    Some new exact travelling wave and period solutions of discrete nonlinear Schrodinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differentialdifferent models.

  7. Stochastic viscosity solution for stochastic PDIEs with nonlinear Neumann boundary condition

    CERN Document Server

    Aman, Auguste

    2010-01-01

    This paper is an attempt to extend the notion of viscosity solution to nonlinear stochastic partial differential integral equations with nonlinear Neumann boundary condition. Using the recently developed theory on generalized backward doubly stochastic differential equations driven by a L\\'evy process, we prove the existence of the stochastic viscosity solution, and further extend the nonlinear Feynman-Kac formula.

  8. Radial selfsimilar solutions of a nonlinear Ornstein-Uhlenbeck equation

    Directory of Open Access Journals (Sweden)

    Arij Bouzelmate

    2007-05-01

    Full Text Available This paper concerns the existence, uniqueness and asymptotic properties (as $r=|x|oinfty$ of radial self-similar solutions to the nonlinear Ornstein-Uhlenbeck equation [ v_t=Delta_p v+xcdot abla (|v|^{q-1}v ] in $mathbb{R}^Nimes (0, +infty$. Here $q>p-1>1$, $Ngeq 1$, and $Delta_p$ denotes the $p$-Laplacian operator. These solutions are of the form [ v(x,t=t^{-gamma} U(cxt^{-sigma}, ] where $gamma$ and $sigma$ are fixed powers given by the invariance properties of differential equation, while $U$ is a radial function, $U(y=u(r$, $r=|y|$. With the choice $c=(q-1^{-1/p}$, the radial profile $u$ satisfies the nonlinear ordinary differential equation $$ (|u'|^{p-2}u''+frac{N-1}r |u'|^{p-2}u'+frac{q+1-p}{p} r u'+(q-1 r(|u|^{q-1}u'+u=0 $$in $mathbb{R}_+$. We carry out a careful analysis of this equation anddeduce the corresponding consequences for the Ornstein-Uhlenbeck equation.

  9. Exact and explicit solutions to the discrete nonlinear Schrödinger equation with a saturable nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, İsmail, E-mail: ismailaslan@iyte.edu.tr [Department of Mathematics, Izmir Institute of Technology, Urla, İzmir 35430 (Turkey)

    2011-11-14

    We analyze the discrete nonlinear Schrödinger equation with a saturable nonlinearity through the (G{sup ′}/G)-expansion method to present some improved results. Three types of analytic solutions with arbitrary parameters are constructed; hyperbolic, trigonometric, and rational which have not been explicitly computed before. -- Highlights: ► Discrete nonlinear Schrödinger equation with a saturable nonlinearity. ► We confirm that the model supports three types of solutions with arbitrary parameters. ► A new application of the (G{sup ′}/G)-expansion method presented.

  10. Ill posedness of force-free electrodynamics in Euler potentials

    Science.gov (United States)

    Reula, Oscar A.; Rubio, Marcelo E.

    2017-03-01

    We prove that the initial value problem for force-free electrodynamics in Euler variables is not well posed. We establish this result by showing that a well-posedness criterion provided by Kreiss fails to hold for this theory, and using a theorem provided by Strang. To show the nature of the problem we display a particular bounded (in Sobolev norms) sequence of initial data for the force-free equations such that at any given time as close to zero as one wishes, the corresponding evolution sequence is not bounded. Thus, the force-free evolution is noncontinuous in that norm with respect to the initial data. We furthermore prove that this problem is also ill-posed in the Leray-Ohya sense.

  11. Local, Non-Geodesic, Timelike Currents in the Force-Free Magnetosphere of a Kerr Black Hole

    CERN Document Server

    Menon, Govind

    2014-01-01

    In this paper, we use previously developed exact solutions to present some of the curious features of a force-free magnetosphere in a Kerr background. More precisely, we obtain a hitherto unseen timelike current in the force-free magnetosphere that does not flow along a geodesic. The electromagnetic field in this case happens to be magnetically dominated. This too is a feature that has entered the literature for the first time. Changing the sign of a single parameter in our solutions generates a spacelike current that creates an electromagnetic field that is electrically dominated.

  12. SINGULAR LIMIT SOLUTIONS FOR TWO-DIMENSIONAL ELLIPTIC PROBLEMS WITH EXPONENTIALLY DOMINATED NONLINEARITY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The authors consider the existence of singular limit solutions for a family of nonlinear elliptic problems with exponentially dominated nonlinearity and Dirichlet boundary condition and generalize the results of [3].

  13. Periodic Wave Solutions of Generalized Derivative Nonlinear Schr(o)dinger Equation

    Institute of Scientific and Technical Information of China (English)

    ZHA Qi-Lao; LI Zhi-Bin

    2008-01-01

    A Darboux transformation of the generalized derivative nonlinear Schr(o)dinger equation is derived. As an application, some new periodic wave solutions of the generalized derivative nonlinear Schr(o)dinger equation are explicitly given.

  14. Existence and breaking property of real loop-solutions of two nonlinear wave equations

    Institute of Scientific and Technical Information of China (English)

    Ji-bin LI

    2009-01-01

    Dynamical analysis has revealed that,for some nonlinear wave equations,loop- and inverted loop-soliton solutions are actually visual artifacts. The so-called loop-soliton solution consists of three solutions,and is not a real solution. This paper answers the question as to whether or not nonlinear wave equations exist for which a "real" loop-solution exists,and if so,what are the precise parametric representations of these loop traveling wave solutions.

  15. Solution behaviors in coupled Schrödinger equations with full-modulated nonlinearities

    Science.gov (United States)

    Pınar, Zehra; Deliktaş, Ekin

    2017-02-01

    The nonlinear partial differential equations have an important role in real life problems. To obtain the exact solutions of the nonlinear partial differential equations, a number of approximate methods are known in the literature. In this work, a time- space modulated nonlinearities of coupled Schrödinger equations are considered. We provide a large class of Jacobi-elliptic solutions via the auxiliary equation method with sixth order nonlinearity and the Chebyshev approximation.

  16. Jacobi Elliptic Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2012-01-01

    Full Text Available We put a direct new method to construct the rational Jacobi elliptic solutions for nonlinear differential difference equations which may be called the rational Jacobi elliptic functions method. We use the rational Jacobi elliptic function method to construct many new exact solutions for some nonlinear differential difference equations in mathematical physics via the lattice equation and the discrete nonlinear Schrodinger equation with a saturable nonlinearity. The proposed method is more effective and powerful to obtain the exact solutions for nonlinear differential difference equations.

  17. New Doubly Periodic Solutions for the Coupled Nonlinear Klein-Gordon Equations

    Institute of Scientific and Technical Information of China (English)

    LIU Chun-Ping

    2005-01-01

    By using the general solutions of a new coupled Riccati equations, a direct algebraic method is described to construct doubly periodic solutions (Jacobi elliptic function solution) for the coupled nonlinear Klein-Gordon equations.It is shown that more doubly periodic solutions and the corresponding solitary wave solutions and trigonometric function solutions can be obtained in a unified way by this method.

  18. Staggered and short-period solutions of the saturable discrete nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, K.O.; Samuelsen, Mogens Rugholm

    2009-01-01

    We point out that the nonlinear Schrodinger lattice with a saturable nonlinearity also admits staggered periodic aswell as localized pulse-like solutions. Further, the same model also admits solutions with a short period. We examine the stability of these solutions and find that the staggered...

  19. Freely decaying turbulence in force-free electrodynamics

    CERN Document Server

    Zrake, Jonathan

    2015-01-01

    Freely decaying relativistic force-free turbulence is studied for the first time. We initiate the magnetic field at a short wavelength and simulate its relaxation toward equilibrium on two and three dimensional periodic domains, in both helical and non-helical settings. Force-free turbulent relaxation is found to exhibit an inverse cascade in all settings, and in 3D to have a magnetic energy spectrum consistent with the Kolmogorov $5/3$ power law. 3D relaxations also obey the Taylor hypothesis; they settle promptly into the lowest energy configuration allowed by conservation of the total magnetic helicity. But in 2D, the relaxed state is a force-free equilibrium whose energy greatly exceeds the Taylor minimum, and which contains persistent force-free current layers and isolated flux tubes. We explain this behavior in terms of additional topological invariants that exist only in two dimensions, namely the helicity enclosed within each level surface of the magnetic potential function. The speed and completeness...

  20. FREELY DECAYING TURBULENCE IN FORCE-FREE ELECTRODYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Zrake, Jonathan; East, William E. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2016-02-01

    Freely decaying, relativistic force-free turbulence is studied for the first time. We initiate the magnetic field at a short wavelength and simulate its relaxation toward equilibrium on two- and three-dimensional periodic domains in both helical and nonhelical settings. Force-free turbulent relaxation is found to exhibit an inverse cascade in all settings and in three dimensions to have a magnetic energy spectrum consistent with the Kolmogorov 5/3 power law. Three-dimensional relaxations also obey the Taylor hypothesis; they settle promptly into the lowest-energy configuration allowed by conservation of the total magnetic helicity. However, in two dimensions, the relaxed state is a force-free equilibrium whose energy greatly exceeds the Taylor minimum and that contains persistent force-free current layers and isolated flux tubes. We explain this behavior in terms of additional topological invariants that exist only in two dimensions, namely the helicity enclosed within each level surface of the magnetic potential function. The speed and completeness of turbulent magnetic free-energy discharge could help account for rapidly variable gamma-ray emission from the Crab Nebula, gamma-ray bursts, blazars, and radio galaxies.

  1. New variable separation solutions for the generalized nonlinear diffusion equations

    Science.gov (United States)

    Fei-Yu, Ji; Shun-Li, Zhang

    2016-03-01

    The functionally generalized variable separation of the generalized nonlinear diffusion equations ut = A(u,ux)uxx + B(u,ux) is studied by using the conditional Lie-Bäcklund symmetry method. The variant forms of the considered equations, which admit the corresponding conditional Lie-Bäcklund symmetries, are characterized. To construct functionally generalized separable solutions, several concrete examples defined on the exponential and trigonometric invariant subspaces are provided. Project supported by the National Natural Science Foundation of China (Grant Nos. 11371293, 11401458, and 11501438), the National Natural Science Foundation of China, Tian Yuan Special Foundation (Grant No. 11426169), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2015JQ1014).

  2. Existence of least energy solutions to coupled elliptic systems with critical nonlinearities

    Directory of Open Access Journals (Sweden)

    Gong-Ming Wei

    2008-04-01

    Full Text Available In this paper we study the existence of nontrivial solutions of elliptic systems with critical nonlinearities and subcritical nonlinear coupling interactions, under Dirichlet or Neumann boundary conditions. These equations are motivated from solitary waves of nonlinear Schrodinger systems in physics. Using minimax theorem and by estimates on the least energy, we prove the existence of nonstandard least energy solutions, i.e. solutions with least energy and each component is nontrivial.

  3. New Exact Jacobi Elliptic Function Solutions of Three—Dimensional Nonlinear Helmholtz Equation in a Nonlinear Kerr—Type Medium

    Institute of Scientific and Technical Information of China (English)

    YANGYong; YANZhen-Ya

    2002-01-01

    In this letter the three-dimensional nonlinear Helmholtz equation is investigated.which describes electromagnetic wave propagation in a nonlinear Kerr-type medium such that sixteen families of new Jacobi elliptic function solutions are obtained,by using our extended Jacobian elliptic function expansion method.When the modulus m-→1 or 0,the corresponding solitary waves including bright solitons,dark solitons and new line solitons and singly periodic solutions can be also found.

  4. STUDY ON EXACT ANALYTICAL SOLUTIONS FOR TWO SYSTEMS OF NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    闫振亚; 张鸿庆

    2001-01-01

    The homogeneous balance method was improved and applied to two systems of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions contain Wang's and Zhang's results and other new types of analytical solutions, such as rational fraction solutions and periodic solutions. The way can also be applied to solve more nonlinear partial differential equations.

  5. Staggered and short period solutions of the Saturable Discrete Nonlinear Schr\\"odinger Equation

    CERN Document Server

    Khare, Avinash; Samuelsen, Mogens R; Saxena, Avadh; 10.1088/1751-8113/42/8/085002

    2010-01-01

    We point out that the nonlinear Schr{\\"o}dinger lattice with a saturable nonlinearity also admits staggered periodic as well as localized pulse-like solutions. Further, the same model also admits solutions with a short period. We examine the stability of these solutions and find that the staggered as well as the short period solutions are stable in most cases. We also show that the effective Peierls-Nabarro barrier for the pulse-like soliton solutions is zero.

  6. Relationship Between Soliton-like Solutions and Soliton Solutions to a Class of Nonlinear Partial Differential Equations

    Institute of Scientific and Technical Information of China (English)

    LIU Chun-Ping; LING Zhi

    2005-01-01

    By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified way. When the module m → 1, these solutions exactly degenerate to the soliton solutions of the equations. Then we reveal the relationship between the soliton-like solutions obtained by other authors and these soliton solutions of the equations.

  7. Exact soliton solutions and their stability control in the nonlinear Schrödinger equation with spatiotemporally modulated nonlinearity.

    Science.gov (United States)

    Tian, Qing; Wu, Lei; Zhang, Jie-Fang; Malomed, Boris A; Mihalache, D; Liu, W M

    2011-01-01

    We put forward a generic transformation which helps to find exact soliton solutions of the nonlinear Schrödinger equation with a spatiotemporal modulation of the nonlinearity and external potentials. As an example, we construct exact solitons for the defocusing nonlinearity and harmonic potential. When the soliton's eigenvalue is fixed, the number of exact solutions is determined by energy levels of the linear harmonic oscillator. In addition to the stable fundamental solitons, stable higher-order modes, describing array of dark solitons nested in a finite-width background, are constructed too. We also show how to control the instability domain of the nonstationary solitons.

  8. Some new solutions derived from the nonlinear (2+1)-dimensional Toda equation an efficient method of creating solutions

    Institute of Scientific and Technical Information of China (English)

    Bai Cheng-Lin; Zhang Xia; Zhang Li-Hua

    2009-01-01

    This paper presents a new and efficient approach for constructing exact solutions to nonlinear differential-differenceequations (NLDDEs) and lattice equation. By using this method via symbolic computation system MAPLE, we obtained abundant soliton-like and/or period-form solutions to the (2+l)-dimensional Toda equation. It seems that solitary wave solutions are merely special cases in one family. Furthermore, the method can also be applied to other nonlinear differential-difference equations.

  9. Linear homotopy solution of nonlinear systems of equations in geodesy

    Science.gov (United States)

    Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.

    2010-01-01

    A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.

  10. Exact travelling wave solutions for four forms of nonlinear Klein-Gordon equations

    Energy Technology Data Exchange (ETDEWEB)

    Sirendaoreji [College of Mathematical Science, Inner Mongolia Normal University, Huhhot 010022, Inner Mongolia (China)]. E-mail: siren@imnu.edu.cn

    2007-04-09

    A variable separated equation and its solutions are used to construct the exact travelling wave solutions for four forms of nonlinear Klein-Gordon equations. The solutions previously obtained by the tanh and sech method are recovered. New and more exact travelling wave solutions including solitons, kink and anti-kink, bell and anti-bell solitary wave solutions, periodic solutions, singular solutions and exponential solutions are found.

  11. Solitonlike solutions of the generalized discrete nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Henning, D.; Gabriel, H.

    1996-01-01

    We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interest...... nonlinear Schrodinger equation. In this way eve are able to construct coherent solitonlike structures of profile determined by the map parameters....

  12. Solutions, bifurcations and chaos of the nonlinear Schrodinger equation with weak damping

    Institute of Scientific and Technical Information of China (English)

    彭解华; 唐驾时; 于德介; 颜家壬; 海文华

    2002-01-01

    Using the wave packet theory, we obtain all the solutions of the weakly damped nonlinear Schrodinger equation.These solutions are the static solution, and solutions of planar wave, solitary wave, shock wave and elliptic functionwave and chaos. The bifurcation phenomenon exists in both steady and non-steady solutions. The chaotic and periodicmotions can coexist in a certain parametric space region.

  13. Exact discrete soliton solutions of quintic discrete nonlinear Schr(o)dinger equation

    Institute of Scientific and Technical Information of China (English)

    Li Hua-Mei; Wu Feng-Min

    2005-01-01

    By using the extended hyperbolic function approach, we have studied a quintic discrete nonlinear Schrodinger equation and obtained new exact localized solutions, including the discrete bright soliton solution, dark soliton solution,alternating phase bright soliton solution and alternating phase dark soliton solution, if a special constraint is imposed on the coefficients of the equation.

  14. Exact solutions of some nonlinear partial differential equations using functional variable method

    Indian Academy of Sciences (India)

    A Nazarzadeh; M Eslami; M Mirzazadeh

    2013-08-01

    The functional variable method is a powerful solution method for obtaining exact solutions of some nonlinear partial differential equations. In this paper, the functional variable method is used to establish exact solutions of the generalized forms of Klein–Gordon equation, the (2 + 1)-dimensional Camassa–Holm Kadomtsev–Petviashvili equation and the higher-order nonlinear Schrödinger equation. By using this useful method, we found some exact solutions of the above-mentioned equations. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions. It is shown that the proposed method is effective and general.

  15. Travelling Wave Solutions to a Special Type of Nonlinear Evolution Equation

    Institute of Scientific and Technical Information of China (English)

    XU Gui-Qiong; LI Zhi-Bin

    2003-01-01

    A unified approach is presented for finding the travelling wave solutions to one kind of nonlinear evolution equation by introducing a concept of "rank". The key idea of this method is to make use of the arbitrariness of the manifold in Painleve analysis. We selected a new expansion variable and thus obtained a rich variety of travelling wave solutions to nonlinear evolution equation, which covered solitary wave solutions, periodic wave solutions, Weierstrass elliptic function solutions, and rational solutions. Three illustrative equations are investigated by this means, and abundant travelling wave solutions are obtained in a systematic way. In addition, some new solutions are firstly reported here.

  16. Superposition of elliptic functions as solutions for a large number of nonlinear equations

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Avinash [Raja Ramanna Fellow, Indian Institute of Science Education and Research (IISER), Pune 411021 (India); Saxena, Avadh [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-03-15

    For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ{sup 4}, the discrete MKdV as well as for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn{sup 2}(x, m), it also admits solutions in terms of dn {sup 2}(x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations.

  17. Solitary Wave and Non-traveling Wave Solutions to Two Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.

  18. Decay estimate of viscosity solutions of nonlinear parabolic PDEs and applications

    Directory of Open Access Journals (Sweden)

    Silvana Marchi

    2014-05-01

    Full Text Available The aim of this paper is to establish a decay estimate for viscosity solutions of nonlinear PDEs. As an application we prove existence and uniqueness for time almost periodic viscosity solutions.

  19. Oscillation of solutions to neutral nonlinear impulsive hyperbolic equations with several delays

    Directory of Open Access Journals (Sweden)

    Jichen Yang

    2013-01-01

    Full Text Available In this article, we study oscillatory properties of solutions to neutral nonlinear impulsive hyperbolic partial differential equations with several delays. We establish sufficient conditions for oscillation of all solutions.

  20. Time-Periodic Solution of a 2D Fourth-Order Nonlinear Parabolic Equation

    Indian Academy of Sciences (India)

    Xiaopeng Zhao; Changchun Liu

    2014-08-01

    By using the Galerkin method, we study the existence and uniqueness of time-periodic generalized solutions and time-periodic classical solutions to a fourth-order nonlinear parabolic equation in 2D case.

  1. EXISTENCE OF SOLUTION TO NONLINEAR SECOND ORDER NEUTRAL DIFFERENTIAL SYSTEM WITH DELAY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper is concerned with the existence of solution to nonlinear second order neutral differential equations with infinite delay in a Banach space. Sufficient conditions for the existence of solution are obtained by a Schaefer fixed point theorem.

  2. A Direct Algebraic Method in Finding Particular Solutions to Some Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    LIUChun-Ping; CHENJian-Kang; CAIFan

    2004-01-01

    Firstly, a direct algebraic method and a routine way in finding traveling wave solutions to nonlinear evolution equations are explained. And then some new exact solutions for some evolution equations are obtained by using the method.

  3. Nonlinear optical characterization of colloidal solutions containing dye and Ag2S quantum dot associates

    Science.gov (United States)

    Boltaev, G. S.; Sobirov, B.; Reyimbaev, S.; Sherniyozov, H.; Usmanov, T.; Smirnov, M. S.; Ovchinnikov, O. V.; Grevtseva, I. G.; Kondratenko, T. S.; Shihaliev, H. S.; Ganeev, R. A.

    2016-12-01

    We analyzed the nonlinear absorption and refraction in the dyes and silver sulfide quantum dot (QD) associates. The nonlinear refractive indices, nonlinear absorption coefficients, and third-order nonlinear susceptibilities of the Ag2S QDs associated with various dyes (xanthenes, thiazines, carbocyanines, quinolines) were measured. The influence of dyes nonlinearities on the whole pattern of the z-scans of colloidal QD solutions, as well as the application of different molar fractions of dyes and intensities of probe radiation (40 ps, 1064 nm and 532 nm), were analyzed and discussed in the contest of the influence of various nonlinear absorption processes.

  4. EXISTENCE OF TIME PERIODIC SOLUTIONS FOR A DAMPED GENERALIZED COUPLED NONLINEAR WAVE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    房少梅; 郭柏灵

    2003-01-01

    The time periodic solution problem of damped generalized coupled nonlinear wave equations with periodic boundary condition was studied. By using the Galerkin method to construct the approximating sequence of time periodic solutions, a priori estimate and Laray-Schauder fixed point theorem to prove the convergence of the approximate solutions, the existence of time periodic solutions for a damped generalized coupled nonlinear wave equations can be obtained.

  5. Multiple scales analysis and travelling wave solutions for KdV type nonlinear evolution equations

    Science.gov (United States)

    Ayhan, Burcu; Ozer, M. Naci; Bekir, Ahmet

    2017-01-01

    Nonlinear evolution equations are the mathematical models of problems that arise in many field of science. These equations has become an important field of study in applied mathematics in recent years. We apply exact solution methods and multiple scale method which is known as a perturbation method to nonlinear evolution equations. Using exact solution methods we get travelling wave solutions expressed by hyperbolic functions, trigonometric functions and rational functions. Also we derive Nonlinear Schrödinger (NLS) type equations from Korteweg-de Vries (KdV) type nonlinear evolution equations and we get approximate solutions for KdV type equations using multiple scale method. The proposed methods are direct and effective and can be used for many nonlinear evolution equations. It is shown that these methods provide a powerful mathematical tool to solve nonlinear evolution equations in mathematical physics.

  6. Multiplicity of ground state solutions for discrete nonlinear Schrodinger equations with unbounded potentials

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2017-02-01

    Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. In this article, we consider a class of discrete nonlinear Schrodinger equations with unbounded potentials. We obtain some new sufficient conditions on the multiplicity results of ground state solutions for the equations by using the symmetric mountain pass lemma. Recent results in the literature are greatly improved.

