WorldWideScience

Sample records for nonlinear evolution systems

  1. Stable Solution of Nonlinear Age-structuredForest Evolution System

    Institute of Scientific and Technical Information of China (English)

    WANGDing-jiang; ZHAOTing-fang

    2004-01-01

    This paper studies the dynamical behavior of a class of total area dependent nonlinear age-structured forest evolution model. We give the problem of equal value for the forest system, and discuss the stable solution of system. We obtained the necessary and sufficient conditions for there exists the stable solution.

  2. Finite Volume Evolution Galerkin Methods for Nonlinear Hyperbolic Systems

    Science.gov (United States)

    Lukáčová-Medvid'ová, M.; Saibertová, J.; Warnecke, G.

    2002-12-01

    We present new truly multidimensional schemes of higher order within the frame- work of finite volume evolution Galerkin (FVEG) methods for systems of nonlinear hyperbolic conservation laws. These methods couple a finite volume formulation with approximate evolution operators. The latter are constructed using the bicharacteristics of the multidimensional hyperbolic system, such that all of the infinitely many directions of wave propagation are taken into account. Following our previous results for the wave equation system, we derive approximate evolution operators for the linearized Euler equations. The integrals along the Mach cone and along the cell interfaces are evaluated exactly, as well as by means of numerical quadratures. The influence of these numerical quadratures will be discussed. Second-order resolution is obtained using a conservative piecewise bilinear recovery and the midpoint rule approximation for time integration. We prove error estimates for the finite volume evolution Galerkin scheme for linear systems with constant coefficients. Several numerical experiments for the nonlinear. Euler equations, which confirm the accuracy and good multidimensional behavior of the FVEG schemes, are presented as well.

  3. Exact Controllability for a Class of Nonlinear Evolution Control Systems

    Institute of Scientific and Technical Information of China (English)

    L¨u Yue; Li Yong

    2015-01-01

    In this paper, we study the exact controllability of the nonlinear control systems. The controllability results by using the monotone operator theory are es-tablished. No compactness assumptions are imposed in the main results.

  4. Global Existence and Uniqueness of Solutions to Evolution p-Laplacian Systems with Nonlinear Sources

    Institute of Scientific and Technical Information of China (English)

    WEI Yingjie; GAO Wenjie

    2013-01-01

    This paper presents the global existence and uniqueness of the initial and boundary value problem to a system of evolution p-Laplacian equations coupled with general nonlinear terms.The authors use skills of inequality estimation and the method of regularization to construct a sequence of approximation solutions,hence obtain the global existence of solutions to a regularized system.Then the global existence of solutions to the system of evolution p-Laplacian equations is obtained with the application of a standard limiting process.The uniqueness of the solution is proven when the nonlinear terms are local Lipschitz continuous.

  5. A Novel Differential Evolution Invasive Weed Optimization Algorithm for Solving Nonlinear Equations Systems

    Directory of Open Access Journals (Sweden)

    Yongquan Zhou

    2013-01-01

    Full Text Available In view of the traditional numerical method to solve the nonlinear equations exist is sensitive to initial value and the higher accuracy of defects. This paper presents an invasive weed optimization (IWO algorithm which has population diversity with the heuristic global search of differential evolution (DE algorithm. In the iterative process, the global exploration ability of invasive weed optimization algorithm provides effective search area for differential evolution; at the same time, the heuristic search ability of differential evolution algorithm provides a reliable guide for invasive weed optimization. Based on the test of several typical nonlinear equations and a circle packing problem, the results show that the differential evolution invasive weed optimization (DEIWO algorithm has a higher accuracy and speed of convergence, which is an efficient and feasible algorithm for solving nonlinear systems of equations.

  6. STUDY ON EXACT ANALYTICAL SOLUTIONS FOR TWO SYSTEMS OF NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    闫振亚; 张鸿庆

    2001-01-01

    The homogeneous balance method was improved and applied to two systems of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions contain Wang's and Zhang's results and other new types of analytical solutions, such as rational fraction solutions and periodic solutions. The way can also be applied to solve more nonlinear partial differential equations.

  7. Time-evolution of quantum systems via a complex nonlinear Riccati equation. II. Dissipative systems

    Science.gov (United States)

    Cruz, Hans; Schuch, Dieter; Castaños, Octavio; Rosas-Ortiz, Oscar

    2016-10-01

    In our former contribution (Cruz et al., 2015), we have shown the sensitivity to the choice of initial conditions in the evolution of Gaussian wave packets via the nonlinear Riccati equation. The formalism developed in the previous work is extended to effective approaches for the description of dissipative quantum systems. By means of simple examples we show the effects of the environment on the quantum uncertainties, correlation function, quantum energy contribution and tunnelling currents. We prove that the environmental parameter γ is strongly related with the sensitivity to the choice of initial conditions.

  8. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, A. [Technical Institute G. Cardano, Piazza della Resistenza 1, 00015 Monterotondo, Rome (Italy)

    1997-08-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio{endash}temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a {open_quotes}universal{close_quotes} character, inasmuch as they may be derived from a very large class of nonlinear evolution equations with a linear dispersive part. {copyright} {ital 1997 American Institute of Physics.}

  9. An Improved Differential Evolution Trained Neural Network Scheme for Nonlinear System Identification

    Institute of Scientific and Technical Information of China (English)

    Bidyadhar Subudhi; Debashisha Jena

    2009-01-01

    This paper prescnts an improved nonlinear system identification scheme using differential evolution (DE), neural network (NN) and Levenberg Marquardt algorithm (LM). With a view to achieve better convergence of NN weights optimization during the training, the DE and LM are used in a combined framework to train the NN. We present the convergence analysis of the DE and demonstrate the efficacy of the proposed improved system identification algorithm by exploiting the combined DE and LM training of the NN and suitably implementing it together with other system identification methods, namely NN and DE+NN on a numbcr of examples including a practical case study. The identification rcsults obtained through a series of simulation studies of these methods on different nonlinear systems demonstrate that the proposed DE and LM trained NN approach to nonlinear system identification can yield better identification results in terms of time of convergence and less identification error.

  10. Grammatical Immune System Evolution for reverse engineering nonlinear dynamic Bayesian models.

    Science.gov (United States)

    McKinney, B A; Tian, D

    2008-01-01

    An artificial immune system algorithm is introduced in which nonlinear dynamic models are evolved to fit time series of interacting biomolecules. This grammar-based machine learning method learns the structure and parameters of the underlying dynamic model. In silico immunogenetic mechanisms for the generation of model-structure diversity are implemented with the aid of a grammar, which also enforces semantic constraints of the evolved models. The grammar acts as a DNA repair polymerase that can identify recombination and hypermutation signals in the antibody (model) genome. These signals contain information interpretable by the grammar to maintain model context. Grammatical Immune System Evolution (GISE) is applied to a nonlinear system identification problem in which a generalized (nonlinear) dynamic Bayesian model is evolved to fit biologically motivated artificial time-series data. From experimental data, we use GISE to infer an improved kinetic model for the oxidative metabolism of 17beta-estradiol (E(2)), the parent hormone of the estrogen metabolism pathway.

  11. Time-evolution of quantum systems via a complex nonlinear Riccati equation. I. Conservative systems with time-independent Hamiltonian

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México DF (Mexico); Schuch, Dieter [Institut für Theoretische Physik, JW Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Castaños, Octavio, E-mail: ocasta@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México DF (Mexico); Rosas-Ortiz, Oscar [Physics Department, Cinvestav, A. P. 14-740, 07000 México D. F. (Mexico)

    2015-09-15

    The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.

  12. A Maple Package on Symbolic Computation of Conserved Densities for (1+1)-Dimensional Nonlinear Evolution Systems

    Institute of Scientific and Technical Information of China (English)

    YANG Xu-Dong; RUAN Hang-Yu; LOU Sen-Yue

    2007-01-01

    A new algorithm for symbolic computation of polynomial-type conserved densities for nonlinear evolution systems is presented. The algorithm is implemented in Maple. The improved algorithm is more efficient not only in removing the redundant terms of the general form of the conserved densities but also in solving the conserved densities with the associated flux synchronously without using Euler operator. Furthermore, the program conslaw. mpl can be used to determine the preferences for a given parameterized nonlinear evolution systems. The code is tested on several well-known nonlinear evolution equations from the soliton theory.

  13. GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS TO A NONLOCAL EVOLUTION p-LAPLACE SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    Wu Xuesong; Gao Wenjie; Cao Jianwen

    2011-01-01

    In this paper, the authors discuss the global existence and blow-up of the solution to an evolution ρ-Laplace system with nonlinear sources and nonlinear boundary condition. The authors first establish the local existence of solutions, then give a necessary and sufficient condition on the global existence of the positive solution.

  14. Grammatical Immune System Evolution for Reverse Engineering Nonlinear Dynamic Bayesian Models

    Directory of Open Access Journals (Sweden)

    B.A. McKinney

    2008-01-01

    Full Text Available An artificial immune system algorithm is introduced in which nonlinear dynamic models are evolved to fi t time series of interacting biomolecules. This grammar-based machine learning method learns the structure and parameters of the underlying dynamic model. In silico immunogenetic mechanisms for the generation of model-structure diversity are implemented with the aid of a grammar, which also enforces semantic constraints of the evolved models. The grammar acts as a DNA repair polymerase that can identify recombination and hypermutation signals in the antibody (model genome. These signals contain information interpretable by the grammar to maintain model context. Grammatical Immune System Evolution (GISE is applied to a nonlinear system identification problem in which a generalized (nonlinear dynamic Bayesian model is evolved to fi t biologically motivated artificial time-series data. From experimental data, we use GISE to infer an improved kinetic model for the oxidative metabolism of 17β-estradiol (E2, the parent hormone of the estrogen metabolism pathway.

  15. Nonlinear evolution characteristics of the climate system on the interdecadal-centennial timescale

    Institute of Scientific and Technical Information of China (English)

    Gao Xin-Quan; Zhang Wen

    2005-01-01

    To better understand the physical mechanism of the climate change on interdecadal-centennial timescale, this paper focuses on analysing and modelling the evolution characteristics of the climate change. The method of wavelet transform is used to pick out the interdecadal timescale oscillations from long-term instrumental observations, natural proxy records, and modelling series. The modelling series derived from the most simplified nonlinear climatic model are used to identify whether modifications are concerned with some forcings such as the solar radiation on the climate system. The results show that two major oscillations exist in various observations and model series, namely the 2030a and the 60-70a timescale respectively, and these quasi-periodicities are modulated with time. Further, modelling results suggest that the originations of these oscillations are not directly linked with the periodic variation of solar radiations such as the 1-year cycle, the 11-year cycle, and others, but possibly induced by the internal nonlinear effects of the climate system. It seems that the future study on the genesis of the climate change with interdecadal-centennial timescale should focus on the internal nonlinear dynamics in the climate system.

  16. Nonlinear evolution equations in QCD

    OpenAIRE

    Stasto, A. M.

    2004-01-01

    The following lectures are an introduction to the phenomena of partonic saturation and nonlinear evolution equations in Quantum Chromodynamics. After a short introduction to the linear evolution, the problems of unitarity bound and parton saturation are discussed. The nonlinear Balitsky-Kovchegov evolution equation in the high energy limit is introduced, and the progress towards the understanding of the properties of its solution is reviewed. We discuss the concepts of the saturation scale, g...

  17. Nonlinear Evolution of Ferroelectric Domains

    Institute of Scientific and Technical Information of China (English)

    WeiLU; Dai-NingFANG; 等

    1997-01-01

    The nonlinear evolution of ferroelectric domains is investigated in the paper and amodel is proposed which can be applied to numerical computation.Numerical results show that the model can accurately predict some nonlinear behavior and consist with those experimental results.

  18. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear partial differential evolution equations of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.

  19. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear partial differential evolution equations of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    WANG Shundin; ZHANG Hua

    2008-01-01

    Using functional derivative technique In quantum field theory,the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations.The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by Introducing the time translation operator.The functional partial differential evolution equations were solved by algebraic dynam-ics.The algebraic dynamics solutions are analytical In Taylor series In terms of both initial functions and time.Based on the exact analytical solutions,a new nu-merical algorithm-algebraic dynamics algorithm was proposed for partial differ-ential evolution equations.The difficulty of and the way out for the algorithm were discussed.The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.

  20. Nonlinear evolution of drift instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.W.; Krommes, J.A.; Oberman, C.R.; Smith, R.A.

    1984-01-01

    The nonlinear evolution of collisionless drift instabilities in a shear-free magnetic field has been studied by means of gyrokinetic particle simulation as well as numerical integration of model mode-coupling equations. The purpose of the investigation is to identify relevant nonlinear mechanisms responsible for the steady-state drift wave fluctuations. It is found that the saturation of the instability is mainly caused by the nonlinear E x B convection of the resonant electrons and their associated velocity space nonlinearity. The latter also induces energy exchange between the competing modes, which, in turn, gives rise to enhanced diffusion. The nonlinear E x B convection of the ions, which contributes to the nonlinear frequency shift, is also an important ingredient for the saturation.

  1. Maximal Dimension of Invariant Subspaces to Systems of Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    Shoufeng SHEN; ChangZheng QU; Yongyang JIN; Lina JI

    2012-01-01

    In this paper,the dimension of invariant subspaces admitted by nonlinear systems is estimated under certain conditions.It is shown that if the two-component nonlinear vector differential operator F =(F1,F2) with orders {k1,k2} (k1 ≥ k2) preserves the invariant subspace W1n1 × W2n2 (n1 ≥ n2),then n1 - n2 ≤ k2,n1 ≤ 2(k1 + k2) + 1,where Wqnq is the space generated by solutions of a linear ordinary differential equation of order nq (q =1,2).Several examples including the (1+1)-dimensional diffusion system and It(o)'s type,Drinfel'd-Sokolov-Wilson's type and Whitham-Broer-Kaup's type equations are presented to illustrate the result.Furthermore,the estimate of dimension for m-component nonlinear systems is also given.

  2. Evolution Of Nonlinear Waves in Compressing Plasma

    Energy Technology Data Exchange (ETDEWEB)

    P.F. Schmit, I.Y. Dodin, and N.J. Fisch

    2011-05-27

    Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.

  3. Nonlinear Systems.

    Science.gov (United States)

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  4. 非线性林龄结构森林系统的稳定解%Stable Solution of Nonlinear Age-structured Forest Evolution System

    Institute of Scientific and Technical Information of China (English)

    王定江; 赵廷芳

    2004-01-01

    This paper studies the dynamical behavior of a class of total area dependent nonlinear age-structured forest evolution model. We give the problem of equal value for the forest system, and discuss the stable solution of system. We obtained the necessary and sufficient conditions for there exists the stable solution.

  5. Nonlinear forecasting of intertidal shoreface evolution

    Science.gov (United States)

    Grimes, D. J.; Cortale, N.; Baker, K.; McNamara, D. E.

    2015-10-01

    Natural systems dominated by sediment transport are notoriously difficult to forecast. This is particularly true along the ocean coastline, a region that draws considerable human attention as economic investment and infrastructure are threatened by both persistent, long-term and acute, event driven processes (i.e., sea level rise and storm damage, respectively). Forecasting the coastline's evolution over intermediate time (daily) and space (tens of meters) scales is hindered by the complexity of sediment transport and hydrodynamics, and limited access to the detailed local forcing that drives fast scale processes. Modern remote sensing systems provide an efficient, economical means to collect data within these regions. A solar-powered digital camera installation is used to capture the coast's evolution, and machine learning algorithms are implemented to extract the shoreline and estimate the daily mean intertidal coastal profile. Methods in nonlinear time series forecasting and genetic programming applied to these data corroborate that coastal morphology at these scales is predominately driven by nonlinear internal dynamics, which partially mask external forcing signatures. Results indicate that these forecasting techniques achieve nontrivial predictive skill for spatiotemporal forecast of the upper coastline profile (as much as 43% of variance in data explained for one day predictions). This analysis provides evidence that societally relevant coastline forecasts can be achieved without knowing the forcing environment or the underlying dynamical equations that govern coastline evolution.

  6. Nonlinear Evolution of Alfvenic Wave Packets

    Science.gov (United States)

    Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.

    1998-01-01

    Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.

  7. DYNAMIC BIFURCATION OF NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    MA TIAN; WANG SHOUHONG

    2005-01-01

    The authors introduce a notion of dynamic bifurcation for nonlinear evolution equations, which can be called attractor bifurcation. It is proved that as the control parameter crosses certain critical value, the system bifurcates from a trivial steady state solution to an attractor with dimension between m and m + 1, where m + 1 is the number of eigenvalues crossing the imaginary axis. The attractor bifurcation theory presented in this article generalizes the existing steady state bifurcations and the Hopf bifurcations. It provides a unified point of view on dynamic bifurcation and can be applied to many problems in physics and mechanics.

  8. On a Nonlinear Model in Adiabatic Evolutions

    Science.gov (United States)

    Sun, Jie; Lu, Song-Feng

    2016-08-01

    In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using. Supported by the National Natural Science Foundation of China under Grant Nos. 61402188 and 61173050. The first author also gratefully acknowledges the support from the China Postdoctoral Science Foundation under Grant No. 2014M552041

  9. Saturation at low x and nonlinear evolution

    OpenAIRE

    Stasto, A. M.

    2002-01-01

    In this talk the results of the analytical and numerical analysis of the nonlinear Balitsky-Kovchegov equation are presented. The characteristic BFKL diffusion into infrared regime is suppressed by the generation of the saturation scale. We identify the scaling and linear regimes for the solution. We also study the impact of subleading corrections onto the nonlinear evolution.

  10. Femtosecond nonlinear polarization evolution based on cascade quadratic nonlinearities.

    Science.gov (United States)

    Liu, X; Ilday, F O; Beckwitt, K; Wise, F W

    2000-09-15

    We experimentally demonstrate that one can exploit nonlinear phase shifts produced in type I phase-mismatched second-harmonic generation to produce intensity-dependent polarization evolution with 100-fs pulses. An amplitude modulator based on nonlinear polarization rotation provides passive amplitude-modulation depth of up to ~50%. Applications of the amplitude and phase modulations to mode locking of femtosecond bulk and fiber lasers are promising and are discussed.

  11. Controllability in nonlinear systems

    Science.gov (United States)

    Hirschorn, R. M.

    1975-01-01

    An explicit expression for the reachable set is obtained for a class of nonlinear systems. This class is described by a chain condition on the Lie algebra of vector fields associated with each nonlinear system. These ideas are used to obtain a generalization of a controllability result for linear systems in the case where multiplicative controls are present.

  12. Nonlinear Evolution of Aggregates with Inextensible Constraints

    Institute of Scientific and Technical Information of China (English)

    Ming-XiangCHEN; WeiYANG; 等

    1996-01-01

    Crystalline and semicrystalline polymers are formed as aggregates of grains with evolving inextensible axes.This inextensible constratint leads to texture evolution under large plastic deformation.This paper reveals the nonlinear texture evolution of crystalline polymers under axi-symmetric straining.

  13. Identification of time-varying nonlinear systems using differential evolution algorithm

    DEFF Research Database (Denmark)

    Perisic, Nevena; Green, Peter L; Worden, Keith;

    2013-01-01

    Online monitoring of modal and physical parameters which change due to damage progression and aging of mechanical and structural systems is important for the condition and health monitoring of these systems. Usually, only the limited number of imperfect, noisy system state measurements is availab...

  14. Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation

    CERN Document Server

    Nariyuki, Y; Kumashiro, T; Hada, T

    2009-01-01

    Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.

  15. Nonlinear optical systems

    CERN Document Server

    Lugiato, Luigi; Brambilla, Massimo

    2015-01-01

    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  16. Nonlinear evolution of whistler wave modulational instability

    DEFF Research Database (Denmark)

    Karpman, V.I.; Lynov, Jens-Peter; Michelsen, Poul;

    1995-01-01

    The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary different......The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary...

  17. Nonlinear systems in medicine.

    Science.gov (United States)

    Higgins, John P

    2002-01-01

    Many achievements in medicine have come from applying linear theory to problems. Most current methods of data analysis use linear models, which are based on proportionality between two variables and/or relationships described by linear differential equations. However, nonlinear behavior commonly occurs within human systems due to their complex dynamic nature; this cannot be described adequately by linear models. Nonlinear thinking has grown among physiologists and physicians over the past century, and non-linear system theories are beginning to be applied to assist in interpreting, explaining, and predicting biological phenomena. Chaos theory describes elements manifesting behavior that is extremely sensitive to initial conditions, does not repeat itself and yet is deterministic. Complexity theory goes one step beyond chaos and is attempting to explain complex behavior that emerges within dynamic nonlinear systems. Nonlinear modeling still has not been able to explain all of the complexity present in human systems, and further models still need to be refined and developed. However, nonlinear modeling is helping to explain some system behaviors that linear systems cannot and thus will augment our understanding of the nature of complex dynamic systems within the human body in health and in disease states.

  18. Nonlinear Hamiltonian systems

    DEFF Research Database (Denmark)

    Jørgensen, Michael Finn

    1995-01-01

    It is generally very difficult to solve nonlinear systems, and such systems often possess chaotic solutions. In the rare event that a system is completely solvable, it is said to integrable. Such systems never have chaotic solutions. Using the Inverse Scattering Transform Method (ISTM) two...

  19. Existence and Controllability Result for Nonlinear Neutral Evolution Integrodifferential Systems%非线性中立发展积微分系统解的存在性和可控性

    Institute of Scientific and Technical Information of China (English)

    吕悦; 刘明姬; 吕显瑞

    2008-01-01

    In this paper,we establish suflicient conditions for existence and control lability of nonlinear neutral evolution integrodifferential systems in Banach spaces.The result is obtained by using the resolvent operators and fixed point analysis approach.

  20. TAYLOR EXPANSION METHOD FOR NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    HE Yin-nian

    2005-01-01

    A new numerical method of integrating the nonlinear evolution equations, namely the Taylor expansion method, was presented. The standard Galerkin method can be viewed as the 0-th order Taylor expansion method; while the nonlinear Galerkin method can be viewed as the 1-st order modified Taylor expansion method. Moreover, the existence of the numerical solution and its convergence rate were proven. Finally, a concrete example,namely, the two-dimensional Navier-Stokes equations with a non slip boundary condition,was provided. The result is that the higher order Taylor expansion method is of the higher convergence rate under some assumptions about the regularity of the solution.

  1. The Peridic Wave Solutions for Two Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Liang; WANG Ming-Liang; CHENG Dong-Ming; FANG Zong-De

    2003-01-01

    By using the F-expansion method proposed recently, the periodic wave solutions expressed by Jacobielliptic functions for two nonlinear evolution equations are derived. In the limit cases, the solitary wave solutions andthe other type of traveling wave solutions for the system are obtained.

  2. Nonsmooth analysis of doubly nonlinear evolution equations

    CERN Document Server

    Mielke, Alexander; Savare', Giuseppe

    2011-01-01

    In this paper we analyze a broad class of abstract doubly nonlinear evolution equations in Banach spaces, driven by nonsmooth and nonconvex energies. We provide some general sufficient conditions, on the dissipation potential and the energy functional,for existence of solutions to the related Cauchy problem. We prove our main existence result by passing to the limit in a time-discretization scheme with variational techniques. Finally, we discuss an application to a material model in finite-strain elasticity.

  3. 3-D nonlinear evolution of MHD instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, G.; Hicks, H. R.; Wooten, J. W.

    1977-03-01

    The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed.

  4. Controllability of nonlinear systems.

    Science.gov (United States)

    Sussmann, H. J.; Jurdjevic, V.

    1972-01-01

    Discussion of the controllability of nonlinear systems described by the equation dx/dt - F(x,u). Concepts formulated by Chow (1939) and Lobry (1970) are applied to establish criteria for F and its derivatives to obtain qualitative information on sets which can be obtained from x which denotes a variable of state in an arbitrary, real, analytical manifold. It is shown that controllability implies strong accessibility for a large class of manifolds including Euclidean spaces.-

  5. Nonlinear Control Systems

    Science.gov (United States)

    2007-03-01

    IEEE Transactions on Automatic Control , AC- 48, pp. 1712-1723, (2003). [14] C.I. Byrnes, A. Isidori...Nonlinear internal models for output regulation,” IEEE Transactions on Automatic Control , AC-49, pp. 2244-2247, (2004). [15] C.I. Byrnes, F. Celani, A...approach,” IEEE Transactions on Automatic Control , 48 (Dec. 2003), 2172–2190. 2. C. I. Byrnes, “Differential Forms and Dynamical Systems,” to appear

  6. Fault Detection for Nonlinear Systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.H.

    1998-01-01

    The paper describes a general method for designing fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension of methods based...

