Luo, Xiaodong
2014-10-01
The ensemble Kalman filter (EnKF) is an efficient algorithm for many data assimilation problems. In certain circumstances, however, divergence of the EnKF might be spotted. In previous studies, the authors proposed an observation-space-based strategy, called residual nudging, to improve the stability of the EnKF when dealing with linear observation operators. The main idea behind residual nudging is to monitor and, if necessary, adjust the distances (misfits) between the real observations and the simulated ones of the state estimates, in the hope that by doing so one may be able to obtain better estimation accuracy. In the present study, residual nudging is extended and modified in order to handle nonlinear observation operators. Such extension and modification result in an iterative filtering framework that, under suitable conditions, is able to achieve the objective of residual nudging for data assimilation problems with nonlinear observation operators. The 40-dimensional Lorenz-96 model is used to illustrate the performance of the iterative filter. Numerical results show that, while a normal EnKF may diverge with nonlinear observation operators, the proposed iterative filter remains stable and leads to reasonable estimation accuracy under various experimental settings.
Perspectives on Nonlinear Filtering
Law, Kody
2015-01-01
The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).
Perspectives on Nonlinear Filtering
Law, Kody
2015-01-07
The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).
Nonlinear filtering for LIDAR signal processing
Directory of Open Access Journals (Sweden)
D. G. Lainiotis
1996-01-01
Full Text Available LIDAR (Laser Integrated Radar is an engineering problem of great practical importance in environmental monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper, the Lainiotis's multi-model partitioning methodology and the related approximate but effective nonlinear filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman filter (EKF, which has been the standard nonlinear filter in past engineering applications.
Directory of Open Access Journals (Sweden)
Hongjian Wang
2014-01-01
Full Text Available We present a support vector regression-based adaptive divided difference filter (SVRADDF algorithm for improving the low state estimation accuracy of nonlinear systems, which are typically affected by large initial estimation errors and imprecise prior knowledge of process and measurement noises. The derivative-free SVRADDF algorithm is significantly simpler to compute than other methods and is implemented using only functional evaluations. The SVRADDF algorithm involves the use of the theoretical and actual covariance of the innovation sequence. Support vector regression (SVR is employed to generate the adaptive factor to tune the noise covariance at each sampling instant when the measurement update step executes, which improves the algorithm’s robustness. The performance of the proposed algorithm is evaluated by estimating states for (i an underwater nonmaneuvering target bearing-only tracking system and (ii maneuvering target bearing-only tracking in an air-traffic control system. The simulation results show that the proposed SVRADDF algorithm exhibits better performance when compared with a traditional DDF algorithm.
Nonlinear filtering with particle filters
Haslehner, Mylène
2014-01-01
Convective phenomena in the atmosphere, such as convective storms, are characterized by very fast, intermittent and seemingly stochastic processes. They are thus difficult to predict with Numerical Weather Prediction (NWP) models, and difficult to estimate with data assimilation methods that combine prediction and observations. In this thesis, nonlinear data assimilation methods are tested on two idealized convective scale cloud models, developed in [58] and [59]. The aim of this work was to ...
Nonlinear Kalman filtering in affine term structure models
DEFF Research Database (Denmark)
Christoffersen, Peter; Dorion, Christian; Jacobs, Kris
2014-01-01
The extended Kalman filter, which linearizes the relationship between security prices and state variables, is widely used in fixed-income applications. We investigate whether the unscented Kalman filter should be used to capture nonlinearities and compare the performance of the Kalman filter...... with that of the particle filter. We analyze the cross section of swap rates, which are mildly nonlinear in the states, and cap prices, which are highly nonlinear. When caps are used to filter the states, the unscented Kalman filter significantly outperforms its extended counterpart. The unscented Kalman filter also...... performs well when compared with the much more computationally intensive particle filter. These findings suggest that the unscented Kalman filter may be a good approach for a variety of problems in fixed-income pricing....
Nonlinear image filtering within IDP++
Energy Technology Data Exchange (ETDEWEB)
Lehman, S.K.; Wieting, M.G.; Brase, J.M.
1995-02-09
IDP++, image and data processing in C++, is a set of a signal processing libraries written in C++. It is a multi-dimension (up to four dimensions), multi-data type (implemented through templates) signal processing extension to C++. IDP++ takes advantage of the object-oriented compiler technology to provide ``information hiding.`` Users need only know C, not C++. Signals or data sets are treated like any other variable with a defined set of operators and functions. We here some examples of the nonlinear filter library within IDP++. Specifically, the results of MIN, MAX median, {alpha}-trimmed mean, and edge-trimmed mean filters as applied to a real aperture radar (RR) and synthetic aperture radar (SAR) data set.
A nonlinear oscillatory problem
International Nuclear Information System (INIS)
Zhou Qingqing.
1991-10-01
We have studied the nonlinear oscillatory problem of orthotropic cylindrical shell, we have analyzed the character of the oscillatory system. The stable condition of the oscillatory system has been given. (author). 6 refs
A new extended H∞ filter for discrete nonlinear systems
Institute of Scientific and Technical Information of China (English)
张永安; 周荻; 段广仁
2004-01-01
Nonlinear estimation problem is investigated in this paper. By extension of a linear H∞ estimation with corrector-predictor form to nonlinear cases, a new extended H∞ filter is proposed for time-varying discretetime nonlinear systems. The new filter has a simple observer structure based on a local linearization model, and can be viewed as a general case of the extended Kalman filter (EKF). An example demonstrates that the new filter with a suitable-chosen prescribed H∞ bound performs better than the EKF.
A Differential Geometric Approach to Nonlinear Filtering: The Projection Filter
Brigo, D.; Hanzon, B.; LeGland, F.
1998-01-01
This paper presents a new and systematic method of approximating exact nonlinear filters with finite dimensional filters, using the differential geometric approach to statistics. The projection filter is defined rigorously in the case of exponential families. A convenient exponential family is
Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters*
Hoteit, Ibrahim
2012-02-01
This paper investigates an approximation scheme of the optimal nonlinear Bayesian filter based on the Gaussian mixture representation of the state probability distribution function. The resulting filter is similar to the particle filter, but is different from it in that the standard weight-type correction in the particle filter is complemented by the Kalman-type correction with the associated covariance matrices in the Gaussian mixture. The authors show that this filter is an algorithm in between the Kalman filter and the particle filter, and therefore is referred to as the particle Kalman filter (PKF). In the PKF, the solution of a nonlinear filtering problem is expressed as the weighted average of an “ensemble of Kalman filters” operating in parallel. Running an ensemble of Kalman filters is, however, computationally prohibitive for realistic atmospheric and oceanic data assimilation problems. For this reason, the authors consider the construction of the PKF through an “ensemble” of ensemble Kalman filters (EnKFs) instead, and call the implementation the particle EnKF (PEnKF). It is shown that different types of the EnKFs can be considered as special cases of the PEnKF. Similar to the situation in the particle filter, the authors also introduce a resampling step to the PEnKF in order to reduce the risk of weights collapse and improve the performance of the filter. Numerical experiments with the strongly nonlinear Lorenz-96 model are presented and discussed.
Particle Kalman Filtering: A Nonlinear Framework for Ensemble Kalman Filters
Hoteit, Ibrahim
2010-09-19
Optimal nonlinear filtering consists of sequentially determining the conditional probability distribution functions (pdf) of the system state, given the information of the dynamical and measurement processes and the previous measurements. Once the pdfs are obtained, one can determine different estimates, for instance, the minimum variance estimate, or the maximum a posteriori estimate, of the system state. It can be shown that, many filters, including the Kalman filter (KF) and the particle filter (PF), can be derived based on this sequential Bayesian estimation framework. In this contribution, we present a Gaussian mixture‐based framework, called the particle Kalman filter (PKF), and discuss how the different EnKF methods can be derived as simplified variants of the PKF. We also discuss approaches to reducing the computational burden of the PKF in order to make it suitable for complex geosciences applications. We use the strongly nonlinear Lorenz‐96 model to illustrate the performance of the PKF.
Optimal Nonlinear Filter for INS Alignment
Institute of Scientific and Technical Information of China (English)
赵瑞; 顾启泰
2002-01-01
All the methods to handle the inertial navigation system (INS) alignment were sub-optimal in the past. In this paper, particle filtering (PF) as an optimal method is used for solving the problem of INS alignment. A sub-optimal two-step filtering algorithm is presented to improve the real-time performance of PF. The approach combines particle filtering with Kalman filtering (KF). Simulation results illustrate the superior performance of these approaches when compared with extended Kalman filtering (EKF).
The intractable cigarette 'filter problem'.
Harris, Bradford
2011-05-01
When lung cancer fears emerged in the 1950s, cigarette companies initiated a shift in cigarette design from unfiltered to filtered cigarettes. Both the ineffectiveness of cigarette filters and the tobacco industry's misleading marketing of the benefits of filtered cigarettes have been well documented. However, during the 1950s and 1960s, American cigarette companies spent millions of dollars to solve what the industry identified as the 'filter problem'. These extensive filter research and development efforts suggest a phase of genuine optimism among cigarette designers that cigarette filters could be engineered to mitigate the health hazards of smoking. This paper explores the early history of cigarette filter research and development in order to elucidate why and when seemingly sincere filter engineering efforts devolved into manipulations in cigarette design to sustain cigarette marketing and mitigate consumers' concerns about the health consequences of smoking. Relevant word and phrase searches were conducted in the Legacy Tobacco Documents Library online database, Google Patents, and media and medical databases including ProQuest, JSTOR, Medline and PubMed. 13 tobacco industry documents were identified that track prominent developments involved in what the industry referred to as the 'filter problem'. These reveal a period of intense focus on the 'filter problem' that persisted from the mid-1950s to the mid-1960s, featuring collaborations between cigarette producers and large American chemical and textile companies to develop effective filters. In addition, the documents reveal how cigarette filter researchers' growing scientific knowledge of smoke chemistry led to increasing recognition that filters were unlikely to offer significant health protection. One of the primary concerns of cigarette producers was to design cigarette filters that could be economically incorporated into the massive scale of cigarette production. The synthetic plastic cellulose acetate
Nonlinear Filtering and Approximation Techniques
1991-09-01
filtering. UNIT8 Q RECERCE**No 1223 Programme 5 A utomatique, Productique, Traitement dui Signal et des Donnc~es CONSISTENT PARAMETER ESTIMATION FOR...ue’e[71 E C 2.’(Rm x [0,7]; R) is the unique solution of the Hamilton-Jacobi-Bellman equation 9u,’[7](x, t) - EAu "’[ 7](x,t) + He,’[ 7](x,t,Du,[ 7](x,t
Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics
Zhu, Yanqui; Cohn, Stephen E.; Todling, Ricardo
1999-01-01
The Kalman filter is the optimal filter in the presence of known gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions. Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz model as well as more realistic models of the means and atmosphere. A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter situations to allow for correct update of the ensemble members. The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to be quite puzzling in that results state estimates are worse than for their filter analogue. In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use the Lorenz model to test and compare the behavior of a variety of implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.
Nonlinear Filtering in High Dimension
2014-06-02
near J (that is, the spatial accumulation of errors is mitigated). This localization comes at a price , however; the local filter stability bound holds...Appendix A to complete the proof of the variance bound. The present approach is inspired by [15]. The price we pay is that the variance bound scales...Random fields and diffusion processes. In École d’Été de Prob- abilités de Saint- Flour XV–XVII, 1985–87, volume 1362 of Lecture Notes in Math., pages
Problems in nonlinear resistive MHD
International Nuclear Information System (INIS)
Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L.
1998-01-01
Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1
Nonlinear Principal Component Analysis Using Strong Tracking Filter
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The paper analyzes the problem of blind source separation (BSS) based on the nonlinear principal component analysis (NPCA) criterion. An adaptive strong tracking filter (STF) based algorithm was developed, which is immune to system model mismatches. Simulations demonstrate that the algorithm converges quickly and has satisfactory steady-state accuracy. The Kalman filtering algorithm and the recursive leastsquares type algorithm are shown to be special cases of the STF algorithm. Since the forgetting factor is adaptively updated by adjustment of the Kalman gain, the STF scheme provides more powerful tracking capability than the Kalman filtering algorithm and recursive least-squares algorithm.
Non-linear and signal energy optimal asymptotic filter design
Directory of Open Access Journals (Sweden)
Josef Hrusak
2003-10-01
Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.
Particle Kalman Filtering: A Nonlinear Framework for Ensemble Kalman Filters
Hoteit, Ibrahim; Luo, Xiaodong; Pham, Dinh-Tuan; Moroz, Irene M.
2010-01-01
In this contribution, we present a Gaussian mixture‐based framework, called the particle Kalman filter (PKF), and discuss how the different EnKF methods can be derived as simplified variants of the PKF. We also discuss approaches to reducing the computational burden of the PKF in order to make it suitable for complex geosciences applications. We use the strongly nonlinear Lorenz‐96 model to illustrate the performance of the PKF.
A robust nonlinear filter for image restoration.
Koivunen, V
1995-01-01
A class of nonlinear regression filters based on robust estimation theory is introduced. The goal of the filtering is to recover a high-quality image from degraded observations. Models for desired image structures and contaminating processes are employed, but deviations from strict assumptions are allowed since the assumptions on signal and noise are typically only approximately true. The robustness of filters is usually addressed only in a distributional sense, i.e., the actual error distribution deviates from the nominal one. In this paper, the robustness is considered in a broad sense since the outliers may also be due to inappropriate signal model, or there may be more than one statistical population present in the processing window, causing biased estimates. Two filtering algorithms minimizing a least trimmed squares criterion are provided. The design of the filters is simple since no scale parameters or context-dependent threshold values are required. Experimental results using both real and simulated data are presented. The filters effectively attenuate both impulsive and nonimpulsive noise while recovering the signal structure and preserving interesting details.
Nonlinear stochastic systems with incomplete information filtering and control
Shen, Bo; Shu, Huisheng
2013-01-01
Nonlinear Stochastic Processes addresses the frequently-encountered problem of incomplete information. The causes of this problem considered here include: missing measurements; sensor delays and saturation; quantization effects; and signal sampling. Divided into three parts, the text begins with a focus on H∞ filtering and control problems associated with general classes of nonlinear stochastic discrete-time systems. Filtering problems are considered in the second part, and in the third the theory and techniques previously developed are applied to the solution of issues arising in complex networks with the design of sampled-data-based controllers and filters. Among its highlights, the text provides: · a unified framework for handling filtering and control problems in complex communication networks with limited bandwidth; · new concepts such as random sensor and signal saturations for more realistic modeling; and · demonstration of the use of techniques such...
Linear theory for filtering nonlinear multiscale systems with model error.
Berry, Tyrus; Harlim, John
2014-07-08
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online , as part of a filtering
The Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics
Zhu, Yanqiu; Cohn, Stephen E.; Todling, Ricardo
1999-01-01
The Kalman filter is the optimal filter in the presence of known Gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions (e.g., Miller 1994). Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz (1963) model as well as more realistic models of the oceans (Evensen and van Leeuwen 1996) and atmosphere (Houtekamer and Mitchell 1998). A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter equations to allow for correct update of the ensemble members (Burgers 1998). The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to quite puzzling in that results of state estimate are worse than for their filter analogue (Evensen 1997). In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use Lorenz (1963) model to test and compare the behavior of a variety implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.
Estimation of dynamic reactivity using an H∞ optimal filter with a nonlinear term
International Nuclear Information System (INIS)
Suzuki, Katsuo; Watanabe, Koiti
1996-01-01
A method of nonlinear filtering is applied to the problem of estimating the dynamic reactivity of a nonlinear reactor system. The nonlinear filtering algorithm developed is a simple modification of a linear H ∞ optimal filter with a nonlinear feedback loop added. The linear filter is designed on the basis of a linearized dynamical system model that consists of linearized point reactor kinetic equations and a reactivity state equation driven by a fictitious signal. The latter is artificially introduced to deal with the reactivity as a state variable. The results of the computer simulation show that the nonlinear filtering algorithm can be applied to estimate the dynamic reactivity of the nonlinear reactor system, even under relatively large reactivity disturbances
Rigatos, Gerasimos G
2015-01-01
This monograph presents recent advances in differential flatness theory and analyzes its use for nonlinear control and estimation. It shows how differential flatness theory can provide solutions to complicated control problems, such as those appearing in highly nonlinear multivariable systems and distributed-parameter systems. Furthermore, it shows that differential flatness theory makes it possible to perform filtering and state estimation for a wide class of nonlinear dynamical systems and provides several descriptive test cases. The book focuses on the design of nonlinear adaptive controllers and nonlinear filters, using exact linearization based on differential flatness theory. The adaptive controllers obtained can be applied to a wide class of nonlinear systems with unknown dynamics, and assure reliable functioning of the control loop under uncertainty and varying operating conditions. The filters obtained outperform other nonlinear filters in terms of accuracy of estimation and computation speed. The bo...
Hu, Jun; Gao, Huijun
2014-01-01
This monograph introduces methods for handling filtering and control problems in nonlinear stochastic systems arising from network-induced phenomena consequent on limited communication capacity. Such phenomena include communication delay, packet dropout, signal quantization or saturation, randomly occurring nonlinearities and randomly occurring uncertainties.The text is self-contained, beginning with an introduction to nonlinear stochastic systems, network-induced phenomena and filtering and control, moving through a collection of the latest research results which focuses on the three aspects
A novel extended Kalman filter for a class of nonlinear systems
Institute of Scientific and Technical Information of China (English)
DONG Zhe; YOU Zheng
2006-01-01
Estimation of the state variables of nonlinear systems is one of the fundamental and significant problems in control and signal processing. A new extended Kalman filtering approach for a class of nonlinear discrete-time systems in engineering is presented in this paper. In contrast to the celebrated extended Kalman filter (EKF), there is no linearization operation in the design procedure of the filter, and the parameters of the filter are obtained through minimizing a proper upper bound of the mean-square estimation error. Simulation results show that this filter can provide higher estimation precision than that provided by the EKF.
Energy Technology Data Exchange (ETDEWEB)
Guryev, I. V., E-mail: guryev@ieee.org; Sukhoivanov, I. A., E-mail: guryev@ieee.org; Andrade Lucio, J. A., E-mail: guryev@ieee.org; Manzano, O. Ibarra, E-mail: guryev@ieee.org; Rodriguez, E. Vargaz, E-mail: guryev@ieee.org; Gonzales, D. Claudio, E-mail: guryev@ieee.org; Chavez, R. I. Mata, E-mail: guryev@ieee.org; Gurieva, N. S., E-mail: guryev@ieee.org [University of Guanajuato, Engineering division (Mexico)
2014-05-15
In our work, we investigated the wideband optical filter on the basis of nonlinear photonic crystal. The all-optical flip-flop using ultra-short pulses with duration lower than 200 fs is obtained in such filters. Here we pay special attention to the stability problem of the nonlinear element. To investigate this problem, the temporal response demonstrating the flip-flop have been computed within the certain range of the wavelengths as well as at different input power.
Filtering Non-Linear Transfer Functions on Surfaces.
Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice
2014-07-01
Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few
On Ensemble Nonlinear Kalman Filtering with Symmetric Analysis Ensembles
Luo, Xiaodong
2010-09-19
The ensemble square root filter (EnSRF) [1, 2, 3, 4] is a popular method for data assimilation in high dimensional systems (e.g., geophysics models). Essentially the EnSRF is a Monte Carlo implementation of the conventional Kalman filter (KF) [5, 6]. It is mainly different from the KF at the prediction steps, where it is some ensembles, rather then the means and covariance matrices, of the system state that are propagated forward. In doing this, the EnSRF is computationally more efficient than the KF, since propagating a covariance matrix forward in high dimensional systems is prohibitively expensive. In addition, the EnSRF is also very convenient in implementation. By propagating the ensembles of the system state, the EnSRF can be directly applied to nonlinear systems without any change in comparison to the assimilation procedures in linear systems. However, by adopting the Monte Carlo method, the EnSRF also incurs certain sampling errors. One way to alleviate this problem is to introduce certain symmetry to the ensembles, which can reduce the sampling errors and spurious modes in evaluation of the means and covariances of the ensembles [7]. In this contribution, we present two methods to produce symmetric ensembles. One is based on the unscented transform [8, 9], which leads to the unscented Kalman filter (UKF) [8, 9] and its variant, the ensemble unscented Kalman filter (EnUKF) [7]. The other is based on Stirling’s interpolation formula (SIF), which results in the divided difference filter (DDF) [10]. Here we propose a simplified divided difference filter (sDDF) in the context of ensemble filtering. The similarity and difference between the sDDF and the EnUKF will be discussed. Numerical experiments will also be conducted to investigate the performance of the sDDF and the EnUKF, and compare them to a well‐established EnSRF, the ensemble transform Kalman filter (ETKF) [2].
Nonlinear problems in theoretical physics
International Nuclear Information System (INIS)
Ranada, A.F.
1979-01-01
This volume contains the lecture notes and review talks delivered at the 9th GIFT international seminar on theoretical physics on the general subject 'Nonlinear Problems in Theoretical Physics'. Mist contributions deal with recent developments in the theory of the spectral transformation and solitons, but there are also articles from the field of transport theory and plasma physics and an unconventional view of classical and quantum electrodynamics. All contributions to this volume will appear under their corresponding subject categories. (HJ)
Nonlinear Kalman Filtering in Affine Term Structure Models
DEFF Research Database (Denmark)
Christoffersen, Peter; Dorion, Christian; Jacobs, Kris
When the relationship between security prices and state variables in dynamic term structure models is nonlinear, existing studies usually linearize this relationship because nonlinear fi…ltering is computationally demanding. We conduct an extensive investigation of this linearization and analyze...... the potential of the unscented Kalman …filter to properly capture nonlinearities. To illustrate the advantages of the unscented Kalman …filter, we analyze the cross section of swap rates, which are relatively simple non-linear instruments, and cap prices, which are highly nonlinear in the states. An extensive...
A solution to nonlinearity problems
International Nuclear Information System (INIS)
Neuffer, D.V.
1989-01-01
New methods of correcting dynamic nonlinearities resulting from the multipole content of a synchrotron or transport line are presented. In a simplest form, correction elements are places at the center (C) of the accelerator half-cells as well as near the focusing (F) and defocusing (D) quadrupoles. In a first approximation, the corrector strengths follow Simpson's Rule, forming an accurate quasi-local canceling approximation to the nonlinearity. The F, C, and D correctors may also be used to obtain precise control of the horizontal, coupled, and vertical motion. Correction by three or more orders of magnitude can be obtained, and simple solutions to a fundamental problem in beam transport have been obtained. 13 refs., 1 fig., 1 tab
International Nuclear Information System (INIS)
Ermolaev, P; Volynsky, M
2014-01-01
Recurrent stochastic data processing algorithms using representation of interferometric signal as output of a dynamic system, which state is described by vector of parameters, in some cases are more effective, compared with conventional algorithms. Interferometric signals depend on phase nonlinearly. Consequently it is expedient to apply algorithms of nonlinear stochastic filtering, such as Kalman type filters. An application of the second order extended Kalman filter and Markov nonlinear filter that allows to minimize estimation error is described. Experimental results of signals processing are illustrated. Comparison of the algorithms is presented and discussed.
NONLINEAR FILTER METHOD OF GPS DYNAMIC POSITIONING BASED ON BANCROFT ALGORITHM
Institute of Scientific and Technical Information of China (English)
ZHANGQin; TAOBen-zao; ZHAOChao-ying; WANGLi
2005-01-01
Because of the ignored items after linearization, the extended Kalman filter (EKF) becomes a form of suboptimal gradient descent algorithm. The emanative tendency exists in GPS solution when the filter equations are ill-posed. The deviation in the estimation cannot be avoided. Furthermore, the true solution may be lost in pseudorange positioning because the linearized pseudorange equations are partial solutions. To solve the above problems in GPS dynamic positioning by using EKF, a closed-form Kalman filter method called the two-stage algorithm is presented for the nonlinear algebraic solution of GPS dynamic positioning based on the global nonlinear least squares closed algorithm--Bancroft numerical algorithm of American. The method separates the spatial parts from temporal parts during processing the GPS filter problems, and solves the nonlinear GPS dynamic positioning, thus getting stable and reliable dynamic positioning solutions.
Nonlinear data assimilation using synchronization in a particle filter
Rodrigues-Pinheiro, Flavia; Van Leeuwen, Peter Jan
2017-04-01
Current data assimilation methods still face problems in strongly nonlinear cases. A promising solution is a particle filter, which provides a representation of the model probability density function by a discrete set of particles. However, the basic particle filter does not work in high-dimensional cases. The performance can be improved by considering the proposal density freedom. A potential choice of proposal density might come from the synchronisation theory, in which one tries to synchronise the model with the true evolution of a system using one-way coupling via the observations. In practice, an extra term is added to the model equations that damps growth of instabilities on the synchronisation manifold. When only part of the system is observed synchronization can be achieved via a time embedding, similar to smoothers in data assimilation. In this work, two new ideas are tested. First, ensemble-based time embedding, similar to an ensemble smoother or 4DEnsVar is used on each particle, avoiding the need for tangent-linear models and adjoint calculations. Tests were performed using Lorenz96 model for 20, 100 and 1000-dimension systems. Results show state-averaged synchronisation errors smaller than observation errors even in partly observed systems, suggesting that the scheme is a promising tool to steer model states to the truth. Next, we combine these efficient particles using an extension of the Implicit Equal-Weights Particle Filter, a particle filter that ensures equal weights for all particles, avoiding filter degeneracy by construction. Promising results will be shown on low- and high-dimensional Lorenz96 models, and the pros and cons of these new ideas will be discussed.
Hollywood log-homotopy: movies of particle flow for nonlinear filters
Daum, Fred; Huang, Jim
2011-06-01
In this paper we show five movies of particle flow to provide insight and intuition about this new algorithm. The particles flow solves the well known and important problem of particle degeneracy. Bayes' rule is implemented by particle flow rather than as a pointwise multiplication. This theory is roughly seven orders of magnitude faster than standard particle filters, and it often beats the extended Kalman filter by two orders of magnitude in accuracy for difficult nonlinear problems.
Advanced nonlinear control of three phase series active power filter
Directory of Open Access Journals (Sweden)
Abouelmahjoub Y.
2014-01-01
Full Text Available The problem of controlling three-phase series active power filter (TPSAPF is addressed in this paper in presence of the perturbations in the voltages of the electrical supply network. The control objective of the TPSAPF is twofold: (i compensation of all voltage perturbations (voltage harmonics, voltage unbalance and voltage sags, (ii regulation of the DC bus voltage of the inverter. A controller formed by two nonlinear regulators is designed, using the Backstepping technique, to provide the above compensation. The regulation of the DC bus voltage of the inverter is ensured by the use of a diode bridge rectifier which its output is in parallel with the DC bus capacitor. The Analysis of controller performances is illustrated by numerical simulation in Matlab/Simulink environment.
Boundary Value Problems Arising in Kalman Filtering
Directory of Open Access Journals (Sweden)
Sinem Ertürk
2009-01-01
Full Text Available The classic Kalman filtering equations for independent and correlated white noises are ordinary differential equations (deterministic or stochastic with the respective initial conditions. Changing the noise processes by taking them to be more realistic wide band noises or delayed white noises creates challenging partial differential equations with initial and boundary conditions. In this paper, we are aimed to give a survey of this connection between Kalman filtering and boundary value problems, bringing them into the attention of mathematicians as well as engineers dealing with Kalman filtering and boundary value problems.
Boundary Value Problems Arising in Kalman Filtering
Directory of Open Access Journals (Sweden)
Bashirov Agamirza
2008-01-01
Full Text Available The classic Kalman filtering equations for independent and correlated white noises are ordinary differential equations (deterministic or stochastic with the respective initial conditions. Changing the noise processes by taking them to be more realistic wide band noises or delayed white noises creates challenging partial differential equations with initial and boundary conditions. In this paper, we are aimed to give a survey of this connection between Kalman filtering and boundary value problems, bringing them into the attention of mathematicians as well as engineers dealing with Kalman filtering and boundary value problems.
A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation
Galante, Joseph M.; Sanner, Robert M.
2012-01-01
Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.
Ensemble-based Kalman Filters in Strongly Nonlinear Dynamics
Institute of Scientific and Technical Information of China (English)
Zhaoxia PU; Joshua HACKER
2009-01-01
This study examines the effectiveness of ensemble Kalman filters in data assimilation with the strongly nonlinear dynamics of the Lorenz-63 model, and in particular their use in predicting the regime transition that occurs when the model jumps from one basin of attraction to the other. Four configurations of the ensemble-based Kalman filtering data assimilation techniques, including the ensemble Kalman filter, ensemble adjustment Kalman filter, ensemble square root filter and ensemble transform Kalman filter, are evaluated with their ability in predicting the regime transition (also called phase transition) and also are compared in terms of their sensitivity to both observational and sampling errors. The sensitivity of each ensemble-based filter to the size of the ensemble is also examined.
Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters*
Hoteit, Ibrahim; Luo, Xiaodong; Pham, Dinh-Tuan
2012-01-01
introduce a resampling step to the PEnKF in order to reduce the risk of weights collapse and improve the performance of the filter. Numerical experiments with the strongly nonlinear Lorenz-96 model are presented and discussed.
Implementation of a nonlinear filter for online nuclear counting
International Nuclear Information System (INIS)
Coulon, R.; Dumazert, J.; Kondrasovs, V.; Normand, S.
2016-01-01
Nuclear counting is a challenging task for nuclear instrumentation because of the stochastic nature of radioactivity. Event counting has to be processed and filtered to determine a stable count rate value and perform variation monitoring of the measured event. An innovative approach for nuclear counting is presented in this study, improving response time and maintaining count rate stability. Some nonlinear filters providing a local maximum likelihood estimation of the signal have been recently developed, which have been tested and compared with conventional linear filters. A nonlinear filter thus developed shows significant performance in terms of response time and measurement precision. The filter also presents the specificity of easy embedment into digital signal processor (DSP) electronics based on field-programmable gate arrays (FPGA) or microcontrollers, compatible with real-time requirements. © 2001 Elsevier Science. All rights reserved. - Highlights: • An efficient approach based on nonlinear filtering has been implemented. • The hypothesis test provides a local maximum likelihood estimation of the count rate. • The filter ensures an optimal compromise between precision and response time.
Nonlinear dynamical system identification using unscented Kalman filter
Rehman, M. Javvad ur; Dass, Sarat Chandra; Asirvadam, Vijanth Sagayan
2016-11-01
Kalman Filter is the most suitable choice for linear state space and Gaussian error distribution from decades. In general practical systems are not linear and Gaussian so these assumptions give inconsistent results. System Identification for nonlinear dynamical systems is a difficult task to perform. Usually, Extended Kalman Filter (EKF) is used to deal with non-linearity in which Jacobian method is used for linearizing the system dynamics, But it has been observed that in highly non-linear environment performance of EKF is poor. Unscented Kalman Filter (UKF) is proposed here as a better option because instead of analytical linearization of state space, UKF performs statistical linearization by using sigma point calculated from deterministic samples. Formation of the posterior distribution is based on the propagation of mean and covariance through sigma points.
Empirical intrinsic geometry for nonlinear modeling and time series filtering.
Talmon, Ronen; Coifman, Ronald R
2013-07-30
In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.
Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception.
Kutschireiter, Anna; Surace, Simone Carlo; Sprekeler, Henning; Pfister, Jean-Pascal
2017-08-18
The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals' performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the 'curse of dimensionality', and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.
Optimization for nonlinear inverse problem
International Nuclear Information System (INIS)
Boyadzhiev, G.; Brandmayr, E.; Pinat, T.; Panza, G.F.
2007-06-01
The nonlinear inversion of geophysical data in general does not yield a unique solution, but a single model, representing the investigated field, is preferred for an easy geological interpretation of the observations. The analyzed region is constituted by a number of sub-regions where the multi-valued nonlinear inversion is applied, which leads to a multi-valued solution. Therefore, combining the values of the solution in each sub-region, many acceptable models are obtained for the entire region and this complicates the geological interpretation of geophysical investigations. In this paper are presented new methodologies, capable to select one model, among all acceptable ones, that satisfies different criteria of smoothness in the explored space of solutions. In this work we focus on the non-linear inversion of surface waves dispersion curves, which gives structural models of shear-wave velocity versus depth, but the basic concepts have a general validity. (author)
Hybrid three-dimensional variation and particle filtering for nonlinear systems
International Nuclear Information System (INIS)
Leng Hong-Ze; Song Jun-Qiang
2013-01-01
This work addresses the problem of estimating the states of nonlinear dynamic systems with sparse observations. We present a hybrid three-dimensional variation (3DVar) and particle piltering (PF) method, which combines the advantages of 3DVar and particle-based filters. By minimizing the cost function, this approach will produce a better proposal distribution of the state. Afterwards the stochastic resampling step in standard PF can be avoided through a deterministic scheme. The simulation results show that the performance of the new method is superior to the traditional ensemble Kalman filtering (EnKF) and the standard PF, especially in highly nonlinear systems
Stochastic global optimization as a filtering problem
International Nuclear Information System (INIS)
Stinis, Panos
2012-01-01
We present a reformulation of stochastic global optimization as a filtering problem. The motivation behind this reformulation comes from the fact that for many optimization problems we cannot evaluate exactly the objective function to be optimized. Similarly, we may not be able to evaluate exactly the functions involved in iterative optimization algorithms. For example, we may only have access to noisy measurements of the functions or statistical estimates provided through Monte Carlo sampling. This makes iterative optimization algorithms behave like stochastic maps. Naive global optimization amounts to evolving a collection of realizations of this stochastic map and picking the realization with the best properties. This motivates the use of filtering techniques to allow focusing on realizations that are more promising than others. In particular, we present a filtering reformulation of global optimization in terms of a special case of sequential importance sampling methods called particle filters. The increasing popularity of particle filters is based on the simplicity of their implementation and their flexibility. We utilize the flexibility of particle filters to construct a stochastic global optimization algorithm which can converge to the optimal solution appreciably faster than naive global optimization. Several examples of parametric exponential density estimation are provided to demonstrate the efficiency of the approach.
Interaction of Lyapunov vectors in the formulation of the nonlinear extension of the Kalman filter.
Palatella, Luigi; Trevisan, Anna
2015-04-01
When applied to strongly nonlinear chaotic dynamics the extended Kalman filter (EKF) is prone to divergence due to the difficulty of correctly forecasting the forecast error probability density function. In operational forecasting applications ensemble Kalman filters circumvent this problem with empirical procedures such as covariance inflation. This paper presents an extension of the EKF that includes nonlinear terms in the evolution of the forecast error estimate. This is achieved starting from a particular square-root implementation of the EKF with assimilation confined in the unstable subspace (EKF-AUS), that is, the span of the Lyapunov vectors with non-negative exponents. When the error evolution is nonlinear, the space where it is confined is no more restricted to the unstable and neutral subspace causing filter divergence. The algorithm presented here, denominated EKF-AUS-NL, includes the nonlinear terms in the error dynamics: These result from the nonlinear interaction among the leading Lyapunov vectors and account for all directions where the error growth may take place. Numerical results show that with the nonlinear terms included, filter divergence can be avoided. We test the algorithm on the Lorenz96 model, showing very promising results.
Applications of Kalman filters based on non-linear functions to numerical weather predictions
Directory of Open Access Journals (Sweden)
G. Galanis
2006-10-01
Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.
Non-linear DSGE Models, The Central Difference Kalman Filter, and The Mean Shifted Particle Filter
DEFF Research Database (Denmark)
Andreasen, Martin Møller
This paper shows how non-linear DSGE models with potential non-normal shocks can be estimated by Quasi-Maximum Likelihood based on the Central Difference Kalman Filter (CDKF). The advantage of this estimator is that evaluating the quasi log-likelihood function only takes a fraction of a second....... The second contribution of this paper is to derive a new particle filter which we term the Mean Shifted Particle Filter (MSPFb). We show that the MSPFb outperforms the standard Particle Filter by delivering more precise state estimates, and in general the MSPFb has lower Monte Carlo variation in the reported...
Adaptive probabilistic collocation based Kalman filter for unsaturated flow problem
Man, J.; Li, W.; Zeng, L.; Wu, L.
2015-12-01
The ensemble Kalman filter (EnKF) has gained popularity in hydrological data assimilation problems. As a Monte Carlo based method, a relatively large ensemble size is usually required to guarantee the accuracy. As an alternative approach, the probabilistic collocation based Kalman filter (PCKF) employs the Polynomial Chaos to approximate the original system. In this way, the sampling error can be reduced. However, PCKF suffers from the so called "cure of dimensionality". When the system nonlinearity is strong and number of parameters is large, PCKF is even more computationally expensive than EnKF. Motivated by recent developments in uncertainty quantification, we propose a restart adaptive probabilistic collocation based Kalman filter (RAPCKF) for data assimilation in unsaturated flow problem. During the implementation of RAPCKF, the important parameters are identified and active PCE basis functions are adaptively selected. The "restart" technology is used to alleviate the inconsistency between model parameters and states. The performance of RAPCKF is tested by unsaturated flow numerical cases. It is shown that RAPCKF is more efficient than EnKF with the same computational cost. Compared with the traditional PCKF, the RAPCKF is more applicable in strongly nonlinear and high dimensional problems.
Nonlinear Statistical Signal Processing: A Particle Filtering Approach
International Nuclear Information System (INIS)
Candy, J.
2007-01-01
A introduction to particle filtering is discussed starting with an overview of Bayesian inference from batch to sequential processors. Once the evolving Bayesian paradigm is established, simulation-based methods using sampling theory and Monte Carlo realizations are discussed. Here the usual limitations of nonlinear approximations and non-gaussian processes prevalent in classical nonlinear processing algorithms (e.g. Kalman filters) are no longer a restriction to perform Bayesian inference. It is shown how the underlying hidden or state variables are easily assimilated into this Bayesian construct. Importance sampling methods are then discussed and shown how they can be extended to sequential solutions implemented using Markovian state-space models as a natural evolution. With this in mind, the idea of a particle filter, which is a discrete representation of a probability distribution, is developed and shown how it can be implemented using sequential importance sampling/resampling methods. Finally, an application is briefly discussed comparing the performance of the particle filter designs with classical nonlinear filter implementations
Nonlinear acceleration of transport criticality problems
International Nuclear Information System (INIS)
Park, H.; Knoll, D.A.; Newman, C.K.
2011-01-01
We present a nonlinear acceleration algorithm for the transport criticality problem. The algorithm combines the well-known nonlinear diffusion acceleration (NDA) with a recently developed, Newton-based, nonlinear criticality acceleration (NCA) algorithm. The algorithm first employs the NDA to reduce the system to scalar flux, then the NCA is applied to the resulting drift-diffusion system. We apply a nonlinear elimination technique to eliminate the eigenvalue from the Jacobian matrix. Numerical results show that the algorithm reduces the CPU time a factor of 400 in a very diffusive system, and a factor of 5 in a non-diffusive system. (author)
Exploiting nonlinearities of micro-machined resonators for filtering applications
Ilyas, Saad; Chappanda, K. N.; Younis, Mohammad I.
2017-01-01
We demonstrate the exploitation of the nonlinear behavior of two electrically coupled microbeam resonators to realize a band-pass filter. More specifically, we combine their nonlinear hardening and softening responses to realize a near flat pass band filter with sharp roll-off characteristics. The device is composed of two near identical doubly clamped and electrostatically actuated microbeams made of silicon. One of the resonators is buckled via thermal loading to produce a softening frequency response. It is then further tuned to create the desired overlap with the second resonator response of hardening behavior. This overlapping improves the pass band flatness. Also, the sudden jumps due to the softening and hardening behaviors create sharp roll-off characteristics. This approach can be promising for the future generation of filters with superior characteristics.
Exploiting nonlinearities of micro-machined resonators for filtering applications
Ilyas, Saad
2017-06-21
We demonstrate the exploitation of the nonlinear behavior of two electrically coupled microbeam resonators to realize a band-pass filter. More specifically, we combine their nonlinear hardening and softening responses to realize a near flat pass band filter with sharp roll-off characteristics. The device is composed of two near identical doubly clamped and electrostatically actuated microbeams made of silicon. One of the resonators is buckled via thermal loading to produce a softening frequency response. It is then further tuned to create the desired overlap with the second resonator response of hardening behavior. This overlapping improves the pass band flatness. Also, the sudden jumps due to the softening and hardening behaviors create sharp roll-off characteristics. This approach can be promising for the future generation of filters with superior characteristics.
Digital Image Deblurring by Nonlinear Homomorphic Filtering
1974-08-01
Noise Film Grain Noise Impulse Noise Nois» and the ReVlection Scanner Page iv vii viii 1 1 2 4 5 7 8 11 11 12 IB 20 25...1. "^ bCx.y), n(x,y) Diagram 1 a(x,y) le the impulse response, or point-spread function, of the system, and la assumed to be unknown. All noise ... deblurring problem. This inadequacy results from the fact that the high frequency noise floor in the pouer spectrum of a blurred imaga U about 60 dbt
Combined algorithms in nonlinear problems of magnetostatics
International Nuclear Information System (INIS)
Gregus, M.; Khoromskij, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.
1988-01-01
To solve boundary problems of magnetostatics in unbounded two- and three-dimensional regions, we construct combined algorithms based on a combination of the method of boundary integral equations with the grid methods. We study the question of substantiation of the combined method of nonlinear magnetostatic problem without the preliminary discretization of equations and give some results on the convergence of iterative processes that arise in non-linear cases. We also discuss economical iterative processes and algorithms that solve boundary integral equations on certain surfaces. Finally, examples of numerical solutions of magnetostatic problems that arose when modelling the fields of electrophysical installations are given too. 14 refs.; 2 figs.; 1 tab
Nonlinear Filtering Techniques Comparison for Battery State Estimation
Directory of Open Access Journals (Sweden)
Aspasia Papazoglou
2014-09-01
Full Text Available The performance of estimation algorithms is vital for the correct functioning of batteries in electric vehicles, as poor estimates will inevitably jeopardize the operations that rely on un-measurable quantities, such as State of Charge and State of Health. This paper compares the performance of three nonlinear estimation algorithms: the Extended Kalman Filter, the Unscented Kalman Filter and the Particle Filter, where a lithium-ion cell model is considered. The effectiveness of these algorithms is measured by their ability to produce accurate estimates against their computational complexity in terms of number of operations and execution time required. The trade-offs between estimators' performance and their computational complexity are analyzed.
Advanced Research Workshop on Nonlinear Hyperbolic Problems
Serre, Denis; Raviart, Pierre-Arnaud
1987-01-01
The field of nonlinear hyperbolic problems has been expanding very fast over the past few years, and has applications - actual and potential - in aerodynamics, multifluid flows, combustion, detonics amongst other. The difficulties that arise in application are of theoretical as well as numerical nature. In fact, the papers in this volume of proceedings deal to a greater extent with theoretical problems emerging in the resolution of nonlinear hyperbolic systems than with numerical methods. The volume provides an excellent up-to-date review of the current research trends in this area.