  7. Nonergodic dynamics of force-free granular gases

    OpenAIRE

    Bodrova, Anna; Chechkin, Aleksei V.; Cherstvy, Andrey G.; Metzler, Ralf

    2015-01-01

    We study analytically and by event-driven molecular dynamics simulations the nonergodic and aging properties of force-free cooling granular gases with both constant and velocity-dependent (viscoelastic) restitution coefficient $\\varepsilon$ for particle pair collisions. We compare the granular gas dynamics with an effective single particle stochastic model based on an underdamped Langevin equation with time dependent diffusivity. We find that both models share the same behavior of the ensembl...

  8. Solutions and Multiple Solutions for p(x)-Laplacian Equations with Nonlinear Boundary Condition

    Institute of Scientific and Technical Information of China (English)

    Zifei SHEN; Chenyin QIAN

    2009-01-01

    The authors study the p(x)-Laplacian equations with nonlinear boundary condition.By using the variational method,under appropriate assumptions on the perturbation terms f1(x,u),f2(x,u) and h1(x),h2(x),such that the associated functional satisfies the "mountain pass lemma" and "fountain theorem" respectively,the existence and multiplicity of solutions are obtained.The discussion is based on the theory of variable exponent Lebesgue and Sobolev spaces.

  9. Ground state solutions for nonlinear fractional Schrodinger equations involving critical growth

    Directory of Open Access Journals (Sweden)

    Hua Jin

    2017-03-01

    Full Text Available This article concerns the ground state solutions of nonlinear fractional Schrodinger equations involving critical growth. We obtain the existence of ground state solutions when the potential is not a constant and not radial. We do not use the Ambrosetti-Rabinowitz condition, or the monotonicity condition on the nonlinearity.

  10. Stabilization of solutions to higher-order nonlinear Schrodinger equation with localized damping

    Directory of Open Access Journals (Sweden)

    Eleni Bisognin

    2007-01-01

    Full Text Available We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.

  11. Bäcklund Transformation of Fractional Riccati Equation and Infinite Sequence Solutions of Nonlinear Fractional PDEs

    Directory of Open Access Journals (Sweden)

    Bin Lu

    2014-01-01

    Full Text Available The Bäcklund transformation of fractional Riccati equation with nonlinear superposition principle of solutions is employed to establish the infinite sequence solutions of nonlinear fractional partial differential equations in the sense of modified Riemann-Liouville derivative. To illustrate the reliability of the method, some examples are provided.

  12. Contractivity and Exponential Stability of Solutions to Nonlinear Neutral Functional Differential Equations in Banach Spaces

    Institute of Scientific and Technical Information of China (English)

    Wan-sheng WANG; Shou-fu LI; Run-sheng YANG

    2012-01-01

    A series of contractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained,which provide unified theoretical foundation for the contractivity analysis of solutions to nonlinear problems in functional differential equations (FDEs),neutral delay differential equations (NDDEs) and NFDEs of other types which appear in practice.

  13. Exact bright and dark spatial soliton solutions in saturable nonlinear media

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Gabriel F. [Departamento de Matematicas, E.T.S. de Ingenieros Industriales, Instituto de Matematica Aplicada a la Ciencia y la Ingenieria (IMACI), E.T.S.I. Industriales, Avda. Camilo Jose Cela, 3, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Belmonte-Beitia, Juan [Departamento de Matematicas, E.T.S. de Ingenieros Industriales, Instituto de Matematica Aplicada a la Ciencia y la Ingenieria (IMACI), E.T.S.I. Industriales, Avda. Camilo Jose Cela, 3, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: Juan.Belmonte@uclm.es; Perez-Garcia, Victor M. [Departamento de Matematicas, E.T.S. de Ingenieros Industriales, Instituto de Matematica Aplicada a la Ciencia y la Ingenieria (IMACI), E.T.S.I. Industriales, Avda. Camilo Jose Cela, 3, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)

    2009-08-30

    We present exact analytical bright and dark (black and grey) solitary wave solutions of a nonlinear Schroedinger-type equation describing the propagation of spatial beams in media exhibiting a saturable nonlinearity (such as centrosymmetric photorefractive materials). A qualitative study of the stationary equation is carried out together with a discussion of the stability of the solutions.

  14. A Microscopic Convexity Principle for Spacetime Convex Solutions of Fully Nonlinear Parabolic Equations

    Institute of Scientific and Technical Information of China (English)

    Chuan Qiang CHEN; Bo Wen HU

    2013-01-01

    We study microscopic spacetime convexity properties of fully nonlinear parabolic partial differential equations.Under certain general structure condition,we establish a constant rank theorem for the spacetime convex solutions of fully nonlinear parabolic equations.At last,we consider the parabolic convexity of solutions to parabolic equations and the convexity of the spacetime second fundamental form of geometric flows.

  15. ON THE INSTABILITY OF SOLUTIONS TO A NONLINEAR VECTOR DIFFERENTIAL EQUATION OF FOURTH ORDER

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper presents a new result related to the instability of the zero solution to a nonlinear vector differential equation of fourth order.Our result includes and improves an instability result in the previous literature,which is related to the instability of the zero solution to a nonlinear scalar differential equation of fourth order.

  16. A Unified and Explicit Construction of N-Soliton Solutions for the Nonlinear Schrfdinger Equation

    Institute of Scientific and Technical Information of China (English)

    FAN En-Gui

    2001-01-01

    An explicit N-fold Darboux transformation with multiparameters for nonlinear Schrodinger equation is constructed with the help of its Lax pairs and a reduction technique. According to this Darboux transformation, the solutions of the nonlinear Schrfdinger equation are reduced to solving a linear algebraic system, from which a unified and explicit formulation of N-soliton solutions with multiparameters for the nonlinear Schrfdinger equation is given.``

  17. Generalized Extended tanh-function Metho d for Traveling Wave Solutions of Nonlinear Physical Equations

    Institute of Scientific and Technical Information of China (English)

    Chang Jing; Gao Yi-xian; Cai Hua

    2014-01-01

    In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher’s equation, the nonlinear schr¨odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.

  18. EXACT SOLITRAY WAVE SOLUTIONS AND SINGULAR SOLUTIONS TO THE TWO-DIMENSIONAL NONLINEAR DISSIPATIVE-DISPERSIVE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    李志斌; 陈天华

    2002-01-01

    An algorithm for constructing exact solitary wave solutions and singular solutions for a class of nonlinear dissipative-dispersive system is presented. With the aid of symbolic manipulation system Maple, some explicit solutions are obtained for the system in physically interesting but non-integrable cases.

  19. The relation between the kink-type solution and the kink-bell-type solution of nonlinear evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chunping

    2003-06-02

    Using a direct algebraic method, more new exact solutions of the Kolmogorov-Petrovskii-Piskunov equation are presented by formula form. Then a theorem concerning the relation between the kink-type solution and the kink-bell-type solution of nonlinear evolution equations is given. Finally, the applications of the theorem to several well-known equations in physics are also discussed.

  20. Dynamical understanding of loop soliton solution for several nonlinear wave equations

    Institute of Scientific and Technical Information of China (English)

    Ji-bin LI

    2007-01-01

    It has been found that some nonlinear wave equations have one-loop soliton solutions. What is the dynamical behavior of the so-called one-loop soliton solution? To answer this question, the travelling wave solutions for four nonlinear wave equations are discussed. Exact explicit parametric representations of some special travelling wave solutions are given. The results of this paper show that a loop solution consists of three different breaking travelling wave solutions. It is not one real loop soliton travelling wave solution.

  1. Multigrid techniques for nonlinear eigenvalue probems: Solutions of a nonlinear Schroedinger eigenvalue problem in 2D and 3D

    Science.gov (United States)

    Costiner, Sorin; Taasan, Shlomo

    1994-01-01

    This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.

  2. Analytic solutions of a class of nonlinear partial differential equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-qing; DING Qi

    2008-01-01

    An approach is presented for computing the adjoint operator vector of a class of nonlinear (that is,partial-nonlinear) operator matrices by using the properties of conjugate operators to generalize a previous method proposed by the author.A unified theory is then given to solve a class of nonlinear (partial-nonlinear and including all linear)and non-homogeneous differential equations with a mathematical mechanization method.In other words,a transformation is constructed by homogenization and triangulation,which reduces the original system to a simpler diagonal system.Applications are given to solve some elasticity equations.

  3. Approximate Solutions of Nonlinear Partial Differential Equations by Modified q-Homotopy Analysis Method

    Directory of Open Access Journals (Sweden)

    Shaheed N. Huseen

    2013-01-01

    Full Text Available A modified q-homotopy analysis method (mq-HAM was proposed for solving nth-order nonlinear differential equations. This method improves the convergence of the series solution in the nHAM which was proposed in (see Hassan and El-Tawil 2011, 2012. The proposed method provides an approximate solution by rewriting the nth-order nonlinear differential equation in the form of n first-order differential equations. The solution of these n differential equations is obtained as a power series solution. This scheme is tested on two nonlinear exactly solvable differential equations. The results demonstrate the reliability and efficiency of the algorithm developed.

  4. The exact solutions to (2+1)-dimensional nonlinear Schrǒdinger equation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-liang; WANG Ming-liang; FANG Zong-de

    2004-01-01

    By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrǒdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.

  5. Exact Solutions for a Higher-Order Nonlinear Schr(o)dinger Equation in Atmospheric Dynamics

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    By giving prior assumptions on the form of the solutions, we succeed to find several exact solutions for a higher-order nonlinear Schrodinger equation derived from one important model in the study of atmospheric and ocean dynamical systems. Our analytical solutions include bright and dark solitary waves, and periodical solutions, which can be used to explain atmospheric phenomena.

  6. Kink wave determined by parabola solution of a nonlinear ordinary differential equation

    Institute of Scientific and Technical Information of China (English)

    LI Ji-bin; LI Ming; NA Jing

    2007-01-01

    By finding a parabola solution connecting two equilibrium points of a planar dynamical system, the existence of the kink wave solution for 6 classes of nonlinear wave equations is shown. Some exact explicit parametric representations of kink wave solutions are given. Explicit parameter conditions to guarantee the existence of kink wave solutions are determined.

  7. The nonlinear Schrödinger equation singular solutions and optical collapse

    CERN Document Server

    Fibich, Gadi

    2015-01-01

    This book is an interdisciplinary introduction to optical collapse of laser beams, which is modelled by singular (blow-up) solutions of the nonlinear Schrödinger equation. With great care and detail, it develops the subject including the mathematical and physical background and the history of the subject. It combines rigorous analysis, asymptotic analysis, informal arguments, numerical simulations, physical modelling, and physical experiments. It repeatedly emphasizes the relations between these approaches, and the intuition behind the results. The Nonlinear Schrödinger Equation will be useful to graduate students and researchers in applied mathematics who are interested in singular solutions of partial differential equations, nonlinear optics and nonlinear waves, and to graduate students and researchers in physics and engineering who are interested in nonlinear optics and Bose-Einstein condensates. It can be used for courses on partial differential equations, nonlinear waves, and nonlinear optics. Gadi Fib...

  8. An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator–prey system

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2016-06-01

    Full Text Available In this article, we apply the exp(-Φ(ξ-expansion method to construct many families of exact solutions of nonlinear evolution equations (NLEEs via the nonlinear diffusive predator–prey system and the Bogoyavlenskii equations. These equations can be transformed to nonlinear ordinary differential equations. As a result, some new exact solutions are obtained through the hyperbolic function, the trigonometric function, the exponential functions and the rational forms. If the parameters take specific values, then the solitary waves are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special diffusive predator–prey system and the Bogoyavlenskii equations by the help of programming language Maple.

  9. Analytical Solutions to Non-linear Mechanical Oscillation Problems

    DEFF Research Database (Denmark)

    Kaliji, H. D.; Ghadimi, M.; Barari, Amin

    2011-01-01

    In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...

  10. BIFURCATIONS OF TRAVELLING WAVE SOLUTIONS TO A COUPLED NONLINEAR WAVE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Employ theory of bifurcations of dynamical systems to a system of coupled nonlin-ear equations, the existence of solitary wave solutions, kink wave solutions, anti-kink wave solutions and periodic wave solutions is obtained. Under different parametric conditions, various suffcient conditions to guarantee the existence of the above so-lutions are given. Some exact explicit parametric representations of travelling wave solutions are derived.

  11. Exact Solutions to Extended Nonlinear Schr(o)dinger Equation in Monomode Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    BAI Cheng-Lin; ZHAO Hong; Wang Wei-Tao

    2006-01-01

    By using the generally projective Riccati equation method, more new exact travelling wave solutions to extended nonlinear Schr(o)dinger equation (NLSE), which describes the femtosecond pulse propagation in monomode optical fiber, are found, which include bright soliton solution, dark soliton solution, new solitary waves, periodic solutions, and rational solutions. The finding of abundant solution structures for extended NLSE helps to study the movement rule of femtosecond pulse propagation in monomode optical fiber.

  12. Exact solutions for nonlinear variants of Kadomtsev–Petviashvili (, ) equation using functional variable method

    Indian Academy of Sciences (India)

    M Mirzazadeh; M Eslami

    2013-12-01

    Studying compactons, solitons, solitary patterns and periodic solutions is important in nonlinear phenomena. In this paper we study nonlinear variants of the Kadomtsev–Petviashvili (KP) and the Korteweg–de Vries (KdV) equations with positive and negative exponents. The functional variable method is used to establish compactons, solitons, solitary patterns and periodic solutions for these variants. This method is a powerful tool for searching exact travelling solutions in closed form.

  13. Analytic continuation of solutions of some nonlinear convolution partial differential equations

    Directory of Open Access Journals (Sweden)

    Hidetoshi Tahara

    2015-01-01

    Full Text Available The paper considers a problem of analytic continuation of solutions of some nonlinear convolution partial differential equations which naturally appear in the summability theory of formal solutions of nonlinear partial differential equations. Under a suitable assumption it is proved that any local holomorphic solution has an analytic extension to a certain sector and its extension has exponential growth when the variable goes to infinity in the sector.

  14. Positive Solution of a Nonlinear Fractional Differential Equation Involving Caputo Derivative

    Directory of Open Access Journals (Sweden)

    Changyou Wang

    2012-01-01

    Full Text Available This paper is concerned with a nonlinear fractional differential equation involving Caputo derivative. By constructing the upper and lower control functions of the nonlinear term without any monotone requirement and applying the method of upper and lower solutions and the Schauder fixed point theorem, the existence and uniqueness of positive solution for the initial value problem are investigated. Moreover, the existence of maximal and minimal solutions is also obtained.

  15. Positive Solutions for the Discrete Nonlinear Schrödinger Equation: A Priori Estimates and Convergence

    OpenAIRE

    Verbitsky, Anton

    2014-01-01

    We consider the discrete nonlinear stationary Schrödinger equation on a bounded n-dimensional box and on the whole space. In the first case we derive the existence of a positive classical solution of the corresponding continuous problem from a uniform a priori bound on positive discrete solutions for a general right hand side. In the second case we derive a uniform a priori bound on positive discrete solutions for the Schrödinger-type nonlinearity.

  16. APPLICATIONS OF THE P-R SCHEME FOR GENERALIZED NONLINEAR SCHRODINGER EQUATIONS IN SOLVING SOLITON SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    ZhangTiande; CaoQingjie; PriceG.W.; DjidjeliK.; TwizellE.H.

    1999-01-01

    Spatial soliton solutions of a class of generalized nonlinear Schrodinger equations in N-space are discussed analytically and numerically. This achieved using a traveling wavemethod to formulate one-soliton solution and the P-R method is employed to the numerlcal solutions and the interactions between the solirons for the generalized nonlinear systems in Z-pace.The results presented show that the soliton phenomena are characteristics associated with the nonlinearhies of the dynamical systems.

  17. Determination of refraction nonlinear index, for effect thermal, of solutions with nanoparticles of gold

    Science.gov (United States)

    Olivares-Vargas, A.; Trejo-Durán, M.; Alvarado-Méndez, E.; Cornejo-Monroy, D.; Mata-Chávez, R. I.; Estudillo-Ayala, J. M.; Castaño-Meneses, V.

    2013-09-01

    Research of nonlinear optical properties of materials for manufacturing opto-electronic devices, had a great growth in the last years. The solutions with nanoparticle metals present nonlinear optical properties. In this work we present the results of characterizing, analyzing and determining the magnitude and sign of the nonlinear refractive index, using the z-scan technique in solutions with nanoparticles of gold, lipoic acid and sodium chloride. We used a continuous Argon laser at 514 nm with variable power, an 18 cms lens, and a chopper. We determined the nonlinear refractive index in the order of 10-9. These materials have potential applications mainly as optical limiters.

  18. Solutions to nonlinear Schrodinger equations for special initial data

    Directory of Open Access Journals (Sweden)

    Takeshi Wada

    2015-11-01

    Full Text Available This article concerns the solvability of the nonlinear Schrodinger equation with gauge invariant power nonlinear term in one space dimension. The well-posedness of this equation is known only for $H^s$ with $s\\ge 0$. Under some assumptions on the nonlinearity, this paper shows that this equation is uniquely solvable for special but typical initial data, namely the linear combinations of $\\delta(x$ and p.v. (1/x, which belong to $H^{-1/2-0}$. The proof in this article allows $L^2$-perturbations on the initial data.

  19. Lienard Equation and Exact Solutions for Some Soliton-Producing Nonlinear Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-Guo; CHANG Qian-Shun; ZHANG Qi-Ren

    2004-01-01

    In this paper, we first consider exact solutions for Lienard equation with nonlinear terms of any order. Then,explicit exact bell and kink profile solitary-wave solutions for many nonlinear evolution equations are obtained by means of results of the Lienard equation and proper deductions, which transform original partial differential equations into the Lienard one. These nonlinear equations include compound KdV, compound KdV-Burgers, generalized Boussinesq,generalized KP and Ginzburg-Landau equation. Some new solitary-wave solutions are found.

  20. Homogeneous solutions for elliptically polarized light in a cavity containing materials with electric and magnetic nonlinearities

    CERN Document Server

    Martin, D A

    2015-01-01

    We study evolution equations and stationary homogeneous solutions for electric and magnetic field amplitudes in a ring cavity with flat mirrors. The cavity is filled with a positive or negative refraction index material with third order Kerr-like electric nonlinearities and also magnetic nonlinearities, which can be relevant in metamaterials. We consider the degree of freedom of polarization in the incident beam. It is found that considering a magnetic nonlinearity increases the variety of possible qualitatively different solutions. A classification of solutions is proposed in terms of the number of bifurcations. The analysis can be useful for the implementation of optical switching or memory storage using ring cavities with non linear materials.

  1. Toward Analytic Solution of Nonlinear Differential Difference Equations via Extended Sensitivity Approach

    Institute of Scientific and Technical Information of China (English)

    G. Darmani; S. Setayeshi; H. Ramezanpour

    2012-01-01

    In this paper an efficient computational method based on extending the sensitivity approach (SA) is proposed to find an analytic exact solution of nonlinear differential difference equations. In this manner we avoid solving the nonlinear problem directly. By extension of sensitivity approach for differential difference equations (DDEs), the nonlinear original problem is transformed into infinite linear differential difference equations, which should be solved in a recursive manner. Then the exact solution is determined in the form of infinite terms series and by intercepting series an approximate solution is obtained. Numerical examples are employed to show the effectiveness of the proposed approach.

  2. Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhaqilao,, E-mail: zhaqilao@imnu.edu.cn

    2013-12-06

    A simple symbolic computation approach for finding the rogue waves and rational solutions to the nonlinear evolution equation is proposed. It turns out that many rational solutions with real and complex forms of a (3+1)-dimensional nonlinear evolution equation are obtained. Some features of rogue waves and rational solutions are graphically discussed. -- Highlights: •A simple symbolic computation approach for finding the rational solutions to the NEE is proposed. •Some rogue waves and rational solutions with real and complex forms of a (3+1)-D NEE are obtained. •Some features of rogue waves are graphically discussed.

  3. A Closed Form Solution for Nonlinear Oscillators Frequencies Using Amplitude-Frequency Formulation

    Directory of Open Access Journals (Sweden)

    A. Barari

    2012-01-01

    Full Text Available Many nonlinear systems in industry including oscillators can be simulated as a mass-spring system. In reality, all kinds of oscillators are nonlinear due to the nonlinear nature of springs. Due to this nonlinearity, most of the studies on oscillation systems are numerically carried out while an analytical approach with a closed form expression for system response would be very useful in different applications. Some analytical techniques have been presented in the literature for the solution of strong nonlinear oscillators as well as approximate and numerical solutions. In this paper, Amplitude-Frequency Formulation (AFF approach is applied to analyze some periodic problems arising in classical dynamics. Results are compared with another approximate analytical technique called Energy Balance Method developed by the authors (EBM and also numerical solutions. Close agreement of the obtained results reveal the accuracy of the employed method for several practical problems in engineering.

  4. Particle energization in a chaotic force-free magnetic field

    Science.gov (United States)

    Li, Xiaocan; Li, Gang; Dasgupta, Brahmananda

    2015-04-01

    A force-free field (FFF) is believed to be a reasonable description of the solar corona and in general a good approximation for low-beta plasma. The equations describing the magnetic field of FFF is similar to the ABC fluid equations which has been demonstrated to be chaotic. This implies that charged particles will experience chaotic magnetic field in the corona. Here, we study particle energization in a time-dependent FFF using a test particle approach. An inductive electric field is introduced by turbulent motions of plasma parcels. We find efficient particle acceleration with power-law like particle energy spectra. The power-law indices depend on the amplitude of plasma parcel velocity field and the spatial scales of the magnetic field fluctuation. The spectra are similar for different particle species. This model provide a possible mechanism for seed population generation for particle acceleration by, e.g., CME-driven shocks. Generalization of our results to certain non-force-free-field (NFFF) is straightforward as the sum of two or multiple FFFs naturally yield NFFF.

  5. Energy buildup in sheared force-free magnetic fields

    Science.gov (United States)

    Wolfson, Richard; Low, Boon C.

    1992-01-01

    Photospheric displacement of the footpoints of solar magnetic field lines results in shearing and twisting of the field, and consequently in the buildup of electric currents and magnetic free energy in the corona. The sudden release of this free energy may be the origin of eruptive events like coronal mass ejections, prominence eruptions, and flares. An important question is whether such an energy release may be accompanied by the opening of magnetic field lines that were previously closed, for such open field lines can provide a route for matter frozen into the field to escape the sun altogether. This paper presents the results of numerical calculations showing that opening of the magnetic field is permitted energetically, in that it is possible to build up more free energy in a sheared, closed, force-free magnetic field than is in a related magnetic configuration having both closed and open field lines. Whether or not the closed force-free field attains enough energy to become partially open depends on the form of the shear profile; the results presented compare the energy buildup for different shear profiles. Implications for solar activity are discussed briefly.

  6. Exact solutions and maximal dimension of invariant subspaces of time fractional coupled nonlinear partial differential equations

    Science.gov (United States)

    Sahadevan, R.; Prakash, P.

    2017-01-01

    We show how invariant subspace method can be extended to time fractional coupled nonlinear partial differential equations and construct their exact solutions. Effectiveness of the method has been illustrated through time fractional Hunter-Saxton equation, time fractional coupled nonlinear diffusion system, time fractional coupled Boussinesq equation and time fractional Whitman-Broer-Kaup system. Also we explain how maximal dimension of the time fractional coupled nonlinear partial differential equations can be estimated.