  7. Nonlinear elliptic systems

    Directory of Open Access Journals (Sweden)

    DJAIRO G. DEFIGUEIREDO

    2000-12-01

    Full Text Available In this paper we treat the question of the existence of solutions of boundary value problems for systems of nonlinear elliptic equations of the form - deltau = f (x, u, v,Ñu,Ñv, - deltav = g(x, u, v, Ñu, Ñv, in omega, We discuss several classes of such systems using both variational and topological methods. The notion of criticality takes into consideration the coupling, which plays important roles in both a priori estimates for the solutions and Palais-Smale conditions for the associated functional in the variational case.

  8. Some new solutions of nonlinear evolution equations with variable coefficients

    Science.gov (United States)

    Virdi, Jasvinder Singh

    2016-05-01

    We construct the traveling wave solutions of nonlinear evolution equations (NLEEs) with variable coefficients arising in physics. Some interesting nonlinear evolution equations are investigated by traveling wave solutions which are expressed by the hyperbolic functions, the trigonometric functions and rational functions. The applied method will be used in further works to establish more entirely new solutions for other kinds of such nonlinear evolution equations with variable coefficients arising in physics.

  9. Balancing for unstable nonlinear systems

    NARCIS (Netherlands)

    Scherpen, J.M.A.

    1993-01-01

    A previously obtained method of balancing for stable nonlinear systems is extended to unstable nonlinear systems. The similarity invariants obtained by the concept of LQG balancing for an unstable linear system can also be obtained by considering a past and future energy function of the system. By c

  10. Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation[

    Institute of Scientific and Technical Information of China (English)

    HUANGDing-Jiang; ZHANGHong-Qing

    2004-01-01

    By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.

  11. Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation

    Institute of Scientific and Technical Information of China (English)

    HUANG Ding-Jiang; ZHANG Hong-Qing

    2004-01-01

    By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.

  12. On the Use of Multipole Expansion in Time Evolution of Non-linear Dynamical Systems and Some Surprises Related to Superradiance

    CERN Document Server

    Csizmadia, Peter; Racz, Istvan

    2013-01-01

    A new numerical method is introduced to study the problem of time evolution of generic non-linear dynamical systems in four-dimensional spacetimes. It is assumed that the time level surfaces are foliated by a one-parameter family of codimension two compact surfaces with no boundary and which are conformal to a Riemannian manifold C. The method is based on the use of a multipole expansion determined uniquely by the induced metric structure on C. The approach is fully spectral in the angular directions. The dynamics in the complementary 1+1 Lorentzian spacetime is followed by making use of a fourth order finite differencing scheme with adaptive mesh refinement. In checking the reliability of the introduced new method the evolution of a massless scalar field on a fixed Kerr spacetime is investigated. In particular, the angular distribution of the evolving field in to be superradiant scattering is studied. The primary aim was to check the validity of some of the recent arguments claiming that the Penrose process,...

  13. Evolutionary quantitative genetics of nonlinear developmental systems.

    Science.gov (United States)

    Morrissey, Michael B

    2015-08-01

    In quantitative genetics, the effects of developmental relationships among traits on microevolution are generally represented by the contribution of pleiotropy to additive genetic covariances. Pleiotropic additive genetic covariances arise only from the average effects of alleles on multiple traits, and therefore the evolutionary importance of nonlinearities in development is generally neglected in quantitative genetic views on evolution. However, nonlinearities in relationships among traits at the level of whole organisms are undeniably important to biology in general, and therefore critical to understanding evolution. I outline a system for characterizing key quantitative parameters in nonlinear developmental systems, which yields expressions for quantities such as trait means and phenotypic and genetic covariance matrices. I then develop a system for quantitative prediction of evolution in nonlinear developmental systems. I apply the system to generating a new hypothesis for why direct stabilizing selection is rarely observed. Other uses will include separation of purely correlative from direct and indirect causal effects in studying mechanisms of selection, generation of predictions of medium-term evolutionary trajectories rather than immediate predictions of evolutionary change over single generation time-steps, and the development of efficient and biologically motivated models for separating additive from epistatic genetic variances and covariances.

  14. Generalized Dromion Structures of New (2 + 1)-Dimensional Nonlinear EvolutionEquation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie-Fang

    2001-01-01

    We derive the generalized dromions of the new (2 + 1)-dimensional nonlinear evolution equation by the arbitrary function presented in the bilinearized linear equations. The rich soliton and dromion structures for this system are released.

  15. Guidance of Nonlinear Systems

    Science.gov (United States)

    Meyer, George

    1997-01-01

    The paper describes a method for guiding a dynamic system through a given set of points. The paradigm is a fully automatic aircraft subject to air traffic control (ATC). The ATC provides a sequence of way points through which the aircraft trajectory must pass. The way points typically specify time, position, and velocity. The guidance problem is to synthesize a system state trajectory which satisfies both the ATC and aircraft constraints. Complications arise because the controlled process is multi-dimensional, multi-axis, nonlinear, highly coupled, and the state space is not flat. In addition, there is a multitude of possible operating modes, which may number in the hundreds. Each such mode defines a distinct state space model of the process by specifying the state space coordinatization, the partition of the controls into active controls and configuration controls, and the output map. Furthermore, mode transitions must be smooth. The guidance algorithm is based on the inversion of the pure feedback approximations, which is followed by iterative corrections for the effects of zero dynamics. The paper describes the structure and modules of the algorithm, and the performance is illustrated by several example aircraft maneuvers.

  16. On Models of Nonlinear Evolution Paths in Adiabatic Quantum Algorithms

    Institute of Scientific and Technical Information of China (English)

    SUN Jie; LU Song-Feng; Samuel L.Braunstein

    2013-01-01

    In this paper,we study two different nonlinear interpolating paths in adiabatic evolution algorithms for solving a particular class of quantum search problems where both the initial and final Hamiltonian are one-dimensional projector Hamiltonians on the corresponding ground state.If the overlap between the initial state and final state of the quantum system is not equal to zero,both of these models can provide a constant time speedup over the usual adiabatic algorithms by increasing some another corresponding "complexity".But when the initial state has a zero overlap with the solution state in the problem,the second model leads to an infinite time complexity of the algorithm for whatever interpolating functions being applied while the first one can still provide a constant running time.However,inspired by a related reference,a variant of the first model can be constructed which also fails for the problem when the overlap is exactly equal to zero if we want to make up the "intrinsic" fault of the second model — an increase in energy.Two concrete theorems are given to serve as explanations why neither of these two models can improve the usual adiabatic evolution algorithms for the phenomenon above.These just tell us what should be noted when using certain nonlinear evolution paths in adiabatic quantum algorithms for some special kind of problems.

  17. Approximate viability for nonlinear evolution inclusions with application to controllability

    Directory of Open Access Journals (Sweden)

    Omar Benniche

    2016-12-01

    Full Text Available We investigate approximate viability for a graph with respect to fully nonlinear quasi-autonomous evolution inclusions. As application, an approximate null controllability result is given.

  18. Analysis on the effect of nonlinear polarization evolution in nonlinear amplifying loop mirror

    Institute of Scientific and Technical Information of China (English)

    Feng Qu; Xiaoming Liu; Pu Zhang; Xubiao Jiang; Hongming Zhang; Minyu Yao

    2005-01-01

    By considering the cross phase modulation (XPM) between the two orthogonal poparization components,the nonlinear birefringence and nonlinear polarization evolution (NPE) in highly-nonlinear fiber (HNLF),as well as the unequal evolutions of the state of polarization (SOP) between the clockwise (CW) and counter-clockwise (CCW) waves in a nonlinear amplifying loop mirror (NALM) are analyzed. It is pointed out that the traditional cosine expression is no longer valid for the power transmission of NALM due to uncompleted interference under the high power condition. The analytical expression considering NPE effect is derived, and the experimental result is presented.

  19. New travelling wave solutions for nonlinear stochastic evolution equations

    Indian Academy of Sciences (India)

    Hyunsoo Kim; Rathinasamy Sakthivel

    2013-06-01

    The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the (′/)-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic Broer–Kaup equation and stochastic coupled Korteweg–de Vries (KdV) equation. The study highlights the significant features of the method employed and its capability of handling nonlinear stochastic problems.

  20. Extension of Variable Separable Solutions for Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    JIA Hua-Bing; ZHANG Shun-Li; XU Wei; ZHU Xiao-Ning; WANG Yong-Mao; LOU Sen-Yue

    2008-01-01

    We give the generalized definitions of variable separable solutions to nonlinear evolution equations, and characterize the relation between the functional separable solution and the derivative-dependent functional separablecation, we classify the generalized nonlinear diffusion equations that admit special functional separable solutions and obtain some exact solutions to the resulting equations.

  1. A variational approach to nonlinear evolution equations in optics

    Indian Academy of Sciences (India)

    D Anderson; M Lisak; A Berntson

    2001-11-01

    A tutorial review is presented of the use of direct variational methods based on RayleighRitz optimization for finding approximate solutions to various nonlinear evolution equations. The practical application of the approach is demonstrated by some illustrative examples in connection with the nonlinear Schrödinger equation.

  2. Prolongation Structure of Semi-discrete Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on noncommutative differential calculus, we present a theory of prolongation structure for semi-discrete nonlinear evolution equations. As an illustrative example, a semi-discrete model of the nonlinear Schr(o)dinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.

  3. Nonlinear Waves in Complex Systems

    DEFF Research Database (Denmark)

    2007-01-01

    The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...

  4. The Generalized Projective Riccati Equations Method for Solving Nonlinear Evolution Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    E. M. E. Zayed

    2014-01-01

    Full Text Available We apply the generalized projective Riccati equations method to find the exact traveling wave solutions of some nonlinear evolution equations with any-order nonlinear terms, namely, the nonlinear Pochhammer-Chree equation, the nonlinear Burgers equation and the generalized, nonlinear Zakharov-Kuznetsov equation. This method presents wider applicability for handling many other nonlinear evolution equations in mathematical physics.

  5. The Evolution of a Collaborative Authoring System for Non-Linear Hypertext: A Design-Based Research Study

    Science.gov (United States)

    Strobel, Johannes; Jonassen, David H.; Ionas, Ioan Gelu

    2008-01-01

    Learning in complex and ill-structured knowledge domains requires accommodation of multiple perspectives embedded in authentic activities and the reconciliation of those perspectives with personal beliefs resulting in conceptual change. Cognitive flexibility hypertext systems support that process by enabling learners to explore authentic cases…

  6. Nonlinear Control Systems

    Science.gov (United States)

    2009-11-18

    analytic semigroup T(t) ~ eAl is exponentially stable (Notice that it is also a contraction semigroup ). 3. Be 3(U, Z) and P e £(W, 2) are bounded. 4. Ce...quite often in practice, .4 is self-adjoint. We also note that, since we assume (—A) is sectorial, we work with the semigroup exp(.4f) rather than...Uniform Output Regulation of Nonlinear Sys- tems: A convergent Dynamics Approach, Birkhauser, Boston, 2006. 23 135] A. Pazy, Semigroups of Linear

  7. Nonpoint Symmetry and Reduction of Nonlinear Evolution and Wave Type Equations

    Directory of Open Access Journals (Sweden)

    Ivan Tsyfra

    2015-01-01

    Full Text Available We study the symmetry reduction of nonlinear partial differential equations with two independent variables. We propose new ansätze reducing nonlinear evolution equations to system of ordinary differential equations. The ansätze are constructed by using operators of nonpoint classical and conditional symmetry. Then we find solution to nonlinear heat equation which cannot be obtained in the framework of the classical Lie approach. By using operators of Lie-Bäcklund symmetries we construct the solutions of nonlinear hyperbolic equations depending on arbitrary smooth function of one variable too.

  8. Nonlinear robust hierarchical control for nonlinear uncertain systems

    Directory of Open Access Journals (Sweden)

    Leonessa Alexander

    1999-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  9. Multi-soliton rational solutions for some nonlinear evolution equations

    Directory of Open Access Journals (Sweden)

    Osman Mohamed S.

    2016-01-01

    Full Text Available The Korteweg-de Vries equation (KdV and the (2+ 1-dimensional Nizhnik-Novikov-Veselov system (NNV are presented. Multi-soliton rational solutions of these equations are obtained via the generalized unified method. The analysis emphasizes the power of this method and its capability of handling completely (or partially integrable equations. Compared with Hirota’s method and the inverse scattering method, the proposed method gives more general exact multi-wave solutions without much additional effort. The results show that, by virtue of symbolic computation, the generalized unified method may provide us with a straightforward and effective mathematical tool for seeking multi-soliton rational solutions for solving many nonlinear evolution equations arising in different branches of sciences.

  10. Nonlinear Waves in Complex Systems

    DEFF Research Database (Denmark)

    2007-01-01

    The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...... in Fourier space and equipartition, the role of inhomogeneities and complex geometry and the importance of coupled systems....

  11. New traveling wave solutions for nonlinear evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    El-Wakil, S.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Madkour, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt)]. E-mail: m_abdou_eg@yahoo.com

    2007-06-11

    The generalized Jacobi elliptic function expansion method is used with a computerized symbolic computation for constructing the new exact traveling wave solutions. The validity and reliability of the method is tested by its applications on a class of nonlinear evolution equations of special interest in mathematical physics. As a result, many exact traveling wave solutions are obtained which include the kink-shaped solutions, bell-shaped solutions, singular solutions and periodic solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.

  12. The Nonlinear Evolution of Galaxy Intrinsic Alignments

    OpenAIRE

    Lee, Jounghun; Pen, Ue-Li

    2007-01-01

    The non-Gaussian contribution to the intrinsic halo spin alignments is analytically modeled and numerically detected. Assuming that the growth of non-Gaussianity in the density fluctuations caused the tidal field to have nonlinear-order effect on the orientations of the halo angular momentum, we model the intrinsic halo spin alignments as a linear scaling of the density correlations on large scales, which is different from the previous quadratic-scaling model based on the linear tidal torque ...

  13. Nonlinear input-output systems

    Science.gov (United States)

    Hunt, L. R.; Luksic, Mladen; Su, Renjeng

    1987-01-01

    Necessary and sufficient conditions that the nonlinear system dot-x = f(x) + ug(x) and y = h(x) be locally feedback equivalent to the controllable linear system dot-xi = A xi + bv and y = C xi having linear output are found. Only the single input and single output case is considered, however, the results generalize to multi-input and multi-output systems.

  14. Practical stability of nonlinear systems

    CERN Document Server

    Lakshmikantham, Vangipuram; Martynyuk, Anatolii Andreevich

    1990-01-01

    This is the first book that deals with practical stability and its development. It presents a systematic study of the theory of practical stability in terms of two different measures and arbitrary sets and demonstrates the manifestations of general Lyapunov's method by showing how this effective technique can be adapted to investigate various apparently diverse nonlinear problems including control systems and multivalued differential equations.

  15. Spectral decomposition of nonlinear systems with memory.

    Science.gov (United States)

    Svenkeson, Adam; Glaz, Bryan; Stanton, Samuel; West, Bruce J

    2016-02-01

    We present an alternative approach to the analysis of nonlinear systems with long-term memory that is based on the Koopman operator and a Lévy transformation in time. Memory effects are considered to be the result of interactions between a system and its surrounding environment. The analysis leads to the decomposition of a nonlinear system with memory into modes whose temporal behavior is anomalous and lacks a characteristic scale. On average, the time evolution of a mode follows a Mittag-Leffler function, and the system can be described using the fractional calculus. The general theory is demonstrated on the fractional linear harmonic oscillator and the fractional nonlinear logistic equation. When analyzing data from an ill-defined (black-box) system, the spectral decomposition in terms of Mittag-Leffler functions that we propose may uncover inherent memory effects through identification of a small set of dynamically relevant structures that would otherwise be obscured by conventional spectral methods. Consequently, the theoretical concepts we present may be useful for developing more general methods for numerical modeling that are able to determine whether observables of a dynamical system are better represented by memoryless operators, or operators with long-term memory in time, when model details are unknown.

  16. Stability analysis of nonlinear systems

    CERN Document Server

    Lakshmikantham, Vangipuram; Martynyuk, Anatoly A

    2015-01-01

    The book investigates stability theory in terms of two different measure, exhibiting the advantage of employing families of Lyapunov functions and treats the theory of a variety of inequalities, clearly bringing out the underlying theme. It also demonstrates manifestations of the general Lyapunov method, showing how this technique can be adapted to various apparently diverse nonlinear problems. Furthermore it discusses the application of theoretical results to several different models chosen from real world phenomena, furnishing data that is particularly relevant for practitioners. Stability Analysis of Nonlinear Systems is an invaluable single-sourse reference for industrial and applied mathematicians, statisticians, engineers, researchers in the applied sciences, and graduate students studying differential equations.

  17. PBH tests for nonlinear systems

    NARCIS (Netherlands)

    Kawano, Yu; Ohtsuka, Toshiyuki

    2017-01-01

    Recently, concepts of nonlinear eigenvalues and eigenvectors are introduced. In this paper, we establish connections between the nonlinear eigenvalues and nonlinear accessibility/observability. In particular, we provide a generalization of Popov- Belevitch-Hautus (PBH) test to nonlinear accessibilit

  18. Nonlinear evolution of the modulational instability of whistler waves

    DEFF Research Database (Denmark)

    Karpman, V.I.; Hansen, F.R.; Huld, T.

    1990-01-01

    The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves is investigated in two spatial dimensions by numerical simulations. The long time evolution of the modulational instability shows a quasirecurrent behavior with a slow spreading...... of the energy, originally confined to the lowest wave numbers, to larger and larger wave numbers resulting in an apparently chaotic or random wave field. © 1990 The American Physical Society...

  19. The nonlinear evolution of modes on unstable stratified shear layers

    Science.gov (United States)

    Blackaby, Nicholas; Dando, Andrew; Hall, Philip

    1993-06-01

    The nonlinear development of disturbances in stratified shear flows (having a local Richardson number of value less than one quarter) is considered. Such modes are initially fast growing but, like related studies, we assume that the viscous, non-parallel spreading of the shear layer results in them evolving in a linear fashion until they reach a position where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. Four different basic integro-differential amplitude equations are possible, including one due to a novel mechanism; the relevant choice of amplitude equation, at a particular instance, being dependent on the relative sizes of the disturbance amplitude, the growth rate of the disturbance, its wavenumber, and the viscosity of the fluid. This richness of choice of possible nonlinearities arises mathematically from the indicial Frobenius roots of the governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential amplitude equations with a cubic nonlinearity but the resulting significant increase in the size of the disturbance's amplitude leads on to the next stage of the evolution process where the evolution of the mode is governed by an integro-differential amplitude equations with a quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which time the flow has become fully nonlinear.

  20. Nonlinear dynamics in biological systems

    CERN Document Server

    Carballido-Landeira, Jorge

    2016-01-01

    This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...

  1. Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.

  2. NEW EXACT TRAVELLING WAVE SOLUTIONS TO THREE NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Sirendaoreji

    2004-01-01

    Based on the computerized symbolic computation, some new exact travelling wave solutions to three nonlinear evolution equations are explicitly obtained by replacing the tanhξ in tanh-function method with the solutions of a new auxiliary ordinary differential equation.

  3. EXACT SOLITARY WAVE SOLUTIONS OF THETWO NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    ZhuYanjuan; ZhangChunhua

    2005-01-01

    The solitary wave solutions of the combined KdV-mKdV-Burgers equation and the Kolmogorov-Petrovskii-Piskunov equation are obtained by means of the direct algebra method, which can be generalized to deal with high dimensional nonlinear evolution equations.

  4. BOUNDARY LAYER AND VANISHING DIFFUSION LIMIT FOR NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    彭艳

    2014-01-01

    In this paper, we consider an initial-boundary value problem for some nonlinear evolution equations with damping and diffusion. The main purpose is to investigate the boundary layer effect and the convergence rates as the diffusion parameterαgoes to zero.

  5. Identification methods for nonlinear stochastic systems.

    Science.gov (United States)

    Fullana, Jose-Maria; Rossi, Maurice

    2002-03-01

    Model identifications based on orbit tracking methods are here extended to stochastic differential equations. In the present approach, deterministic and statistical features are introduced via the time evolution of ensemble averages and variances. The aforementioned quantities are shown to follow deterministic equations, which are explicitly written within a linear as well as a weakly nonlinear approximation. Based on such equations and the observed time series, a cost function is defined. Its minimization by simulated annealing or backpropagation algorithms then yields a set of best-fit parameters. This procedure is successfully applied for various sampling time intervals, on a stochastic Lorenz system.

  6. Nonlinear elliptic systems with exponential nonlinearities

    Directory of Open Access Journals (Sweden)

    Said El Manouni

    2002-12-01

    Full Text Available In this paper we investigate the existence of solutions for {gather*} -mathop{m div}( a(| abla u | ^N| abla u |^{N-2}u = f(x,u,v quad mbox{in } Omega -mathop{m div}(a(| abla v| ^N| abla v |^{N-2}v = g(x,u,v quad mbox{in } Omega u(x = v(x = 0 quad mbox{on }partial Omega. end{gather*} Where $Omega$ is a bounded domain in ${mathbb{R}}^N$, $Ngeq 2$, $f$ and $g$ are nonlinearities having an exponential growth on $Omega$ and $a$ is a continuous function satisfying some conditions which ensure the existence of solutions.

  7. On balanced truncation for symmetric nonlinear systems

    NARCIS (Netherlands)

    Fujimoto, K.; Scherpen, Jacqueline M.A.

    2014-01-01

    This paper is concerned with model order reduction based on balanced realization for symmetric nonlinear systems. A new notion of symmetry for nonlinear systems was characterized recently. It plays an important role in linear systems theory and is expected to provide new insights to nonlinear system

  8. Nonlinear and Perturbative Evolution of Distorted Black Holes; 2, Odd-parity Modes

    CERN Document Server

    Baker, J; Campanelli, M; Loustó, C O; Seidel, E; Takahashi, R

    2000-01-01

    We compare the fully nonlinear and perturbative evolution of nonrotating black holes with odd-parity distortions utilizing the perturbative results to interpret the nonlinear results. This introduction of the second polarization (odd-parity) mode of the system, and the systematic use of combined techniques brings us closer to the goal of studying more complicated systems like distorted, rotating black holes, such as those formed in the final inspiral stage of two black holes. The nonlinear evolutions are performed with the 3D parallel code for Numerical Relativity, {Cactus}, and an independent axisymmetric code, {Magor}. The linearized calculation is performed in two ways: (a) We treat the system as a metric perturbation on Schwarzschild, using the Regge-Wheeler equation to obtain the waveforms produced. (b) We treat the system as a curvature perturbation of a Kerr black hole (but here restricted to the case of vanishing rotation parameter a) and evolve it with the Teukolsky equation The comparisons of the wa...

  9. A Hierarchy of New Nonlinear Evolution Equations Associated with a 3 × 3 Matrix Spectral Problem

    Institute of Scientific and Technical Information of China (English)

    GENG Xian-Guo; LI Fang

    2009-01-01

    A 3 × 3 matrix spectral problem with three potentials and the corresponding hierarchy of new nonlinear evolution equations are proposed. Generalized Hamiltonian structures for the hierarchy of nonlinear evolution equations are derived with the aid of trace identity.

  10. The chaotic effects in a nonlinear QCD evolution equation

    Science.gov (United States)

    Zhu, Wei; Shen, Zhenqi; Ruan, Jianhong

    2016-10-01

    The corrections of gluon fusion to the DGLAP and BFKL equations are discussed in a united partonic framework. The resulting nonlinear evolution equations are the well-known GLR-MQ-ZRS equation and a new evolution equation. Using the available saturation models as input, we find that the new evolution equation has the chaos solution with positive Lyapunov exponents in the perturbative range. We predict a new kind of shadowing caused by chaos, which blocks the QCD evolution in a critical small x range. The blocking effect in the evolution equation may explain the Abelian gluon assumption and even influence our expectations to the projected Large Hadron Electron Collider (LHeC), Very Large Hadron Collider (VLHC) and the upgrade (CppC) in a circular e+e- collider (SppC).