Gas Path Health Monitoring for a Turbofan Engine Based on a Nonlinear Filtering Approach
Directory of Open Access Journals (Sweden)
Yiqiu Lv
2013-01-01
Full Text Available Different approaches for gas path performance estimation of dynamic systems are commonly used, the most common being the variants of the Kalman filter. The extended Kalman filter (EKF method is a popular approach for nonlinear systems which combines the traditional Kalman filtering and linearization techniques to effectively deal with weakly nonlinear and non-Gaussian problems. Its mathematical formulation is based on the assumption that the probability density function (PDF of the state vector can be approximated to be Gaussian. Recent investigations have focused on the particle filter (PF based on Monte Carlo sampling algorithms for tackling strong nonlinear and non-Gaussian models. Considering the aircraft engine is a complicated machine, operating under a harsh environment, and polluted by complex noises, the PF might be an available way to monitor gas path health for aircraft engines. Up to this point in time a number of Kalman filtering approaches have been used for aircraft turbofan engine gas path health estimation, but the particle filters have not been used for this purpose and a systematic comparison has not been published. This paper presents gas path health monitoring based on the PF and the constrained extend Kalman particle filter (cEKPF, and then compares the estimation accuracy and computational effort of these filters to the EKF for aircraft engine performance estimation under rapid faults and general deterioration. Finally, the effects of the constraint mechanism and particle number on the cEKPF are discussed. We show in this paper that the cEKPF outperforms the EKF, PF and EKPF, and conclude that the cEKPF is the best choice for turbofan engine health monitoring.
Two-stage nonlinear filter for processing of scintigrams
International Nuclear Information System (INIS)
Pistor, P.; Hoener, J.; Walch, G.
1973-01-01
Linear filters which have been successfully used to process scintigrams can be modified in a meaningful manner by a preceding non-linear point operator, the Anscombe-transform. The advantages are: The scintigraphic noise becomes quasi-stationary and thus independent of the image. By these means the noise can be readily allowed for in the design of the convolutional operators. Transformed images with a stationary signal-to-noise ratio and a non-constant background t correspond to untransformed images with a signal-to-noise ratio that varies in certain limits. The filter chain automatically adapts to these changes. Our filter has the advantage over the majority of space-varying filters of being realizable by Fast Fourier Transform techniques. These advantages have to be paid for by reduced signal amplitude to background ratios. If the background is known, this shortcoming can be easily by-passed by processing trendfree scintigrams. If not, the filter chain should be completed by a third operator which reverses the Anscombe-transform. The Anscombe-transform influences the signal-to-noise ratio of cold spots and of hot spots in a different way. It remains an open question if this fact can be utilized to directly influence the detectability of the different kinds of spots
A nested sampling particle filter for nonlinear data assimilation
Elsheikh, Ahmed H.
2014-04-15
We present an efficient nonlinear data assimilation filter that combines particle filtering with the nested sampling algorithm. Particle filters (PF) utilize a set of weighted particles as a discrete representation of probability distribution functions (PDF). These particles are propagated through the system dynamics and their weights are sequentially updated based on the likelihood of the observed data. Nested sampling (NS) is an efficient sampling algorithm that iteratively builds a discrete representation of the posterior distributions by focusing a set of particles to high-likelihood regions. This would allow the representation of the posterior PDF with a smaller number of particles and reduce the effects of the curse of dimensionality. The proposed nested sampling particle filter (NSPF) iteratively builds the posterior distribution by applying a constrained sampling from the prior distribution to obtain particles in high-likelihood regions of the search space, resulting in a reduction of the number of particles required for an efficient behaviour of particle filters. Numerical experiments with the 3-dimensional Lorenz63 and the 40-dimensional Lorenz96 models show that NSPF outperforms PF in accuracy with a relatively smaller number of particles. © 2013 Royal Meteorological Society.
Robust extended Kalman filter of discrete-time Markovian jump nonlinear system under uncertain noise
International Nuclear Information System (INIS)
Zhu, Jin; Park, Jun Hong; Lee, Kwan Soo; Spiryagin, Maksym
2008-01-01
This paper examines the problem of robust extended Kalman filter design for discrete -time Markovian jump nonlinear systems with noise uncertainty. Because of the existence of stochastic Markovian switching, the state and measurement equations of underlying system are subject to uncertain noise whose covariance matrices are time-varying or un-measurable instead of stationary. First, based on the expression of filtering performance deviation, admissible uncertainty of noise covariance matrix is given. Secondly, two forms of noise uncertainty are taken into account: Non- Structural and Structural. It is proved by applying game theory that this filter design is a robust mini-max filter. A numerical example shows the validity of the method
Chen, Jie; Li, Jiahong; Yang, Shuanghua; Deng, Fang
2017-11-01
The identification of the nonlinearity and coupling is crucial in nonlinear target tracking problem in collaborative sensor networks. According to the adaptive Kalman filtering (KF) method, the nonlinearity and coupling can be regarded as the model noise covariance, and estimated by minimizing the innovation or residual errors of the states. However, the method requires large time window of data to achieve reliable covariance measurement, making it impractical for nonlinear systems which are rapidly changing. To deal with the problem, a weighted optimization-based distributed KF algorithm (WODKF) is proposed in this paper. The algorithm enlarges the data size of each sensor by the received measurements and state estimates from its connected sensors instead of the time window. A new cost function is set as the weighted sum of the bias and oscillation of the state to estimate the "best" estimate of the model noise covariance. The bias and oscillation of the state of each sensor are estimated by polynomial fitting a time window of state estimates and measurements of the sensor and its neighbors weighted by the measurement noise covariance. The best estimate of the model noise covariance is computed by minimizing the weighted cost function using the exhaustive method. The sensor selection method is in addition to the algorithm to decrease the computation load of the filter and increase the scalability of the sensor network. The existence, suboptimality and stability analysis of the algorithm are given. The local probability data association method is used in the proposed algorithm for the multitarget tracking case. The algorithm is demonstrated in simulations on tracking examples for a random signal, one nonlinear target, and four nonlinear targets. Results show the feasibility and superiority of WODKF against other filtering algorithms for a large class of systems.
Filter Pattern Search Algorithms for Mixed Variable Constrained Optimization Problems
National Research Council Canada - National Science Library
Abramson, Mark A; Audet, Charles; Dennis, Jr, J. E
2004-01-01
.... This class combines and extends the Audet-Dennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPS-filter algorithms for general nonlinear constraints...
On a nonlinear Kalman filter with simplified divided difference approximation
Luo, Xiaodong; Hoteit, Ibrahim; Moroz, Irene M.
2012-01-01
We present a new ensemble-based approach that handles nonlinearity based on a simplified divided difference approximation through Stirling's interpolation formula, which is hence called the simplified divided difference filter (sDDF). The sDDF uses Stirling's interpolation formula to evaluate the statistics of the background ensemble during the prediction step, while at the filtering step the sDDF employs the formulae in an ensemble square root filter (EnSRF) to update the background to the analysis. In this sense, the sDDF is a hybrid of Stirling's interpolation formula and the EnSRF method, while the computational cost of the sDDF is less than that of the EnSRF. Numerical comparison between the sDDF and the EnSRF, with the ensemble transform Kalman filter (ETKF) as the representative, is conducted. The experiment results suggest that the sDDF outperforms the ETKF with a relatively large ensemble size, and thus is a good candidate for data assimilation in systems with moderate dimensions. © 2011 Elsevier B.V. All rights reserved.
On a nonlinear Kalman filter with simplified divided difference approximation
Luo, Xiaodong
2012-03-01
We present a new ensemble-based approach that handles nonlinearity based on a simplified divided difference approximation through Stirling\\'s interpolation formula, which is hence called the simplified divided difference filter (sDDF). The sDDF uses Stirling\\'s interpolation formula to evaluate the statistics of the background ensemble during the prediction step, while at the filtering step the sDDF employs the formulae in an ensemble square root filter (EnSRF) to update the background to the analysis. In this sense, the sDDF is a hybrid of Stirling\\'s interpolation formula and the EnSRF method, while the computational cost of the sDDF is less than that of the EnSRF. Numerical comparison between the sDDF and the EnSRF, with the ensemble transform Kalman filter (ETKF) as the representative, is conducted. The experiment results suggest that the sDDF outperforms the ETKF with a relatively large ensemble size, and thus is a good candidate for data assimilation in systems with moderate dimensions. © 2011 Elsevier B.V. All rights reserved.
Nonlinear filtering for character recognition in low quality document images
Diaz-Escobar, Julia; Kober, Vitaly
2014-09-01
Optical character recognition in scanned printed documents is a well-studied task, where the captured conditions like sheet position, illumination, contrast and resolution are controlled. Nowadays, it is more practical to use mobile devices for document capture than a scanner. So as a consequence, the quality of document images is often poor owing to presence of geometric distortions, nonhomogeneous illumination, low resolution, etc. In this work we propose to use multiple adaptive nonlinear composite filters for detection and classification of characters. Computer simulation results obtained with the proposed system are presented and discussed.
Tao, Dongwang; Li, Hui; Ma, Qiang
2016-04-01
Complete structure identification of complicate nonlinear system using extend Kalman filter (EKF) or unscented Kalman filter (UKF) may have the problems of divergence, huge computation and low estimation precision due to the large dimension of the extended state space for the system. In this article, a decentralized identification method of hysteretic system based on the joint EKF and UKF is proposed. The complete structure is divided into linear substructures and nonlinear substructures. The substructures are identified from the top to the bottom. For the linear substructure, EKF is used to identify the extended space including the displacements, velocities, stiffness and damping coefficients of the substructures, using the limited absolute accelerations and the identified interface force above the substructure. Similarly, for the nonlinear substructure, UKF is used to identify the extended space including the displacements, velocities, stiffness, damping coefficients and control parameters for the hysteretic Bouc-Wen model and the force at the interface of substructures. Finally a 10-story shear-type structure with multiple inter-story hysteresis is used for numerical simulation and is identified using the decentralized approach, and the identified results are compared with those using only EKF or UKF for the complete structure identification. The results show that the decentralized approach has the advantage of more stability, relative less computation and higher estimation precision.
On Ensemble Nonlinear Kalman Filtering with Symmetric Analysis Ensembles
Luo, Xiaodong; Hoteit, Ibrahim; Moroz, Irene M.
2010-01-01
However, by adopting the Monte Carlo method, the EnSRF also incurs certain sampling errors. One way to alleviate this problem is to introduce certain symmetry to the ensembles, which can reduce the sampling errors and spurious modes in evaluation of the means and covariances of the ensembles [7]. In this contribution, we present two methods to produce symmetric ensembles. One is based on the unscented transform [8, 9], which leads to the unscented Kalman filter (UKF) [8, 9] and its variant, the ensemble unscented Kalman filter (EnUKF) [7]. The other is based on Stirling’s interpolation formula (SIF), which results in the divided difference filter (DDF) [10]. Here we propose a simplified divided difference filter (sDDF) in the context of ensemble filtering. The similarity and difference between the sDDF and the EnUKF will be discussed. Numerical experiments will also be conducted to investigate the performance of the sDDF and the EnUKF, and compare them to a well‐established EnSRF, the ensemble transform Kalman filter (ETKF) [2].
Differential Neural Networks for Identification and Filtering in Nonlinear Dynamic Games
Directory of Open Access Journals (Sweden)
Emmanuel García
2014-01-01
Full Text Available This paper deals with the problem of identifying and filtering a class of continuous-time nonlinear dynamic games (nonlinear differential games subject to additive and undesired deterministic perturbations. Moreover, the mathematical model of this class is completely unknown with the exception of the control actions of each player, and even though the deterministic noises are known, their power (or their effect is not. Therefore, two differential neural networks are designed in order to obtain a feedback (perfect state information pattern for the mentioned class of games. In this way, the stability conditions for two state identification errors and for a filtering error are established, the upper bounds of these errors are obtained, and two new learning laws for each neural network are suggested. Finally, an illustrating example shows the applicability of this approach.
Implementation of non-linear filters for iterative penalized maximum likelihood image reconstruction
International Nuclear Information System (INIS)
Liang, Z.; Gilland, D.; Jaszczak, R.; Coleman, R.
1990-01-01
In this paper, the authors report on the implementation of six edge-preserving, noise-smoothing, non-linear filters applied in image space for iterative penalized maximum-likelihood (ML) SPECT image reconstruction. The non-linear smoothing filters implemented were the median filter, the E 6 filter, the sigma filter, the edge-line filter, the gradient-inverse filter, and the 3-point edge filter with gradient-inverse filter, and the 3-point edge filter with gradient-inverse weight. A 3 x 3 window was used for all these filters. The best image obtained, by viewing the profiles through the image in terms of noise-smoothing, edge-sharpening, and contrast, was the one smoothed with the 3-point edge filter. The computation time for the smoothing was less than 1% of one iteration, and the memory space for the smoothing was negligible. These images were compared with the results obtained using Bayesian analysis
International Nuclear Information System (INIS)
Zhao, Yibo; Jiang, Yi; Feng, Jiuchao; Wu, Lifu
2016-01-01
Highlights: • A novel nonlinear Wiener adaptive filters based on the backslash operator are proposed. • The identification approach to the memristor-based chaotic systems using the proposed adaptive filters. • The weight update algorithm and convergence characteristics for the proposed adaptive filters are derived. - Abstract: Memristor-based chaotic systems have complex dynamical behaviors, which are characterized as nonlinear and hysteresis characteristics. Modeling and identification of their nonlinear model is an important premise for analyzing the dynamical behavior of the memristor-based chaotic systems. This paper presents a novel nonlinear Wiener adaptive filtering identification approach to the memristor-based chaotic systems. The linear part of Wiener model consists of the linear transversal adaptive filters, the nonlinear part consists of nonlinear adaptive filters based on the backslash operator for the hysteresis characteristics of the memristor. The weight update algorithms for the linear and nonlinear adaptive filters are derived. Final computer simulation results show the effectiveness as well as fast convergence characteristics. Comparing with the adaptive nonlinear polynomial filters, the proposed nonlinear adaptive filters have less identification error.
Selected Problems in Nonlinear Dynamics and Sociophysics
Westley, Alexandra Renee
This Ph.D. dissertation focuses on a collection of problems on the dynamical behavior of nonlinear many-body systems, drawn from two substantially different areas. First, the dynamical behavior seen in strongly nonlinear lattices such as in the Fermi-Pasta-Ulam-Tsingou (FPUT) system (part I) and second, time evolution behavior of interacting living objects which can be broadly considered as sociophysics systems (part II). The studies on FPUT-like systems will comprise of five chapters, dedicated to the properties of solitary and anti-solitary waves in the system, how localized nonlinear excitations decay and spread throughout these lattices, how two colliding solitary waves can precipitate highly localized and stable excitations, a possible alternative way to view these localized excitations through Duffing oscillators, and finally an exploration of parametric resonance in an FPUT-like lattice. Part II consists of two problems in the context of sociophysics. I use molecular dynamics inspired simulations to study the size and the stability of social groups of chimpanzees (such as those seen in central Africa) and compare the results with existing observations on the stability of chimpanzee societies. Secondly, I use an agent-based model to simulate land battles between an intelligent army and an insurgency when both have access to equally powerful weaponry. The study considers genetic algorithm based adaptive strategies to infer the strategies needed for the intelligent army to win the battles.
Nonlinear consider covariance analysis using a sigma-point filter formulation
Lisano, Michael E.
2006-01-01
The research reported here extends the mathematical formulation of nonlinear, sigma-point estimators to enable consider covariance analysis for dynamical systems. This paper presents a novel sigma-point consider filter algorithm, for consider-parameterized nonlinear estimation, following the unscented Kalman filter (UKF) variation on the sigma-point filter formulation, which requires no partial derivatives of dynamics models or measurement models with respect to the parameter list. It is shown that, consistent with the attributes of sigma-point estimators, a consider-parameterized sigma-point estimator can be developed entirely without requiring the derivation of any partial-derivative matrices related to the dynamical system, the measurements, or the considered parameters, which appears to be an advantage over the formulation of a linear-theory sequential consider estimator. It is also demonstrated that a consider covariance analysis performed with this 'partial-derivative-free' formulation yields equivalent results to the linear-theory consider filter, for purely linear problems.
HEPA-filter smoke plugging problem
International Nuclear Information System (INIS)
Gaskill, J.R.; Magee, M.W.
1975-01-01
Actual experiences indicate that during the early stages of a fire, pyrolysis and incomplete combustion of organic materials used in the furnishings or interior finishes of laboratories yield copious quantities of smoke particulates, both liquid and solid. Furthermore, the use of fire retardants in materials used for the above purpose interferes with the combustion process, so that burning of such materials in later stages of a fire will yield dense smoke. These particulates can plug up a HEPA filter or even a more porous prefilter, and thus effectively shut off the exhaust ventilation. In this case, the fire room will pressurize and contamination may spread in an uncontrolled manner. Both small- and large-scale tests have been conducted to evaluate the nature and degree of the problem as a function of materials involved, rate of exposure to the fire, and kinds and temperatures of smoke so generated. Some test work has also been done on scrubbing of smoke. Proposed future work is described. (U.S.)
Ding, Bo; Fang, Huajing
2017-05-01
This paper is concerned with the fault prediction for the nonlinear stochastic system with incipient faults. Based on the particle filter and the reasonable assumption about the incipient faults, the modified fault estimation algorithm is proposed, and the system state is estimated simultaneously. According to the modified fault estimation, an intuitive fault detection strategy is introduced. Once each of the incipient fault is detected, the parameters of which are identified by a nonlinear regression method. Then, based on the estimated parameters, the future fault signal can be predicted. Finally, the effectiveness of the proposed method is verified by the simulations of the Three-tank system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Hongtao Yang
2018-01-01
Full Text Available This paper proposes a novel strong tracking filter (STF, which is suitable for dealing with the filtering problem of nonlinear systems when the following cases occur: that is, the constructed model does not match the actual system, the measurements have the one-step random delay, and the process and measurement noises are correlated at the same epoch. Firstly, a framework of decoupling filter (DF based on equivalent model transformation is derived. Further, according to the framework of DF, a new extended Kalman filtering (EKF algorithm via using first-order linearization approximation is developed. Secondly, the computational process of the suboptimal fading factor is derived on the basis of the extended orthogonality principle (EOP. Thirdly, the ultimate form of the proposed STF is obtained by introducing the suboptimal fading factor into the above EKF algorithm. The proposed STF can automatically tune the suboptimal fading factor on the basis of the residuals between available and predicted measurements and further the gain matrices of the proposed STF tune online to improve the filtering performance. Finally, the effectiveness of the proposed STF has been proved through numerical simulation experiments.
An improved fuzzy Kalman filter for state estimation of nonlinear systems
International Nuclear Information System (INIS)
Zhou, Z-J; Hu, C-H; Chen, L; Zhang, B-C
2008-01-01
The extended fuzzy Kalman filter (EFKF) is developed recently and used for state estimation of the nonlinear systems with uncertainty. Based on extension of the orthogonality principle and the extended fuzzy Kalman filter, an improved fuzzy Kalman filters (IFKF) is proposed in this paper, which is more applicable and can deal with the state estimation of the nonlinear systems better than the EFKF. A simulation study is provided to verify the efficiency of the proposed method
Bayesian nonlinear regression for large small problems
Chakraborty, Sounak; Ghosh, Malay; Mallick, Bani K.
2012-01-01
Statistical modeling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. This is known as large p small n problem. Furthermore, the problem is more complicated when we have multiple correlated responses. We develop multivariate nonlinear regression models in this setup for accurate prediction. In this paper, we introduce a full Bayesian support vector regression model with Vapnik's ε-insensitive loss function, based on reproducing kernel Hilbert spaces (RKHS) under the multivariate correlated response setup. This provides a full probabilistic description of support vector machine (SVM) rather than an algorithm for fitting purposes. We have also introduced a multivariate version of the relevance vector machine (RVM). Instead of the original treatment of the RVM relying on the use of type II maximum likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters and use Markov chain Monte Carlo technique for computation. We have also proposed an empirical Bayes method for our RVM and SVM. Our methods are illustrated with a prediction problem in the near-infrared (NIR) spectroscopy. A simulation study is also undertaken to check the prediction accuracy of our models. © 2012 Elsevier Inc.
Bayesian nonlinear regression for large small problems
Chakraborty, Sounak
2012-07-01
Statistical modeling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. This is known as large p small n problem. Furthermore, the problem is more complicated when we have multiple correlated responses. We develop multivariate nonlinear regression models in this setup for accurate prediction. In this paper, we introduce a full Bayesian support vector regression model with Vapnik\\'s ε-insensitive loss function, based on reproducing kernel Hilbert spaces (RKHS) under the multivariate correlated response setup. This provides a full probabilistic description of support vector machine (SVM) rather than an algorithm for fitting purposes. We have also introduced a multivariate version of the relevance vector machine (RVM). Instead of the original treatment of the RVM relying on the use of type II maximum likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters and use Markov chain Monte Carlo technique for computation. We have also proposed an empirical Bayes method for our RVM and SVM. Our methods are illustrated with a prediction problem in the near-infrared (NIR) spectroscopy. A simulation study is also undertaken to check the prediction accuracy of our models. © 2012 Elsevier Inc.
Sampling strong tracking nonlinear unscented Kalman filter and its application in eye tracking
International Nuclear Information System (INIS)
Zu-Tao, Zhang; Jia-Shu, Zhang
2010-01-01
The unscented Kalman filter is a developed well-known method for nonlinear motion estimation and tracking. However, the standard unscented Kalman filter has the inherent drawbacks, such as numerical instability and much more time spent on calculation in practical applications. In this paper, we present a novel sampling strong tracking nonlinear unscented Kalman filter, aiming to overcome the difficulty in nonlinear eye tracking. In the above proposed filter, the simplified unscented transform sampling strategy with n + 2 sigma points leads to the computational efficiency, and suboptimal fading factor of strong tracking filtering is introduced to improve robustness and accuracy of eye tracking. Compared with the related unscented Kalman filter for eye tracking, the proposed filter has potential advantages in robustness, convergence speed, and tracking accuracy. The final experimental results show the validity of our method for eye tracking under realistic conditions. (classical areas of phenomenology)
Comparison of three nonlinear filters for fault detection in continuous glucose monitors.
Mahmoudi, Zeinab; Wendt, Sabrina Lyngbye; Boiroux, Dimitri; Hagdrup, Morten; Norgaard, Kirsten; Poulsen, Niels Kjolstad; Madsen, Henrik; Jorgensen, John Bagterp
2016-08-01
The purpose of this study is to compare the performance of three nonlinear filters in online drift detection of continuous glucose monitors. The nonlinear filters are the extended Kalman filter (EKF), the unscented Kalman filter (UKF), and the particle filter (PF). They are all based on a nonlinear model of the glucose-insulin dynamics in people with type 1 diabetes. Drift is modelled by a Gaussian random walk and is detected based on the statistical tests of the 90-min prediction residuals of the filters. The unscented Kalman filter had the highest average F score of 85.9%, and the smallest average detection delay of 84.1%, with the average detection sensitivity of 82.6%, and average specificity of 91.0%.
Xiao, Mengli; Zhang, Yongbo; Wang, Zhihua; Fu, Huimin
2018-04-01
Considering the performances of conventional Kalman filter may seriously degrade when it suffers stochastic faults and unknown input, which is very common in engineering problems, a new type of adaptive three-stage extended Kalman filter (AThSEKF) is proposed to solve state and fault estimation in nonlinear discrete-time system under these conditions. The three-stage UV transformation and adaptive forgetting factor are introduced for derivation, and by comparing with the adaptive augmented state extended Kalman filter, it is proven to be uniformly asymptotically stable. Furthermore, the adaptive three-stage extended Kalman filter is applied to a two-dimensional radar tracking scenario to illustrate the effect, and the performance is compared with that of conventional three stage extended Kalman filter (ThSEKF) and the adaptive two-stage extended Kalman filter (ATEKF). The results show that the adaptive three-stage extended Kalman filter is more effective than these two filters when facing the nonlinear discrete-time systems with information of unknown inputs not perfectly known. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Nonlinear Kalman filters for calibration in radio interferometry
Tasse, C.
2014-06-01
The data produced by the new generation of interferometers are affected by a wide variety of partially unknown complex effects such as pointing errors, phased array beams, ionosphere, troposphere, Faraday rotation, or clock drifts. Most algorithms addressing direction-dependent calibration solve for the effective Jones matrices, and cannot constrain the underlying physical quantities of the radio interferometry measurement equation (RIME). A related difficulty is that they lack robustness in the presence of low signal-to-noise ratios, and when solving for moderate to large numbers of parameters they can be subject to ill-conditioning. These effects can have dramatic consequences in the image plane such as source or even thermal noise suppression. The advantage of solvers directly estimating the physical terms appearing in the RIME is that they can potentially reduce the number of free parameters by orders of magnitudes while dramatically increasing the size of usable data, thereby improving conditioning. We present here a new calibration scheme based on a nonlinear version of the Kalman filter that aims at estimating the physical terms appearing in the RIME. We enrich the filter's structure with a tunable data representation model, together with an augmented measurement model for regularization. Using simulations we show that it can properly estimate the physical effects appearing in the RIME. We found that this approach is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and dynamics), we obtain a fairly computationally cheap algorithm that we believe to be robust, especially in low signal-to-noise regimes. Potentially, the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under the condition that
Xiao, Mengli; Zhang, Yongbo; Fu, Huimin; Wang, Zhihua
2018-05-01
High-precision navigation algorithm is essential for the future Mars pinpoint landing mission. The unknown inputs caused by large uncertainties of atmospheric density and aerodynamic coefficients as well as unknown measurement biases may cause large estimation errors of conventional Kalman filters. This paper proposes a derivative-free version of nonlinear unbiased minimum variance filter for Mars entry navigation. This filter has been designed to solve this problem by estimating the state and unknown measurement biases simultaneously with derivative-free character, leading to a high-precision algorithm for the Mars entry navigation. IMU/radio beacons integrated navigation is introduced in the simulation, and the result shows that with or without radio blackout, our proposed filter could achieve an accurate state estimation, much better than the conventional unscented Kalman filter, showing the ability of high-precision Mars entry navigation algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Studies in nonlinear problems of energy
Energy Technology Data Exchange (ETDEWEB)
Matkowsky, B.J.
1992-07-01
Emphasis has been on combustion and flame propagation. The research program was on modeling, analysis and computation of combustion phenomena, with emphasis on transition from laminar to turbulent combustion. Nonlinear dynamics and pattern formation were investigated in the transition. Stability of combustion waves, and transitions to complex waves are described. Combustion waves possess large activation energies, so that chemical reactions are significant only in thin layers, or reaction zones. In limit of infinite activation energy, the zones shrink to moving surfaces, (fronts) which must be found during the analysis, so that (moving free boundary problems). The studies are carried out for limiting case with fronts, while the numerical studies are carried out for finite, though large, activation energy. Accurate resolution of the solution in the reaction zones is essential, otherwise false predictions of dynamics are possible. Since the the reaction zones move, adaptive pseudo-spectral methods were developed. The approach is based on a synergism of analytical and computational methods. The numerical computations build on and extend the analytical information. Furthermore, analytical solutions serve as benchmarks for testing the accuracy of the computation. Finally, ideas from analysis (singular perturbation theory) have induced new approaches to computations. The computational results suggest new analysis to be considered. Among the recent interesting results, was spatio-temporal chaos in combustion. One goal is extension of the adaptive pseudo-spectral methods to adaptive domain decomposition methods. Efforts have begun to develop such methods for problems with multiple reaction zones, corresponding to problems with more complex, and more realistic chemistry. Other topics included stochastics, oscillators, Rysteretic Josephson junctions, DC SQUID, Markov jumps, laser with saturable absorber, chemical physics, Brownian movement, combustion synthesis, etc.
An inertia-free filter line-search algorithm for large-scale nonlinear programming
Energy Technology Data Exchange (ETDEWEB)
Chiang, Nai-Yuan; Zavala, Victor M.
2016-02-15
We present a filter line-search algorithm that does not require inertia information of the linear system. This feature enables the use of a wide range of linear algebra strategies and libraries, which is essential to tackle large-scale problems on modern computing architectures. The proposed approach performs curvature tests along the search step to detect negative curvature and to trigger convexification. We prove that the approach is globally convergent and we implement the approach within a parallel interior-point framework to solve large-scale and highly nonlinear problems. Our numerical tests demonstrate that the inertia-free approach is as efficient as inertia detection via symmetric indefinite factorizations. We also demonstrate that the inertia-free approach can lead to reductions in solution time because it reduces the amount of convexification needed.
A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance.
Zheng, Binqi; Fu, Pengcheng; Li, Baoqing; Yuan, Xiaobing
2018-03-07
The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results.
A Bayes Formula for Nonlinear Filtering with Gaussian and Cox Noise
Directory of Open Access Journals (Sweden)
Vidyadhar Mandrekar
2011-01-01
Full Text Available A Bayes-type formula is derived for the nonlinear filter where the observation contains both general Gaussian noise as well as Cox noise whose jump intensity depends on the signal. This formula extends the well-known Kallianpur-Striebel formula in the classical non-linear filter setting. We also discuss Zakai-type equations for both the unnormalized conditional distribution as well as unnormalized conditional density in case the signal is a Markovian jump diffusion.
Multisplitting for linear, least squares and nonlinear problems
Energy Technology Data Exchange (ETDEWEB)
Renaut, R.
1996-12-31
In earlier work, presented at the 1994 Iterative Methods meeting, a multisplitting (MS) method of block relaxation type was utilized for the solution of the least squares problem, and nonlinear unconstrained problems. This talk will focus on recent developments of the general approach and represents joint work both with Andreas Frommer, University of Wupertal for the linear problems and with Hans Mittelmann, Arizona State University for the nonlinear problems.
Nonlinear Vibration Signal Tracking of Large Offshore Bridge Stayed Cable Based on Particle Filter
Directory of Open Access Journals (Sweden)
Ye Qingwei
2015-12-01
Full Text Available The stayed cables are key stress components of large offshore bridge. The fault detection of stayed cable is very important for safe of large offshore bridge. A particle filter model and algorithm of nonlinear vibration signal are used in this paper. Firstly, the particle filter model of stayed cable of large offshore bridge is created. Nonlinear dynamic model of the stayed-cable and beam coupling system is dispersed in temporal dimension by using the finite difference method. The discrete nonlinear vibration equations of any cable element are worked out. Secondly, a state equation of particle filter is fitted by least square algorithm from the discrete nonlinear vibration equations. So the particle filter algorithm can use the accurate state equations. Finally, the particle filter algorithm is used to filter the vibration signal of bridge stayed cable. According to the particle filter, the de-noised vibration signal can be tracked and be predicted for a short time accurately. Many experiments are done at some actual bridges. The simulation experiments and the actual experiments on the bridge stayed cables are all indicating that the particle filter algorithm in this paper has good performance and works stably.
Nonlinear performance characterization in an eight-pole quasi-elliptic bandpass filter
International Nuclear Information System (INIS)
Mateu, J; Collado, C; Menendez, O; O'Callaghan, J M
2004-01-01
In this work we predict the nonlinear behaviour of an eight-pole quasi-elliptic bandpass high temperature superconducting (HTS) filter with an equivalent circuit extracted from intermodulation measurements performed at the centre of the filter passband. We present measurements that show that the equivalent circuit is able to predict the intermodulation products produced by the filter when driven by two in-band or out-of-band sinusoidal signals. Numerical techniques based on harmonic balance are used to extract the elements of the equivalent circuit and to simulate its nonlinear performance
Subramanian, Aneesh C.
2012-11-01
This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.
Subramanian, Aneesh C.; Hoteit, Ibrahim; Cornuelle, Bruce; Miller, Arthur J.; Song, Hajoon
2012-01-01
This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.
Method and system for training dynamic nonlinear adaptive filters which have embedded memory
Rabinowitz, Matthew (Inventor)
2002-01-01
Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.
The stochastic filtering problem: a brief historical account
Crisan, Dan
2014-01-01
Onwards from the mid-twentieth century, the stochastic filtering problem has caught the attention of thousands of mathematicians, engineers, statisticians, and computer scientists. Its applications span the whole spectrum of human endeavour, including satellite tracking, credit risk estimation, human genome analysis, and speech recognition. Stochastic filtering has engendered a surprising number of mathematical techniques for its treatment and has played an important role in...
A novel strong tracking finite-difference extended Kalman filter for nonlinear eye tracking
Institute of Scientific and Technical Information of China (English)
ZHANG ZuTao; ZHANG JiaShu
2009-01-01
Non-Intrusive methods for eye tracking are Important for many applications of vision-based human computer interaction. However, due to the high nonlinearity of eye motion, how to ensure the robust-ness of external interference and accuracy of eye tracking poses the primary obstacle to the integration of eye movements into today's interfaces. In this paper, we present a strong tracking finite-difference extended Kalman filter algorithm, aiming to overcome the difficulty In modeling nonlinear eye tracking. In filtering calculation, strong tracking factor is introduced to modify a priori covariance matrix and im-prove the accuracy of the filter. The filter uses finite-difference method to calculate partial derivatives of nonlinear functions for eye tracking. The latest experimental results show the validity of our method for eye tracking under realistic conditions.
Directory of Open Access Journals (Sweden)
Jinliang Xu
2013-06-01
Full Text Available This paper investigates the filtering problem for multivariate continuous nonlinear non-Gaussian systems based on an improved minimum error entropy (MEE criterion. The system is described by a set of nonlinear continuous equations with non-Gaussian system noises and measurement noises. The recently developed generalized density evolution equation is utilized to formulate the joint probability density function (PDF of the estimation errors. Combining the entropy of the estimation error with the mean squared error, a novel performance index is constructed to ensure the estimation error not only has small uncertainty but also approaches to zero. According to the conjugate gradient method, the optimal filter gain matrix is then obtained by minimizing the improved minimum error entropy criterion. In addition, the condition is proposed to guarantee that the estimation error dynamics is exponentially bounded in the mean square sense. Finally, the comparative simulation results are presented to show that the proposed MEE filter is superior to nonlinear unscented Kalman filter (UKF.
Madi, Mahmoud K; Karameh, Fadi N
2017-01-01
Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate
2017-01-01
Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate
Energy Technology Data Exchange (ETDEWEB)
Cai, X C; Marcinkowski, L; Vassilevski, P S
2005-02-10
This paper extends previous results on nonlinear Schwarz preconditioning ([4]) to unstructured finite element elliptic problems exploiting now nonlocal (but small) subspaces. The non-local finite element subspaces are associated with subdomains obtained from a non-overlapping element partitioning of the original set of elements and are coarse outside the prescribed element subdomain. The coarsening is based on a modification of the agglomeration based AMGe method proposed in [8]. Then, the algebraic construction from [9] of the corresponding non-linear finite element subproblems is applied to generate the subspace based nonlinear preconditioner. The overall nonlinearly preconditioned problem is solved by an inexact Newton method. Numerical illustration is also provided.
Nonlinear singular perturbation problems of arbitrary real orders
International Nuclear Information System (INIS)
Bijura, Angelina M.
2003-10-01
Higher order asymptotic solutions of singularly perturbed nonlinear fractional integral and derivatives of order 1/2 are investigated. It is particularly shown that whilst certain asymptotic expansions are applied successfully to linear equations and particular nonlinear problems, the standard formal asymptotic expansion is appropriate for the general class of nonlinear equations. This theory is then generalised to the general equation (of order β, 0 < β < 1). (author)
Nonlinear Filtering with IMM Algorithm for Ultra-Tight GPS/INS Integration
Directory of Open Access Journals (Sweden)
Dah-Jing Jwo
2013-05-01
Full Text Available Abstract This paper conducts a performance evaluation for the ultra-tight integration of a Global positioning system (GPS and an inertial navigation system (INS, using nonlinear filtering approaches with an interacting multiple model (IMM algorithm. An ultra-tight GPS/INS architecture involves the integration of in-phase and quadrature components from the correlator of a GPS receiver with INS data. An unscented Kalman filter (UKF, which employs a set of sigma points by deterministic sampling, avoids the error caused by linearization as in an extended Kalman filter (EKF. Based on the filter structural adaptation for describing various dynamic behaviours, the IMM nonlinear filtering provides an alternative for designing the adaptive filter in the ultra-tight GPS/INS integration. The use of IMM enables tuning of an appropriate value for the process of noise covariance so as to maintain good estimation accuracy and tracking capability. Two examples are provided to illustrate the effectiveness of the design and demonstrate the effective improvement in navigation estimation accuracy. A performance comparison among various filtering methods for ultra-tight integration of GPS and INS is also presented. The IMM based nonlinear filtering approach demonstrates the effectiveness of the algorithm for improved positioning performance.
A nested sampling particle filter for nonlinear data assimilation
Elsheikh, Ahmed H.; Hoteit, Ibrahim; Wheeler, Mary Fanett
2014-01-01
. The proposed nested sampling particle filter (NSPF) iteratively builds the posterior distribution by applying a constrained sampling from the prior distribution to obtain particles in high-likelihood regions of the search space, resulting in a reduction
Monte Carlo filters for identification of nonlinear structural dynamical ...
Indian Academy of Sciences (India)
The theory of Kalman filtering provides one of ...... expansion (appendix B contains a reasonably self-contained account of how such expansions ...... Shinozuka M, Ghanem R 1995 Structural system identification II: experimental verification.
Analytical Solutions to Non-linear Mechanical Oscillation Problems
DEFF Research Database (Denmark)
Kaliji, H. D.; Ghadimi, M.; Barari, Amin
2011-01-01
In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...
A Linearized Relaxing Algorithm for the Specific Nonlinear Optimization Problem
Directory of Open Access Journals (Sweden)
Mio Horai
2016-01-01
Full Text Available We propose a new method for the specific nonlinear and nonconvex global optimization problem by using a linear relaxation technique. To simplify the specific nonlinear and nonconvex optimization problem, we transform the problem to the lower linear relaxation form, and we solve the linear relaxation optimization problem by the Branch and Bound Algorithm. Under some reasonable assumptions, the global convergence of the algorithm is certified for the problem. Numerical results show that this method is more efficient than the previous methods.
On a non-linear pseudodifferential boundary value problem
International Nuclear Information System (INIS)
Nguyen Minh Chuong.
1989-12-01
A pseudodifferential boundary value problem for operators with symbols taking values in Sobolev spaces and with non-linear right-hand side was studied. Existence and uniqueness theorems were proved. (author). 11 refs
Nonlinear diffusion problem arising in plasma physics
International Nuclear Information System (INIS)
Berryman, J.G.; Holland, C.J.
1978-01-01
In earlier studies of plasma diffusion with Okuda-Dawson scaling (D approx. n/sup -1/2/), perturbation theory indicated that arbitrary initial data should evolve rapidly toward the separation solution of the relevant nonlinear diffusion equation. Now a Lyapunov functional has been found which is strictly decreasing in time and bounded below. The rigorous proof that arbitrary initial data evolve toeard the separable solution is summarized. Rigorous bounds on the decay time are also presented
Generation of Long Waves using Non-Linear Digital Filters
DEFF Research Database (Denmark)
Høgedal, Michael; Frigaard, Peter
1994-01-01
transform of the 1st order surface elevation and subsequently inverse Fourier transformed. Hence, the methods are unsuitable for real-time applications, for example where white noise are filtered digitally to obtain a wave spectrum with built-in stochastic variabillity. In the present paper an approximative...... method for including the correct 2nd order bound terms in such applications is presented. The technique utilizes non-liner digital filters fitted to the appropriate transfer function is derived only for bounded 2nd order subharmonics, as they laboratory experiments generally are considered the most...
Generation of Long Waves using Non-Linear Digital Filters
DEFF Research Database (Denmark)
Høgedal, Michael; Frigaard, Peter; Christensen, Morten
1994-01-01
transform of the 1st order surface elevation and subsequently inverse Fourier transformed. Hence, the methods are unsuitable for real-time applications, for example where white noise are filtered digitally to obtain a wave spectrum with built-in stochastic variabillity. In the present paper an approximative...
Higher-order techniques for some problems of nonlinear control
Directory of Open Access Journals (Sweden)
Sarychev Andrey V.
2002-01-01
Full Text Available A natural first step when dealing with a nonlinear problem is an application of some version of linearization principle. This includes the well known linearization principles for controllability, observability and stability and also first-order optimality conditions such as Lagrange multipliers rule or Pontryagin's maximum principle. In many interesting and important problems of nonlinear control the linearization principle fails to provide a solution. In the present paper we provide some examples of how higher-order methods of differential geometric control theory can be used for the study nonlinear control systems in such cases. The presentation includes: nonlinear systems with impulsive and distribution-like inputs; second-order optimality conditions for bang–bang extremals of optimal control problems; methods of high-order averaging for studying stability and stabilization of time-variant control systems.
Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok
2016-01-01
This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293
New Exact Penalty Functions for Nonlinear Constrained Optimization Problems
Directory of Open Access Journals (Sweden)
Bingzhuang Liu
2014-01-01
Full Text Available For two kinds of nonlinear constrained optimization problems, we propose two simple penalty functions, respectively, by augmenting the dimension of the primal problem with a variable that controls the weight of the penalty terms. Both of the penalty functions enjoy improved smoothness. Under mild conditions, it can be proved that our penalty functions are both exact in the sense that local minimizers of the associated penalty problem are precisely the local minimizers of the original constrained problem.
Renormalization-group approach to nonlinear radiation-transport problems
International Nuclear Information System (INIS)
Chapline, G.F.
1980-01-01
A Monte Carlo method is derived for solving nonlinear radiation-transport problems that allows one to average over the effects of many photon absorptions and emissions at frequencies where the opacity is large. This method should allow one to treat radiation-transport problems with large optical depths, e.g., line-transport problems, with little increase in computational effort over that which is required for optically thin problems
Adaptive particle filter for localization problem in service robotics
Directory of Open Access Journals (Sweden)
Heilig Alexander
2018-01-01
Full Text Available In this paper we present a statistical approach to the likelihood computation and adaptive resampling algorithm for particle filters using low cost ultrasonic sensors in the context of service robotics. This increases the efficiency of the particle filter in the Monte Carlo Localization problem by means of preventing sample impoverishment and ensuring it converges towards the most likely particle and simultaneously keeping less likely ones by systematic resampling. Proposed algorithms were developed in the ROS framework, simulation was done in Gazebo environment. Experiments using a differential drive mobile platform with 4 ultrasonic sensors in the office environment show that our approach provides strong improvement over particle filters with fixed sample sizes.
On a Highly Nonlinear Self-Obstacle Optimal Control Problem
Energy Technology Data Exchange (ETDEWEB)
Di Donato, Daniela, E-mail: daniela.didonato@unitn.it [University of Trento, Department of Mathematics (Italy); Mugnai, Dimitri, E-mail: dimitri.mugnai@unipg.it [Università di Perugia, Dipartimento di Matematica e Informatica (Italy)
2015-10-15
We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.
On the solvability of initial boundary value problems for nonlinear ...
African Journals Online (AJOL)
In this paper, we study the initial boundary value problems for a non-linear time dependent Schrödinger equation with Dirichlet and Neumann boundary conditions, respectively. We prove the existence and uniqueness of solutions of the initial boundary value problems by using Galerkin's method. Keywords: Initial boundary ...