  7. Solutions to Boundary Value Problem of Nonlinear Impulsive Differential Equation of Fractional Order*

    Institute of Scientific and Technical Information of China (English)

    SU XIN-WEI

    2011-01-01

    This paper is devoted to study the existence and uniqueness of solutions to a boundary value problem of nonlinear fractional differential equation with impulsive effects. The arguments are based upon Schauder and Banach fixed-point theorems. We improve and generalize the results presented in [B. Ahmad, S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Analysis: Hybrid Systems, 3(2009), 251258].

  8. EXACT SOLITARY WAVE SOLUTIONS TO A CLASS OF NONLINEAR DIFFERENTIAL EQUATIONS USING DIRECT ALGEBRAIC METHOD

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using direct algebraic method,exact solitary wave solutions are performed for a class of third order nonlinear dispersive disipative partial differential equations. These solutions are obtained under certain conditions for the relationship between the coefficients of the equation. The exact solitary waves of this class are rational functions of real exponentials of kink-type solutions.

  9. Existence of solutions for quasistatic problems of unilateral contact with nonlocal friction for nonlinear elastic materials

    Directory of Open Access Journals (Sweden)

    Alain Mignot

    2005-09-01

    Full Text Available This paper shows the existence of a solution of the quasi-static unilateral contact problem with nonlocal friction law for nonlinear elastic materials. We set up a variational incremental problem which admits a solution, when the friction coefficient is small enough, and then by passing to the limit with respect to time we obtain a solution.

  10. Singular solutions of the L^2-supercritical biharmonic Nonlinear Schrodinger equation

    CERN Document Server

    Baruch, Guy

    2010-01-01

    We use asymptotic analysis and numerical simulations to study peak-type singular solutions of the supercritical biharmonic NLS. These solutions have a quartic-root blowup rate, and collapse with a quasi self-similar universal profile, which is a zero-Hamiltonian solution of a fourth-order nonlinear eigenvalue problem.

  11. Solutions of Multi Objective Fuzzy Transportation Problems with Non-Linear Membership Functions

    Directory of Open Access Journals (Sweden)

    Dr. M. S. Annie Christi

    2016-11-01

    Full Text Available Multi-objective transportation problem with fuzzy interval numbers are considered. The solution of linear MOTP is obtained by using non-linear membership functions. The optimal compromise solution obtained is compared with the solution got by using a linear membership function. Some numerical examples are presented to illustrate this.

  12. EXISTENCE OF EXTREME SOLUTION TO FIRST-ORDER IMPULSIVE DIFFERENTIAL EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper is concerned with the existence of extreme solutions to three-point boundary value problems with nonlinear boundary conditions for a class of first order impulsive differential equations. We obtain suficient conditions for the existence of extreme solutions by the upper and lower solutions method coupled with a monotone iterative technique.

  13. A direct algebraic method applied to obtain complex solutions of some nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Huiqun [College of Mathematical Science, Qingdao University, Qingdao, Shandong 266071 (China)], E-mail: hellozhq@yahoo.com.cn

    2009-02-15

    By using some exact solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact complex solutions for nonlinear partial differential equations. The method is implemented for the NLS equation, a new Hamiltonian amplitude equation, the coupled Schrodinger-KdV equations and the Hirota-Maccari equations. New exact complex solutions are obtained.

  14. Exact Solutions for a Local Fractional DDE Associated with a Nonlinear Transmission Line

    Science.gov (United States)

    Aslan, İsmail

    2016-09-01

    Of recent increasing interest in the area of fractional calculus and nonlinear dynamics are fractional differential-difference equations. This study is devoted to a local fractional differential-difference equation which is related to a nonlinear electrical transmission line. Explicit traveling wave solutions (kink/antikink solitons, singular, periodic, rational) are obtained via the discrete tanh method coupled with the fractional complex transform.

  15. Analytical Solution of Nonlinear Problems in Classical Dynamics by Means of Lagrange-Ham

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Mahdavi, S. H; Rabbani, A.

    2011-01-01

    In this work, a powerful analytical method, called Homotopy Analysis Methods (HAM) is coupled with Lagrange method to obtain the exact solution for nonlinear problems in classic dynamics. In this work, the governing equations are obtained by using Lagrange method, and then the nonlinear governing...

  16. EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The initial value problem of a nonlinear fractional differential equation is discussed in this paper. Using the nonlinear alternative of Leray-Schauder type and the contraction mapping principle,we obtain the existence and uniqueness of solutions to the fractional differential equation,which extend some results of the previous papers.

  17. POSITIVE SOLUTIONS OF FULLY NONLINEAR ELLIPTIC EQUATIONS ON GENERAL BOUNDED DOMAINS

    Institute of Scientific and Technical Information of China (English)

    Li Meisheng; Bao Jiguang

    2001-01-01

    We prove the refined ABP maximum principle, comparison principle, and related existence and uniqueness theorem for the positive solutions of the Dirich let problems of second order fully nonlinear elliptic equations on arbitrary bounded domains.

  18. New Exact Solutions for a Class of Nonlinear Coupled Differential Equations

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hong; GUO Jun; BAI Cheng-Lin; HAN Ji-Guang

    2005-01-01

    More new exact solutions for a class of nonlinear coupled differential equations are obtained by using a direct and efficient hyperbola function transform method based on the idea of the extended homogeneous balance method.

  19. Existence and uniqueness of solutions for nonlinear hyperbolic fractional differential equation with integral boundary conditions

    OpenAIRE

    Brahim Tellab; Kamel Haouam

    2016-01-01

    In this paper, we investigate the existence and uniqueness of solutions for second order nonlinear fractional differential equation with integral boundary conditions. Our result is an application of the Banach contraction principle and the Krasnoselskii fixed point theorem.

  20. Existence of solutions of a nonlinear system modelling fluid flow in porous media

    Directory of Open Access Journals (Sweden)

    dam Besenyei

    2006-12-01

    Full Text Available We investigate the existence of weak solutions for nonlinear differential equations that describe fluid flow through a porous medium. Existence is proved using the theory of monotone operators, and some examples are given.

  1. EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS FOR A NONLINEAR PARABOLIC EQUATION RELATED TO IMAGE ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    Wang Lihe; Zhou Shulin

    2006-01-01

    In this paper we establish the existence and uniqueness of weak solutions for the initial-boundary value problem of a nonlinear parabolic partial differential equation, which is related to the Malik-Perona model in image analysis.

  2. EXISTENCE OF SOLUTION TO NONLINEAR SECOND ORDER NEUTRAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH DELAY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper is concerned with nonlinear second order neutral stochastic differential equations with delay in a Hilbert space. Sufficient conditions for the existence of solution to the system are obtained by Picard iterations.

  3. MULTIPLE POSITIVE SOLUTIONS TO A SYSTEM OF NONLINEAR HAMMERSTEIN TYPE INTEGRAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Wang Feng; Zhang Fang; Liu Chunhan

    2009-01-01

    In this paper, we use cone theory and a new method of computation of fixed point index to study a system of nonlinear Hammerstein type integral equations, and the existence of multiple positive solutions to the system is discussed.

  4. Single and multi-solitary wave solutions to a class of nonlinear evolution equations

    Science.gov (United States)

    Wang, Deng-Shan; Li, Hongbo

    2008-07-01

    In this paper, an effective discrimination algorithm is presented to deal with equations arising from physical problems. The aim of the algorithm is to discriminate and derive the single traveling wave solutions of a large class of nonlinear evolution equations. Many examples are given to illustrate the algorithm. At the same time, some factorization technique are presented to construct the traveling wave solutions of nonlinear evolution equations, such as Camassa-Holm equation, Kolmogorov-Petrovskii-Piskunov equation, and so on. Then a direct constructive method called multi-auxiliary equations expansion method is described to derive the multi-solitary wave solutions of nonlinear evolution equations. Finally, a class of novel multi-solitary wave solutions of the (2+1)-dimensional asymmetric version of the Nizhnik-Novikov-Veselov equation are given by three direct methods. The algorithm proposed in this paper can be steadily applied to some other nonlinear problems.

  5. Existence of Solutions of Abstract Nonlinear Mixed Functional Integrodifferential equation with nonlocal conditions

    Directory of Open Access Journals (Sweden)

    Dhakne Machindra B.

    2017-04-01

    Full Text Available In this paper we discuss the existence of mild and strong solutions of abstract nonlinear mixed functional integrodifferential equation with nonlocal condition by using Sadovskii’s fixed point theorem and theory of fractional power of operators.

  6. POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEM FOR A SYSTEM OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    LiHongyu; SunJingxian

    2005-01-01

    By using topological method, we study a class of boundary value problem for a system of nonlinear ordinary differential equations. Under suitable conditions,we prove the existence of positive solution of the problem.

  7. Asymptotic solution for EI Nino-southern oscillation of nonlinear model

    Institute of Scientific and Technical Information of China (English)

    MO Jia-qi; LIN Wan-tao

    2008-01-01

    A class of nonlinear coupled system for E1 Nino-Southern Oscillation (ENSO) model is considered. Using the asymptotic theory and method of variational iteration, the asymptotic expansion of the solution for ENSO models is obtained.

  8. ON THE BOUNDEDNESS AND THE STABILITY OF SOLUTION TO THIRD ORDER NON-LINEAR DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper we investigate the global asymptotic stability,boundedness as well as the ultimate boundedness of solutions to a general third order nonlinear differential equation,using complete Lyapunov function.

  9. ON THE HOLOMORPHIC SOLUTION OF NON-LINEAR TOTALLY CHARACTERISTIC EQUATIONS WITH SEVERAL SPACE VARIABLES

    Institute of Scientific and Technical Information of China (English)

    陈化; 罗壮初

    2002-01-01

    In this paper the authors study a class of non-linear singular partial differential equation in complex domain Ct × Cnx. Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of Ct × Cnx.

  10. ITERATIVE SOLUTIONS FOR SYSTEMS OF NONLINEAR OPERATOR EQUATIONS IN BANACH SPACE

    Institute of Scientific and Technical Information of China (English)

    宋光兴

    2003-01-01

    By using partial order method, the existence, uniqueness and iterative ap-proximation of solutions for a class of systems of nonlinear operator equations in Banachspace are discussed. The results obtained in this paper extend and improve recent results.

  11. Existence of Solutions of Nonlinear Integrodifferential Equations of Sobolev Type with Nonlocal Condition in Banach Spaces

    Indian Academy of Sciences (India)

    K Balachandran; K Uchiyama

    2000-05-01

    In this paper we prove the existence of mild and strong solutions of a nonlinear integrodifferential equation of Sobolev type with nonlocal condition. The results are obtained by using semigroup theory and the Schauder fixed point theorem.

  12. Analysis of search-extension method for finding multiple solutions of nonlinear problem

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    For numerical computations of multiple solutions of the nonlinear elliptic problemΔu+ f(u)=0 inΩ, u=0 onΓ, a search-extension method (SEM) was proposed and systematically studied by the authors. This paper shall complete its theoretical analysis. It is assumed that the nonlinearity is non-convex and its solution is isolated, under some conditions the corresponding linearized problem has a unique solution. By use of the compactness of the solution family and the contradiction argument, in general conditions, the high order regularity of the solution u∈H1+α,α>0 is proved. Assume that some initial value searched by suitably many eigenbases is already fallen into the neighborhood of the isolated solution, then the optimal error estimates of its nonlinear finite element approximation are shown by the duality argument and continuation method.

  13. RESTRICTED NONLINEAR APPROXIMATION AND SINGULAR SOLUTIONS OF BOUNDARY INTEGRAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Reinhard Hochmuth

    2002-01-01

    This paper studies several problems, which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1 ] are chosen as a starting point for characterizations of functions in Besov spaces B , (0,1) with 0<σ<∞ and (1+σ)-1<τ<∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results.

  14. Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach spaces

    Institute of Scientific and Technical Information of China (English)

    LI Shoufu

    2005-01-01

    A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.

  15. Generalized Jacobi Elliptic Function Solution to a Class of Nonlinear Schrödinger-Type Equations

    Directory of Open Access Journals (Sweden)

    Zeid I. A. Al-Muhiameed

    2011-01-01

    Full Text Available With the help of the generalized Jacobi elliptic function, an improved Jacobi elliptic function method is used to construct exact traveling wave solutions of the nonlinear partial differential equations in a unified way. A class of nonlinear Schrödinger-type equations including the generalized Zakharov system, the Rangwala-Rao equation, and the Chen-Lee-Lin equation are investigated, and the exact solutions are derived with the aid of the homogenous balance principle.

  16. Analytic study of solutions for the Born-Infeld equation in nonlinear electrodynamics

    Science.gov (United States)

    Gao, Hui; Xu, Tianzhou; Fan, Tianyou; Wang, Gangwei

    2017-03-01

    The Born-Infeld equation is an important nonlinear partial differential equation in theoretical and mathematical physics. The Lie group method is used for simplifying the nonlinear partial differential equation, which is partly solved, in which there are some difficulties; to overcome the difficulties, we develop a power series method, and find the solutions in analytic form. In the mean time, a wave propagation (traveling wave) method is developed for solving the equation, and analytic solutions are also constructed.

  17. Complex Tanh-Function Expansion Method and Exact Solutions to Two Systems of Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANGJin-Liang; WANGMing-Liang

    2004-01-01

    The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schroedinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.

  18. Complex Tanh-Function Expansion Method and Exact Solutions to Two Systems of Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Liang; WANG Ming-Liang

    2004-01-01

    The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schrodinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.

  19. Exact traveling wave solution of nonlinear variants of the RLW and the PHI-four equations

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish), Suez Canal University, AL-Arish 45111 (Egypt); Department of Mathematics, Teacher' s College, Bisha, P.O. Box 551 (Saudi Arabia)], E-mail: asoliman_99@yahoo.com

    2007-08-27

    By means of the modified extended tanh-function (METF) method the multiple traveling wave solutions of some different kinds of nonlinear partial differential equations are presented and implemented in a computer algebraic system. The solutions for the nonlinear equations such as variants of the RLW and variant of the PHI-four equations are exactly obtained and so the efficiency of the method can be demonstrated.

  20. The extended (′/)-expansion method and travelling wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity

    Indian Academy of Sciences (India)

    Zaiyun Zhang; Jianhua Huang; Juan Zhong; Sha-Sha Dou; Jiao Liu; Dan Peng; Ting Gao

    2014-06-01

    In this paper, we construct the travelling wave solutions to the perturbed nonlinear Schrödinger’s equation (NLSE) with Kerr law non-linearity by the extended (′/)-expansion method. Based on this method, we obtain abundant exact travelling wave solutions of NLSE with Kerr law nonlinearity with arbitrary parameters. The travelling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.

  1. Stochastic solution of a nonlinear fractional differential equation

    OpenAIRE

    Cipriano, F; Ouerdiane, H.; Mendes, R. Vilela

    2008-01-01

    A stochastic solution is constructed for a fractional generalization of the KPP (Kolmogorov, Petrovskii, Piskunov) equation. The solution uses a fractional generalization of the branching exponential process and propagation processes which are spectral integrals of Levy processes

  2. Construction of a series of travelling wave solutions to nonlinear equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Hong [School of Physics Science and Information Engineering, Liaocheng University, Shandong 252059 (China)], E-mail: ldzhaohong@hotmail.com

    2008-06-15

    In this paper, based on new auxiliary ordinary differential equation with a sixth-degree nonlinear term, we study the (1 + 1)-dimensional combined KdV-MKdV equation, Hirota equation and (2 + 1)-dimensional Davey-Stewartson equation. Then, a series of new types of travelling wave solutions are obtained which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions. The method used here can be also extended to many other nonlinear partial differential equations.

  3. Quantum stability of nonlinear wave type solutions with intrinsic mass parameter in QCD

    Science.gov (United States)

    Kim, Youngman; Lee, Bum-Hoon; Pak, D. G.; Park, Chanyong; Tsukioka, Takuya

    2017-09-01

    The problem of the existence of a stable vacuum field in pure QCD is revised. Our approach is based on using classical stationary nonlinear wave type solutions with an intrinsic mass scale parameter. Such solutions can be treated as quantum-mechanical wave functions describing massive spinless states in quantum theory. We verify whether nonlinear wave type solutions can form a stable vacuum field background within the framework of the effective action formalism. We demonstrate that there is a special class of stationary generalized Wu-Yang monopole solutions that are stable against quantum gluon fluctuations.

  4. Solution of (3+1-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform Method

    Directory of Open Access Journals (Sweden)

    Hassan A. Zedan

    2012-01-01

    Full Text Available Four-dimensional differential transform method has been introduced and fundamental theorems have been defined for the first time. Moreover, as an application of four-dimensional differential transform, exact solutions of nonlinear system of partial differential equations have been investigated. The results of the present method are compared very well with analytical solution of the system. Differential transform method can easily be applied to linear or nonlinear problems and reduces the size of computational work. With this method, exact solutions may be obtained without any need of cumbersome work, and it is a useful tool for analytical and numerical solutions.

  5. Solution of Excited Non-Linear Oscillators under Damping Effects Using the Modified Differential Transform Method

    Directory of Open Access Journals (Sweden)

    H. M. Abdelhafez

    2016-03-01

    Full Text Available The modified differential transform method (MDTM, Laplace transform and Padé approximants are used to investigate a semi-analytic form of solutions of nonlinear oscillators in a large time domain. Forced Duffing and forced van der Pol oscillators under damping effect are studied to investigate semi-analytic forms of solutions. Moreover, solutions of the suggested nonlinear oscillators are obtained using the fourth-order Runge-Kutta numerical solution method. A comparison of the result by the numerical Runge-Kutta fourth-order accuracy method is compared with the result by the MDTM and plotted in a long time domain.

  6. Solution of transient optimization problems by using an algorithm based on nonlinear programming

    Science.gov (United States)

    Teren, F.

    1977-01-01

    A new algorithm is presented for solution of dynamic optimization problems which are nonlinear in the state variables and linear in the control variables. It is shown that the optimal control is bang-bang. A nominal bang-bang solution is found which satisfies the system equations and constraints, and influence functions are generated which check the optimality of the solution. Nonlinear optimization (gradient search) techniques are used to find the optimal solution. The algorithm is used to find a minimum time acceleration for a turbofan engine.

  7. Global Existence and Uniqueness of Solutions to Evolution p-Laplacian Systems with Nonlinear Sources

    Institute of Scientific and Technical Information of China (English)

    WEI Yingjie; GAO Wenjie

    2013-01-01

    This paper presents the global existence and uniqueness of the initial and boundary value problem to a system of evolution p-Laplacian equations coupled with general nonlinear terms.The authors use skills of inequality estimation and the method of regularization to construct a sequence of approximation solutions,hence obtain the global existence of solutions to a regularized system.Then the global existence of solutions to the system of evolution p-Laplacian equations is obtained with the application of a standard limiting process.The uniqueness of the solution is proven when the nonlinear terms are local Lipschitz continuous.

  8. New Doubly Periodic Solutions of Nonlinear Evolution Equations via Weierstrass Elliptic Function Expansion Algorithm

    Institute of Scientific and Technical Information of China (English)

    YAN Zhen-Ya

    2004-01-01

    A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the correspondingsystem of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2+1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.

  9. New Doubly Periodic Solutions of Nonlinear Evolution Equations via Weierstrass Elliptic Function Expansion Algorithm

    Institute of Scientific and Technical Information of China (English)

    YANZhen-Ya

    2004-01-01

    A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the corresponding system of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2+1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.

  10. Rogue waves: from nonlinear Schrödinger breather solutions to sea-keeping test.

    Science.gov (United States)

    Onorato, Miguel; Proment, Davide; Clauss, Günther; Klein, Marco

    2013-01-01

    Under suitable assumptions, the nonlinear dynamics of surface gravity waves can be modeled by the one-dimensional nonlinear Schrödinger equation. Besides traveling wave solutions like solitons, this model admits also breather solutions that are now considered as prototypes of rogue waves in ocean. We propose a novel technique to study the interaction between waves and ships/structures during extreme ocean conditions using such breather solutions. In particular, we discuss a state of the art sea-keeping test in a 90-meter long wave tank by creating a Peregrine breather solution hitting a scaled chemical tanker and we discuss its potential devastating effects on the ship.

  11. Solution of transient optimization problems by using an algorithm based on nonlinear programming

    Science.gov (United States)

    Teren, F.

    1977-01-01

    A new algorithm is presented for solution of dynamic optimization problems which are nonlinear in the state variables and linear in the control variables. It is shown that the optimal control is bang-bang. A nominal bang-bang solution is found which satisfies the system equations and constraints, and influence functions are generated which check the optimality of the solution. Nonlinear optimization (gradient search) techniques are used to find the optimal solution. The algorithm is used to find a minimum time acceleration for a turbofan engine.

  12. Multilevel adaptive solution procedure for material nonlinear problems in visual programming environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.; Ghanem, R. [State Univ. of New York, Buffalo, NY (United States)

    1994-12-31

    Multigrid solution technique to solve a material nonlinear problem in a visual programming environment using the finite element method is discussed. The nonlinear equation of equilibrium is linearized to incremental form using Newton-Rapson technique, then multigrid solution technique is used to solve linear equations at each Newton-Rapson step. In the process, adaptive mesh refinement, which is based on the bisection of a pair of triangles, is used to form grid hierarchy for multigrid iteration. The solution process is implemented in a visual programming environment with distributed computing capability, which enables more intuitive understanding of solution process, and more effective use of resources.

  13. Time-dependent exact solutions of the nonlinear Kompaneets equation

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, N H, E-mail: nib@bth.s [Department of Mathematics and Science, Blekinge Institute of Technology, 371 79 Karlskrona (Sweden)

    2010-12-17

    Time-dependent exact solutions of the Kompaneets photon diffusion equation are obtained for several approximations of this equation. One of the approximations describes the case when the induced scattering is dominant. In this case, the Kompaneets equation has an additional symmetry which is used for constructing some exact solutions as group invariant solutions. (fast track communication)

  14. Non-linear analytical solutions for laterally loaded sandwich plates

    DEFF Research Database (Denmark)

    Riber, Hans Jørgen

    1997-01-01

    This work focuses on the response of orthotropic sandwich composite plates with large deflections due to high lateral loads. The results have special application to the design of ship structures. A geometrical nonlinear theory is outlined, on the basis of the classical sandwich plate theory...... of sandwich plates subjected to high lateral loading. (C) 1997 Published by Elsevier Science Ltd. All rights reserved....

  15. Large Time Asymptotics for Solutions of Nonlinear Partial Differential Equations

    CERN Document Server

    Sachdev, PL

    2010-01-01

    A large number of physical phenomena are modeled by nonlinear partial differential equations, subject to appropriate initial/boundary conditions. This title presents the constructive mathematical techniques. It deals with the asymptotic methods which include self-similarity, balancing argument, and matched asymptotic expansions

  16. Accurate Simulations of Binary Black-Hole Mergers in Force-Free Electrodynamics

    CERN Document Server

    Alic, Daniela; Rezzolla, Luciano; Zanotti, Olindo; Jaramillo, Jose Luis

    2012-01-01

    We provide additional information on our recent study of the electromagnetic emission produced during the inspiral and merger of supermassive black holes when these are immersed in a force-free plasma threaded by a uniform magnetic field. As anticipated in a recent letter, our results show that although a dual-jet structure is present, the associated luminosity is ~ 100 times smaller than the total one, which is predominantly quadrupolar. We here discuss the details of our implementation of the equations in which the force-free condition is not implemented at a discrete level, but rather obtained via a damping scheme which drives the solution to satisfy the correct condition. We show that this is important for a correct and accurate description of the current sheets that can develop in the course of the simulation. We also study in greater detail the three-dimensional charge distribution produced as a consequence of the inspiral and show that during the inspiral it possesses a complex but ordered structure wh...