  11. New generalized and improved (G′/G-expansion method for nonlinear evolution equations in mathematical physics

    Directory of Open Access Journals (Sweden)

    Hasibun Naher

    2014-10-01

    Full Text Available In this article, new extension of the generalized and improved (G′/G-expansion method is proposed for constructing more general and a rich class of new exact traveling wave solutions of nonlinear evolution equations. To demonstrate the novelty and motivation of the proposed method, we implement it to the Korteweg-de Vries (KdV equation. The new method is oriented toward the ease of utilize and capability of computer algebraic system and provides a more systematic, convenient handling of the solution process of nonlinear equations. Further, obtained solutions disclose a wider range of applicability for handling a large variety of nonlinear partial differential equations.

  12. Extended Riccati Equation Rational Expansion Method and Its Application to Nonlinear Stochastic Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    WANG Mei-Jiao; WANG Qi

    2006-01-01

    In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solutions and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.

  13. Nonlinear Evolutions of Stimulated Raman and Brillouin Scattering Processes in Partially Stripped-Ion Plasmas

    Institute of Scientific and Technical Information of China (English)

    胡业民; 胡希伟

    2001-01-01

    Numerical analyses for the nonlinear evolutions of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) processes are given. Various effects of the second- and third-order nonlinear susceptibilities on the SRS and SBS processes are studied. The nonlinear evolutions of SRS and SBS processes are atfected more efficiently than their linear growth rates by the nonlinear susceptibility.

  14. Complex motions and chaos in nonlinear systems

    CERN Document Server

    Machado, José; Zhang, Jiazhong

    2016-01-01

    This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.

  15. An Adaptive Nonlinear Filter for System Identification

    Directory of Open Access Journals (Sweden)

    Tokunbo Ogunfunmi

    2009-01-01

    Full Text Available The primary difficulty in the identification of Hammerstein nonlinear systems (a static memoryless nonlinear system in series with a dynamic linear system is that the output of the nonlinear system (input to the linear system is unknown. By employing the theory of affine projection, we propose a gradient-based adaptive Hammerstein algorithm with variable step-size which estimates the Hammerstein nonlinear system parameters. The adaptive Hammerstein nonlinear system parameter estimation algorithm proposed is accomplished without linearizing the systems nonlinearity. To reduce the effects of eigenvalue spread as a result of the Hammerstein system nonlinearity, a new criterion that provides a measure of how close the Hammerstein filter is to optimum performance was used to update the step-size. Experimental results are presented to validate our proposed variable step-size adaptive Hammerstein algorithm given a real life system and a hypothetical case.

  16. Nonlinearity of colloid systems oxyhydrate systems

    CERN Document Server

    Sucharev, Yuri I

    2008-01-01

    The present monograph is the first systematic study of the non-linear characteristic of gel oxy-hydrate systems involving d- and f- elements. These are the oxyhydrates of rare-earth elements and oxides - hydroxides of d- elements (zirconium, niobium, titanium, etc.) The non-linearity of these gel systems introduces fundamental peculiarities into their structure and, consequently, their properties. The polymer-conformational diversity of energetically congenial gel fragments, which continu-ously transform under the effect of, for instance, system dissipation heat, is central to the au-thor's hy

  17. Classification of Exact Solutions for Some Nonlinear Partial Differential Equations with Generalized Evolution

    Directory of Open Access Journals (Sweden)

    Yusuf Pandir

    2012-01-01

    Full Text Available We obtain the classification of exact solutions, including soliton, rational, and elliptic solutions, to the one-dimensional general improved Camassa Holm KP equation and KdV equation by the complete discrimination system for polynomial method. In discussion, we propose a more general trial equation method for nonlinear partial differential equations with generalized evolution.

  18. On the non-linearity of the subsidiary systems

    CERN Document Server

    Friedrich, H

    2005-01-01

    In hyperbolic reductions of the Einstein equations the evolution of gauge conditions or constraint quantities is controlled by subsidiary systems. We point out a class of non-linearities in these systems which may have the potential of generating catastrophic growth of gauge resp. constraint violations in numerical calculations.

  19. Shallow water modal evolution due to nonlinear internal waves

    Science.gov (United States)

    Badiey, Mohsen; Wan, Lin; Luo, Jing

    2017-09-01

    Acoustic modal behavior is reported for an L-shape hydrophone array during the passage of a strong nonlinear internal wave packet. Acoustic track is nearly parallel to the front of nonlinear internal waves. Through modal decomposition at the vertical array, acoustic modes are identified. Modal evolution along the horizontal array then is examined during a passing internal wave. Strong intensity fluctuations of individual modes are observed before and during the internal waves packet passes the fixed acoustic track showing a detailed evolution of the waveguide modal behavior. Acoustic refraction created either uneven distribution of modal energy over the horizontal array or additional returns observable at the entire L-shape array. Acoustic ray-mode simulations are used to phenomenologically explain the observed modal behavior.

  20. Solitary wave solutions to nonlinear evolution equations in mathematical physics

    Indian Academy of Sciences (India)

    Anwar Ja’afar Mohamad Jawad; M Mirzazadeh; Anjan Biswas

    2014-10-01

    This paper obtains solitons as well as other solutions to a few nonlinear evolution equations that appear in various areas of mathematical physics. The two analytical integrators that are applied to extract solutions are tan–cot method and functional variable approaches. The soliton solutions can be used in the further study of shallow water waves in (1+1) as well as (2+1) dimensions.

  1. Nonlinear Evolution of Magnetic Islands in the Magnetopause Current Sheet

    Institute of Scientific and Technical Information of China (English)

    XianminWANG; ZuyinPU

    1996-01-01

    Nonlinear evolution of magnetic islands produced by time-dependent magnetic reconnection in the magnetopause current sheet is studied.It is shown that the magnetic islands are unstable against the interference from external disturbances.Their structure can be destroyed by medium and small-scale solar wind turbulences,leading to stochastic magnetic reconnection and the formation of irregular small0scale structures in magnetospheric boundary regions.

  2. Modified constrained differential evolution for solving nonlinear global optimization problems

    OpenAIRE

    2013-01-01

    Nonlinear optimization problems introduce the possibility of multiple local optima. The task of global optimization is to find a point where the objective function obtains its most extreme value while satisfying the constraints. Some methods try to make the solution feasible by using penalty function methods, but the performance is not always satisfactory since the selection of the penalty parameters for the problem at hand is not a straightforward issue. Differential evolut...

  3. Travelling wave solutions for ( + 1)-dimensional nonlinear evolution equations

    Indian Academy of Sciences (India)

    Jonu Lee; Rathinasamy Sakthivel

    2010-10-01

    In this paper, we implement the exp-function method to obtain the exact travelling wave solutions of ( + 1)-dimensional nonlinear evolution equations. Four models, the ( + 1)-dimensional generalized Boussinesq equation, ( + 1)-dimensional sine-cosine-Gordon equation, ( + 1)-double sinh-Gordon equation and ( + 1)-sinh-cosinh-Gordon equation, are used as vehicles to conduct the analysis. New travelling wave solutions are derived.

  4. Nonlinear cross Gramians and gradient systems

    OpenAIRE

    Ionescu, T. C.; Scherpen, J.M.A.

    2007-01-01

    We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain linearization results that precisely correspond to the notion of a cross Gramian for symmetric linear systems. Furthermore, first steps towards relations with the singular value functions of the nonlinear Han...

  5. Haar basis and nonlinear modeling of complex systems

    Science.gov (United States)

    García, P.; Merlitti, A.

    2007-04-01

    In this work we introduce a technique to perform nonlinear modeling of chaotic time series using the kernel method. The basic idea behind this method is to map the data into a high dimensional space via nonlinear mapping and do a linear regression in this space. Here we use a Haar wavelet-like kernel to achieve the task. This strategy, in contrast to Support Vector Machines technique, shows the conceptual simplicity of least mean square algoritm for linear regression but allows local nonlinear aproximation of the system evolution, with low computational cost.

  6. Small asteroid system evolution

    OpenAIRE

    Jacobson, Seth A.

    2014-01-01

    Observations with radar, photometric and direct imaging techniques have discovered that multiple asteroid systems can be divided clearly into a handful of different morphologies, and recently, the discovery of small unbound asteroid systems called asteroid pairs have revolutionized the study of small asteroid systems. Simultaneously, new theoretical advances have demonstrated that solar radiation dictates the evolution of small asteroids with strong implications for asteroid internal structur...

  7. Small asteroid system evolution

    OpenAIRE

    Jacobson, Seth A.

    2014-01-01

    Observations with radar, photometric and direct imaging techniques have discovered that multiple asteroid systems can be divided clearly into a handful of different morphologies, and recently, the discovery of small unbound asteroid systems called asteroid pairs have revolutionized the study of small asteroid systems. Simultaneously, new theoretical advances have demonstrated that solar radiation dictates the evolution of small asteroids with strong implications for asteroid internal structur...

  8. Observability and Controllability for Smooth Nonlinear Systems

    OpenAIRE

    Schaft, A.J. van der

    1982-01-01

    The definition of a smooth nonlinear system as proposed recently, is elaborated as a natural generalization of the more common definitions of a smooth nonlinear input-output system. Minimality for such systems can be defined in a very direct geometric way, and already implies a usual notion of observability, namely, local weak observability. As an application of this theory, it is shown that observable nonlinear Hamiltonian systems are necessarily controllable, and vice versa.

  9. Modelling of nonlinear shoaling based on stochastic evolution equations

    DEFF Research Database (Denmark)

    Kofoed-Hansen, Henrik; Rasmussen, Jørgen Hvenekær

    1998-01-01

    A one-dimensional stochastic model is derived to simulate the transformation of wave spectra in shallow water including generation of bound sub- and super-harmonics, near-resonant triad wave interaction and wave breaking. Boussinesq type equations with improved linear dispersion characteristics...... are recast into evolution equations for the complex amplitudes, and serve as the underlying deterministic model. Next, a set of evolution equations for the cumulants is derived. By formally introducing the well-known Gaussian closure hypothesis, nonlinear evolution equations for the power spectrum...... and bispectrum are derived. A simple description of depth-induced wave breaking is incorporated in the model equations, assuming that the total rate of dissipation may be distributed in proportion to the spectral energy density on each discrete frequency. The proposed phase-averaged model is compared...

  10. Computing abstractions of nonlinear systems

    CERN Document Server

    Reißig, Gunther

    2009-01-01

    We present an efficient algorithm for computing discrete abstractions of arbitrary memory span for nonlinear discrete-time and sampled systems, in which, apart from possibly numerically integrating ordinary differential equations, the only nontrivial operation to be performed repeatedly is to distinguish empty from non-empty convex polyhedra. We also provide sufficient conditions for the convexity of attainable sets, which is an important requirement for the correctness of the method we propose. It turns out that requirement can be met under rather mild conditions, which essentially reduce to sufficient smoothness in the case of sampled systems. Practicability of our approach in the design of discrete controllers for continuous plants is demonstrated by an example.

  11. Variational principle for nonlinear wave propagation in dissipative systems.

    Science.gov (United States)

    Dierckx, Hans; Verschelde, Henri

    2016-02-01

    The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time.

  12. Nonlinear cross Gramians and gradient systems

    NARCIS (Netherlands)

    Ionescu, T. C.; Scherpen, J. M. A.

    2007-01-01

    We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain

  13. Analytic treatment of nonlinear evolution equations using first integral method

    Indian Academy of Sciences (India)

    Ahmet Bekir; Ömer Ünsal

    2012-07-01

    In this paper, we show the applicability of the first integral method to combined KdV-mKdV equation, Pochhammer–Chree equation and coupled nonlinear evolution equations. The power of this manageable method is confirmed by applying it for three selected nonlinear evolution equations. This approach can also be applied to other nonlinear differential equations.

  14. Linear and Nonlinear Evolution and Diffusion Layer Selection in Electrokinetic Instability

    CERN Document Server

    Demekhin, E A; Polyanskikh, S V

    2011-01-01

    In the present work fournontrivial stages of electrokinetic instability are identified by direct numerical simulation (DNS) of the full Nernst-Planck-Poisson-Stokes (NPPS) system: i) The stage of the influence of the initial conditions (milliseconds); ii) 1D self-similar evolution (milliseconds-seconds); iii) The primary instability of the self-similar solution (seconds); iv) The nonlinear stage with secondary instabilities. The self-similar character of evolution at intermediately large times is confirmed. Rubinstein and Zaltzman instability and noise-driven nonlinear evolution to over-limiting regimes in ion-exchange membranes are numerically simulated and compared with theoretical and experimental predictions. The primary instability which happens during this stage is found to arrest self-similar growth of the diffusion layer and specifies its characteristic length as was first experimentally predicted by Yossifon and Chang (PRL 101, 254501 (2008)). A novel principle for the characteristic wave number sele...

  15. Computational Models for Nonlinear Aeroelastic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...

  16. Model Updating Nonlinear System Identification Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology (ZONA) proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology that utilizes flight data with...

  17. On the Nonlinear Evolution of Cosmic Web: Lagrangian Dynamics Revisited

    CERN Document Server

    Wang, Xin

    2014-01-01

    We investigate the nonlinear evolution of cosmic morphologies of the large-scale structure by examining the Lagrangian dynamics of various tensors of a cosmic fluid element, including the velocity gradient tensor, the Hessian matrix of the gravitational potential as well as the deformation tensor. Instead of the eigenvalue representation, the first two tensors, which associate with the "kinematic" and "dynamical" cosmic web classification algorithm respectively, are studied in a more convenient parameter space. These parameters are defined as the rotational invariant coefficients of the characteristic equation of the tensor. In the nonlinear local model (NLM) where the magnetic part of Weyl tensor vanishes, these invariants are fully capable of characterizing the dynamics. Unlike the Zeldovich approximation (ZA), where various morphologies do not change before approaching a one-dimensional singularity, the sheets in NLM are unstable for both overdense and underdense perturbations. While it has long been known...

  18. Nonlinear evolution operators and semigroups applications to partial differential equations

    CERN Document Server

    Pavel, Nicolae H

    1987-01-01

    This research monograph deals with nonlinear evolution operators and semigroups generated by dissipative (accretive), possibly multivalued operators, as well as with the application of this theory to partial differential equations. It shows that a large class of PDE's can be studied via the semigroup approach. This theory is not available otherwise in the self-contained form provided by these Notes and moreover a considerable part of the results, proofs and methods are not to be found in other books. The exponential formula of Crandall and Liggett, some simple estimates due to Kobayashi and others, the characterization of compact semigroups due to Brézis, the proof of a fundamental property due to Ursescu and the author and some applications to PDE are of particular interest. Assuming only basic knowledge of functional analysis, the book will be of interest to researchers and graduate students in nonlinear analysis and PDE, and to mathematical physicists.

  19. Lectures on nonlinear evolution equations initial value problems

    CERN Document Server

    Racke, Reinhard

    2015-01-01

    This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...

  20. Discontinuity and complexity in nonlinear physical systems

    CERN Document Server

    Baleanu, Dumitru; Luo, Albert

    2014-01-01

    This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....

  1. New Doubly Periodic Solutions of Nonlinear Evolution Equations via Weierstrass Elliptic Function Expansion Algorithm

    Institute of Scientific and Technical Information of China (English)

    YANZhen-Ya

    2004-01-01

    A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the corresponding system of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2+1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.

  2. Research on Nonlinear Dynamical Systems.

    Science.gov (United States)

    1983-01-10

    investigated fundamental aspects of functional differential equations, including qualitative questions (stability, nonlinear oscillations ), in 142,45,47,52...Bifurcation in the Duffing equation with several parameters, II. Proc. of the Royal Society of Edinburgh, Series A, 79A (1977), pp.317-326. 1I.J (with ;Ibtoas...Lecture Notes in Mathematics, Vol. 730 (1979). [54] Nonlinear oscillations in equations with delays. Proc. at A.M.S. 10th Summer Seminar on Nonlinear

  3. Stability of fractional positive nonlinear systems

    Directory of Open Access Journals (Sweden)

    Kaczorek Tadeusz

    2015-12-01

    Full Text Available The conditions for positivity and stability of a class of fractional nonlinear continuous-time systems are established. It is assumed that the nonlinear vector function is continuous, satisfies the Lipschitz condition and the linear part is described by a Metzler matrix. The stability conditions are established by the use of an extension of the Lyapunov method to fractional positive nonlinear systems.

  4. The non-linear evolution of edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Wenninger, Ronald

    2013-01-09

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  5. Maximized Gust Loads of a Closed-Loop, Nonlinear Aeroelastic System Using Nonlinear Systems Theory

    Science.gov (United States)

    Silva, Walter A.

    1999-01-01

    The problem of computing the maximized gust load for a nonlinear, closed-loop aeroelastic aircraft is discusses. The Volterra theory of nonlinear systems is applied in order to define a linearized system that provides a bounds on the response of the nonlinear system of interest. The method is applied to a simplified model of an Airbus A310.

  6. Stability analysis of nonlinear systems with slope restricted nonlinearities.

    Science.gov (United States)

    Liu, Xian; Du, Jiajia; Gao, Qing

    2014-01-01

    The problem of absolute stability of Lur'e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP) lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.

  7. Stability Analysis of Nonlinear Systems with Slope Restricted Nonlinearities

    Directory of Open Access Journals (Sweden)

    Xian Liu

    2014-01-01

    Full Text Available The problem of absolute stability of Lur’e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.

  8. A convective-advective balance approach for solving some nonlinear evolution equations analytically

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Hamid, B. [United Arab Emirates Univ. (United Arab Emirates). Dept. of Mathematics and Computer Science

    1999-09-01

    A symbolic computation-based approach of balancing the convective and advective effects in a nonlinear evolution equation leads to a transformation that maps the nonlinear equation onto either a linear one or to a system of linear and homogeneous equations. The method is demonstrated by mapping Burgers' equation and nonlinear heat equation onto the linear heat equation. It is shown that the transformation obtained by balancing the convective-advective effects are reducible to those obtained by the Cole and Hopf through Backlund transformation. The method is also used to transform the modified KdV equation into a system of linear and homogeneous functions in the partial derivatives which leads to an exact solution. Computations in the presented approach are carried out in a straightforward way.

  9. Long-term evolution of strongly nonlinear internal solitary waves in a rotating channel

    Directory of Open Access Journals (Sweden)

    J. C. Sánchez-Garrido

    2009-09-01

    Full Text Available The evolution of internal solitary waves (ISWs propagating in a rotating channel is studied numerically in the framework of a fully-nonlinear, nonhydrostatic numerical model. The aim of modelling efforts was the investigation of strongly-nonlinear effects, which are beyond the applicability of weakly nonlinear theories. Results reveal that small-amplitude waves and sufficiently strong ISWs evolve differently under the action of rotation. At the first stage of evolution an initially two-dimensional ISW transforms according to the scenario described by the rotation modified Kadomtsev-Petviashvili equation, namely, it starts to evolve into a Kelvin wave (with exponential decay of the wave amplitude across the channel with front curved backwards. This transition is accompanied by a permanent radiation of secondary Poincaré waves attached to the leading wave. However, in a strongly-nonlinear limit not all the energy is transmitted to secondary radiated waves. Part of it returns to the leading wave as a result of nonlinear interactions with secondary Kelvin waves generated in the course of time. This leads to the formation of a slowly attenuating quasi-stationary system of leading Kelvin waves, capable of propagating for several hundreds hours as a localized wave packet.

  10. DISTURBANCE ATTENUATION FOR UNCERTAIN NONLINEAR CASCADED SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    BI Weiping; MU Xiaowu; SUN Yuqiang

    2004-01-01

    In present paper, the disturbance attenuation problem of uncertain nonlinear cascaded systems is studied. Based on the adding one power integrator technique and recursive design, a feedback controller that solves the disturbance attenuation problem is constructed for uncertain nonlinear cascaded systems with internal stability.

  11. Instability of coupled geostrophic density fronts and its nonlinear evolution

    Science.gov (United States)

    Scherer, Emilie; Zeitlin, Vladimir

    Instability of coupled density fronts, and its fully nonlinear evolution are studied within the idealized reduced-gravity rotating shallow-water model. By using the collocation method, we benchmark the classical stability results on zero potential vorticity (PV) fronts and generalize them to non-zero PV fronts. In both cases, we find a series of instability zones intertwined with the stability regions along the along-front wavenumber axis, the most unstable modes being long wave. We then study the nonlinear evolution of the unstable modes with the help of a high-resolution well-balanced finite-volume numerical scheme by initializing it with the unstable modes found from the linear stability analysis. The most unstable long-wave mode evolves as follows: after a couple of inertial periods, the coupled fronts are pinched at some location and a series of weakly connected co-rotating elliptic anticyclonic vortices is formed, thus totally changing the character of the flow. The characteristics of these vortices are close to known rodon lens solutions. The shorter-wave unstable modes from the next instability zones are strongly concentrated in the frontal regions, have sharp gradients, and are saturated owing to dissipation without qualitatively changing the flow pattern.

  12. Linear and Nonlinear Evolution of Disturbances in Supersonic Streamwise Vortices

    Science.gov (United States)

    Khorrami, Mehdi R.; Chang, Chau-Lyan; Wie, Yong-Sun

    1997-11-01

    Effective control of compressible streamwise vortices play a significant role in both external and internal aerodynamics. In this study, evolution of disturbances in a supersonic vortex is studied by using quasi-cylindrical linear stability analysis and parabolized stability equations (PSE)footnote M. R. Malik and C.-L. Chang, AIAA Paper 97-0758. formulation. Appropriate mean-flow profilesfootnote M. K. Smart, I. M. Kalkhoran, and J. Bentson, AIAA Paper 94-2576. suitable for stability analysis were identified and modeled successfully. Using linear stability analysis, the stability characteristics of axisymmetric vortices were mapped thoroughly. The results indicate that viscosity has very little effect while increasing Mach number significantly stabilizes the disturbance. Linear PSE analysis shows that the effect of streamwise mean flow variation is small for the case considered here. Nonlinear evolution of helical modes is also studied by using PSE. The growth of the disturbances results in the appearance of coherent large scale motion and significant mean flow distortion in the axial velocity and temperature fields. In the end, nonlinear effects tend to stabilize the vortex.

  13. Nonlinear wave evolution in VLASOV plasma: a lie-transform analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cary, J.R.

    1979-08-01

    Nonlinear wave evolution in Vlasov plasma is analyzed using the Lie transform, a powerful mathematical tool which is applicable to Hamiltonian systems. The first part of this thesis is an exposition of the Lie transform. Dewar's general Lie transform theory is explained and is used to construct Deprit's Lie transform perturbation technique. The basic theory is illustrated by simple examples.

  14. Application of Exp-function method for nonlinear evolution equations with variable coefficients

    Energy Technology Data Exchange (ETDEWEB)

    El-Wakil, S.A.; Madkour, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Faculty of Education for Girls, Physics Department, King Kahlid University, Bisha, Kingdom Saudi Arabia (Saudi Arabia)], E-mail: m_abdou_eg@yahoo.com

    2007-09-10

    In this Letter, the Exp-function method with the aid of symbolic computational system Maple is used to obtain generalized solitary solutions and periodic solutions of a generalized Zakharov-Kuznetsov equation with variable coefficients. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving other nonlinear evolution equations arising in mathematical physics.

  15. Quantum Dynamics of Nonlinear Cavity Systems

    OpenAIRE

    Nation, Paul D.

    2010-01-01

    We investigate the quantum dynamics of three different configurations of nonlinear cavity systems. To begin, we carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprised of a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing a flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal ...

  16. Global solution for coupled nonlinear Klein-Gordon system

    Institute of Scientific and Technical Information of China (English)

    GAN Zai-hui; ZHANG Jian

    2007-01-01

    The global solution for a coupled nonlinear Klein-Gordon system in twodimensional space was studied.First,a sharp threshold of blowup and global existenoe for the system was obtained by constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow.Then the result of how small the initial data for which the solution exists globally was proved by using the scaling argument.

  17. A Direct Algebraic Method in Finding Particular Solutions to Some Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    LIUChun-Ping; CHENJian-Kang; CAIFan

    2004-01-01

    Firstly, a direct algebraic method and a routine way in finding traveling wave solutions to nonlinear evolution equations are explained. And then some new exact solutions for some evolution equations are obtained by using the method.