Ma, Lifeng; Wang, Zidong; Lam, Hak-Keung; Kyriakoulis, Nikos
2017-11-01
In this paper, the distributed set-membership filtering problem is investigated for a class of discrete time-varying system with an event-based communication mechanism over sensor networks. The system under consideration is subject to sector-bounded nonlinearity, unknown but bounded noises and sensor saturations. Each intelligent sensing node transmits the data to its neighbors only when certain triggering condition is violated. By means of a set of recursive matrix inequalities, sufficient conditions are derived for the existence of the desired distributed event-based filter which is capable of confining the system state in certain ellipsoidal regions centered at the estimates. Within the established theoretical framework, two additional optimization problems are formulated: one is to seek the minimal ellipsoids (in the sense of matrix trace) for the best filtering performance, and the other is to maximize the triggering threshold so as to reduce the triggering frequency with satisfactory filtering performance. A numerically attractive chaos algorithm is employed to solve the optimization problems. Finally, an illustrative example is presented to demonstrate the effectiveness and applicability of the proposed algorithm.
Multigrid Reduction in Time for Nonlinear Parabolic Problems
Energy Technology Data Exchange (ETDEWEB)
Falgout, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manteuffel, T. A. [Univ. of Colorado, Boulder, CO (United States); O' Neill, B. [Univ. of Colorado, Boulder, CO (United States); Schroder, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-01-04
The need for parallel-in-time is being driven by changes in computer architectures, where future speed-ups will be available through greater concurrency, but not faster clock speeds, which are stagnant.This leads to a bottleneck for sequential time marching schemes, because they lack parallelism in the time dimension. Multigrid Reduction in Time (MGRIT) is an iterative procedure that allows for temporal parallelism by utilizing multigrid reduction techniques and a multilevel hierarchy of coarse time grids. MGRIT has been shown to be effective for linear problems, with speedups of up to 50 times. The goal of this work is the efficient solution of nonlinear problems with MGRIT, where efficient is defined as achieving similar performance when compared to a corresponding linear problem. As our benchmark, we use the p-Laplacian, where p = 4 corresponds to a well-known nonlinear diffusion equation and p = 2 corresponds to our benchmark linear diffusion problem. When considering linear problems and implicit methods, the use of optimal spatial solvers such as spatial multigrid imply that the cost of one time step evaluation is fixed across temporal levels, which have a large variation in time step sizes. This is not the case for nonlinear problems, where the work required increases dramatically on coarser time grids, where relatively large time steps lead to worse conditioned nonlinear solves and increased nonlinear iteration counts per time step evaluation. This is the key difficulty explored by this paper. We show that by using a variety of strategies, most importantly, spatial coarsening and an alternate initial guess to the nonlinear time-step solver, we can reduce the work per time step evaluation over all temporal levels to a range similar with the corresponding linear problem. This allows for parallel scaling behavior comparable to the corresponding linear problem.
Renormgroup symmetries in problems of nonlinear geometrical optics
International Nuclear Information System (INIS)
Kovalev, V.F.
1996-01-01
Utilization and further development of the previously announced approach [1,2] enables one to construct renormgroup symmetries for a boundary value problem for the system of equations which describes propagation of a powerful radiation in a nonlinear medium in geometrical optics approximation. With the help of renormgroup symmetries new rigorous and approximate analytical solutions of nonlinear geometrical optics equations are obtained. Explicit analytical expressions are presented that characterize spatial evolution of laser beam which has an arbitrary intensity dependence at the boundary of the nonlinear medium. (author)
First international conference on nonlinear problems in aviation and aerospace
International Nuclear Information System (INIS)
Sivasundaram, S.
1994-01-01
The International Conference on Nonlinear Problems in Aviation and Aerospace was held at Embry-Riddle Aeronautical University, Daytona Beach, Florida on May 9-11, 1996. This conference was sponsored by the International Federation of Nonlinear Analysts, International Federation of Information Processing, and Embry-Riddle Aeronautical University. Over one hundred engineers, scientists, and mathematicians from seventeen countries attended. These proceedings include keynote addresses, invited lectures, and contributed papers presented during the conference
3D early embryogenesis image filtering by nonlinear partial differential equations.
Krivá, Z; Mikula, K; Peyriéras, N; Rizzi, B; Sarti, A; Stasová, O
2010-08-01
We present nonlinear diffusion equations, numerical schemes to solve them and their application for filtering 3D images obtained from laser scanning microscopy (LSM) of living zebrafish embryos, with a goal to identify the optimal filtering method and its parameters. In the large scale applications dealing with analysis of 3D+time embryogenesis images, an important objective is a correct detection of the number and position of cell nuclei yielding the spatio-temporal cell lineage tree of embryogenesis. The filtering is the first and necessary step of the image analysis chain and must lead to correct results, removing the noise, sharpening the nuclei edges and correcting the acquisition errors related to spuriously connected subregions. In this paper we study such properties for the regularized Perona-Malik model and for the generalized mean curvature flow equations in the level-set formulation. A comparison with other nonlinear diffusion filters, like tensor anisotropic diffusion and Beltrami flow, is also included. All numerical schemes are based on the same discretization principles, i.e. finite volume method in space and semi-implicit scheme in time, for solving nonlinear partial differential equations. These numerical schemes are unconditionally stable, fast and naturally parallelizable. The filtering results are evaluated and compared first using the Mean Hausdorff distance between a gold standard and different isosurfaces of original and filtered data. Then, the number of isosurface connected components in a region of interest (ROI) detected in original and after the filtering is compared with the corresponding correct number of nuclei in the gold standard. Such analysis proves the robustness and reliability of the edge preserving nonlinear diffusion filtering for this type of data and lead to finding the optimal filtering parameters for the studied models and numerical schemes. Further comparisons consist in ability of splitting the very close objects which
Han, Dongju
2018-05-01
Safe and efficient flight powered by an aircraft turbojet engine relies on the performance of the engine controller preventing compressor surge with robustness from noises or disturbances. This paper proposes the effective nonlinear controller associated with the nonlinear filter for the real turbojet engine with highly nonlinear dynamics. For the feasible controller study the nonlinearity of the engine dynamics was investigated by comparing the step responses from the linearized model with the original nonlinear dynamics. The fuzzy-based PID control logic is introduced to control the engine efficiently and FAUKF is applied for robustness from noises. The simulation results prove the effectiveness of FAUKF applied to the proposed controller such that the control performances are superior over the conventional controller and the filer performance using FAUKF indicates the satisfactory results such as clearing the defects by reducing the distortions without compressor surge, whereas the conventional UKF is not fully effective as occurring some distortions with compressor surge due to a process noise.
Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.
Song, Xuegang; Zhang, Yuexin; Liang, Dakai
2017-10-10
This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.
Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter
Directory of Open Access Journals (Sweden)
Xuegang Song
2017-10-01
Full Text Available This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.
θ-convex nonlinear programming problems
International Nuclear Information System (INIS)
Emam, T.
2008-01-01
A class of sets and a class of functions called θ-convex sets and θ-convex functions are introduced by relaxing the definitions of convex sets and operator θ on the sets and domain of definition of the functions. The optimally results for θ-convex programming problems are established.
Rigatos, Gerasimos G; Rigatou, Efthymia G; Djida, Jean Daniel
2015-10-01
A method for early diagnosis of parametric changes in intracellular protein synthesis models (e.g. the p53 protein - mdm2 inhibitor model) is developed with the use of a nonlinear Kalman Filtering approach (Derivative-free nonlinear Kalman Filter) and of statistical change detection methods. The intracellular protein synthesis dynamic model is described by a set of coupled nonlinear differential equations. It is shown that such a dynamical system satisfies differential flatness properties and this allows to transform it, through a change of variables (diffeomorphism), to the so-called linear canonical form. For the linearized equivalent of the dynamical system, state estimation can be performed using the Kalman Filter recursion. Moreover, by applying an inverse transformation based on the previous diffeomorphism it becomes also possible to obtain estimates of the state variables of the initial nonlinear model. By comparing the output of the Kalman Filter (which is assumed to correspond to the undistorted dynamical model) with measurements obtained from the monitored protein synthesis system, a sequence of differences (residuals) is obtained. The statistical processing of the residuals with the use of x2 change detection tests, can provide indication within specific confidence intervals about parametric changes in the considered biological system and consequently indications about the appearance of specific diseases (e.g. malignancies).
Non-linear DSGE Models and The Central Difference Kalman Filter
DEFF Research Database (Denmark)
Andreasen, Martin Møller
This paper introduces a Quasi Maximum Likelihood (QML) approach based on the Cen- tral Difference Kalman Filter (CDKF) to estimate non-linear DSGE models with potentially non-Gaussian shocks. We argue that this estimator can be expected to be consistent and asymptotically normal for DSGE models...
Improvement of nonlinear diffusion equation using relaxed geometric mean filter for low PSNR images
DEFF Research Database (Denmark)
Nadernejad, Ehsan
2013-01-01
A new method to improve the performance of low PSNR image denoising is presented. The proposed scheme estimates edge gradient from an image that is regularised with a relaxed geometric mean filter. The proposed method consists of two stages; the first stage consists of a second order nonlinear an...
White noise theory of robust nonlinear filtering with correlated state and observation noises
Bagchi, Arunabha; Karandikar, Rajeeva
1992-01-01
In the direct white noise theory of nonlinear filtering, the state process is still modeled as a Markov process satisfying an Ito stochastic differential equation, while a finitely additive white noise is used to model the observation noise. In the present work, this asymmetry is removed by modeling
White noise theory of robust nonlinear filtering with correlated state and observation noises
Bagchi, Arunabha; Karandikar, Rajeeva
1994-01-01
In the existing `direct¿ white noise theory of nonlinear filtering, the state process is still modelled as a Markov process satisfying an Itô stochastic differential equation, while a `finitely additive¿ white noise is used to model the observation noise. We remove this asymmetry by modelling the
A nonlinear filtering algorithm for denoising HR(S)TEM micrographs
International Nuclear Information System (INIS)
Du, Hongchu
2015-01-01
Noise reduction of micrographs is often an essential task in high resolution (scanning) transmission electron microscopy (HR(S)TEM) either for a higher visual quality or for a more accurate quantification. Since HR(S)TEM studies are often aimed at resolving periodic atomistic columns and their non-periodic deviation at defects, it is important to develop a noise reduction algorithm that can simultaneously handle both periodic and non-periodic features properly. In this work, a nonlinear filtering algorithm is developed based on widely used techniques of low-pass filter and Wiener filter, which can efficiently reduce noise without noticeable artifacts even in HR(S)TEM micrographs with contrast of variation of background and defects. The developed nonlinear filtering algorithm is particularly suitable for quantitative electron microscopy, and is also of great interest for beam sensitive samples, in situ analyses, and atomic resolution EFTEM. - Highlights: • A nonlinear filtering algorithm for denoising HR(S)TEM images is developed. • It can simultaneously handle both periodic and non-periodic features properly. • It is particularly suitable for quantitative electron microscopy. • It is of great interest for beam sensitive samples, in situ analyses, and atomic resolution EFTEM
The Use of Nonlinear Constitutive Equations to Evaluate Draw Resistance and Filter Ventilation
Directory of Open Access Journals (Sweden)
Eitzinger B
2014-12-01
Full Text Available This study investigates by nonlinear constitutive equations the influence of tipping paper, cigarette paper, filter, and tobacco rod on the degree of filter ventilation and draw resistance. Starting from the laws of conservation, the path to the theory of fluid dynamics in porous media and Darcy's law is reviewed and, as an extension to Darcy's law, two different nonlinear pressure drop-flow relations are proposed. It is proven that these relations are valid constitutive equations and the partial differential equations for the stationary flow in an unlit cigarette covering anisotropic, inhomogeneous and nonlinear behaviour are derived. From these equations a system of ordinary differential equations for the one-dimensional flow in the cigarette is derived by averaging pressure and velocity over the cross section of the cigarette. By further integration, the concept of an electrical analog is reached and discussed in the light of nonlinear pressure drop-flow relations. By numerical calculations based on the system of ordinary differential equations, it is shown that the influence of nonlinearities cannot be neglected because variations in the degree of filter ventilation can reach up to 20% of its nominal value.
PARTICLE FILTERING WITH SEQUENTIAL PARAMETER LEARNING FOR NONLINEAR BOLD fMRI SIGNALS.
Xia, Jing; Wang, Michelle Yongmei
Analyzing the blood oxygenation level dependent (BOLD) effect in the functional magnetic resonance imaging (fMRI) is typically based on recent ground-breaking time series analysis techniques. This work represents a significant improvement over existing approaches to system identification using nonlinear hemodynamic models. It is important for three reasons. First, instead of using linearized approximations of the dynamics, we present a nonlinear filtering based on the sequential Monte Carlo method to capture the inherent nonlinearities in the physiological system. Second, we simultaneously estimate the hidden physiological states and the system parameters through particle filtering with sequential parameter learning to fully take advantage of the dynamic information of the BOLD signals. Third, during the unknown static parameter learning, we employ the low-dimensional sufficient statistics for efficiency and avoiding potential degeneration of the parameters. The performance of the proposed method is validated using both the simulated data and real BOLD fMRI data.
A remark on some nonlinear elliptic problems
Directory of Open Access Journals (Sweden)
Lucio Boccardo
2002-10-01
Full Text Available We shall prove an existence result of $W_0^{1,p}(Omega$ solutions for the boundary value problem $$displylines{ -mathop{m div} a(x, u,abla u=F quadmbox{in }Omegacr u=0quadmbox{on }partialOmega }$$ with right hand side in $W^{-1,p'}(Omega$. The features of the equation are that no restrictions on the growth of the function $a(x,s,xi$ with respect to $s$ are assumed and that $a(x,s,xi$ with respect to $xi$ is monotone, but not strictly monotone. We overcome the difficulty of the uncontrolled growth of $a$ thanks to a suitable definition of solution (similar to the one introduced in cite{B6} for the study of the Dirichlet problem in $L^1$ and the difficulty of the not strict monotonicity thanks to a technique (the $L^1$-version of Minty's Lemma similar to the one used in cite{BO}.
Bonus algorithm for large scale stochastic nonlinear programming problems
Diwekar, Urmila
2015-01-01
This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these ...
Nonlinear Elliptic Boundary Value Problems at Resonance with Nonlinear Wentzell Boundary Conditions
Directory of Open Access Journals (Sweden)
Ciprian G. Gal
2017-01-01
Full Text Available Given a bounded domain Ω⊂RN with a Lipschitz boundary ∂Ω and p,q∈(1,+∞, we consider the quasilinear elliptic equation -Δpu+α1u=f in Ω complemented with the generalized Wentzell-Robin type boundary conditions of the form bx∇up-2∂nu-ρbxΔq,Γu+α2u=g on ∂Ω. In the first part of the article, we give necessary and sufficient conditions in terms of the given functions f, g and the nonlinearities α1, α2, for the solvability of the above nonlinear elliptic boundary value problems with the nonlinear boundary conditions. In other words, we establish a sort of “nonlinear Fredholm alternative” for our problem which extends the corresponding Landesman and Lazer result for elliptic problems with linear homogeneous boundary conditions. In the second part, we give some additional results on existence and uniqueness and we study the regularity of the weak solutions for these classes of nonlinear problems. More precisely, we show some global a priori estimates for these weak solutions in an L∞-setting.
Galerkin approximations of nonlinear optimal control problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Mickael D. Chekroun
2017-07-01
Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.
Problems and remedy programme of an ion-exchange filter
International Nuclear Information System (INIS)
Khattab, M.; Mekhemar, S.
1994-01-01
Practical problems of the ion exchange filter of ET-R R-1 reactor are discussed. Remedy program is described. The program includes:- Evaluating the efficiency of the resins. -Discharging of the radio-active resins from the filter - Identification of corrosion and repairing process of the filter vessel - Charging process of the fresh resins. -Evaluating the efficiency of the new resins. Waste radio-active resins were discharged by siphon effect. The chloride content in reactor cooling water decreased from 5.8 ppm to 1.1 ppm after changing the resins. Nevertheless, the chloride content is still much higher than the standard value 0.05 ppm. This is due to the high level of the chloride in the demineralized water produced by the demineralizer, 0.8 ppm. Therefore, it is recommended that the resins of the mixed bed demineralizer be tailored to produce the standard water quality. The filter vessel cannot be quarantined to be in good service condition for a long period. The vessel should be replaced by a new design which would facilitate the process of discharging the radioactive resins and charging the fresh resins. The inner surface of the vessel should be coated or cladded to withstand the aggressive environment of the water. Periodical water chemical analysis is necessary to investigate reactor coolant and filter conditions. The aging effect of the stored water supply to the reactor should be taken into consideration. New demineralized should be installed near the feed water supply tanks so that the stored water could be refreshed. The device save the costs of production of fresh demineralized water. Development of radioactive waste transportation mechanisms and storing are necessary. 12 figs., 4 tabs
Solution of Contact Problems for Nonlinear Gao Beam and Obstacle
Directory of Open Access Journals (Sweden)
J. Machalová
2015-01-01
Full Text Available Contact problem for a large deformed beam with an elastic obstacle is formulated, analyzed, and numerically solved. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao, while the obstacle is considered as the elastic foundation of Winkler’s type in some distance under the beam. The problem is static without a friction and modeled either using Signorini conditions or by means of normal compliance contact conditions. The problems are then reformulated as optimal control problems which is useful both for theoretical aspects and for solution methods. Discretization is based on using the mixed finite element method with independent discretization and interpolations for foundation and beam elements. Numerical examples demonstrate usefulness of the presented solution method. Results for the nonlinear Gao beam are compared with results for the classical Euler-Bernoulli beam model.
New preconditioned conjugate gradient algorithms for nonlinear unconstrained optimization problems
International Nuclear Information System (INIS)
Al-Bayati, A.; Al-Asadi, N.
1997-01-01
This paper presents two new predilection conjugate gradient algorithms for nonlinear unconstrained optimization problems and examines their computational performance. Computational experience shows that the new proposed algorithms generally imp lone the efficiency of Nazareth's [13] preconditioned conjugate gradient algorithm. (authors). 16 refs., 1 tab
Experimental analysis of nonlinear problems in solid mechanics
International Nuclear Information System (INIS)
1982-01-01
The booklet presents abstracts of papers from the Euromech Colloqium No. 152 held from Sept. 20th to 24th, 1982 in Wuppertal, Federal Republic of Germany. All the papers are dealing with Experimental Analysis of Nonlinear Problems in Solid Mechanics. (RW)
Multiple solutions for inhomogeneous nonlinear elliptic problems arising in astrophyiscs
Directory of Open Access Journals (Sweden)
Marco Calahorrano
2004-04-01
Full Text Available Using variational methods we prove the existence and multiplicity of solutions for some nonlinear inhomogeneous elliptic problems on a bounded domain in $mathbb{R}^n$, with $ngeq 2$ and a smooth boundary, and when the domain is $mathbb{R}_+^n$
Some problems on nonlinear hyperbolic equations and applications
Peng, YueJun
2010-01-01
This volume is composed of two parts: Mathematical and Numerical Analysis for Strongly Nonlinear Plasma Models and Exact Controllability and Observability for Quasilinear Hyperbolic Systems and Applications. It presents recent progress and results obtained in the domains related to both subjects without attaching much importance to the details of proofs but rather to difficulties encountered, to open problems and possible ways to be exploited. It will be very useful for promoting further study on some important problems in the future.
Adomian decomposition method for nonlinear Sturm-Liouville problems
Directory of Open Access Journals (Sweden)
Sennur Somali
2007-09-01
Full Text Available In this paper the Adomian decomposition method is applied to the nonlinear Sturm-Liouville problem-y" + y(tp=λy(t, y(t > 0, t ∈ I = (0, 1, y(0 = y(1 = 0, where p > 1 is a constant and λ > 0 is an eigenvalue parameter. Also, the eigenvalues and the behavior of eigenfuctions of the problem are demonstrated.
Applications of Kalman filters based on non-linear functions to numerical weather predictions
Directory of Open Access Journals (Sweden)
G. Galanis
2006-10-01
Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.
A comparison of nonlinear filtering approaches in the context of an HIV model.
Banks, H Thomas; Hu, Shuhua; Kenz, Zackary R; Tran, Hien T
2010-04-01
In this paper three different filtering methods, the Extended Kalman Filter (EKF), the Gauss-Hermite Filter (GHF), and the Unscented Kalman Filter (UKF), are compared for state-only and coupled state and parameter estimation when used with log state variables of a model of the immunologic response to the human immunodeficiency virus (HIV) in individuals. The filters are implemented to estimate model states as well as model parameters from simulated noisy data, and are compared in terms of estimation accuracy and computational time. Numerical experiments reveal that the GHF is the most computationally expensive algorithm, while the EKF is the least expensive one. In addition, computational experiments suggest that there is little difference in the estimation accuracy between the UKF and GHF. When measurements are taken as frequently as every week to two weeks, the EKF is the superior filter. When measurements are further apart, the UKF is the best choice in the problem under investigation.
A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.
Zhao, Haiquan; Zhang, Jiashu
2009-12-01
To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.
A Nonmonotone Line Search Filter Algorithm for the System of Nonlinear Equations
Directory of Open Access Journals (Sweden)
Zhong Jin
2012-01-01
Full Text Available We present a new iterative method based on the line search filter method with the nonmonotone strategy to solve the system of nonlinear equations. The equations are divided into two groups; some equations are treated as constraints and the others act as the objective function, and the two groups are just updated at the iterations where it is needed indeed. We employ the nonmonotone idea to the sufficient reduction conditions and filter technique which leads to a flexibility and acceptance behavior comparable to monotone methods. The new algorithm is shown to be globally convergent and numerical experiments demonstrate its effectiveness.
Scott, Robert C.; Perry, Boyd, III; Pototzky, Anthony S.
1991-01-01
This paper describes and illustrates two matched-filter-theory based schemes for obtaining maximized and time-correlated gust-loads for a nonlinear airplane. The first scheme is computationally fast because it uses a simple one-dimensional search procedure to obtain its answers. The second scheme is computationally slow because it uses a more complex multidimensional search procedure to obtain its answers, but it consistently provides slightly higher maximum loads than the first scheme. Both schemes are illustrated with numerical examples involving a nonlinear control system.
Nonlinear optical behaviour of absorbing CdSxSe1-x interference filters
International Nuclear Information System (INIS)
Ferencz, K.; Szipoecs, R.
1988-01-01
First experimental results of nonlinear, thin film interference filter wedges with mixed CdS x Se 1-x as spacer material at the 633 nm wavelength of He-Ne laser are reported. Optical bistability is observed with less than 7.5 mW of optical power in single-cavity structures. The change in refractive index is found to be positive which is in accordance with the thermal mechanism of nonlinearity. Producing a double-cavity structure a device is obtained which works as an optical astable multivibrator having periodical change of transmission as the function of time. (author)
Some nonlinear problems in the manipulation of beams
International Nuclear Information System (INIS)
Sessler, A.M.
1990-01-01
An overview is given of nonlinear problems that arise in the manipulation of beams. Beams can be made of material particles or photons, can be intense or dilute, can be energetic or not, and they can be propagating in vacuum or in a medium. The nonlinear aspects of the motion are different in each case, and this diversity of behavior is categorized. Many examples are given, which serves to illustrate the categorization and, furthermore, display the richness of behavior encountered in the physics of beams. 25 refs., 5 figs
Huang, Guanghui; Wan, Jianping; Chen, Hui
2013-02-01
Nonlinear stochastic differential equation models with unobservable state variables are now widely used in analysis of PK/PD data. Unobservable state variables are usually estimated with extended Kalman filter (EKF), and the unknown pharmacokinetic parameters are usually estimated by maximum likelihood estimator. However, EKF is inadequate for nonlinear PK/PD models, and MLE is known to be biased downwards. A density-based Monte Carlo filter (DMF) is proposed to estimate the unobservable state variables, and a simulation-based M estimator is proposed to estimate the unknown parameters in this paper, where a genetic algorithm is designed to search the optimal values of pharmacokinetic parameters. The performances of EKF and DMF are compared through simulations for discrete time and continuous time systems respectively, and it is found that the results based on DMF are more accurate than those given by EKF with respect to mean absolute error. Copyright © 2012 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
B. Shank
2014-11-01
Full Text Available We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs connected to quasiparticle (qp traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution.
Effects of noise, nonlinear processing, and linear filtering on perceived music quality.
Arehart, Kathryn H; Kates, James M; Anderson, Melinda C
2011-03-01
The purpose of this study was to determine the relative impact of different forms of hearing aid signal processing on quality ratings of music. Music quality was assessed using a rating scale for three types of music: orchestral classical music, jazz instrumental, and a female vocalist. The music stimuli were subjected to a wide range of simulated hearing aid processing conditions including, (1) noise and nonlinear processing, (2) linear filtering, and (3) combinations of noise, nonlinear, and linear filtering. Quality ratings were measured in a group of 19 listeners with normal hearing and a group of 15 listeners with sensorineural hearing impairment. Quality ratings in both groups were generally comparable, were reliable across test sessions, were impacted more by noise and nonlinear signal processing than by linear filtering, and were significantly affected by the genre of music. The average quality ratings for music were reasonably well predicted by the hearing aid speech quality index (HASQI), but additional work is needed to optimize the index to the wide range of music genres and processing conditions included in this study.
Energy Technology Data Exchange (ETDEWEB)
Wang, Wei; Li, Hong-Yi; Leung, Lai-Yung; Yigzaw, Wondmagegn Y.; Zhao, Jianshi; Lu, Hui; Deng, Zhiqun; Demissie, Yonas; Bloschl, Gunter
2017-10-01
Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximum flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.
Lectures on nonlinear evolution equations initial value problems
Racke, Reinhard
2015-01-01
This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...
Nonlinear problems in fluid dynamics and inverse scattering: Nonlinear waves and inverse scattering
Ablowitz, Mark J.
1994-12-01
Research investigations involving the fundamental understanding and applications of nonlinear wave motion and related studies of inverse scattering and numerical computation have been carried out and a number of significant results have been obtained. A class of nonlinear wave equations which can be solved by the inverse scattering transform (IST) have been studied, including the Kadaomtsev-Petviashvili (KP) equation, the Davey-Stewartson equation, and the 2+1 Toda system. The solutions obtained by IST correspond to the Cauchy initial value problem with decaying initial data. We have also solved two important systems via the IST method: a 'Volterra' system in 2+1 dimensions and a new one dimensional nonlinear equation which we refer to as the Toda differential-delay equation. Research in computational chaos in moderate to long time numerical simulations continues.
On a mixed problem for a coupled nonlinear system
Directory of Open Access Journals (Sweden)
Marcondes R. Clark
1997-03-01
Full Text Available In this article we prove the existence and uniqueness of solutions to the mixed problem associated with the nonlinear system $$ u_{tt}-M(int_Omega |abla u|^2dxDelta u+|u|^ ho u+heta =f $$ $$ heta _t -Delta heta +u_{t}=g $$ where $M$ is a positive real function, and $f$ and $g$ are known real functions.
On discrete maximum principles for nonlinear elliptic problems
Czech Academy of Sciences Publication Activity Database
Karátson, J.; Korotov, S.; Křížek, Michal
2007-01-01
Roč. 76, č. 1 (2007), s. 99-108 ISSN 0378-4754 R&D Projects: GA MŠk 1P05ME749; GA AV ČR IAA1019201 Institutional research plan: CEZ:AV0Z10190503 Keywords : nonlinear elliptic problem * mixed boundary conditions * finite element method Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2007
Evaluation of non-linear adaptive smoothing filter by digital phantom
International Nuclear Information System (INIS)
Sato, Kazuhiro; Ishiya, Hiroki; Oshita, Ryosuke; Yanagawa, Isao; Goto, Mitsunori; Mori, Issei
2008-01-01
As a result of the development of multi-slice CT, diagnoses based on three-dimensional reconstruction images and multi-planar reconstruction have spread. For these applications, which require high z-resolution, thin slice imaging is essential. However, because z-resolution is always based on a trade-off with image noise, thin slice imaging is necessarily accompanied by an increase in noise level. To improve the quality of thin slice images, a non-linear adaptive smoothing filter has been developed, and is being widely applied to clinical use. We developed a digital bar pattern phantom for the purpose of evaluating the effect of this filter and attempted evaluation from an addition image of the bar pattern phantom and the image of the water phantom. The effect of this filter was changed in a complex manner by the contrast and spatial frequency of the original image. We have confirmed the reduced effect of image noise in the low frequency component of the image, but decreased contrast or increased quantity of noise in the image of the high frequency component. This result represents the effect of change in the adaptation of this filter. The digital phantom was useful for this evaluation, but to understand the total effect of filtering, much improvement of the shape of the digital phantom is required. (author)
International Nuclear Information System (INIS)
Harlim, John; Mahdi, Adam; Majda, Andrew J.
2014-01-01
A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partial noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model
A dynamic load estimation method for nonlinear structures with unscented Kalman filter
Guo, L. N.; Ding, Y.; Wang, Z.; Xu, G. S.; Wu, B.
2018-02-01
A force estimation method is proposed for hysteretic nonlinear structures. The equation of motion for the nonlinear structure is represented in state space and the state variable is augmented by the unknown the time history of external force. Unscented Kalman filter (UKF) is improved for the force identification in state space considering the ill-condition characteristic in the computation of square roots for the covariance matrix. The proposed method is firstly validated by a numerical simulation study of a 3-storey nonlinear hysteretic frame excited by periodic force. Each storey is supposed to follow a nonlinear hysteretic model. The external force is identified and the measurement noise is considered in this case. Then a case of a seismically isolated building subjected to earthquake excitation and impact force is studied. The isolation layer performs nonlinearly during the earthquake excitation. Impact force between the seismically isolated structure and the retaining wall is estimated with the proposed method. Uncertainties such as measurement noise, model error in storey stiffness and unexpected environmental disturbances are considered. A real-time substructure testing of an isolated structure is conducted to verify the proposed method. In the experimental study, the linear main structure is taken as numerical substructure while the one of the isolations with additional mass is taken as the nonlinear physical substructure. The force applied by the actuator on the physical substructure is identified and compared with the measured value from the force transducer. The method proposed in this paper is also validated by shaking table test of a seismically isolated steel frame. The acceleration of the ground motion as the unknowns is identified by the proposed method. Results from both numerical simulation and experimental studies indicate that the UKF based force identification method can be used to identify external excitations effectively for the nonlinear
Application of nonlinear Krylov acceleration to radiative transfer problems
International Nuclear Information System (INIS)
Till, A. T.; Adams, M. L.; Morel, J. E.
2013-01-01
The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)
A new integrability theory for certain nonlinear physical problems
International Nuclear Information System (INIS)
Berger, M.S.
1993-01-01
A new mathematically sound integrability theory for certain nonlinear problems defined by ordinary or partial differential equations is defined. The new theory works in an arbitrary finite number of space dimensions. Moreover, if a system is integrable in the new sense described here, it has a remarkable stability property that distinguishes if from any previously known integrability ideas. The new theory proceeds by establishing a ''global normal form'' for the problem at hand. This normal form holds subject to canonical coordinate transformations, extending such classical ideas by using new nonlinear methods of infinite dimensional functional analysis. The global normal form in question is related to the mathematical theory of singularities of mappings of H. Whitney and R. Thom extended globally and form finite to infinite dimensions. Thus bifurcation phenomena are naturally included in the new integrability theory. Typical examples include the classically nonintegrable Riccati equation, certain non-Euclidean mean field theories, certain parabolic reaction diffusion equations and the hyperbolic nonlinear telegrapher's equation. (Author)
Implicit solvers for large-scale nonlinear problems
International Nuclear Information System (INIS)
Keyes, David E; Reynolds, Daniel R; Woodward, Carol S
2006-01-01
Computational scientists are grappling with increasingly complex, multi-rate applications that couple such physical phenomena as fluid dynamics, electromagnetics, radiation transport, chemical and nuclear reactions, and wave and material propagation in inhomogeneous media. Parallel computers with large storage capacities are paving the way for high-resolution simulations of coupled problems; however, hardware improvements alone will not prove enough to enable simulations based on brute-force algorithmic approaches. To accurately capture nonlinear couplings between dynamically relevant phenomena, often while stepping over rapid adjustments to quasi-equilibria, simulation scientists are increasingly turning to implicit formulations that require a discrete nonlinear system to be solved for each time step or steady state solution. Recent advances in iterative methods have made fully implicit formulations a viable option for solution of these large-scale problems. In this paper, we overview one of the most effective iterative methods, Newton-Krylov, for nonlinear systems and point to software packages with its implementation. We illustrate the method with an example from magnetically confined plasma fusion and briefly survey other areas in which implicit methods have bestowed important advantages, such as allowing high-order temporal integration and providing a pathway to sensitivity analyses and optimization. Lastly, we overview algorithm extensions under development motivated by current SciDAC applications
Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter.
Vafamand, Navid; Arefi, Mohammad Mehdi; Khayatian, Alireza
2018-03-01
This paper proposes two novel Kalman-based learning algorithms for an online Takagi-Sugeno (TS) fuzzy model identification. The proposed approaches are designed based on the unscented Kalman filter (UKF) and the concept of dual estimation. Contrary to the extended Kalman filter (EKF) which utilizes derivatives of nonlinear functions, the UKF employs the unscented transformation. Consequently, non-differentiable membership functions can be considered in the structure of the TS models. This makes the proposed algorithms to be applicable for the online parameter calculation of wider classes of TS models compared to the recently published papers concerning the same issue. Furthermore, because of the great capability of the UKF in handling severe nonlinear dynamics, the proposed approaches can effectively approximate the nonlinear systems. Finally, numerical and practical examples are provided to show the advantages of the proposed approaches. Simulation results reveal the effectiveness of the proposed methods and performance improvement based on the root mean square (RMS) of the estimation error compared to the existing results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Global Optimization of Nonlinear Blend-Scheduling Problems
Directory of Open Access Journals (Sweden)
Pedro A. Castillo Castillo
2017-04-01
Full Text Available The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also non-convex nonlinear behavior, due to the blending of various materials with different quality properties. In this work, a global optimization algorithm is proposed to solve a previously published continuous-time mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimization, the distribution problem, and several important operational features and constraints. The algorithm employs piecewise McCormick relaxation (PMCR and normalized multiparametric disaggregation technique (NMDT to compute estimates of the global optimum. These techniques partition the domain of one of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the number of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods by solving four examples from the literature. Results show that the proposed global optimization algorithm performs on par with commercial solvers but is not as fast as heuristic approaches.
Lavrentiev regularization method for nonlinear ill-posed problems
International Nuclear Information System (INIS)
Kinh, Nguyen Van
2002-10-01
In this paper we shall be concerned with Lavientiev regularization method to reconstruct solutions x 0 of non ill-posed problems F(x)=y o , where instead of y 0 noisy data y δ is an element of X with absolut(y δ -y 0 ) ≤ δ are given and F:X→X is an accretive nonlinear operator from a real reflexive Banach space X into itself. In this regularization method solutions x α δ are obtained by solving the singularly perturbed nonlinear operator equation F(x)+α(x-x*)=y δ with some initial guess x*. Assuming certain conditions concerning the operator F and the smoothness of the element x*-x 0 we derive stability estimates which show that the accuracy of the regularized solutions is order optimal provided that the regularization parameter α has been chosen properly. (author)
Nonlinear programming for classification problems in machine learning
Astorino, Annabella; Fuduli, Antonio; Gaudioso, Manlio
2016-10-01
We survey some nonlinear models for classification problems arising in machine learning. In the last years this field has become more and more relevant due to a lot of practical applications, such as text and web classification, object recognition in machine vision, gene expression profile analysis, DNA and protein analysis, medical diagnosis, customer profiling etc. Classification deals with separation of sets by means of appropriate separation surfaces, which is generally obtained by solving a numerical optimization model. While linear separability is the basis of the most popular approach to classification, the Support Vector Machine (SVM), in the recent years using nonlinear separating surfaces has received some attention. The objective of this work is to recall some of such proposals, mainly in terms of the numerical optimization models. In particular we tackle the polyhedral, ellipsoidal, spherical and conical separation approaches and, for some of them, we also consider the semisupervised versions.
Sky-Hook Control and Kalman Filtering in Nonlinear Model of Tracked Vehicle Suspension System
Directory of Open Access Journals (Sweden)
Jurkiewicz Andrzej
2017-09-01
Full Text Available The essence of the undertaken topic is application of the continuous sky-hook control strategy and the Extended Kalman Filter as the state observer in the 2S1 tracked vehicle suspension system. The half-car model of this suspension system consists of seven logarithmic spiral springs and two magnetorheological dampers which has been described by the Bingham model. The applied continuous sky-hook control strategy considers nonlinear stiffness characteristic of the logarithmic spiral springs. The control is determined on estimates generated by the Extended Kalman Filter. Improve of ride comfort is verified by comparing simulation results, under the same driving conditions, of controlled and passive vehicle suspension systems.
Out-of-band and adjacent-channel interference reduction by analog nonlinear filters
Nikitin, Alexei V.; Davidchack, Ruslan L.; Smith, Jeffrey E.
2015-12-01
In a perfect world, we would have `brick wall' filters, no-distortion amplifiers and mixers, and well-coordinated spectrum operations. The real world, however, is prone to various types of unintentional and intentional interference of technogenic (man-made) origin that can disrupt critical communication systems. In this paper, we introduce a methodology for mitigating technogenic interference in communication channels by analog nonlinear filters, with an emphasis on the mitigation of out-of-band and adjacent-channel interference. Interference induced in a communications receiver by external transmitters can be viewed as wide-band non-Gaussian noise affecting a narrower-band signal of interest. This noise may contain a strong component within the receiver passband, which may dominate over the thermal noise. While the total wide-band interference seen by the receiver may or may not be impulsive, we demonstrate that the interfering component due to power emitted by the transmitter into the receiver channel is likely to appear impulsive under a wide range of conditions. We give an example of mechanisms of impulsive interference in digital communication systems resulting from the nonsmooth nature of any physically realizable modulation scheme for transmission of a digital (discontinuous) message. We show that impulsive interference can be effectively mitigated by nonlinear differential limiters (NDLs). An NDL can be configured to behave linearly when the input signal does not contain outliers. When outliers are encountered, the nonlinear response of the NDL limits the magnitude of the respective outliers in the output signal. The signal quality is improved in excess of that achievable by the respective linear filter, increasing the capacity of a communications channel. The behavior of an NDL, and its degree of nonlinearity, is controlled by a single parameter in a manner that enables significantly better overall suppression of the noise-containing impulsive components
DEFF Research Database (Denmark)
Baadsgaard, Mikkel; Nielsen, Jan Nygaard; Madsen, Henrik
2000-01-01
An econometric analysis of continuous-timemodels of the term structure of interest rates is presented. A panel of coupon bond prices with different maturities is used to estimate the embedded parameters of a continuous-discrete state space model of unobserved state variables: the spot interest rate...... noise term should account for model errors. A nonlinear filtering method is used to compute estimates of the state variables, and the model parameters are estimated by a quasimaximum likelihood method provided that some assumptions are imposed on the model residuals. Both Monte Carlo simulation results...
Nonlinear Eigenvalue Problems in Elliptic Variational Inequalities: a local study
International Nuclear Information System (INIS)
Conrad, F.; Brauner, C.; Issard-Roch, F.; Nicolaenko, B.
1985-01-01
The authors consider a class of Nonlinear Eigenvalue Problems (N.L.E.P.) associated with Elliptic Variational Inequalities (E.V.I.). First the authors introduce the main tools for a local study of branches of solutions; the authors extend the linearization process required in the case of equations. Next the authors prove the existence of arcs of solutions close to regular vs singular points, and determine their local behavior up to the first order. Finally, the authors discuss the connection between their regularity condition and some stability concept. 37 references, 6 figures
Nonlinear triple-point problems on time scales
Directory of Open Access Journals (Sweden)
Douglas R. Anderson
2004-04-01
Full Text Available We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$displaylines{ u^{Delta abla}(t+h(tf(t,u(t=0, cr u(a=alpha u(b+delta u^Delta(a,quad eta u(c+gamma u^Delta(c=0 }$$ for $tin[a,c]subsetmathbb{T}$, where $mathbb{T}$ is a time scale, $eta, gamma, deltage 0$ with $Beta+gamma>0$, $0
Eigenvalue problems for degenerate nonlinear elliptic equations in anisotropic media
Directory of Open Access Journals (Sweden)
Vicenţiu RăDulescu
2005-06-01
Full Text Available We study nonlinear eigenvalue problems of the type Ã¢ÂˆÂ’div(a(xÃ¢ÂˆÂ‡u=g(ÃŽÂ»,x,u in Ã¢Â„ÂN, where a(x is a degenerate nonnegative weight. We establish the existence of solutions and we obtain information on qualitative properties as multiplicity and location of solutions. Our approach is based on the critical point theory in Sobolev weighted spaces combined with a Caffarelli-Kohn-Nirenberg-type inequality. A specific minimax method is developed without making use of Palais-Smale condition.
Numerical solution of non-linear diffusion problems
International Nuclear Information System (INIS)
Carmen, A. del; Ferreri, J.C.
1998-01-01
This paper presents a method for the numerical solution of non-linear diffusion problems using finite-differences in moving grids. Due to the presence of steep fronts in the solution domain and to the presence of advective terms originating in the grid movement, an implicit TVD scheme, first order in time and second order in space has been developed. Some algebraic details of the derivation are given. Results are shown for the pure advection of a scalar as a test case and an example dealing with the slow spreading of viscous fluids over plane surfaces. The agreement between numerical and analytical solutions is excellent. (author). 8 refs., 3 figs
Fuzzy predictive filtering in nonlinear economic model predictive control for demand response
DEFF Research Database (Denmark)
Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.
2016-01-01
problem. Moreover, to reduce the computation time and improve the controller's performance, a fuzzy predictive filter is introduced. With the purpose of testing the developed EMPC, a simulation controlling the temperature levels of an intelligent office building (PowerFlexHouse), with and without fuzzy...
Rigatos, Gerasimos G
2016-06-01
It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.
Nonlinear problems of the theory of heterogeneous slightly curved shells
Kantor, B. Y.
1973-01-01
An account if given of the variational method of the solution of physically and geometrically nonlinear problems of the theory of heterogeneous slightly curved shells. Examined are the bending and supercritical behavior of plates and conical and spherical cupolas of variable thickness in a temperature field, taking into account the dependence of the elastic parameters on temperature. The bending, stability in general and load-bearing capacity of flexible isotropic elastic-plastic shells with different criteria of plasticity, taking into account compressibility and hardening. The effect of the plastic heterogeneity caused by heat treatment, surface work hardening and irradiation by fast neutron flux is investigated. Some problems of the dynamic behavior of flexible shells are solved. Calculations are performed in high approximations. Considerable attention is given to the construction of a machine algorithm and to the checking of the convergence of iterative processes.
Stokes phenomena and monodromy deformation problem for nonlinear Schrodinger equation
International Nuclear Information System (INIS)
Chowdury, A.R.; Naskar, M.