  17. A Table Lookup Method for Exact Analytical Solutions of Nonlinear Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Ji Juan-Juan

    2017-01-01

    Full Text Available A table lookup method for solving nonlinear fractional partial differential equations (fPDEs is proposed in this paper. Looking up the corresponding tables, we can quickly obtain the exact analytical solutions of fPDEs by using this method. To illustrate the validity of the method, we apply it to construct the exact analytical solutions of four nonlinear fPDEs, namely, the time fractional simplified MCH equation, the space-time fractional combined KdV-mKdV equation, the (2+1-dimensional time fractional Zoomeron equation, and the space-time fractional ZKBBM equation. As a result, many new types of exact analytical solutions are obtained including triangular periodic solution, hyperbolic function solution, singular solution, multiple solitary wave solution, and Jacobi elliptic function solution.

  18. Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate elliptic equations

    Directory of Open Access Journals (Sweden)

    Espen R. Jakobsen

    2002-05-01

    Full Text Available Using the maximum principle for semicontinuous functions [3,4], we prove a general ``continuous dependence on the nonlinearities'' estimate for bounded Holder continuous viscosity solutions of fully nonlinear degenerate elliptic equations. Furthermore, we provide existence, uniqueness, and Holder continuity results for bounded viscosity solutions of such equations. Our results are general enough to encompass Hamilton-Jacobi-Bellman-Isaacs's equations of zero-sum, two-player stochastic differential games. An immediate consequence of the results obtained herein is a rate of convergence for the vanishing viscosity method for fully nonlinear degenerate elliptic equations.

  19. On the Approximate Analytical Solution to Non-Linear Oscillation Systems

    Directory of Open Access Journals (Sweden)

    Mahmoud Bayat

    2013-01-01

    Full Text Available This study describes an analytical method to study two well-known systems of nonlinear oscillators. One of these systems deals with the strongly nonlinear vibrations of an elastically restrained beam with a lumped mass. The other is a Duffing equation with constant coefficients. A new implementation of the Variational Approach (VA is presented to obtain highly accurate analytical solutions to free vibration of conservative oscillators with inertia and static type cubic nonlinearities. In the end, numerical comparisons are conducted between the results obtained by the Variational Approach and numerical solution using Runge-Kutta's [RK] algorithm to illustrate the effectiveness and convenience of the proposed methods.

  20. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Estrada, R.F.

    1979-08-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly.

  1. ANTI-PERIODIC SOLUTIONS FOR FIRST AND SECOND ORDER NONLINEAR EVOLUTION EQUATIONS IN BANACH SPACES

    Institute of Scientific and Technical Information of China (English)

    WEI Wei; XIANG Xiaoling

    2004-01-01

    In this paper, a new existence theorem of anti-periodic solutions for a class ofstrongly nonlinear evolution equations in Banach spaces is presentedThe equations con-tain nonlinear monotone operators and a nonmonotone perturbationMoreover, throughan appropriate transformation, the existence of anti-periodic solutions for a class of second-order nonlinear evolution equations is verifiedOur abstract results are illustrated by anexample from quasi-linear partial differential equations with time anti-periodic conditionsand an example from quasi-linear anti-periodic hyperbolic differential equations.

  2. Nonlinear grid error effects on numerical solution of partial differential equations

    Science.gov (United States)

    Dey, S. K.

    1980-01-01

    Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.

  3. Regarding on the exact solutions for the nonlinear fractional differential equations

    Directory of Open Access Journals (Sweden)

    Kaplan Melike

    2016-01-01

    Full Text Available In this work, we have considered the modified simple equation (MSE method for obtaining exact solutions of nonlinear fractional-order differential equations. The space-time fractional equal width (EW and the modified equal width (mEW equation are considered for illustrating the effectiveness of the algorithm. It has been observed that all exact solutions obtained in this paper verify the nonlinear ordinary differential equations which was obtained from nonlinear fractional-order differential equations under the terms of wave transformation relationship. The obtained results are shown graphically.

  4. Cusp solitons and cusp-like singular solutions for nonlinear equations

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Zhijun [Department of Mathematics, University of Texas Pan-American, 1201 West University Drive, Edinburg, TX 78539 (United States) and Institute of Mathematics, Fudan University, Shanghai 200433 (China)]. E-mail: qiao@utpa.edu; Qiao, Xin Brian [Memorial High School, 101E Hackberry, McAllen TX 78501 (United States)

    2005-07-01

    This paper gives two new families of nonlinear partial differential equations (PDEs). One has cusp soliton solution while the other possesses the cusp-like singular traveling wave solution. A typical integrable system: Harry-Dym (HD) equation is able to be contained in both families and has cusp soliton solution as well as cusp-like singular traveling wave solution. We prove that the cusp solution of the HD equation is not stable and the cusp-like solution is not included in the parametric solutions of the HD equati0008.

  5. Energetics of slope flows: linear and weakly nonlinear solutions of the extended Prandtl model

    Science.gov (United States)

    Güttler, Ivan; Marinović, Ivana; Večenaj, Željko; Grisogono, Branko

    2016-07-01

    The Prandtl model succinctly combines the 1D stationary boundary-layer dynamics and thermodynamics of simple anabatic and katabatic flows over uniformly inclined surfaces. It assumes a balance between the along-the-slope buoyancy component and adiabatic warming/cooling, and the turbulent mixing of momentum and heat. In this study, energetics of the Prandtl model is addressed in terms of the total energy (TE) concept. Furthermore, since the authors recently developed a weakly nonlinear version of the Prandtl model, the TE approach is also exercised on this extended model version, which includes an additional nonlinear term in the thermodynamic equation. Hence, interplay among diffusion, dissipation and temperature-wind interaction of the mean slope flow is further explored. The TE of the nonlinear Prandtl model is assessed in an ensemble of solutions where the Prandtl number, the slope angle and the nonlinearity parameter are perturbed. It is shown that nonlinear effects have the lowest impact on variability in the ensemble of solutions of the weakly nonlinear Prandtl model when compared to the other two governing parameters. The general behavior of the nonlinear solution is similar to the linear solution, except that the maximum of the along-the-slope wind speed in the nonlinear solution reduces for larger slopes. Also, the dominance of PE near the sloped surface, and the elevated maximum of KE in the linear and nonlinear energetics of the extended Prandtl model are found in the PASTEX-94 measurements. The corresponding level where KE>PE most likely marks the bottom of the sublayer subject to shear-driven instabilities. Finally, possible limitations of the weakly nonlinear solutions of the extended Prandtl model are raised. In linear solutions, the local storage of TE term is zero, reflecting the stationarity of solutions by definition. However, in nonlinear solutions, the diffusion, dissipation and interaction terms (where the height of the maximum interaction is

  6. New approximate solutions for the strongly nonlinear cubic-quintic duffing oscillators

    Science.gov (United States)

    Karahan, M. M. Fatih; Pakdemirli, Mehmet

    2016-06-01

    Strongly nonlinear cubic-quintic Duffing oscillator is considered. Approximate solutions are derived using the multiple scales Lindstedt Poincare method (MSLP), a relatively new method developed for strongly nonlinear oscillators. The free undamped oscillator is considered first. Approximate analytical solutions of the MSLP are contrasted with the classical multiple scales (MS) method and numerical simulations. It is found that contrary to the classical MS method, the MSLP can provide acceptable solutions for the case of strong nonlinearities. Next, the forced and damped case is treated. Frequency response curves of both the MS and MSLP methods are obtained and contrasted with the numerical solutions. The MSLP method and numerical simulations are in good agreement while there are discrepancies between the MS and numerical solutions.

  7. Exact solutions of SO(3) non-linear sigma model in a conic space background

    CERN Document Server

    Bezerra, V B; Romero, C

    2005-01-01

    We consider a nonlinear sigma model coupled to the metric of a conic space. We obtain restrictions for a nonlinear sigma model to be a source of the conic space. We then study nonlinear sigma model in the conic space background. We find coordinate transformations which reduce the chiral fields equations in the conic space background to field equations in Minkowski spacetime. This enables us to apply the same methods for obtaining exact solutions in Minkowski spacetime to the case of a conic spacetime. In the case the solutions depend on two spatial coordinates we employ Ivanov's geometrical ansatz. We give a general analysis and also present classes of solutions in which there is dependence on three and four coordinates. We discuss with special attention the intermediate instanton and meron solutions and their analogous in the conic space. We find differences in the total actions and topological charges of these solutions and discuss the role of the deficit angle.

  8. Numerical computation of solutions of the critical nonlinear Schrodinger equation after the singularity

    CERN Document Server

    Stinis, Panagiotis

    2010-01-01

    We present numerical results for the solution of the 1D critical nonlinear Schrodinger with periodic boundary conditions and initial data that give rise to a finite time singularity. We construct, through the Mori-Zwanzig formalism, a reduced model which allows us to follow the solution after the formation of the singularity. The computed post-singularity solution exhibits the same characteristics as the post-singularity solutions constructed recently by Terence Tao.

  9. Maximal Saddle Solution of a Nonlinear Elliptic Equation Involving the -Laplacian

    Indian Academy of Sciences (India)

    Huahui Yan; Zhuoran Du

    2014-02-01

    A saddle solution is called maximal saddle solution if its absolute value is not smaller than those absolute values of any solutions that vanish on the Simons cone $\\mathcal{C} = \\{s = t\\}$ and have the same sign as - . We prove the existence of a maximal saddle solution of the nonlinear elliptic equation involving the -Laplacian, by using the method of monotone iteration, $$-_{p^u}=f(u) \\quad \\text{in} \\quad R^{2m},$$ where $2m≥ p > 2$.

  10. Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions

    Science.gov (United States)

    Fang, Tiegang

    2014-05-01

    In this paper, the magnetohydrodynamic (MHD) flow over a nonlinearly (power-law velocity) moving surface is investigated analytically and solutions are presented for a few special conditions. The solutions are obtained in closed forms with hyperbolic functions. The effects of the magnetic, the wall moving, and the mass transpiration parameters are discussed. These solutions are important to show the flow physics as well as to be used as bench mark problems for numerical validation and development of new solution schemes.

  11. Traveling wave solution of fractional KdV-Burger-Kuramoto equation describing nonlinear physical phenomena

    Science.gov (United States)

    Gupta, A. K.; Ray, S. Saha

    2014-09-01

    In this paper, KdV-Burger-Kuramoto equation involving instability, dissipation, and dispersion parameters is solved numerically. The numerical solution for the fractional order KdV-Burger-Kuramoto (KBK) equation has been presented using two-dimensional Legendre wavelet method. The approximate solutions of nonlinear fractional KBK equation thus obtained by Legendre wavelet method are compared with the exact solutions. The present scheme is very simple, effective and convenient for obtaining numerical solution of the KBK equation.

  12. Traveling wave solution of fractional KdV-Burger-Kuramoto equation describing nonlinear physical phenomena

    Directory of Open Access Journals (Sweden)

    A. K. Gupta

    2014-09-01

    Full Text Available In this paper, KdV-Burger-Kuramoto equation involving instability, dissipation, and dispersion parameters is solved numerically. The numerical solution for the fractional order KdV-Burger-Kuramoto (KBK equation has been presented using two-dimensional Legendre wavelet method. The approximate solutions of nonlinear fractional KBK equation thus obtained by Legendre wavelet method are compared with the exact solutions. The present scheme is very simple, effective and convenient for obtaining numerical solution of the KBK equation.

  13. Exact travelling solutions for some nonlinear physical models by (′/)-expansion method

    Indian Academy of Sciences (India)

    B Salim Bahrami; H Abdollahzadeh; I M Berijani; D D Ganji; M Abdollahzadeh

    2011-08-01

    In this paper, we establish exact solutions for some special nonlinear partial differential equations. The (′/)-expansion method is used to construct travelling wave solutions of the twodimensional sine-Gordon equation, Dodd–Bullough–Mikhailov and Schrödinger–KdV equations, which appear in many fields such as, solid-state physics, nonlinear optics, fluid dynamics, fluid flow, quantum field theory, electromagnetic waves and so on. In this method we take the advantage of general solutions of second-order linear ordinary differential equation (LODE) to solve many nonlinear evolution equations effectively. The (′/)-expansion method is direct, concise and elementary and can be used with a wider applicability for handling many nonlinear wave equations.

  14. Existence of solutions to nonlinear Hammerstein integral equations and applications

    Science.gov (United States)

    Li, Fuyi; Li, Yuhua; Liang, Zhanping

    2006-11-01

    In this paper, we study the existence and multiplicity of solutions of the operator equation Kfu=u in the real Hilbert space L2(G). Under certain conditions on the linear operator K, we establish the conditions on f which are able to guarantee that the operator equation has at least one solution, a unique solution, and infinitely many solutions, respectively. The monotone operator principle and the critical point theory are employed to discuss this problem, respectively. In argument, quadratic root operator K1/2 and its properties play an important role. As an application, we investigate the existence and multiplicity of solutions to fourth-order boundary value problems for ordinary differential equations with two parameters, and give some new existence results of solutions.

  15. Multiple optimal solutions to a sort of nonlinear optimization problem

    Institute of Scientific and Technical Information of China (English)

    Xue Shengjia

    2007-01-01

    The optimization problem is considered in which the objective function is pseudolinear(both pseudoconvex and pseudoconcave) and the constraints are linear. The general expression for the optimal solutions to the problem is derived with the representation theorem of polyhedral sets, and the uniqueness condition of the optimal solution and the computational procedures to determine all optimal solutions ( ifthe uniqueness condition is not satisfied ) are provided. Finally, an illustrative example is also given.

  16. Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations

    Directory of Open Access Journals (Sweden)

    E. Messina

    2008-01-01

    Full Text Available We consider nonlinear difference equations of unbounded order of the form xi=bi−∑j=0iai,jfi−j(xj,  i=0,1,2,…, where fj(x  (j=0,…,i are suitable functions. We establish sufficient conditions for the boundedness and the convergence of xi as i→+∞. Some of these conditions are interesting mainly for studying stability of numerical methods for Volterra integral equations.

  17. Existence of positive solutions to a Laplace equation with nonlinear boundary condition

    Science.gov (United States)

    Kim, C.-G.; Liang, Z.-P.; Shi, J.-P.

    2015-12-01

    The positive solutions of a Laplace equation with a superlinear nonlinear boundary condition on a bounded domain are studied. For higher-dimensional domains, it is shown that non-constant positive solutions bifurcate from a branch of trivial solutions at a sequence of bifurcation points, and under additional conditions on nonlinearity, the existence of a non-constant positive solution for any sufficiently large parameter value is proved by using variational approach. It is also proved that for one-dimensional domain, there is only one bifurcation point, all non-constant positive solutions lie on the bifurcating curve, and for large parameter values, there exist at least two non-constant positive solutions. For a special case, there are exactly two non-constant positive solutions.

  18. Radially Symmetric Solutions of a Nonlinear Elliptic Equation

    Directory of Open Access Journals (Sweden)

    Edward P. Krisner

    2011-01-01

    Full Text Available We investigate the existence and asymptotic behavior of positive, radially symmetric singular solutions of +((−1/−||−1=0, >0. We focus on the parameter regime >2 and 10. Our advance is to develop a technique to efficiently classify the behavior of solutions which are positive on a maximal positive interval (min,max. Our approach is to transform the nonautonomous equation into an autonomous ODE. This reduces the problem to analyzing the behavior of solutions in the phase plane of the autonomous equation. We then show how specific solutions of the autonomous equation give rise to the existence of several new families of singular solutions of the equation. Specifically, we prove the existence of a family of singular solutions which exist on the entire interval (0,∞, and which satisfy 00. An important open problem for the nonautonomous equation is presented. Its solution would lead to the existence of a new family of “super singular” solutions which lie entirely above 1(.

  19. The bright soliton solutions of two variable-coefficient coupled nonlinear Schroedinger equations in optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dengshan [CEMA and CIAS, Central Univ. of Finance and Economics, BJ (China); BNLCMP, Inst. of Physics, Chinese Academy of Sciences, BJ (China); Liu Yifang [School of Economics, Central Univ. of Finance and Economics, BJ (China)

    2010-01-15

    In this paper, with the aid of symbolic computation the bright soliton solutions of two variable-coefficient coupled nonlinear Schroedinger equations are obtained by Hirota's method. Some figures are plotted to illustrate the properties of the obtained solutions. The properties are meaningful for the investigation on the stability of soliton propagation in the optical soliton communications. (orig.)

  20. The periodic wave solutions for two systems of nonlinear wave equations

    Institute of Scientific and Technical Information of China (English)

    王明亮; 王跃明; 张金良

    2003-01-01

    The periodic wave solutions for the Zakharov system of nonlinear wave equations and a long-short-wave interaction system are obtained by using the F-expansion method, which can be regarded as an overall generalization of Jacobi elliptic function expansion proposed recently. In the limit cases, the solitary wave solutions for the systems are also obtained.

  1. Special Conditional Similarity Reduction Solutions for Two Nonlinear Partial Differential Equations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We present a method of special conditional similarity reduction solutions for nonlinear partial differential equations. As concrete examples of its application, we apply this method to the (2+1)-dimensional modified Broer-Kaup equations and the variable coefficient KdV-mKdV equation, which have extensive physics backgrounds, and obtain abundant exact solutions derived from some reduction equations.

  2. The homotopic mapping solution for the solitary wave for a generalized nonlinear evolution equation

    Institute of Scientific and Technical Information of China (English)

    Mo Jia-Qi; Lin Su-Rong

    2009-01-01

    This paper studies a generalized nonlinear evolution equation. Using the homotopic mapping method,it constructs a corresponding homotopic mapping transform. Selecting a suitable initial approximation and using homotopic mapping,it obtains an approximate solution with an arbitrary degree of accuracy for the solitary wave. From the approximate solution obtained by using the homotopic mapping method,it possesses a good accuracy.

  3. Asymptotic Behavior of Global Solution for Nonlinear Generalized Euler-Possion-Darboux Equation

    Institute of Scientific and Technical Information of China (English)

    LIANGBao-song; CHENZhen

    2004-01-01

    J. L Lions and W. A. Stranss [1] have proved the existence of a global solution of the initial boundary value problem for nonlinear generalized Euler-Possion-Darboux equation. In this paper we are going to investigate the asymptotic behavior of the global solution by a difference inequality.

  4. Oscillatory and Asymptotic Behavior of Solutions for Nonlinear Impulsive Delay Differential Equations

    Institute of Scientific and Technical Information of China (English)

    Wei-hua Mao; An-hua Wan

    2006-01-01

    The oscillatory and asymptotic behavior of the solutions for third order nonlinear impulsive delay differential equations are investigated. Some novel criteria for all solutions to be oscillatory or be asymptotic are established. Three illustrative examples are proposed to demonstrate the effectiveness of the conditions.

  5. The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations

    Indian Academy of Sciences (India)

    Wenjun Liu; Kewang Chen

    2013-09-01

    In this paper, we implemented the functional variable method and the modified Riemann–Liouville derivative for the exact solitary wave solutions and periodic wave solutions of the time-fractional Klein–Gordon equation, and the time-fractional Hirota–Satsuma coupled KdV system. This method is extremely simple but effective for handling nonlinear time-fractional differential equations.

  6. Travelling wave solutions to nonlinear physical models by means of the first integral method

    Indian Academy of Sciences (India)

    İsmail Aslan Aslan

    2011-04-01

    This paper presents the first integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established first integrals, exact solutions are successfully constructed for the equations considered.

  7. ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR NONLINEAR SYSTEM WITH MULTIPLE DELAYS

    Institute of Scientific and Technical Information of China (English)

    曹显兵

    2003-01-01

    The existence of T-periodic solutions of the nonlinear system with multiple delaysis studied. By using the topological degree method, sufficient conditions are obtained forthe existence of T-periodic solutions. As an application, the existence of positive periodicsolution for a logarithmic population model is established under some conditions.

  8. Some examples of non-linear systems and characteristics of their solutions

    CSIR Research Space (South Africa)

    Greben, JM

    2006-07-01

    Full Text Available . In contrast to certain other applications in complexity theory, these non-linear solutions are characterized by great stability. To go beyond the dominant non-perturbative solution one has to consider the source term as well. The parameter freedom...

  9. SEMIDISCRETIZATION IN SPACE OF NONLINEAR DEGENERATE PARABOLIC EQUATIONS WITH BLOW-UP OF THE SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    Tetsuya Ishiwata; Masayoshi Tsutsumi

    2000-01-01

    Semidiscretization in space of nonlinear degenerate parabolic equations of nondivergent form is presented, under zero Dirichlet boundary condition. It is shown that semidiscrete solutions blow up in finite time. In particular, the asymptotic behavior of blowing-up solutions, is discussed precisely.

  10. Positive Solutions for Nonlinear Singular Differential Systems Involving Parameter on the Half-Line

    Directory of Open Access Journals (Sweden)

    Lishan Liu

    2012-01-01

    Full Text Available By using the upper-lower solutions method and the fixed-point theorem on cone in a special space, we study the singular boundary value problem for systems of nonlinear second-order differential equations involving two parameters on the half-line. Some results for the existence, nonexistence and multiplicity of positive solutions for the problem are obtained.

  11. Positive Solutions for Nonlinear Fractional Differential Equations with Boundary Conditions Involving Riemann-Stieltjes Integrals

    Directory of Open Access Journals (Sweden)

    Jiqiang Jiang

    2012-01-01

    Full Text Available We consider the existence of positive solutions for a class of nonlinear integral boundary value problems for fractional differential equations. By using some fixed point theorems, the existence and multiplicity results of positive solutions are obtained. The results obtained in this paper improve and generalize some well-known results.

  12. Positive Solutions of a Nonlinear Fourth-order Integral Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    Benaicha Slimane

    2016-07-01

    Full Text Available In this paper, the existence of positive solutions for a nonlinear fourth-order two-point boundary value problem with integral condition is investigated. By using Krasnoselskii’s fixed point theorem on cones, sufficient conditions for the existence of at least one positive solutions are obtained.

  13. Classification of Exact Solutions for Some Nonlinear Partial Differential Equations with Generalized Evolution

    Directory of Open Access Journals (Sweden)

    Yusuf Pandir

    2012-01-01

    Full Text Available We obtain the classification of exact solutions, including soliton, rational, and elliptic solutions, to the one-dimensional general improved Camassa Holm KP equation and KdV equation by the complete discrimination system for polynomial method. In discussion, we propose a more general trial equation method for nonlinear partial differential equations with generalized evolution.