  18. Multiple scales analysis and travelling wave solutions for KdV type nonlinear evolution equations

    Science.gov (United States)

    Ayhan, Burcu; Ozer, M. Naci; Bekir, Ahmet

    2017-01-01

    Nonlinear evolution equations are the mathematical models of problems that arise in many field of science. These equations has become an important field of study in applied mathematics in recent years. We apply exact solution methods and multiple scale method which is known as a perturbation method to nonlinear evolution equations. Using exact solution methods we get travelling wave solutions expressed by hyperbolic functions, trigonometric functions and rational functions. Also we derive Nonlinear Schrödinger (NLS) type equations from Korteweg-de Vries (KdV) type nonlinear evolution equations and we get approximate solutions for KdV type equations using multiple scale method. The proposed methods are direct and effective and can be used for many nonlinear evolution equations. It is shown that these methods provide a powerful mathematical tool to solve nonlinear evolution equations in mathematical physics.

  19. Hopf Bifurcation in a Nonlinear Wave System

    Institute of Scientific and Technical Information of China (English)

    HE Kai-Fen

    2004-01-01

    @@ Bifurcation behaviour of a nonlinear wave system is studied by utilizing the data in solving the nonlinear wave equation. By shifting to the steady wave frame and taking into account the Doppler effect, the nonlinear wave can be transformed into a set of coupled oscillators with its (stable or unstable) steady wave as the fixed point.It is found that in the chosen parameter regime, both mode amplitudes and phases of the wave can bifurcate to limit cycles attributed to the Hopf instability. It is emphasized that the investigation is carried out in a pure nonlinear wave framework, and the method can be used for the further exploring routes to turbulence.

  20. FORCED OSCILLATIONS IN NONLINEAR FEEDBACK CONTROL SYSTEM

    Science.gov (United States)

    Since a nonlinear feedback control system may possess more than one type of forced oscillations, it is highly desirable to investigate the type of...method for finding the existence of forced oscillations and response curve characteristics of a nonlinear feedback control system by means of finding the...second order feedback control system are investigated; the fundamental frequency forced oscillation for a higher order system and the jump resonance

  1. Nonlinear identification of power electronic systems

    OpenAIRE

    Chau, KT; Chan, CC

    1995-01-01

    This paper presents a new approach to modelling power electronic systems using nonlinear system identification. By employing the nonlinear autoregressive moving average with exogenous input (NARMAX) technique, the parametric model of power electronic systems can be derived from the time-domain data. This approach possesses some advantages over available circuit-oriented modelling approaches, such as no small-signal approximation, no circuit idealization and no detailed knowledge of system ope...

  2. Nonlinear evolution of the electromagnetic electron-cyclotron instability in bi-Kappa distributed plasma

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, B., E-mail: bengt.eliasson@strath.ac.uk [SUPA, Physics Department, John Anderson Building, Strathclyde University, Glasgow G4 0NG, Scotland (United Kingdom); Lazar, M., E-mail: mlazar@tp4.rub.de [Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven (Belgium); Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, 44780 Bochum (Germany)

    2015-06-15

    This paper presents a numerical study of the linear and nonlinear evolution of the electromagnetic electron-cyclotron (EMEC) instability in a bi-Kappa distributed plasma. Distributions with high energy tails described by the Kappa power-laws are often observed in collision-less plasmas (e.g., solar wind and accelerators), where wave-particle interactions control the plasma thermodynamics and keep the particle distributions out of Maxwellian equilibrium. Under certain conditions, the anisotropic bi-Kappa distribution gives rise to plasma instabilities creating low-frequency EMEC waves in the whistler branch. The instability saturates nonlinearly by reducing the temperature anisotropy until marginal stability is reached. Numerical simulations of the Vlasov-Maxwell system of equations show excellent agreement with the growth-rate and real frequency of the unstable modes predicted by linear theory. The wave-amplitude of the EMEC waves at nonlinear saturation is consistent with magnetic trapping of the electrons.

  3. Quadratic stabilization of switched nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    DONG YaLi; FAN JiaoJiao; MEI ShengWei

    2009-01-01

    In this paper, the problem of quadratic stabilization of multi-input multi-output switched nonlinear systems under an arbitrary switching law is investigated. When switched nonlinear systems have uniform normal form and the zero dynamics of uniform normal form is asymptotically stable under an arbitrary switching law, state feedbacks are designed and a common quadratic Lyapunov function of all the closed-loop subsystems is constructed to realize quadratic stabilizability of the class of switched nonlinear systems under an arbitrary switching law. The results of this paper are also applied to switched linear systems.

  4. Mittag-Leffler Stability Theorem for Fractional Nonlinear Systems with Delay

    Directory of Open Access Journals (Sweden)

    S. J. Sadati

    2010-01-01

    Full Text Available Fractional calculus started to play an important role for analysis of the evolution of the nonlinear dynamical systems which are important in various branches of science and engineering. In this line of taught in this paper we studied the stability of fractional order nonlinear time-delay systems for Caputo's derivative, and we proved two theorems for Mittag-Leffler stability of the fractional nonlinear time delay systems.

  5. Advances and applications in nonlinear control systems

    CERN Document Server

    Volos, Christos

    2016-01-01

    The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...

  6. Differential Evolution-Based PID Control of Nonlinear Full-Car Electrohydraulic Suspensions

    Directory of Open Access Journals (Sweden)

    Jimoh O. Pedro

    2013-01-01

    Full Text Available This paper presents a differential-evolution- (DE- optimized, independent multiloop proportional-integral-derivative (PID controller design for full-car nonlinear, electrohydraulic suspension systems. The multiloop PID control stabilises the actuator via force feedback and also improves the system performance. Controller gains are computed using manual tuning and through DE optimization to minimise a performance index, which addresses suspension travel, road holding, vehicle handling, ride comfort, and power consumption constraints. Simulation results showed superior performance of the DE-optimized PID-controlled active vehicle suspension system (AVSS over the manually tuned PID-controlled AVSS and the passive vehicle suspension system (PVSS.

  7. Numerical studies of identification in nonlinear distributed parameter systems

    Science.gov (United States)

    Banks, H. T.; Lo, C. K.; Reich, Simeon; Rosen, I. G.

    1989-01-01

    An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed.

  8. Explicit Traveling Wave Solutions to Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    Linghai ZHANG

    2011-01-01

    First of all,some technical tools are developed. Then the author studies explicit traveling wave solutions to nonlinear dispersive wave equations,nonlinear dissipative dispersive wave equations,nonlinear convection equations,nonlinear reaction diffusion equations and nonlinear hyperbolic equations,respectively.

  9. Nonlinear Evolution of a Baroclinic Wave and Imbalanced Dissipation

    CERN Document Server

    Nadiga, Balasubramanya T

    2015-01-01

    We consider the nonlinear evolution of an unstable baroclinic wave in a regime of rotating stratified flow that is of relevance to interior circulation in the oceans and in the atmosphere---a regime characterized by small large-scale Rossby and Froude numbers, a small vertical to horizontal aspect ratio, and no bounding horizontal surfaces. Using high-resolution simulations of the non-hydrostatic Boussinesq equations and companion integrations of the balanced quasi-geostrophic equations, we present evidence for a local route to dissipation of balanced energy directly through interior turbulent cascades. Analysis of simulations presented in this study suggest that a developing baroclinic instability can lead to secondary instabilities that can cascade a small fraction of the energy forward to unbalanced scales. Mesoscale shear and strain resulting from the hydrostatic geostrophic baroclinic instability drive frontogenesis. The fronts in turn support ageostrophic secondary circulation and instabilities. These t...

  10. Nonlinear evolution of drift instabilities in the presence of collisions

    Energy Technology Data Exchange (ETDEWEB)

    Federici, J.F.; Lee, W.W.; Tang, W.M.

    1986-07-01

    Nonlinear evolution of drift instabilities in the presence of electron-ion collisions in a shear-free slab has been studied by using gyrokinetic particle simulation techniques as well as by solving, both numerically and analytically, model mode-coupling equations. The purpose of the investigation is to determine the mechanisms responsible for the nonlinear saturation of the instability and for the ensuing steady-state transport. Such an insight is very valuable for understanding drift wave problems in more complicated geometries. The results indicate that the electron E x B convection is the dominant mechanism for saturation. It is also found that the saturation amplitude and the associated quasilinear diffusion are greatly enhanced over their collisionless values as a result of weak collisions. In the highly collisional (fluid) limit, there is an upper bound for saturation with ephi/T/sub e/ approx. = (..omega../sub l//..cap omega../sub i/)/(k/sub perpendicular/rho/sub s/)/sup 2/. The associated quasilinear diffusion, which increases with collisionality, takes the form of D/sub ql/ approx. = ..gamma../sub l//k/sub perpendicular//sup 2/, where ..omega../sub l/ and ..gamma../sub l/ are the linear frequency and growth rate, respectively. In the steady state, the diffusion process becomes stochastic in nature. The relevant mechanisms here are related to the velocity-space nonlinearities and background fluctuations. The magnitude of the diffusion at this stage can be comparable to that of quasilinear diffusion in the presence of collisions, and it remains finite even in the collisionless limit.

  11. Nonlinear tumor evolution from dysplastic nodules to hepatocellular carcinoma.

    Science.gov (United States)

    Joung, Je-Gun; Ha, Sang Yun; Bae, Joon Seol; Nam, Jae-Yong; Gwak, Geum-Youn; Lee, Hae-Ock; Son, Dae-Soon; Park, Cheol-Keun; Park, Woong-Yang

    2017-01-10

    Dysplastic nodules are premalignant neoplastic nodules found in explanted livers with cirrhosis. Genetic signatures of premalignant dysplastic nodules (DNs) with concurrent hepatocellular carcinoma (HCC) may provide an insight in the molecular evolution of hepatocellular carcinogenesis. We analyzed four patients with multifocal nodular lesions and cirrhotic background by whole-exome sequencing (WES). The genomic profiles of somatic single nucleotide variations (SNV) and copy number variations (CNV) in DNs were compared to those of HCCs. The number and variant allele frequency of somatic SNVs of DNs and HCCs in each patient was identical along the progression of pathological grade. The somatic SNVs in DNs showed little conservation in HCC. Additionally, CNVs showed no conservation. Phylogenetic analysis based on SNVs and copy number profiles indicated a nonlinear segregation pattern, implying independent development of DNs and HCC in each patient. Thus, somatic mutations in DNs may be developed separately from other malignant nodules in the same liver, suggesting a nonlinear model for hepatocarcinogenesis from DNs to HCC.

  12. NONLINEAR EVOLUTION ANALYSIS OF T-S DISTURBANCE WAVE AT FINITE AMPLITUDE IN NONPARALLEL BOUNDARY LAYERS

    Institute of Scientific and Technical Information of China (English)

    唐登斌; 夏浩

    2002-01-01

    The nonlinear evolution problem in nonparallel boundary layer stability was studied. The relative parabolized stability equations of nonlinear nonparallel boundary layer were derived. The developed numerical method, which is very effective, was used to study the nonlinear evolution of T-S disturbance wave at finite amplitudes. Solving nonlinear equations of different modes by using predictor-corrector and iterative approach, which is uncoupled between modes, improving computational accuracy by using high order compact differential scheme, satisfying normalization condition, determining tables of nonlinear terms at different modes, and implementing stably the spatial marching, were included in this method. With different initial amplitudes, the nonlinear evolution of T-S wave was studied. The nonlinear nonparallel results of examples compare with data of direct numerical simulations (DNS) using full Navier- Stokes equations.

  13. Linearization of Systems of Nonlinear Diffusion Equations

    Institute of Scientific and Technical Information of China (English)

    KANG Jing; QU Chang-Zheng

    2007-01-01

    We investigate the linearization of systems of n-component nonlinear diffusion equations; such systems have physical applications in soil science, mathematical biology and invariant curve flows. Equivalence transformations of their auxiliary systems are used to identify the systems that can be linearized. We also provide several examples of systems with two-component equations, and show how to linearize them by nonlocal mappings.

  14. Model Updating Nonlinear System Identification Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology by adopting the flight data with state-of-the-art...

  15. Boundary Controllability of Nonlinear Fractional Integrodifferential Systems

    Directory of Open Access Journals (Sweden)

    Ahmed HamdyM

    2010-01-01

    Full Text Available Sufficient conditions for boundary controllability of nonlinear fractional integrodifferential systems in Banach space are established. The results are obtained by using fixed point theorems. We also give an application for integropartial differential equations of fractional order.

  16. Computational Models for Nonlinear Aeroelastic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate a new and efficient computational method of modeling nonlinear aeroelastic systems. The...

  17. Interactive optomechanical coupling with nonlinear polaritonic systems

    CERN Document Server

    Bobrovska, N; Liew, T C H; Kyriienko, O

    2016-01-01

    We study a system of interacting matter quasiparticles strongly coupled to photons inside an optomechanical cavity. The resulting normal modes of the system are represented by hybrid polaritonic quasiparticles, which acquire effective nonlinearity. Its strength is influenced by the presence of the mechanical mode and depends on the resonance frequency of the cavity. This leads to an interactive type of optomechanical coupling, being distinct from the previously studied dispersive and dissipative couplings in optomechanical systems. The emergent interactive coupling is shown to generate effective optical nonlinearity terms of high order, being quartic in the polariton number. We consider particular systems of exciton-polaritons and dipolaritons, and show that the induced effective optical nonlinearity due to the interactive coupling can exceed in magnitude the strength of Kerr nonlinear terms, such as those arising from polariton-polariton interactions. As applications, we show that the higher order terms give...

  18. Complex Tanh-Function Expansion Method and Exact Solutions to Two Systems of Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANGJin-Liang; WANGMing-Liang

    2004-01-01

    The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schroedinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.

  19. Complex Tanh-Function Expansion Method and Exact Solutions to Two Systems of Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Liang; WANG Ming-Liang

    2004-01-01

    The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schrodinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.

  20. Evolution of Nonlinear Internal Waves in China Seas

    Science.gov (United States)

    Liu, Antony K.; Hsu, Ming-K.; Liang, Nai K.

    1997-01-01

    Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. Based on the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water due to a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a turning point of approximately equal layer depths has been observed in the SAR image and simulated by numerical model.

  1. Chaotification for a class of nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Liu Na; Guan Zhi-Hong

    2009-01-01

    More and more attention has been focused on effectively generating chaos via simple physical devices. The problem of creating chaotic attractors is considered for a class of nonlinear systems with backlash function in this paper. By utilizing the Silnikov heteroclinic and homoclinic theorems, some sufficient conditions are established to guarantee that the nonlinear system has horseshoe-type chaos. Examples and simulations are given to verify the effectiveness of the theoretical results.

  2. APPROXIMATE OUTPUT REGULATION FOR AFFINE NONLINEAR SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Yali DONG; Daizhan CHENG; Huashu QIN

    2003-01-01

    Output regulation for affine nonlinear systems driven by an exogenous signal is investigated in this paper. In the absence of the standard exosystem hypothesis, we assume availability of the instantaneous values of the exogenous signal and its first time-derivative for use in the control law.For affine nonlinear systems, the necessary and sufficient conditions of the solvability of approximate output regulation problem are obtained. The precise form of the control law is presented under some suitable assumptions.

  3. Qualitative stability of nonlinear networked systems

    OpenAIRE

    Angulo, Marco Tulio; Slotine, Jean-Jacques

    2016-01-01

    In many large systems, such as those encountered in biology or economics, the dynamics are nonlinear and are only known very coarsely. It is often the case, however, that the signs (excitation or inhibition) of individual interactions are known. This paper extends to nonlinear systems the classical criteria of linear sign stability introduced in the 70's, yielding simple sufficient conditions to determine stability using only the sign patterns of the interactions.

  4. Predicting catastrophes in nonlinear dynamical systems by compressive sensing.

    Science.gov (United States)

    Wang, Wen-Xu; Yang, Rui; Lai, Ying-Cheng; Kovanis, Vassilios; Grebogi, Celso

    2011-04-15

    An extremely challenging problem of significant interest is to predict catastrophes in advance of their occurrences. We present a general approach to predicting catastrophes in nonlinear dynamical systems under the assumption that the system equations are completely unknown and only time series reflecting the evolution of the dynamical variables of the system are available. Our idea is to expand the vector field or map of the underlying system into a suitable function series and then to use the compressive-sensing technique to accurately estimate the various terms in the expansion. Examples using paradigmatic chaotic systems are provided to demonstrate our idea.

  5. Predicting catastrophes in nonlinear dynamical systems by compressive sensing

    CERN Document Server

    Wang, Wen-Xu; Lai, Ying-Cheng; Kovanis, Vassilios; Grebogi, Celso

    2011-01-01

    An extremely challenging problem of significant interest is to predict catastrophes in advance of their occurrences. We present a general approach to predicting catastrophes in nonlinear dynamical systems under the assumption that the system equations are completely unknown and only time series reflecting the evolution of the dynamical variables of the system are available. Our idea is to expand the vector field or map of the underlying system into a suitable function series and then to use the compressive-sensing technique to accurately estimate the various terms in the expansion. Examples using paradigmatic chaotic systems are provided to demonstrate our idea.

  6. Nonlinear Differential Systems with Prescribed Invariant Sets

    DEFF Research Database (Denmark)

    Sandqvist, Allan

    1999-01-01

    We present a class of nonlinear differential systems for which invariant sets can be prescribed.Moreover,we show that a system in this class can be explicitly solved if a certain associated linear homogeneous system can be solved.As a simple application we construct a plane autonomous system having...

  7. Semiquantum versus semiclassical mechanics for simple nonlinear systems

    CERN Document Server

    Bracken, A J

    2005-01-01

    Quantum mechanics has been formulated in phase space, with the Wigner function as the representative of the quantum density operator, and classical mechanics has been formulated in Hilbert space, with the Groenewold operator as the representative of the classical Liouville density function. Semiclassical approximations to the quantum evolution of the Wigner function have been defined, enabling the quantum evolution to be approached from a classical starting point. Now analogous semiquantum approximations to the classical evolution of the Groenewold operator are defined, enabling the classical evolution to be approached from a quantum starting point. Simple nonlinear systems with one degree of freedom are considered, whose Hamiltonians are polynomials in the Hamiltonian of the simple harmonic oscillator. The behaviour of expectation values of simple observables and of eigenvalues of the Groenewold operator, are calculated numerically and compared for the various semiclassical and semiquantum approximations.

  8. Hyperchaos in fractional order nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Wajdi M. [Electrical and Computer Engineering Department, University of Sharjah, P.O. Box 27272 Sharjah (United Arab Emirates)] e-mail: wajdi@sharjah.ac.ae

    2005-12-01

    We numerically investigate hyperchaotic behavior in an autonomous nonlinear system of fractional order. It is demonstrated that hyperchaotic behavior of the integer order nonlinear system is preserved when the order becomes fractional. The system under study has been reported in the literature [Murali K, Tamasevicius A, Mykolaitis G, Namajunas A, Lindberg E. Hyperchaotic system with unstable oscillators. Nonlinear Phenom Complex Syst 3(1);2000:7-10], and consists of two nonlinearly coupled unstable oscillators, each consisting of an amplifier and an LC resonance loop. The fractional order model of this system is obtained by replacing one or both of its capacitors by fractional order capacitors. Hyperchaos is then assessed by studying the Lyapunov spectrum. The presence of multiple positive Lyapunov exponents in the spectrum is indicative of hyperchaos. Using the appropriate system control parameters, it is demonstrated that hyperchaotic attractors are obtained for a system order less than 4. Consequently, we present a conjecture that fourth-order hyperchaotic nonlinear systems can still produce hyperchaotic behavior with a total system order of 3 + {epsilon}, where 1 > {epsilon} > 0.

  9. Canonical structure of evolution equations with non-linear dispersive terms

    Indian Academy of Sciences (India)

    B Talukdar; J Shamanna; S Ghosh

    2003-07-01

    The inverse problem of the variational calculus for evolution equations characterized by non-linear dispersive terms is analysed with a view to clarify why such a system does not follow from Lagrangians. Conditions are derived under which one could construct similar equations which admit a Lagrangian representation. It is shown that the system of equations thus obtained can be Hamiltonized by making use of the Dirac’s theory of constraints. The specific results presented refer to the third- and fifth-order equations of the so-called distinguished subclass.

  10. Nonlinear dynamics and quantum entanglement in optomechanical systems.

    Science.gov (United States)

    Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso

    2014-03-21

    To search for and exploit quantum manifestations of classical nonlinear dynamics is one of the most fundamental problems in physics. Using optomechanical systems as a paradigm, we address this problem from the perspective of quantum entanglement. We uncover strong fingerprints in the quantum entanglement of two common types of classical nonlinear dynamical behaviors: periodic oscillations and quasiperiodic motion. There is a transition from the former to the latter as an experimentally adjustable parameter is changed through a critical value. Accompanying this process, except for a small region about the critical value, the degree of quantum entanglement shows a trend of continuous increase. The time evolution of the entanglement measure, e.g., logarithmic negativity, exhibits a strong dependence on the nature of classical nonlinear dynamics, constituting its signature.

  11. Nonlinear characteristics of an autoparametric vibration system

    Science.gov (United States)

    Yan, Zhimiao; Taha, Haithem E.; Tan, Ting

    2017-03-01

    The nonlinear characteristics of an autoparametric vibration system are investigated. This system consists of a base structure and a cantilever beam with a tip mass. The dynamic equations for the system are derived using the extended Hamilton's principle. The method of multiple scales (MMS) is used to determine an approximate analytical solution of the nonlinear governing equations and, hence, analyze the stability and bifurcation of the system. Compared with the numerical simulation, the first-order MMS is not sufficient. A Lagrangian-based approach is proposed to perform a second-order analysis, which is applicable to a large class of nonlinear systems. The effects of the amplitude and frequency of the external force, damping and frequency of the attached cantilever beam, and the tip mass on the nonlinear responses of the autoparametric vibration system are determined. The results show that this system exhibits many interesting nonlinear phenomena including saturation, jumps, hysteresis and different kinds of bifurcations, such as saddle-node, supercritical pitchfork and subcritical pitchfork bifurcations. Power spectra, phase portraits and Poincare maps are employed to analyze the unstable behavior and the associated Hopf bifurcation and chaos. Depending on the application of such a system, its dynamical behaviors could be exploited or avoided.

  12. Nonlinear vibrating system identification via Hilbert decomposition

    Science.gov (United States)

    Feldman, Michael; Braun, Simon

    2017-02-01

    This paper deals with the identification of nonlinear vibration systems, based on measured signals for free and forced vibration regimes. Two categories of time domain signal are analyzed, one of a fast inter-modulation signal and a second as composed of several mono-components. To some extent, this attempts to imitate analytic studies of such systems, with its two major analysis groups - the perturbation and the harmonic balance methods. Two appropriate signal processing methods are then investigated, one based on demodulation and the other on signal decomposition. The Hilbert Transform (HT) has been shown to enable effective and simple methods of analysis. We show that precise identification of the nonlinear parameters can be obtained, contrary to other average HT based methods where only approximation parameters are obtained. The effectiveness of the proposed methods is demonstrated for the precise nonlinear system identification, using both the signal demodulation and the signal decomposition methods. Following the exposition of the tools used, both the signal demodulation as well as decomposition are applied to classical examples of nonlinear systems. Cases of nonlinear stiffness and damping forces are analyzed. These include, among other, an asymmetric Helmholtz oscillator, a backlash with nonlinear turbulent square friction, and a Duffing oscillator with dry friction.

  13. Modal analysis of nonlinear mechanical systems

    CERN Document Server

    2014-01-01

    The book first introduces the concept of nonlinear normal modes (NNMs) and their two main definitions. The fundamental differences between classical linear normal modes (LNMs) and NNMs are explained and illustrated using simple examples. Different methods for computing NNMs from a mathematical model are presented. Both advanced analytical and numerical methods are described. Particular attention is devoted to the invariant manifold and normal form theories. The book also discusses nonlinear system identification.

  14. NONLINEAR DYNAMIC ANALYSIS OF FLEXIBLE MULTIBODY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    A.Y.T.Leung; WuGuorong; ZhongWeifang

    2004-01-01

    The nonlinear dynamic equations of a multibody system composed of flexible beams are derived by using the Lagrange multiplier method. The nonlinear Euler beam theory with inclusion of axial deformation effect is employed and its deformation field is described by exact vibration modes. A numerical procedure for solving the dynamic equations is presented based on the Newmark direct integration method combined with Newton-Raphson iterative method. The results of numerical examples prove the correctness and efficiency of the method proposed.