1986-01-01
Following Flaschka and Newell, the inverse problem for Painleve IV is formulated with the help of similarity variables. The Painleve IV arises as the eliminant of the two second-order ordinary differential equations originating from the nonlinear Schrodinger equation. Asymptotic expansions are obtained near the singularities at zero and infinity of the complex eigenvalue plane. The corresponding analysis then displays the Stokes phenomena. The monodromy matrices connecting the solution Y /sub j/ in the sector S /sub j/ to that in S /sub j+1/ are fixed in structure by the imposition of certain conditions. It is then shown that a deformation keeping the monodromy data fixed leads to the nonlinear Schrodinger equation. While Flaschka and Newell did not make any absolute determination of the Stokes parameters, the present approach yields the values of the Stokes parameters in an explicit way, which in turn can determine the matrix connecting the solutions near zero and infinity. Finally, it is shown that the integral equation originating from the analyticity and asymptotic nature of the problem leads to the similarity solution previously determined by Boiti and Pampinelli
Nonlinear Preconditioning and its Application in Multicomponent Problems
Liu, Lulu
2015-12-07
The Multiplicative Schwarz Preconditioned Inexact Newton (MSPIN) algorithm is presented as a complement to Additive Schwarz Preconditioned Inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. The ASPIN framework, as an option for the outermost solver, successfully handles strong nonlinearities in computational fluid dynamics, but is barely explored for the highly nonlinear models of complex multiphase flow with capillarity, heterogeneity, and complex geometry. In this dissertation, the fully implicit ASPIN method is demonstrated for a finite volume discretization based on incompressible two-phase reservoir simulators in the presence of capillary forces and gravity. Numerical experiments show that the number of global nonlinear iterations is not only scalable with respect to the number of processors, but also significantly reduced compared with the standard inexact Newton method with a backtracking technique. Moreover, the ASPIN method, in contrast with the IMPES method, saves overall execution time because of the savings in timestep size. We consider the additive and multiplicative types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Moreover, we provide the convergence analysis of the MSPIN algorithm. Under suitable assumptions, it is shown that MSPIN is locally convergent, and desired superlinear or even quadratic convergence can be
Fault detection for nonlinear systems - A standard problem approach
DEFF Research Database (Denmark)
Stoustrup, Jakob; Niemann, Hans Henrik
1998-01-01
The paper describes a general method for designing (nonlinear) fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension...
International Nuclear Information System (INIS)
Wu, Xuedong; Zhu, Zhiyu; Su, Xunliang; Fan, Shaosheng; Du, Zhaoping; Chang, Yanchao; Zeng, Qingjun
2015-01-01
Wind speed prediction is one important methods to guarantee the wind energy integrated into the whole power system smoothly. However, wind power has a non–schedulable nature due to the strong stochastic nature and dynamic uncertainty nature of wind speed. Therefore, wind speed prediction is an indispensable requirement for power system operators. Two new approaches for hourly wind speed prediction are developed in this study by integrating the single multiplicative neuron model and the iterated nonlinear filters for updating the wind speed sequence accurately. In the presented methods, a nonlinear state–space model is first formed based on the single multiplicative neuron model and then the iterated nonlinear filters are employed to perform dynamic state estimation on wind speed sequence with stochastic uncertainty. The suggested approaches are demonstrated using three cases wind speed data and are compared with autoregressive moving average, artificial neural network, kernel ridge regression based residual active learning and single multiplicative neuron model methods. Three types of prediction errors, mean absolute error improvement ratio and running time are employed for different models’ performance comparison. Comparison results from Tables 1–3 indicate that the presented strategies have much better performance for hourly wind speed prediction than other technologies. - Highlights: • Developed two novel hybrid modeling methods for hourly wind speed prediction. • Uncertainty and fluctuations of wind speed can be better explained by novel methods. • Proposed strategies have online adaptive learning ability. • Proposed approaches have shown better performance compared with existed approaches. • Comparison and analysis of two proposed novel models for three cases are provided
Initial boundary value problems of nonlinear wave equations in an exterior domain
International Nuclear Information System (INIS)
Chen Yunmei.
1987-06-01
In this paper, we investigate the existence and uniqueness of the global solutions to the initial boundary value problems of nonlinear wave equations in an exterior domain. When the space dimension n >= 3, the unique global solution of the above problem is obtained for small initial data, even if the nonlinear term is fully nonlinear and contains the unknown function itself. (author). 10 refs
Detection of broken rotor bars in induction motors using nonlinear Kalman filters.
Karami, Farzaneh; Poshtan, Javad; Poshtan, Majid
2010-04-01
This paper presents a model-based fault detection approach for induction motors. A new filtering technique using Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF) is utilized as a state estimation tool for on-line detection of broken bars in induction motors based on rotor parameter value estimation from stator current and voltage processing. The hypothesis on which the detection is based is that the failure events are detected by jumps in the estimated parameter values of the model. Both UKF and EKF are used to estimate the value of rotor resistance. Upon breaking a bar the estimated rotor resistance is increased instantly, thus providing two values of resistance after and before bar breakage. In order to compare the estimation performance of the EKF and UKF, both observers are designed for the same motor model and run with the same covariance matrices under the same conditions. Computer simulations are carried out for a squirrel cage induction motor. The results show the superiority of UKF over EKF in nonlinear system (such as induction motors) as it provides better estimates for rotor fault detection. Copyright 2010. Published by Elsevier Ltd.
Linear differential equations to solve nonlinear mechanical problems: A novel approach
Nair, C. Radhakrishnan
2004-01-01
Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...
Directory of Open Access Journals (Sweden)
Dalei Song
2012-10-01
Full Text Available The adaptive extended set-membership filter (AESMF for nonlinear ellipsoidal estimation suffers a mismatch between real process noise and its set boundaries, which may result in unstable estimation. In this paper, a MIT method-based adaptive set-membership filter, for the optimization of the set boundaries of process noise, is developed and applied to the nonlinear joint estimation of both time-varying states and parameters. As a result of using the proposed MIT-AESMF, the estimation effectiveness and boundary accuracy of traditional AESMF are substantially improved. Simulation results have shown the efficiency and robustness of the proposed method.
Nonlinear Preconditioning and its Application in Multicomponent Problems
Liu, Lulu
2015-01-01
the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest
Hu, Weiming; Hu, Ruiguang; Xie, Nianhua; Ling, Haibin; Maybank, Stephen
2014-04-01
In this paper, we propose saliency driven image multiscale nonlinear diffusion filtering. The resulting scale space in general preserves or even enhances semantically important structures such as edges, lines, or flow-like structures in the foreground, and inhibits and smoothes clutter in the background. The image is classified using multiscale information fusion based on the original image, the image at the final scale at which the diffusion process converges, and the image at a midscale. Our algorithm emphasizes the foreground features, which are important for image classification. The background image regions, whether considered as contexts of the foreground or noise to the foreground, can be globally handled by fusing information from different scales. Experimental tests of the effectiveness of the multiscale space for the image classification are conducted on the following publicly available datasets: 1) the PASCAL 2005 dataset; 2) the Oxford 102 flowers dataset; and 3) the Oxford 17 flowers dataset, with high classification rates.
Nonlinear Control of Back-to-Back VSC-HVDC System via Command-Filter Backstepping
Directory of Open Access Journals (Sweden)
Jie Huang
2017-01-01
Full Text Available This paper proposed a command-filtered backstepping controller to improve the dynamic performance of back-to-back voltage-source-converter high voltage direct current (BTB VSC-HVDC. First, the principle and model of BTB VSC-HVDC in abc and d-q frame are described. Then, backstepping method is applied to design a controller to maintain the voltage balance and realize coordinated control of active and reactive power. Meanwhile, command filter is introduced to deal with the problem of input saturation and explosion of complexity in conventional backstepping, and a filter compensation signal is designed to diminish the adverse effects caused by the command filter. Next, the stability and convergence of the whole system are proved via the Lyapunov theorem of asymptotic stability. Finally, simulation results are given to demonstrate that proposed controller has a better dynamic performance and stronger robustness compared to the traditional PID algorithm, which also proves the effectiveness and possibility of the designed controller.
Directory of Open Access Journals (Sweden)
Tao Li
2016-03-01
Full Text Available The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF and Kalman filter (KF. The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.
Li, Tao; Yuan, Gannan; Li, Wang
2016-03-15
The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.
Performance improvement of shunt active power filter based on non-linear least-square approach
DEFF Research Database (Denmark)
Terriche, Yacine
2018-01-01
Nowadays, the shunt active power filters (SAPFs) have become a popular solution for power quality issues. A crucial issue in controlling the SAPFs which is highly correlated with their accuracy, flexibility and dynamic behavior, is generating the reference compensating current (RCC). The synchron......Nowadays, the shunt active power filters (SAPFs) have become a popular solution for power quality issues. A crucial issue in controlling the SAPFs which is highly correlated with their accuracy, flexibility and dynamic behavior, is generating the reference compensating current (RCC......). The synchronous reference frame (SRF) approach is widely used for generating the RCC due to its simplicity and computation efficiency. However, the SRF approach needs precise information of the voltage phase which becomes a challenge under adverse grid conditions. A typical solution to answer this need....... This paper proposes an improved open loop strategy which is unconditionally stable and flexible. The proposed method which is based on non-linear least square (NLS) approach can extract the fundamental voltage and estimates its phase within only half cycle, even in the presence of odd harmonics and dc offset...
Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters
Hajjaj, Amal Z.
2017-01-30
We experimentally demonstrate an exploitation of the nonlinear softening, hardening, and veering phenomena (near crossing), where the frequencies of two vibration modes get close to each other, to realize a bandpass filter of sharp roll off from the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature to form an arch shape. A DC current is applied through the resonator to induce heat and modulate its stiffness, and hence its resonance frequencies. We show that the first resonance frequency increases up to twice of the initial value while the third resonance frequency decreases until getting very close to the first resonance frequency. This leads to the phenomenon of veering, where both modes get coupled and exchange energy. We demonstrate that by driving both modes nonlinearly and electrostatically near the veering regime, such that the first and third modes exhibit softening and hardening behavior, respectively, sharp roll off from the passband to the stopband is achievable. We show a flat, wide, and tunable bandwidth and center frequency by controlling the electrothermal actuation voltage.
Directory of Open Access Journals (Sweden)
Zhaohui Chen
2013-01-01
Full Text Available The delay-dependent exponential L2-L∞ performance analysis and filter design are investigated for stochastic systems with mixed delays and nonlinear perturbations. Based on the delay partitioning and integral partitioning technique, an improved delay-dependent sufficient condition for the existence of the L2-L∞ filter is established, by choosing an appropriate Lyapunov-Krasovskii functional and constructing a new integral inequality. The full-order filter design approaches are obtained in terms of linear matrix inequalities (LMIs. By solving the LMIs and using matrix decomposition, the desired filter gains can be obtained, which ensure that the filter error system is exponentially stable with a prescribed L2-L∞ performance γ. Numerical examples are provided to illustrate the effectiveness and significant improvement of the proposed method.
Variational problems arising in classical mechanics and nonlinear elasticity
International Nuclear Information System (INIS)
Spencer, P.
1999-01-01
In this thesis we consider two different classes of variational problems. First, one-dimensional problems arising from classical mechanics where the problem is to determine whether there is a unique function η 0 (x) which minimises the energy functional of the form I(η) = ∫ a b L(x,η(x), η'(x)) dx. We will investigate uniqueness by making a change of dependent and independent variables and showing that for a class of integrands L with a particular kind of scaling invariance the resulting integrand is completely convex. The change of variables arises by applying results from Lie group theory as applied in the study of differential equations and this work is motivated by [60] and [68]. Second, the problem of minimising energy functionals of the form E(u) = ∫ A W(∇u(x)) dx in the case of a nonlinear elastic body occupying an annular region A contains R 2 with u : A-bar → A-bar. This work is motivated by [57] (in particular the example of paragraph 4). We will consider rotationally symmetric deformations satisfying prescribed boundary conditions. We will show the existence of minimisers for stored energy functions of the form W(F) = g-tilde(vertical bar-F-vertical bar, det(F)) in a class of general rotationally symmetric deformations of a compressible annulus and for stored energy functions of the form W(F) = g-bar(vertical bar-F-vertical bar) in a class of rotationally symmetric deformations of an incompressible annulus. We will also show that in each case the minimisers are solutions of the full equilibrium equations. A model problem will be considered where the energy functional is the Dirichlet integral and it will be shown that the rotationally symmetric solution obtained is a minimiser among admissible non-rotationally symmetric deformations. In the case of an incompressible annulus, we will consider the Dirichlet integral as the energy functional and show that the rotationally symmetric equilibrium solutions in this case are weak local minimisers in
Application of HPEM to investigate the response and stability of nonlinear problems in vibration
DEFF Research Database (Denmark)
Mohammadi, M.H.; Mohammadi, A.; Kimiaeifar, A.
2010-01-01
In this work, a powerful analytical method, called He's Parameter Expanding Methods (HPEM) is used to obtain the exact solution of nonlinear problems in nonlinear vibration. In this work, the governing equation is obtained by using Lagrange method, then the nonlinear governing equation is solved...
Neilson, Peter D; Neilson, Megan D
2005-09-01
Adaptive model theory (AMT) is a computational theory that addresses the difficult control problem posed by the musculoskeletal system in interaction with the environment. It proposes that the nervous system creates motor maps and task-dependent synergies to solve the problems of redundancy and limited central resources. These lead to the adaptive formation of task-dependent feedback/feedforward controllers able to generate stable, noninteractive control and render nonlinear interactions unobservable in sensory-motor relationships. AMT offers a unified account of how the nervous system might achieve these solutions by forming internal models. This is presented as the design of a simulator consisting of neural adaptive filters based on cerebellar circuitry. It incorporates a new network module that adaptively models (in real time) nonlinear relationships between inputs with changing and uncertain spectral and amplitude probability density functions as is the case for sensory and motor signals.
Directory of Open Access Journals (Sweden)
Rafael Cisneros-Magaña
2018-06-01
Full Text Available This paper proposes a time-domain methodology based on the unscented Kalman filter to estimate voltage sags and their characteristics, such as magnitude and duration in power systems represented by nonlinear models. Partial and noisy measurements from the electrical network with nonlinear loads, used as data, are assumed. The characteristics of voltage sags can be calculated in a discrete form with the unscented Kalman filter to estimate all the busbar voltages; being possible to determine the rms voltage magnitude and the voltage sag starting and ending time, respectively. Voltage sag state estimation results can be used to obtain the power quality indices for monitored and unmonitored busbars in the power grid and to design adequate mitigating techniques. The proposed methodology is successfully validated against the results obtained with the time-domain system simulation for the power system with nonlinear components, being the normalized root mean square error less than 3%.
Non-linear time series extreme events and integer value problems
Turkman, Kamil Feridun; Zea Bermudez, Patrícia
2014-01-01
This book offers a useful combination of probabilistic and statistical tools for analyzing nonlinear time series. Key features of the book include a study of the extremal behavior of nonlinear time series and a comprehensive list of nonlinear models that address different aspects of nonlinearity. Several inferential methods, including quasi likelihood methods, sequential Markov Chain Monte Carlo Methods and particle filters, are also included so as to provide an overall view of the available tools for parameter estimation for nonlinear models. A chapter on integer time series models based on several thinning operations, which brings together all recent advances made in this area, is also included. Readers should have attended a prior course on linear time series, and a good grasp of simulation-based inferential methods is recommended. This book offers a valuable resource for second-year graduate students and researchers in statistics and other scientific areas who need a basic understanding of nonlinear time ...
Nonlinear problems in data-assimilation : Can synchronization help?
Tribbia, J. J.; Duane, G. S.
2009-12-01
Over the past several years, operational weather centers have initiated ensemble prediction and assimilation techniques to estimate the error covariance of forecasts in the short and the medium range. The ensemble techniques used are based on linear methods. The theory This technique s been shown to be a useful indicator of skill in the linear range where forecast errors are small relative to climatological variance. While this advance has been impressive, there are still ad hoc aspects of its use in practice, like the need for covariance inflation which are troubling. Furthermore, to be of utility in the nonlinear range an ensemble assimilation and prediction method must be capable of giving probabilistic information for the situation where a probability density forecast becomes multi-modal. A prototypical, simplest example of such a situation is the planetary-wave regime transition where the pdf is bimodal. Our recent research show how the inconsistencies and extensions of linear methodology can be consistently treated using the paradigm of synchronization which views the problems of assimilation and forecasting as that of optimizing the forecast model state with respect to the future evolution of the atmosphere.
Numerical methods for solution of some nonlinear problems of mathematical physics
International Nuclear Information System (INIS)
Zhidkov, E.P.
1981-01-01
The continuous analog of the Newton method and its application to some nonlinear problems of mathematical physics using a computer is considered. It is shown that the application of this method in JINR to the wide range of nonlinear problems has shown its universality and high efficiency [ru
A fast nonlinear conjugate gradient based method for 3D frictional contact problems
Zhao, J.; Vollebregt, E.A.H.; Oosterlee, C.W.
2014-01-01
This paper presents a fast numerical solver for a nonlinear constrained optimization problem, arising from a 3D frictional contact problem. It incorporates an active set strategy with a nonlinear conjugate gradient method. One novelty is to consider the tractions of each slip element in a polar
A fast nonlinear conjugate gradient based method for 3D concentrated frictional contact problems
J. Zhao (Jing); E.A.H. Vollebregt (Edwin); C.W. Oosterlee (Cornelis)
2015-01-01
htmlabstractThis paper presents a fast numerical solver for a nonlinear constrained optimization problem, arising from 3D concentrated frictional shift and rolling contact problems with dry Coulomb friction. The solver combines an active set strategy with a nonlinear conjugate gradient method. One
Burger, Karin; Koehler, Thomas; Chabior, Michael; Allner, Sebastian; Marschner, Mathias; Fehringer, Andreas; Willner, Marian; Pfeiffer, Franz; Noël, Peter
2014-12-29
Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.
New results on the mathematical problems in nonlinear physics
International Nuclear Information System (INIS)
1980-01-01
The main topics treated in this report are: I) Existence of generalized Lagrangians. II) Conserved densities for odd-order polynomial evolution equations and linear evolution systems. III ) Conservation laws for Klein-Gordon, Di rae and Maxwell equations. IV) Stability conditions for finite-energy solutions of a non-linear Klein-Gordon equation. V) Hamiltonian approach to non-linear evolution equations and Backlund transformations. VI) Anharmonic vibrations: Status of results and new possible approaches. (Author) 83 refs
Costiner, Sorin; Taasan, Shlomo
1994-01-01
This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.
Geometric projection filter: an efficient solution to the SLAM problem
Newman, Paul M.; Durrant-Whyte, Hugh F.
2001-10-01
This paper is concerned with the simultaneous localization and map building (SLAM) problem. The SLAM problem asks if it is possible for an autonomous vehicle to start in an unknown location in an unknown environment and then to incrementally build a map of this environment while simultaneously using this map to compute absolute vehicle location. Conventional approaches to this problem are plagued with a prohibitively large increase in computation with the size of the environment. This paper offers a new solution to the SLAM problem that is both consistent and computationally feasible. The proposed algorithm builds a map expressing the relationships between landmarks which is then transformed into landmark locations. Experimental results are presented employing the new algorithm on a subsea vehicle using a scanning sonar sensor.
The solution of a coupled system of nonlinear physical problems using the homotopy analysis method
International Nuclear Information System (INIS)
El-Wakil, S A; Abdou, M A
2010-01-01
In this article, the homotopy analysis method (HAM) has been applied to solve coupled nonlinear evolution equations in physics. The validity of this method has been successfully demonstrated by applying it to two nonlinear evolution equations, namely coupled nonlinear diffusion reaction equations and the (2+1)-dimensional Nizhnik-Novikov Veselov system. The results obtained by this method show good agreement with the ones obtained by other methods. The proposed method is a powerful and easy to use analytic tool for nonlinear problems and does not need small parameters in the equations. The HAM solutions contain an auxiliary parameter that provides a convenient way of controlling the convergence region of series solutions. The results obtained here reveal that the proposed method is very effective and simple for solving nonlinear evolution equations. The basic ideas of this approach can be widely employed to solve other strongly nonlinear problems.
Czech Academy of Sciences Publication Activity Database
Pavelková, Lenka
2011-01-01
Roč. 47, č. 3 (2011), s. 370-384 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : non-linear state space model * bounded uncertainty * missing measurements * state filtering * vehicle position estimation Subject RIV: BC - Control Systems Theory Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/AS/pavelkova-0360239.pdf
From a Nonlinear, Nonconvex Variational Problem to a Linear, Convex Formulation
International Nuclear Information System (INIS)
Egozcue, J.; Meziat, R.; Pedregal, P.
2002-01-01
We propose a general approach to deal with nonlinear, nonconvex variational problems based on a reformulation of the problem resulting in an optimization problem with linear cost functional and convex constraints. As a first step we explicitly explore these ideas to some one-dimensional variational problems and obtain specific conclusions of an analytical and numerical nature
Mathematical problems in non-linear Physics: some results
International Nuclear Information System (INIS)
1979-01-01
The basic results presented in this report are the following: 1) Characterization of the range and Kernel of the variational derivative. 2) Determination of general conservation laws in linear evolution equations, as well as bounds for the number of polynomial conserved densities in non-linear evolution equations in two independent variables of even order. 3) Construction of the most general evolution equation which has a given family of conserved densities. 4) Regularity conditions for the validity of the Lie invariance method. 5) A simple class of perturbations in non-linear wave equations. 6) Soliton solutions in generalized KdV equations. (author)
Leibov Roman
2017-01-01
This paper presents a bilinear approach to nonlinear differential equations system approximation problem. Sometimes the nonlinear differential equations right-hand sides linearization is extremely difficult or even impossible. Then piecewise-linear approximation of nonlinear differential equations can be used. The bilinear differential equations allow to improve piecewise-linear differential equations behavior and reduce errors on the border of different linear differential equations systems ...
Energy Technology Data Exchange (ETDEWEB)
Zou, Li [Dalian Univ. of Technology, Dalian City (China). State Key Lab. of Structural Analysis for Industrial Equipment; Liang, Songxin; Li, Yawei [Dalian Univ. of Technology, Dalian City (China). School of Mathematical Sciences; Jeffrey, David J. [Univ. of Western Ontario, London (Canada). Dept. of Applied Mathematics
2017-06-01
Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.
Polyanin, A. D.; Sorokin, V. G.
2017-12-01
The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.
Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design
Energy Technology Data Exchange (ETDEWEB)
Liao, Ben-Shan; Bai, Zhaojun; /UC, Davis; Lee, Lie-Quan; Ko, Kwok; /SLAC
2006-09-28
A number of numerical methods, including inverse iteration, method of successive linear problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies and external Q{sub e} values of a waveguide loaded cavity in the next-generation accelerator design. They present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in short and demonstrate that it is the most promising approach for a model scale cavity design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full scale cavity design are outlined.
Domí nguez, Luis F.; Pistikopoulos, Efstratios N.
2012-01-01
An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear
Ahmad, Hamzah; Namerikawa, Toru
2010-01-01
This paper presents H∞ Filter SLAM, which is also known as the minimax filter to estimate the robot and landmarks location with the analysis on partial observability. Some convergence conditions are also presented to aid the analysis. Due to SLAM is a controllable but unobservable problem, it's difficult to estimate the position of robot and landmarks even though the control inputs are given to the system. As a result, Covariance Inflation which is a method of adding a pseudo positive semidef...
Morozov-type discrepancy principle for nonlinear ill-posed problems ...
Indian Academy of Sciences (India)
For proving the existence of a regularization parameter under a Morozov-type discrepancy principle for Tikhonov regularization of nonlinear ill-posed problems, it is required to impose additional nonlinearity assumptions on the forward operator. Lipschitz continuity of the Freéchet derivative and requirement of the Lipschitz ...
Analytical Solution of Nonlinear Problems in Classical Dynamics by Means of Lagrange-Ham
DEFF Research Database (Denmark)
Kimiaeifar, Amin; Mahdavi, S. H; Rabbani, A.
2011-01-01
In this work, a powerful analytical method, called Homotopy Analysis Methods (HAM) is coupled with Lagrange method to obtain the exact solution for nonlinear problems in classic dynamics. In this work, the governing equations are obtained by using Lagrange method, and then the nonlinear governing...
Morozov-type discrepancy principle for nonlinear ill-posed problems ...
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... For proving the existence of a regularization parameter under a Morozov-type discrepancy principle for Tikhonov regularization of nonlinear ill-posed problems, it is required to impose additional nonlinearity assumptions on the forward operator. Lipschitz continuity of the Freéchet derivative and requirement ...
Directory of Open Access Journals (Sweden)
Bizhong Xia
2017-12-01
Full Text Available State of charge (SOC estimation is the core of any battery management system. Most closed-loop SOC estimation algorithms are based on the equivalent circuit model with fixed parameters. However, the parameters of the equivalent circuit model will change as temperature or SOC changes, resulting in reduced SOC estimation accuracy. In this paper, two SOC estimation algorithms with online parameter identification are proposed to solve this problem based on forgetting factor recursive least squares (FFRLS and nonlinear Kalman filter. The parameters of a Thevenin model are constantly updated by FFRLS. The nonlinear Kalman filter is used to perform the recursive operation to estimate SOC. Experiments in variable temperature environments verify the effectiveness of the proposed algorithms. A combination of four driving cycles is loaded on lithium-ion batteries to test the adaptability of the approaches to different working conditions. Under certain conditions, the average error of the SOC estimation dropped from 5.6% to 1.1% after adding the online parameters identification, showing that the estimation accuracy of proposed algorithms is greatly improved. Besides, simulated measurement noise is added to the test data to prove the robustness of the algorithms.
The preparation problem in nonlinear extensions of quantum theory
Cavalcanti, Eric G.; Menicucci, Nicolas C.; Pienaar, Jacques L.
2012-01-01
Nonlinear modifications to the laws of quantum mechanics have been proposed as a possible way to consistently describe information processing in the presence of closed timelike curves. These have recently generated controversy due to possible exotic information-theoretic effects, including breaking quantum cryptography and radically speeding up both classical and quantum computers. The physical interpretation of such theories, however, is still unclear. We consider a large class of operationa...
A nonsmooth nonlinear conjugate gradient method for interactive contact force problems
DEFF Research Database (Denmark)
Silcowitz, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny
2010-01-01
of a nonlinear complementarity problem (NCP), which can be solved using an iterative splitting method, such as the projected Gauss–Seidel (PGS) method. We present a novel method for solving the NCP problem by applying a Fletcher–Reeves type nonlinear nonsmooth conjugate gradient (NNCG) type method. We analyze...... and present experimental convergence behavior and properties of the new method. Our results show that the NNCG method has at least the same convergence rate as PGS, and in many cases better....
Non-linear analytic and coanalytic problems (Lp-theory, Clifford analysis, examples)
International Nuclear Information System (INIS)
Dubinskii, Yu A; Osipenko, A S
2000-01-01
Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the 'orthogonal' sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented
Non-linear analytic and coanalytic problems ( L_p-theory, Clifford analysis, examples)
Dubinskii, Yu A.; Osipenko, A. S.
2000-02-01
Two kinds of new mathematical model of variational type are put forward: non-linear analytic and coanalytic problems. The formulation of these non-linear boundary-value problems is based on a decomposition of the complete scale of Sobolev spaces into the "orthogonal" sum of analytic and coanalytic subspaces. A similar decomposition is considered in the framework of Clifford analysis. Explicit examples are presented.
Directory of Open Access Journals (Sweden)
Salih Yalcinbas
2016-01-01
Full Text Available In this study, a numerical approach is proposed to obtain approximate solutions of nonlinear system of second order boundary value problem. This technique is essentially based on the truncated Fermat series and its matrix representations with collocation points. Using the matrix method, we reduce the problem system of nonlinear algebraic equations. Numerical examples are also given to demonstrate the validity and applicability of the presented technique. The method is easy to implement and produces accurate results.
Morozov-type discrepancy principle for nonlinear ill-posed problems ...
Indian Academy of Sciences (India)
[3] Engl H W, Kunisch K and Neubauer A, Convergence rates for Tikhonov regularization of nonliner problems, Inverse Problems 5 (1989) 523–540. [4] Hanke M, Neubauer A and Scherzer O, A convergence analysis of Landweber iteration for nonlinear ill-posed problems, Numer. Math. 72 (1995) 21–37. [5] Hofmann B and ...
A nonlinear generalization of the Savitzky-Golay filter and the quantitative analysis of saccades.
Dai, Weiwei; Selesnick, Ivan; Rizzo, John-Ross; Rucker, Janet; Hudson, Todd
2017-08-01
The Savitzky-Golay (SG) filter is widely used to smooth and differentiate time series, especially biomedical data. However, time series that exhibit abrupt departures from their typical trends, such as sharp waves or steps, which are of physiological interest, tend to be oversmoothed by the SG filter. Hence, the SG filter tends to systematically underestimate physiological parameters in certain situations. This article proposes a generalization of the SG filter to more accurately track abrupt deviations in time series, leading to more accurate parameter estimates (e.g., peak velocity of saccadic eye movements). The proposed filtering methodology models a time series as the sum of two component time series: a low-frequency time series for which the conventional SG filter is well suited, and a second time series that exhibits instantaneous deviations (e.g., sharp waves, steps, or more generally, discontinuities in a higher order derivative). The generalized SG filter is then applied to the quantitative analysis of saccadic eye movements. It is demonstrated that (a) the conventional SG filter underestimates the peak velocity of saccades, especially those of small amplitude, and (b) the generalized SG filter estimates peak saccadic velocity more accurately than the conventional filter.
Adan, N. F.; Soomro, D. M.
2017-01-01
Power factor correction capacitor (PFCC) is commonly installed in industrial applications for power factor correction (PFC). With the expanding use of non-linear equipment such as ASDs, power converters, etc., power factor (PF) improvement has become difficult due to the presence of harmonics. The resulting capacitive impedance of the PFCC may form a resonant circuit with the source inductive reactance at a certain frequency, which is likely to coincide with one of the harmonic frequency of the load. This condition will trigger large oscillatory currents and voltages that may stress the insulation and cause subsequent damage to the PFCC and equipment connected to the power system (PS). Besides, high PF cannot be achieved due to power distortion. This paper presents the design of a three-phase hybrid filter consisting of a single tuned passive filter (STPF) and shunt active power filter (SAPF) to mitigate harmonics and resonance in the PS through simulation using PSCAD/EMTDC software. SAPF was developed using p-q theory. The hybrid filter has resulted in significant improvement on both total harmonic distortion for voltage (THDV) and total demand distortion for current (TDDI) with maximum values of 2.93% and 9.84% respectively which were within the recommended IEEE 519-2014 standard limits. Regarding PF improvement, the combined filters have achieved PF close to desired PF at 0.95 for firing angle, α values up to 40°.
Costiner, Sorin; Ta'asan, Shlomo
1995-07-01
Algorithms for nonlinear eigenvalue problems (EP's) often require solving self-consistently a large number of EP's. Convergence difficulties may occur if the solution is not sought in an appropriate region, if global constraints have to be satisfied, or if close or equal eigenvalues are present. Multigrid (MG) algorithms for nonlinear problems and for EP's obtained from discretizations of partial differential EP have often been shown to be more efficient than single level algorithms. This paper presents MG techniques and a MG algorithm for nonlinear Schrödinger Poisson EP's. The algorithm overcomes the above mentioned difficulties combining the following techniques: a MG simultaneous treatment of the eigenvectors and nonlinearity, and with the global constrains; MG stable subspace continuation techniques for the treatment of nonlinearity; and a MG projection coupled with backrotations for separation of solutions. These techniques keep the solutions in an appropriate region, where the algorithm converges fast, and reduce the large number of self-consistent iterations to only a few or one MG simultaneous iteration. The MG projection makes it possible to efficiently overcome difficulties related to clusters of close and equal eigenvalues. Computational examples for the nonlinear Schrödinger-Poisson EP in two and three dimensions, presenting special computational difficulties that are due to the nonlinearity and to the equal and closely clustered eigenvalues are demonstrated. For these cases, the algorithm requires O(qN) operations for the calculation of q eigenvectors of size N and for the corresponding eigenvalues. One MG simultaneous cycle per fine level was performed. The total computational cost is equivalent to only a few Gauss-Seidel relaxations per eigenvector. An asymptotic convergence rate of 0.15 per MG cycle is attained.
DOUBLE TRIALS METHOD FOR NONLINEAR PROBLEMS ARISING IN HEAT TRANSFER
Directory of Open Access Journals (Sweden)
Chun-Hui He
2011-01-01
Full Text Available According to an ancient Chinese algorithm, the Ying Buzu Shu, in about second century BC, known as the rule of double false position in West after 1202 AD, two trial roots are assumed to solve algebraic equations. The solution procedure can be extended to solve nonlinear differential equations by constructing an approximate solution with an unknown parameter, and the unknown parameter can be easily determined using the Ying Buzu Shu. An example in heat transfer is given to elucidate the solution procedure.
Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics
DEFF Research Database (Denmark)
Iwankiewicz, R.; Nielsen, Søren R. K.
Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically-numerical tec......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...
DEFF Research Database (Denmark)
Barari, Amin; Ganjavi, B.; Jeloudar, M. Ghanbari
2010-01-01
and fluid mechanics. Design/methodology/approach – Two new but powerful analytical methods, namely, He's VIM and HPM, are introduced to solve some boundary value problems in structural engineering and fluid mechanics. Findings – Analytical solutions often fit under classical perturbation methods. However......, as with other analytical techniques, certain limitations restrict the wide application of perturbation methods, most important of which is the dependence of these methods on the existence of a small parameter in the equation. Disappointingly, the majority of nonlinear problems have no small parameter at all......Purpose – In the last two decades with the rapid development of nonlinear science, there has appeared ever-increasing interest of scientists and engineers in the analytical techniques for nonlinear problems. This paper considers linear and nonlinear systems that are not only regarded as general...
Comparison of Three Nonlinear Filters for Fault Detection in Continuous Glucose Monitors
DEFF Research Database (Denmark)
Mahmoudi, Zeinab; Wendt, Sabrina Lyngbye; Boiroux, Dimitri
2016-01-01
model of the glucose-insulin dynamics in people with type 1 diabetes. Drift is modelled by a Gaussian random walk and is detected based on the statistical tests of the 90-min prediction residuals of the filters. The unscented Kalman filter had the highest average F score of 85.9%, and the smallest...
Some contributions to non-linear physic: Mathematical problems
International Nuclear Information System (INIS)
1981-01-01
The main results contained in this report are the following: i ) Lagrangian universality holds in a precisely defined weak sense. II ) Isolation of 5th order polynomial evolution equations having high order conservation laws. III ) Hamiltonian formulation of a wide class of non-linear evolution equations. IV) Some properties of the symmetries of Gardner-like systems. v) Characterization of the range and Kernel of ζ/ζ u α , |α | - 1. vi) A generalized variational approach and application to the anharmonic oscillator. v II ) Relativistic correction and quasi-classical approximation to the anechoic oscillator. VII ) Properties of a special class of 6th-order anharmonic oscillators. ix) A new method for constructing conserved densities In PDE. (Author) 97 refs
Nonlinear radiation transport problems involving widely varying mean free paths
International Nuclear Information System (INIS)
Chapline, G. Jr.; Wood, L.
1976-01-01
In this report a method is given for modifying the Monte-Carlo approach so that one can accurately treat problems that involve both large and small mean free paths. This method purports to offer the advantages of the general Monte Carlo technique as far as relatively great accuracy of simulation of microscopic physical phenomena is concerned, and the advantage of a diffusion theory approach as far as decent time steps in thick problems are concerned; it does suffer from something of the statistical fluctuation problems of the Monte Carlo, although in analytically attenuated and modified form
Paradox in a non-linear capacitated transportation problem
Directory of Open Access Journals (Sweden)
Dahiya Kalpana
2006-01-01
Full Text Available This paper discusses a paradox in fixed charge capacitated transportation problem where the objective function is the sum of two linear fractional functions consisting of variables costs and fixed charges respectively. A paradox arises when the transportation problem admits of an objective function value which is lower than the optimal objective function value, by transporting larger quantities of goods over the same route. A sufficient condition for the existence of a paradox is established. Paradoxical range of flow is obtained for any given flow in which the corresponding objective function value is less than the optimum value of the given transportation problem. Numerical illustration is included in support of theory.
Wang, Zidong; Liu, Xiaohui; Liu, Yurong; Liang, Jinling; Vinciotti, Veronica
2009-01-01
In this paper, the extended Kalman filter (EKF) algorithm is applied to model the gene regulatory network from gene time series data. The gene regulatory network is considered as a nonlinear dynamic stochastic model that consists of the gene measurement equation and the gene regulation equation. After specifying the model structure, we apply the EKF algorithm for identifying both the model parameters and the actual value of gene expression levels. It is shown that the EKF algorithm is an online estimation algorithm that can identify a large number of parameters (including parameters of nonlinear functions) through iterative procedure by using a small number of observations. Four real-world gene expression data sets are employed to demonstrate the effectiveness of the EKF algorithm, and the obtained models are evaluated from the viewpoint of bioinformatics.
Dissipative Control Systems and Disturbance Attenuation for Nonlinear H∞ Problems
International Nuclear Information System (INIS)
Frankowska, H.; Quincampoix, M.
1999-01-01
We characterize functions satisfying a dissipative inequality associated with a control problem. Such a characterization is provided in terms of an epicontingent solution, or a viscosity supersolution to a partial differential equation called Isaacs' equation. Links between supersolutions and epicontingent solutions to Isaacs' equation are studied. Finally, we derive (possibly discontinuous) disturbance attenuation feedback of the H ∞ problem from contingent formulation of Isaacs' equation
Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications
2015-06-24
WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Arizona State University School of Mathematical & Statistical Sciences 901 S...SUPPLEMENTARY NOTES 14. ABSTRACT The major goals of this project were completed: the exact solution of previously unsolved challenging combinatorial optimization... combinatorial optimization problem, the Directional Sensor Problem, was solved in two ways. First, heuristically in an engineering fashion and second, exactly
SEACAS Theory Manuals: Part 1. Problem Formulation in Nonlinear Solid Mechancis
Energy Technology Data Exchange (ETDEWEB)
Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.
1998-08-01
This report gives an introduction to the basic concepts and principles involved in the formulation of nonlinear problems in solid mechanics. By way of motivation, the discussion begins with a survey of some of the important sources of nonlinearity in solid mechanics applications, using wherever possible simple one dimensional idealizations to demonstrate the physical concepts. This discussion is then generalized by presenting generic statements of initial/boundary value problems in solid mechanics, using linear elasticity as a template and encompassing such ideas as strong and weak forms of boundary value problems, boundary and initial conditions, and dynamic and quasistatic idealizations. The notational framework used for the linearized problem is then extended to account for finite deformation of possibly inelastic solids, providing the context for the descriptions of nonlinear continuum mechanics, constitutive modeling, and finite element technology given in three companion reports.
Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential
Directory of Open Access Journals (Sweden)
Runzhang Xu
2012-11-01
Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].
Directory of Open Access Journals (Sweden)
Alain Mignot
2005-09-01
Full Text Available This paper shows the existence of a solution of the quasi-static unilateral contact problem with nonlocal friction law for nonlinear elastic materials. We set up a variational incremental problem which admits a solution, when the friction coefficient is small enough, and then by passing to the limit with respect to time we obtain a solution.
Existence of bounded solutions of Neumann problem for a nonlinear degenerate elliptic equation
Directory of Open Access Journals (Sweden)
Salvatore Bonafede
2017-10-01
Full Text Available We prove the existence of bounded solutions of Neumann problem for nonlinear degenerate elliptic equations of second order in divergence form. We also study some properties as the Phragmen-Lindelof property and the asymptotic behavior of the solutions of Dirichlet problem associated to our equation in an unbounded domain.
COYOTE: a finite element computer program for nonlinear heat conduction problems
International Nuclear Information System (INIS)
Gartling, D.K.
1978-06-01
COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program
A Smooth Newton Method for Nonlinear Programming Problems with Inequality Constraints
Directory of Open Access Journals (Sweden)
Vasile Moraru
2012-02-01
Full Text Available The paper presents a reformulation of the Karush-Kuhn-Tucker (KKT system associated nonlinear programming problem into an equivalent system of smooth equations. Classical Newton method is applied to solve the system of equations. The superlinear convergence of the primal sequence, generated by proposed method, is proved. The preliminary numerical results with a problems test set are presented.
Muravyov, Alexander A.
1999-01-01
In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.
A Weak Solution of a Stochastic Nonlinear Problem
Directory of Open Access Journals (Sweden)
M. L. Hadji
2015-01-01
Full Text Available We consider a problem modeling a porous medium with a random perturbation. This model occurs in many applications such as biology, medical sciences, oil exploitation, and chemical engineering. Many authors focused their study mostly on the deterministic case. The more classical one was due to Biot in the 50s, where he suggested to ignore everything that happens at the microscopic level, to apply the principles of the continuum mechanics at the macroscopic level. Here we consider a stochastic problem, that is, a problem with a random perturbation. First we prove a result on the existence and uniqueness of the solution, by making use of the weak formulation. Furthermore, we use a numerical scheme based on finite differences to present numerical results.
Some New Results in Astrophysical Problems of Nonlinear Theory of Radiative Transfer
Pikichyan, H. V.
2017-07-01
In the interpretation of the observed astrophysical spectra, a decisive role is related to nonlinear problems of radiative transfer, because the processes of multiple interactions of matter of cosmic medium with the exciting intense radiation ubiquitously occur in astrophysical objects, and in their vicinities. Whereas, the intensity of the exciting radiation changes the physical properties of the original medium, and itself was modified, simultaneously, in a self-consistent manner under its influence. In the present report, we show that the consistent application of the principle of invariance in the nonlinear problem of bilateral external illumination of a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness allows for simplifications that were previously considered as a prerogative only of linear problems. The nonlinear problem is analyzed through the three methods of the principle of invariance: (i) an adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance". Thereby, as an alternative to the Boltzmann equation, a new type of equations, so-called "kinetic equations of equivalence", are obtained. By the introduction of new functions - the so-called "linear images" of solution of nonlinear problem of radiative transfer, the linear structure of the solution of the nonlinear problem under study is further revealed. Linear images allow to convert naturally the statistical characteristics of random walk of a "single quantum" or their "beam of unit intensity", as well as widely known "probabilistic interpretation of phenomena of transfer", to the field of nonlinear problems. The structure of the equations obtained for determination of linear images is typical of linear problems.
Consensus problem in directed networks of multi-agents via nonlinear protocols
International Nuclear Information System (INIS)
Liu Xiwei; Chen Tianping; Lu Wenlian
2009-01-01
In this Letter, the consensus problem via distributed nonlinear protocols for directed networks is investigated. Its dynamical behaviors are described by ordinary differential equations (ODEs). Based on graph theory, matrix theory and the Lyapunov direct method, some sufficient conditions of nonlinear protocols guaranteeing asymptotical or exponential consensus are presented and rigorously proved. The main contribution of this work is that for nonlinearly coupled networks, we generalize the results for undirected networks to directed networks. Consensus under pinning control technique is also developed here. Simulations are also given to show the validity of the theories.
Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations
Nakamura, Gen; Vashisth, Manmohan
2017-01-01
In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...
Sokolov, R. I.; Abdullin, R. R.
2017-11-01
The use of nonlinear Markov process filtering makes it possible to restore both video stream frames and static photos at the stage of preprocessing. The present paper reflects the results of research in comparison of these types image filtering quality by means of special algorithm when Gaussian or non-Gaussian noises acting. Examples of filter operation at different values of signal-to-noise ratio are presented. A comparative analysis has been performed, and the best filtered kind of noise has been defined. It has been shown the quality of developed algorithm is much better than quality of adaptive one for RGB signal filtering at the same a priori information about the signal. Also, an advantage over median filter takes a place when both fluctuation and pulse noise filtering.