  14. THE EXISTENCE, UNIQUENESS AND STABILITY OF ALMOST PERIODIC SOLUTION FOR A CLASS OF NONLINEAR SYSTEM

    Institute of Scientific and Technical Information of China (English)

    方聪娜; 王全义

    2004-01-01

    In this paper, we study the problems on the existence, uniqueness and stability of almost periodic solution for a class of nonlinear system. Using fixed point theorem and Lyapunov functional, the sufficient conditions are given which guarantee the existence, uniqueness and stability of almost periodic solution for the system.

  15. Subharmonic Solutions of Nonautonomous Second Order Differential Equations with Singular Nonlinearities

    Directory of Open Access Journals (Sweden)

    N. Daoudi-Merzagui

    2012-01-01

    Full Text Available We discuss the existence of subharmonic solutions for nonautonomous second order differential equations with singular nonlinearities. Simple sufficient conditions are provided enable us to obtain infinitely many distinct subharmonic solutions. Our approach is based on a variational method, in particular the saddle point theorem.

  16. Traveling Wave Solutions for a Delayed SIRS Infectious Disease Model with Nonlocal Diffusion and Nonlinear Incidence

    Directory of Open Access Journals (Sweden)

    Xiaohong Tian

    2014-01-01

    Full Text Available A delayed SIRS infectious disease model with nonlocal diffusion and nonlinear incidence is investigated. By constructing a pair of upper-lower solutions and using Schauder's fixed point theorem, we derive the existence of a traveling wave solution connecting the disease-free steady state and the endemic steady state.

  17. Existence of solutions for nonlinear mixed type integrodifferential equation of second order

    Directory of Open Access Journals (Sweden)

    Haribhau Laxman Tidke

    2010-04-01

    Full Text Available In this paper, we investigate the existence of solutions for nonlinear mixed Volterra-Fredholm integrodifferential equation of second order with nonlocal conditions in Banach spaces. Our analysis is based on Leray-Schauder alternative, rely on a priori bounds of solutions and the inequality established by B. G. Pachpatte.

  18. A Closed form Solution for Nonlinear Oscillators’ Frequencies Using Amplitude-Frequency Formulation

    DEFF Research Database (Denmark)

    Barari, Amin; Kimiaeifar, Amin; Nejad, M.G

    2012-01-01

    an analytical approach with a closed form expression for system response would be very useful in different applications. Some analytical techniques have been presented in the literature for the solution of strong nonlinear oscillators as well as approximate and numerical solutions. In this paper, Amplitude...

  19. Biorthogonal Systems Approximating the Solution of the Nonlinear Volterra Integro-Differential Equation

    Directory of Open Access Journals (Sweden)

    Berenguer MI

    2010-01-01

    Full Text Available This paper deals with obtaining a numerical method in order to approximate the solution of the nonlinear Volterra integro-differential equation. We define, following a fixed-point approach, a sequence of functions which approximate the solution of this type of equation, due to some properties of certain biorthogonal systems for the Banach spaces and .

  20. New solutions for two integrable cases of a generalized fifth-order nonlinear equation

    Science.gov (United States)

    Wazwaz, Abdul-Majid

    2015-05-01

    Multiple-complexiton solutions for a new generalized fifth-order nonlinear integrable equation are constructed with the help of the Hirota's method and the simplified Hirota's method. By extending the real parameters into complex parameters, nonsingular complexiton solutions are obtained for two specific coefficients of the new generalized equation.

  1. Spatiotemporal Self-Similar Solutions of the Generalized (3+1)-dimensional Nonlinear Schrdinger Equation with Polynomial Nonlinearity of Arbitrary Order

    Institute of Scientific and Technical Information of China (English)

    朱海平

    2012-01-01

    We construct analytical self-similar solutions for the generalized (3+1)-dimensional nonlinear Schrdinger equation with polynomial nonlinearity of arbitrary order. As an example, we list self-similar solutions of quintic nonlinear Schrdinger equation with distributed dispersion and distributed linear gain, including bright similariton solution, fractional and combined Jacobian elliptic function solutions. Moreover, we discuss self-similar evolutional dynamic behaviors of these solutions in the dispersion decreasing fiber and the periodic distributed amplification system.

  2. Propagation of quasiplane nonlinear waves in tubes and the approximate solutions of the generalized Burgers equation.

    Science.gov (United States)

    Bednarik, Michal; Konicek, Petr

    2002-07-01

    This paper deals with using the generalized Burgers equation for description of nonlinear waves in circular ducts. Two new approximate solutions of the generalized Burgers equation (GBE) are presented. These solutions take into account the boundary layer effects. The first solution is valid for the preshock region and gives more precise results than the Fubini solution, whereas the second one is valid for the postshock (sawtooth) region and provides better results than the Fay solution. The approximate solutions are compared with numerical results of the GBE. Furthermore, the limits of validity of the used model equation are discussed with respect to boundary conditions and radius of a circular duct.

  3. Periodic and solitary wave solutions of cubic–quintic nonlinear reaction-diffusion equation with variable convection coefficients

    Indian Academy of Sciences (India)

    BHARDWAJ S B; SINGH RAM MEHAR; SHARMA KUSHAL; MISHRA S C

    2016-06-01

    Attempts have been made to explore the exact periodic and solitary wave solutions of nonlinear reaction diffusion (RD) equation involving cubic–quintic nonlinearity along with timedependent convection coefficients. Effect of varying model coefficients on the physical parameters of solitary wave solutions is demonstrated. Depending upon the parametric condition, the periodic,double-kink, bell and antikink-type solutions for cubic–quintic nonlinear reaction-diffusion equation are extracted. Such solutions can be used to explain various biological and physical phenomena.

  4. Generalized Hyperbolic Function Solution to a Class of Nonlinear Schrödinger-Type Equations

    Directory of Open Access Journals (Sweden)

    Zeid I. A. Al-Muhiameed

    2012-01-01

    Full Text Available With the help of the generalized hyperbolic function, the subsidiary ordinary differential equation method is improved and proposed to construct exact traveling wave solutions of the nonlinear partial differential equations in a unified way. A class of nonlinear Schrödinger-type equations including the generalized Zakharov system, the Rangwala-Rao equation, and the Chen-Lee-Liu equation are investigated and the exact solutions are derived with the aid of the homogenous balance principle and generalized hyperbolic functions. We study the effect of the generalized hyperbolic function parameters p and q in the obtained solutions by using the computer simulation.

  5. A study of nonlinear radiation damping by matching analytic and numerical solutions

    Science.gov (United States)

    Anderson, J. L.; Hobill, D. W.

    1988-04-01

    In the present use of a mixed analytic-numerical matching scheme to study a linear oscillator that is coupled to a nonlinear field, the approximate causal solution constructed in the radiation zone was matched to a finite-differencing scheme-derived numerical solution in the inner zone. The required agreement of the two solutions in the overlap region permitted the extension of the numerical scheme arbitrarily into the future. The late time behavior of the system in all studied cases was independent of initial conditions. The linearized 'monopole energy loss' formula breaks down in cases of either fast motions or strong nonlinearities.

  6. Smooth solutions of non-linear stochastic partial differential equations driven by multiplicative noises

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, we study the regularity of solutions of nonlinear stochastic partial differential equations (SPDEs) with multiplicative noises in the framework of Hilbert scales. Then we apply our abstract result to several typical nonlinear SPDEs such as stochastic Burgers and Ginzburg-Landau equations on the real line, stochastic 2D Navier-Stokes equations (SNSEs) in the whole space and a stochastic tamed 3D Navier-Stokes equation in the whole space, and obtain the existence of their smooth solutions respectively. In particular, we also get the existence of local smooth solutions for 3D SNSEs.

  7. Asymptotic solution for a class of weakly nonlinear singularly perturbed reaction diffusion problem

    Institute of Scientific and Technical Information of China (English)

    TANG Rong-rong

    2009-01-01

    Under appropriate conditions, with the perturbation method and the theory of differential inequalities, a class of weakly nonlinear singularly perturbed reaction diffusion problem is considered. The existence of solution of the original problem is proved by constructing the auxiliary functions. The uniformly valid asymptotic expansions of the solution for arbitrary mth order approximation are obtained through constructing the formal solutions of the original problem, expanding the nonlinear terms to the power in small parameter e and comparing the coefficient for the same powers of ε. Finally, an example is provided, resulting in the error of O(ε2).

  8. Static solution of the general relativistic nonlinear $\\sigma$model equation

    CERN Document Server

    Lee, C H; Lee, H K; Lee, Chul H; Kim, Joon Ha; Lee, Hyun Kyu

    1994-01-01

    The nonlinear \\sigma-model is considered to be useful in describing hadrons (Skyrmions) in low energy hadron physics and the approximate behavior of the global texture. Here we investigate the properties of the static solution of the nonlinear \\sigma-model equation coupled with gravity. As in the case where gravity is ignored, there is still no scale parameter that determines the size of the static solution and the winding number of the solution is 1/2. The geometry of the spatial hyperspace in the asymptotic region of large r is explicitly shown to be that of a flat space with some missing solid angle.

  9. Enhanced Multistage Homotopy Perturbation Method: Approximate Solutions of Nonlinear Dynamic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Olvera

    2014-01-01

    Full Text Available We introduce a new approach called the enhanced multistage homotopy perturbation method (EMHPM that is based on the homotopy perturbation method (HPM and the usage of time subintervals to find the approximate solution of differential equations with strong nonlinearities. We also study the convergence of our proposed EMHPM approach based on the value of the control parameter h by following the homotopy analysis method (HAM. At the end of the paper, we compare the derived EMHPM approximate solutions of some nonlinear physical systems with their corresponding numerical integration solutions obtained by using the classical fourth order Runge-Kutta method via the amplitude-time response curves.

  10. Global search of non-linear systems periodic solutions: A rotordynamics application

    OpenAIRE

    Sarrouy, Emmanuelle; Thouverez, Fabrice

    2010-01-01

    International audience; Introducing non-linearities into models contributes towards a better reality description but leads to systems having multiple solutions. It is then legitimate to look for all the solutions of such systems, that is to have a global analysis approach. However no effective method can be found in literature for systems described by more than two or three degrees of freedom. We propose in this paper a way to find all T-periodic solutions--where T is known--of a non-linear d...

  11. A new solution procedure for a nonlinear infinite beam equation of motion

    Science.gov (United States)

    Jang, T. S.

    2016-10-01

    Our goal of this paper is of a purely theoretical question, however which would be fundamental in computational partial differential equations: Can a linear solution-structure for the equation of motion for an infinite nonlinear beam be directly manipulated for constructing its nonlinear solution? Here, the equation of motion is modeled as mathematically a fourth-order nonlinear partial differential equation. To answer the question, a pseudo-parameter is firstly introduced to modify the equation of motion. And then, an integral formalism for the modified equation is found here, being taken as a linear solution-structure. It enables us to formulate a nonlinear integral equation of second kind, equivalent to the original equation of motion. The fixed point approach, applied to the integral equation, results in proposing a new iterative solution procedure for constructing the nonlinear solution of the original beam equation of motion, which consists luckily of just the simple regular numerical integration for its iterative process; i.e., it appears to be fairly simple as well as straightforward to apply. A mathematical analysis is carried out on both natures of convergence and uniqueness of the iterative procedure by proving a contractive character of a nonlinear operator. It follows conclusively,therefore, that it would be one of the useful nonlinear strategies for integrating the equation of motion for a nonlinear infinite beam, whereby the preceding question may be answered. In addition, it may be worth noticing that the pseudo-parameter introduced here has double roles; firstly, it connects the original beam equation of motion with the integral equation, second, it is related with the convergence of the iterative method proposed here.

  12. Analytical Solutions to Nonlinear Conservative Oscillator with Fifth-Order Nonlinearity

    DEFF Research Database (Denmark)

    Sfahania, M. G.; Ganji, S. S.; Barari, Amin

    2010-01-01

    This paper describes analytical and numerical methods to analyze the steady state periodic response of an oscillator with symmetric elastic and inertia nonlinearity. A new implementation of the homotopy perturbation method (HPM) and an ancient Chinese method called the max-min approach are presen...

  13. Existence of solutions of nonlinear two-point boundary value problems for 4nth-order nonlinear differential equation

    Institute of Scientific and Technical Information of China (English)

    高永馨

    2002-01-01

    Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equation y(4n)= f( t,y,y' ,y",… ,y(4n-1) ) (a) with the boundary conditions g2i(y(2i) (a) ,y(2i+1) (a)) = 0,h2i(y(2i) (c) ,y(2i+1) (c)) = 0, (I= 0,1,…,2n - 1 ) (b) where the functions f, gi and hi are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equation y(n) = f(t,y,y',y",… ,y(n-1)) many results have been given at the present time. But the existence of solutions of boundary value problem (a), (b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, I.e. Existence of solutions of the boundary value problem. Y(4n) = f(t,y,y',y",… ,y(4n-1) ) a2iy(2i) (at) + a2i+1y(2i+1) (a) = b2i ,c2iy(2O ( c ) + c2i+1y(2i+1) ( c ) = d2i, ( I = 0,1 ,…2n - 1) has not been dealt with in previous works.

  14. Existence of solutions to fractional Hamiltonian systems with combined nonlinearities

    Directory of Open Access Journals (Sweden)

    Ziheng Zhang

    2016-01-01

    Full Text Available This article concerns the existence of solutions for the fractional Hamiltonian system $$\\displaylines{ - _tD^{\\alpha}_{\\infty}\\big(_{-\\infty}D^{\\alpha}_{t}u(t\\big -L(tu(t+\

  15. Existence of Weak Solutions for a Nonlinear Elliptic System

    Directory of Open Access Journals (Sweden)

    Gilbert RobertP

    2009-01-01

    Full Text Available We investigate the existence of weak solutions to the following Dirichlet boundary value problem, which occurs when modeling an injection molding process with a partial slip condition on the boundary. We have in ; in ; , and on .

  16. THREE SOLUTIONS THEOREMS FOR NONLINEAR OPERATOR EQUATIONS AND APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    SUN Jingxian; XU Xi'an

    2005-01-01

    In this paper, some three solutions theorems about a class of operators which are said to be limit-increasing are obtained. Some applications to the second order differential equations boundary value problems are given.

  17. Nodal Solutions for a Nonlinear Fourth-Order Eigenvalue Problem

    Institute of Scientific and Technical Information of China (English)

    Ru Yun MA; Bevan THOMPSON

    2008-01-01

    We are concerned with determining the values of λ, for which there exist nodal solutions of the fourth-order boundary value problem y =λa(x)f(y),00 for all u ≠0. We give conditions on the ratio f (s)/s,at infinity and zero, that guarantee the existence of nodal solutions.The proof of our main results is based upon bifurcation techniques.

  18. Nonlinear Alignment and Its Local Linear Iterative Solution

    Directory of Open Access Journals (Sweden)

    Sumin Zhang

    2016-01-01

    Full Text Available In manifold learning, the aim of alignment is to derive the global coordinate of manifold from the local coordinates of manifold’s patches. At present, most of manifold learning algorithms assume that the relation between the global and local coordinates is locally linear and based on this linear relation align the local coordinates of manifold’s patches into the global coordinate of manifold. There are two contributions in this paper. First, the nonlinear relation between the manifold’s global and local coordinates is deduced by making use of the differentiation of local pullback functions defined on the differential manifold. Second, the method of local linear iterative alignment is used to align the manifold’s local coordinates into the manifold’s global coordinate. The experimental results presented in this paper show that the errors of noniterative alignment are considerably large and can be reduced to almost zero within the first two iterations. The large errors of noniterative/linear alignment verify the nonlinear nature of alignment and justify the necessity of iterative alignment.

  19. An adaptive nonlinear solution scheme for reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lett, G.S. [Scientific Software - Intercomp, Inc., Denver, CO (United States)

    1996-12-31

    Numerical reservoir simulation involves solving large, nonlinear systems of PDE with strongly discontinuous coefficients. Because of the large demands on computer memory and CPU, most users must perform simulations on very coarse grids. The average properties of the fluids and rocks must be estimated on these grids. These coarse grid {open_quotes}effective{close_quotes} properties are costly to determine, and risky to use, since their optimal values depend on the fluid flow being simulated. Thus, they must be found by trial-and-error techniques, and the more coarse the grid, the poorer the results. This paper describes a numerical reservoir simulator which accepts fine scale properties and automatically generates multiple levels of coarse grid rock and fluid properties. The fine grid properties and the coarse grid simulation results are used to estimate discretization errors with multilevel error expansions. These expansions are local, and identify areas requiring local grid refinement. These refinements are added adoptively by the simulator, and the resulting composite grid equations are solved by a nonlinear Fast Adaptive Composite (FAC) Grid method, with a damped Newton algorithm being used on each local grid. The nonsymmetric linear system of equations resulting from Newton`s method are in turn solved by a preconditioned Conjugate Gradients-like algorithm. The scheme is demonstrated by performing fine and coarse grid simulations of several multiphase reservoirs from around the world.

  20. A nonlinear model arising in the buckling analysis and its new analytic approximate solution

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Yasir [Zhejiang Univ., Hangzhou, ZJ (China). Dept. of Mathematics; Al-Hayani, Waleed [Univ. Carlos III de Madrid, Leganes (Spain). Dept. de Matematicas; Mosul Univ. (Iraq). Dept. of Mathematics

    2013-05-15

    An analytical nonlinear buckling model where the rod is assumed to be an inextensible column and prismatic is studied. The dimensionless parameters reduce the constitutive equation to a nonlinear ordinary differential equation which is solved using the Adomian decomposition method (ADM) through Green's function technique. The nonlinear terms can be easily handled by the use of Adomian polynomials. The ADM technique allows us to obtain an approximate solution in a series form. Results are presented graphically to study the efficiency and accuracy of the method. To the author's knowledge, the current paper represents a new approach to the solution of the buckling of the rod problem. The fact that ADM solves nonlinear problems without using perturbations and small parameters can be judged as a lucid benefit of this technique over the other methods. (orig.)

  1. Existence of solutions for a Schrödinger system with linear and nonlinear couplings

    Science.gov (United States)

    Li, Kui; Zhang, Zhitao

    2016-08-01

    We study an important system of Schrödinger equations with linear and nonlinear couplings arising from Bose-Einstein condensates. We use the Nehari manifold to prove the existence of a ground state solution; moreover, we give the sign of the solutions depending on linear coupling; by using index theory and Nehari manifold, we prove that there exist infinitely many positive bound state solutions.

  2. Study of coupled nonlinear partial differential equations for finding exact analytical solutions.

    Science.gov (United States)

    Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H

    2015-07-01

    Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.

  3. Multiple positive solutions for Kirchhoff type problems involving concave and convex nonlinearities in R^3

    Directory of Open Access Journals (Sweden)

    Xiaofei Cao

    2016-11-01

    Full Text Available In this article, we consider the multiplicity of positive solutions for a class of Kirchhoff type problems with concave and convex nonlinearities. Under appropriate assumptions, we prove that the problem has at least two positive solutions, moreover, one of which is a positive ground state solution. Our approach is mainly based on the Nehari manifold, Ekeland variational principle and the theory of Lagrange multipliers.

  4. Solitary wave solution to a singularly perturbed generalized Gardner equation with nonlinear terms of any order

    Indian Academy of Sciences (India)

    J B ZHOU; J XU; J D WEI; X Q YANG

    2017-04-01

    This paper is concerned with the existence of travelling wave solutions to a singularly perturbed generalized Gardner equation with nonlinear terms of any order. By using geometric singular perturbation theory and based on the relation between solitary wave solution and homoclinic orbits of the associated ordinary differential equations, the persistence of solitary wave solutions of this equation is proved when the perturbation parameter is sufficiently small. The numerical simulations verify our theoretical analysis.

  5. Rogue wave solutions of the nonlinear Schrödinger eqution with variable coefficients

    Indian Academy of Sciences (India)

    Changfu Liu; Yan Yan Li; Meiping Gao; Zeping Wang; Zhengde Dai; Chuanjian Wang

    2015-12-01

    In this paper, a unified formula of a series of rogue wave solutions for the standard (1+1)-dimensional nonlinear Schrödinger equation is obtained through exp-function method. Further, by means of an appropriate transformation and previously obtained solutions, rogue wave solutions of the variable coefficient Schrödinger equation are also obtained. Two free functions of time and several arbitrary parameters are involved to generate a large number of wave structures.

  6. Can there be a general nonlinear PDE theory for the existence of solutions ?

    OpenAIRE

    2004-01-01

    Contrary to widespread perception, there is ever since 1994 a unified, general type independent theory for the existence of solutions for very large classes of nonlinear systems of PDEs. This solution method is based on the Dedekind order completion of suitable spaces of piece-wise smooth functions on the Euclidean domains of definition of the respective PDEs. The method can also deal with associated initial and/or boundary value problems. The solutions obtained can be assimilated with usual ...

  7. ASYMPTOTIC SOLUTION OF ACTIVATOR INHIBITOR SYSTEMS FOR NONLINEAR REACTION DIFFUSION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Jiaqi MO; Wantao LIN

    2008-01-01

    A nonlinear reaction diffusion equations for activator inhibitor systems is considered. Under suitable conditions, firstly, the outer solution of the original problem is obtained, secondly, using the variables of multiple scales and the expanding theory of power series the formal asymptotic expansions of the solution are constructed, and finally, using the theory of differential inequalities the uniform validity and asymptotic behavior of the solution are studied.

  8. Refinement of approximated solution of nonlinear differential equation of second order

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, E.P.; Sidorova, O.V.

    1982-01-01

    The boundary problem for nonlinear differential equation of the second order is considered. The problem is assumed to have a unique solution, stable over the right part. It was proved that if the step of the net is small, then the corresponding difference value problem has a unique solution, stable over the right part. Expansion over degrees of discrediting step for approximate solutions is established. The expansion allows one to apply the Richardson type extrapolation. Efficiency of extrapolation is illustrated by numerical example.

  9. Analytical solitary wave solutions of the nonlinear Kronig-Penney model in photonic structures.

    Science.gov (United States)

    Kominis, Y

    2006-06-01

    A phase space method is employed for the construction of analytical solitary wave solutions of the nonlinear Kronig-Penney model in a photonic structure. This class of solutions is obtained under quite generic conditions, while the method is applicable to a large variety of systems. The location of the solutions on the spectral band gap structure as well as on the low dimensional space of system's conserved quantities is studied, and robust solitary wave propagation is shown.

  10. Group Analysis of Nonlinear Internal Waves in Oceans. II: The symmetries and rotationally invariant solution

    CERN Document Server

    Ibragimov, Nail H; Kovalev, Vladimir F

    2011-01-01

    74J30The maximal group of Lie point symmetries of a system of nonlinear equations used in geophysical fluid dynamics is presented. The Lie algebra of this group is infinite-dimensional and involves three arbitrary functions of time. The invariant solution under the rotation and dilation is constructed. Qualitative analysis of the invariant solution is provided and the energy of this solution is presented.

  11. Solution model of nonlinear integral adjustment including different kinds of observing data with different precisions

    Institute of Scientific and Technical Information of China (English)

    郭金运; 陶华学

    2003-01-01

    In order to process different kinds of observing data with different precisions, a new solution model of nonlinear dynamic integral least squares adjustment was put forward, which is not dependent on their derivatives. The partial derivative of each component in the target function is not computed while iteratively solving the problem. Especially when the nonlinear target function is more complex and very difficult to solve the problem, the method can greatly reduce the computing load.