  15. Gradient realization of nonlinear control systems

    NARCIS (Netherlands)

    Cortes monforte, J.; Cortés, J.; Crouch, P.E.; Astolfi, A.; van der Schaft, Arjan; Gordillo, F.

    2003-01-01

    We investigate necessary and su?cient conditions under which a nonlinear afine control system with outputs can be written as a gradient control system corresponding to some pseudo-Riemannian metric defined on the state space. The results rely on a suitable notion of compatibility of the system with

  16. Damage detection in initially nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Bornn, Luke [Los Alamos National Laboratory; Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-01-01

    The primary goal of Structural Health Monitoring (SHM) is to detect structural anomalies before they reach a critical level. Because of the potential life-safety and economic benefits, SHM has been widely studied over the past decade. In recent years there has been an effort to provide solid mathematical and physical underpinnings for these methods; however, most focus on systems that behave linearly in their undamaged state - a condition that often does not hold in complex 'real world' systems and systems for which monitoring begins mid-lifecycle. In this work, we highlight the inadequacy of linear-based methodology in handling initially nonlinear systems. We then show how the recently developed autoregressive support vector machine (AR-SVM) approach to time series modeling can be used for detecting damage in a system that exhibits initially nonlinear response. This process is applied to data acquired from a structure with induced nonlinearity tested in a laboratory environment.

  17. Controller Design of Complex System Based on Nonlinear Strength

    Directory of Open Access Journals (Sweden)

    Rongjun Mu

    2015-01-01

    Full Text Available This paper presents a new idea of controller design for complex systems. The nonlinearity index method was first developed for error propagation of nonlinear system. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of the system model. The algorithm of nonlinearity index according to engineering application is first proposed in this paper. Applying this method on nonlinear systems is an effective way to measure the nonlinear strength of dynamics model over the full flight envelope. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of system model. According to the different nonlinear strength of dynamical model, the control system is designed. The simulation time of dynamical complex system is selected by the maximum value of dynamic nonlinearity indices. Take a missile as example; dynamical system and control characteristic of missile are simulated. The simulation results show that the method is correct and appropriate.

  18. An approximation theory for the identification of nonlinear distributed parameter systems

    Science.gov (United States)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1990-01-01

    An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato appproximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.

  19. Nonlinear System Identification and Behavioral Modeling

    CERN Document Server

    Huq, Kazi Mohammed Saidul; Kabir, A F M Sultanul

    2010-01-01

    The problem of determining a mathematical model for an unknown system by observing its input-output data pair is generally referred to as system identification. A behavioral model reproduces the required behavior of the original analyzed system, such as there is a one-to-one correspondence between the behavior of the original system and the simulated system. This paper presents nonlinear system identification and behavioral modeling using a work assignment.

  20. Nonlinear evolution of large-scale structure in the universe

    Energy Technology Data Exchange (ETDEWEB)

    Frenk, C.S.; White, S.D.M.; Davis, M.

    1983-08-15

    Using N-body simulations we study the nonlinear development of primordial density perturbation in an Einstein--de Sitter universe. We compare the evolution of an initial distribution without small-scale density fluctuations to evolution from a random Poisson distribution. These initial conditions mimic the assumptions of the adiabatic and isothermal theories of galaxy formation. The large-scale structures which form in the two cases are markedly dissimilar. In particular, the correlation function xi(r) and the visual appearance of our adiabatic (or ''pancake'') models match better the observed distribution of galaxies. This distribution is characterized by large-scale filamentary structure. Because the pancake models do not evolve in a self-similar fashion, the slope of xi(r) steepens with time; as a result there is a unique epoch at which these models fit the galaxy observations. We find the ratio of cutoff length to correlation length at this time to be lambda/sub min//r/sub 0/ = 5.1; its expected value in a neutrino dominated universe is 4(..cap omega..h)/sup -1/ (H/sub 0/ = 100h km s/sup -1/ Mpc/sup -1/). At early epochs these models predict a negligible amplitude for xi(r) and could explain the lack of measurable clustering in the Ly..cap alpha.. absorption lines of high-redshift quasars. However, large-scale structure in our models collapses after z = 2. If this collapse precedes galaxy formation as in the usual pancake theory, galaxies formed uncomfortably recently. The extent of this problem may depend on the cosmological model used; the present series of experiments should be extended in the future to include models with ..cap omega..<1.

  1. Solitons and periodic solutions to a couple of fractional nonlinear evolution equations

    Indian Academy of Sciences (India)

    M Mirzazadeh; M Eslami; Anjan Biswas

    2014-03-01

    This paper studies a couple of fractional nonlinear evolution equations using first integral method. These evolution equations are foam drainage equation and Klein–Gordon equation (KGE), the latter of which is considered in (2 + 1) dimensions. For the fractional evolution, the Jumarie’s modified Riemann–Liouville derivative is considered. Exact solutions to these equations are obtained.

  2. Two Kinds of Square-Conservative Integrators for Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing-Bo; LIU Hong

    2008-01-01

    @@ Based on the Lie-group and Gauss-Legendre methods, two kinds of square-conservative integrators for squareconservative nonlinear evolution equations are presented. Lie-group based square-conservative integrators are linearly implicit, while Gauss-Legendre based square-conservative integrators are nonlinearly implicit and iterarive schemes are needed to solve the corresponding integrators. These two kinds of integrators provide natural candidates for simulating square-conservative nonlinear evolution equations in the sense that these integrators not only preserve the square-conservative properties of the continuous equations but also are nonlinearly stable.Numerical experiments are performed to test the presented integrators.

  3. Discrete time learning control in nonlinear systems

    Science.gov (United States)

    Longman, Richard W.; Chang, Chi-Kuang; Phan, Minh

    1992-01-01

    In this paper digital learning control methods are developed primarily for use in single-input, single-output nonlinear dynamic systems. Conditions for convergence of the basic form of learning control based on integral control concepts are given, and shown to be satisfied by a large class of nonlinear problems. It is shown that it is not the gross nonlinearities of the differential equations that matter in the convergence, but rather the much smaller nonlinearities that can manifest themselves during the short time interval of one sample time. New algorithms are developed that eliminate restrictions on the size of the learning gain, and on knowledge of the appropriate sign of the learning gain, for convergence to zero error in tracking a feasible desired output trajectory. It is shown that one of the new algorithms can give guaranteed convergence in the presence of actuator saturation constraints, and indicate when the requested trajectory is beyond the actuator capabilities.

  4. Theoretical aspects of nonlinear echo image system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ruiquan; FENG Shaosong

    2003-01-01

    In order to develop the nonlinear echo image system to diagnose pathological changes in biological tissue , a simple physical model to analyse the character of nonlinear reflected wave in biological medium is postulated. The propagation of large amplitude plane sound wave in layered biological media is analysed for the one dimensional case by the method of successive approximation and the expression for the second order wave reflected from any interface of layered biological media is obtained. The relations between the second order reflection coefficients and the nonlinear parameters of medium below the interface are studied in three layers interfaces. Finally, the second order reflection coefficients of four layered media are calculated numerically. The results indicate that the nonlinear parameter B/A of each layer of biological media can be determined by the reflection method.

  5. Nonlinear system identification in offshore structural reliability

    Energy Technology Data Exchange (ETDEWEB)

    Spanos, P.D. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corporation, Houston, TX (United States)

    1995-08-01

    Nonlinear forces acting on offshore structures are examined from a system identification perspective. The nonlinearities are induced by ocean waves and may become significant in many situations. They are not necessarily in the form of Morison`s equation. Various wave force models are examined. The force function is either decomposed into a set of base functions or it is expanded in terms of the wave and structural kinematics. The resulting nonlinear system is decomposed into a number of parallel no-memory nonlinear systems, each followed by a finite-memory linear system. A conditioning procedure is applied to decouple these linear sub-systems; a frequency domain technique involving autospectra and cross-spectra is employed to identify the linear transfer functions. The structural properties and those force transfer parameters are determine with the aid of the coherence functions. The method is verified using simulated data. It provides a versatile and noniterative approach for dealing with nonlinear interaction problems encountered in offshore structural analysis and design.

  6. BINARY NONLINEARIZATION FOR THE DIRAC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    MAWENXIU

    1997-01-01

    A Bargmann symmetry constraint is proposed for the Lax pairs and the adjoint Lax pairs of the Dirac systems. It is shown that the spatial part of the nonlinearized Lax pairs and adjoint Lax pairs is a finite dimensional Linuville integrable Hamiltonian system and that under the control of the spatial part, the time parts of the nonlinearized Lax pairs and adjoint Lax pairs are interpreted as a hierarchy of commutative, finite dimensional Linuville integrable Hamiltoian systems whose Hamiltonian functions consist of a series of integrals of motion for the spatial part. Moreover an invaiutive representation of solutions of the Dirac systems exhibits their integrability by quadratures. This kind of symmetry constraint procedure involving thespectral problem and the adjoint spectral problem is referred to as a binary nonlinearization technique like a binary Darhoux transformation.

  7. Non-linear evolution of the cosmic neutrino background

    CERN Document Server

    Villaescusa-Navarro, Francisco; Peña-Garay, Carlos; Viel, Matteo

    2012-01-01

    We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations. Our set of simulations explore the properties of neutrinos in a reference $\\Lambda$CDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass $10^{11}-10^{15}$ $h^{-1}$M$_{\\odot}$, over a redshift range $z=0-2$. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified ...

  8. Nonlinearity and Chaos in the Magnetopause Shear System

    Institute of Scientific and Technical Information of China (English)

    傅绥燕; 濮祖荫; 刘振兴

    1994-01-01

    Chaotic phenomena in the magnetopause boundary region are studied in the MHD framework by using the Fourier truncation method. The MHD system is considered as a one-dimensional current sheet with a co-existing velocity shear and continuous energy transfer. The nonlinearity of the system, the evolution processes and properties of its different attractors are analysed. The possible routs and parameter conditions for chaos onset are also investigated. Numerical solutions show that when the Reynolds number (R) and the magnetic Reynolds number (Km) are very large, chaos appears in the system and its onset may provide a physical mechanism leading to turbulent reconnection at the magnetopause.

  9. Ontology of Earth's nonlinear dynamic complex systems

    Science.gov (United States)

    Babaie, Hassan; Davarpanah, Armita

    2017-04-01

    As a complex system, Earth and its major integrated and dynamically interacting subsystems (e.g., hydrosphere, atmosphere) display nonlinear behavior in response to internal and external influences. The Earth Nonlinear Dynamic Complex Systems (ENDCS) ontology formally represents the semantics of the knowledge about the nonlinear system element (agent) behavior, function, and structure, inter-agent and agent-environment feedback loops, and the emergent collective properties of the whole complex system as the result of interaction of the agents with other agents and their environment. It also models nonlinear concepts such as aperiodic, random chaotic behavior, sensitivity to initial conditions, bifurcation of dynamic processes, levels of organization, self-organization, aggregated and isolated functionality, and emergence of collective complex behavior at the system level. By incorporating several existing ontologies, the ENDCS ontology represents the dynamic system variables and the rules of transformation of their state, emergent state, and other features of complex systems such as the trajectories in state (phase) space (attractor and strange attractor), basins of attractions, basin divide (separatrix), fractal dimension, and system's interface to its environment. The ontology also defines different object properties that change the system behavior, function, and structure and trigger instability. ENDCS will help to integrate the data and knowledge related to the five complex subsystems of Earth by annotating common data types, unifying the semantics of shared terminology, and facilitating interoperability among different fields of Earth science.

  10. Robustness analysis for a class of nonlinear descriptor systems

    Institute of Scientific and Technical Information of China (English)

    吴敏; 张凌波; 何勇

    2004-01-01

    The robustness analysis problem of a class of nonlinear descriptor systems is studied. Nonlinear matrix inequality which has the good computation property of convex feasibility is employed to derive some sufficient conditions to guarantee that the nonlinear descriptor systems have robust disturbance attenuation performance, which avoids the computational difficulties in conversing nonlinear matrix and Hamilton-Jacobi inequality. The computation property of convex feasibility of nonlinear matrix inequality makes it possible to apply the results of nonlinear robust control to practice.

  11. Nonlinear Control of Delay and PDE Systems

    Science.gov (United States)

    Bekiaris-Liberis, Nikolaos

    In this dissertation we develop systematic procedures for the control and analysis of general nonlinear systems with delays and of nonlinear PDE systems. We design predictor feedback laws (i.e., feedback laws that use the future, rather than the current state of the system) for the compensation of delays (i.e., after the control signal reaches the system for the first time, the system behaves as there were no delay at all) that can be time-varying or state-dependent, on the input and on the state of nonlinear systems. We also provide designs of predic- tor feedback laws for linear systems with constant distributed delays and known or unknown plant parameters, and for linear systems with simultaneous known or unknown constant delays on the input and the state. Moreover, we intro- duce infinite-dimensional backstepping transformations for each particular prob-lem, which enables us to construct Lyapunov-Krasovskii functionals. With the available Lyapunov-Krasovskii functionals we study stability, as well as, robust- ness of our control laws to plant uncertainties. We deal with coupled PDE-ODE systems. We consider nonlinear systems with wave actuator dynamics, for which we design a predictor inspired feedback law. We study stability of the closed-loop system either by constructing Lyapunov functionals, or using arguments of explicit solutions. We also consider linear sys- tems with distributed actuator and sensor dynamics governed by diffusion or wave PDEs, for which we design stabilizing feedback laws. We study stability of the closed-loop systems using Lyapunov functionals that we construct with the intro- duction of infinite-dimensional transformations of forwarding type. Finally, we develop a control design methodology for coupled nonlinear first-order hyperbolic PDEs through an application to automotive catalysts.

  12. Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems

    Science.gov (United States)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract framework and convergence theory is developed for Galerkin approximation for inverse problems involving the identification of nonautonomous nonlinear distributed parameter systems. A set of relatively easily verified conditions is provided which are sufficient to guarantee the existence of optimal solutions and their approximation by a sequence of solutions to a sequence of approximating finite dimensional identification problems. The approach is based on the theory of monotone operators in Banach spaces and is applicable to a reasonably broad class of nonlinear distributed systems. Operator theoretic and variational techniques are used to establish a fundamental convergence result. An example involving evolution systems with dynamics described by nonstationary quasilinear elliptic operators along with some applications are presented and discussed.

  13. Controller reconfiguration for non-linear systems

    NARCIS (Netherlands)

    Kanev, S.; Verhaegen, M.

    2000-01-01

    This paper outlines an algorithm for controller reconfiguration for non-linear systems, based on a combination of a multiple model estimator and a generalized predictive controller. A set of models is constructed, each corresponding to a different operating condition of the system. The interacting m

  14. Dynamic disturbance decoupling for nonlinear systems

    NARCIS (Netherlands)

    Huijberts, H.J.C.; Nijmeijer, H.; Wegen, van der L.L.M.

    1992-01-01

    In analogy with the dynamic input-output decoupling problem the dynamic disturbance decoupling problem for nonlinear systems is introduced. A local solution of this problem is obtained in the case that the system under consideration is invertible. The solution is given in algebraic as well as in geo

  15. Hybrid simulation theory for a classical nonlinear dynamical system

    Science.gov (United States)

    Drazin, Paul L.; Govindjee, Sanjay

    2017-03-01

    Hybrid simulation is an experimental and computational technique which allows one to study the time evolution of a system by physically testing a subset of it while the remainder is represented by a numerical model that is attached to the physical portion via sensors and actuators. The technique allows one to study large or complicated mechanical systems while only requiring a subset of the complete system to be present in the laboratory. This results in vast cost savings as well as the ability to study systems that simply can not be tested due to scale. However, the errors that arise from splitting the system in two requires careful attention, if a valid simulation is to be guaranteed. To date, efforts to understand the theoretical limitations of hybrid simulation have been restricted to linear dynamical systems. In this work we consider the behavior of hybrid simulation when applied to nonlinear dynamical systems. As a model problem, we focus on the damped, harmonically-driven nonlinear pendulum. This system offers complex nonlinear characteristics, in particular periodic and chaotic motions. We are able to show that the application of hybrid simulation to nonlinear systems requires a careful understanding of what one expects from such an experiment. In particular, when system response is chaotic we advocate the need for the use of multiple metrics to characterize the difference between two chaotic systems via Lyapunov exponents and Lyapunov dimensions, as well as correlation exponents. When system response is periodic we advocate the use of L2 norms. Further, we are able to show that hybrid simulation can falsely predict chaotic or periodic response when the true system has the opposite characteristic. In certain cases, we are able to show that control system parameters can mitigate this issue.

  16. On the sputtering of metals and insulators: A nonlinear evolution problem with nonlinear boundary condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H. [Univ. of Texas, Austin, TX (United States). Dept. of Mathematics

    1994-10-01

    In this paper the author considers a nonlinear evolution problem denoted in the paper as P. Problem (P) arises in the study of thermal evaporation of atoms and molecules from locally heated surface regions (spikes) invoked as one of several mechanisms of ion-bombardment-induced particle emission (sputtering). Then in the case of particle-induced evaporation, the Stefan-Boltzman law of heat loss by radiation is replaced by some activation law describing the loss of heat by evaporation. The equation in P is the so-called degenerate diffusion problem, which has been extensively studied in recent years. However, when dealing with the nonlinear flux boundary condition, {beta}({center_dot}) is usually assumed to be monotene. The purpose of this paper is to provide a general theory for problem P under a different assumption on {beta}({center_dot}), i.e., Lipschitz continuity instead of monotonicity. The main idea of the proof used here is to choose an appropriate test function from the corresponding linearized dual space of the solution. The similar idea has been used by many authors, e.g., Aronson, Crandall and Peletier, Bertsch and Hilhorst and Friedman. The author follows the proof of Bertsch and Hilhorst. The paper is organized as follows. They begin by stating the precise assumptions on the functions involved in P and by defining a weak solution. Then, in Section 2 they prove the existence of the solution by the method of parabolic regularization. The uniqueness is proved in Section 3. Finally, they study the large time behavior of the solution in Section 4.

  17. Fault detection for nonlinear systems - A standard problem approach

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1998-01-01

    The paper describes a general method for designing (nonlinear) fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension...

  18. Non-linear evolution of the cosmic neutrino background

    Energy Technology Data Exchange (ETDEWEB)

    Villaescusa-Navarro, Francisco; Viel, Matteo [INAF/Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143, Trieste (Italy); Bird, Simeon [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ, 08540 (United States); Peña-Garay, Carlos, E-mail: villaescusa@oats.inaf.it, E-mail: spb@ias.edu, E-mail: penya@ific.uv.es, E-mail: viel@oats.inaf.it [Instituto de Física Corpuscular, CSIC-UVEG, E-46071, Paterna, Valencia (Spain)

    2013-03-01

    We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ΛCDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}−10{sup 15} h{sup −1}M{sub s}un, over a redshift range z = 0−2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ∼ 10{sup 13.5}h{sup −1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ∼ 200 h{sup −1}kpc at z = 0, and are stable with

  19. Network science, nonlinear science and infrastructure systems

    CERN Document Server

    2007-01-01

    Network Science, Nonlinear Science and Infrastructure Systems has been written by leading scholars in these areas. Its express purpose is to develop common theoretical underpinnings to better solve modern infrastructural problems. It is felt by many who work in these fields that many modern communication problems, ranging from transportation networks to telecommunications, Internet, supply chains, etc., are fundamentally infrastructure problems. Moreover, these infrastructure problems would benefit greatly from a confluence of theoretical and methodological work done with the areas of Network Science, Dynamical Systems and Nonlinear Science. This book is dedicated to the formulation of infrastructural tools that will better solve these types of infrastructural problems. .

  20. Nonlinear system compound inverse control method

    Institute of Scientific and Technical Information of China (English)

    Yan ZHANG; Zengqiang CHEN; Peng YANG; Zhuzhi YUAN

    2005-01-01

    A compound neural network is utilized to identify the dynamic nonlinear system.This network is composed of two parts: one is a linear neural network,and the other is a recurrent neural network.Based on the inverse theory a compound inverse control method is proposed.The controller has also two parts:a linear controller and a nonlinear neural network controller.The stability condition of the closed-loop neural network-based compound inverse control system is demonstrated based on the Lyapunov theory.Simulation studies have shown that this scheme is simple and has good control accuracy and robustness.

  1. Explicit solutions of nonlinear wave equation systems

    Institute of Scientific and Technical Information of China (English)

    Ahmet Bekir; Burcu Ayhan; M.Naci (O)zer

    2013-01-01

    We apply the (G'/G)-expansion method to solve two systems of nonlinear differential equations and construct traveling wave solutions expressed in terms of hyperbolic functions,trigonometric functions,and rational functions with arbitrary parameters.We highlight the power of the (G'/G)-expansion method in providing generalized solitary wave solutions of different physical structures.It is shown that the (G'/G)-expansion method is very effective and provides a powerful mathematical tool to solve nonlinear differential equation systems in mathematical physics.

  2. Finite volume evolution Galerkin (FVEG) methods for hyperbolic systems

    OpenAIRE

    Lukácová-Medvid'ová, Maria; Morton, K.W.; Warnecke, Gerald

    2003-01-01

    The subject of the paper is the derivation and analysis of new multidimensional, high-resolution, finite volume evolution Galerkin (FVEG) schemes for systems of nonlinear hyperbolic conservation laws. Our approach couples a finite volume formulation with approximate evolution operators. The latter are constructed using the bicharacteristics of the multidimensional hyperbolic system, such that all of the infinitely many directions of wave propagation are taken into account. In particular, we p...

  3. Solitary Wave and Non-traveling Wave Solutions to Two Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.

  4. SIMILARITY REDUCTIONS FOR THE NONLINEAR EVOLUTION EQUATION ARISING IN THE FERMI-PASTA-ULAM PROBLEM

    Institute of Scientific and Technical Information of China (English)

    谢福鼎; 闫振亚; 张鸿庆

    2002-01-01

    Four families of similarity reductions are obtained for the nonlinear evolution equation arising in the Fermi-Pasta-Ulam problem via using both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou.

  5. A new application of Riccati equation to some nonlinear evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Geng Tao [School of Science, PO Box 122, Beijing University of Posts and Telecommunications, Beijing 100876 (China)], E-mail: taogeng@yahoo.com.cn; Shan Wenrui [School of Science, PO Box 122, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2008-03-03

    By means of symbolic computation, a new application of Riccati equation is presented to obtain novel exact solutions of some nonlinear evolution equations, such as nonlinear Klein-Gordon equation, generalized Pochhammer-Chree equation and nonlinear Schroedinger equation. Comparing with the existing tanh methods and the proposed modifications, we obtain the exact solutions in the form as a non-integer power polynomial of tanh (or tan) functions by using this method, and the availability of symbolic computation is demonstrated.

  6. Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves

    DEFF Research Database (Denmark)

    Eldeberky, Y.; Madsen, Per A.

    1999-01-01

    This paper presents a new and more accurate set of deterministic evolution equations for the propagation of fully dispersive, weakly nonlinear, irregular, multidirectional waves. The equations are derived directly from the Laplace equation with leading order nonlinearity in the surface boundary c...

  7. Spin Evolution of Accreting Neutron Stars: Nonlinear Development of the R-mode Instability

    CERN Document Server

    Bondarescu, Ruxandra; Wasserman, Ira

    2007-01-01

    The nonlinear saturation of the r-mode instability and its effects on the spin evolution of Low Mass X-ray Binaries (LMXBs) are modeled using the triplet of modes at the lowest parametric instability threshold. We solve numerically the coupled equations for the three mode amplitudes in conjunction with the spin and temperature evolution equations. We observe that very quickly the mode amplitudes settle into quasi-stationary states. Once these states are reached, the mode amplitudes can be found algebraically and the system of equations is reduced from eight to two equations: spin and temperature evolution. Eventually, the system may reach thermal equilibrium and either (1) undergo a cyclic evolution with a frequency change of at most 10%, (2) evolve toward a full equilibrium state in which the accretion torque balances the gravitational radiation emission, or (3) enter a thermogravitational runaway on a very long timescale of about $10^6$ years. Alternatively, a faster thermal runaway (timescale of about 100 ...

  8. Nonlinear evolution of oblique waves on compressible shear layers

    Science.gov (United States)

    Goldstein, M. E.; Leib, S. J.