Strongly nonlinear nonhomogeneous elliptic unilateral problems with L^1 data and no sign conditions
Directory of Open Access Journals (Sweden)
Elhoussine Azroul
2012-05-01
Full Text Available In this article, we prove the existence of solutions to unilateral problems involving nonlinear operators of the form: $$ Au+H(x,u,abla u=f $$ where $A$ is a Leray Lions operator from $W_0^{1,p(x}(Omega$ into its dual $W^{-1,p'(x}(Omega$ and $H(x,s,xi$ is the nonlinear term satisfying some growth condition but no sign condition. The right hand side $f$ belong to $L^1(Omega$.
Czech Academy of Sciences Publication Activity Database
Ökzan, E.; Šmídl, Václav; Saha, S.; Lundquist, C.; Gustafsson, F.
2013-01-01
Roč. 49, č. 6 (2013), s. 1566-1575 ISSN 0005-1098 R&D Projects: GA ČR(CZ) GAP102/11/0437 Keywords : Unknown Noise Statistics * Adaptive Filtering * Marginalized Particle Filter * Bayesian Conjugate prior Subject RIV: BC - Control Systems Theory Impact factor: 3.132, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/smidl-0393047.pdf
Topological approximation methods for evolutionary problem of nonlinear hydrodynamics
Zvyagin, Victor
2008-01-01
The authors present functional analytical methods for solving a class of partial differential equations. The results have important applications to the numerical treatment of rheology (specific examples are the behaviour of blood or print colours) and to other applications in fluid mechanics. A class of methods for solving problems in hydrodynamics is presented.
Optimal Control Problems for Nonlinear Variational Evolution Inequalities
Directory of Open Access Journals (Sweden)
Eun-Young Ju
2013-01-01
Full Text Available We deal with optimal control problems governed by semilinear parabolic type equations and in particular described by variational inequalities. We will also characterize the optimal controls by giving necessary conditions for optimality by proving the Gâteaux differentiability of solution mapping on control variables.
Corbetta, Matteo; Sbarufatti, Claudio; Giglio, Marco; Todd, Michael D.
2018-05-01
The present work critically analyzes the probabilistic definition of dynamic state-space models subject to Bayesian filters used for monitoring and predicting monotonic degradation processes. The study focuses on the selection of the random process, often called process noise, which is a key perturbation source in the evolution equation of particle filtering. Despite the large number of applications of particle filtering predicting structural degradation, the adequacy of the picked process noise has not been investigated. This paper reviews existing process noise models that are typically embedded in particle filters dedicated to monitoring and predicting structural damage caused by fatigue, which is monotonic in nature. The analysis emphasizes that existing formulations of the process noise can jeopardize the performance of the filter in terms of state estimation and remaining life prediction (i.e., damage prognosis). This paper subsequently proposes an optimal and unbiased process noise model and a list of requirements that the stochastic model must satisfy to guarantee high prognostic performance. These requirements are useful for future and further implementations of particle filtering for monotonic system dynamics. The validity of the new process noise formulation is assessed against experimental fatigue crack growth data from a full-scale aeronautical structure using dedicated performance metrics.
Maxfield, Lynn; Palaparthi, Anil; Titze, Ingo
2017-03-01
The traditional source-filter theory of voice production describes a linear relationship between the source (glottal flow pulse) and the filter (vocal tract). Such a linear relationship does not allow for nor explain how changes in the filter may impact the stability and regularity of the source. The objective of this experiment was to examine what effect unpredictable changes to vocal tract dimensions could have on fo stability and individual harmonic intensities in situations in which low frequency harmonics cross formants in a fundamental frequency glide. To determine these effects, eight human subjects (five male, three female) were recorded producing fo glides while their vocal tracts were artificially lengthened by a section of vinyl tubing inserted into the mouth. It was hypothesized that if the source and filter operated as a purely linear system, harmonic intensities would increase and decrease at nearly the same rates as they passed through a formant bandwidth, resulting in a relatively symmetric peak on an intensity-time contour. Additionally, fo stability should not be predictably perturbed by formant/harmonic crossings in a linear system. Acoustic analysis of these recordings, however, revealed that harmonic intensity peaks were asymmetric in 76% of cases, and that 85% of fo instabilities aligned with a crossing of one of the first four harmonics with the first three formants. These results provide further evidence that nonlinear dynamics in the source-filter relationship can impact fo stability as well as harmonic intensities as harmonics cross through formant bandwidths. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Akhbari, Mahsa; Shamsollahi, Mohammad B; Jutten, Christian; Armoundas, Antonis A; Sayadi, Omid
2016-02-01
In this paper we propose an efficient method for denoising and extracting fiducial point (FP) of ECG signals. The method is based on a nonlinear dynamic model which uses Gaussian functions to model ECG waveforms. For estimating the model parameters, we use an extended Kalman filter (EKF). In this framework called EKF25, all the parameters of Gaussian functions as well as the ECG waveforms (P-wave, QRS complex and T-wave) in the ECG dynamical model, are considered as state variables. In this paper, the dynamic time warping method is used to estimate the nonlinear ECG phase observation. We compare this new approach with linear phase observation models. Using linear and nonlinear EKF25 for ECG denoising and nonlinear EKF25 for fiducial point extraction and ECG interval analysis are the main contributions of this paper. Performance comparison with other EKF-based techniques shows that the proposed method results in higher output SNR with an average SNR improvement of 12 dB for an input SNR of -8 dB. To evaluate the FP extraction performance, we compare the proposed method with a method based on partially collapsed Gibbs sampler and an established EKF-based method. The mean absolute error and the root mean square error of all FPs, across all databases are 14 ms and 22 ms, respectively, for our proposed method, with an advantage when using a nonlinear phase observation. These errors are significantly smaller than errors obtained with other methods. For ECG interval analysis, with an absolute mean error and a root mean square error of about 22 ms and 29 ms, the proposed method achieves better accuracy and smaller variability with respect to other methods.
Cannistraci, Carlo Vittorio
2015-01-26
Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet\\'s performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.
Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin
2015-01-01
Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.
Inverse Problem of Air Filtration of Nanoparticles: Optimal Quality Factors of Fibrous Filters
Directory of Open Access Journals (Sweden)
Dahua Shou
2015-01-01
Full Text Available Application of nanofibers has become an emerging approach to enhance filtration efficiency, but questions arise about the decrease in Quality factor (QF for certain particles due to the rapidly increasing pressure drop. In this paper, we theoretically investigate the QF of dual-layer filters for filtration of monodisperse and polydisperse nanoparticles. The inverse problem of air filtration, as defined in this work, consists in determining the optimal construction of the two-layer fibrous filter with the maximum QF. In comparison to a single-layer substrate, improved QF values for dual-layer filters are found when a second layer with proper structural parameters is added. The influences of solidity, fiber diameter, filter thickness, face velocity, and particle size on the optimization of QF are studied. The maximum QF values for realistic polydisperse particles with a lognormal size distribution are also found. Furthermore, we propose a modified QF (MQF accounting for the effects of energy cost and flow velocity, which are significant in certain operations. The optimal MQF of the dual-layer filter is found to be over twice that of the first layer. This work provides a quick tool for designing and optimizing fibrous structures with better performance for the air filtration of specific nanoparticles.
Cho, Yumi
2018-05-01
We study nonlinear elliptic problems with nonstandard growth and ellipticity related to an N-function. We establish global Calderón-Zygmund estimates of the weak solutions in the framework of Orlicz spaces over bounded non-smooth domains. Moreover, we prove a global regularity result for asymptotically regular problems which are getting close to the regular problems considered, when the gradient variable goes to infinity.
Quasi-stability of a vector trajectorial problem with non-linear partial criteria
Directory of Open Access Journals (Sweden)
Vladimir A. Emelichev
2003-10-01
Full Text Available Multi-objective (vector combinatorial problem of finding the Pareto set with four kinds of non-linear partial criteria is considered. Necessary and sufficient conditions of that kind of stability of the problem (quasi-stability are obtained. The problem is a discrete analogue of the lower semicontinuity by Hausdorff of the optimal mapping. Mathematics Subject Classification 2000: 90C10, 90C05, 90C29, 90C31.
Energy Technology Data Exchange (ETDEWEB)
Bouaricha, A. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.; Schnabel, R.B. [Colorado Univ., Boulder, CO (United States). Dept. of Computer Science
1996-12-31
This paper describes a modular software package for solving systems of nonlinear equations and nonlinear least squares problems, using a new class of methods called tensor methods. It is intended for small to medium-sized problems, say with up to 100 equations and unknowns, in cases where it is reasonable to calculate the Jacobian matrix or approximate it by finite differences at each iteration. The software allows the user to select between a tensor method and a standard method based upon a linear model. The tensor method models F({ital x}) by a quadratic model, where the second-order term is chosen so that the model is hardly more expensive to form, store, or solve than the standard linear model. Moreover, the software provides two different global strategies, a line search and a two- dimensional trust region approach. Test results indicate that, in general, tensor methods are significantly more efficient and robust than standard methods on small and medium-sized problems in iterations and function evaluations.
Bds/gps Integrated Positioning Method Research Based on Nonlinear Kalman Filtering
Ma, Y.; Yuan, W.; Sun, H.
2017-09-01
In order to realize fast and accurate BDS/GPS integrated positioning, it is necessary to overcome the adverse effects of signal attenuation, multipath effect and echo interference to ensure the result of continuous and accurate navigation and positioning. In this paper, pseudo-range positioning is used as the mathematical model. In the stage of data preprocessing, using precise and smooth carrier phase measurement value to promote the rough pseudo-range measurement value without ambiguity. At last, the Extended Kalman Filter(EKF), the Unscented Kalman Filter(UKF) and the Particle Filter(PF) algorithm are applied in the integrated positioning method for higher positioning accuracy. The experimental results show that the positioning accuracy of PF is the highest, and UKF is better than EKF.
Directory of Open Access Journals (Sweden)
Yin Hua
2015-04-01
Full Text Available Estimation of state of charge (SOC is of great importance for lithium-ion (Li-ion batteries used in electric vehicles. This paper presents a state of charge estimation method using nonlinear predictive filter (NPF and evaluates the proposed method on the lithium-ion batteries with different chemistries. Contrary to most conventional filters which usually assume a zero mean white Gaussian process noise, the advantage of NPF is that the process noise in NPF is treated as an unknown model error and determined as a part of the solution without any prior assumption, and it can take any statistical distribution form, which improves the estimation accuracy. In consideration of the model accuracy and computational complexity, a first-order equivalent circuit model is applied to characterize the battery behavior. The experimental test is conducted on the LiCoO2 and LiFePO4 battery cells to validate the proposed method. The results show that the NPF method is able to accurately estimate the battery SOC and has good robust performance to the different initial states for both cells. Furthermore, the comparison study between NPF and well-established extended Kalman filter for battery SOC estimation indicates that the proposed NPF method has better estimation accuracy and converges faster.
Filtering, control and fault detection with randomly occurring incomplete information
Dong, Hongli; Gao, Huijun
2013-01-01
This book investigates the filtering, control and fault detection problems for several classes of nonlinear systems with randomly occurring incomplete information. It proposes new concepts, including RVNs, ROMDs, ROMTCDs, and ROQEs. The incomplete information under consideration primarily includes missing measurements, time-delays, sensor and actuator saturations, quantization effects and time-varying nonlinearities. The first part of this book focuses on the filtering, control and fault detection problems for several classes of nonlinear stochastic discrete-time systems and
Bayesian target tracking based on particle filter
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, etc novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.
Energy Technology Data Exchange (ETDEWEB)
Kaikina, Elena I., E-mail: ekaikina@matmor.unam.mx [Centro de Ciencias Matemáticas, UNAM Campus Morelia, AP 61-3 (Xangari), Morelia CP 58089, Michoacán (Mexico)
2013-11-15
We consider the inhomogeneous Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation, formulated on a half-line. We study traditionally important problems of the theory of nonlinear partial differential equations, such as global in time existence of solutions to the initial-boundary value problem and the asymptotic behavior of solutions for large time.
International Nuclear Information System (INIS)
Kaikina, Elena I.
2013-01-01
We consider the inhomogeneous Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation, formulated on a half-line. We study traditionally important problems of the theory of nonlinear partial differential equations, such as global in time existence of solutions to the initial-boundary value problem and the asymptotic behavior of solutions for large time
Avdyushev, Victor A.
2017-12-01
Orbit determination from a small sample of observations over a very short observed orbital arc is a strongly nonlinear inverse problem. In such problems an evaluation of orbital uncertainty due to random observation errors is greatly complicated, since linear estimations conventionally used are no longer acceptable for describing the uncertainty even as a rough approximation. Nevertheless, if an inverse problem is weakly intrinsically nonlinear, then one can resort to the so-called method of disturbed observations (aka observational Monte Carlo). Previously, we showed that the weaker the intrinsic nonlinearity, the more efficient the method, i.e. the more accurate it enables one to simulate stochastically the orbital uncertainty, while it is strictly exact only when the problem is intrinsically linear. However, as we ascertained experimentally, its efficiency was found to be higher than that of other stochastic methods widely applied in practice. In the present paper we investigate the intrinsic nonlinearity in complicated inverse problems of Celestial Mechanics when orbits are determined from little informative samples of observations, which typically occurs for recently discovered asteroids. To inquire into the question, we introduce an index of intrinsic nonlinearity. In asteroid problems it evinces that the intrinsic nonlinearity can be strong enough to affect appreciably probabilistic estimates, especially at the very short observed orbital arcs that the asteroids travel on for about a hundredth of their orbital periods and less. As it is known from regression analysis, the source of intrinsic nonlinearity is the nonflatness of the estimation subspace specified by a dynamical model in the observation space. Our numerical results indicate that when determining asteroid orbits it is actually very slight. However, in the parametric space the effect of intrinsic nonlinearity is exaggerated mainly by the ill-conditioning of the inverse problem. Even so, as for the
New series active power filter for computers loads and small non-linear loads
Energy Technology Data Exchange (ETDEWEB)
Tarnini, M.Y. [Hariri Canadian Univ., Meshref (Lebanon)
2009-07-01
This paper proposed the use of a single-phase series active power filter to reduce voltage total harmonic distortion and provide improved power quality. Control schemes were developed using simple control algorithms and a reduced number of current transducers. The circuit was comprised of a power supply and zero crossing detector; a hall-effect current sensor and signal conditioning circuit; a microcontroller circuit; a driving circuit; and an inverter bridge. The filter corrected fundamental and sinusoidal voltage amplitudes. The amplitude of the fundamental current in the series filter was controlled using a microcontroller placed between the load voltage and a pre-established reference point. Experiments were conducted to test the source voltage and source current after compensation using a prototype of the filter. The control system provided effective correction of the power factor and harmonic distortion, and reached steady state in approximately 2 cycles. It was concluded that the compensator can also be adapted for use in 3-phase systems. 13 refs., 1 tab., 14 figs.
The effect of compression on tuning estimates in a simple nonlinear auditory filter model
DEFF Research Database (Denmark)
Marschall, Marton; MacDonald, Ewen; Dau, Torsten
2013-01-01
Behavioral experiments using auditory masking have been used to characterize frequency selectivity, one of the basic properties of the auditory system. However, due to the nonlinear response of the basilar membrane, the interpretation of these experiments may not be straightforward. Specifically,...
A boundary control problem with a nonlinear reaction term
Directory of Open Access Journals (Sweden)
John R. Cannon
2009-04-01
Full Text Available The authors study the problem $u_t=u_{xx}-au$, $0
Directory of Open Access Journals (Sweden)
Carlos Pozo
Full Text Available Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study
Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Sorribas, Albert; Jiménez, Laureano
2012-01-01
Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the
Alleviating the new user problem in collaborative filtering by exploiting personality information
Fernández-Tobías, Ignacio; Braunhofer, Matthias; Elahi, Mehdi; Ricci, Francesco; Cantador, Iván
2016-01-01
The final publication is available at Springer via http://dx.doi.org/10.1007/s11257-016-9172-z The new user problem in recommender systems is still challenging, and there is not yet a unique solution that can be applied in any domain or situation. In this paper we analyze viable solutions to the new user problem in collaborative filtering (CF) that are based on the exploitation of user personality information: (a) personality-based CF, which directly improves the recommendation prediction ...
Solution to the spectral filter problem of residual terrain modelling (RTM)
Rexer, Moritz; Hirt, Christian; Bucha, Blažej; Holmes, Simon
2018-06-01
In physical geodesy, the residual terrain modelling (RTM) technique is frequently used for high-frequency gravity forward modelling. In the RTM technique, a detailed elevation model is high-pass-filtered in the topography domain, which is not equivalent to filtering in the gravity domain. This in-equivalence, denoted as spectral filter problem of the RTM technique, gives rise to two imperfections (errors). The first imperfection is unwanted low-frequency (LF) gravity signals, and the second imperfection is missing high-frequency (HF) signals in the forward-modelled RTM gravity signal. This paper presents new solutions to the RTM spectral filter problem. Our solutions are based on explicit modelling of the two imperfections via corrections. The HF correction is computed using spectral domain gravity forward modelling that delivers the HF gravity signal generated by the long-wavelength RTM reference topography. The LF correction is obtained from pre-computed global RTM gravity grids that are low-pass-filtered using surface or solid spherical harmonics. A numerical case study reveals maximum absolute signal strengths of ˜ 44 mGal (0.5 mGal RMS) for the HF correction and ˜ 33 mGal (0.6 mGal RMS) for the LF correction w.r.t. a degree-2160 reference topography within the data coverage of the SRTM topography model (56°S ≤ φ ≤ 60°N). Application of the LF and HF corrections to pre-computed global gravity models (here the GGMplus gravity maps) demonstrates the efficiency of the new corrections over topographically rugged terrain. Over Switzerland, consideration of the HF and LF corrections reduced the RMS of the residuals between GGMplus and ground-truth gravity from 4.41 to 3.27 mGal, which translates into ˜ 26% improvement. Over a second test area (Canada), our corrections reduced the RMS of the residuals between GGMplus and ground-truth gravity from 5.65 to 5.30 mGal (˜ 6% improvement). Particularly over Switzerland, geophysical signals (associated, e.g. with
Systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Cho Yeol
2011-01-01
Full Text Available Abstract In this paper, the existing theorems and methods for finding solutions of systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces are studied. To overcome the difficulties, due to the presence of a proper convex lower semi-continuous function, φ and a mapping g, which appeared in the considered problem, we have used some applications of the resolvent operator technique. We would like to point out that although many authors have proved results for finding solutions of the systems of nonlinear set-valued (mixed variational inequalities problems, it is clear that it cannot be directly applied to the problems that we have considered in this paper because of φ and g. 2000 AMS Subject Classification: 47H05; 47H09; 47J25; 65J15.
Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems
International Nuclear Information System (INIS)
Haber, E; Horesh, L; Tenorio, L
2010-01-01
Design of experiments for discrete ill-posed problems is a relatively new area of research. While there has been some limited work concerning the linear case, little has been done to study design criteria and numerical methods for ill-posed nonlinear problems. We present an algorithmic framework for nonlinear experimental design with an efficient numerical implementation. The data are modeled as indirect, noisy observations of the model collected via a set of plausible experiments. An inversion estimate based on these data is obtained by a weighted Tikhonov regularization whose weights control the contribution of the different experiments to the data misfit term. These weights are selected by minimization of an empirical estimate of the Bayes risk that is penalized to promote sparsity. This formulation entails a bilevel optimization problem that is solved using a simple descent method. We demonstrate the viability of our design with a problem in electromagnetic imaging based on direct current resistivity and magnetotelluric data
On the solvability of initial-value problems for nonlinear implicit difference equations
Directory of Open Access Journals (Sweden)
Ha Thi Ngoc Yen
2004-07-01
Full Text Available Our aim is twofold. First, we propose a natural definition of index for linear nonautonomous implicit difference equations, which is similar to that of linear differential-algebraic equations. Then we extend this index notion to a class of nonlinear implicit difference equations and prove some existence theorems for their initial-value problems.
Admissible solutions for a class of nonlinear parabolic problem with non-negative data
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Petzeltová, Hana; Simondon, F.
2001-01-01
Roč. 131, č. 5 (2001), s. 857-883 ISSN 0308-2105 R&D Projects: GA AV ČR IAA1019703 Keywords : admissible solutions%nonlinear parabolic problem * admissible solutions * comparison principle * non-negative data Subject RIV: BA - General Mathematics Impact factor: 0.441, year: 2001
Directory of Open Access Journals (Sweden)
Xiaofeng Zhang
2017-12-01
Full Text Available In this paper, we consider the existence of positive solutions to a singular semipositone boundary value problem of nonlinear fractional differential equations. By applying the fixed point index theorem, some new results for the existence of positive solutions are obtained. In addition, an example is presented to demonstrate the application of our main results.
Czech Academy of Sciences Publication Activity Database
Lukšan, Ladislav; Vlček, Jan
1998-01-01
Roč. 5, č. 3 (1998), s. 219-247 ISSN 1070-5325 R&D Projects: GA ČR GA201/96/0918 Keywords : nonlinear programming * sparse problems * equality constraints * truncated Newton method * augmented Lagrangian function * indefinite systems * indefinite preconditioners * conjugate gradient method * residual smoothing Subject RIV: BA - General Mathematics Impact factor: 0.741, year: 1998
Czech Academy of Sciences Publication Activity Database
Mukhigulashvili, Sulkhan; Půža, B.
2015-01-01
Roč. 2015, January (2015), s. 17 ISSN 1687-2770 Institutional support: RVO:67985840 Keywords : higher order nonlinear functional-differential equations * two-point right-focal boundary value problem * strong singularity Subject RIV: BA - General Mathematics Impact factor: 0.642, year: 2015 http://link.springer.com/article/10.1186%2Fs13661-014-0277-1
On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation
Directory of Open Access Journals (Sweden)
Mesloub Said
2008-01-01
Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.
TRUMP3-JR: a finite difference computer program for nonlinear heat conduction problems
International Nuclear Information System (INIS)
Ikushima, Takeshi
1984-02-01
Computer program TRUMP3-JR is a revised version of TRUMP3 which is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Pre- and post-processings for input data generation and graphical representations of calculation results of TRUMP3 are avaiable in TRUMP3-JR. The calculation equations, program descriptions and user's instruction are presented. A sample problem is described to demonstrate the use of the program. (author)
Directory of Open Access Journals (Sweden)
M. G. Crandall
1999-07-01
Full Text Available We study existence of continuous weak (viscosity solutions of Dirichlet and Cauchy-Dirichlet problems for fully nonlinear uniformly elliptic and parabolic equations. Two types of results are obtained in contexts where uniqueness of solutions fails or is unknown. For equations with merely measurable coefficients we prove solvability of the problem, while in the continuous case we construct maximal and minimal solutions. Necessary barriers on external cones are also constructed.
International Nuclear Information System (INIS)
Ruas, V.
1982-09-01
A class of simplicial finite elements for solving incompressible elasticity problems in n-dimensional space, n=2 or 3, is presented. An asymmetric structure of the shape functions with respect to the centroid of the simplex, renders them particularly stable in the large strain case, in which the incompressibility condition is nonlinear. It is proved that under certain assembling conditions of the elements, there exists a solution to the corresponding discrete problems. Numerical examples illustrate the efficiency of the method. (Author) [pt
A Kind of Nonlinear Programming Problem Based on Mixed Fuzzy Relation Equations Constraints
Li, Jinquan; Feng, Shuang; Mi, Honghai
In this work, a kind of nonlinear programming problem with non-differential objective function and under the constraints expressed by a system of mixed fuzzy relation equations is investigated. First, some properties of this kind of optimization problem are obtained. Then, a polynomial-time algorithm for this kind of optimization problem is proposed based on these properties. Furthermore, we show that this algorithm is optimal for the considered optimization problem in this paper. Finally, numerical examples are provided to illustrate our algorithms.
A non-linear algorithm for current signal filtering and peak detection in SiPM
International Nuclear Information System (INIS)
Putignano, M; Intermite, A; Welsch, C P
2012-01-01
Read-out of Silicon Photomultipliers is commonly achieved by means of charge integration, a method particularly susceptible to after-pulsing noise and not efficient for low level light signals. Current signal monitoring, characterized by easier electronic implementation and intrinsically faster than charge integration, is also more suitable for low level light signals and can potentially result in much decreased after-pulsing noise effects. However, its use is to date limited by the need of developing a suitable read-out algorithm for signal analysis and filtering able to achieve current peak detection and measurement with the needed precision and accuracy. In this paper we present an original algorithm, based on a piecewise linear-fitting approach, to filter the noise of the current signal and hence efficiently identifying and measuring current peaks. The proposed algorithm is then compared with the optimal linear filtering algorithm for time-encoded peak detection, based on a moving average routine, and assessed in terms of accuracy, precision, and peak detection efficiency, demonstrating improvements of 1÷2 orders of magnitude in all these quality factors.
Response of Non-Linear Shock Absorbers-Boundary Value Problem Analysis
Rahman, M. A.; Ahmed, U.; Uddin, M. S.
2013-08-01
A nonlinear boundary value problem of two degrees-of-freedom (DOF) untuned vibration damper systems using nonlinear springs and dampers has been numerically studied. As far as untuned damper is concerned, sixteen different combinations of linear and nonlinear springs and dampers have been comprehensively analyzed taking into account transient terms. For different cases, a comparative study is made for response versus time for different spring and damper types at three important frequency ratios: one at r = 1, one at r > 1 and one at r <1. The response of the system is changed because of the spring and damper nonlinearities; the change is different for different cases. Accordingly, an initially stable absorber may become unstable with time and vice versa. The analysis also shows that higher nonlinearity terms make the system more unstable. Numerical simulation includes transient vibrations. Although problems are much more complicated compared to those for a tuned absorber, a comparison of the results generated by the present numerical scheme with the exact one shows quite a reasonable agreement
Spectral methods for a nonlinear initial value problem involving pseudo differential operators
International Nuclear Information System (INIS)
Pasciak, J.E.
1982-01-01
Spectral methods (Fourier methods) for approximating the solution of a nonlinear initial value problem involving pseudo differential operators are defined and analyzed. A semidiscrete approximation to the nonlinear equation based on an L 2 projection is described. The semidiscrete L 2 approximation is shown to be a priori stable and convergent under sufficient decay and smoothness assumptions on the initial data. It is shown that the semidiscrete method converges with infinite order, that is, higher order decay and smoothness assumptions imply higher order error bounds. Spectral schemes based on spacial collocation are also discussed
Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's
Cai, Wei; Wang, Jian-Zhong
1993-01-01
We have designed a cubic spline wavelet decomposition for the Sobolev space H(sup 2)(sub 0)(I) where I is a bounded interval. Based on a special 'point-wise orthogonality' of the wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform will map discrete samples of a function to its wavelet expansion coefficients in O(N log N) operations. Using this transform, we propose a collocation method for the initial value boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform and apply the collocation method to solve linear and nonlinear PDE's.
On the Cauchy problem for nonlinear Schrödinger equations with rotation
Antonelli, Paolo; Marahrens, Daniel; Sparber, Christof
2011-01-01
We consider the Cauchy problem for (energy-subcritical) nonlinear Schrödinger equations with sub-quadratic external potentials and an additional angular momentum rotation term. This equation is a well-known model for superuid quantum gases in rotating traps. We prove global existence (in the energy space) for defocusing nonlinearities without any restriction on the rotation frequency, generalizing earlier results given in [11, 12]. Moreover, we find that the rotation term has a considerable in fiuence in proving finite time blow-up in the focusing case.
Domain decomposition based iterative methods for nonlinear elliptic finite element problems
Energy Technology Data Exchange (ETDEWEB)
Cai, X.C. [Univ. of Colorado, Boulder, CO (United States)
1994-12-31
The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite element problems. In this presentation, the author considers the solution of systems of nonlinear algebraic equations arising from the finite element discretization of some nonlinear elliptic equations. Several overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact Newton acceleration will be discussed. The author shows that the convergence rate of the Newton`s method is independent of the mesh size used in the finite element discretization, and also independent of the number of subdomains into which the original domain in decomposed. Numerical examples will be presented.
On the Cauchy problem for nonlinear Schrödinger equations with rotation
Antonelli, Paolo
2011-10-01
We consider the Cauchy problem for (energy-subcritical) nonlinear Schrödinger equations with sub-quadratic external potentials and an additional angular momentum rotation term. This equation is a well-known model for superuid quantum gases in rotating traps. We prove global existence (in the energy space) for defocusing nonlinearities without any restriction on the rotation frequency, generalizing earlier results given in [11, 12]. Moreover, we find that the rotation term has a considerable in fiuence in proving finite time blow-up in the focusing case.
Performance improvement of shunt active power filter based on non-linear least-square approach
DEFF Research Database (Denmark)
Terriche, Yacine
2018-01-01
. This paper proposes an improved open loop strategy which is unconditionally stable and flexible. The proposed method which is based on non-linear least square (NLS) approach can extract the fundamental voltage and estimates its phase within only half cycle, even in the presence of odd harmonics and dc offset......). The synchronous reference frame (SRF) approach is widely used for generating the RCC due to its simplicity and computation efficiency. However, the SRF approach needs precise information of the voltage phase which becomes a challenge under adverse grid conditions. A typical solution to answer this need...
Iterative solution of a nonlinear system arising in phase change problems
International Nuclear Information System (INIS)
Williams, M.A.
1987-01-01
We consider several iterative methods for solving the nonlinear system arising from an enthalpy formulation of a phase change problem. We present the formulation of the problem. Implicit discretization of the governing equations results in a mildly nonlinear system at each time step. We discuss solving this system using Jacobi, Gauss-Seidel, and SOR iterations and a new modified preconditioned conjugate gradient (MPCG) algorithm. The new MPCG algorithm and its properties are discussed in detail. Numerical results are presented comparing the performance of the SOR algorithm and the MPCG algorithm with 1-step SSOR preconditioning. The MPCG algorithm exhibits a superlinear rate of convergence. The SOR algorithm exhibits a linear rate of convergence. Thus, the MPCG algorithm requires fewer iterations to converge than the SOR algorithm. However in most cases, the SOR algorithm requires less total computation time than the MPCG algorithm. Hence, the SOR algorithm appears to be more appropriate for the class of problems considered. 27 refs., 11 figs
International Nuclear Information System (INIS)
Semenova, V.N.
2016-01-01
A boundary value problem for a nonlinear second order differential equation has been considered. A numerical method has been proposed to solve this problem using power series. Results of numerical experiments have been presented in the paper [ru
Rigatos, Gerasimos
2014-12-01
A synchronizing control scheme for coupled neural oscillators of the FitzHugh-Nagumo type is proposed. Using differential flatness theory the dynamical model of two coupled neural oscillators is transformed into an equivalent model in the linear canonical (Brunovsky) form. A similar linearized description is succeeded using differential geometry methods and the computation of Lie derivatives. For such a model it becomes possible to design a state feedback controller that assures the synchronization of the membrane's voltage variations for the two neurons. To compensate for disturbances that affect the neurons' model as well as for parametric uncertainties and variations a disturbance observer is designed based on Kalman Filtering. This consists of implementation of the standard Kalman Filter recursion on the linearized equivalent model of the coupled neurons and computation of state and disturbance estimates using the diffeomorphism (relations about state variables transformation) provided by differential flatness theory. After estimating the disturbance terms in the neurons' model their compensation becomes possible. The performance of the synchronization control loop is tested through simulation experiments.
Chaos synchronization in noisy environment using nonlinear filtering and sliding mode control
Energy Technology Data Exchange (ETDEWEB)
Behzad, Mehdi [Center of Excellence in Design, Robotics, and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Postal Code 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: m_behzad@sharif.edu; Salarieh, Hassan [Center of Excellence in Design, Robotics, and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Postal Code 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics, and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Postal Code 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: aalasti@sharif.edu
2008-06-15
This paper presents an algorithm for synchronizing two different chaotic systems, using a combination of the extended Kalman filter and the sliding mode controller. It is assumed that the drive chaotic system has a random excitation with a stochastically chaotic behavior. Two different cases are considered in this study. At first it is assumed that all state variables of the drive system are available, i.e. complete state measurement, and a sliding mode controller is designed for synchronization. For the second case, it is assumed that the output of the drive system does not contain the whole state variables of the drive system, and it is also affected by some random noise. By combination of extended Kalman filter and the sliding mode control, a synchronizing control law is proposed. As a case study, the presented algorithm is applied to the Lur'e-Genesio chaotic systems as the drive-response dynamic systems. Simulation results show the good performance of the algorithm in synchronizing the chaotic systems in presence of noisy environment.
Chaos synchronization in noisy environment using nonlinear filtering and sliding mode control
International Nuclear Information System (INIS)
Behzad, Mehdi; Salarieh, Hassan; Alasty, Aria
2008-01-01
This paper presents an algorithm for synchronizing two different chaotic systems, using a combination of the extended Kalman filter and the sliding mode controller. It is assumed that the drive chaotic system has a random excitation with a stochastically chaotic behavior. Two different cases are considered in this study. At first it is assumed that all state variables of the drive system are available, i.e. complete state measurement, and a sliding mode controller is designed for synchronization. For the second case, it is assumed that the output of the drive system does not contain the whole state variables of the drive system, and it is also affected by some random noise. By combination of extended Kalman filter and the sliding mode control, a synchronizing control law is proposed. As a case study, the presented algorithm is applied to the Lur'e-Genesio chaotic systems as the drive-response dynamic systems. Simulation results show the good performance of the algorithm in synchronizing the chaotic systems in presence of noisy environment
State and parameter estimation in nonlinear systems as an optimal tracking problem
International Nuclear Information System (INIS)
Creveling, Daniel R.; Gill, Philip E.; Abarbanel, Henry D.I.
2008-01-01
In verifying and validating models of nonlinear processes it is important to incorporate information from observations in an efficient manner. Using the idea of synchronization of nonlinear dynamical systems, we present a framework for connecting a data signal with a model in a way that minimizes the required coupling yet allows the estimation of unknown parameters in the model. The need to evaluate unknown parameters in models of nonlinear physical, biophysical, and engineering systems occurs throughout the development of phenomenological or reduced models of dynamics. Our approach builds on existing work that uses synchronization as a tool for parameter estimation. We address some of the critical issues in that work and provide a practical framework for finding an accurate solution. In particular, we show the equivalence of this problem to that of tracking within an optimal control framework. This equivalence allows the application of powerful numerical methods that provide robust practical tools for model development and validation
Directory of Open Access Journals (Sweden)
Zongyan Li
2016-01-01
Full Text Available This paper describes an improved global harmony search (IGHS algorithm for identifying the nonlinear discrete-time systems based on second-order Volterra model. The IGHS is an improved version of the novel global harmony search (NGHS algorithm, and it makes two significant improvements on the NGHS. First, the genetic mutation operation is modified by combining normal distribution and Cauchy distribution, which enables the IGHS to fully explore and exploit the solution space. Second, an opposition-based learning (OBL is introduced and modified to improve the quality of harmony vectors. The IGHS algorithm is implemented on two numerical examples, and they are nonlinear discrete-time rational system and the real heat exchanger, respectively. The results of the IGHS are compared with those of the other three methods, and it has been verified to be more effective than the other three methods on solving the above two problems with different input signals and system memory sizes.
International Nuclear Information System (INIS)
Radford, I.R.
1990-01-01
The suggestion by Okayasu and Iliakis (1989) that the non-linear dose-response curve, obtained with the non-denaturing filter elution technique for mammalian cells exposed to low-LET radiation, is the result of a technical artefact, was not confirmed. (author)
Analysis of decision alternatives of the deep borehole filter restoration problem
International Nuclear Information System (INIS)
Abdildin, Yerkin G.; Abbas, Ali E.
2016-01-01
The energy problem is one of the biggest challenges facing the world in the 21st century. The nuclear energy is the fastest-growing contributor to the world energy and uranium mining is the primary step in its chain. One of the fundamental problems in the uranium extraction industry is the deep borehole filter restoration problem. This decision problem is very complex due to multiple objectives and various uncertainties. Besides the improvement of uranium production, the decision makers often need to meet internationally recognized standards (ISO 14001) of labor protection, safety measures, and preservation of environment. The problem can be simplified by constructing the multiattribute utility function, but the choice of the appropriate functional form requires the practical evaluation of different methods. In present work, we evaluate the alternatives of this complex problem by two distinct approaches for analyzing decision problems. The decision maker and the assessor is a Deputy Director General of a transnational corporation. - Highlights: • Analyzes 5 borehole recovery methods across the 4 most important attributes (criteria). • Considers financial, technological, environmental, and safety factors. • Compares two decision analysis approaches and the profit analysis. • Illustrates the assessments of the decision maker's preferences. • Determines that the assumption of independence of attributes yields imprecise recommendations.
Special function solutions of a spectral problem for a nonlinear quantum oscillator
International Nuclear Information System (INIS)
Schulze-Halberg, A; Morris, J R
2012-01-01
We construct exact solutions of a spectral problem involving the Schrödinger equation for a nonlinear, one-parameter oscillator potential. In contrast to a previous analysis of the problem (Carinena et al 2007 Ann. Phys. 322 434–59), where solutions were given through a Rodrigues-type formula, our approach leads to closed-form representations of the solutions in terms of special functions, not containing any derivative operators. We show normalizability and orthogonality of our solutions, as well as correct reduction of the problem to the harmonic oscillator model, if the parameter in the potential gets close to zero. (paper)
Multi-level nonlinear diffusion acceleration method for multigroup transport k-Eigenvalue problems
International Nuclear Information System (INIS)
Anistratov, Dmitriy Y.
2011-01-01
The nonlinear diffusion acceleration (NDA) method is an efficient and flexible transport iterative scheme for solving reactor-physics problems. This paper presents a fast iterative algorithm for solving multigroup neutron transport eigenvalue problems in 1D slab geometry. The proposed method is defined by a multi-level system of equations that includes multigroup and effective one-group low-order NDA equations. The Eigenvalue is evaluated in the exact projected solution space of smallest dimensionality, namely, by solving the effective one- group eigenvalue transport problem. Numerical results that illustrate performance of the new algorithm are demonstrated. (author)
A filtering technique for solving the advection equation in two-phase flow problems
International Nuclear Information System (INIS)
Devals, C.; Heniche, M.; Bertrand, F.; Tanguy, P.A.; Hayes, R.E.
2004-01-01
The aim of this work is to develop a numerical strategy for the simulation of two-phase flow in the context of chemical engineering applications. The finite element method has been chosen because of its flexibility to deal with complex geometries. One of the key points of two-phase flow simulation is to determine precisely the position of the interface between the two phases, which is an unknown of the problem. In this case, the interface can be tracked by the advection of the so-called color function. It is well known that the solution of the advection equation by most numerical schemes, including the Streamline Upwind Petrov-Galerkin (SUPG) method, may exhibit spurious oscillations. This work proposes an approach to filter out these oscillations by means of a change of variable that is efficient for both steady state and transient cases. First, the filtering technique will be presented in detail. Then, it will be applied to two-dimensional benchmark problems, namely, the advection skew to the mesh and the Zalesak's problems. (author)
The Cauchy problem for non-linear Klein-Gordon equations
International Nuclear Information System (INIS)
Simon, J.C.H.; Taflin, E.
1993-01-01
We consider in R n+1 , n≥2, the non-linear Klein-Gordon equation. We prove for such an equation that there is neighbourhood of zero in a Hilbert space of initial conditions for which the Cauchy problem has global solutions and on which there is asymptotic completeness. The inverse of the wave operator linearizes the non-linear equation. If, moreover, the equation is manifestly Poincare covariant then the non-linear representation of the Poincare-Lie algebra, associated with the non-linear Klein-Gordon equation is integrated to a non-linear representation of the Poincare group on an invariant neighbourhood of zero in the Hilbert space. This representation is linearized by the inverse of the wave operator. The Hilbert space is, in both cases, the closure of the space of the differentiable vectors for the linear representation of the Poincare group, associated with the Klein-Gordon equation, with respect to a norm defined by the representation of the enveloping algebra. (orig.)
Directory of Open Access Journals (Sweden)
Sie Long Kek
2015-01-01
Full Text Available A computational approach is proposed for solving the discrete time nonlinear stochastic optimal control problem. Our aim is to obtain the optimal output solution of the original optimal control problem through solving the simplified model-based optimal control problem iteratively. In our approach, the adjusted parameters are introduced into the model used such that the differences between the real system and the model used can be computed. Particularly, system optimization and parameter estimation are integrated interactively. On the other hand, the output is measured from the real plant and is fed back into the parameter estimation problem to establish a matching scheme. During the calculation procedure, the iterative solution is updated in order to approximate the true optimal solution of the original optimal control problem despite model-reality differences. For illustration, a wastewater treatment problem is studied and the results show the efficiency of the approach proposed.
Stability of recursive out-of-sequence measurement filters: an open problem
Chen, Lingji; Moshtagh, Nima; Mehra, Raman K.
2011-06-01
In many applications where communication delays are present, measurements with earlier time stamps can arrive out-of-sequence, i.e., after state estimates have been obtained for the current time instant. To incorporate such an Out-Of-Sequence Measurement (OOSM), many algorithms have been proposed in the literature to obtain or approximate the optimal estimate that would have been obtained if the OOSM had arrived in-sequence. When OOSM occurs repeatedly, approximate estimations as a result of incorporating one OOSM have to serve as the basis for incorporating yet another OOSM. The question of whether the "approximation of approximation" is well behaved, i.e., whether approximation errors accumulate in a recursive setting, has not been adequately addressed in the literature. This paper draws attention to the stability question of recursive OOSM processing filters, formulates the problem in a specific setting, and presents some simulation results that suggest that such filters are indeed well-behaved. Our hope is that more research will be conducted in the future to rigorously establish stability properties of these filters.
Directory of Open Access Journals (Sweden)
Koh Kim Jie
2017-01-01
Full Text Available Quadratic damping nonlinearity is challenging for displacement based structural dynamics problem as the problem is nonlinear in time derivative of the primitive variable. For such nonlinearity, the formulation of tangent stiffness matrix is not lucid in the literature. Consequently, ambiguity related to kinematics update arises when implementing the time integration-iterative algorithm. In present work, an Euler-Bernoulli beam vibration problem with quadratic damping nonlinearity is addressed as the main source of quadratic damping nonlinearity arises from drag force estimation, which is generally valid only for slender structures. Employing Newton-Raphson formulation, tangent stiffness components associated with quadratic damping nonlinearity requires velocity input for evaluation purpose. For this reason, two mathematically equivalent algorithm structures with different kinematics arrangement are tested. Both algorithm structures result in the same accuracy and convergence characteristic of solution.
Bíró, Oszkár; Koczka, Gergely; Preis, Kurt
2014-05-01
An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.