  12. Nonlinear self adjointness, conservation laws and exact solutions of ill-posed Boussinesq equation

    Science.gov (United States)

    Yaşar, Emrullah; San, Sait; Özkan, Yeşim Sağlam

    2016-01-01

    In this work, we consider the ill-posed Boussinesq equation which arises in shallow water waves and non-linear lattices. We prove that the ill-posed Boussinesq equation is nonlinearly self-adjoint. Using this property and Lie point symmetries, we construct conservation laws for the underlying equation. In addition, the generalized solitonary, periodic and compact-like solutions are constructed by the exp-function method.

  13. Singular and non-topological soliton solutions for nonlinear fractional differential equations

    Institute of Scientific and Technical Information of China (English)

    Ozkan Guner

    2015-01-01

    In this article, the fractional derivatives are described in the modified Riemann–Liouville sense. We propose a new approach, namely an ansatz method, for solving fractional differential equations (FDEs) based on a fractional complex transform and apply it to solve nonlinear space–time fractional equations. As a result, the non-topological as well as the singular soliton solutions are obtained. This method can be suitable and more powerful for solving other kinds of nonlinear fractional FDEs arising in mathematical physics.

  14. A procedure to construct exact solutions of nonlinear fractional differential equations.

    Science.gov (United States)

    Güner, Özkan; Cevikel, Adem C

    2014-01-01

    We use the fractional transformation to convert the nonlinear partial fractional differential equations with the nonlinear ordinary differential equations. The Exp-function method is extended to solve fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. We apply the Exp-function method to the time fractional Sharma-Tasso-Olver equation, the space fractional Burgers equation, and the time fractional fmKdV equation. As a result, we obtain some new exact solutions.

  15. Numerical solution of a class of nonlinear two-dimensional integral equations using Bernoulli polynomials

    Directory of Open Access Journals (Sweden)

    Sohrab Bazm

    2016-02-01

    Full Text Available In this study, the Bernoulli polynomials are used to obtain an approximate solution of a class of nonlinear two-dimensional integral equations. To this aim, the operational matrices of integration and the product for Bernoulli polynomials are derived and utilized to reduce the considered problem to a system of nonlinear algebraic equations. Some examples are presented to illustrate the efficiency and accuracy of the method.

  16. Global existence and decay of solutions of a nonlinear system of wave equations

    KAUST Repository

    Said-Houari, Belkacem

    2012-03-01

    This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.

  17. Solution of nonlinear Volterra-Hammerstein integral equations using alternative Legendre collocation method

    Directory of Open Access Journals (Sweden)

    Sohrab Bazm

    2016-11-01

    Full Text Available Alternative Legendre polynomials (ALPs are used to approximate the solution of a class of nonlinear Volterra-Hammerstein integral equations. For this purpose, the operational matrices of integration and the product for ALPs are derived. Then, using the collocation method, the considered problem is reduced into a set of nonlinear algebraic equations. The error analysis of the method is given and the efficiency and accuracy are illustrated by applying the method to some examples.

  18. Non Linear Force Free Field Modeling for a Pseudostreamer

    Science.gov (United States)

    Karna, Nishu; Savcheva, Antonia; Gibson, Sarah; Tassev, Svetlin V.

    2017-08-01

    In this study we present a magnetic configuration of a pseudostreamer observed on April 18, 2015 on southern west limb embedding a filament cavity. We constructed Non Linear Force Free Field (NLFFF) model using the flux rope insertion method. The NLFFF model produces the three-dimensional coronal magnetic field constrained by observed coronal structures and photospheric magnetogram. SDO/HMI magnetogram was used as an input for the model. The high spatial and temporal resolution of the SDO/AIA allows us to select best-fit models that match the observations. The MLSO/CoMP observations provide full-Sun observations of the magnetic field in the corona. The primary observables of CoMP are the four Stokes parameters (I, Q, U, V). In addition, we perform a topology analysis of the models in order to determine the location of quasi-separatrix layers (QSLs). QSLs are used as a proxy to determine where the strong electric current sheets can develop in the corona and also provide important information about the connectivity in complicated magnetic field configuration. We present the major properties of the 3D QSL and FLEDGE maps and the evolution of 3D coronal structures during the magnetofrictional process. We produce FORWARD-modeled observables from our NLFFF models and compare to a toy MHD FORWARD model and the observations.

  19. An Extension of Mapping Deformation Method and New Exact Solution for Three Coupled Nonlinear Partial Differential Equations

    Institute of Scientific and Technical Information of China (English)

    LI Hua-Mei

    2003-01-01

    In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.

  20. Existence of bounded positive solutions of a nonlinear differential system

    Directory of Open Access Journals (Sweden)

    Sabrine Gontara

    2012-04-01

    Full Text Available In this article, we study the existence and nonexistence of solutions for the system $$displaylines{ frac{1}{A}(Au''=pu^{alpha }v^{s}quad hbox{on }(0,infty , cr frac{1}{B}(Bu''=qu^{r}v^{eta }quad hbox{on }(0,infty , cr Au'(0=0,quad u(infty =a>0, cr Bv'(0=0,quad v(infty =b>0, }$$ where $alpha ,eta geq 1$, $s,rgeq 0$, p,q are two nonnegative functions on $(0,infty $ and A, B satisfy appropriate conditions. Using potential theory tools, we show the existence of a positive continuous solution. This allows us to prove the existence of entire positive radial solutions for some elliptic systems.

  1. On singular solutions of a magnetohydrodynamic nonlinear boundary layer equation

    Directory of Open Access Journals (Sweden)

    Mohammed Guedda

    2007-05-01

    Full Text Available This paper concerns the singular solutions of the equation $$ f''' +kappa ff''-eta {f'}^2 = 0, $$ where $eta < 0$ and $kappa = 0$ or 1. This equation arises when modelling heat transfer past a vertical flat plate embedded in a saturated porous medium with an applied magnetic field. After suitable normalization, $f'$ represents the velocity parallel to the surface or the non-dimensional fluid temperature. Our interest is in solutions which develop a singularity at some point (the blow-up point. In particular, we shall examine in detail the behavior of $f$ near the blow-up point.

  2. High-order finite difference solution for 3D nonlinear wave-structure interaction

    DEFF Research Database (Denmark)

    Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter;

    2010-01-01

    This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme...... OceanWave3D presented in [1, 2]. A nonlinear decomposition of the solution into incident and scattered fields is used to increase the efficiency of the wave-structure interaction problem resolution. Application of the method to the diffraction of nonlinear waves around a fixed, bottom mounted circular...

  3. Analytical Solutions for the Elastic Circular Rod Nonlinear Wave, Boussinesq, and Dispersive Long Wave Equations

    Directory of Open Access Journals (Sweden)

    Shi Jing

    2014-01-01

    Full Text Available The solving processes of the homogeneous balance method, Jacobi elliptic function expansion method, fixed point method, and modified mapping method are introduced in this paper. By using four different methods, the exact solutions of nonlinear wave equation of a finite deformation elastic circular rod, Boussinesq equations and dispersive long wave equations are studied. In the discussion, the more physical specifications of these nonlinear equations, have been identified and the results indicated that these methods (especially the fixed point method can be used to solve other similar nonlinear wave equations.

  4. Finite-Length Soliton Solutions of the Local Homogeneous Nonlinear Schrödinger Equation

    CERN Document Server

    Caparelli, E C; Mizrahi, S S

    1998-01-01

    We found a new kind of soliton solutions for the 5-parameter family of the potential-free Stenflo-Sabatier-Doebner-Goldin nonlinear modifications of the Schrödinger equation. In contradistinction to the "usual'' solitons like are nonanalytical functions with continuous first derivatives, which are different from zero only inside some finite regions of space. The simplest one-dimensional example is the function which is equal to identically equal to zero for |x-kt|>\\pi/(2g). The FLS exist even in the case of a weak nonlinearity, whereas the ``usual'' solitons exist provided the nonlinearity parameters surpass some critical values.

  5. On adjoint symmetry equations, integrating factors and solutions of nonlinear ODEs

    Energy Technology Data Exchange (ETDEWEB)

    Guha, Partha [Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103 Leipzig (Germany); Choudhury, A Ghose [Department of Physics, Surendranath College, 24/2 Mahatma Gandhi Road, Calcutta-700 009 (India); Khanra, Barun [Sailendra Sircar Vidyalaya, 62A Shyampukur Street, Calcutta-700 004 (India)], E-mail: partha.guha@mis.mpg.de, E-mail: a_ghosechoudhury@rediffmail.com, E-mail: barunkhanra@rediffmail.com

    2009-03-20

    We consider the role of the adjoint equation in determining explicit integrating factors and first integrals of nonlinear ODEs. In Chandrasekar et al (2006 J. Math. Phys. 47 023508), the authors have used an extended version of the Prelle-Singer method for a class of nonlinear ODEs of the oscillator type. In particular, we show that their method actually involves finding a solution of the adjoint symmetry equation. Next, we consider a coupled second-order nonlinear ODE system and derive the corresponding coupled adjoint equations. We illustrate how the coupled adjoint equations can be solved to arrive at a first integral.

  6. Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation

    Institute of Scientific and Technical Information of China (English)

    Khaled A.Gepreel; Mohamed S.Mohamed

    2013-01-01

    The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation.The numerical results show that the approaches are easy to implement and accurate when applied to the nonlinear space-time fractional derivatives KleinGordon equation.This method introduces a promising tool for solving many space-time fractional partial differential equations.This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.

  7. Solution of Nonlinear Space-Time Fractional Differential Equations Using the Fractional Riccati Expansion Method

    Directory of Open Access Journals (Sweden)

    Emad A.-B. Abdel-Salam

    2013-01-01

    Full Text Available The fractional Riccati expansion method is proposed to solve fractional differential equations. To illustrate the effectiveness of the method, space-time fractional Korteweg-de Vries equation, regularized long-wave equation, Boussinesq equation, and Klein-Gordon equation are considered. As a result, abundant types of exact analytical solutions are obtained. These solutions include generalized trigonometric and hyperbolic functions solutions which may be useful for further understanding of the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The periodic and kink solutions are founded as special case.

  8. Nonlinear wave structures as exact solutions of Vlasov-Maxwell equations.

    Science.gov (United States)

    Dasgupta, B.; Tsurutani, B. T.; Janaki, M. S.; Sharma, A. S.

    2001-12-01

    Many recent observations by POLAR and Geotail spacecraft of the low-latitudes magnetopause boundary layer (LLBL) and the polar cap boundary layer (PCBL) have detected nonlinear wave structures [Tsurutani et al, Geophys. Res. Lett., 25, 4117, 1998]. These nonlinear waves have electromagnetic signatures that are identified with Alfven and Whistler modes. Also solitary waves with mono- and bi-polar features were observed. In general such electromagnetic structures are described by the full Vlasov-Maxwell equations for waves propagating at an angle to the ambient magnetic field, but it has been a diffficult task obtaining the solutions because of the inherent nonlinearity. We have obtained an exact nonlinear solution of the full Vlasov-Maxwell equations in the presence of an electromagnetic wave propagating at an arbitrary direction with an ambient magnetic field. This is accomplished by finding the constants of motion of the charged particles in the electromagnetic field of the wave and then constructing a realistic distribution function as a function of these constants of motion. The corresponding trapping conditions for such waves are obtained, yielding the self-consistent description for the particles in the presence of the nonlinear waves. The interpretation of the observed nonlinear structures in terms of these general solutions will be presented.

  9. Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats

    Science.gov (United States)

    Li, Wan-Tong; Wang, Jia-Bing; Zhang, Li

    2016-08-01

    This paper is concerned with the new types of entire solutions other than traveling wave solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats. We first establish the existence and properties of spatially periodic solutions connecting two steady states. Then new types of entire solutions are constructed by combining the rightward and leftward pulsating traveling fronts with different speeds and a spatially periodic solution. Finally, for a class of special heterogeneous reaction, we further establish the uniqueness of entire solutions and the continuous dependence of such an entire solution on parameters, such as wave speeds and the shifted variables. In other words, we build a five-dimensional manifold of solutions and the traveling wave solutions are on the boundary of the manifold.

  10. Shape analysis and damped oscillatory solutions for a class of nonlinear wave equation with quintic term

    Institute of Scientific and Technical Information of China (English)

    Xiang LI; Wei-guo ZHANG; Zheng-ming LI

    2014-01-01

    This paper aims at analyzing the shapes of the bounded traveling wave solu-tions for a class of nonlinear wave equation with a quintic term and obtaining its damped oscillatory solutions. The theory and method of planar dynamical systems are used to make a qualitative analysis to the planar dynamical system which the bounded traveling wave solutions of this equation correspond to. The shapes, existent number, and condi-tions are presented for all bounded traveling wave solutions. The bounded traveling wave solutions are obtained by the undetermined coefficients method according to their shapes, including exact expressions of bell and kink profile solitary wave solutions and approxi-mate expressions of damped oscillatory solutions. For the approximate damped oscillatory solution, using the homogenization principle, its error estimate is given by establishing the integral equation, which reflects the relation between the exact and approximate so-lutions. It can be seen that the error is infinitesimal decreasing in the exponential form.

  11. Calculation of Volterra kernels for solutions of nonlinear differential equations

    NARCIS (Netherlands)

    van Hemmen, JL; Kistler, WM; Thomas, EGF

    2000-01-01

    We consider vector-valued autonomous differential equations of the form x' = f(x) + phi with analytic f and investigate the nonanticipative solution operator phi bar right arrow A(phi) in terms of its Volterra series. We show that Volterra kernels of order > 1 occurring in the series expansion of

  12. Calculation of Volterra kernels for solutions of nonlinear differential equations

    NARCIS (Netherlands)

    van Hemmen, JL; Kistler, WM; Thomas, EGF

    2000-01-01

    We consider vector-valued autonomous differential equations of the form x' = f(x) + phi with analytic f and investigate the nonanticipative solution operator phi bar right arrow A(phi) in terms of its Volterra series. We show that Volterra kernels of order > 1 occurring in the series expansion of th

  13. Oscillatory Periodic Solutions of Nonlinear Second Order Ordinary Differential Equations

    Institute of Scientific and Technical Information of China (English)

    Yong Xiang LI

    2005-01-01

    In this paper the existence results of oscillatory periodic solutions are obtained for a second order ordinary differential equation -u"(t) = f(t, u(t)), where f: R2 → R is a continuous odd function and is 2π-periodic in t. The discussion is based on the fixed point index theory in cones.

  14. New exact solutions of nonlinear Gross-Pitaevskii equation with weak bias magnetic and time-dependent laser fields

    Institute of Scientific and Technical Information of China (English)

    Li Hua-Mei

    2005-01-01

    By using the mapping method and an appropriate transformation, we find new exact solutions of nonlinear Gross-Pitaevskii equation with weak bias magnetic and time-dependent laser fields. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions , triangular function solutions, bright and dark solitons, and soliton-like solutions.

  15. New Exact Solutions for the Generalized (2+1)-dimensional Nonlinear Schr(o)dinger Equation with Variable Coefficients

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-ping

    2012-01-01

    With the help of the variable-coefficient generalized projected Ricatti equation expansion method,we present exact solutions for the generalized (2+1)-dimensional nonlinear Schr(o)dinger equation with variable coefficients.These solutions include solitary wave solutions,soliton-like solutions and trigonometric function solutions.Among these solutions,some are found for the first time.

  16. Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    M. R.Odekunle

    2014-08-01

    Full Text Available Tau method which is an economized polynomial technique for solving ordinary and partial differential equations with smooth solutions is modified in this paper for easy computation, accuracy and speed. The modification is based on the systematic use of „Catalan polynomial‟ in collocation tau method and the linearizing the nonlinear part by the use of Adomian‟s polynomial to approximate the solution of 2-dimentional Nonlinear Partial differential equation. The method involves the direct use of Catalan Polynomial in the solution of linearizedPartial differential Equation without first rewriting them in terms of other known functions as commonly practiced. The linearization process was done through adopting the Adomian Polynomial technique. The results obtained are quite comparable with the standard collocation tau methods for nonlinear partial differential equations.

  17. ON HERMITIAN POSITIVE DEFINITE SOLUTION OF NONLINEAR MATRIX EQUATION X + A*X-2A = Q

    Institute of Scientific and Technical Information of China (English)

    Xiao-xia Guo

    2005-01-01

    Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X + A* X-2A =Q, where Q is a square Hermitian positive definite matrix and A* is the conjugate transpose of the matrix A. We also demonstrate some essential properties and analyze the sensitivity of this solution. In addition, we derive computable error bounds about the approximations to the maximal Hermitian positive definite solution of the nonlinear matrix equation X + A*X-2A = Q. At last, we further generalize these results to the nonlinear matrix equation X + A*X-nA = Q, where n ≥ 2 is a given positive integer.

  18. GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS TO A NONLOCAL EVOLUTION p-LAPLACE SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    Wu Xuesong; Gao Wenjie; Cao Jianwen

    2011-01-01

    In this paper, the authors discuss the global existence and blow-up of the solution to an evolution ρ-Laplace system with nonlinear sources and nonlinear boundary condition. The authors first establish the local existence of solutions, then give a necessary and sufficient condition on the global existence of the positive solution.

  19. Singular solutions of a fully nonlinear 2x2 system of conservation laws

    CERN Document Server

    Kalisch, Henrik

    2011-01-01

    Existence and admissibility of $\\delta$-shock type solution is discussed for the following nonconvex strictly hyperbolic system arising in studues of plasmas: \\pa_t u + \\pa_x \\big(\\Sfrac{u^2+v^2}{2} \\big) &=0 \\pa_t v +\\pa_x(v(u-1))&=0. The system is fully nonlinear, i.e. it is nonlinear with respect to both variables. The latter system does not admit the classical Lax-admissible solution to certain Riemann problems. By introducing complex valued corrections in the framework of the weak asymptotic method, we show that an overcompressive $\\delta$-shock type solution resolves such Riemann problems. By letting the approximation parameter to zero, the corrections become real valued and we obtain a $\\delta$-type solution concept. In the frame of that concept, we can show that every $2\\times 2$ system of conservation laws admits $\\delta$-type solution.

  20. Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates

    Science.gov (United States)

    Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier

    2016-07-01

    A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.

  1. On the nonlinear dynamics of the traveling-wave solutions of the Serre equations

    CERN Document Server

    Mitsotakis, Dimitrios; Carter, John D

    2014-01-01

    In this paper, we study numerically nonlinear phenomena related to the dynamics of the traveling wave solutions of the Serre equations including their stability, their persistence, resolution into solitary waves, and wave breaking. Other forms of solutions such as DSWs, are also considered. Some differences between the solutions of the Serre equations and the full Euler equations are also studied. Euler solitary waves propagate without large variations in shape when they are used as initial conditions in the Serre equations. The nonlinearities seem to play a crucial role in the generation of small-amplitude waves and appear to cause a recurrence phenomenon in linearly unstable solutions. The numerical method used in the paper utilizes a high order FEM with smooth, periodic splines in space and explicit Runge-Kutta methods in time. The solutions of the Serre system are compared with the corresponding ones of the asymptotically-related Euler system whenever is possible.

  2. Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates

    Science.gov (United States)

    Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier

    2017-01-01

    A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.

  3. Large solutions of semilinear elliptic equations with nonlinear gradient terms

    Directory of Open Access Journals (Sweden)

    Alan V. Lair

    1999-01-01

    Full Text Available We show that large positive solutions exist for the equation (P±:Δu±|∇u|q=p(xuγ in Ω⫅RN(N≥3 for appropriate choices of γ>1,q>0 in which the domain Ω is either bounded or equal to RN. The nonnegative function p is continuous and may vanish on large parts of Ω. If Ω=RN, then p must satisfy a decay condition as |x|→∞. For (P+, the decay condition is simply ∫0∞tϕ(tdt<∞, where ϕ(t=max|x|=tp(x. For (P−, we require that t2+βϕ(t be bounded above for some positive β. Furthermore, we show that the given conditions on γ and p are nearly optimal for equation (P+ in that no large solutions exist if either γ≤1 or the function p has compact support in Ω.

  4. Numerical Solution of Stochastic Nonlinear Fractional Differential Equations

    KAUST Repository

    El-Beltagy, Mohamed A.

    2015-01-07

    Using Wiener-Hermite expansion (WHE) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. WHE is the only known expansion that handles the white/colored noise exactly. This work introduces a numerical estimation of the stochastic response of the Duffing oscillator with fractional or variable order damping and driven by white noise. The WHE technique is integrated with the Grunwald-Letnikov approximation in case of fractional order and with Coimbra approximation in case of variable-order damping. The numerical solver was tested with the analytic solution and with Monte-Carlo simulations. The developed mixed technique was shown to be efficient in simulating SPDEs.

  5. Existence and multiplicity of solutions for nonlinear discrete inclusions

    Directory of Open Access Journals (Sweden)

    Nicu Marcu

    2012-11-01

    Full Text Available A non-smooth abstract result is used for proving the existence of at least one nontrivial solution of an algebraic discrete inclusion. Successively, a multiplicity theorem for the same class of discrete problems is also established by using a locally Lipschitz continuous version of the famous Brezis-Nirenberg theoretical result in presence of splitting. Some applications to tridiagonal, fourth-order and partial difference inclusions are pointed out.

  6. Existence of positive solutions for a nonlinear fractional differential equation

    Directory of Open Access Journals (Sweden)

    Habib Maagli

    2013-01-01

    Full Text Available Using the Schauder fixed point theorem, we prove an existence of positive solutions for the fractional differential problem in the half line $mathbb{R}^+=(0,infty$: $$ D^{alpha}u=f(x,u,quad lim_{x o 0^+}u(x=0, $$ where $alpha in (1,2]$ and $f$ is a Borel measurable function in $mathbb{R}^+imes mathbb{R}^+$ satisfying some appropriate conditions.

  7. Local-instantaneous filtering in the integral transform solution of nonlinear diffusion problems

    Science.gov (United States)

    Macêdo, E. N.; Cotta, R. M.; Orlande, H. R. B.

    A novel filtering strategy is proposed to be utilized in conjunction with the Generalized Integral Transform Technique (GITT), in the solution of nonlinear diffusion problems. The aim is to optimize convergence enhancement, yielding computationally efficient eigenfunction expansions. The proposed filters include space and time dependence, extracted from linearized versions of the original partial differential system. The scheme automatically updates the filter along the time integration march, as the required truncation orders for the user requested accuracy begin to exceed a prescribed maximum system size. A fully nonlinear heat conduction example is selected to illustrate the computational performance of the filtering strategy, against the classical single-filter solution behavior.

  8. General complex envelope solutions of coupled-mode optics with quadratic or cubic nonlinearity

    CERN Document Server

    Hesketh, Graham D

    2015-01-01

    The analytic general solutions for the complex field envelopes are derived using Weierstrass elliptic functions for two and three mode systems of differential equations coupled via quadratic $\\chi_2$ type nonlinearity as well as two mode systems coupled via cubic $\\chi_3$ type nonlinearity. For the first time, a compact form of the solutions is given involving simple ratios of Weierstrass sigma functions (or equivalently Jacobi theta functions). A Fourier series is also given. All possible launch states are considered. The models describe sum and difference frequency generation, polarization dynamics, parity-time dynamics and optical processing applications.