    1989-01-01

    The effects of critical-layer nonlinearity on spatially growing oblique instability waves on compressible shear layers between two parallel streams are considered. The analysis shows that mean temperature nonuniformities cause nonlinearity to occur at much smaller amplitudes than it does when the flow is isothermal. The nonlinear instability wave growth rate effects are described by an integrodifferential equation which bears some resemblance to the Landau equation, in that it involves a cubic-type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. Inviscid solutions always end in a singularity at a finite downstream distance, but viscosity can eliminate this singularity for certain parameter ranges.

  9. Workshop on Nonlinear Phenomena in Complex Systems

    CERN Document Server

    1989-01-01

    This book contains a thorough treatment of neural networks, cellular-automata and synergetics, in an attempt to provide three different approaches to nonlinear phenomena in complex systems. These topics are of major interest to physicists active in the fields of statistical mechanics and dynamical systems. They have been developed with a high degree of sophistication and include the refinements necessary to work with the complexity of real systems as well as the more recent research developments in these areas.

  10. New results in global stabilization for stochastic nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Tao BIAN; Zhong-Ping JIANG

    2016-01-01

    This paper presents new results on the robust global stabilization and the gain assignment problems for stochastic nonlinear systems. Three stochastic nonlinear control design schemes are developed. Furthermore, a new stochastic gain assignment method is developed for a class of uncertain interconnected stochastic nonlinear systems. This method can be combined with the nonlinear small-gain theorem to design partial-state feedback controllers for stochastic nonlinear systems. Two numerical examples are given to illustrate the effectiveness of the proposed methodology.

  11. Nonlinear distortion in wireless systems modeling and simulation with Matlab

    CERN Document Server

    Gharaibeh, Khaled M

    2011-01-01

    This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems

  12. Exploring Nonlinearities in Financial Systemic Risk

    NARCIS (Netherlands)

    Wolski, M.

    2013-01-01

    We propose a new methodology of assessing the effects of individual institution's risk on the others and on the system as a whole. We build upon the Conditional Value-at-Risk approach, however, we introduce the explicit Granger causal linkages and we account for possible nonlinearities in the

  13. Oscillatority Conditions for Nonlinear Systems with Delay

    Directory of Open Access Journals (Sweden)

    Denis V. Efimov

    2007-01-01

    Full Text Available Sufficient conditions for oscillatority in the sense of Yakubovich for a class of time delay nonlinear systems are proposed. Under proposed conditions, upper and lower bounds for oscillation amplitude are given. Examples illustrating analytical results by computer simulation are presented.

  14. A polynomial approach to nonlinear system controllability

    NARCIS (Netherlands)

    Zheng, YF; Willems, JC; Zhang, CH

    2001-01-01

    This note uses a polynomial approach to present a necessary and sufficient condition for local controllability of single-input-single-output (SISO) nonlinear systems. The condition is presented in terms of common factors of a noncommutative polynomial expression. This result exposes controllability

  15. Periodic Solutions for Highly Nonlinear Oscillation Systems

    DEFF Research Database (Denmark)

    Ghadimi, M; Barari, Amin; Kaliji, H.D

    2012-01-01

    In this paper, Frequency-Amplitude Formulation is used to analyze the periodic behavior of tapered beam as well as two complex nonlinear systems. Many engineering structures, such as offshore foundations, oil platform supports, tower structures and moving arms, are modeled as tapered beams...

  16. Optimized spectral estimation for nonlinear synchronizing systems.

    Science.gov (United States)

    Sommerlade, Linda; Mader, Malenka; Mader, Wolfgang; Timmer, Jens; Thiel, Marco; Grebogi, Celso; Schelter, Björn

    2014-03-01

    In many fields of research nonlinear dynamical systems are investigated. When more than one process is measured, besides the distinct properties of the individual processes, their interactions are of interest. Often linear methods such as coherence are used for the analysis. The estimation of coherence can lead to false conclusions when applied without fulfilling several key assumptions. We introduce a data driven method to optimize the choice of the parameters for spectral estimation. Its applicability is demonstrated based on analytical calculations and exemplified in a simulation study. We complete our investigation with an application to nonlinear tremor signals in Parkinson's disease. In particular, we analyze electroencephalogram and electromyogram data.

  17. Statistical mechanics of a discrete nonlinear system

    Science.gov (United States)

    Rasmussen; Cretegny; Kevrekidis; Gronbech-Jensen

    2000-04-24

    Statistical mechanics of the discrete nonlinear Schrodinger equation is studied by means of analytical and numerical techniques. The lower bound of the Hamiltonian permits the construction of standard Gibbsian equilibrium measures for positive temperatures. Beyond the line of T = infinity, we identify a phase transition through a discontinuity in the partition function. The phase transition is demonstrated to manifest itself in the creation of breatherlike localized excitations. Interrelation between the statistical mechanics and the nonlinear dynamics of the system is explored numerically in both regimes.

  18. Nonlinear dynamics in distributed systems

    CERN Document Server

    Adjali, I; Gell-Mann, Murray; Iqbal Adjali; Jose-Luis Fernandez-Villacanas; Michael Gell

    1994-01-01

    formulate it in a way that the deterministic and stochastic processes within the system are clearly separable. We show how internal fluctuations can be analysed in a systematic way using Van Kanpen's expansion method for Markov processes. We present some results for both stationary and time-dependent states. Our approach allows the effect of fluctuations to be explored, particularly in finite systems where such processes assume increasing importance.

  19. Evolution of mycorrhiza systems

    Science.gov (United States)

    Cairney, J. W. G.

    Most terrestrial plants live in mutualistic symbiosis with root-infecting mycorrhizal fungi. Fossil records and molecular clock dating suggest that all extant land plants have arisen from an ancestral arbuscular mycorrhizal condition. Arbuscular mycorrhizas evolved concurrently with the first colonisation of land by plants some 450-500 million years ago and persist in most extant plant taxa. Ectomycorrhizas (about 200million years ago) and ericoid mycorrhizas (about 100million years ago) evolved subsequently as the organic matter content of some ancient soils increased and sclerophyllous vegetation arose as a response to nutrient-poor soils respectively. Mycorrhizal associations appear to be the result of relatively diffuse coevolutionary processes. While early events in the evolution of mycorrhizal symbioses may have involved reciprocal genetic changes in ancestral plants and free-living fungi, available evidence points largely to ongoing parallel evolution of the partners in response to environmental change.

  20. Three-dimensional effects in directional solidification in hele-shaw cells: nonlinear evolution and pattern selection

    Science.gov (United States)

    Ajaev; Davis

    2000-02-01

    Directional solidification of a dilute binary alloy in a Hele-Shaw cell is modeled by a long-wave nonlinear evolution equation with zero flux and contact-angle conditions at the walls. The basic steady-state solution and its linear stability criteria are found analytically, and the nonlinear system is solved numerically. Concave-down (toward the solid) interfaces under physically realistic conditions are found to be more unstable than the planar front. Weakly nonlinear analysis indicates that subcritical bifurcation is promoted, the domain of modulational instability is expanded and transition to three-dimensional patterns is delayed due to the contact-angle condition. In the strongly nonlinear regime fully three-dimensional steady-state solutions are found whose characteristic amplitude is larger than that for the two-dimensional problem. In the subcritical regime secondary bifurcation to stable solutions is promoted.

  1. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Estrada, R.F.

    1979-08-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly.

  2. ANTI-PERIODIC SOLUTIONS FOR FIRST AND SECOND ORDER NONLINEAR EVOLUTION EQUATIONS IN BANACH SPACES

    Institute of Scientific and Technical Information of China (English)

    WEI Wei; XIANG Xiaoling

    2004-01-01

    In this paper, a new existence theorem of anti-periodic solutions for a class ofstrongly nonlinear evolution equations in Banach spaces is presentedThe equations con-tain nonlinear monotone operators and a nonmonotone perturbationMoreover, throughan appropriate transformation, the existence of anti-periodic solutions for a class of second-order nonlinear evolution equations is verifiedOur abstract results are illustrated by anexample from quasi-linear partial differential equations with time anti-periodic conditionsand an example from quasi-linear anti-periodic hyperbolic differential equations.

  3. Variable Separation Approach to Solve Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    SHEN Shou-Feng; PAN Zu-Liang; ZHANG Jun

    2004-01-01

    The variable separation approach method is very useful to solving (2+ 1 )-dimensional integrable systems. But the (1+1)-dimensional and (3+ 1 )-dimensional nonlinear systems are considered very little. In this letter, we extend this method to (1+1) dimensions by taking the Redekopp system as a simple example and (3+1)-dimensional Burgers system. The exact solutions are much general because they include some arbitrary functions and the form of the (3+ 1 )-dimensional universal formula obtained from many (2+ 1 )-dimensional systems is extended.

  4. Variable Separation Approach to Solve Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    SHENShou-Feng; PANZu-Liang; ZHANGJun

    2004-01-01

    The variable separation approach method is very useful to solving (2+1)-dimensional integrable systems.But the (1+1)-dimensional and (3+1)-dimensional nonlinear systems are considered very little. In this letter, we extend this method to (1+1) dimensions by taking the Redekopp system as a simp!e example and (3+1)-dimensional Burgers system. The exact solutions are much general because they include some arbitrary functions and the form of the (3+1)-dimensional universal formula obtained from many (2+1)-dimensional systems is extended.

  5. Single and multi-solitary wave solutions to a class of nonlinear evolution equations

    Science.gov (United States)

    Wang, Deng-Shan; Li, Hongbo

    2008-07-01

    In this paper, an effective discrimination algorithm is presented to deal with equations arising from physical problems. The aim of the algorithm is to discriminate and derive the single traveling wave solutions of a large class of nonlinear evolution equations. Many examples are given to illustrate the algorithm. At the same time, some factorization technique are presented to construct the traveling wave solutions of nonlinear evolution equations, such as Camassa-Holm equation, Kolmogorov-Petrovskii-Piskunov equation, and so on. Then a direct constructive method called multi-auxiliary equations expansion method is described to derive the multi-solitary wave solutions of nonlinear evolution equations. Finally, a class of novel multi-solitary wave solutions of the (2+1)-dimensional asymmetric version of the Nizhnik-Novikov-Veselov equation are given by three direct methods. The algorithm proposed in this paper can be steadily applied to some other nonlinear problems.

  6. The Nonlinear Evolution of Massive Stellar Core Collapses That ``Fizzle''

    Science.gov (United States)

    Imamura, James N.; Pickett, Brian K.; Durisen, Richard H.

    2003-04-01

    Core collapse in a massive rotating star may pause before nuclear density is reached, if the core contains total angular momentum J>~1049 g cm2 s-1. In such aborted or ``fizzled'' collapses, temporary equilibrium objects form that, although rapidly rotating, are secularly and dynamically stable because of the high electron fraction per baryon Ye>0.3 and the high entropy per baryon Sb/k~1-2 of the core material at neutrino trapping. These fizzled collapses are called ``fizzlers.'' In the absence of prolonged infall from the surrounding star, the evolution of fizzlers is driven by deleptonization, which causes them to contract and spin up until they either become stable neutron stars or reach the dynamic instability point for barlike modes. The barlike instability case is of current interest because the bars would be sources of gravitational wave (GW) radiation. In this paper, we use linear and nonlinear techniques, including three-dimensional hydrodynamic simulations, to study the behavior of fizzlers that have deleptonized to the point of reaching dynamic bar instability. The simulations show that the GW emission produced by bar-unstable fizzlers has rms strain amplitude r15h=10-23 to 10-22 for an observer on the rotation axis, with wave frequency of roughly 60-600 Hz. Here h is the strain and r15= (r/15 Mpc) is the distance to the fizzler in units of 15 Mpc. If the bars that form by dynamic instability can maintain GW emission at this level for 100 periods or more, they may be detectable by the Laser Interferometer Gravitational-Wave Observatory at the distance of the Virgo Cluster. They would be detectable as burst sources, defined as sources that persist for ~10 cycles or less, if they occurred in the Local Group of galaxies. The long-term behavior of the bars is the crucial issue for the detection of fizzler events. The bars present at the end of our simulations are dynamically stable but will evolve on longer timescales because of a variety of effects, such as

  7. Direct approach for solving nonlinear evolution and two-point boundary value problems

    Indian Academy of Sciences (India)

    Jonu Lee; Rathinasamy Sakthivel

    2013-12-01

    Time-delayed nonlinear evolution equations and boundary value problems have a wide range of applications in science and engineering. In this paper, we implement the differential transform method to solve the nonlinear delay differential equation and boundary value problems. Also, we present some numerical examples including time-delayed nonlinear Burgers equation to illustrate the validity and the great potential of the differential transform method. Numerical experiments demonstrate the use and computational efficiency of the method. This method can easily be applied to many nonlinear problems and is capable of reducing the size of computational work.

  8. Conditions on Structural Controllability of Nonlinear Systems: Polynomial Method

    Directory of Open Access Journals (Sweden)

    Qiang Ma

    2011-03-01

    Full Text Available In this paper the structural controllability of a class of a nonlinear system is investigated. The transfer function (matrix of nonlinear systems is obtained by putting the nonlinear system model on non-commutative ring. Conditions of structural controllability of nonlinear systems are presented according to the criterion of linear systems structural controllability in frequency domain. An example is used to testify the presented conditions finally.

  9. Adaptive explicit Magnus numerical method for nonlinear dynamical systems

    Institute of Scientific and Technical Information of China (English)

    LI Wen-cheng; DENG Zi-chen

    2008-01-01

    Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group,an efficient numerical method is proposed for nonlinear dynamical systems.To improve computational efficiency,the integration step size can be adaptively controlled.Validity and effectiveness of the method are shown by application to several nonlinear dynamical systems including the Duffing system,the van der Pol system with strong stiffness,and the nonlinear Hamiltonian pendulum system.

  10. Nonlinear System Control Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Jaroslava Žilková

    2006-10-01

    Full Text Available The paper is focused especially on presenting possibilities of applying off-linetrained artificial neural networks at creating the system inverse models that are used atdesigning control algorithm for non-linear dynamic system. The ability of cascadefeedforward neural networks to model arbitrary non-linear functions and their inverses isexploited. This paper presents a quasi-inverse neural model, which works as a speedcontroller of an induction motor. The neural speed controller consists of two cascadefeedforward neural networks subsystems. The first subsystem provides desired statorcurrent components for control algorithm and the second subsystem providescorresponding voltage components for PWM converter. The availability of the proposedcontroller is verified through the MATLAB simulation. The effectiveness of the controller isdemonstrated for different operating conditions of the drive system.

  11. Control of nonlinear systems with applications

    Science.gov (United States)

    Pan, Haizhou

    In practical applications of feedback control, most actuators exhibit physical constraints that limit the control amplitude and/or rate. The principal challenge of control design problem for linear systems with input constraints is to ensure closed-loop stability and yield a good transient performance in the presence of amplitude and/or rate-limited control. Since actuator saturation manifests itself as a nonlinear behavior in an otherwise linear system, the development of a nonconservative saturation control design methodology poses a significant challenge. In particular, it is well known that unstable linear systems can be stabilized using smooth controllers only in a local sense in the presence of actuator saturation. Thus, it is of paramount importance to develop a saturation control design methodology that yields a nonconservative estimate of the stability domain for closed-loop system. The first part of this research focuses on a numerically tractable formulation of the control synthesis problem for linear systems with actuator amplitude and rate saturation nonlinearity using a linear-matrix-inequality (LMI) framework. Following the recent trend in the actuator saturation control research, we (i) utilize absolute stability theory to ensure closed-loop stability and (ii) minimize a quadratic cost to account for the closed-loop system performance degradation. In order to reduce the inherent conservatism of the absolute stability based saturation control framework, we exploit stability multipliers (of, e.g., weighted circle criterion, Popov criterion, etc.). For the control of linear systems with simultaneous actuator amplitude and rate saturation nonlinearities, by virtue of a rate limiter that is predicated on designing the control amplitude and then computing the control rates, we directly account for rate constraints. Both continuous- and discrete-time systems with actuator saturation are considered. A number of design examples are presented to demonstrate

  12. Consensus tracking for multiagent systems with nonlinear dynamics.

    Science.gov (United States)

    Dong, Runsha

    2014-01-01

    This paper concerns the problem of consensus tracking for multiagent systems with a dynamical leader. In particular, it proposes the corresponding explicit control laws for multiple first-order nonlinear systems, second-order nonlinear systems, and quite general nonlinear systems based on the leader-follower and the tree shaped network topologies. Several numerical simulations are given to verify the theoretical results.

  13. An almost symmetric Strang splitting scheme for nonlinear evolution equations.

    Science.gov (United States)

    Einkemmer, Lukas; Ostermann, Alexander

    2014-07-01

    In this paper we consider splitting methods for the time integration of parabolic and certain classes of hyperbolic partial differential equations, where one partial flow cannot be computed exactly. Instead, we use a numerical approximation based on the linearization of the vector field. This is of interest in applications as it allows us to apply splitting methods to a wider class of problems from the sciences. However, in the situation described, the classic Strang splitting scheme, while still being a method of second order, is not longer symmetric. This, in turn, implies that the construction of higher order methods by composition is limited to order three only. To remedy this situation, based on previous work in the context of ordinary differential equations, we construct a class of Strang splitting schemes that are symmetric up to a desired order. We show rigorously that, under suitable assumptions on the nonlinearity, these methods are of second order and can then be used to construct higher order methods by composition. In addition, we illustrate the theoretical results by conducting numerical experiments for the Brusselator system and the KdV equation.

  14. Nonlinear dynamic macromodeling techniques for audio systems

    Science.gov (United States)

    Ogrodzki, Jan; Bieńkowski, Piotr

    2015-09-01

    This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.

  15. Dynamic Simulations of Nonlinear Multi-Domain Systems Based on Genetic Programming and Bond Graphs

    Institute of Scientific and Technical Information of China (English)

    DI Wenhui; SUN Bo; XU Lixin

    2009-01-01

    A dynamic simulation method for non-linear systems based on genetic programming (GP) and bond graphs (BG) was developed to improve the design of nonlinear multi-domain energy conversion sys-tems. The genetic operators enable the embryo bond graph to evolve towards the target graph according to the fitness function. Better simulation requires analysis of the optimization of the eigenvalue and the filter circuit evolution. The open topological design and space search ability of this method not only gives a more optimized convergence for the operation, but also reduces the generation time for the new circuit graph for the design of nonlinear multi-domain systems.

  16. Model reduction of systems with localized nonlinearities.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph

    2006-03-01

    An LDRD funded approach to development of reduced order models for systems with local nonlinearities is presented. This method is particularly useful for problems of structural dynamics, but has potential application in other fields. The key elements of this approach are (1) employment of eigen modes of a reference linear system, (2) incorporation of basis functions with an appropriate discontinuity at the location of the nonlinearity. Galerkin solution using the above combination of basis functions appears to capture the dynamics of the system with a small basis set. For problems involving small amplitude dynamics, the addition of discontinuous (joint) modes appears to capture the nonlinear mechanics correctly while preserving the modal form of the predictions. For problems involving large amplitude dynamics of realistic joint models (macro-slip), the use of appropriate joint modes along with sufficient basis eigen modes to capture the frequencies of the system greatly enhances convergence, though the modal nature the result is lost. Also observed is that when joint modes are used in conjunction with a small number of elastic eigen modes in problems of macro-slip of realistic joint models, the resulting predictions are very similar to those of the full solution when seen through a low pass filter. This has significance both in terms of greatly reducing the number of degrees of freedom of the problem and in terms of facilitating the use of much larger time steps.

  17. Nonlinear Filtering Preserves Chaotic Synchronization via Master-Slave System

    Directory of Open Access Journals (Sweden)

    J. S. González-Salas

    2013-01-01

    Full Text Available We present a study on a class of interconnected nonlinear systems and give some criteria for them to behave like a filter. Some chaotic systems present this kind of interconnected nonlinear structure, which enables the synchronization of a master-slave system. Interconnected nonlinear filters have been defined in terms of interconnected nonlinear systems. Furthermore, their behaviors have been studied numerically and theoretically on different input signals.

  18. Coordinated formation control of multiple nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Wei KANG; Ning XI; Jindong TAN; Yiwen ZHAO; Yuechao WANG

    2005-01-01

    A general method of controller design is developed for the purpose of formation keeping and reconfiguration of nonlinear systems with multiple subsystems,such as the formation of multiple aircraft,ground vehicles,or robot arms.The model consists of multiple nonlinear systems.Controllers are designed to keep the subsystems in a required formation and to coordinate the subsystems in the presence of environmental changes.A step-by-step algorithm of controller design is developed.Sufficient conditions for the stability of formation tracking are proved.Simulations and experiments are conducted to demonstrate some useful coordination strategies such as movement with a leader,simultaneous movement,series connection of formations,and human-machine interaction.

  19. Nonlinear Energy Collimation System for Linear Colliders

    CERN Document Server

    Resta-Lopez, Javier

    2011-01-01

    The post-linac energy collimation system of multi-TeV linear colliders is designed to fulfil an important function of protection of the Beam Delivery System (BDS) against miss-steered beams likely generated by failure modes in the main linac. For the case of the Compact Linear Collider (CLIC), the energy collimators are required to withstand the impact of a full bunch train in case of failure. This is a very challenging task, assuming the nominal CLIC beam parameters at 1.5 TeV beam energy. The increase of the transverse spot size at the collimators using nonlinear magnets is a potential solution to guarantee the survival of the collimators. In this paper we present an alternative nonlinear optics based on a skew sextupole pair for energy collimation. Performance simulation results are also presented.

  20. The Evolution of Communication Systems

    OpenAIRE

    2010-01-01

    One can study communications by using Shannon's (1948) mathematical theory of communication. In social communications, however, the channels are not "fixed", but themselves subject to change. Communication systems change by communicating information to related communication systems; co-variation among systems if repeated over time, can lead to co-evolution. Conditions for stabilization of higher-order systems are specifiable: segmentation, stratification, differentiation, reflection, and self...

  1. Dynamics of magnetic flux tubes in close binary stars II. Nonlinear evolution and surface distributions

    CERN Document Server

    Holzwarth, V R

    2003-01-01

    Observations of magnetically active close binaries with orbital periods of a few days reveal the existence of starspots at preferred longitudes (with respect to the direction of the companion star). We numerically investigate the non-linear dynamics and evolution of magnetic flux tubes in the convection zoneof a fast-rotating component of a close binary system and explore whether the tidal effects are able to generate non-uniformities in the surface distribution of erupting flux tubes. Assuming a synchronised system with a rotation period of two days and consisting of two solar-type components, both the tidal force and the deviation of the stellar structure from spherical shape are considered in lowest-order perturbation theory. The magnetic field is initially stored in the form of toroidal magnetic flux rings within the stably stratified overshoot region beneath the convection zone. Once the field has grown sufficiently strong, instabilities initiate the formation of rising flux loops, which rise through the...

  2. Adaptive stabilization for cascade nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    陈岚萍; 王洪元; 吴波

    2004-01-01

    An adaptive controller of full state feedback for certain cascade nonlinear systems achieving input-to-state stability with respect to unknown bounded disturbance is designed using backstepping and control Lyapunov function (CLF)techniques. We show that unknown bounded disturbance can be estimated by update laws, which requires less information on unknown disturbance, as a part of stabilizing control. The design method achieves the desired property: global robust stability. Our contribution is illustrated with the example of a disturbed pendulum.

  3. Inverse Problems for Nonlinear Delay Systems

    Science.gov (United States)

    2011-03-15

    Ba82]. For nonlinear delay systems such as those discussed here, approximation in the context of a linear semigroup framework as presented [BBu1, BBu2...linear part generates a linear semigroup as in [BBu1, BBu2, BKap]. One then uses the linear semigroup in a vari- ation of parameters implicit...BBu2, BKap] (for the linear semigroup ) plus a Gronwall inequality. An alternative (and more general) approach given in [Ba82] eschews use of the Trotter

  4. Adaptive Control of Nonlinear Flexible Systems

    Science.gov (United States)

    1994-05-26

    Proceedings of the American Control Conference , pp. 547-551, San Francisco, June 1993. 3 2 1.3 Personnel Dr. Robert Kosut and Dr. M. Giintekin Kabuli worked on...Control of Nonlinear Systems Under Matching Conditions," Proceedings of the American Control Conference , pp. 549-555, San Diego, CA, May 1990. [10] I...Poolla, P. Khargonekar, A. Tikku, J. Krause and K. Nagpal, "A time-domain ap- proach to model validation," Proceedings

  5. Controllability of nonlinear degenerate parabolic cascade systems

    Directory of Open Access Journals (Sweden)

    Mamadou Birba

    2016-08-01

    Full Text Available This article studies of null controllability property of nonlinear coupled one dimensional degenerate parabolic equations. These equations form a cascade system, that is, the solution of the first equation acts as a control in the second equation and the control function acts only directly on the first equation. We prove positive null controllability results when the control and a coupling set have nonempty intersection.