International Nuclear Information System (INIS)
Kaltenbacher, Barbara; Kirchner, Alana; Vexler, Boris
2011-01-01
Parameter identification problems for partial differential equations usually lead to nonlinear inverse problems. A typical property of such problems is their instability, which requires regularization techniques, like, e.g., Tikhonov regularization. The main focus of this paper will be on efficient methods for determining a suitable regularization parameter by using adaptive finite element discretizations based on goal-oriented error estimators. A well-established method for the determination of a regularization parameter is the discrepancy principle where the residual norm, considered as a function i of the regularization parameter, should equal an appropriate multiple of the noise level. We suggest to solve the resulting scalar nonlinear equation by an inexact Newton method, where in each iteration step, a regularized problem is solved at a different discretization level. The proposed algorithm is an extension of the method suggested in Griesbaum A et al (2008 Inverse Problems 24 025025) for linear inverse problems, where goal-oriented error estimators for i and its derivative are used for adaptive refinement strategies in order to keep the discretization level as coarse as possible to save computational effort but fine enough to guarantee global convergence of the inexact Newton method. This concept leads to a highly efficient method for determining the Tikhonov regularization parameter for nonlinear ill-posed problems. Moreover, we prove that with the so-obtained regularization parameter and an also adaptively discretized Tikhonov minimizer, usual convergence and regularization results from the continuous setting can be recovered. As a matter of fact, it is shown that it suffices to use stationary points of the Tikhonov functional. The efficiency of the proposed method is demonstrated by means of numerical experiments. (paper)
A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems
Directory of Open Access Journals (Sweden)
S. S. Motsa
2013-01-01
Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.
Directory of Open Access Journals (Sweden)
MOHAMED KEZZAR
2015-08-01
Full Text Available In this research, an efficient technique of computation considered as a modified decomposition method was proposed and then successfully applied for solving the nonlinear problem of the two dimensional flow of an incompressible viscous fluid between nonparallel plane walls. In fact this method gives the nonlinear term Nu and the solution of the studied problem as a power series. The proposed iterative procedure gives on the one hand a computationally efficient formulation with an acceleration of convergence rate and on the other hand finds the solution without any discretization, linearization or restrictive assumptions. The comparison of our results with those of numerical treatment and other earlier works shows clearly the higher accuracy and efficiency of the used Modified Decomposition Method.
International Nuclear Information System (INIS)
Sen, S.; Roy Chowdhury, A.
1989-06-01
The nonlinear Alfven waves are governed by the Vector Derivative nonlinear Schroedinger (VDNLS) equation, which for parallel or quasi parallel propagation reduces to the Derivative Nonlinear Schroedinger (DNLS) equation for the circularly polarized waves. We have formulated the Quantum Inverse problem for a new type of Nonlinear Schroedinger Equation which has many properties similar to the usual NLS problem but the structure of classical and quantum R matrix are distinctly different. The commutation rules of the scattering data are obtained and the Algebraic Bethe Ansatz is formulated to derive the eigenvalue equation for the energy of the excited states. 10 refs
Nan, Yinbo; Huo, Li; Lou, Caiyun
2005-05-20
We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.
Directory of Open Access Journals (Sweden)
Qingkai Kong
2012-02-01
Full Text Available In this paper, we study the existence and multiplicity of positive solutions of a class of nonlinear fractional boundary value problems with Dirichlet boundary conditions. By applying the fixed point theory on cones we establish a series of criteria for the existence of one, two, any arbitrary finite number, and an infinite number of positive solutions. A criterion for the nonexistence of positive solutions is also derived. Several examples are given for demonstration.
Directory of Open Access Journals (Sweden)
Alexander N. Kvitko
2017-01-01
Full Text Available An algorithm for constructing a control function that transfers a wide class of stationary nonlinear systems of ordinary differential equations from an initial state to a final state under certain control restrictions is proposed. The algorithm is designed to be convenient for numerical implementation. A constructive criterion of the desired transfer possibility is presented. The problem of an interorbital flight is considered as a test example and it is simulated numerically with the presented method.
Iterative Methods for Solving Nonlinear Parabolic Problem in Pension Saving Management
Koleva, M. N.
2011-11-01
In this work we consider a nonlinear parabolic equation, obtained from Riccati like transformation of the Hamilton-Jacobi-Bellman equation, arising in pension saving management. We discuss two numerical iterative methods for solving the model problem—fully implicit Picard method and mixed Picard-Newton method, which preserves the parabolic characteristics of the differential problem. Numerical experiments for comparison the accuracy and effectiveness of the algorithms are discussed. Finally, observations are given.
Positive solutions for a nonlinear periodic boundary-value problem with a parameter
Directory of Open Access Journals (Sweden)
Jingliang Qiu
2012-08-01
Full Text Available Using topological degree theory with a partially ordered structure of space, sufficient conditions for the existence and multiplicity of positive solutions for a second-order nonlinear periodic boundary-value problem are established. Inspired by ideas in Guo and Lakshmikantham [6], we study the dependence of positive periodic solutions as a parameter approaches infinity, $$ lim_{lambdao +infty}|x_{lambda}|=+infty,quadhbox{or}quad lim_{lambdao+infty}|x_{lambda}|=0. $$
On the Cauchy problem for a Sobolev-type equation with quadratic non-linearity
International Nuclear Information System (INIS)
Aristov, Anatoly I
2011-01-01
We investigate the asymptotic behaviour as t→∞ of the solution of the Cauchy problem for a Sobolev-type equation with quadratic non-linearity and develop ideas used by I. A. Shishmarev and other authors in the study of classical and Sobolev-type equations. Conditions are found under which it is possible to consider the case of an arbitrary dimension of the spatial variable.
Existence of solutions to nonlinear parabolic unilateral problems with an obstacle depending on time
Directory of Open Access Journals (Sweden)
Nabila Bellal
2014-10-01
Full Text Available Using the penalty method, we prove the existence of solutions to nonlinear parabolic unilateral problems with an obstacle depending on time. To find a solution, the original inequality is transformed into an equality by adding a positive function on the right-hand side and a complementary condition. This result can be seen as a generalization of the results by Mokrane in [11] where the obstacle is zero.
Inverse periodic problem for the discrete approximation of the Schroedinger nonlinear equation
International Nuclear Information System (INIS)
Bogolyubov, N.N.; Prikarpatskij, A.K.; AN Ukrainskoj SSR, Lvov. Inst. Prikladnykh Problem Mekhaniki i Matematiki)
1982-01-01
The problem of numerical solution of the Schroedinger nonlinear equation (1) iPSIsub(t) = PSIsub(xx)+-2(PSI)sup(2)PSI. The numerical solution of nonlinear differential equation supposes its discrete approximation is required for the realization of the computer calculation process. Tor the equation (1) there exists the following discrete approximation by variable x(2) iPSIsub(n, t) = (PSIsub(n+1)-2PSIsub(n)+PSIsub(n-1))/(Δx)sup(2)+-(PSIsub(n))sup(2)(PSIsub(n+1)+PSIsub(n-1)), n=0, +-1, +-2... where PSIsub(n)(+) is the corresponding value of PSI(x, t) function in the node and divisions with the equilibrium step Δx. The main problem is obtaining analytically exact solutions of the equations (2). The analysis of the equation system (2) is performed on the base of the discrete analogue of the periodic variant of the inverse scattering problem method developed with the aid of nonlinear equations of the Korteweg-de Vries type. Obtained in explicit form are analytical solutions of the equations system (2). The solutions are expressed through the Riemann THETA-function [ru
Energy Technology Data Exchange (ETDEWEB)
Carey, G.F.; Young, D.M.
1993-12-31
The program outlined here is directed to research on methods, algorithms, and software for distributed parallel supercomputers. Of particular interest are finite element methods and finite difference methods together with sparse iterative solution schemes for scientific and engineering computations of very large-scale systems. Both linear and nonlinear problems will be investigated. In the nonlinear case, applications with bifurcation to multiple solutions will be considered using continuation strategies. The parallelizable numerical methods of particular interest are a family of partitioning schemes embracing domain decomposition, element-by-element strategies, and multi-level techniques. The methods will be further developed incorporating parallel iterative solution algorithms with associated preconditioners in parallel computer software. The schemes will be implemented on distributed memory parallel architectures such as the CRAY MPP, Intel Paragon, the NCUBE3, and the Connection Machine. We will also consider other new architectures such as the Kendall-Square (KSQ) and proposed machines such as the TERA. The applications will focus on large-scale three-dimensional nonlinear flow and reservoir problems with strong convective transport contributions. These are legitimate grand challenge class computational fluid dynamics (CFD) problems of significant practical interest to DOE. The methods developed and algorithms will, however, be of wider interest.
Gazzola, Filippo; Sweers, Guido
2010-01-01
This monograph covers higher order linear and nonlinear elliptic boundary value problems in bounded domains, mainly with the biharmonic or poly-harmonic operator as leading principal part. Underlying models and, in particular, the role of different boundary conditions are explained in detail. As for linear problems, after a brief summary of the existence theory and Lp and Schauder estimates, the focus is on positivity or - since, in contrast to second order equations, a general form of a comparison principle does not exist - on “near positivity.” The required kernel estimates are also presented in detail. As for nonlinear problems, several techniques well-known from second order equations cannot be utilized and have to be replaced by new and different methods. Subcritical, critical and supercritical nonlinearities are discussed and various existence and nonexistence results are proved. The interplay with the positivity topic from the ﬁrst part is emphasized and, moreover, a far-reaching Gidas-Ni-Nirenbe...
Iterative Runge–Kutta-type methods for nonlinear ill-posed problems
International Nuclear Information System (INIS)
Böckmann, C; Pornsawad, P
2008-01-01
We present a regularization method for solving nonlinear ill-posed problems by applying the family of Runge–Kutta methods to an initial value problem, in particular, to the asymptotical regularization method. We prove that the developed iterative regularization method converges to a solution under certain conditions and with a general stopping rule. Some particular iterative regularization methods are numerically implemented. Numerical results of the examples show that the developed Runge–Kutta-type regularization methods yield stable solutions and that particular implicit methods are very efficient in saving iteration steps
Cengizci, Süleyman; Atay, Mehmet Tarık; Eryılmaz, Aytekin
2016-01-01
This paper is concerned with two-point boundary value problems for singularly perturbed nonlinear ordinary differential equations. The case when the solution only has one boundary layer is examined. An efficient method so called Successive Complementary Expansion Method (SCEM) is used to obtain uniformly valid approximations to this kind of solutions. Four test problems are considered to check the efficiency and accuracy of the proposed method. The numerical results are found in good agreement with exact and existing solutions in literature. The results confirm that SCEM has a superiority over other existing methods in terms of easy-applicability and effectiveness.
POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS
Directory of Open Access Journals (Sweden)
FAOUZI HADDOUCHI
2015-11-01
Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.
International Nuclear Information System (INIS)
Leaf, G.K.; Minkoff, M.
1982-01-01
1 - Description of problem or function: DISPL1 is a software package for solving second-order nonlinear systems of partial differential equations including parabolic, elliptic, hyperbolic, and some mixed types. The package is designed primarily for chemical kinetics- diffusion problems, although not limited to these problems. Fairly general nonlinear boundary conditions are allowed as well as inter- face conditions for problems in an inhomogeneous medium. The spatial domain is one- or two-dimensional with rectangular Cartesian, cylindrical, or spherical (in one dimension only) geometry. 2 - Method of solution: The numerical method is based on the use of Galerkin's procedure combined with the use of B-Splines (C.W.R. de-Boor's B-spline package) to generate a system of ordinary differential equations. These equations are solved by a sophisticated ODE software package which is a modified version of Hindmarsh's GEAR package, NESC Abstract 592. 3 - Restrictions on the complexity of the problem: The spatial domain must be rectangular with sides parallel to the coordinate geometry. Cross derivative terms are not permitted in the PDE. The order of the B-Splines is at most 12. Other parameters such as the number of mesh points in each coordinate direction, the number of PDE's etc. are set in a macro table used by the MORTRAn2 preprocessor in generating the object code
Krishnan, Venkatarama
2005-01-01
Most useful for graduate students in engineering and finance who have a basic knowledge of probability theory, this volume is designed to give a concise understanding of martingales, stochastic integrals, and estimation. It emphasizes applications. Many theorems feature heuristic proofs; others include rigorous proofs to reinforce physical understanding. Numerous end-of-chapter problems enhance the book's practical value.After introducing the basic measure-theoretic concepts of probability and stochastic processes, the text examines martingales, square integrable martingales, and stopping time
International Nuclear Information System (INIS)
Floberg, J M; Holden, J E
2013-01-01
We introduce a method for denoising dynamic PET data, spatio-temporal expectation-maximization (STEM) filtering, that combines four-dimensional Gaussian filtering with EM deconvolution. The initial Gaussian filter suppresses noise at a broad range of spatial and temporal frequencies and EM deconvolution quickly restores the frequencies most important to the signal. We aim to demonstrate that STEM filtering can improve variance in both individual time frames and in parametric images without introducing significant bias. We evaluate STEM filtering with a dynamic phantom study, and with simulated and human dynamic PET studies of a tracer with reversible binding behaviour, [C-11]raclopride, and a tracer with irreversible binding behaviour, [F-18]FDOPA. STEM filtering is compared to a number of established three and four-dimensional denoising methods. STEM filtering provides substantial improvements in variance in both individual time frames and in parametric images generated with a number of kinetic analysis techniques while introducing little bias. STEM filtering does bias early frames, but this does not affect quantitative parameter estimates. STEM filtering is shown to be superior to the other simple denoising methods studied. STEM filtering is a simple and effective denoising method that could be valuable for a wide range of dynamic PET applications. (paper)
Ensemble Kalman Filtering with a Divided State-Space Strategy for Coupled Data Assimilation Problems
Luo, Xiaodong
2014-12-01
This study considers the data assimilation problem in coupled systems, which consists of two components (subsystems) interacting with each other through certain coupling terms. A straightforward way to tackle the assimilation problem in such systems is to concatenate the states of the subsystems into one augmented state vector, so that a standard ensemble Kalman filter (EnKF) can be directly applied. This work presents a divided state-space estimation strategy, in which data assimilation is carried out with respect to each individual subsystem, involving quantities from the subsystem itself and correlated quantities from other coupled subsystems. On top of the divided state-space estimation strategy, the authors also consider the possibility of running the subsystems separately. Combining these two ideas, a few variants of the EnKF are derived. The introduction of these variants is mainly inspired by the current status and challenges in coupled data assimilation problems and thus might be of interest from a practical point of view. Numerical experiments with a multiscale Lorenz 96 model are conducted to evaluate the performance of these variants against that of the conventional EnKF. In addition, specific for coupled data assimilation problems, two prototypes of extensions of the presented methods are also developed in order to achieve a trade-offbetween efficiency and accuracy.
Ensemble Kalman Filtering with a Divided State-Space Strategy for Coupled Data Assimilation Problems
Luo, Xiaodong; Hoteit, Ibrahim
2014-01-01
This study considers the data assimilation problem in coupled systems, which consists of two components (subsystems) interacting with each other through certain coupling terms. A straightforward way to tackle the assimilation problem in such systems is to concatenate the states of the subsystems into one augmented state vector, so that a standard ensemble Kalman filter (EnKF) can be directly applied. This work presents a divided state-space estimation strategy, in which data assimilation is carried out with respect to each individual subsystem, involving quantities from the subsystem itself and correlated quantities from other coupled subsystems. On top of the divided state-space estimation strategy, the authors also consider the possibility of running the subsystems separately. Combining these two ideas, a few variants of the EnKF are derived. The introduction of these variants is mainly inspired by the current status and challenges in coupled data assimilation problems and thus might be of interest from a practical point of view. Numerical experiments with a multiscale Lorenz 96 model are conducted to evaluate the performance of these variants against that of the conventional EnKF. In addition, specific for coupled data assimilation problems, two prototypes of extensions of the presented methods are also developed in order to achieve a trade-offbetween efficiency and accuracy.
A Semismooth Newton Method for Nonlinear Parameter Identification Problems with Impulsive Noise
Clason, Christian
2012-01-01
This work is concerned with nonlinear parameter identification in partial differential equations subject to impulsive noise. To cope with the non-Gaussian nature of the noise, we consider a model with L 1 fitting. However, the nonsmoothness of the problem makes its efficient numerical solution challenging. By approximating this problem using a family of smoothed functionals, a semismooth Newton method becomes applicable. In particular, its superlinear convergence is proved under a second-order condition. The convergence of the solution to the approximating problem as the smoothing parameter goes to zero is shown. A strategy for adaptively selecting the regularization parameter based on a balancing principle is suggested. The efficiency of the method is illustrated on several benchmark inverse problems of recovering coefficients in elliptic differential equations, for which one- and two-dimensional numerical examples are presented. © by SIAM.
A Simple FEM Formulation Applied to Nonlinear Problems of Impact with Thermomechanical Coupling
Directory of Open Access Journals (Sweden)
João Paulo de Barros Cavalcante
Full Text Available Abstract The thermal effects of problems involving deformable structures are essential to describe the behavior of materials in feasible terms. Verifying the transformation of mechanical energy into heat it is possible to predict the modifications of mechanical properties of materials due to its temperature changes. The current paper presents the numerical development of a finite element method suitable for nonlinear structures coupled with thermomechanical behavior; including impact problems. A simple and effective alternative formulation is presented, called FEM positional, to deal with the dynamic nonlinear systems. The developed numerical is based on the minimum potential energy written in terms of nodal positions instead of displacements. The effects of geometrical, material and thermal nonlinearities are considered. The thermodynamically consistent formulation is based on the laws of thermodynamics and the Helmholtz free-energy, used to describe the thermoelastic and the thermoplastic behaviors. The coupled thermomechanical model can result in secondary effects that cause redistributions of internal efforts, depending on the history of deformation and material properties. The numerical results of the proposed formulation are compared with examples found in the literature.
Introduction to the Box Particle Filtering
Gning, Amadou; Ristic, B; Mihaylova, Lyudmila; Abdallah, F.
2013-01-01
This paper presents a novel method for solving nonlinear filtering problems. This approach is particularly appealing in practical situations involving imprecise stochastic measurements, thus resulting in very broad posterior densities. It relies on the concept of a box particle, which occupies a small and controllable rectangular region having a non-zero volume in the state space. Key advantages of the box particle filter (Box-PF) against the standard particle filter (PF) are in its reduced c...
On some nonlinear problems arising in the physics of ionized gases
International Nuclear Information System (INIS)
Hilhorst-Goldman, D.
1981-01-01
The author reports results obtained by rigorous analysis of a nonlinear differential equation for the electron density nsub(e) in a specific type of electrical discharge. The problem is essentially two-dimensional. She discusses in particular the escape of electrons to infinity above a critical temperature and the boundary layer exhibited by nsub(e) near zero temperature. A singular boundary value problem arising in a pre-breakdown gas discharge is discussed. A Coulomb gas is considered in a special experimental situation: the pre-breakdown gas discharge between two electrodes. The equation for the negative charge density can be formulated as a nonlinear parabolic equation degenerate at the origin. The existence and uniqueness of the solution are proved as well as the asymptotic stability of its unique steady state. Some results are also given about the rate of convergence. The variational characterisation of the limit solution of a singular perturbation problem and variational analysis of a perturbed free boundary problem are considered. (Auth./C.F.)
Arbitrary Lagrangian-Eulerian method for non-linear problems of geomechanics
International Nuclear Information System (INIS)
Nazem, M; Carter, J P; Airey, D W
2010-01-01
In many geotechnical problems it is vital to consider the geometrical non-linearity caused by large deformation in order to capture a more realistic model of the true behaviour. The solutions so obtained should then be more accurate and reliable, which should ultimately lead to cheaper and safer design. The Arbitrary Lagrangian-Eulerian (ALE) method originated from fluid mechanics, but has now been well established for solving large deformation problems in geomechanics. This paper provides an overview of the ALE method and its challenges in tackling problems involving non-linearities due to material behaviour, large deformation, changing boundary conditions and time-dependency, including material rate effects and inertia effects in dynamic loading applications. Important aspects of ALE implementation into a finite element framework will also be discussed. This method is then employed to solve some interesting and challenging geotechnical problems such as the dynamic bearing capacity of footings on soft soils, consolidation of a soil layer under a footing, and the modelling of dynamic penetration of objects into soil layers.
Directory of Open Access Journals (Sweden)
Omar Abu Arqub
2014-01-01
Full Text Available The purpose of this paper is to present a new kind of analytical method, the so-called residual power series, to predict and represent the multiplicity of solutions to nonlinear boundary value problems of fractional order. The present method is capable of calculating all branches of solutions simultaneously, even if these multiple solutions are very close and thus rather difficult to distinguish even by numerical techniques. To verify the computational efficiency of the designed proposed technique, two nonlinear models are performed, one of them arises in mixed convection flows and the other one arises in heat transfer, which both admit multiple solutions. The results reveal that the method is very effective, straightforward, and powerful for formulating these multiple solutions.
Luo, Xiaodong; Hoteit, Ibrahim
2014-01-01
-space-based strategy, called residual nudging, to improve the stability of the EnKF when dealing with linear observation operators. The main idea behind residual nudging is to monitor and, if necessary, adjust the distances (misfits) between the real observations
Initial-value problem for the Gardner equation applied to nonlinear internal waves
Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim
2017-04-01
The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of
Directory of Open Access Journals (Sweden)
Ureña Antonio J
2002-01-01
Full Text Available A generalization of the well-known Hartman–Nagumo inequality to the case of the vector ordinary -Laplacian and classical degree theory provide existence results for some associated nonlinear boundary value problems.
Fymat, A. L.
1976-01-01
The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.
Application of the Green's function method to some nonlinear problems of an electron storage ring
International Nuclear Information System (INIS)
Kheifets, S.
1984-01-01
One of the most important characteristics of an electron storage ring is the size of the beam. However analytical calculations of beam size are beset with problems and the computational methods and programs which are used to overcome these are inadequate for all problems in which stochastic noise is an essential part. Two examples are, for an electron storage ring, beam-size evaluation including beam-beam interactions, and finding the beam size for a nonlinear machine. The method described should overcome some of the problems. It uses the Green's function method applied to the Fokker-Planck equation governing the distribution function in the phase space of particle motion. The new step is to consider the particle motion in two degrees of freedom rather than in one dimension. The technique is described fully and is then applied to a strong-focusing machine. (U.K.)
Belmiloudi, A.; Mahé, F.
2014-01-01
International audience; The paper investigates boundary optimal controls and parameter estimates to the well-posedness nonlinear model of dehydration of thermic problems. We summarize the general formulations for the boundary control for initial-boundary value problem for nonlinear partial differential equations modeling the heat transfer and derive necessary optimality conditions, including the adjoint equation, for the optimal set of parameters minimizing objective functions J. Numerical si...
Group-invariant solutions of nonlinear elastodynamic problems of plates and shells
International Nuclear Information System (INIS)
Dzhupanov, V.A.; Vassilev, V.M.; Dzhondzhorov, P.A.
1993-01-01
Plates and shells are basic structural components in nuclear reactors and their equipment. The prediction of the dynamic response of these components to fast transient loadings (e.g., loadings caused by earthquakes, missile impacts, etc.) is a quite important problem in the general context of the design, reliability and safety of nuclear power stations. Due to the extreme loading conditions a more adequate treatment of the foregoing problem should rest on a suitable nonlinear shell model, which would allow large deflections of the structures regarded to be taken into account. Such a model is provided in the nonlinear Donnell-Mushtari-Vlasov (DMV) theory. The governing system of equations of the DMV theory consists of two coupled nonlinear fourth order partial differential equations in three independent and two dependent variables. It is clear, as the case stands, that the obtaining solutions to this system directly, by using any of the general analytical or numerical techniques, would involve considerable difficulties. In the present paper, the invariance of the governing equations of DMV theory for plates and cylindrical shells relative to local Lie groups of local point transformations will be employed to get some advantages in connection with the aforementioned problem. First, the symmetry of a functional, corresponding to the governing equations of DMV theory for plates and cylindrical shells is studied. Next, the densities in the corresponding conservation laws are determined on the basis of Noether theorem. Finally, we study a class of invariant solutions of the governing equations. As is well known, group-invariant solutions are often intermediate asymptotics for a wider class of solutions of the corresponding equations. When such solutions are considered, the number of the independent variables can be reduced. For the class of invariant solutions studied here, the system of governing equations converts into a system of ordinary differential equations
Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem
DEFF Research Database (Denmark)
Delbary, Fabrice; Knudsen, Kim
2014-01-01
to the generalized Laplace equation. The 3D problem was solved in theory in late 1980s using complex geometrical optics solutions and a scattering transform. Several approximations to the reconstruction method have been suggested and implemented numerically in the literature, but here, for the first time, a complete...... computer implementation of the full nonlinear algorithm is given. First a boundary integral equation is solved by a Nystrom method for the traces of the complex geometrical optics solutions, second the scattering transform is computed and inverted using fast Fourier transform, and finally a boundary value...
One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign
Kaufmann, Uriel; Medri, Iván
2015-01-01
Let $\\Omega$ be a bounded open interval, let $p>1$ and $\\gamma>0$, and let $m:\\Omega\\rightarrow\\mathbb{R}$ be a function that may change sign in $\\Omega $. In this article we study the existence and nonexistence of positive solutions for one-dimensional singular problems of the form $-(\\left\\vert u^{\\prime}\\right\\vert ^{p-2}u^{\\prime})^{\\prime}=m\\left( x\\right) u^{-\\gamma}$ in $\\Omega$, $u=0$ on $\\partial\\Omega$. As a consequence we also derive existence results for other related nonlinearities.
Numerical solution of large nonlinear boundary value problems by quadratic minimization techniques
International Nuclear Information System (INIS)
Glowinski, R.; Le Tallec, P.
1984-01-01
The objective of this paper is to describe the numerical treatment of large highly nonlinear two or three dimensional boundary value problems by quadratic minimization techniques. In all the different situations where these techniques were applied, the methodology remains the same and is organized as follows: 1) derive a variational formulation of the original boundary value problem, and approximate it by Galerkin methods; 2) transform this variational formulation into a quadratic minimization problem (least squares methods) or into a sequence of quadratic minimization problems (augmented lagrangian decomposition); 3) solve each quadratic minimization problem by a conjugate gradient method with preconditioning, the preconditioning matrix being sparse, positive definite, and fixed once for all in the iterative process. This paper will illustrate the methodology above on two different examples: the description of least squares solution methods and their application to the solution of the unsteady Navier-Stokes equations for incompressible viscous fluids; the description of augmented lagrangian decomposition techniques and their application to the solution of equilibrium problems in finite elasticity
Directory of Open Access Journals (Sweden)
Felix Fritzen
2018-02-01
Full Text Available A novel algorithmic discussion of the methodological and numerical differences of competing parametric model reduction techniques for nonlinear problems is presented. First, the Galerkin reduced basis (RB formulation is presented, which fails at providing significant gains with respect to the computational efficiency for nonlinear problems. Renowned methods for the reduction of the computing time of nonlinear reduced order models are the Hyper-Reduction and the (Discrete Empirical Interpolation Method (EIM, DEIM. An algorithmic description and a methodological comparison of both methods are provided. The accuracy of the predictions of the hyper-reduced model and the (DEIM in comparison to the Galerkin RB is investigated. All three approaches are applied to a simple uncertainty quantification of a planar nonlinear thermal conduction problem. The results are compared to computationally intense finite element simulations.
Chang, Hung-Chieh; Lin, Pei-Chun
2014-02-01
Economic dispatch is the short-term determination of the optimal output from a number of electricity generation facilities to meet the system load while providing power. As such, it represents one of the main optimization problems in the operation of electrical power systems. This article presents techniques to substantially improve the efficiency of the canonical coordinates method (CCM) algorithm when applied to nonlinear combined heat and power economic dispatch (CHPED) problems. The improvement is to eliminate the need to solve a system of nonlinear differential equations, which appears in the line search process in the CCM algorithm. The modified algorithm was tested and the analytical solution was verified using nonlinear CHPED optimization problems, thereby demonstrating the effectiveness of the algorithm. The CCM methods proved numerically stable and, in the case of nonlinear programs, produced solutions with unprecedented accuracy within a reasonable time.
Yang, Haijian
2016-07-26
Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.
Yang, Haijian; Yang, Chao; Sun, Shuyu
2016-01-01
Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.
Directory of Open Access Journals (Sweden)
Samir Dey
2015-07-01
Full Text Available This paper proposes a new multi-objective intuitionistic fuzzy goal programming approach to solve a multi-objective nonlinear programming problem in context of a structural design. Here we describe some basic properties of intuitionistic fuzzy optimization. We have considered a multi-objective structural optimization problem with several mutually conflicting objectives. The design objective is to minimize weight of the structure and minimize the vertical deflection at loading point of a statistically loaded three-bar planar truss subjected to stress constraints on each of the truss members. This approach is used to solve the above structural optimization model based on arithmetic mean and compare with the solution by intuitionistic fuzzy goal programming approach. A numerical solution is given to illustrate our approach.
CASKETSS-HEAT: a finite difference computer program for nonlinear heat conduction problems
International Nuclear Information System (INIS)
Ikushima, Takeshi
1988-12-01
A heat conduction program CASKETSS-HEAT has been developed. CASKETSS-HEAT is a finite difference computer program used for the solution of multi-dimensional nonlinear heat conduction problems. Main features of CASKETSS-HEAT are as follows. (1) One, two and three-dimensional geometries for heat conduction calculation are available. (2) Convection and radiation heat transfer of boundry can be specified. (3) Phase change and chemical change can be treated. (4) Finned surface heat transfer can be treated easily. (5) Data memory allocation in the program is variable according to problem size. (6) The program is a compatible heat transfer analysis program to the stress analysis program SAP4 and SAP5. (7) Pre- and post-processing for input data generation and graphic representation of calculation results are available. In the paper, brief illustration of calculation method, input data and sample calculation are presented. (author)
Discrete and continuum links to a nonlinear coupled transport problem of interacting populations
Duong, M. H.; Muntean, A.; Richardson, O. M.
2017-07-01
We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.
Directory of Open Access Journals (Sweden)
Chen Yuming
2011-01-01
Full Text Available Though boundary value problems for fractional differential equations have been extensively studied, most of the studies focus on scalar equations and the fractional order between 1 and 2. On the other hand, delay is natural in practical systems. However, not much has been done for fractional differential equations with delays. Therefore, in this paper, we consider a boundary value problem of a general delayed nonlinear fractional system. With the help of some fixed point theorems and the properties of the Green function, we establish several sets of sufficient conditions on the existence of positive solutions. The obtained results extend and include some existing ones and are illustrated with some examples for their feasibility.
Mathematical and numerical study of nonlinear boundary problems related to plasma physics
International Nuclear Information System (INIS)
Sermange, M.
1982-06-01
After the study of some equations based on the Hodgkin-Huxley model, the work presented here is concerned with nonlinear boundary problems in MHD. They are gathered in two subjects: equilibrium equations and stability equations. The axisymmetric MHD equilibrium equations with free boundary have been studied by different authors, particularly the existence, regularity, unicity and non-unicity. Here, bifurcation, convergence of calculation methods existence of solutions in a discontinuous frame are studied. MHD stability can be determined by the principle of Bernstein et al; the mathematical work concerned here bears on the equivalence, in the case of two-dimensional or axisymmetric stability, between this model and a scalar eigenvalue problem which is introduced. At last, modules for computing MHD equilibrium for the simulation of plasma confinement in a tokamak are described [fr
A limited memory BFGS method for a nonlinear inverse problem in digital breast tomosynthesis
Landi, G.; Loli Piccolomini, E.; Nagy, J. G.
2017-09-01
Digital breast tomosynthesis (DBT) is an imaging technique that allows the reconstruction of a pseudo three-dimensional image of the breast from a finite number of low-dose two-dimensional projections obtained by different x-ray tube angles. An issue that is often ignored in DBT is the fact that an x-ray beam is polyenergetic, i.e. it is composed of photons with different levels of energy. The polyenergetic model requires solving a large-scale, nonlinear inverse problem, which is more expensive than the typically used simplified, linear monoenergetic model. However, the polyenergetic model is much less susceptible to beam hardening artifacts, which show up as dark streaks and cupping (i.e. background nonuniformities) in the reconstructed image. In addition, it has been shown that the polyenergetic model can be exploited to obtain additional quantitative information about the material of the object being imaged. In this paper we consider the multimaterial polyenergetic DBT model, and solve the nonlinear inverse problem with a limited memory BFGS quasi-Newton method. Regularization is enforced at each iteration using a diagonally modified approximation of the Hessian matrix, and by truncating the iterations.
Solution of the nonlinear inverse scattering problem by T-matrix completion. I. Theory.
Levinson, Howard W; Markel, Vadim A
2016-10-01
We propose a conceptually different method for solving nonlinear inverse scattering problems (ISPs) such as are commonly encountered in tomographic ultrasound imaging, seismology, and other applications. The method is inspired by the theory of nonlocality of physical interactions and utilizes the relevant formalism. We formulate the ISP as a problem whose goal is to determine an unknown interaction potential V from external scattering data. Although we seek a local (diagonally dominated) V as the solution to the posed problem, we allow V to be nonlocal at the intermediate stages of iterations. This allows us to utilize the one-to-one correspondence between V and the T matrix of the problem. Here it is important to realize that not every T corresponds to a diagonal V and we, therefore, relax the usual condition of strict diagonality (locality) of V. An iterative algorithm is proposed in which we seek T that is (i) compatible with the measured scattering data and (ii) corresponds to an interaction potential V that is as diagonally dominated as possible. We refer to this algorithm as to the data-compatible T-matrix completion. This paper is Part I in a two-part series and contains theory only. Numerical examples of image reconstruction in a strongly nonlinear regime are given in Part II [H. W. Levinson and V. A. Markel, Phys. Rev. E 94, 043318 (2016)10.1103/PhysRevE.94.043318]. The method described in this paper is particularly well suited for very large data sets that become increasingly available with the use of modern measurement techniques and instrumentation.
Kalman filtering with real-time applications
Chui, Charles K
2017-01-01
This new edition presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge of linear algebra, probability theory, and system engineering. Over 100 exercises and problems with solutions help de...
Comparison of Sigma-Point and Extended Kalman Filters on a Realistic Orbit Determination Scenario
Gaebler, John; Hur-Diaz. Sun; Carpenter, Russell
2010-01-01
Sigma-point filters have received a lot of attention in recent years as a better alternative to extended Kalman filters for highly nonlinear problems. In this paper, we compare the performance of the additive divided difference sigma-point filter to the extended Kalman filter when applied to orbit determination of a realistic operational scenario based on the Interstellar Boundary Explorer mission. For the scenario studied, both filters provided equivalent results. The performance of each is discussed in detail.
International Nuclear Information System (INIS)
Keanini, R.G.
2011-01-01
Research highlights: → Systematic approach for physically probing nonlinear and random evolution problems. → Evolution of vortex sheets corresponds to evolution of an Ornstein-Uhlenbeck process. → Organization of near-molecular scale vorticity mediated by hydrodynamic modes. → Framework allows calculation of vorticity evolution within random strain fields. - Abstract: A framework which combines Green's function (GF) methods and techniques from the theory of stochastic processes is proposed for tackling nonlinear evolution problems. The framework, established by a series of easy-to-derive equivalences between Green's function and stochastic representative solutions of linear drift-diffusion problems, provides a flexible structure within which nonlinear evolution problems can be analyzed and physically probed. As a preliminary test bed, two canonical, nonlinear evolution problems - Burgers' equation and the nonlinear Schroedinger's equation - are first treated. In the first case, the framework provides a rigorous, probabilistic derivation of the well known Cole-Hopf ansatz. Likewise, in the second, the machinery allows systematic recovery of a known soliton solution. The framework is then applied to a fairly extensive exploration of physical features underlying evolution of randomly stretched and advected Burger's vortex sheets. Here, the governing vorticity equation corresponds to the Fokker-Planck equation of an Ornstein-Uhlenbeck process, a correspondence that motivates an investigation of sub-sheet vorticity evolution and organization. Under the assumption that weak hydrodynamic fluctuations organize disordered, near-molecular-scale, sub-sheet vorticity, it is shown that these modes consist of two weakly damped counter-propagating cross-sheet acoustic modes, a diffusive cross-sheet shear mode, and a diffusive cross-sheet entropy mode. Once a consistent picture of in-sheet vorticity evolution is established, a number of analytical results, describing the
Solving nonlinear nonstationary problem of heat-conductivity by finite element method
Directory of Open Access Journals (Sweden)
Антон Янович Карвацький
2016-11-01
Full Text Available Methodology and effective solving algorithm of non-linear dynamic problems of thermal and electric conductivity with significant temperature dependence of thermal and physical properties are given on the basis of finite element method (FEM and Newton linearization method. Discrete equations system FEM was obtained with the use of Galerkin method, where the main function is the finite element form function. The methodology based on successive solving problems of thermal and electrical conductivity has been examined in the work in order to minimize the requirements for calculating resources (RAM. in particular. Having used Mathcad software original programming code was developed to solve the given problem. After investigation of the received results, comparative analyses of accurate solution data and results of numerical solutions, obtained with the use of Matlab programming products, was held. The geometry of one fourth part of the finite sized cylinder was used to test the given numerical model. The discretization of the calculation part was fulfilled using the open programming software for automated Gmsh nets with tetrahedral units, while ParaView, which is an open programming code as well, was used to visualize the calculation results. It was found out that the maximum value violation of potential and temperature determination doesn`t exceed 0,2-0,83% in the given work according to the problem conditions
Implementation of a multi-layer perception for a non-linear control problem
International Nuclear Information System (INIS)
Lister, J.B.; Schnurrenberger, H.; Marmillod, P.
1990-12-01
We present the practical application of a 1-hidden-layer multilayer perception (MLP) to provide a non-linear continuous multi-variable mapping with 42 inputs and 13 outputs. The problem resolved is one of extracting information from experimental signals with a bandwidth of many kilohertz. We have an exact model of the inverse mapping of this problem, but we have no explicit form of the required forward mapping. This is the typical situation in data interpretation. The MLP was trained to provide this mapping by learning on 500 input-output examples. The success of the off-line solution to this problem using an MLP led us to examine the robustness of the MLP to different noise sources. We found that the MLP is more robust than an approximate linear mapping of the same problem. 12 bits of resolution in the weights are necessary to avoid a significant loss of precision. The practical implementation of large analog weight matrices using DAS-multipliers and a simple segmented sigmoid is also presented. A General Adaptive Recipe (GAR) for improving the performance of conventional back-propagation was developed. The GAR uses an adaptive step length and both the bias terms and the initial weight seeding are determined by the network size. The GAR was found to be robust and much faster than conventional back-propagation. (author) 20 figs., 1 tab., 15 refs
International Nuclear Information System (INIS)
Tran Duc Van
1994-01-01
The notion of global quasi-classical solutions of the Cauchy problems for first-order nonlinear partial differential equations is presented, some uniqueness theorems and a stability result are established by the method based on the theory of differential inclusions. In particular, the answer to an open problem of S.N. Kruzhkov is given. (author). 10 refs, 1 fig
Directory of Open Access Journals (Sweden)
U. Filobello-Nino
2015-01-01
Full Text Available We propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation method (NDHPM. Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F, by establishing the accuracy of the results.
Non-intrusive reduced order modeling of nonlinear problems using neural networks
Hesthaven, J. S.; Ubbiali, S.
2018-06-01
We develop a non-intrusive reduced basis (RB) method for parametrized steady-state partial differential equations (PDEs). The method extracts a reduced basis from a collection of high-fidelity solutions via a proper orthogonal decomposition (POD) and employs artificial neural networks (ANNs), particularly multi-layer perceptrons (MLPs), to accurately approximate the coefficients of the reduced model. The search for the optimal number of neurons and the minimum amount of training samples to avoid overfitting is carried out in the offline phase through an automatic routine, relying upon a joint use of the Latin hypercube sampling (LHS) and the Levenberg-Marquardt (LM) training algorithm. This guarantees a complete offline-online decoupling, leading to an efficient RB method - referred to as POD-NN - suitable also for general nonlinear problems with a non-affine parametric dependence. Numerical studies are presented for the nonlinear Poisson equation and for driven cavity viscous flows, modeled through the steady incompressible Navier-Stokes equations. Both physical and geometrical parametrizations are considered. Several results confirm the accuracy of the POD-NN method and show the substantial speed-up enabled at the online stage as compared to a traditional RB strategy.
Exact multiplicity results for quasilinear boundary-value problems with cubic-like nonlinearities
Directory of Open Access Journals (Sweden)
Idris Addou
2000-01-01
Full Text Available We consider the boundary-value problem $$displaylines{ -(varphi_p (u'' =lambda f(u mbox{ in }(0,1 cr u(0 = u(1 =0,, }$$ where $p>1$, $lambda >0$ and $varphi_p (x =| x|^{p-2}x$. The nonlinearity $f$ is cubic-like with three distinct roots 0=a less than b less than c. By means of a quadrature method, we provide the exact number of solutions for all $lambda >0$. This way we extend a recent result, for $p=2$, by Korman et al. cite{KormanLiOuyang} to the general case $p>1$. We shall prove that when 1less than $pleq 2$ the structure of the solution set is exactly the same as that studied in the case $p=2$ by Korman et al. cite{KormanLiOuyang}, and strictly different in the case $p>2$.
Inexact Newton–Landweber iteration for solving nonlinear inverse problems in Banach spaces
International Nuclear Information System (INIS)
Jin, Qinian
2012-01-01
By making use of duality mappings, we formulate an inexact Newton–Landweber iteration method for solving nonlinear inverse problems in Banach spaces. The method consists of two components: an outer Newton iteration and an inner scheme providing the increments by applying the Landweber iteration in Banach spaces to the local linearized equations. It has the advantage of reducing computational work by computing more cheap steps in each inner scheme. We first prove a convergence result for the exact data case. When the data are given approximately, we terminate the method by a discrepancy principle and obtain a weak convergence result. Finally, we test the method by reporting some numerical simulations concerning the sparsity recovery and the noisy data containing outliers. (paper)
A chaos-based evolutionary algorithm for general nonlinear programming problems
International Nuclear Information System (INIS)
El-Shorbagy, M.A.; Mousa, A.A.; Nasr, S.M.
2016-01-01
In this paper we present a chaos-based evolutionary algorithm (EA) for solving nonlinear programming problems named chaotic genetic algorithm (CGA). CGA integrates genetic algorithm (GA) and chaotic local search (CLS) strategy to accelerate the optimum seeking operation and to speed the convergence to the global solution. The integration of global search represented in genetic algorithm and CLS procedures should offer the advantages of both optimization methods while offsetting their disadvantages. By this way, it is intended to enhance the global convergence and to prevent to stick on a local solution. The inherent characteristics of chaos can enhance optimization algorithms by enabling it to escape from local solutions and increase the convergence to reach to the global solution. Twelve chaotic maps have been analyzed in the proposed approach. The simulation results using the set of CEC’2005 show that the application of chaotic mapping may be an effective strategy to improve the performances of EAs.
Minimax terminal approach problem in two-level hierarchical nonlinear discrete-time dynamical system
Energy Technology Data Exchange (ETDEWEB)
Shorikov, A. F., E-mail: afshorikov@mail.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)
2015-11-30
We consider a discrete–time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector nonlinear or linear discrete–time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solving.
Grolet, Aurelien; Thouverez, Fabrice
2015-02-01
This paper is devoted to the study of vibration of mechanical systems with geometric nonlinearities. The harmonic balance method is used to derive systems of polynomial equations whose solutions give the frequency component of the possible steady states. Groebner basis methods are used for computing all solutions of polynomial systems. This approach allows to reduce the complete system to an unique polynomial equation in one variable driving all solutions of the problem. In addition, in order to decrease the number of variables, we propose to first work on the undamped system, and recover solution of the damped system using a continuation on the damping parameter. The search for multiple solutions is illustrated on a simple system, where the influence of the retained number of harmonic is studied. Finally, the procedure is applied on a simple cyclic system and we give a representation of the multiple states versus frequency.