  9. A new variable coefficient algebraic method and non-traveling wave solutions of nonlinear equations

    Institute of Scientific and Technical Information of China (English)

    Lu Bin; Zhang Hong-Qing

    2008-01-01

    In this paper,a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics,which is direct and more powerful than projective Riccati equation method.In order to illustrate the validity and the advantages of the method,(2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation is employed and many new double periodic non-travelling wave solutions are obtained.This algorithm can also be applied to other nonlinear differential equations.

  10. An analytical solution to the equation of motion for the damped nonlinear pendulum

    DEFF Research Database (Denmark)

    Johannessen, Kim

    2014-01-01

    An analytical approximation of the solution to the differential equation describing the oscillations of the damped nonlinear pendulum at large angles is presented. The solution is expressed in terms of the Jacobi elliptic functions by including a parameter-dependent elliptic modulus. The analytical...... of the damped nonlinear pendulum is presented, and it is shown that the period of oscillation is dependent on time. It is established that, in general, the period is longer than that of a linearized model, asymptotically approaching the period of oscillation of a damped linear pendulum....

  11. Non-local investigation of bifurcations of solutions of non-linear elliptic equations

    Energy Technology Data Exchange (ETDEWEB)

    Il' yasov, Ya Sh

    2002-12-31

    We justify the projective fibration procedure for functionals defined on Banach spaces. Using this procedure and a dynamical approach to the study with respect to parameters, we prove that there are branches of positive solutions of non-linear elliptic equations with indefinite non-linearities. We investigate the asymptotic behaviour of these branches at bifurcation points. In the general case of equations with p-Laplacian we prove that there are upper bounds of branches of positive solutions with respect to the parameter.

  12. Soliton solution for nonlinear partial differential equations by cosine-function method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.H.A. [Mathematics Department, Faculty of Science, Menoufia University, Shebein El-Koom (Egypt); Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish), Suez Canal University, AL-Arish 45111 (Egypt)], E-mail: asoliman_99@yahoo.com; Raslan, K.R. [Mathematics Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo (Egypt)

    2007-08-20

    In this Letter, we established a traveling wave solution by using Cosine-function algorithm for nonlinear partial differential equations. The method is used to obtain the exact solutions for five different types of nonlinear partial differential equations such as, general equal width wave equation (GEWE), general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKdV), general improved Korteweg-de Vries equation (GIKdV), and Coupled equal width wave equations (CEWE), which are the important soliton equations.

  13. Stationary solutions and self-trapping in discrete quadratic nonlinear systems

    DEFF Research Database (Denmark)

    Bang, Ole; Christiansen, Peter Leth; Clausen, Carl A. Balslev

    1998-01-01

    the nonintegrable dimer reduce to the discrete nonlinear Schrodinger (DNLS) equation with two degrees of freedom, which is integrable. We show how the stationary solutions to the two systems correspond to each other and how the self-trapped DNLS solutions gradually develop chaotic dynamics in the chi((2)) system......We consider the simplest equations describing coupled quadratic nonlinear (chi((2))) systems, which each consists of a fundamental mode resonantly interacting with its second harmonic. Such discrete equations apply, e.g., to optics, where they can describe arrays of chi((2)) waveguides...

  14. Analysis of the singular solution branch of a prescribed mean curvature equation with singular nonlinearity

    CERN Document Server

    Brubaker, Nicholas D

    2011-01-01

    The existence and multiplicity of solutions to a quasilinear, elliptic partial differential equation (PDE) with singular non-linearity is analyzed. The PDE is a recently derived variant of a canonical model used in the modeling of Micro-Electro Mechanical Systems (MEMS). It is observed that the bifurcation curve of solutions terminates at single dead-end point, beyond which no classical solutions exist. A necessary condition for the existence of solutions is developed which reveals that this dead-end point corresponds to a blow-up in the solution derivative at a point internal to the domain. Using asymptotic analysis, an accurate prediction of this dead end point is obtained. An arc-length parameterization of the solution curve can be employed to continue solutions beyond the dead end point, however, all extra solutions are found to be multi-valued.

  15. A numerical dressing method for the nonlinear superposition of solutions of the KdV equation

    Science.gov (United States)

    Trogdon, Thomas; Deconinck, Bernard

    2014-01-01

    In this paper we present the unification of two existing numerical methods for the construction of solutions of the Korteweg-de Vries (KdV) equation. The first method is used to solve the Cauchy initial-value problem on the line for rapidly decaying initial data. The second method is used to compute finite-genus solutions of the KdV equation. The combination of these numerical methods allows for the computation of exact solutions that are asymptotically (quasi-)periodic finite-gap solutions and are a nonlinear superposition of dispersive, soliton and (quasi-)periodic solutions in the finite (x, t)-plane. Such solutions are referred to as superposition solutions. We compute these solutions accurately for all values of x and t.

  16. Bounded solutions to nonlinear delay differential equations of third order

    OpenAIRE

    Tunç, Cemil

    2009-01-01

    This paper gives some sufficient conditions for every solution of delay differential equation \\begin{align*} \\overset{\\ldots}{x}(t) +f(t,x(t),x(t-r),\\dot{x}(t),\\dot{x}(t-r),\\ddot{x}(t),\\ddot{x}(t-r)) &+b(t)g(x(t-r),\\dot{x}(t-r)) +c(t)h(x(t)) \\\\& =p(t,x(t),x(t-r),\\dot{x}(t),\\dot{x}(t-r),\\ddot{x}(t)) \\end{align*} to be bounded.

  17. Existence of positive weak solutions for (, )-Laplacian nonlinear systems

    Indian Academy of Sciences (India)

    Samira Ala; G A Afrouzi; A Niknam

    2015-11-01

    We mainly consider the existence of a positive weak solution of the following system \\begin{equation*} \\left\\{ \\begin{matrix} -_p u + |u|^{p-2} u = [g (x) a(u)+ c(x) f (v)], \\quad \\text{ in } ,\\\\ -_q v + |v|^{q-2} v = [g (x) b(v)+ c(x) h (u)], \\quad \\text{ in } ,\\\\ \\hspace{3cm} u = v = 0, \\hspace{3.8cm} \\text{ on } \\, , \\end{matrix} \\right. \\end{equation*} where $_p u = \\text{ div}(|\

  18. Numerical Solution of Nonlinear Fredholm Integro-Differential Equations Using Spectral Homotopy Analysis Method

    Directory of Open Access Journals (Sweden)

    Z. Pashazadeh Atabakan

    2013-01-01

    Full Text Available Spectral homotopy analysis method (SHAM as a modification of homotopy analysis method (HAM is applied to obtain solution of high-order nonlinear Fredholm integro-differential problems. The existence and uniqueness of the solution and convergence of the proposed method are proved. Some examples are given to approve the efficiency and the accuracy of the proposed method. The SHAM results show that the proposed approach is quite reasonable when compared to homotopy analysis method, Lagrange interpolation solutions, and exact solutions.

  19. The exact solutions of nonlinear problems by Homotopy Analysis Method (HAM

    Directory of Open Access Journals (Sweden)

    Hafiz Abdul Wahab

    2016-06-01

    Full Text Available The present paper presents the comparison of analytical techniques. We establish the existence of the phenomena of the noise terms in the perturbation series solution and find the exact solution of the nonlinear problems. If the noise terms exist, the Homotopy Analysis method gives the same series solution as in Adomian Decomposition Method as well as homotopy Perturbation Method (Wahab et al, 2015 and we get the exact solution using the initial guess in Homotopy Analysis Method using the results obtained by Adomian Decomposition Method.

  20. Approximation of the solution of certain nonlinear ODEs with linear complexity

    Science.gov (United States)

    Dratman, Ezequiel

    2010-03-01

    We study the positive stationary solutions of a standard finite-difference discretization of the semilinear heat equation with nonlinear Neumann boundary conditions. We prove that there exists a unique solution of such a discretization, which approximates the unique positive stationary solution of the "continuous" equation. Furthermore, we exhibit an algorithm computing an [epsilon]-approximation of such a solution by means of a homotopy continuation method. The cost of our algorithm is linear in the number of nodes involved in the discretization and the logarithm of the number of digits of approximation required.

  1. Oscillation of solutions to second-order nonlinear differential equations of generalized Euler type

    Directory of Open Access Journals (Sweden)

    Asadollah Aghajani

    2013-08-01

    Full Text Available We are concerned with the oscillatory behavior of the solutions of a generalized Euler differential equation where the nonlinearities satisfy smoothness conditions which guarantee the uniqueness of solutions of initial value problems, however, no conditions of sub(super linearity are assumed. Some implicit necessary and sufficient conditions and some explicit sufficient conditions are given for all nontrivial solutions of this equation to be oscillatory or nonoscillatory. Also, it is proved that solutions of the equation are all oscillatory or all nonoscillatory and cannot be both.

  2. Stabilization of the solution of a doubly nonlinear parabolic equation

    Energy Technology Data Exchange (ETDEWEB)

    Andriyanova, È R [Ufa State Aviation Technical University, Ufa (Russian Federation); Mukminov, F Kh [Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa (Russian Federation)

    2013-09-30

    The method of Galerkin approximations is employed to prove the existence of a strong global (in time) solution of a doubly nonlinear parabolic equation in an unbounded domain. The second integral identity is established for Galerkin approximations, and passing to the limit in it an estimate for the decay rate of the norm of the solution from below is obtained. The estimates characterizing the decay rate of the solution as x→∞ obtained here are used to derive an upper bound for the decay rate of the solution with respect to time; the resulting estimate is pretty close to the lower one. Bibliography: 17 titles.

  3. Coupled fractional nonlinear differential equations and exact Jacobian elliptic solutions for exciton–phonon dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mvogo, Alain, E-mail: mvogal_2009@yahoo.fr [Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I (Cameroon); Ben-Bolie, G.H., E-mail: gbenbolie@yahoo.fr [Laboratory of Nuclear Physics, Department of Physics, Faculty of Science, University of Yaounde I (Cameroon); Centre d' Excellence Africain en Technologies de l' Information et de la Communication, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon); Kofané, T.C., E-mail: tckofane@yahoo.com [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I (Cameroon); Centre d' Excellence Africain en Technologies de l' Information et de la Communication, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon); The Abdus Salam International Center for Theoretical Physics, P.O. Box 586, Strada Costiera 11, I-34014 Trieste (Italy)

    2014-07-04

    An improved quantum model for exciton–phonon dynamics in an α-helix is investigated taking into account the interspine coupling and the influence of power-law long-range exciton–exciton interactions. Having constructed the model Hamiltonian, we derive the lattice equations and employ the Fourier transforms to go in continuum space showing that the long-range interactions (LRI) lead to a nonlocal integral term in the equations of motion. Indeed, the non-locality originating from the LRI results in the dynamic equations with space derivatives of fractional order. New theoretical frameworks are derived, such that: fractional generalization of coupled Zakharov equations, coupled nonlinear fractional Schrödinger equations, coupled fractional Ginzburg–Landau equations, coupled Hilbert–Zakharov equations, coupled nonlinear Hilbert–Ginzburg–Landau equations, coupled nonlinear Schrödinger equations and coupled nonlinear Hilbert–Schrödinger equations. Through the F-expansion method, we derive a set of exact Jacobian solutions of coupled nonlinear Schrödinger equations. These solutions include Jacobian periodic solutions as well as bright and dark soliton which are important in the process of energy transport in the molecule. We also discuss of the impact of LRI on the energy transport in the molecule.

  4. Local and Global Existence of Solutions to Initial Value Problems of Modified Nonlinear Kawahara Equations

    Institute of Scientific and Technical Information of China (English)

    Shuang Ping TAO; Shang Bin CUI

    2005-01-01

    This paper is devoted to studying the initial value problem of the modified nonlinear Kawahara equation ()u/()t+ a u2()u/()m + β()3u/()x3 + γ()5u-()x5 = 0, (x, t) ∈ We first establish several Strichartz type estimates for the fundamental solution of the corresponding linear problem. Then we apply such estimates to prove local and global existence of solutions for the initial value problem of the modified nonlinear Karahara equation. The results show that a local solution exists if the initial function u0(x) ∈ Hs(R) with s ≥ 1/4, and a global solution exists if s ≥ 2.

  5. EXACT SOLUTIONS FOR NONLINEAR TRANSIENT FLOW MODEL INCLUDING A QUADRATIC GRADIENT TERM

    Institute of Scientific and Technical Information of China (English)

    曹绪龙; 同登科; 王瑞和

    2004-01-01

    The models of the nonlinear radial flow for the infinite and finite reservoirs including a quadratic gradient term were presented. The exact solution was given in real space for flow equation including quadratic gradiet term for both constant-rate and constant pressure production cases in an infinite system by using generalized Weber transform. Analytical solutions for flow equation including quadratic gradient term were also obtained by using the Hankel transform for a finite circular reservoir case. Both closed and constant pressure outer boundary conditions are considered. Moreover, both constant rate and constant pressure inner boundary conditions are considered. The difference between the nonlinear pressure solution and linear pressure solution is analyzed. The difference may be reached about 8% in the long time. The effect of the quadratic gradient term in the large time well test is considered.

  6. Nonlinear Whitham-Broer-Kaup Wave Equation in an Analytical Solution

    Directory of Open Access Journals (Sweden)

    S. A. Zahedi

    2008-01-01

    Full Text Available This study presented a new approach for the analysis of a nonlinear Whitham-Broer-Kaup equation dealing with propagation of shallow water waves with different dispersion relations. The analysis was based on a kind of analytical method, called Variational Iteration Method (VIM. To illustrate the capability of the approach, some numerical examples were given and the propagation and the error of solutions were shown in comparison to those of exact solution. In clear conclusion, the approach was efficient and capable to obtain the analytical approximate solution of this set of wave equations while these solutions could straightforwardly show some facts of the described process deeply such as the propagation. This method can be easily extended to other nonlinear wave equations and so can be found widely applicable in this field of science.

  7. Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems

    Science.gov (United States)

    Cerro, J. A.; Scotti, S. J.

    1991-01-01

    Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.

  8. PATH INTEGRAL SOLUTION OF NONLINEAR DYNAMIC BEHAVIOR OF STRUCTURE UNDER WIND EXCITATION

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A numerical scheme for the nonlinear behavior of structure under wind excitation is investigated. With the white noise filter of turbulent-wind fluctuations, the nonlinear motion equation of structures subjected to wind load was modeled as the Ito' s stochastic differential equation. The state vector associated with such a model is a diffusion process. A continuous linearization strategy in the time-domain was adopted.Based on the solution series of its stochastic linearization equations, the formal probabilistic density of the structure response was developed by the path integral technique. It is shown by the numerical example of a guyed mast that compared with the frequency-domain method and the time-domain nonlinear analysis, the proposed approach is highlighted by high accuracy and effectiveness. The influence of the structure non-linearity on the dynamic reliability assessment is also analyzed in the example.

  9. Real-time solution of nonlinear potential flow equations for lifting rotors

    Directory of Open Access Journals (Sweden)

    Jianzhe HUANG

    2017-06-01

    Full Text Available Analysis of rotorcraft dynamics requires solution of the rotor induced flow field. Often, the appropriate model to be used for induced flow is nonlinear potential flow theory (which is the basis of vortex-lattice methods. These nonlinear potential flow equations sometimes must be solved in real time––such as for real-time flight simulation, when observers are needed for controllers, or in preliminary design computations. In this paper, the major effects of nonlinearities on induced flow are studied for lifting rotors in low-speed flight and hover. The approach is to use a nonlinear state-space model of the induced flow based on a Galerkin treatment of the potential flow equations.

  10. A family of nonlinear Schrödinger equations admitting q-plane wave solutions

    Science.gov (United States)

    Nobre, F. D.; Plastino, A. R.

    2017-08-01

    Nonlinear Schrödinger equations with power-law nonlinearities have attracted considerable attention recently. Two previous proposals for these types of equations, corresponding respectively to the Gross-Pitaievsky equation and to the one associated with nonextensive statistical mechanics, are here unified into a single, parameterized family of nonlinear Schrödinger equations. Power-law nonlinear terms characterized by exponents depending on a real index q, typical of nonextensive statistical mechanics, are considered in such a way that the Gross-Pitaievsky equation is recovered in the limit q → 1. A classical field theory shows that, due to these nonlinearities, an extra field Φ (x → , t) (besides the usual one Ψ (x → , t)) must be introduced for consistency. The new field can be identified with Ψ* (x → , t) only when q → 1. For q ≠ 1 one has a pair of coupled nonlinear wave equations governing the joint evolution of the complex valued fields Ψ (x → , t) and Φ (x → , t). These equations reduce to the usual pair of complex-conjugate ones only in the q → 1 limit. Interestingly, the nonlinear equations obeyed by Ψ (x → , t) and Φ (x → , t) exhibit a common, soliton-like, traveling solution, which is expressible in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics.

  11. A Weak Solution of a Stochastic Nonlinear Problem

    Directory of Open Access Journals (Sweden)

    M. L. Hadji

    2015-01-01

    Full Text Available We consider a problem modeling a porous medium with a random perturbation. This model occurs in many applications such as biology, medical sciences, oil exploitation, and chemical engineering. Many authors focused their study mostly on the deterministic case. The more classical one was due to Biot in the 50s, where he suggested to ignore everything that happens at the microscopic level, to apply the principles of the continuum mechanics at the macroscopic level. Here we consider a stochastic problem, that is, a problem with a random perturbation. First we prove a result on the existence and uniqueness of the solution, by making use of the weak formulation. Furthermore, we use a numerical scheme based on finite differences to present numerical results.

  12. Soliton solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics

    Science.gov (United States)

    Mirzazadeh, Mohammad; Ekici, Mehmet; Sonmezoglu, Abdullah; Ortakaya, Sami; Eslami, Mostafa; Biswas, Anjan

    2016-05-01

    This paper studies a few nonlinear evolution equations that appear with fractional temporal evolution and fractional spatial derivatives. These are Benjamin-Bona-Mahoney equation, dispersive long wave equation and Nizhnik-Novikov-Veselov equation. The extended Jacobi's elliptic function expansion method is implemented to obtain soliton and other periodic singular solutions to these equations. In the limiting case, when the modulus of ellipticity approaches zero or unity, these doubly periodic functions approach solitary waves or shock waves or periodic singular solutions emerge.

  13. Existence and Boundedness of Solutions for Nonlinear Volterra Difference Equations in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Rigoberto Medina

    2016-01-01

    Full Text Available We consider a class of nonlinear discrete-time Volterra equations in Banach spaces. Estimates for the norm of operator-valued functions and the resolvents of quasi-nilpotent operators are used to find sufficient conditions that all solutions of such equations are elements of an appropriate Banach space. These estimates give us explicit boundedness conditions. The boundedness of solutions to Volterra equations with infinite delay is also investigated.

  14. Exact solution for the unforced Duffing oscillator with cubic and quintic nonlinearities

    OpenAIRE

    Beléndez,Augusto; Beléndez Vázquez, Tarsicio; Martínez Guardiola, Francisco Javier; Pascual Villalobos, Carolina; Álvarez López, Mariela Lázara; Arribas Garde, Enrique

    2016-01-01

    The nonlinear differential equation governing the periodic motion of the one-dimensional, undamped, unforced cubic–quintic Duffing oscillator is solved exactly, providing exact expressions for the period and the solution. The period is given in terms of the complete elliptic integral of the first kind and the solution involves Jacobi elliptic functions. Some particular cases obtained varying the parameters that characterize this oscillator are presented and discussed. The behaviour of the per...

  15. Positive Almost Periodic Solution on a Nonlinear Logistic Biological Model with Grazing Rates

    Institute of Scientific and Technical Information of China (English)

    NI Hua; TIAN Li-xin

    2013-01-01

    In this paper,we study the following nonlinear biological model dx(t)/dt =x(t)[a(t)-b(t)xα(t)] + f(t,xt),by using fixed pointed theorem,the sufficient conditions of the existence of unique positive almost periodic solution for the above system are obtained,by using the theories of stability,the sufficient conditions which guarantee the stability of the positive almost periodic solution are derived.

  16. GLOBAL SOLUTIONS OF SYSTEMS OF NONLINEAR IMPULSIVE VOLTERRA INTEGRAL EQUATIONS IN BANACH SPACES

    Institute of Scientific and Technical Information of China (English)

    陈芳启; 陈予恕

    2001-01-01

    The existence of solutions for systems of nonlinear impulsive Volterra integral equations on the infinite interval R+ with an infinite number of moments of impulse effect in Banach spaces is studied. Some existence theorems of extremal solutions are obtained,which extend the related results for this class of equations on a finite interval with a finite number of moments of impulse effect. The results are demonstrated by means of an example of an infinite systems for impulsive integral equations.

  17. Removal of Noise Oscillation Term Appearing in the Nonlinear Equation Solution

    Directory of Open Access Journals (Sweden)

    Yasir Khan

    2012-01-01

    Full Text Available This paper suggests a novel modified Laplace method for removal of noise oscillation term appearing in the nonlinear equation solutions. The modified method overcomes the noise oscillation during the iteration procedure by suitable choice of an initial solution. Several examples are tested, and the obtained results suggest that this newly developed technique could lead to a promising tool and powerful improvement for many applications in differential and integral equations.

  18. Soliton solutions of some nonlinear evolution equations with time-dependent coefficients

    Indian Academy of Sciences (India)

    Hitender Kumar; Anand Malik; Fakir Chand

    2013-02-01

    In this paper, we obtain exact soliton solutions of the modified KdV equation, inho-mogeneous nonlinear Schrödinger equation and (, ) equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the solitons to exist. Numerical simulations for dark and bright soliton solutions for the mKdV equation are also given.

  19. Singular solitons and other solutions to a couple of nonlinear wave equations

    Institute of Scientific and Technical Information of China (English)

    Mustafa Inc; Esma Uluta(s); Anjan Biswas

    2013-01-01

    This paper addresses the extended (G′/G)-expansion method and applies it to a couple of nonlinear wave equations.These equations are modified the Benjamin-Bona-Mahoney equation and the Boussinesq equation.This extended method reveals several solutions to these equations.Additionally,the singular soliton solutions are revealed,for these two equations,with the aid of the ansatz method.

  20. Group Analysis of Nonlinear Internal Waves in Oceans. I: Self-adjointness, conservation laws, invariant solutions

    CERN Document Server

    Ibragimov, Nail H

    2011-01-01

    The paper is devoted to the group analysis of equations of motion of two-dimensional uniformly stratified rotating fluids used as a basic model in geophysical fluid dynamics. It is shown that the nonlinear equations in question have a remarkable property to be self-adjoint. This property is crucial for constructing conservation laws provided in the present paper. Invariant solutions are constructed using certain symmetries. The invariant solutions are used for defining internal wave beams.