  6. An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator–prey system

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2016-06-01

    Full Text Available In this article, we apply the exp(-Φ(ξ-expansion method to construct many families of exact solutions of nonlinear evolution equations (NLEEs via the nonlinear diffusive predator–prey system and the Bogoyavlenskii equations. These equations can be transformed to nonlinear ordinary differential equations. As a result, some new exact solutions are obtained through the hyperbolic function, the trigonometric function, the exponential functions and the rational forms. If the parameters take specific values, then the solitary waves are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special diffusive predator–prey system and the Bogoyavlenskii equations by the help of programming language Maple.

  7. Nonlinear dynamics analysis of a new autonomous chaotic system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, a new nonlinear autonomous system introduced by Chlouverakis and Sprott is studied further, to present very rich and complex nonlinear dynamical behaviors. Some basic dynamical properties are studied either analytically or nuchaotic system with very high Lyapunov dimensions is constructed and investigated. Two new nonlinear autonomous systems can be changed into one another by adding or omitting some constant coefficients.

  8. Identification of Nonlinear Systems Using Neurofuzzy Networks

    Institute of Scientific and Technical Information of China (English)

    LI Ying; JIAO Licheng

    2001-01-01

    This paper presents a compound neu-ral network model, I.e., adaptive neurofuzzy network(ANFN), which can be used for identifying the com-plicated nonlinear system. The proposed ANFN has asimple structure and exploits a hybrid algorithm com-bining supervised learning and unsupervised learning.In addition, ANFN is capable of overcoming the errorof system identification due to the existence of somechanging points and improving the accuracy of identi-fication of the whole system. The effectiveness of themodel and its algorithm are tested on the identifica-tion results of missile attacking area.

  9. Evolution of semantic systems

    CERN Document Server

    Küppers, Bernd-Olaf; Artmann, Stefan

    2013-01-01

    Complex systems in nature and society make use of information for the development of their internal organization and the control of their functional mechanisms. Alongside technical aspects of storing, transmitting and processing information, the various semantic aspects of information, such as meaning, sense, reference and function, play a decisive part in the analysis of such systems.With the aim of fostering a better understanding of semantic systems from an evolutionary and multidisciplinary perspective, this volume collects contributions by philosophers and natural scientists, linguists, i

  10. Non-linear power law approach for spatial and temporal pattern analysis of salt marsh evolution

    Science.gov (United States)

    Taramelli, A.; Cornacchia, L.; Valentini, E.; Bozzeda, F.

    2013-11-01

    Many complex systems on the Earth surface show non-equilibrium fluctuations, often determining the spontaneous evolution towards a critical state. In this context salt marshes are characterized by complex patterns both in geomorphological and ecological features, which often appear to be strongly correlated. A striking feature in salt marshes is vegetation distribution, which can self-organize in patterns over time and space. Self-organized patchiness of vegetation can often give rise to power law relationships in the frequency distribution of patch sizes. In cases where the whole distribution does not follow a power law, the variance of scale in its tail may often be disregarded. To this end, the research aims at how changes in the main climatic and hydrodynamic variables may influence such non-linearity, and how numerical thresholds can describe this. Since it would be difficult to simultaneously monitor the presence and typology of vegetation and channel sinuosity through in situ data, and even harder to analyze them over medium to large time-space scales, remote sensing offers the ability to analyze the scale invariance of patchiness distributions. Here, we focus on a densely vegetated and channelized salt marsh (Scheldt estuary Belgium-the Netherlands) by means of the sub-pixel analysis on satellite images to calculate the non-linearity in the values of the power law exponents due to the variance of scale. The deviation from power laws represents stochastic conditions under climate drivers that can be hybridized on the basis of a fuzzy Bayesian generative algorithm. The results show that the hybrid approach is able to simulate the non-linearity inherent to the system and clearly show the existence of a link between the autocorrelation level of the target variable (i.e. size of vegetation patches), due to its self-organization properties, and the influence exerted on it by the external drivers (i.e. climate and hydrology). Considering the results of the

  11. Comets. [and solar system evolution

    Science.gov (United States)

    Neugebauer, M.

    1986-01-01

    The nature, history, and evolution of comets are considered. Cometary ions, formed by photoionization and other processes, are forced into a highly structured ion tail by the interaction with the solar wind. The importance of comets to solar-system studies lies in the possibilities that they are well-preserved samples of either the interstellar cloud which collapsed to form the solar system or the planetesimals from which the outer planets accumulated, and that they provided either the prebiotic complex molecules from which life evolved or some volatiles necessary for the evolution of these molecules.

  12. Nonlinear evolution of oblique whistler waves in radiation belts

    Science.gov (United States)

    Sharma, R. P.; Nandal, P.; Yadav, N.; Sharma, Swati

    2017-02-01

    Magnetic power spectrum and formation of coherent structures have been investigated in the present work applicable to Van Allen radiation belt. The nonlinear interaction of high frequency oblique whistler wave and low frequency magnetosonic wave has been investigated. Simulation was performed of the coupled equation of these two waves. The nonlinear interaction of these waves leads to the formation of the localized structures. These resulting localized structures are of complex nature. The associated magnetic power spectrum has also been studied. Dispersive nonlinear processes account for the high frequency part of the spectrum. The resulting magnetic power spectrum shows a scaling of k^{ - 4.5}. The energy transfer process from injection scales to smaller scales is explained by the results.

  13. Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations

    Directory of Open Access Journals (Sweden)

    Chunrong Zhu

    2016-11-01

    Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.

  14. Evolution of information systems

    DEFF Research Database (Denmark)

    Kristensen, Jan

    2000-01-01

    This article offers a dynamic view of continuously changes in a specific informational system illustrated through a case study in a small network company. Central aspects of the evolutionary process will be identified and framed in relation to the informational system change. It will be argued...... that an evolutionary transformation of informational systems are preferable for small network organisations because of their need to adapt rapidly and easily to new business conditions. The IS will only be flexible if both human and technology are prepared and willing/proper configured. Changes are due to altered...... conditions in product-/market conditions, strategic positioning, new technological possibilities or revised work processes. Small changes are happening continuously but a certain change can be ongoing for a time. Even though it is desirable not all changes are or can be controlled from management, e...

  15. Evolution of information systems

    DEFF Research Database (Denmark)

    Kristensen, Jan

    2000-01-01

    This article offers a dynamic view of continuously changes in a specific informational system illustrated through a case study in a small network company. Central aspects of the evolutionary process will be identified and framed in relation to the informational system change. It will be argued...... that an evolutionary transformation of informational systems are preferable for small network organisations because of their need to adapt rapidly and easily to new business conditions. The IS will only be flexible if both human and technology are prepared and willing/proper configured. Changes are due to altered...... conditions in product-/market conditions, strategic positioning, new technological possibilities or revised work processes. Small changes are happening continuously but a certain change can be ongoing for a time. Even though it is desirable not all changes are or can be controlled from management, e...

  16. Tracking Control for Switched Cascade Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Dong

    2015-01-01

    Full Text Available The issue of H∞ output tracking for switched cascade nonlinear systems is discussed in this paper, where not all the linear parts of subsystems are stabilizable. The conditions of the solvability for the issue are given by virtue of the structural characteristics of the systems and the average dwell time method, in which the total activation time for stabilizable subsystems is longer than that for the unstabilizable subsystems. At last, a simulation example is used to demonstrate the validity and advantages of the proposed approach.

  17. Dynamics of Nonlinear Time-Delay Systems

    CERN Document Server

    Lakshmanan, Muthusamy

    2010-01-01

    Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...

  18. Control of self-organizing nonlinear systems

    CERN Document Server

    Klapp, Sabine; Hövel, Philipp

    2016-01-01

    The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.

  19. On stability of randomly switched nonlinear systems

    CERN Document Server

    Chatterjee, Debasish

    2007-01-01

    This article is concerned with stability analysis and stabilization of randomly switched nonlinear systems. These systems may be regarded as piecewise deterministic stochastic systems: the discrete switches are triggered by a stochastic process which is independent of the state of the system, and between two consecutive switching instants the dynamics are deterministic. Our results provide sufficient conditions for almost sure global asymptotic stability using Lyapunov-based methods when individual subsystems are stable and a certain ``slow switching'' condition holds. This slow switching condition takes the form of an asymptotic upper bound on the probability mass function of the number of switches that occur between the initial and current time instants. This condition is shown to hold for switching signals coming from the states of finite-dimensional continuous-time Markov chains; our results therefore hold for Markov jump systems in particular. For systems with control inputs we provide explicit control s...

  20. Nonlinear Evolution of the Ion-Ion Beam Instability

    DEFF Research Database (Denmark)

    Pécseli, Hans; Trulsen, J.

    1982-01-01

    The criterion for the existence of vortexlike ion phase-space configurations, as obtained by a standard pseudopotential method, is found to coincide with the criterion for the linear instability for two (cold) counterstreaming ion beams. A nonlinear equation is derived, which demonstrates...

  1. Stability of planar diffusion wave for nonlinear evolution equation

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    It is known that the one-dimensional nonlinear heat equation ut = f(u)x1x1,f'(u) 0,u(±∞,t) = u±,u+ = u_ has a unique self-similar solution u(x1/1+t).In multi-dimensional space,u(x1/1+t) is called a planar diffusion wave.In the first part of the present paper,it is shown that under some smallness conditions,such a planar diffusion wave is nonlinearly stable for the nonlinear heat equation:ut-△f(u) = 0,x ∈ Rn.The optimal time decay rate is obtained.In the second part of this paper,it is further shown that this planar diffusion wave is still nonlinearly stable for the quasilinear wave equation with damping:utt + utt+ △f(u) = 0,x ∈ Rn.The time decay rate is also obtained.The proofs are given by an elementary energy method.

  2. Nonlinear evolution of density and flow perturbations on a Bjorken background

    CERN Document Server

    Brouzakis, Nikolaos; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-01-01

    Density perturbations and their dynamic evolution from early to late times can be used for an improved understanding of interesting physical phenomena both in cosmology and in the context of heavy-ion collisions. We discuss the spectrum and bispectrum of these perturbations around a longitudinally expanding fireball after a heavy-ion collision. The time-evolution equations couple the spectrum and bispectrum to each other, as well as to higher-order correlation functions through nonlinear terms. A non-trivial bispectrum is thus always generated, even if absent initially. For initial conditions corresponding to a model of independent sources, we discuss the linear and nonlinear evolution is detail. We show that, if the initial conditions are sufficiently smooth for fluid dynamics to be applicable, the nonlinear effects are relatively small.

  3. Nonlinear evolution of density and flow perturbations on a Bjorken background

    Science.gov (United States)

    Brouzakis, Nikolaos; Floerchinger, Stefan; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-03-01

    Density perturbations and their dynamic evolution from early to late times can be used for an improved understanding of interesting physical phenomena both in cosmology and in the context of heavy-ion collisions. We discuss the spectrum and bispectrum of these perturbations around a longitudinally expanding fireball after a heavy-ion collision. The time-evolution equations couple the spectrum and bispectrum to each other, as well as to higher-order correlation functions through nonlinear terms. A nontrivial bispectrum is thus always generated, even if absent initially. For initial conditions corresponding to a model of independent sources, we discuss the linear and nonlinear evolution in detail. We show that, if the initial conditions are sufficiently smooth for fluid dynamics to be applicable, the nonlinear effects are relatively small.

  4. Trial Equation Method to Nonlinear Evolution Equations with Rank Inhomogeneous:Mathematical Discussions and Its Applications

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As applications, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation,generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.

  5. Synchronization between two different chaotic systems with nonlinear feedback control

    Institute of Scientific and Technical Information of China (English)

    Lü Ling; Guo Zhi-An; Zhang Chao

    2007-01-01

    This paper presents chaos synchronization between two different chaotic systems by using a nonlinear controller, in which the nonlinear functions of the system are used as a nonlinear feedback term. The feedback controller is designed on the basis of stability theory, and the area of feedback gain is determined. The artificial simulation results show that this control method is commendably effective and feasible.

  6. Model Reduction for Nonlinear Systems by Incremental Balanced Truncation

    NARCIS (Netherlands)

    Besselink, Bart; van de Wouw, Nathan; Scherpen, Jacquelien M. A.; Nijmeijer, Henk

    2014-01-01

    In this paper, the method of incremental balanced truncation is introduced as a tool for model reduction of nonlinear systems. Incremental balanced truncation provides an extension of balanced truncation for linear systems towards the nonlinear case and differs from existing nonlinear balancing tech

  7. Model Reduction for Nonlinear Systems by Incremental Balanced Truncation

    NARCIS (Netherlands)

    Besselink, Bart; van de Wouw, Nathan; Scherpen, Jacquelien M. A.; Nijmeijer, Henk

    2014-01-01

    In this paper, the method of incremental balanced truncation is introduced as a tool for model reduction of nonlinear systems. Incremental balanced truncation provides an extension of balanced truncation for linear systems towards the nonlinear case and differs from existing nonlinear balancing tech

  8. Response and reliability analysis of nonlinear uncertain dynamical structures by the probability density evolution method

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Peng, Yongbo; Sichani, Mahdi Teimouri

    2016-01-01

    The paper deals with the response and reliability analysis of hysteretic or geometric nonlinear uncertain dynamical systems of arbitrary dimensionality driven by stochastic processes. The approach is based on the probability density evolution method proposed by Li and Chen (Stochastic dynamics...... of structures, 1st edn. Wiley, London, 2009; Probab Eng Mech 20(1):33–44, 2005), which circumvents the dimensional curse of traditional methods for the determination of non-stationary probability densities based on Markov process assumptions and the numerical solution of the related Fokker–Planck and Kolmogorov......–Feller equations. The main obstacle of the method is that a multi-dimensional convolution integral needs to be carried out over the sample space of a set of basic random variables, for which reason the number of these need to be relatively low. In order to handle this problem an approach is suggested, which...

  9. Nonlinear control for dual quaternion systems

    Science.gov (United States)

    Price, William D.

    The motion of rigid bodies includes three degrees of freedom (DOF) for rotation, generally referred to as roll, pitch and yaw, and 3 DOF for translation, generally described as motion along the x, y and z axis, for a total of 6 DOF. Many complex mechanical systems exhibit this type of motion, with constraints, such as complex humanoid robotic systems, multiple ground vehicles, unmanned aerial vehicles (UAVs), multiple spacecraft vehicles, and even quantum mechanical systems. These motions historically have been analyzed independently, with separate control algorithms being developed for rotation and translation. The goal of this research is to study the full 6 DOF of rigid body motion together, developing control algorithms that will affect both rotation and translation simultaneously. This will prove especially beneficial in complex systems in the aerospace and robotics area where translational motion and rotational motion are highly coupled, such as when spacecraft have body fixed thrusters. A novel mathematical system known as dual quaternions provide an efficient method for mathematically modeling rigid body transformations, expressing both rotation and translation. Dual quaternions can be viewed as a representation of the special Euclidean group SE(3). An eight dimensional representation of screw theory (combining dual numbers with traditional quaternions), dual quaternions allow for the development of control techniques for 6 DOF motion simultaneously. In this work variable structure nonlinear control methods are developed for dual quaternion systems. These techniques include use of sliding mode control. In particular, sliding mode methods are developed for use in dual quaternion systems with unknown control direction. This method, referred to as self-reconfigurable control, is based on the creation of multiple equilibrium surfaces for the system in the extended state space. Also in this work, the control problem for a class of driftless nonlinear systems is

  10. Exact Null Controllability for Fractional Nonlocal Integrodifferential Equations via Implicit Evolution System

    Directory of Open Access Journals (Sweden)

    Amar Debbouche

    2012-01-01

    Full Text Available We introduce a new concept called implicit evolution system to establish the existence results of mild and strong solutions of a class of fractional nonlocal nonlinear integrodifferential system, then we prove the exact null controllability result of a class of fractional evolution nonlocal integrodifferential control system in Banach space. As an application that illustrates the abstract results, two examples are provided.

  11. Nonlinear and Variable Structure Excitation Controller for Power System Stability

    Institute of Scientific and Technical Information of China (English)

    Wang Ben; Ronnie Belmans

    2006-01-01

    A new nonlinear variable structure excitation controller is proposed. Its design combines the differential geometry theory and the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control of a large-scale power system. The static and dynamic performances of the nonlinear variable structure controller are simulated. The response of system with the controller proposed is compared to that of the nonlinear optimal controller when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure excitation controller gives more satisfactorily static and dynamic performance and better robustness.

  12. μ Synthesis Method for Robust Control of Uncertain Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    μ synthesis method for robust control of uncertain nonlinear systems is propored, which is based on feedback linearization. First, nonlinear systems are linearized as controllable linear systems by I/O linearization,such that uncertain nonlinear systems are expressed as the linear fractional transformations (LFTs) on the generalized linearized plants and uncertainty.Then,linear robust controllers are obtained for the LFTs usingμsynthesis method based on H∞ optimization.Finally,the nonlinear robust controllers are constructed by combining the linear robust controllers and the nonlinear feedback.An example is given to illustrate the design.

  13. Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhaqilao,, E-mail: zhaqilao@imnu.edu.cn

    2013-12-06

    A simple symbolic computation approach for finding the rogue waves and rational solutions to the nonlinear evolution equation is proposed. It turns out that many rational solutions with real and complex forms of a (3+1)-dimensional nonlinear evolution equation are obtained. Some features of rogue waves and rational solutions are graphically discussed. -- Highlights: •A simple symbolic computation approach for finding the rational solutions to the NEE is proposed. •Some rogue waves and rational solutions with real and complex forms of a (3+1)-D NEE are obtained. •Some features of rogue waves are graphically discussed.

  14. Travelling Wave Solutions to a Special Type of Nonlinear Evolution Equation

    Institute of Scientific and Technical Information of China (English)

    XU Gui-Qiong; LI Zhi-Bin

    2003-01-01

    A unified approach is presented for finding the travelling wave solutions to one kind of nonlinear evolution equation by introducing a concept of "rank". The key idea of this method is to make use of the arbitrariness of the manifold in Painleve analysis. We selected a new expansion variable and thus obtained a rich variety of travelling wave solutions to nonlinear evolution equation, which covered solitary wave solutions, periodic wave solutions, Weierstrass elliptic function solutions, and rational solutions. Three illustrative equations are investigated by this means, and abundant travelling wave solutions are obtained in a systematic way. In addition, some new solutions are firstly reported here.

  15. Sliding mode identifier for parameter uncertain nonlinear dynamic systems with nonlinear input

    Institute of Scientific and Technical Information of China (English)

    张克勤; 庄开宇; 苏宏业; 褚健; 高红

    2002-01-01

    This paper presents a sliding mode(SM) based identifier to deal with the parameter idenfification problem for a class of parameter uncertain nonlinear dynamic systems with input nonlinearity. A sliding mode controller (SMC) is used to ensure the global reaching condition of the sliding mode for the nonlinear system;an identifier is designed to identify the uncertain parameter of the nonlinear system. A numerical example is studied to show the feasibility of the SM controller and the asymptotical convergence of the identifier.

  16. Output regulation for a class of uncertain nonlinear systems with nonlinear exosystems and its application

    Institute of Scientific and Technical Information of China (English)

    SUN WeiJie; HUANG Jie

    2009-01-01

    In this paper,we consider the global robust output regulation problem for a class of uncertain nonlinear systems with nonlinear exosystems.By employing the internal model approach,we show that this problem boils down to a global robust stabilization problem of a time-varying nonlinear system in lower triangular form,the solution of which will lead to the solution of the global robust output regulation problem.An example shows the effectiveness of the proposed approach.

  17. Observability and Information Structure of Nonlinear Systems,

    Science.gov (United States)

    1985-10-01

    defined by Shannon and used as a measure of mut.:al infor-mation between event x. and y4. If p(x.l IY.) I I(x., y.) xil -in (1/p(x.)) =- JInp (x.) (2...entropy H(x,y) in a similar way as H(x,y) = - fx,yp(xiy)lnp(x,y)cdlY, = -E[ JInp (x,y)]. (3-13) With the above definitions, mutual information between x...Observabiity of Nonlinear Systems, Eng. Cybernetics, Volume 1, pp 338-345, 1972. 18. Sen , P., Chidambara, M.R., Observability of a Class of Nonli-.ear

  18. Boundary control of long waves in nonlinear dispersive systems

    DEFF Research Database (Denmark)

    Hasan, Agus; Foss, Bjarne; Aamo, Ole Morten

    2011-01-01

    Unidirectional propagation of long waves in nonlinear dispersive systems may be modeled by the Benjamin-Bona-Mahony-Burgers equation, a third order partial differential equation incorporating linear dissipative and dispersive terms, as well as a term covering nonlinear wave phenomena. For higher...... orders of the nonlinearity, the equation may have unstable solitary wave solutions. Although it is a one dimensional problem, achieving a global result for this equation is not trivial due to the nonlinearity and the mixed partial derivative. In this paper, two sets of nonlinear boundary control laws...... that achieve global exponential stability and semi-global exponential stability are derived for both linear and nonlinear cases....

  19. Output feedback adaptive fuzzy control of uncertain MIMO nonlinear systems with unknown input nonlinearities.

    Science.gov (United States)

    Shahnazi, Reza

    2015-01-01

    An adaptive fuzzy output feedback controller is proposed for a class of uncertain MIMO nonlinear systems with unknown input nonlinearities. The input nonlinearities can be backlash-like hysteresis or dead-zone. Besides, the gains of unknown input nonlinearities are unknown nonlinear functions. Based on universal approximation theorem, the unknown nonlinear functions are approximated by fuzzy systems. The proposed method does not need the availability of the states and an observer based on strictly positive real (SPR) theory is designed to estimate the states. An adaptive robust structure is used to cope with fuzzy approximation error and external disturbances. The semi-global asymptotic stability of the closed-loop system is guaranteed via Lyapunov approach. The applicability of the proposed method is also shown via simulations.

  20. Soliton solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics

    Science.gov (United States)

    Mirzazadeh, Mohammad; Ekici, Mehmet; Sonmezoglu, Abdullah; Ortakaya, Sami; Eslami, Mostafa; Biswas, Anjan

    2016-05-01

    This paper studies a few nonlinear evolution equations that appear with fractional temporal evolution and fractional spatial derivatives. These are Benjamin-Bona-Mahoney equation, dispersive long wave equation and Nizhnik-Novikov-Veselov equation. The extended Jacobi's elliptic function expansion method is implemented to obtain soliton and other periodic singular solutions to these equations. In the limiting case, when the modulus of ellipticity approaches zero or unity, these doubly periodic functions approach solitary waves or shock waves or periodic singular solutions emerge.

  1. Small x nonlinear evolution with impact parameter and the structure function data

    CERN Document Server

    Berger, Jeffrey

    2011-01-01

    Nonlinear evolution at small values of Bjorken x is evaluated numerically using the dipole framework with impact parameter dependence. Confinement effects are modeled by including masses into the evolution. Sensitivity of the predictions due to different prescriptions of the cuts on large dipole sizes is investigated. Running coupling effects are taken into account in this analysis. Finally, a comparison with the inclusive data from HERA on the structure functions F2 and FL is performed.

  2. Nonlinear Systems of Second-Order ODEs

    Directory of Open Access Journals (Sweden)

    Patricio Cerda

    2008-02-01

    Full Text Available We study existence of positive solutions of the nonlinear system −(p1(t,u,vu′′= h1(tf1(t,u,v in (0,1; −(p2(t,u,vv′′=h2(tf2(t,u,v in (0,1; u(0=u(1=v(0=v(1=0, where p1(t,u,v=1/(a1(t+c1g1(u,v and p2(t,u,v=1/(a2(t+c2g2(u,v. Here, it is assumed that g1, g2 are nonnegative continuous functions, a1(t, a2(t are positive continuous functions, c1,c2≥0, h1,h2∈L1(0,1, and that the nonlinearities f1, f2 satisfy superlinear hypotheses at zero and +∞. The existence of solutions will be obtained using a combination among the method of truncation, a priori bounded and Krasnosel'skii well-known result on fixed point indices in cones. The main contribution here is that we provide a treatment to the above system considering differential operators with nonlinear coefficients. Observe that these coefficients may not necessarily be bounded from below by a positive bound which is independent of u and v.