Robust Optimization Using Supremum of the Objective Function for Nonlinear Programming Problems
International Nuclear Information System (INIS)
Lee, Se Jung; Park, Gyung Jin
2014-01-01
In the robust optimization field, the robustness of the objective function emphasizes an insensitive design. In general, the robustness of the objective function can be achieved by reducing the change of the objective function with respect to the variation of the design variables and parameters. However, in conventional methods, when an insensitive design is emphasized, the performance of the objective function can be deteriorated. Besides, if the numbers of the design variables are increased, the numerical cost is quite high in robust optimization for nonlinear programming problems. In this research, the robustness index for the objective function and a process of robust optimization are proposed. Moreover, a method using the supremum of linearized functions is also proposed to reduce the computational cost. Mathematical examples are solved for the verification of the proposed method and the results are compared with those from the conventional methods. The proposed approach improves the performance of the objective function and its efficiency
Regularity of the solutions to a nonlinear boundary problem with indefinite weight
Directory of Open Access Journals (Sweden)
Aomar Anane
2011-01-01
Full Text Available In this paper we study the regularity of the solutions to the problemDelta_p u = |u|^{p−2}u in the bounded smooth domainOmega ⊂ R^N,with|∇u|^{p−2} partial_{nu} u = lambda V (x|u|^{p−2}u + h as a nonlinear boundary condition, where partial Omega is C^{2,beta}, with beta ∈]0, 1[, and V is a weight in L^s(partial Omega and h ∈ L^s(partial Omega for some s ≥ 1. We prove that all solutions are in L^{infty}(Omega cap L^{infty}(Omega, and using the D.Debenedetto’s theorem of regularity in [1] we conclude that those solutions are in C^{1,alpha} overline{Omega} for some alpha ∈ ]0, 1[.
Eigenvalue problem and nonlinear evolution of kink modes in a toroidal plasma
International Nuclear Information System (INIS)
Ogino, T.; Takeda, S.; Sanuki, H.; Kamimura, T.
1979-04-01
The internal kink modes of a cylindrical plasma are investigated by a linear eigen value problem and their nonlinear evolution is studied by 3-dimensional MHD simulation based on the rectangular column model under the fixed boundary condition. The growth rates in two cases, namely uniform and diffused current profiles are analyzed in detail, which agree with the analytical estimation by Shafranov. The time evolution of the m = 1 mode showed that q > 1 is satisfied at the relaxation time (q safety factor), a stable configuration like a horse shoe (a new equilibrium) was formed. Also, the time evolution of the pressure p for the m = 2 mode showed that a stable configuration like a pair of anchors was formed. (author)
Parallel Solution of Robust Nonlinear Model Predictive Control Problems in Batch Crystallization
Directory of Open Access Journals (Sweden)
Yankai Cao
2016-06-01
Full Text Available Representing the uncertainties with a set of scenarios, the optimization problem resulting from a robust nonlinear model predictive control (NMPC strategy at each sampling instance can be viewed as a large-scale stochastic program. This paper solves these optimization problems using the parallel Schur complement method developed to solve stochastic programs on distributed and shared memory machines. The control strategy is illustrated with a case study of a multidimensional unseeded batch crystallization process. For this application, a robust NMPC based on min–max optimization guarantees satisfaction of all state and input constraints for a set of uncertainty realizations, and also provides better robust performance compared with open-loop optimal control, nominal NMPC, and robust NMPC minimizing the expected performance at each sampling instance. The performance of robust NMPC can be improved by generating optimization scenarios using Bayesian inference. With the efficient parallel solver, the solution time of one optimization problem is reduced from 6.7 min to 0.5 min, allowing for real-time application.
Directory of Open Access Journals (Sweden)
Руслан Володимирович Власенко
2016-07-01
Full Text Available Electricity quality improving is extremely relevant nowadays. With such industrial loads as induction motors, induction furnaces, welding machines, controlled or uncontrolled rectifiers, frequency converters and others reactive power, harmonics and unbalance are generated in power grid. Reactive power, higher harmonic currents and asymmetry loads influence the functioning of electric devices and electrical mains. An effective technical solution is the use of new compensating devices, that is active power filters. The emergence of consumers with a unit capacity of four wire networks requires a new approach to building system control active power filter. When designing the active power filter control system the current flowing in the neutral wire must be taken into account. To assess the power balance in the four wire active power filter, scientists have proposed to apply pqr theory of power based on the Clarke transformation. There are different topologies of three-phase four wire active power filters. A visual simulation of Matlab / Simulink model with an active power filter based on pqr theory of power has been created. A method of pulse width modulation with four control channels was used as pulses forming systems with transistor keys. Operating conditions of three-phase four wire active power filter with asymmetry, non-sinosoidal voltage source and asymmetric load have been studied. The correction taking into account the means improving the active power filter has been offered as pqr theory of power does not take into account non-sinosoidal voltage
Yaparova, N.
2017-10-01
We consider the problem of heating a cylindrical body with an internal thermal source when the main characteristics of the material such as specific heat, thermal conductivity and material density depend on the temperature at each point of the body. We can control the surface temperature and the heat flow from the surface inside the cylinder, but it is impossible to measure the temperature on axis and the initial temperature in the entire body. This problem is associated with the temperature measurement challenge and appears in non-destructive testing, in thermal monitoring of heat treatment and technical diagnostics of operating equipment. The mathematical model of heating is represented as nonlinear parabolic PDE with the unknown initial condition. In this problem, both the Dirichlet and Neumann boundary conditions are given and it is required to calculate the temperature values at the internal points of the body. To solve this problem, we propose the numerical method based on using of finite-difference equations and a regularization technique. The computational scheme involves solving the problem at each spatial step. As a result, we obtain the temperature function at each internal point of the cylinder beginning from the surface down to the axis. The application of the regularization technique ensures the stability of the scheme and allows us to significantly simplify the computational procedure. We investigate the stability of the computational scheme and prove the dependence of the stability on the discretization steps and error level of the measurement results. To obtain the experimental temperature error estimates, computational experiments were carried out. The computational results are consistent with the theoretical error estimates and confirm the efficiency and reliability of the proposed computational scheme.
Pakala, Lalitha; Schmauss, Bernhard
2017-01-01
We investigate the individual and combined performance of correlated digital back propagation (CDBP) and extended Kalman filtering (EKF) in mitigating inter and intra-channel non-linearities in wavelength division multiplexed (WDM) systems. The afore-mentioned algorithms are verified through numerical simulations on 28 Gbaud polarization multiplexed (PM) 16-quadrature amplitude modulation (16-QAM) 9-channel WDM system with 50 GHz spacing. A single channel CDBP with one-step-per-span based on asymmetric split step Fourier method (A-SSFM) with optimized non-linear coefficient has been employed. We also study an amplitude dependent optimization (AO) of the non-linear coefficient for CDBP which shows an improvement of ≍ 0.8 dB compared to the conventional optimized CDBP, in the non-linear regime. Moreover, our proposed carrier phase and amplitude noise estimation (CPANE) algorithm based on EKF outperforms AO-CDBP in both linear and non-linear regimes with an enhanced performance besides significantly reduced complexity. We further investigate the combined performance of AO-CDBP and EKF which results in an enhanced non-linear tolerance at the expense of increased computational cost trading off to the number of required CDBP steps per span. Furthermore, we also analyze the impact of cross phase modulation (XPM) on the combined performance of AO-CDBP and EKF by varying the number of WDM channels. Numerical results show that the obtained gain from employing AO-CDBP prior to EKF reduces with increasing effects of XPM. Additionally, we also discuss the computational complexity of the aforementioned algorithms.
Vector Directional Distance Rational Hybrid Filters for Color Image Restoration
Directory of Open Access Journals (Sweden)
L. Khriji
2005-12-01
Full Text Available A new class of nonlinear filters, called vector-directional distance rational hybrid filters (VDDRHF for multispectral image processing, is introduced and applied to color image-filtering problems. These filters are based on rational functions (RF. The VDDRHF filter is a two-stage filter, which exploits the features of the vector directional distance filter (VDDF, the center weighted vector directional distance filter (CWVDDF and those of the rational operator. The filter output is a result of vector rational function (VRF operating on the output of three sub-functions. Two vector directional distance (VDDF filters and one center weighted vector directional distance filter (CWVDDF are proposed to be used in the first stage due to their desirable properties, such as, noise attenuation, chromaticity retention, and edges and details preservation. Experimental results show that the new VDDRHF outperforms a number of widely known nonlinear filters for multi-spectral image processing such as the vector median filter (VMF, the generalized vector directional filters (GVDF and distance directional filters (DDF with respect to all criteria used.
DEFF Research Database (Denmark)
Hubmer, Simon; Sherina, Ekaterina; Neubauer, Andreas
2018-01-01
. The main result of this paper is the verification of a nonlinearity condition in an infinite dimensional Hilbert space context. This condition guarantees convergence of iterative regularization methods. Furthermore, numerical examples for recovery of the Lam´e parameters from displacement data simulating......We consider a problem of quantitative static elastography, the estimation of the Lam´e parameters from internal displacement field data. This problem is formulated as a nonlinear operator equation. To solve this equation, we investigate the Landweber iteration both analytically and numerically...... a static elastography experiment are presented....
International Nuclear Information System (INIS)
Saitoh, Ayumu; Matsui, Nobuyuki; Itoh, Taku; Kamitani, Atsushi; Nakamura, Hiroaki
2011-01-01
A new method has been proposed for implementing essential boundary conditions to the Element-Free Galerkin Method (EFGM) without using the Lagrange multiplier. Furthermore, the performance of the proposed method has been investigated for a nonlinear Poisson problem. The results of computations show that, as interpolation functions become closer to delta functions, the accuracy of the solution is improved on the boundary. In addition, the accuracy of the proposed method is higher than that of the conventional EFGM. Therefore, it might be concluded that the proposed method is useful for solving the nonlinear Poisson problem. (author)
Memetic Algorithms to Solve a Global Nonlinear Optimization Problem. A Review
Directory of Open Access Journals (Sweden)
M. K. Sakharov
2015-01-01
Full Text Available In recent decades, evolutionary algorithms have proven themselves as the powerful optimization techniques of search engine. Their popularity is due to the fact that they are easy to implement and can be used in all areas, since they are based on the idea of universal evolution. For example, in the problems of a large number of local optima, the traditional optimization methods, usually, fail in finding the global optimum. To solve such problems using a variety of stochastic methods, in particular, the so-called population-based algorithms, which are a kind of evolutionary methods. The main disadvantage of this class of methods is their slow convergence to the exact solution in the neighborhood of the global optimum, as these methods incapable to use the local information about the landscape of the function. This often limits their use in largescale real-world problems where the computation time is a critical factor.One of the promising directions in the field of modern evolutionary computation are memetic algorithms, which can be regarded as a combination of population search of the global optimum and local procedures for verifying solutions, which gives a synergistic effect. In the context of memetic algorithms, the meme is an implementation of the local optimization method to refine solution in the search.The concept of memetic algorithms provides ample opportunities for the development of various modifications of these algorithms, which can vary the frequency of the local search, the conditions of its end, and so on. The practically significant memetic algorithm modifications involve the simultaneous use of different memes. Such algorithms are called multi-memetic.The paper gives statement of the global problem of nonlinear unconstrained optimization, describes the most promising areas of AI modifications, including hybridization and metaoptimization. The main content of the work is the classification and review of existing varieties of
Initial-Boundary Value Problem Solution of the Nonlinear Shallow-water Wave Equations
Kanoglu, U.; Aydin, B.
2014-12-01
The hodograph transformation solutions of the one-dimensional nonlinear shallow-water wave (NSW) equations are usually obtained through integral transform techniques such as Fourier-Bessel transforms. However, the original formulation of Carrier and Greenspan (1958 J Fluid Mech) and its variant Carrier et al. (2003 J Fluid Mech) involve evaluation integrals. Since elliptic integrals are highly singular as discussed in Carrier et al. (2003), this solution methodology requires either approximation of the associated integrands by smooth functions or selection of regular initial/boundary data. It should be noted that Kanoglu (2004 J Fluid Mech) partly resolves this issue by simplifying the resulting integrals in closed form. Here, the hodograph transform approach is coupled with the classical eigenfunction expansion method rather than integral transform techniques and a new analytical model for nonlinear long wave propagation over a plane beach is derived. This approach is based on the solution methodology used in Aydın & Kanoglu (2007 CMES-Comp Model Eng) for wind set-down relaxation problem. In contrast to classical initial- or boundary-value problem solutions, here, the NSW equations are formulated to yield an initial-boundary value problem (IBVP) solution. In general, initial wave profile with nonzero initial velocity distribution is assumed and the flow variables are given in the form of Fourier-Bessel series. The results reveal that the developed method allows accurate estimation of the spatial and temporal variation of the flow quantities, i.e., free-surface height and depth-averaged velocity, with much less computational effort compared to the integral transform techniques such as Carrier et al. (2003), Kanoglu (2004), Tinti & Tonini (2005 J Fluid Mech), and Kanoglu & Synolakis (2006 Phys Rev Lett). Acknowledgments: This work is funded by project ASTARTE- Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV
Energy Technology Data Exchange (ETDEWEB)
Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)
1996-12-31
The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.
International Nuclear Information System (INIS)
Dikusar, N.D.
1993-01-01
The new approach to solving of the finding problem is proposed. The method is based on Discrete Projective Transformations (DPT), the List Square Fitting (LSF) and uses the information feedback in tracing for linear or quadratic track segments (TS). The fast and stable with respect to measurement errors and background points recurrent algorithm is suggested. The algorithm realizes the family of digital adaptive projective filters (APF) with known nonlinear weight functions-projective invariants. APF can be used in adequate control systems for collection, processing and compression of data, including tracking problems for the wide class of detectors. 10 refs.; 9 figs
Studies in nonlinear problems of energy. Progress report, January 1, 1992--December 31, 1992
Energy Technology Data Exchange (ETDEWEB)
Matkowsky, B.J.
1992-07-01
Emphasis has been on combustion and flame propagation. The research program was on modeling, analysis and computation of combustion phenomena, with emphasis on transition from laminar to turbulent combustion. Nonlinear dynamics and pattern formation were investigated in the transition. Stability of combustion waves, and transitions to complex waves are described. Combustion waves possess large activation energies, so that chemical reactions are significant only in thin layers, or reaction zones. In limit of infinite activation energy, the zones shrink to moving surfaces, (fronts) which must be found during the analysis, so that (moving free boundary problems). The studies are carried out for limiting case with fronts, while the numerical studies are carried out for finite, though large, activation energy. Accurate resolution of the solution in the reaction zones is essential, otherwise false predictions of dynamics are possible. Since the the reaction zones move, adaptive pseudo-spectral methods were developed. The approach is based on a synergism of analytical and computational methods. The numerical computations build on and extend the analytical information. Furthermore, analytical solutions serve as benchmarks for testing the accuracy of the computation. Finally, ideas from analysis (singular perturbation theory) have induced new approaches to computations. The computational results suggest new analysis to be considered. Among the recent interesting results, was spatio-temporal chaos in combustion. One goal is extension of the adaptive pseudo-spectral methods to adaptive domain decomposition methods. Efforts have begun to develop such methods for problems with multiple reaction zones, corresponding to problems with more complex, and more realistic chemistry. Other topics included stochastics, oscillators, Rysteretic Josephson junctions, DC SQUID, Markov jumps, laser with saturable absorber, chemical physics, Brownian movement, combustion synthesis, etc.
Mikhaylov, V. E.; Khomenok, L. A.; Sherapov, V. V.
2016-08-01
The main problems in creation and operation of modern air inlet paths of gas turbine plants installed as part of combined-cycle plants in Russia are presented. It is noted that design features of air inlet filters shall be formed at the stage of the technical assignment not only considering the requirements of gas turbine plant manufacturer but also climatic conditions, local atmospheric air dustiness, and a number of other factors. The recommendations on completing of filtration system for air inlet filter of power gas turbine plants depending on the facility location are given, specific defects in design and experience in operation of imported air inlet paths are analyzed, and influence of cycle air preparation quality for gas turbine plant on value of operating expenses and cost of repair works is noted. Air treatment equipment of various manufacturers, influence of aerodynamic characteristics on operation of air inlet filters, features of filtration system operation, anti-icing system, weather canopies, and other elements of air inlet paths are considered. It is shown that nonuniformity of air flow velocity fields in clean air chamber has a negative effect on capacity and aerodynamic resistance of air inlet filter. Besides, the necessity in installation of a sufficient number of differential pressure transmitters allowing controlling state of each treatment stage not being limited to one measurement of total differential pressure in the filtration system is noted in the article. According to the results of the analysis trends and methods for modernization of available equipment for air inlet path, the importance of creation and implementation of new technologies for manufacturing of filtering elements on sites of Russia within the limits of import substitution are given, and measures on reliability improvement and energy efficiency for air inlet filter are considered.
Adaptive Filtering Algorithms and Practical Implementation
Diniz, Paulo S R
2013-01-01
In the fourth edition of Adaptive Filtering: Algorithms and Practical Implementation, author Paulo S.R. Diniz presents the basic concepts of adaptive signal processing and adaptive filtering in a concise and straightforward manner. The main classes of adaptive filtering algorithms are presented in a unified framework, using clear notations that facilitate actual implementation. The main algorithms are described in tables, which are detailed enough to allow the reader to verify the covered concepts. Many examples address problems drawn from actual applications. New material to this edition includes: Analytical and simulation examples in Chapters 4, 5, 6 and 10 Appendix E, which summarizes the analysis of set-membership algorithm Updated problems and references Providing a concise background on adaptive filtering, this book covers the family of LMS, affine projection, RLS and data-selective set-membership algorithms as well as nonlinear, sub-band, blind, IIR adaptive filtering, and more. Several problems are...
Directory of Open Access Journals (Sweden)
V. S. Zarubin
2016-01-01
in its plane, and in the circular cylinder unlimited in length.An approximate numerical solution of the differential equation that is included in a nonlinear mathematical model of the thermal explosion enables us to obtain quantitative estimates of combination of determining parameters at which the limit state occurs in areas of not only canonical form. A capability to study of the thermal explosion state can be extended in the context of development of mathematical modeling methods, including methods of model analysis to describe the thermal state of solids.To analyse a mathematical model of the thermal explosion in a homogeneous solid the paper uses a variational approach based on the dual variational formulation of the appropriate nonlinear stationary problem of heat conduction in such a body. This formulation contains two alternative functional reaching the matching values in their stationary points corresponding to the true temperature distribution. This functional feature allows you to not only get an approximate quantitative estimate of the combination of parameters that determine the thermal explosion state, but also to find the greatest possible error in such estimation.
Directory of Open Access Journals (Sweden)
Pratibha Joshi
2014-12-01
Full Text Available In this paper, we have achieved high order solution of a three dimensional nonlinear diffusive-convective problem using modified variational iteration method. The efficiency of this approach has been shown by solving two examples. All computational work has been performed in MATHEMATICA.
International Nuclear Information System (INIS)
Nguyen Buong.
1992-11-01
The purpose of this paper is to investigate convergence rates for an operator version of Tikhonov regularization constructed by dual mapping for nonlinear ill-posed problems involving monotone operators in real reflective Banach spaces. The obtained results are considered in combination with finite-dimensional approximations for the space. An example is considered for illustration. (author). 15 refs
International Nuclear Information System (INIS)
Sokolow, Adam; Sen, Surajit
2007-01-01
An energy pulse refers to a spatially compact energy bundle. In nonlinear pulse propagation, the nonlinearity of the relevant dynamical equations could lead to pulse propagation that is nondispersive or weakly dispersive in space and time. Nonlinear pulse propagation through layered media with widely varying pulse transmission properties is not wave-like and a problem of broad interest in many areas such as optics, geophysics, atmospheric physics and ocean sciences. We study nonlinear pulse propagation through a semi-infinite sequence of layers where the layers can have arbitrary energy transmission properties. By assuming that the layers are rigid, we are able to develop exact expressions for the backscattered energy received at the surface layer. The present study is likely to be relevant in the context of energy transport through soil and similar complex media. Our study reveals a surprising connection between the problem of pulse propagation and the number patterns in the well known Pascal's and Catalan's triangles and hence provides an analytic benchmark in a challenging problem of broad interest. We close with comments on the relationship between this study and the vast body of literature on the problem of wave localization in disordered systems
Directory of Open Access Journals (Sweden)
Mitsuhiro Nakao
2014-01-01
Full Text Available We prove the existence and uniqueness of a global decaying solution to the initial boundary value problem for the quasilinear wave equation with Kelvin-Voigt dissipation and a derivative nonlinearity. To derive the required estimates of the solutions we employ a 'loan' method and use a difference inequality on the energy.
Fulcher, Lewis P.
1979-01-01
Presents an exact solution to the nonlinear Faraday's law problem of a rod sliding on frictionless rails with resistance. Compares the results with perturbation calculations based on the methods of Poisson and Pincare and of Kryloff and Bogoliuboff. (Author/GA)
Directory of Open Access Journals (Sweden)
Tatiana Kavitova
2012-08-01
Full Text Available We prove a comparison principle for solutions of the Cauchy problem of the nonlinear pseudoparabolic equation $u_t=Delta u_t+ Deltavarphi(u +h(t,u$ with nonnegative bounded initial data. We show stabilization of a maximal solution to a maximal solution of the Cauchy problem for the corresponding ordinary differential equation $vartheta'(t=h(t,vartheta$ as $|x|oinfty$ under certain conditions on an initial datum.
Barber, Jared; Tanase, Roxana; Yotov, Ivan
2016-06-01
Several Kalman filter algorithms are presented for data assimilation and parameter estimation for a nonlinear diffusion model of epithelial cell migration. These include the ensemble Kalman filter with Monte Carlo sampling and a stochastic collocation (SC) Kalman filter with structured sampling. Further, two types of noise are considered -uncorrelated noise resulting in one stochastic dimension for each element of the spatial grid and correlated noise parameterized by the Karhunen-Loeve (KL) expansion resulting in one stochastic dimension for each KL term. The efficiency and accuracy of the four methods are investigated for two cases with synthetic data with and without noise, as well as data from a laboratory experiment. While it is observed that all algorithms perform reasonably well in matching the target solution and estimating the diffusion coefficient and the growth rate, it is illustrated that the algorithms that employ SC and KL expansion are computationally more efficient, as they require fewer ensemble members for comparable accuracy. In the case of SC methods, this is due to improved approximation in stochastic space compared to Monte Carlo sampling. In the case of KL methods, the parameterization of the noise results in a stochastic space of smaller dimension. The most efficient method is the one combining SC and KL expansion. Copyright © 2016 Elsevier Inc. All rights reserved.
Inverse Tasks In The Tsunami Problem: Nonlinear Regression With Inaccurate Input Data
Lavrentiev, M.; Shchemel, A.; Simonov, K.
A variant of modified training functional that allows considering inaccurate input data is suggested. A limiting case when a part of input data is completely undefined, and, therefore, a problem of reconstruction of hidden parameters should be solved, is also considered. Some numerical experiments are presented. It is assumed that a dependence of known output variables on known input ones should be found is the classic problem definition, which is widely used in the majority of neural nets algorithms. The quality of approximation is evaluated as a performance function. Often the error of the task is evaluated as squared distance between known input data and predicted data multiplied by weighed coefficients. These coefficients may be named "precision coefficients". When inputs are not known exactly, natural generalization of performance function is adding member that responsible for distance between known inputs and shifted inputs, which lessen model's error. It is desirable that the set of variable parameters is compact for training to be con- verging. In the above problem it is possible to choose variants of demands of a priori compactness, which allow meaningful interpretation in the smoothness of the model dependence. Two kinds of regularization was used, first limited squares of coefficients responsible for nonlinearity and second limited multiplication of the above coeffi- cients and linear coefficients. Asymptotic universality of neural net ability to approxi- mate various smooth functions with any accuracy by increase of the number of tunable parameters is often the base for selecting a type of neural net approximation. It is pos- sible to show that used neural net will approach to Fourier integral transform, which approximate abilities are known, with increasing of the number of tunable parameters. In the limiting case, when input data is set with zero precision, the problem of recon- struction of hidden parameters with observed output data appears. The
Directory of Open Access Journals (Sweden)
Mahmoud Bayat
Full Text Available This review features a survey of some recent developments in asymptotic techniques and new developments, which are valid not only for weakly nonlinear equations, but also for strongly ones. Further, the achieved approximate analytical solutions are valid for the whole solution domain. The limitations of traditional perturbation methods are illustrated, various modified perturbation techniques are proposed, and some mathematical tools such as variational theory, homotopy technology, and iteration technique are introduced to over-come the shortcomings.In this review we have applied different powerful analytical methods to solve high nonlinear problems in engineering vibrations. Some patterns are given to illustrate the effectiveness and convenience of the methodologies.
The research of radar target tracking observed information linear filter method
Chen, Zheng; Zhao, Xuanzhi; Zhang, Wen
2018-05-01
Aiming at the problems of low precision or even precision divergent is caused by nonlinear observation equation in radar target tracking, a new filtering algorithm is proposed in this paper. In this algorithm, local linearization is carried out on the observed data of the distance and angle respectively. Then the kalman filter is performed on the linearized data. After getting filtered data, a mapping operation will provide the posteriori estimation of target state. A large number of simulation results show that this algorithm can solve above problems effectively, and performance is better than the traditional filtering algorithm for nonlinear dynamic systems.
International Nuclear Information System (INIS)
Biffle, J.H.
1991-01-01
1 - Description of program or function: JAC is a two-dimensional finite element program for solving large deformation, temperature dependent, quasi-static mechanics problems with the nonlinear conjugate gradient (CG) technique. Either plane strain or axisymmetric geometry may be used with material descriptions which include temperature dependent elastic-plastic, temperature dependent secondary creep, and isothermal soil models. The nonlinear effects examined include material and geometric nonlinearities due to large rotations, large strains, and surface which slide relative to one another. JAC is vectorized to perform efficiently on the Cray1 computer. A restart capability is included. 2 - Method of solution: The nonlinear conjugate gradient method is employed in a two-dimensional plane strain or axisymmetric setting with various techniques for accelerating convergence. Sliding interface conditions are also implemented. A four-node Lagrangian uniform strain element is used with orthogonal hourglass viscosity to control the zero energy modes. Three sets of continuum equations are needed - kinematic statements, constitutive equations, and equations of equilibrium - to describe the deformed configuration of the body. 3 - Restrictions on the complexity of the problem - Maxima of: 10 load and solution control functions, 4 materials. The strain rate is assumed constant over a time interval. Current large rotation theory is applicable to a maximum shear strain of 1.0. JAC should be used with caution for large shear strains. Problem size is limited only by available memory
Czech Academy of Sciences Publication Activity Database
Dilna, N.; Rontó, András
2010-01-01
Roč. 60, č. 3 (2010), s. 327-338 ISSN 0139-9918 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-linear boundary value-problem * functional differential equation * non-local condition * unique solvability * differential inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0015-9
DEFF Research Database (Denmark)
Ghoreishi, Newsha; Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard
2015-01-01
Non-trivial real world decision-making processes usually involve multiple parties having potentially conflicting interests over a set of issues. State-of-the-art multi-objective evolutionary algorithms (MOEA) are well known to solve this class of complex real-world problems. In this paper, we...... compare the performance of state-of-the-art multi-objective evolutionary algorithms to solve a non-linear multi-objective multi-issue optimisation problem found in Greenhouse climate control. The chosen algorithms in the study includes NSGAII, eNSGAII, eMOEA, PAES, PESAII and SPEAII. The performance...... of all aforementioned algorithms is assessed and compared using performance indicators to evaluate proximity, diversity and consistency. Our insights to this comparative study enhanced our understanding of MOEAs performance in order to solve a non-linear complex climate control problem. The empirical...
International Nuclear Information System (INIS)
Wilson, G.L.; Rydin, R.A.; Orivuori, S.
1988-01-01
Two highly efficient nonlinear time-dependent heat conduction methodologies, the nonlinear time-dependent nodal integral technique (NTDNT) and IVOHEAT are compared using one- and two-dimensional time-dependent benchmark problems. The NTDNT is completely based on newly developed time-dependent nodal integral methods, whereas IVOHEAT is based on finite elements in space and Crank-Nicholson finite differences in time. IVOHEAT contains the geometric flexibility of the finite element approach, whereas the nodal integral method is constrained at present to Cartesian geometry. For test problems where both methods are equally applicable, the nodal integral method is approximately six times more efficient per dimension than IVOHEAT when a comparable overall accuracy is chosen. This translates to a factor of 200 for a three-dimensional problem having relatively homogeneous regions, and to a smaller advantage as the degree of heterogeneity increases
1974-09-07
ellipticity filter. The source waveforms are recreated by an inverse transform of those complex ampli- tudes associated with the same azimuth...terms of the three complex data points and the ellipticity. Having solved the equations for all frequency bins, the inverse transform of...Transform of those complex amplitudes associated with Source 1, yielding the signal a (t). Similarly, take the inverse Transform of all
A quantum extended Kalman filter
International Nuclear Information System (INIS)
Emzir, Muhammad F; Woolley, Matthew J; Petersen, Ian R
2017-01-01
In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements. (paper)
A quantum extended Kalman filter
Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.
2017-06-01
In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements.
Directory of Open Access Journals (Sweden)
Azza Hassan Amer
2017-12-01
Full Text Available Geometric programming problem is a powerful tool for solving some special type nonlinear programming problems. In the last few years we have seen a very rapid development on solving multiobjective geometric programming problem. A few mathematical programming methods namely fuzzy programming, goal programming and weighting methods have been applied in the recent past to find the compromise solution. In this paper, -constraint method has been applied in bi-level multiobjective geometric programming problem to find the Pareto optimal solution at each level. The equivalent mathematical programming problems are formulated to find their corresponding value of the objective function based on the duality theorem at eash level. Here, we have developed a new algorithm for fuzzy programming technique to solve bi-level multiobjective geometric programming problems to find an optimal compromise solution. Finally the solution procedure of the fuzzy technique is illustrated by a numerical example
Domínguez, Luis F.
2012-06-25
An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear programming subproblem and a mixed-integer nonlinear programming subproblem to provide a series of parametric upper and lower bounds. The primal subproblem is formulated by fixing the integer variables and solved through a series of multiparametric quadratic programming (mp-QP) problems based on quadratic approximations of the objective function, while the deterministic master subproblem is formulated so as to provide feasible integer solutions for the next primal subproblem. To reduce the computational effort when infeasibilities are encountered at the vertices of the critical regions (CRs) generated by the primal subproblem, a simplicial approximation approach is used to obtain CRs that are feasible at each of their vertices. The algorithm terminates when there does not exist an integer solution that is better than the one previously used by the primal problem. Through a series of examples, the proposed algorithm is compared with a multiparametric mixed-integer outer approximation (mp-MIOA) algorithm to demonstrate its computational advantages. © 2012 American Institute of Chemical Engineers (AIChE).
Directory of Open Access Journals (Sweden)
J. Gwinner
2013-01-01
Full Text Available The purpose of this paper is twofold. Firstly we consider nonlinear nonsmooth elliptic boundary value problems, and also related parabolic initial boundary value problems that model in a simplified way steady-state unilateral contact with Tresca friction in solid mechanics, respectively, stem from nonlinear transient heat conduction with unilateral boundary conditions. Here a recent duality approach, that augments the classical Babuška-Brezzi saddle point formulation for mixed variational problems to twofold saddle point formulations, is extended to the nonsmooth problems under consideration. This approach leads to variational inequalities of mixed form for three coupled fields as unknowns and to related differential mixed variational inequalities in the time-dependent case. Secondly we are concerned with the stability of the solution set of a general class of differential mixed variational inequalities. Here we present a novel upper set convergence result with respect to perturbations in the data, including perturbations of the associated nonlinear maps, the nonsmooth convex functionals, and the convex constraint set. We employ epiconvergence for the convergence of the functionals and Mosco convergence for set convergence. We impose weak convergence assumptions on the perturbed maps using the monotonicity method of Browder and Minty.
International Nuclear Information System (INIS)
Andrianov, I.V.; Danishevsky, V.V.
1994-01-01
Asymptotic approaches for nonlinear dynamics of continual system are developed well for the infinite in spatial variables. For the systems with finite sizes we have an infinite number of resonance, and Poincare-Lighthill-Go method does riot work. Using of averaging procedure or method of multiple scales leads to the infinite systems of nonlinear algebraic or ordinary differential equations systems and then using truncation method. which does not gives possibility to obtain all important properties of the solutions
Some problems on non-linear semigroups and the blow-up of integral solutions
International Nuclear Information System (INIS)
Pavel, N.H.
1983-07-01
After some introductory remarks, this highly mathematical document considers a unifying approach in the theory of non-linear semigroups. Then a brief survey is given on blow-up of mild solutions from the semilinear case. Finally, the global behavior of solutions to non-linear evolution equations is addressed; it is found that classical results on the behavior of the maximal solution u as t up-arrow tsub(max) hold also for integral solutions
Selection vector filter framework
Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.
2003-10-01
We provide a unified framework of nonlinear vector techniques outputting the lowest ranked vector. The proposed framework constitutes a generalized filter class for multichannel signal processing. A new class of nonlinear selection filters are based on the robust order-statistic theory and the minimization of the weighted distance function to other input samples. The proposed method can be designed to perform a variety of filtering operations including previously developed filtering techniques such as vector median, basic vector directional filter, directional distance filter, weighted vector median filters and weighted directional filters. A wide range of filtering operations is guaranteed by the filter structure with two independent weight vectors for angular and distance domains of the vector space. In order to adapt the filter parameters to varying signal and noise statistics, we provide also the generalized optimization algorithms taking the advantage of the weighted median filters and the relationship between standard median filter and vector median filter. Thus, we can deal with both statistical and deterministic aspects of the filter design process. It will be shown that the proposed method holds the required properties such as the capability of modelling the underlying system in the application at hand, the robustness with respect to errors in the model of underlying system, the availability of the training procedure and finally, the simplicity of filter representation, analysis, design and implementation. Simulation studies also indicate that the new filters are computationally attractive and have excellent performance in environments corrupted by bit errors and impulsive noise.
Rodrigues, Nils; Weiskopf, Daniel
2018-01-01
Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and logarithmic histograms. Finally, we include feedback from an expert review.
Optimization of lift gas allocation in a gas lifted oil field as non-linear optimization problem
Directory of Open Access Journals (Sweden)
Roshan Sharma
2012-01-01
Full Text Available Proper allocation and distribution of lift gas is necessary for maximizing total oil production from a field with gas lifted oil wells. When the supply of the lift gas is limited, the total available gas should be optimally distributed among the oil wells of the field such that the total production of oil from the field is maximized. This paper describes a non-linear optimization problem with constraints associated with the optimal distribution of the lift gas. A non-linear objective function is developed using a simple dynamic model of the oil field where the decision variables represent the lift gas flow rate set points of each oil well of the field. The lift gas optimization problem is solved using the emph'fmincon' solver found in MATLAB. As an alternative and for verification, hill climbing method is utilized for solving the optimization problem. Using both of these methods, it has been shown that after optimization, the total oil production is increased by about 4. For multiple oil wells sharing lift gas from a common source, a cascade control strategy along with a nonlinear steady state optimizer behaves as a self-optimizing control structure when the total supply of lift gas is assumed to be the only input disturbance present in the process. Simulation results show that repeated optimization performed after the first time optimization under the presence of the input disturbance has no effect in the total oil production.
A nonlinear eigenvalue problem for self-similar spherical force-free magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Lerche, I. [Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther Universität, D-06099 Halle (Germany); Low, B. C. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80307 (United States)
2014-10-15
An axisymmetric force-free magnetic field B(r, θ) in spherical coordinates is defined by a function r sin θB{sub φ}=Q(A) relating its azimuthal component to its poloidal flux-function A. The power law r sin θB{sub φ}=aA|A|{sup 1/n}, n a positive constant, admits separable fields with A=(A{sub n}(θ))/(r{sup n}) , posing a nonlinear boundary-value problem for the constant parameter a as an eigenvalue and A{sub n}(θ) as its eigenfunction [B. C. Low and Y. Q Lou, Astrophys. J. 352, 343 (1990)]. A complete analysis is presented of the eigenvalue spectrum for a given n, providing a unified understanding of the eigenfunctions and the physical relationship between the field's degree of multi-polarity and rate of radial decay via the parameter n. These force-free fields, self-similar on spheres of constant r, have basic astrophysical applications. As explicit solutions they have, over the years, served as standard benchmarks for testing 3D numerical codes developed to compute general force-free fields in the solar corona. The study presented includes a set of illustrative multipolar field solutions to address the magnetohydrodynamics (MHD) issues underlying the observation that the solar corona has a statistical preference for negative and positive magnetic helicities in its northern and southern hemispheres, respectively; a hemispherical effect, unchanging as the Sun's global field reverses polarity in successive eleven-year cycles. Generalizing these force-free fields to the separable form B=(H(θ,φ))/(r{sup n+2}) promises field solutions of even richer topological varieties but allowing for φ-dependence greatly complicates the governing equations that have remained intractable. The axisymmetric results obtained are discussed in relation to this generalization and the Parker Magnetostatic Theorem. The axisymmetric solutions are mathematically related to a family of 3D time-dependent ideal MHD solutions for a polytropic fluid of index γ = 4
Directory of Open Access Journals (Sweden)
Yurii M. Streliaiev
2016-06-01
Full Text Available Three-dimensional quasistatic contact problem of two linearly elastic bodies' interaction with Coulomb friction taken into account is considered. The boundary conditions of the problem have been simplified by the modification of the Coulomb's law of friction. This modification is based on the introducing of a delay in normal contact tractions that bound tangent contact tractions in the Coulomb's law of friction expressions. At this statement the problem is reduced to a sequence of similar systems of nonlinear integral equations describing bodies' interaction at each step of loading. A method for an approximate solution of the integral equations system corresponded to each step of loading is applied. This method consists of system regularization, discretization of regularized system and iterative process application for solving the discretized system. A numerical solution of a contact problem of an elastic sphere with an elastic half-space interaction under increasing and subsequently decreasing normal compressive force has been obtained.
Design and control of LCL-filter with active damping for Active Power Filter
DEFF Research Database (Denmark)
Zeng, Guohong; Rasmussen, Tonny Wederberg; Ma, L
2010-01-01
of LCL-filter for APF is introduced, which is aimed for simplified the implementation. To suppress the resonance that may be excited in the system, which brings in stability problems, an active damping control strategy using the current feed-back of the filter capacitor is adopted. By selecting two equal......In the application of shunt Active Power Filter (APF) to compensate nonlinear load's harmonic, reactive and negative sequence current, it is more effective to use a LCL-filter than an L-filter as an interface between the Voltage Source Converter (VSC) and grid. In this paper, a designing procedure...... or similar inductances, the filter designing become more simple and effective, meanwhile the capacitance requirement is minimized. A pole-zero automatic cancellation phenomenon is discussed in this paper, which can be applied to simplify the current regulator designing. The tuning method is presented, based...
Energy Technology Data Exchange (ETDEWEB)
Philip, Bobby, E-mail: philipb@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Dilts, Gary A. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)
2015-04-01
This paper describes an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors is described. Details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Furthermore, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.
Directory of Open Access Journals (Sweden)
Suheel Abdullah Malik
2014-01-01
Full Text Available We present a hybrid heuristic computing method for the numerical solution of nonlinear singular boundary value problems arising in physiology. The approximate solution is deduced as a linear combination of some log sigmoid basis functions. A fitness function representing the sum of the mean square error of the given nonlinear ordinary differential equation (ODE and its boundary conditions is formulated. The optimization of the unknown adjustable parameters contained in the fitness function is performed by the hybrid heuristic computation algorithm based on genetic algorithm (GA, interior point algorithm (IPA, and active set algorithm (ASA. The efficiency and the viability of the proposed method are confirmed by solving three examples from physiology. The obtained approximate solutions are found in excellent agreement with the exact solutions as well as some conventional numerical solutions.
Rosenberg, D. E.; Alafifi, A.
2016-12-01
Water resources systems analysis often focuses on finding optimal solutions. Yet an optimal solution is optimal only for the modelled issues and managers often seek near-optimal alternatives that address un-modelled objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as the region comprising the original problem constraints plus a new constraint that allowed performance within a specified tolerance of the optimal objective function value. MGA identified a few maximally-different alternatives from the near-optimal region. Subsequent work applied Markov Chain Monte Carlo (MCMC) sampling to generate a larger number of alternatives that span the near-optimal region of linear problems or select portions for non-linear problems. We extend the MCMC Hit-And-Run method to generate alternatives that span the full extent of the near-optimal region for non-linear, non-convex problems. First, start at a feasible hit point within the near-optimal region, then run a random distance in a random direction to a new hit point. Next, repeat until generating the desired number of alternatives. The key step at each iterate is to run a random distance along the line in the specified direction to a new hit point. If linear equity constraints exist, we construct an orthogonal basis and use a null space transformation to confine hits and runs to a lower-dimensional space. Linear inequity constraints define the convex bounds on the line that runs through the current hit point in the specified direction. We then use slice sampling to identify a new hit point along the line within bounds defined by the non-linear inequity constraints. This technique is computationally efficient compared to prior near-optimal alternative generation techniques such MGA, MCMC Metropolis-Hastings, evolutionary, or firefly algorithms because search at each iteration is confined to the hit line, the algorithm can move in one
Connolly, Joseph W.; Csank, Jeffrey Thomas; Chicatelli, Amy; Kilver, Jacob
2013-01-01
This paper covers the development of a model-based engine control (MBEC) methodology featuring a self tuning on-board model applied to an aircraft turbofan engine simulation. Here, the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) serves as the MBEC application engine. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC over a wide range of operating points. The on-board model is a piece-wise linear model derived from CMAPSS40k and updated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. Investigations using the MBEC to provide a stall margin limit for the controller protection logic are presented that could provide benefits over a simple acceleration schedule that is currently used in traditional engine control architectures.
Directory of Open Access Journals (Sweden)
Meleiro L.A.C.
2000-01-01
Full Text Available Most advanced computer-aided control applications rely on good dynamics process models. The performance of the control system depends on the accuracy of the model used. Typically, such models are developed by conducting off-line identification experiments on the process. These experiments for identification often result in input-output data with small output signal-to-noise ratio, and using these data results in inaccurate model parameter estimates [1]. In this work, a multivariable adaptive self-tuning controller (STC was developed for a biotechnological process application. Due to the difficulties involving the measurements or the excessive amount of variables normally found in industrial process, it is proposed to develop "soft-sensors" which are based fundamentally on artificial neural networks (ANN. A second approach proposed was set in hybrid models, results of the association of deterministic models (which incorporates the available prior knowledge about the process being modeled with artificial neural networks. In this case, kinetic parameters - which are very hard to be accurately determined in real time industrial plants operation - were obtained using ANN predictions. These methods are especially suitable for the identification of time-varying and nonlinear models. This advanced control strategy was applied to a fermentation process to produce ethyl alcohol (ethanol in industrial scale. The reaction rate considered for substratum consumption, cells and ethanol productions are validated with industrial data for typical operating conditions. The results obtained show that the proposed procedure in this work has a great potential for application.