  1. Darboux Transformation for Coupled Non-Linear Schrödinger Equation and Its Breather Solutions

    Science.gov (United States)

    Feng, Lili; Yu, Fajun; Li, Li

    2017-01-01

    Starting from a 3×3 spectral problem, a Darboux transformation (DT) method for coupled Schrödinger (CNLS) equation is constructed, which is more complex than 2×2 spectral problems. A scheme of soliton solutions of an integrable CNLS system is realised by using DT. Then, we obtain the breather solutions for the integrable CNLS system. The method is also appropriate for more non-linear soliton equations in physics and mathematics.

  2. Positive solutions for a nonlinear periodic boundary-value problem with a parameter

    Directory of Open Access Journals (Sweden)

    Jingliang Qiu

    2012-08-01

    Full Text Available Using topological degree theory with a partially ordered structure of space, sufficient conditions for the existence and multiplicity of positive solutions for a second-order nonlinear periodic boundary-value problem are established. Inspired by ideas in Guo and Lakshmikantham [6], we study the dependence of positive periodic solutions as a parameter approaches infinity, $$ lim_{lambdao +infty}|x_{lambda}|=+infty,quadhbox{or}quad lim_{lambdao+infty}|x_{lambda}|=0. $$

  3. Existence of infinitely many periodic subharmonic solutions for nonlinear non-autonomous neutral differential equations

    Directory of Open Access Journals (Sweden)

    Xiao-Bao Shu

    2013-06-01

    Full Text Available In this article, we study the existence of an infinite number of subharmonic periodic solutions to a class of second-order neutral nonlinear functional differential equations. Subdifferentiability of lower semicontinuous convex functions $varphi(x(t,x(t-au$ and the corresponding conjugate functions are constructed. By combining the critical point theory, Z2-group index theory and operator equation theory, we obtain the infinite number of subharmonic periodic solutions to such system.

  4. Explicit Soliton and Periodic Solutions to Three-Wave System with Quadratic and Cubic Nonlinearities

    Institute of Scientific and Technical Information of China (English)

    LIN Ji; ZHAO Li-Na; LI Hua-Mei

    2011-01-01

    Lie group theoretical method and the equation of the Jacobi elliptic function are used to study the three wave system that couples two fundamental frequency (FF) and a single second harmonic (SH) one by competing x(2)(quadratic) and x(3) (cubic) nonlinearities and birefringence.This system shares some of the nice properties of soliton system.On the phase-locked condition, we obtain large families of analytical solutions as the soliton, kink and periodic solutions of this system.

  5. Modeling Solution of Nonlinear Dispersive Partial Differential Equations using the Marker Method

    Energy Technology Data Exchange (ETDEWEB)

    Jerome L.V. Lewandowski

    2005-01-25

    A new method for the solution of nonlinear dispersive partial differential equations is described. The marker method relies on the definition of a convective field associated with the underlying partial differential equation; the information about the approximate solution is associated with the response of an ensemble of markers to this convective field. Some key aspects of the method, such as the selection of the shape function and the initial loading, are discussed in some details.

  6. Semianalytical Solution of the Nonlinear Dual-Porosity Flow Model with the Quadratic Pressure Gradient Term

    Directory of Open Access Journals (Sweden)

    Jiang-Tao Li

    2015-01-01

    Full Text Available The nonlinear dual-porosity flow model, specifically considering the quadratic pressure gradient term, wellbore storage coefficient, well skin factor, and interporosity flow of matrix to natural fractures, was established for well production in a naturally fractured formation and then solved using a semianalytical method, including Laplace transform and a transformation of the pressure function. Analytical solution of the model in Laplace space was converted to numerical solution in real space using Stehfest numerical inversion. Nonlinear flow process for well production in a naturally fractured formation with different external boundaries was simulated and analyzed using standard pressure curves. Influence of the quadratic pressure gradient coefficient on pressure curves was studied qualitatively and quantitatively in conditions of a group of fixed model parameters. The research results show that the semianalytical modelling method is applicable in simulating the nonlinear dual-porosity flow behavior.

  7. Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto-Sivashinsky equation

    CERN Document Server

    Barker, Blake; Noble, Pascal; Rodrigues, L Miguel; Zumbrun, Kevin

    2012-01-01

    In this paper we consider the spectral and nonlinear stability of periodic traveling wave solutions of a generalized Kuramoto-Sivashinsky equation. In particular, we resolve the long-standing question of nonlinear modulational stability by demonstrating that spectrally stable waves are nonlinearly stable when subject to small localized (integrable) perturbations. Our analysis is based upon detailed estimates of the linearized solution operator, which are complicated by the fact that the (necessarily essential) spectrum of the associated linearization intersects the imaginary axis at the origin. We carry out a numerical Evans function study of the spectral problem and find bands of spectrally stable periodic traveling waves, in close agreement with previous numerical studies of Frisch-She-Thual, Bar-Nepomnyashchy, Chang-Demekhin-Kopelevich, and others carried out by other techniques. We also compare predictions of the associated Whitham modulation equations, which formally describe the dynamics of weak large s...

  8. SOME OPTIMALITY AND DUALITY RESULTS FOR AN EFFICIENT SOLUTION OF MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEM

    Directory of Open Access Journals (Sweden)

    Paras Bhatnagar

    2012-10-01

    Full Text Available Kaul and Kaur [7] obtained necessary optimality conditions for a non-linear programming problem by taking the objective and constraint functions to be semilocally convex and their right differentials at a point to be lower semi-continuous. Suneja and Gupta [12] established the necessary optimality conditions without assuming the semilocal convexity of the objective and constraint functions but their right differentials at the optimal point to be convex. Suneja and Gupta [13] established necessary optimality conditions for an efficient solution of a multiobjective non-linear programming problem by taking the right differentials of the objective functions and constraintfunctions at the efficient point to be convex. In this paper we obtain some results for a properly efficient solution of a multiobjective non-linear fractional programming problem involving semilocally convex and related functions by assuming generalized Slater type constraint qualification.

  9. Seven common errors in finding exact solutions of nonlinear differential equations

    NARCIS (Netherlands)

    Kudryashov, Nikolai A.

    2009-01-01

    We analyze the common errors of the recent papers in which the solitary wave solutions of nonlinear differential equations are presented. Seven common errors are formulated and classified. These errors are illustrated by using multiple examples of the common errors from the recent publications. We s

  10. Rational extension and Jacobi-type X{sub m} solutions of a quantum nonlinear oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Halberg, Axel [Department of Mathematics and Actuarial Science and Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States); Roy, Barnana [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India)

    2013-12-15

    We construct a rational extension of a recently studied nonlinear quantum oscillator model. Our extended model is shown to retain exact solvability, admitting a discrete spectrum and corresponding closed-form solutions that are expressed through Jacobi-type X{sub m} exceptional orthogonal polynomials.

  11. Exact Solutions of Some (1+1)-Dimensional Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    By means of the variable separation method, new exact solutions of some (1+1)-dimensional nonlinear evolution equations are obtained. Abundant localized excitations can be found by selecting corresponding arbitrary functions appropriately. Namely, the new soliton-like localized excitations and instanton-like localized excitations are presented.

  12. Solitons and periodic solutions to a couple of fractional nonlinear evolution equations

    Indian Academy of Sciences (India)

    M Mirzazadeh; M Eslami; Anjan Biswas

    2014-03-01

    This paper studies a couple of fractional nonlinear evolution equations using first integral method. These evolution equations are foam drainage equation and Klein–Gordon equation (KGE), the latter of which is considered in (2 + 1) dimensions. For the fractional evolution, the Jumarie’s modified Riemann–Liouville derivative is considered. Exact solutions to these equations are obtained.

  13. On the asymptotic behavior of solutions of certain third-order nonlinear differential equations

    Directory of Open Access Journals (Sweden)

    Cemil Tunç

    2005-01-01

    Full Text Available We establish sufficient conditions under which all solutions of the third-order nonlinear differential equation x ⃛+ψ(x,x˙,x¨x¨+f(x,x˙=p(t,x,x˙,x¨ are bounded and converge to zero as t→∞.

  14. A Class of Traveling Wave Solutions to Some Nonlinear Partial Differential Equations

    Institute of Scientific and Technical Information of China (English)

    BAI Cheng-Lin

    2003-01-01

    For the Noyes-Fields equations, two-dimensional hyperbolic equations of conversation laws, and theBurgers-KdV equation, a class of traveling wave solutions has been obtained by constructing appropriate functiontransformations. The main idea of solving the equations is that nonlinear partial differential equations are changed intosolving algebraic equations. This method has a wide-rangingpracticability.

  15. A Class of Traveling Wave Solutions to Some Nonlinear Partial Differential Equations

    Institute of Scientific and Technical Information of China (English)

    BAICheng-Lin

    2003-01-01

    For the Noyes-Fields equations, two-dimenslonal hyperbolic equations of conversation laww and the Burgers-KdV equation, a class of travellng wave solutions has been obtained by constructhag appropriate function transformations. The main idea of solving the equations is that nonlinear partial differential equations are changed into solving algebraic equations. This method has a wide-ranging practicability.

  16. Weak Solution to a Parabolic Nonlinear System Arising in Biological Dynamic in the Soil

    Directory of Open Access Journals (Sweden)

    Côme Goudjo

    2011-01-01

    Full Text Available We study a nonlinear parabolic system governing the biological dynamic in the soil. We prove global existence (in time and uniqueness of weak and positive solution for this reaction-diffusion semilinear system in a bounded domain, completed with homogeneous Neumann boundary conditions and positive initial conditions.

  17. Chaotic Solutions of a Typical Nonlinear Oscillator in a Double Potential Trap

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-Shu

    2003-01-01

    We have obtained a general unstable chaotic solution of a typical nonlinear oscillator in a double potential trap with weak periodic perturbations by using the direct perturbation method. Theoretical analysis reveals that the stable periodic orbits are embedded in the Melnikov chaotic attractors. The corresponding chaotic region and orbits in parameter space are described by numerical simulations.

  18. Existence of Renormalized Solutions for p(x-Parabolic Equation with three unbounded nonlinearities

    Directory of Open Access Journals (Sweden)

    Youssef Akdim

    2016-04-01

    Full Text Available In this article, we study the existence of renormalized solution for the nonlinear $p(x$-parabolic problem of the form:\\\\ $\\begin{cases} \\frac{\\partial b(x,u}{\\partial t} - div (a(x,t,u,\

  19. Optical Nonlinear Properties of Gold Nanoparticles Synthesized by Laser Ablation in Polymer Solution

    Directory of Open Access Journals (Sweden)

    M. Tajdidzadeh

    2017-01-01

    Full Text Available In the present study, gold nanoparticles were synthesized in various polymer solutions by means of employing laser ablation technique at the same ablation time. Specifically, gold nanoparticles were synthesized in polyethylene glycol and chitosan solutions, in order to compare the effects of the liquid media which served as stabilizers for particle size and volume fraction of nanoparticles. In addition, this experiment was repeated in distilled water for reference purposes. As the findings indicated, the particle size which was obtained in polyethylene glycol was about 7.49 nm, that is, smaller than those of chitosan solution and distilled water, respectively. In contrast, it was observed that the volume fraction of gold nanoparticles increased in polyethylene glycol in comparison with the other media which indicated an effect on the formation of NPs. On the other hand, Z-scan technique was employed to measure the nonlinear refractive index and nonlinear absorption coefficient of nanofluids containing gold nanoparticles. Consequently, the nonlinear properties of nanofluids pointed to a significant contribution with the number of nanoparticles observed in fluids and both optical nonlinear parameters were observed to increase by means of a prior increase in the volume fraction of Au-NPs in polyethylene glycol solution.

  20. Multiple periodic solutions for a class of second-order nonlinear neutral delay equations

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available By means of a variational structure and Z 2 -group index theory, we obtain multiple periodic solutions to a class of second-order nonlinear neutral delay equations of the form0, au>0$"> x ″ ( t − τ + λ ( t f ( t , x ( t , x ( t − τ , x ( t − 2 τ = x ( t , λ ( t > 0 , τ > 0 .

  1. Explicit N-Fold Darboux Transformations and Soliton Solutions for Nonlinear Derivative Schrodinger Equations

    Institute of Scientific and Technical Information of China (English)

    FAN Eh-Gui

    2001-01-01

    An explicit N-fold Darboux transformation for a coupled of derivative nonlinear Schrodinger equations is constructed with the help of a gauge transformation of spectral problems. As a reduction, the Darboux transformation for well-known Gerdjikov-Ivanov equation is further obtained, from which a general form of N-soliton solutions for Gerdjikov-Ivanov equation is given.``

  2. solveME: fast and reliable solution of nonlinear ME models

    DEFF Research Database (Denmark)

    Yang, Laurence; Ma, Ding; Ebrahim, Ali

    2016-01-01

    reconstructions (M models), are multiscale, and growth maximization is a nonlinear programming (NLP) problem, mainly due to macromolecule dilution constraints. Results: Here, we address these computational challenges. We develop a fast and numerically reliable solution method for growth maximization in ME models...

  3. Exact solutions of some coupled nonlinear diffusion-reaction equations using auxiliary equation method

    Indian Academy of Sciences (India)

    Ranjit Kumar

    2012-09-01

    Travelling and solitary wave solutions of certain coupled nonlinear diffusion-reaction equations have been constructed using the auxiliary equation method. These equations arise in a variety of contexts not only in biological, chemical and physical sciences but also in ecological and social sciences.

  4. Solitary wave solutions of selective nonlinear diffusion-reaction equations using homogeneous balance method

    Indian Academy of Sciences (India)

    Ranjit Kumar; R S Kaushal; Awadhesh Prasad

    2010-10-01

    An auto-Bäcklund transformation derived in the homogeneous balance method is employed to obtain several new exact solutions of certain kinds of nonlinear diffusion-reaction (D-R) equations. These equations arise in a variety of problems in physical, chemical, biological, social and ecological sciences.

  5. Solution of the Linear and Non-linear Partial Differential Equations Using Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    Abaker. A. Hassaballa.

    2015-10-01

    Full Text Available - In recent years, many more of the numerical methods were used to solve a wide range of mathematical, physical, and engineering problems linear and nonlinear. This paper applies the homotopy perturbation method (HPM to find exact solution of partial differential equation with the Dirichlet and Neumann boundary conditions.

  6. A STUDY ON SOME PROBLEMS ON EXISTENCE OF SOLUTIONS FOR NONLINEAR FUNCTIONAL-INTEGRAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    DEEPMALA; H.K. PATHAK

    2013-01-01

    In this paper, we prove the existence of solutions of some nonlinear functional-integral equation by using a fixed point theorem which satisfy the Darbo condition. The results extend the corresponding results of many authors. In the sequel, we give an example of our main result to highlight the realized improvements.

  7. Periodic solutions of a 2nth-order nonlinear difference equation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, a 2 nth-order nonlinear difference equation is considered.Using the critical point theory, we establish various sets of sufficient conditions of the nonexistence and existence of periodic solutions.Results obtained complement or improve the existing ones.

  8. Existence of Solutions for Nonlinear Four-Point -Laplacian Boundary Value Problems on Time Scales

    Directory of Open Access Journals (Sweden)

    Topal SGulsan

    2009-01-01

    Full Text Available We are concerned with proving the existence of positive solutions of a nonlinear second-order four-point boundary value problem with a -Laplacian operator on time scales. The proofs are based on the fixed point theorems concerning cones in a Banach space. Existence result for -Laplacian boundary value problem is also given by the monotone method.

  9. Multiple Positive Solutions of Boundary Value Problems for Systems of Nonlinear Third-Order Differential Equations

    Institute of Scientific and Technical Information of China (English)

    Yaohong LI; Xiaoyan ZHANG

    2013-01-01

    In this paper,we consider boundary value problems for systems of nonlinear thirdorder differential equations.By applying the fixed point theorems of cone expansion and compression of norm type and Leggett-Williams fixed point theorem,the existence of multiple positive solutions is obtained.As application,we give some examples to demonstrate our results.

  10. SINGULARLY PERTURBED SOLUTION FOR THIRD ORDER NONLINEAR EQUATIONS WITH TWO PARAMETERS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A class of singularly perturbed boundary value problems for nonlinear equation of the third order with two parameters is considered. Under suitable conditions, using the theory of differential inequalities the existence and asymptotic behavior of the solution for boundary value problem are studied.

  11. Viscosity solutions of fully nonlinear second-order elliptic partial differential equations

    Science.gov (United States)

    Ishii, H.; Lions, P. L.

    We investigate comparison and existence results for viscosity solutions of fully nonlinear, second-order, elliptic, possibly degenerate equations. These results complement those recently obtained by R. Jensen and H. Ishii. We consider various boundary conditions like for instance Dirichlet and Neumann conditions. We also apply these methods and results to quasilinear Monge-Ampère equations. Finally, we also address regularity questions.

  12. Existence of three solutions for impulsive nonlinear fractional boundary value problems

    Directory of Open Access Journals (Sweden)

    Shapour Heidarkhani

    2017-01-01

    Full Text Available In this work we present new criteria on the existence of three solutions for a class of impulsive nonlinear fractional boundary-value problems depending on two parameters. We use variational methods for smooth functionals defined on reflexive Banach spaces in order to achieve our results.

  13. Existence of Two Solutions of Nonlinear m-Point Boundary Value Problems

    Institute of Scientific and Technical Information of China (English)

    任景莉; 葛渭高

    2003-01-01

    Sufficient conditions for the existence of at least two positive solutions of a nonlinear m-points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An example is provided to illustrate the theory.

  14. The Application of the Fixed—point Theory in Jacketed Solution of Singularly Perturbed Nonlinear Problem

    Institute of Scientific and Technical Information of China (English)

    CHENGYan

    2003-01-01

    In this paper,the fixed-point theorem is used to estimated an asymptotic solution of intial val-ue problems for a class of third nonlinear differential equations which has double initial-layer properties.We obtain the uniformly valid asymptotic expansion of any orders including boundary layers.

  15. A nonlinear self-similar solution to barotropic flow over rapidly varying topography

    Science.gov (United States)

    Ibanez, Ruy; Kuehl, Joseph

    2016-11-01

    Beginning from the Shallow Water Equations (SWE), a nonlinear self-similar analytic solution is derived for barotropic flow over rapidly varying topography. We study conditions relevant to the ocean slope where the flow is dominated by Earth's rotation and topography. Attention is paid to the northern Gulf of Mexico slope with application to pollutant dispersion and the Norwegian Coastal Current which sheds eddies into the Lofoten Basin that are believe to influence deep water formation. The solution is found to extend the topographic β-plume solution (Kuehl 2014, GRL) in two ways: 1) The solution is valid for intensifying jets. 2) The influence of nonlinear advection is included. The SWE are scaled to the case of a topographically controlled jet, then solved by introducing a similarity variable η = Cxy . The nonlinear solution, valid for topographies h =h0 - αxy3 , takes the form of the Lambert W Function for velocity. The linear solution, valid for topographies h =h0 - αxyγ , takes the form of the Error Function for transport. Kuehl's results considered the case - 1 <= γ < 1 which admits expanding jets, while the new result consider the case γ < - 1 which admits intensifying jets.

  16. Analytical solutions of a generalized Duffing-harmonic oscillator by a nonlinear time transformation method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailing [Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Chung, Kwok-wai, E-mail: makchung@cityu.edu.hk [Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2012-02-27

    The analytical solutions of nonlinear oscillators obtained from most perturbation or approximate methods usually have poor accuracy near homoclinic/heteroclinic (HH) orbits. In this Letter, we propose a nonlinear time transformation method to overcome such difficulty. In particular, we apply such method with Padé approximation to find analytical solutions of a generalized Duffing-harmonic oscillator having a rational form for the potential energy. For some parametric ranges, HH orbits exist in such an oscillator. For analytical approximation of periodic solution obtained from the present method, it is shown that the relative error of period with respect to the exact period tends to zero when the amplitude of periodic solution tends to either zero or infinity. The relative error is still very small even near to HH orbits. Furthermore, analytical approximate of HH orbits can also be obtained. From the illustrative examples, the phase portraits are in excellent agreement with the exact HH orbits. The results from the present method are compared with the exact solutions and that from the cubication method. -- Highlights: ► A nonlinear transformation is proposed for a generalized Duffing-harmonic oscillator. ► The relative error of period with respect to the exact one is always very small. ► Approximate solution of homoclinic/heteroclinic orbits can be obtained. ► Phase portraits are in excellent agreement even at homoclinic/heteroclinic orbits.

  17. Kink instability of force-free jets: a parameter space study

    Science.gov (United States)

    Sobacchi, E.; Lyubarsky, Y. E.; Sormani, M. C.

    2017-07-01

    In the paradigm of magnetic acceleration of relativistic jets, one of the key points is identifying a viable mechanism to convert the Poynting flux into the kinetic energy of the plasma beyond equipartition. A promising candidate is the kink instability, which deforms the body of the jet through helical perturbations. Since the detailed structure of real jets is unknown, we explore a large family of cylindrical, force-free equilibria to get robust conclusions. We find that the growth rate of the instability depends primarily on two parameters: (i) the gradient of the poloidal magnetic field and (ii) the Lorentz factor of the perturbation, which is closely related to the velocity of the plasma. We provide a simple fitting formula for the growth rate of the instability. As a tentative application, we use our results to interpret the dynamics of the jet in the nearby active galaxy M87. We show that the kink instability becomes non-linear at a distance from the central black hole comparable to where the jet stops accelerating. Hence (at least for this object), the kink instability of the jet is a good candidate to drive the transition from a Poynting-dominated to a kinetic-energy-dominated flow.

  18. Temporal and spatial relationship of flare signatures and the force-free coronal magnetic field

    CERN Document Server

    Thalmann, Julia K; Su, Yang

    2016-01-01

    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2 August 2011 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths, in order to pin down the intersection of previously reconnected flaring loops at the lower solar atmosphere. These locations are used to calculate field lines from 3D nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. With this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet's lower tip during an on-disk observed flare, as a few kilometers per second. Comparison to pos...

  19. An Automated Algebraic Method for Finding a Series of Exact Travelling Wave Solutions of Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    柳银萍; 李志斌

    2003-01-01

    Based on a 0 of elliptic equation, a new algebraic method to construct a series of exact solutions for nonlinear evolution equations is proposed, meanwhile, its complete implementation TRWS in Maple is presented. The TRWS can output a series of travelling wave solutions entirely automatically, which include polynomial solutions, exponential function solutions, triangular function solutions, hyperbolic function solutions, rational function solutions, Jacobi elliptic function solutions, and Weierstrass elliptic function solutions. The effectiveness of the package is illustrated by applying it to a variety of equations. Not only are previously known solutions recovered but also new solutions and more general form of solutions are obtained.

  20. Solitons and other solutions to nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity using several different techniques

    Science.gov (United States)

    Zayed, Elsayed M. E.; Al-Nowehy, Abdul-Ghani; Elshater, Mona E. M.

    2017-06-01

    The (G^'/G)-expansion method, the improved Sub-ODE method, the extended auxiliary equation method, the new mapping method and the Jacobi elliptic function method are applied in this paper for finding many new exact solutions including Jacobi elliptic solutions, solitary solutions, singular solitary solutions, trigonometric function solutions and other solutions to the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity whose balance number is not positive integer. The used methods present a wider applicability for handling the nonlinear partial differential equations. A comparison of our new results with the well-known results is made. Also, we compare our results with each other yielding from these five integration tools.