Directory of Open Access Journals (Sweden)
Qiying Wei
2009-01-01
Full Text Available By using the well-known Schauder fixed point theorem and upper and lower solution method, we present some existence criteria for positive solution of an -point singular -Laplacian dynamic equation on time scales with the sign changing nonlinearity. These results are new even for the corresponding differential (=ℝ and difference equations (=ℤ, as well as in general time scales setting. As an application, an example is given to illustrate the results.
1987-07-01
fields (see also Chapter 4 of Ref. 22). Like our investigation, theirs is based on the Khokhlov-Zabolotskaya-Kuznetsov ( KZK ) equa- tion [23,24...25,26], also based on the KZK e(iualiou, is limited to weakly nonlinear systems. However, the practical case of a focused circular source with gain of...iment. The demonstrated abihty of the KZK equation to accurately model focused sound fields from reahstic sources [i.e., having abrupt edges and
Directory of Open Access Journals (Sweden)
Jiajie Fan
2017-07-01
Full Text Available With the expanding application of light-emitting diodes (LEDs, the color quality of white LEDs has attracted much attention in several color-sensitive application fields, such as museum lighting, healthcare lighting and displays. Reliability concerns for white LEDs are changing from the luminous efficiency to color quality. However, most of the current available research on the reliability of LEDs is still focused on luminous flux depreciation rather than color shift failure. The spectral power distribution (SPD, defined as the radiant power distribution emitted by a light source at a range of visible wavelength, contains the most fundamental luminescence mechanisms of a light source. SPD is used as the quantitative inference of an LED’s optical characteristics, including color coordinates that are widely used to represent the color shift process. Thus, to model the color shift failure of white LEDs during aging, this paper first extracts the features of an SPD, representing the characteristics of blue LED chips and phosphors, by multi-peak curve-fitting and modeling them with statistical functions. Then, because the shift processes of extracted features in aged LEDs are always nonlinear, a nonlinear state-space model is then developed to predict the color shift failure time within a self-adaptive particle filter framework. The results show that: (1 the failure mechanisms of LEDs can be identified by analyzing the extracted features of SPD with statistical curve-fitting and (2 the developed method can dynamically and accurately predict the color coordinates, correlated color temperatures (CCTs, and color rendering indexes (CRIs of phosphor-converted (pc-white LEDs, and also can estimate the residual color life.
Fan, Jiajie; Mohamed, Moumouni Guero; Qian, Cheng; Fan, Xuejun; Zhang, Guoqi; Pecht, Michael
2017-07-18
With the expanding application of light-emitting diodes (LEDs), the color quality of white LEDs has attracted much attention in several color-sensitive application fields, such as museum lighting, healthcare lighting and displays. Reliability concerns for white LEDs are changing from the luminous efficiency to color quality. However, most of the current available research on the reliability of LEDs is still focused on luminous flux depreciation rather than color shift failure. The spectral power distribution (SPD), defined as the radiant power distribution emitted by a light source at a range of visible wavelength, contains the most fundamental luminescence mechanisms of a light source. SPD is used as the quantitative inference of an LED's optical characteristics, including color coordinates that are widely used to represent the color shift process. Thus, to model the color shift failure of white LEDs during aging, this paper first extracts the features of an SPD, representing the characteristics of blue LED chips and phosphors, by multi-peak curve-fitting and modeling them with statistical functions. Then, because the shift processes of extracted features in aged LEDs are always nonlinear, a nonlinear state-space model is then developed to predict the color shift failure time within a self-adaptive particle filter framework. The results show that: (1) the failure mechanisms of LEDs can be identified by analyzing the extracted features of SPD with statistical curve-fitting and (2) the developed method can dynamically and accurately predict the color coordinates, correlated color temperatures (CCTs), and color rendering indexes (CRIs) of phosphor-converted (pc)-white LEDs, and also can estimate the residual color life.
Ballistic target tracking algorithm based on improved particle filtering
Ning, Xiao-lei; Chen, Zhan-qi; Li, Xiao-yang
2015-10-01
Tracking ballistic re-entry target is a typical nonlinear filtering problem. In order to track the ballistic re-entry target in the nonlinear and non-Gaussian complex environment, a novel chaos map particle filter (CMPF) is used to estimate the target state. CMPF has better performance in application to estimate the state and parameter of nonlinear and non-Gassuian system. The Monte Carlo simulation results show that, this method can effectively solve particle degeneracy and particle impoverishment problem by improving the efficiency of particle sampling to obtain the better particles to part in estimation. Meanwhile CMPF can improve the state estimation precision and convergence velocity compared with EKF, UKF and the ordinary particle filter.
Energy Technology Data Exchange (ETDEWEB)
Sigrist, J.F
2004-11-15
The present work deals with the numerical simulation of a coupled fluid/structure problem with fluid free surface. A generic coupled fluid/structure system is defined, on which a linear problem (modal analysis) and a non-linear problem (temporal analysis) are stated. In the linear case, a strong coupled method is used. It is based on a finite element approach of the structure problem and a finite or a boundary element approach of the fluid problem. The coupled problem is formulated in terms of pressure and displacement, leading to a non-symmetric problem which is solved with an appropriate algorithm. In the non-linear case, the structure problem is described with non-linear equations of motion, whereas the fluid problem is modeled with the Stokes equations. The numerical resolution of the coupled problem is based on a weak coupling procedure. The fluid problem is solved with a finite volume technique, using a moving mesh technique to adjust the structure motion, a VOF method for the description of the free surface and the PISO algorithm for the time integration. The structure problem is solved with a finite element technique, using an explicit/implicit time integration algorithm. A procedure is developed in order to handle the coupling in space (fluid forces and structure displacement exchanges between fluid and structure mesh, fluid re-meshing) and in time (staggered explicit algorithm, dynamic filtering of numerical oscillations). The non linear coupled problem is solved using a CFD code, whose use for FSI problem is validated with a benchmark presented in this work. A comparison is proposed between numerical results and analytical solution for two elementary fluid problems. The validation process can be applied for any CFD numerical code. A numerical study is then proposed on the generic coupled case in order to describe the fluid/structure interaction phenomenon (added mass, displaced mass, mode coupling, influence of structural non-linearity). An industrial
International Nuclear Information System (INIS)
Manakov, S V; Santini, P M
2008-01-01
We have recently solved the inverse scattering problem for one-parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations in multidimensions, including the second heavenly equation of Plebanski and the dispersionless Kadomtsev-Petviashvili (dKP) equation. We showed, in particular, that the associated inverse problems can be expressed in terms of nonlinear Riemann-Hilbert problems on the real axis. In this paper, we make use of the nonlinear Riemann-Hilbert problem of dKP (i) to construct the longtime behaviour of the solutions of its Cauchy problem; (ii) to characterize a class of implicit solutions; (iii) to elucidate the spectral mechanism causing the gradient catastrophe of localized solutions of dKP, at finite time as well as in the longtime regime, and the corresponding universal behaviours near breaking
Energy Technology Data Exchange (ETDEWEB)
Manakov, S V [Landau Institute for Theoretical Physics, Moscow (Russian Federation); Santini, P M [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , and Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Piazz.le Aldo Moro 2, I-00185 Rome (Italy)
2008-02-08
We have recently solved the inverse scattering problem for one-parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations in multidimensions, including the second heavenly equation of Plebanski and the dispersionless Kadomtsev-Petviashvili (dKP) equation. We showed, in particular, that the associated inverse problems can be expressed in terms of nonlinear Riemann-Hilbert problems on the real axis. In this paper, we make use of the nonlinear Riemann-Hilbert problem of dKP (i) to construct the longtime behaviour of the solutions of its Cauchy problem; (ii) to characterize a class of implicit solutions; (iii) to elucidate the spectral mechanism causing the gradient catastrophe of localized solutions of dKP, at finite time as well as in the longtime regime, and the corresponding universal behaviours near breaking.
DEFF Research Database (Denmark)
Stolpe, Mathias; Bendsøe, Martin P.
2007-01-01
This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities...
1986-03-31
Martins, J.A.C. and Campos , L.T. [1986], "Existence and Local Uniqueness of Solutions to Contact Problems in Elasticity with Nonlinear Friction...noisy and ttoubl esome vibt.t4ons. If the sound generated by the friction-induced oscillations of Rviolin strings may be the delight of all music lovers...formulation. See 0den and Martins - [1985] and Rabier, Martins, Oden and Campos [1986]. - It is now simple to show, in a 6o’uman manner, that, for
International Nuclear Information System (INIS)
Vasileva, D.P.
1993-01-01
Blow-up and global time self-similar solutions of a boundary problem for a nonlinear equation u t = Δ u σ+1 + u β are found in the case β = σ + 1. It is shown that they describe the asymptotic behavior of a wide class of initial perturbations. A numerical investigation of the solutions in the case β>σ + 1 is also made. A hypothesis is done that the behavior for large times of global time solutions is described by the self-similar solutions of the equation without source.(author). 20 refs.; 9 figs
DEFF Research Database (Denmark)
Stolpe, Mathias; Bendsøe, Martin P.
2007-01-01
This paper present some initial results pertaining to a search for globally optimal solutions to a challenging benchmark example proposed by Zhou and Rozvany. This means that we are dealing with global optimization of the classical single load minimum compliance topology design problem with a fixed...... finite element discretization and with discrete design variables. Global optimality is achieved by the implementation of some specially constructed convergent nonlinear branch and cut methods, based on the use of natural relaxations and by applying strengthening constraints (linear valid inequalities......) and cuts....
Directory of Open Access Journals (Sweden)
Karl Friston
2010-01-01
Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.
Feedback Robust Cubature Kalman Filter for Target Tracking Using an Angle Sensor.
Wu, Hao; Chen, Shuxin; Yang, Binfeng; Chen, Kun
2016-05-09
The direction of arrival (DOA) tracking problem based on an angle sensor is an important topic in many fields. In this paper, a nonlinear filter named the feedback M-estimation based robust cubature Kalman filter (FMR-CKF) is proposed to deal with measurement outliers from the angle sensor. The filter designs a new equivalent weight function with the Mahalanobis distance to combine the cubature Kalman filter (CKF) with the M-estimation method. Moreover, by embedding a feedback strategy which consists of a splitting and merging procedure, the proper sub-filter (the standard CKF or the robust CKF) can be chosen in each time index. Hence, the probability of the outliers' misjudgment can be reduced. Numerical experiments show that the FMR-CKF performs better than the CKF and conventional robust filters in terms of accuracy and robustness with good computational efficiency. Additionally, the filter can be extended to the nonlinear applications using other types of sensors.
Alternating minimisation for glottal inverse filtering
International Nuclear Information System (INIS)
Bleyer, Ismael Rodrigo; Lybeck, Lasse; Auvinen, Harri; Siltanen, Samuli; Airaksinen, Manu; Alku, Paavo
2017-01-01
A new method is proposed for solving the glottal inverse filtering (GIF) problem. The goal of GIF is to separate an acoustical speech signal into two parts: the glottal airflow excitation and the vocal tract filter. To recover such information one has to deal with a blind deconvolution problem. This ill-posed inverse problem is solved under a deterministic setting, considering unknowns on both sides of the underlying operator equation. A stable reconstruction is obtained using a double regularization strategy, alternating between fixing either the glottal source signal or the vocal tract filter. This enables not only splitting the nonlinear and nonconvex problem into two linear and convex problems, but also allows the use of the best parameters and constraints to recover each variable at a time. This new technique, called alternating minimization glottal inverse filtering (AM-GIF), is compared with two other approaches: Markov chain Monte Carlo glottal inverse filtering (MCMC-GIF), and iterative adaptive inverse filtering (IAIF), using synthetic speech signals. The recent MCMC-GIF has good reconstruction quality but high computational cost. The state-of-the-art IAIF method is computationally fast but its accuracy deteriorates, particularly for speech signals of high fundamental frequency ( F 0). The results show the competitive performance of the new method: With high F 0, the reconstruction quality is better than that of IAIF and close to MCMC-GIF while reducing the computational complexity by two orders of magnitude. (paper)
Bearings-Only Tracking of Manoeuvring Targets Using Particle Filters
Directory of Open Access Journals (Sweden)
M. Sanjeev Arulampalam
2004-11-01
Full Text Available We investigate the problem of bearings-only tracking of manoeuvring targets using particle filters (PFs. Three different (PFs are proposed for this problem which is formulated as a multiple model tracking problem in a jump Markov system (JMS framework. The proposed filters are (i multiple model PF (MMPF, (ii auxiliary MMPF (AUX-MMPF, and (iii jump Markov system PF (JMS-PF. The performance of these filters is compared with that of standard interacting multiple model (IMM-based trackers such as IMM-EKF and IMM-UKF for three separate cases: (i single-sensor case, (ii multisensor case, and (iii tracking with hard constraints. A conservative CRLB applicable for this problem is also derived and compared with the RMS error performance of the filters. The results confirm the superiority of the PFs for this difficult nonlinear tracking problem.
Directory of Open Access Journals (Sweden)
Zulqurnain Sabir
2014-06-01
Full Text Available In this paper, computational intelligence technique are presented for solving multi-point nonlinear boundary value problems based on artificial neural networks, evolutionary computing approach, and active-set technique. The neural network is to provide convenient methods for obtaining useful model based on unsupervised error for the differential equations. The motivation for presenting this work comes actually from the aim of introducing a reliable framework that combines the powerful features of ANN optimized with soft computing frameworks to cope with such challenging system. The applicability and reliability of such methods have been monitored thoroughly for various boundary value problems arises in science, engineering and biotechnology as well. Comprehensive numerical experimentations have been performed to validate the accuracy, convergence, and robustness of the designed scheme. Comparative studies have also been made with available standard solution to analyze the correctness of the proposed scheme.
Extended Kalman Filter Modifications Based on an Optimization View Point
Skoglund, Martin; Hendeby, Gustaf; Axehill, Daniel
2015-01-01
The extended Kalman filter (EKF) has been animportant tool for state estimation of nonlinear systems sinceits introduction. However, the EKF does not possess the same optimality properties as the Kalman filter, and may perform poorly. By viewing the EKF as an optimization problem it is possible to, in many cases, improve its performance and robustness. The paper derives three variations of the EKF by applying different optimisation algorithms to the EKF costfunction and relate these to the it...
DEFF Research Database (Denmark)
Bendtsen, Claus; Nielsen, Ole Holm; Hansen, Lars Bruno
2001-01-01
The quantum mechanical ground state of electrons is described by Density Functional Theory, which leads to large minimization problems. An efficient minimization method uses a self-consistent field (SCF) solution of large eigenvalue problems. The iterative Davidson algorithm is often used, and we...
Continuous Dependence on Modeling in the Cauchy Problem for Nonlinear Elliptic Equations.
1987-04-01
problema di Cauchy per le equazione di tipo ellitico, Ann. Mat. Pura Appl., 46 (1958), pp. 131-153 [18] P. W. Schaefer, On the Cauchy problem for an...Continued) PP 438 PP 448 Fletcher, Jean W. Supply Problems in the Naval Reserve, Cymrot, Donald J., Military Retiremnt and Social Security: A 14 pp
International Nuclear Information System (INIS)
Huang, C.-H.; Li, J.-X.
2006-01-01
A non-linear optimal control algorithm is examined in this study for the diffusion process of semiconductor materials. The purpose of this algorithm is to estimate an optimal control function such that the homogeneity of the concentration can be controlled during the diffusion process and the diffusion-induced stresses for the semiconductor materials can thus be reduced. The validation of this optimal control analysis utilizing the conjugate gradient method of minimization is analysed by using numerical experiments. Three different diffusion processing times are given and the corresponding optimal control functions are to be determined. Results show that the diffusion time can be shortened significantly by applying the optimal control function at the boundary and the homogeneity of the concentration is also guaranteed. This control function can be obtained within a very short CPU time on a Pentium III 600 MHz PC
Passive Target Tracking in Non-cooperative Radar System Based on Particle Filtering
Institute of Scientific and Technical Information of China (English)
LI Shuo; TAO Ran
2006-01-01
We propose a target tracking method based on particle filtering(PF) to solve the nonlinear non-Gaussian target-tracking problem in the bistatic radar systems using external radiation sources. Traditional nonlinear state estimation method is extended Kalman filtering (EKF), which is to do the first level Taylor series extension. It will cause an inaccuracy or even a scatter estimation result on condition that there is either a highly nonlinear target or a large noise square-error. Besides, Kalman filtering is the optimal resolution under a Gaussian noise assumption, and is not suitable to the non-Gaussian condition. PF is a sort of statistic filtering based on Monte Carlo simulation that is using some random samples (particles) to simulate the posterior probability density of system random variables. This method can be used in any nonlinear random system. It can be concluded through simulation that PF can achieve higher accuracy than the traditional EKF.
A Semismooth Newton Method for Nonlinear Parameter Identification Problems with Impulsive Noise
Clason, Christian; Jin, Bangti
2012-01-01
-order condition. The convergence of the solution to the approximating problem as the smoothing parameter goes to zero is shown. A strategy for adaptively selecting the regularization parameter based on a balancing principle is suggested. The efficiency
International Nuclear Information System (INIS)
Dmitriy Y. Anistratov; Adrian Constantinescu; Loren Roberts; William Wieselquist
2007-01-01
This is a project in the field of fundamental research on numerical methods for solving the particle transport equation. Numerous practical problems require to use unstructured meshes, for example, detailed nuclear reactor assembly-level calculations, large-scale reactor core calculations, radiative hydrodynamics problems, where the mesh is determined by hydrodynamic processes, and well-logging problems in which the media structure has very complicated geometry. Currently this is an area of very active research in numerical transport theory. main issues in developing numerical methods for solving the transport equation are the accuracy of the numerical solution and effectiveness of iteration procedure. The problem in case of unstructured grids is that it is very difficult to derive an iteration algorithm that will be unconditionally stable
Solution for Nonlinear Three-Dimensional Intercept Problem with Minimum Energy
Directory of Open Access Journals (Sweden)
Henzeh Leeghim
2013-01-01
a minimum-energy application, which then generates both the desired initial interceptor velocity and the TOF for the minimum-energy transfer. The optimization problem is formulated by using the classical Lagrangian f and g coefficients, which map initial position and velocity vectors to future times, and a universal time variable x. A Newton-Raphson iteration algorithm is introduced for iteratively solving the problem. A generalized problem formulation is introduced for minimizing the TOF as part of the optimization problem. Several examples are presented, and the results are compared with the Hohmann transfer solution approaches. The resulting minimum-energy intercept solution algorithm is expected to be broadly useful as a starting iterative for applications spanning: targeting, rendezvous, interplanetary trajectory design, and so on.
Periaux, J.
1979-01-01
The numerical simulation of the transonic flows of idealized fluids and of incompressible viscous fluids, by the nonlinear least squares methods is presented. The nonlinear equations, the boundary conditions, and the various constraints controlling the two types of flow are described. The standard iterative methods for solving a quasi elliptical nonlinear equation with partial derivatives are reviewed with emphasis placed on two examples: the fixed point method applied to the Gelder functional in the case of compressible subsonic flows and the Newton method used in the technique of decomposition of the lifting potential. The new abstract least squares method is discussed. It consists of substituting the nonlinear equation by a problem of minimization in a H to the minus 1 type Sobolev functional space.
Solution of large nonlinear time-dependent problems using reduced coordinates
International Nuclear Information System (INIS)
Mish, K.D.
1987-01-01
This research is concerned with the idea of reducing a large time-dependent problem, such as one obtained from a finite-element discretization, down to a more manageable size while preserving the most-important physical behavior of the solution. This reduction process is motivated by the concept of a projection operator on a Hilbert Space, and leads to the Lanczos Algorithm for generation of approximate eigenvectors of a large symmetric matrix. The Lanczos Algorithm is then used to develop a reduced form of the spatial component of a time-dependent problem. The solution of the remaining temporal part of the problem is considered from the standpoint of numerical-integration schemes in the time domain. All of these theoretical results are combined to motivate the proposed reduced coordinate algorithm. This algorithm is then developed, discussed, and compared to related methods from the mechanics literature. The proposed reduced coordinate method is then applied to the solution of some representative problems in mechanics. The results of these problems are discussed, conclusions are drawn, and suggestions are made for related future research
Gardner, Robin P.; Xu, Libai
2009-10-01
The Center for Engineering Applications of Radioisotopes (CEAR) has been working for over a decade on the Monte Carlo library least-squares (MCLLS) approach for treating non-linear radiation analyzer problems including: (1) prompt gamma-ray neutron activation analysis (PGNAA) for bulk analysis, (2) energy-dispersive X-ray fluorescence (EDXRF) analyzers, and (3) carbon/oxygen tool analysis in oil well logging. This approach essentially consists of using Monte Carlo simulation to generate the libraries of all the elements to be analyzed plus any other required background libraries. These libraries are then used in the linear library least-squares (LLS) approach with unknown sample spectra to analyze for all elements in the sample. Iterations of this are used until the LLS values agree with the composition used to generate the libraries. The current status of the methods (and topics) necessary to implement the MCLLS approach is reported. This includes: (1) the Monte Carlo codes such as CEARXRF, CEARCPG, and CEARCO for forward generation of the necessary elemental library spectra for the LLS calculation for X-ray fluorescence, neutron capture prompt gamma-ray analyzers, and carbon/oxygen tools; (2) the correction of spectral pulse pile-up (PPU) distortion by Monte Carlo simulation with the code CEARIPPU; (3) generation of detector response functions (DRF) for detectors with linear and non-linear responses for Monte Carlo simulation of pulse-height spectra; and (4) the use of the differential operator (DO) technique to make the necessary iterations for non-linear responses practical. In addition to commonly analyzed single spectra, coincidence spectra or even two-dimensional (2-D) coincidence spectra can also be used in the MCLLS approach and may provide more accurate results.
DSP based adaptive hysteresis-band current controlled active filter ...
African Journals Online (AJOL)
The use of non-linear loads critically affects the quality of supply by drawing harmonic currents and reactive power from the electrical distribution system. Active power filters are the most viable solution for solving such power quality problems in compliance with the harmonic standards. This article presents a digital signal ...
Atluri, S. N.; Nakagaki, M.; Kathiresan, K.
1980-01-01
In this paper, efficient numerical methods for the analysis of crack-closure effects on fatigue-crack-growth-rates, in plane stress situations, and for the solution of stress-intensity factors for arbitrary shaped surface flaws in pressure vessels, are presented. For the former problem, an elastic-plastic finite element procedure valid for the case of finite deformation gradients is developed and crack growth is simulated by the translation of near-crack-tip elements with embedded plastic singularities. For the latter problem, an embedded-elastic-singularity hybrid finite element method, which leads to a direct evaluation of K-factors, is employed.
Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities
Indian Academy of Sciences (India)
In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...
The nurse scheduling problem: a goal programming and nonlinear optimization approaches
Hakim, L.; Bakhtiar, T.; Jaharuddin
2017-01-01
Nurses scheduling is an activity of allocating nurses to conduct a set of tasks at certain room at a hospital or health centre within a certain period. One of obstacles in the nurse scheduling is the lack of resources in order to fulfil the needs of the hospital. Nurse scheduling which is undertaken manually will be at risk of not fulfilling some nursing rules set by the hospital. Therefore, this study aimed to perform scheduling models that satisfy all the specific rules set by the management of Bogor State Hospital. We have developed three models to overcome the scheduling needs. Model 1 is designed to schedule nurses who are solely assigned to a certain inpatient unit and Model 2 is constructed to manage nurses who are assigned to an inpatient room as well as at Polyclinic room as conjunct nurses. As the assignment of nurses on each shift is uneven, then we propose Model 3 to minimize the variance of the workload in order to achieve equitable assignment on every shift. The first two models are formulated in goal programming framework, while the last model is in nonlinear optimization form.
Hall, Philip
1989-01-01
Goertler vortices are thought to be the cause of transition in many fluid flows of practical importance. A review of the different stages of vortex growth is given. In the linear regime, nonparallel effects completely govern this growth, and parallel flow theories do not capture the essential features of the development of the vortices. A detailed comparison between the parallel and nonparallel theories is given and it is shown that at small vortex wavelengths, the parallel flow theories have some validity; otherwise nonparallel effects are dominant. New results for the receptivity problem for Goertler vortices are given; in particular vortices induced by free stream perturbations impinging on the leading edge of the walls are considered. It is found that the most dangerous mode of this type can be isolated and it's neutral curve is determined. This curve agrees very closely with the available experimental data. A discussion of the different regimes of growth of nonlinear vortices is also given. Again it is shown that, unless the vortex wavelength is small, nonparallel effects are dominant. Some new results for nonlinear vortices of 0(1) wavelengths are given and compared to experimental observations.
Czech Academy of Sciences Publication Activity Database
Mukhigulashvili, Sulkhan
-, č. 35 (2015), s. 23-50 ISSN 1126-8042 Institutional support: RVO:67985840 Keywords : higher order functional differential equations * Dirichlet boundary value problem * strong singularity Subject RIV: BA - General Mathematics http://ijpam.uniud.it/online_issue/201535/03-Mukhigulashvili.pdf
Primal and Dual Penalty Methods for Contact Problems with Geometrical Non-linearities
Czech Academy of Sciences Publication Activity Database
Vondrák, V.; Dostál, Z.; Dobiáš, Jiří; Pták, Svatopluk
-, č. 5 (2005), s. 449-450 ISSN 1617-7061. [GAMM Annual Meeting 2005. Luxembourg, 28.03.2005-01.04.2005] R&D Projects: GA ČR(CZ) GA101/05/0423 Institutional research plan: CEZ:AV0Z20760514 Keywords : primal penalty * dual penalty * contact problem Subject RIV: BA - General Mathematics
Combined effects of changing-sign potential and critical nonlinearities in Kirchhoff type problems
Directory of Open Access Journals (Sweden)
Gao-Sheng Liu
2016-08-01
Full Text Available In this article, we study the existence and multiplicity of positive solutions for a class of Kirchhoff type problems involving changing-sign potential and critical growth terms. Using the concentration compactness principle and Nehari manifold, we obtain the existence and multiplicity of nonzero non-negative solutions.
Gasinski, Leszek
2005-01-01
Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.
Directory of Open Access Journals (Sweden)
Jiuping Xu
2012-01-01
Full Text Available The aim of this study is to deal with a minimum cost network flow problem (MCNFP in a large-scale construction project using a nonlinear multiobjective bilevel model with birandom variables. The main target of the upper level is to minimize both direct and transportation time costs. The target of the lower level is to minimize transportation costs. After an analysis of the birandom variables, an expectation multiobjective bilevel programming model with chance constraints is formulated to incorporate decision makers’ preferences. To solve the identified special conditions, an equivalent crisp model is proposed with an additional multiobjective bilevel particle swarm optimization (MOBLPSO developed to solve the model. The Shuibuya Hydropower Project is used as a real-world example to verify the proposed approach. Results and analysis are presented to highlight the performances of the MOBLPSO, which is very effective and efficient compared to a genetic algorithm and a simulated annealing algorithm.
Energy Technology Data Exchange (ETDEWEB)
Cobb, J.W.
1995-02-01
There is an increasing need for more accurate numerical methods for large-scale nonlinear magneto-fluid turbulence calculations. These methods should not only increase the current state of the art in terms of accuracy, but should also continue to optimize other desired properties such as simplicity, minimized computation, minimized memory requirements, and robust stability. This includes the ability to stably solve stiff problems with long time-steps. This work discusses a general methodology for deriving higher-order numerical methods. It also discusses how the selection of various choices can affect the desired properties. The explicit discussion focuses on third-order Runge-Kutta methods, including general solutions and five examples. The study investigates the linear numerical analysis of these methods, including their accuracy, general stability, and stiff stability. Additional appendices discuss linear multistep methods, discuss directions for further work, and exhibit numerical analysis results for some other commonly used lower-order methods.
Non-linear singular problems in p-adic analysis: associative algebras of p-adic distributions
International Nuclear Information System (INIS)
Albeverio, S; Khrennikov, A Yu; Shelkovich, V M
2005-01-01
We propose an algebraic theory which can be used for solving both linear and non-linear singular problems of p-adic analysis related to p-adic distributions (generalized functions). We construct the p-adic Colombeau-Egorov algebra of generalized functions, in which Vladimirov's pseudo-differential operator plays the role of differentiation. This algebra is closed under Fourier transformation and associative convolution. Pointvalues of generalized functions are defined, and it turns out that any generalized function is uniquely determined by its pointvalues. We also construct an associative algebra of asymptotic distributions, which is generated by the linear span of the set of associated homogeneous p-adic distributions. This algebra is embedded in the Colombeau-Egorov algebra as a subalgebra. In addition, a new technique for constructing weak asymptotics is developed
International Nuclear Information System (INIS)
Gardner, R.P.; Guo, P.; Sood, A.; Mayo, C.W.; Dobbs, C.L.
1998-01-01
A review of our work on the application of the PGNAA method as applied to five industrial applications is given. Some introductory material is first given on the importance and use of Monte Carlo simulation in this area, some comments on the place of PGNAA in elemental analysis, and a brief description of the Monte Carlo - Library Least-Squares (MCLLS) approach to the nonlinear inverse PGNAA analysis problem. Then the applications of PGNAA are discussed for: (1) on-line bulk coal analysis, (2) nuclear oil well logging, (3) vitrified waste, (4) the analysis of sodium and aluminium in 'green liquor' in the presence of chlorine, and (5) the conveyor belt sorting of aluminum alloy samples. It is concluded that PGNAA is a rapidly emerging important new technology and measurement approach. (author)
Pasekov, V P
2013-03-01
The paper considers the problems in the adaptive evolution of life-history traits for individuals in the nonlinear Leslie model of age-structured population. The possibility to predict adaptation results as the values of organism's traits (properties) that provide for the maximum of a certain function of traits (optimization criterion) is studied. An ideal criterion of this type is Darwinian fitness as a characteristic of success of an individual's life history. Criticism of the optimization approach is associated with the fact that it does not take into account the changes in the environmental conditions (in a broad sense) caused by evolution, thereby leading to losses in the adequacy of the criterion. In addition, the justification for this criterion under stationary conditions is not usually rigorous. It has been suggested to overcome these objections in terms of the adaptive dynamics theory using the concept of invasive fitness. The reasons are given that favor the application of the average number of offspring for an individual, R(L), as an optimization criterion in the nonlinear Leslie model. According to the theory of quantitative genetics, the selection for fertility (that is, for a set of correlated quantitative traits determined by both multiple loci and the environment) leads to an increase in R(L). In terms of adaptive dynamics, the maximum R(L) corresponds to the evolutionary stability and, in certain cases, convergent stability of the values for traits. The search for evolutionarily stable values on the background of limited resources for reproduction is a problem of linear programming.
Umbarkar, A. J.; Balande, U. T.; Seth, P. D.
2017-06-01
The field of nature inspired computing and optimization techniques have evolved to solve difficult optimization problems in diverse fields of engineering, science and technology. The firefly attraction process is mimicked in the algorithm for solving optimization problems. In Firefly Algorithm (FA) sorting of fireflies is done by using sorting algorithm. The original FA is proposed with bubble sort for ranking the fireflies. In this paper, the quick sort replaces bubble sort to decrease the time complexity of FA. The dataset used is unconstrained benchmark functions from CEC 2005 [22]. The comparison of FA using bubble sort and FA using quick sort is performed with respect to best, worst, mean, standard deviation, number of comparisons and execution time. The experimental result shows that FA using quick sort requires less number of comparisons but requires more execution time. The increased number of fireflies helps to converge into optimal solution whereas by varying dimension for algorithm performed better at a lower dimension than higher dimension.
Efficient Non-Linear Finite Element Implementation of Elasto-Plasticity for Geotechnical Problems
DEFF Research Database (Denmark)
Clausen, Johan
-Coulomb yield criterion and the corresponding plastic potential possess corners and an apex, which causes numerical difficulties. A simple, elegant and efficient solution to these problems is presented in this thesis. The solution is based on a transformation into principal stress space and is valid for all...... linear isotropic plasticity models in which corners and apexes are encountered. The validity and merits of the proposed solution are examined in relation to the Mohr-Coulomb and the Modified Mohr-Coulomb material models. It is found that the proposed method compares well with existing methods......-Brown material. The efficiency and validity are demonstrated by comparing the finite-element results with well-known solutions for simple geometries. A common geotechnical problem is the assessment of slope stability. For slopes with simple geometries and consisting of a linear Mohr-Coulomb material, this can...
A nonlinear free boundary problem with a self-driven Bernoulli condition
Dipierro, Serena; Karakhanyan, Aram; Valdinoci, Enrico
2017-01-01
We study a Bernoulli type free boundary problem with two phases J[u]=∫Ω|∇u(x)|2dx+Φ(M−(u),M+(u)),u−u¯∈W1,20(Ω), where u¯∈W1,2(Ω) is a given boundary datum. Here, M1 and M2 are weighted volumes of {u≤0}∩Ω and {u>0}∩Ω, respectively, and Φ is a nonnegative function of two real variables. We show that, for this problem, the Bernoulli constant, which determines the gradient jump condition across the free boundary, is of global type and it is indeed determined by the weighted volumes of the phas...
On Algorithms for Nonlinear Minimax and Min-Max-Min Problems and Their Efficiency
2011-03-01
dissertation is complete, I can finally stay home after dinner to play Wii with you. LET’S GO Mario and Yellow Mushroom... xv THIS PAGE INTENTIONALLY... balance the accuracy of the approximation with problem ill-conditioning. The sim- plest smoothing algorithm creates an accurate smooth approximating...sizing in electronic circuit boards (Chen & Fan, 1998), obstacle avoidance for robots (Kirjner- Neto & Polak, 1998), optimal design centering
Mendoza, John Cadiz
1995-01-01
The computational fluid dynamics code, PARC3D, is tested to see if its use of non-physical artificial dissipation affects the accuracy of its results. This is accomplished by simulating a shock-laminar boundary layer interaction and several hypersonic flight conditions of the Pegasus(TM) launch vehicle using full artificial dissipation, low artificial dissipation, and the Engquist filter. Before the filter is applied to the PARC3D code, it is validated in one-dimensional and two-dimensional form in a MacCormack scheme against the Riemann and convergent duct problem. For this explicit scheme, the filter shows great improvements in accuracy and computational time as opposed to the nonfiltered solutions. However, for the implicit PARC3D code it is found that the best estimate of the Pegasus experimental heat fluxes and surface pressures is the simulation utilizing low artificial dissipation and no filter. The filter does improve accuracy over the artificially dissipative case but at a computational expense greater than that achieved by the low artificial dissipation case which has no computational time penalty and shows better results. For the shock-boundary layer simulation, the filter does well in terms of accuracy for a strong impingement shock but not as well for weaker shock strengths. Furthermore, for the latter problem the filter reduces the required computational time to convergence by 18.7 percent.
Indirect Control of a low power Single-Phase Active Power Filter
Directory of Open Access Journals (Sweden)
SILVIU EPURE
2010-12-01
Full Text Available This paper deals with a low power, single phase active filter used to compensate nonlinear loads. The filter uses the indirect control method and it is based on a particular connection between filter, polluting load and grid to avoid timeconsuming mathematic operations or signal processing computations and assures good rejection of harmonic currents injected by the nonlinear load into the grid. A scale model was first simulated in Simulink and then physically implemented. The paper presents simulation and experimental results, and highlight problems encountered during experiments.
International Nuclear Information System (INIS)
Diaz, J. I.; Galiano, G.; Padial, J. F.
1999-01-01
We study the uniqueness of solutions of a semilinear elliptic problem obtained from an inverse formulation when the nonlinear terms of the equation are prescribed in a general class of real functions. The inverse problem arises in the modeling of the magnetic confinement of a plasma in a Stellarator device. The uniqueness proof relies on an L ∞ -estimate on the solution of an auxiliary nonlocal problem formulated in terms of the relative rearrangement of a datum with respect to the solution
Classical Lie Point Symmetry Analysis of a Steady Nonlinear One-Dimensional Fin Problem
Directory of Open Access Journals (Sweden)
R. J. Moitsheki
2012-01-01
Full Text Available We consider the one-dimensional steady fin problem with the Dirichlet boundary condition at one end and the Neumann boundary condition at the other. Both the thermal conductivity and the heat transfer coefficient are given as arbitrary functions of temperature. We perform preliminary group classification to determine forms of the arbitrary functions appearing in the considered equation for which the principal Lie algebra is extended. Some invariant solutions are constructed. The effects of thermogeometric fin parameter and the exponent on temperature are studied. Also, the fin efficiency is analyzed.
The inverse problem of determining several coefficients in a nonlinear Lotka–Volterra system
International Nuclear Information System (INIS)
Roques, Lionel; Cristofol, Michel
2012-01-01
In this paper, we prove a uniqueness result in the inverse problem of determining several non-constant coefficients of a system of two parabolic equations, which corresponds to a Lotka–Volterra competition model. Our result gives a sufficient condition for the uniqueness of the determination of four coefficients of the system. This sufficient condition only involves pointwise measurements of the solution (u, v) of the system and of the spatial derivative ∂u/∂x or ∂v/∂x of one component at a single point x 0 , during a time interval (0, ε). Our results are illustrated by numerical computations. (paper)
Blow up of solutions to ordinary differential equations arising in nonlinear dispersive problems
Directory of Open Access Journals (Sweden)
Milena Dimova
2018-03-01
Full Text Available We study a new class of ordinary differential equations with blow up solutions. Necessary and sufficient conditions for finite blow up time are proved. Based on the new differential equation, a revised version of the concavity method of Levine is proposed. As an application we investigate the non-existence of global solutions to the Cauchy problem of Klein-Gordon, and to the double dispersive equations. We obtain necessary and sufficient condition for finite time blow up with arbitrary positive energy. A very general sufficient condition for blow up is also given.
Strictly positive solutions for one-dimensional nonlinear problems involving the p-Laplacian
Kaufmann, Uriel; Medri, Ivan
2013-01-01
Let $\\Omega$ be a bounded open interval, and let $p>1$ and $q\\in\\left(0,p-1\\right) $. Let $m\\in L^{p^{\\prime}}\\left(\\Omega\\right) $ and $0\\leq c\\in L^{\\infty}\\left(\\Omega\\right) $. We study existence of strictly positive solutions for elliptic problems of the form $-\\left(\\left\\| u^{\\prime}\\right\\|^{p-2}u^{\\prime}\\right) ^{\\prime}+c\\left(x\\right) u^{p-1}=m\\left(x\\right) u^{q}$ in $\\Omega$, $u=0$ on $\\partial\\Omega$. We mention that our results are new even in the case $c\\equiv0$.
Modeling nonlinear problems in the mechanics of strings and rods the role of the balance laws
O'Reilly, Oliver M
2017-01-01
This book presents theories of deformable elastic strings and rods and their application to broad classes of problems. Readers will gain insights into the formulation and analysis of models for mechanical and biological systems. Emphasis is placed on how the balance laws interplay with constitutive relations to form a set of governing equations. For certain classes of problems, it is shown how a balance of material momentum can play a key role in forming the equations of motion. The first half of the book is devoted to the purely mechanical theory of a string and its applications. The second half of the book is devoted to rod theories, including Euler’s theory of the elastica, Kirchhoff ’s theory of an elastic rod, and a range of Cosserat rod theories. A variety of classic and recent applications of these rod theories are examined. Two supplemental chapters, the first on continuum mechanics of three-dimensional continua and the second on methods from variational calculus, are included to provide relevant ...
DEFF Research Database (Denmark)
Zhuo, Fang; Wu, Longhui; Chen, Zhe
2009-01-01
on zero-cross detection can't work effectively in small rating stand-alone power grid. Then a soft phase locked loop with additional filter is proposed. It can lock the phase angle on to the positive sequence of fundamental voltage accurately and rapidly. It ensures the performance of APF applied...... in the small rating stand-alone power grid. Moreover, the soft phase locked loop is easy to be implemented in a Digital Signal Processor (DSP). Simulation and experimental results validate that the soft phase locked loop has satisfactory performance.......Traditional LC filters can't work stably in small rating stand-alone power grid. So active power filter (APF) is becoming an important tool to solve the power quality problem in small rating stand-alone power grid. In most current detection algorithm of APF, it needs a synchronizing signal. Firstly...
Computation of nuclear reactor parameters using a stretch Kalman filtering
International Nuclear Information System (INIS)
Zwingelstein, G.; Poujol, A.
1976-01-01
A method of nonlinear stochastic filtering, the stretched Karman filter, is used for the estimation of two basic parameters involved in the control of nuclear reactor start-up. The corresponding algorithm is stored in a small Multi-8 computer and tested with data recorded for the Ulysse reactor (I.N.S.T.N.). The various practical problems involved in using the algorithm are examined: filtering initialization, influence of the model... The quality and time saving obtained in the computation make it possible for a real time operation, the computer being connected with the reactor [fr
DEFF Research Database (Denmark)
Sorokin, Vladislav; Thomsen, Jon Juel
2015-01-01
Parametrically excited systems appear in many fields of science and technology, intrinsically or imposed purposefully; e.g. spatially periodic structures represent an important class of such systems [4]. When the parametric excitation can be considered weak, classical asymptotic methods like...... the method of averaging [2] or multiple scales [6] can be applied. However, with many practically important applications this simplification is inadequate, e.g. with spatially periodic structures it restricts the possibility to affect their effective dynamic properties by a structural parameter modulation...... of considerable magnitude. Approximate methods based on Floquet theory [4] for analyzing problems involving parametric excitation, e.g. the classical Hill’s method of infinite determinants [3,4], can be employed also in cases of strong excitation; however, with Floquet theory being applicable only for linear...
Xu, Y; Li, N
2014-09-01
Biological species have produced many simple but efficient rules in their complex and critical survival activities such as hunting and mating. A common feature observed in several biological motion strategies is that the predator only moves along paths in a carefully selected or iteratively refined subspace (or manifold), which might be able to explain why these motion strategies are effective. In this paper, a unified linear algebraic formulation representing such a predator-prey relationship is developed to simplify the construction and refinement process of the subspace (or manifold). Specifically, the following three motion strategies are studied and modified: motion camouflage, constant absolute target direction and local pursuit. The framework constructed based on this varying subspace concept could significantly reduce the computational cost in solving a class of nonlinear constrained optimal trajectory planning problems, particularly for the case with severe constraints. Two non-trivial examples, a ground robot and a hypersonic aircraft trajectory optimization problem, are used to show the capabilities of the algorithms in this new computational framework.
International Nuclear Information System (INIS)
Xu, Y; Li, N
2014-01-01
Biological species have produced many simple but efficient rules in their complex and critical survival activities such as hunting and mating. A common feature observed in several biological motion strategies is that the predator only moves along paths in a carefully selected or iteratively refined subspace (or manifold), which might be able to explain why these motion strategies are effective. In this paper, a unified linear algebraic formulation representing such a predator–prey relationship is developed to simplify the construction and refinement process of the subspace (or manifold). Specifically, the following three motion strategies are studied and modified: motion camouflage, constant absolute target direction and local pursuit. The framework constructed based on this varying subspace concept could significantly reduce the computational cost in solving a class of nonlinear constrained optimal trajectory planning problems, particularly for the case with severe constraints. Two non-trivial examples, a ground robot and a hypersonic aircraft trajectory optimization problem, are used to show the capabilities of the algorithms in this new computational framework. (paper)
Van Leeuwen, Peter Jan; Reich, Sebastian
2015-01-01
This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.
Hamilton, Mark F.
1989-08-01
Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.