  3. Impulse position control algorithms for nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Sesekin, A. N., E-mail: sesekin@list.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation); Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation); Nepp, A. N., E-mail: anepp@urfu.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation)

    2015-11-30

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  4. Impulse position control algorithms for nonlinear systems

    Science.gov (United States)

    Sesekin, A. N.; Nepp, A. N.

    2015-11-01

    The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.

  5. Nonlinear Control and Discrete Event Systems

    Science.gov (United States)

    Meyer, George; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    As the operation of large systems becomes ever more dependent on extensive automation, the need for an effective solution to the problem of design and validation of the underlying software becomes more critical. Large systems possesses much detailed structure, typically hierarchical, and they are hybrid. Information processing at the top of the hierarchy is by means of formal logic and sentences; on the bottom it is by means of simple scalar differential equations and functions of time; and in the middle it is by an interacting mix of nonlinear multi-axis differential equations and automata, and functions of time and discrete events. The lecture will address the overall problem as it relates to flight vehicle management, describe the middle level, and offer a design approach that is based on Differential Geometry and Discrete Event Dynamic Systems Theory.

  6. Deterministic nonlinear systems a short course

    CERN Document Server

    Anishchenko, Vadim S; Strelkova, Galina I

    2014-01-01

    This text is a short yet complete course on nonlinear dynamics of deterministic systems. Conceived as a modular set of 15 concise lectures it reflects the many years of teaching experience by the authors. The lectures treat in turn the fundamental aspects of the theory of dynamical systems, aspects of stability and bifurcations, the theory of deterministic chaos and attractor dimensions, as well as the elements of the theory of Poincare recurrences.Particular attention is paid to the analysis of the generation of periodic, quasiperiodic and chaotic self-sustained oscillations and to the issue of synchronization in such systems.  This book is aimed at graduate students and non-specialist researchers with a background in physics, applied mathematics and engineering wishing to enter this exciting field of research.

  7. Nonlinear Mixing in Optical Multicarrier Systems

    Science.gov (United States)

    Hameed, Mahmood Abdul

    Although optical fiber has a vast spectral bandwidth, efficient use of this bandwidth is still important in order to meet the ever increased capacity demand of optical networks. In addition to wavelength division multiplexing, it is possible to partition multiple low-rate subcarriers into each high speed wavelength channel. Multicarrier systems not only ensure efficient use of optical and electrical components, but also tolerate transmission impairments. The purpose of this research is to understand the impact of mixing among subcarriers in Radio-Over-Fiber (RoF) and high speed optical transmission systems, and experimentally demonstrate techniques to minimize this impact. We also analyze impact of clipping and quantization on multicarrier signals and compare bandwidth efficiency of two popular multiplexing techniques, namely, orthogonal frequency division multiplexing (OFDM) and Nyquist modulation. For an OFDM-RoF system, we present a novel technique that minimizes the RF domain signal-signal beat interference (SSBI), relaxes the phase noise limit on the RF carrier, realizes the full potential of optical heterodyne-based RF carrier generation, and increases the performance-to-cost ratio of RoF systems. We demonstrate a RoF network that shares the same RF carrier for both downlink and uplink, avoiding the need of an additional RF oscillator in the customer unit. For multi-carrier optical transmission, we first experimentally compare performance degradations of coherent optical OFDM and single-carrier Nyquist pulse modulated systems in a nonlinear environment. We then experimentally evaluate SSBI compensation techniques in the presence of semiconductor optical amplifier (SOA) induced nonlinearities for a multicarrier optical system with direct detection. We show that SSBI contamination can be significantly reduced from the data signal when the carrier-to-signal power ratio is sufficiently low.

  8. A procedure to construct exact solutions of nonlinear evolution equations

    Indian Academy of Sciences (India)

    Adem Cengiz Çevikel; Ahmet Bekir; Mutlu Akar; Sait San

    2012-09-01

    In this paper, we implemented the functional variable method for the exact solutions of the Zakharov-Kuznetsov-modified equal-width (ZK-MEW), the modified Benjamin-Bona-Mohany (mBBM) and the modified kdV-Kadomtsev-Petviashvili (kdV-KP) equation. By using this scheme, we found some exact solutions of the above-mentioned equation. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions. The functional variable method presents a wider-applicability for handling nonlinear wave equations.

  9. Late evolution of planetary systems

    Energy Technology Data Exchange (ETDEWEB)

    Morbidelli, A [CNRS, Observatoire de la Cote d' Azur, B P 4299, 06304 Nice Cedex 4 (France); Levison, H F [SWRI, 1050 Walnut St, Suite 300 Boulder, CO 80302 (United States)], E-mail: morby@obs-nice.fr, E-mail: hal@boulder.swri.edu

    2008-08-15

    This chapter discusses some of the main effects of the interaction of planets with remnant planetesimal disks, after the disappearance of the gas. It focuses on planet migration and its possible outcomes. In particular, we discuss the possibility that the migration of the planets leads them into an unstable configuration which changes drastically the structure of the system. The late heavy bombardment (LHB) of the terrestrial planets, occurring 650 Myr after planet formation, is a strong indication that this kind of evolution occurred in our solar system. Other stars show evidence of intense comet showers, which may indicate that LHB-analogs are ongoing in those systems at the current time.

  10. System Evolution by Metalevel Modification

    Directory of Open Access Journals (Sweden)

    Michal Vagač

    2009-05-01

    Full Text Available This paper describes system evolution managed by corresponding metasystem. The metasystem builds a metamodel of base system and allows its modification. The modification is propagated back to the base system. The application model presents the example of standard graphics user interface developed with Java Abstract Windowing Toolkit (AWT, which is a part of the Java Foundation Classes (JFC. The main aim is to confirm the possibility of application properties monitoring using aspect-oriented programming, their abstraction in ametamodel, possibility of their alternations by metamodel modifications and consequent change in the original application model.

  11. The nonlinear evolution of inviscid Goertler vortices in three-dimensional boundary layers

    Science.gov (United States)

    Blackaby, Nicholas; Dando, Andrew; Hall, Philip

    1995-09-01

    The nonlinear development of inviscid Gortler vortices in a three-dimensional boundary layer is considered. We do not follow the classical approach of weakly nonlinear stability problems and consider a mode which has just become unstable. Instead we extend the method of Blackaby, Dando, and Hall (1992), which considered the closely related nonlinear development of disturbances in stratified shear flows. The Gortler modes we consider are initially fast growing and we assume, following others, that boundary-layer spreading results in them evolving in a linear fashion until they reach a stage where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. From the work of Blackaby, Dando and Hall (1993) is apparent, given the range of parameters for the Gortler problem, that there are three possible nonlinear integro-differential evolution equations for the disturbance amplitude. These are a cubic due to viscous effects, a cubic which corresponds to the novel mechanism investigated in this previous paper, and a quintic. In this paper we shall concentrate on the two cubic integro-differential equations and in particular, on the one due to the novel mechanism as this will be the first to affect a disturbance. It is found that the consideration of a spatial evolution problem as opposed to temporal (as was considered in Blackaby, Dando, and Hall, 1992) causes a number of significant changes to the evolution equations.

  12. An extended nonlinear state predictor for a class of nonlinear time delay systems

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; ZHOU Donghua; JIN Yihui

    2004-01-01

    An extended nonlinear state predictor (ENSP) for a class of nonlinear systems with input time delay is proposed. Based on the extended Kalman filter (EKF), the ENSP first estimates the current states according to the previous estimations and estimation errors, next calculates the future state values via the system model, and then adjusts the values based on the current errors. After a state predictive algorithm for a class of linear systems is presented, it is extended to a class of nonlinear time delay systems and the detailed ENSP algorithm is further proposed. Finally, computer simulations with the nonlinear example are presented, which demonstrates that the proposed ENSP can effectively and accurately predict the future states for a class of nonlinear time-delay systems no matter whether the state variables change quickly or slowly.

  13. Stability analysis and non-linear behaviour of structural systems using the complex non-linear modal analysis (CNLMA)

    OpenAIRE

    Sinou, Jean-Jacques; Thouverez, Fabrice; Jezequel, Louis

    2006-01-01

    International audience; Herein, a novel non-linear procedure for producing non-linear behaviour and stable limit cycle amplitudes of non-linear systems subjected to super-critical Hopf bifurcation point is presented. This approach, called Complex Non-Linear Modal Analysis (CNLMA), makes use of the non-linear unstable mode which governs the non-linear dynamic of structural systems in unstable areas. In this study, the computational methodology of CNLMA is presented for the systematic estimatio...

  14. Variable Separation for (1+1)-Dimensional Nonlinear Evolution Equations with Mixed Partial Derivatives

    Institute of Scientific and Technical Information of China (English)

    WANG Peng-Zhou; ZHANG Shun-Li

    2008-01-01

    We present basic theory of variable separation for (1 + 1)-dimensional nonlinear evolution equations with mixed partial derivatives. As an application, we classify equations uxt = A(u, ux)uxxx + B(u, ux) that admits derivative-dependent functional separable solutions (DDFSSs) and illustrate how to construct those DDFSSs with some examples.

  15. Exact Solutions of Some (1+1)-Dimensional Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    By means of the variable separation method, new exact solutions of some (1+1)-dimensional nonlinear evolution equations are obtained. Abundant localized excitations can be found by selecting corresponding arbitrary functions appropriately. Namely, the new soliton-like localized excitations and instanton-like localized excitations are presented.

  16. Localized Excitations in a Sixth-Order (1+1)-Dimensional Nonlinear Evolution Equation

    Institute of Scientific and Technical Information of China (English)

    SHEN Shou-Feng

    2005-01-01

    In this letter, by means of the Lax pair, Darboux transformation, and variable separation approach, a new exact solution of a sixth-order (1+ 1)-dimensional nonlinear evolution equation, which includes some arbitrary functions,is obtained. Abundant new localized excitations can be found by selecting appropriate functions and they are illustrated both analytically and graphically.

  17. A Generalized F-expansion Method and Its Application in High-Dimensional Nonlinear Evolution Equation

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiang; HE Hong-Sheng; YANG Kong-Qing

    2005-01-01

    A generalized F-expansion method is introduced and applied to (3+ 1)-dimensional Kadomstev-Petviashvili(KP) equation. As a result, some new Jacobi elliptic function solutions of the equation are found, from which the trigonometric function solutions and the solitary wave solutions can be obtained. The method can also be extended to other types of nonlinear evolution equations in mathematical physics.

  18. The homotopic mapping solution for the solitary wave for a generalized nonlinear evolution equation

    Institute of Scientific and Technical Information of China (English)

    Mo Jia-Qi; Lin Su-Rong

    2009-01-01

    This paper studies a generalized nonlinear evolution equation. Using the homotopic mapping method,it constructs a corresponding homotopic mapping transform. Selecting a suitable initial approximation and using homotopic mapping,it obtains an approximate solution with an arbitrary degree of accuracy for the solitary wave. From the approximate solution obtained by using the homotopic mapping method,it possesses a good accuracy.

  19. Non-Linear Evolution of Steady and Migrating Alternate Bars in a Straight Channel (abstract)

    NARCIS (Netherlands)

    Southgate, H.N.; Crosato, A.

    2013-01-01

    This paper contains an analysis of a long-duration experiment that shows the evolution of alternate bars in a straight channel. The theoretical predictions are based on a weakly non-linear theory of the morphological development. Both the experiment and theory have several innovative features.

  20. Non-Linear Evolution of Steady and Migrating Alternate Bars in a Straight Channel (abstract)

    NARCIS (Netherlands)

    Southgate, H.N.; Crosato, A.

    2013-01-01

    This paper contains an analysis of a long-duration experiment that shows the evolution of alternate bars in a straight channel. The theoretical predictions are based on a weakly non-linear theory of the morphological development. Both the experiment and theory have several innovative features.

  1. Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics

    Indian Academy of Sciences (India)

    Yusuf Gurefe; Abdullah Sonmezoglu; Emine Misirli

    2011-12-01

    In this paper some exact solutions including soliton solutions for the KdV equation with dual power law nonlinearity and the (, ) equation with generalized evolution are obtained using the trial equation method. Also a more general trial equation method is proposed.

  2. Nonlinear evolution of the modulational instability under weak forcing and damping

    Directory of Open Access Journals (Sweden)

    J. Touboul

    2010-12-01

    Full Text Available The evolution of modulational instability, or Benjamin-Feir instability is investigated within the framework of the two-dimensional fully nonlinear potential equations, modified to include wind forcing and viscous dissipation. The wind model corresponds to the Miles' theory. The introduction of dissipation in the equations is briefly discussed. Evolution of this instability in the presence of damping was considered by Segur et al. (2005a and Wu et al. (2006. Their results were extended theoretically by Kharif et al. (2010 who considered wind forcing and viscous dissipation within the framework of a forced and damped nonlinear Schrödinger equation. The marginal stability curve derived from the fully nonlinear numerical simulations coincides with the curve obtained by Kharif et al. (2010 from a linear stability analysis. Furthermore, it is found that the presence of wind forcing promotes the occurrence of a permanent frequency-downshifting without invoking damping due to breaking wave phenomenon.

  3. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2014-01-01

    Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  4. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    Science.gov (United States)

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  5. Nonlinear Damping Identification in Nonlinear Dynamic System Based on Stochastic Inverse Approach

    OpenAIRE

    2012-01-01

    The nonlinear model is crucial to prepare, supervise, and analyze mechanical system. In this paper, a new nonparametric and output-only identification procedure for nonlinear damping is studied. By introducing the concept of the stochastic state space, we formulate a stochastic inverse problem for a nonlinear damping. The solution of the stochastic inverse problem is designed as probabilistic expression via the hierarchical Bayesian formulation by considering various uncertainties such as the...

  6. Nonlinear Dynamical Behavior in BS Evolution Model Based on Small-World Network Added with Nonlinear Preference

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying-Yue; YANG Qiu-Ying; CHEN Tian-Lun

    2007-01-01

    We introduce a modified small-world network adding new links with nonlinearly preferential connection instead of adding randomly, then we apply Bak-Sneppen (BS) evolution model on this network. We study several important structural properties of our network such as the distribution of link-degree, the maximum link-degree, and the length of the shortest path. We further argue several dynamical characteristics of the model such as the important critical value fc, the f0 avalanche, and the mutating condition, and find that those characteristics show particular behaviors.

  7. Constrained tracking control for nonlinear systems.

    Science.gov (United States)

    Khani, Fatemeh; Haeri, Mohammad

    2017-09-01

    This paper proposes a tracking control strategy for nonlinear systems without needing a prior knowledge of the reference trajectory. The proposed method consists of a set of local controllers with appropriate overlaps in their stability regions and an on-line switching strategy which implements these controllers and uses some augmented intermediate controllers to ensure steering the system states to the desired set points without needing to redesign the controller for each value of set point changes. The proposed approach provides smooth transient responses despite switching among the local controllers. It should be mentioned that the stability regions of the proposed controllers could be estimated off-line for a range of set-point changes. The efficiencies of the proposed algorithm are illustrated via two example simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Nonlinear system modeling based on experimental data

    Energy Technology Data Exchange (ETDEWEB)

    PAEZ,THOMAS L.; HUNTER,NORMAN F.

    2000-02-02

    The canonical variate analysis technique is used in this investigation, along with a data transformation algorithm, to identify a system in a transform space. The transformation algorithm involves the preprocessing of measured excitation/response data with a zero-memory-nonlinear transform, specifically, the Rosenblatt transform. This transform approximately maps the measured excitation and response data from its own space into the space of uncorrelated, standard normal random variates. Following this transform, it is appropriate to model the excitation/response relation as linear since Gaussian inputs excite Gaussian responses in linear structures. The linear model is identified in the transform space using the canonical variate analysis approach, and system responses in the original space are predicted using inverse Rosenblatt transformation. An example is presented.

  9. Numerical Analysis of Nonlinear Rotor-bearing-seal System

    Institute of Scientific and Technical Information of China (English)

    CHENG Mei; MENG Guang; JING Jian-ping

    2008-01-01

    The system state trajectory, Poincaré maps, largest Lyapunov exponents, frequency spectra and bifurcation diagrams were used to investigate the non-linear dynamic behaviors of a rotor-bearing-seal coupled system and to analyze the influence of the seal and bearing on the nonlinear characteristics of the rotor system. Various nonlinear phenomena in the rotor-bearing-seal system, such as periodic motion, double-periodicmotion, multi-periodic motion and quasi-periodic motion were investigated. The results may contribute to a further understanding of the non-linear dynamics of the rotor-bearing-seal coupled system.

  10. Periodicity of a class of nonlinear fuzzy systems with delays

    Energy Technology Data Exchange (ETDEWEB)

    Yu Jiali [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: yujiali@uestc.edu.cn; Yi Zhang [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: zhangyi@uestc.edu.cn; Zhang Lei [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: leilazhang@uestc.edu.cn

    2009-05-15

    The well known Takagi-Sugeno (T-S) model gives an effective method to combine some simple local systems with their linguistic description to represent complex nonlinear dynamic systems. By using the T-S method, a class of local nonlinear systems having nice dynamic properties can be employed to represent some global complex nonlinear systems. This paper proposes to study the periodicity of a class of global nonlinear fuzzy systems with delays by using T-S method. Conditions for guaranteeing periodicity are derived. Examples are employed to illustrate the theory.

  11. Applications of Nonlinear Dynamics Model and Design of Complex Systems

    CERN Document Server

    In, Visarath; Palacios, Antonio

    2009-01-01

    This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.

  12. Nonlinear evolution and final fate of (charged) superradiant instability

    CERN Document Server

    Bosch, Pablo; Lehner, Luis

    2016-01-01

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field, coupled to general relativity and electromagnetism, in the vicinity of a Reissner--Nordstr\\"om-AdS black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeateadly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  13. New model systems for experimental evolution.

    Science.gov (United States)

    Collins, Sinéad

    2013-07-01

    Microbial experimental evolution uses a few well-characterized model systems to answer fundamental questions about how evolution works. This special section highlights novel model systems for experimental evolution, with a focus on marine model systems that can be used to understand evolutionary responses to global change in the oceans.

  14. Nonlinear waves in $\\cal PT$-symmetric systems

    CERN Document Server

    Konotop, Vladimir V; Zezyulin, Dmitry A

    2016-01-01

    Recent progress on nonlinear properties of parity-time ($\\cal PT$-) symmetric systems is comprehensively reviewed in this article. $\\cal PT$ symmetry started out in non-Hermitian quantum mechanics, where complex potentials obeying $\\cal PT$ symmetry could exhibit all-real spectra. This concept later spread out to optics, Bose-Einstein condensates, electronic circuits, and many other physical fields, where a judicious balancing of gain and loss constitutes a $\\cal PT$-symmetric system. The natural inclusion of nonlinearity into these $\\cal PT$ systems then gave rise to a wide array of new phenomena which have no counterparts in traditional dissipative systems. Examples include the existence of continuous families of nonlinear modes and integrals of motion, stabilization of nonlinear modes above $\\cal PT$-symmetry phase transition, symmetry breaking of nonlinear modes, distinctive soliton dynamics, and many others. In this article, nonlinear $\\cal PT$-symmetric systems arising from various physical disciplines ...

  15. A nonlinear variable structure stabilizer for power system stability

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y.; Jiang, L.; Cheng, S.; Chen, D. (Huazhong Univ. of Science and Technology, Wuhan (China). Dept. of Electrical Power Engineering); Malik, O.P.; Hope, G.S. (Univ. of Calgary, Alberta (Canada). Dept. of Electrical and Computer Engineering)

    1994-09-01

    A nonlinear variable structure stabilizer is proposed in this paper. Design of this stabilizer involves the nonlinear transformation technique, the variable structure control technique and the linear system theory. Performance of the proposed nonlinear variable structure controller in a single machine connected to an infinite bus power and a multi-machine system with multi-mode oscillations is simulated. The responses of the system with the proposed stabilizer are compared with those obtained with some other kinds of stabilizers when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure stabilizer gives satisfactory dynamic performance and good robustness.

  16. Robust stabilization of general nonlinear systems with structural uncertainty

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper deals with the robust stabilization and passivity of general nonlinear systems with structural uncertainty. By using Lyapunov function, it verifies that under some conditions the robust passivity implies the zero-state detectability, Furthermore, it also implies the robust stabilization for such nonlinear systems. We then establish a stabilization method for the nonlinear systems with structural uncertainty. The smooth state feedback law can be constructed with the solution of an equation. Finally, it is worth noting that the main contribution of the paper establishes the relation between robust passivity and feedback stabilization for the general nonlinear systems with structural uncertainty. The simulation shows the effectiveness of the method.

  17. Analytical Evaluation of the Nonlinear Vibration of Coupled Oscillator Systems

    DEFF Research Database (Denmark)

    Bayat, M.; Shahidi, M.; Barari, Amin

    2011-01-01

    We consider periodic solutions for nonlinear free vibration of conservative, coupled mass-spring systems with linear and nonlinear stiffnesses. Two practical cases of these systems are explained and introduced. An analytical technique called energy balance method (EBM) was applied to calculate ap...... accuracy which is valid for a wide range of vibration amplitudes as indicated in the presented examples.......We consider periodic solutions for nonlinear free vibration of conservative, coupled mass-spring systems with linear and nonlinear stiffnesses. Two practical cases of these systems are explained and introduced. An analytical technique called energy balance method (EBM) was applied to calculate...

  18. Bifurcations and Patterns in Nonlinear Dissipative Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guenter Ahlers

    2005-05-27

    This project consists of experimental investigations of heat transport, pattern formation, and bifurcation phenomena in non-linear non-equilibrium fluid-mechanical systems. These issues are studies in Rayleigh-B\\'enard convection, using both pure and multicomponent fluids. They are of fundamental scientific interest, but also play an important role in engineering, materials science, ecology, meteorology, geophysics, and astrophysics. For instance, various forms of convection are important in such diverse phenomena as crystal growth from a melt with or without impurities, energy production in solar ponds, flow in the earth's mantle and outer core, geo-thermal stratifications, and various oceanographic and atmospheric phenomena. Our work utilizes computer-enhanced shadowgraph imaging of flow patterns, sophisticated digital image analysis, and high-resolution heat transport measurements.

  19. Approximate controllability of nonlinear stochastic impulsive integrodifferential systems in hilbert spaces

    Energy Technology Data Exchange (ETDEWEB)

    Subalakshmi, R. [Department of Mathematics, Bharathiar University, Coimbatore 641 046 (India)], E-mail: suba.ab.bu@gmail.com; Balachandran, K. [Department of Mathematics, Bharathiar University, Coimbatore 641 046 (India)], E-mail: balachandran_k@lycos.com

    2009-11-30

    Many practical systems in physical and biological sciences have impulsive dynamical behaviours during the evolution process which can be modeled by impulsive differential equations. This paper studies the approximate controllability properties of nonlinear stochastic impulsive integrodifferential and neutral functional stochastic impulsive integrodifferential equations in Hilbert spaces. Assuming the conditions for the approximate controllability of these linear systems we obtain the sufficient conditions for the approximate controllability of these associated nonlinear stochastic impulsive integrodifferential systems in Hilbert spaces. The results are obtained by using the Nussbaum fixed-point theorem. Finally, two examples are presented to illustrate the utility of the proposed result.

  20. Stability Analysis for Class of Switched Nonlinear Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; How, Jonathan P.

    2010-01-01

    Stability analysis for a class of switched nonlinear systems is addressed in this paper. Two linear matrix inequality (LMI) based sufficient conditions for asymptotic stability are proposed for switched nonlinear systems. These conditions are analogous counterparts for switched linear systems which...

  1. Nonlinear asymmetric tearing mode evolution in cylindrical geometry

    Science.gov (United States)

    Teng, Q.; Ferraro, N.; Gates, D. A.; Jardin, S. C.; White, R. B.

    2016-10-01

    The growth of a tearing mode is described by reduced MHD equations. For a cylindrical equilibrium, tearing mode growth is governed by the modified Rutherford equation, i.e., the nonlinear Δ'(w ) . For a low beta plasma without external heating, Δ'(w ) can be approximately described by two terms, Δ'ql(w ), ΔA'(w ) [White et al., Phys. Fluids 20, 800 (1977); Phys. Plasmas 22, 022514 (2015)]. In this work, we present a simple method to calculate the quasilinear stability index Δql' rigorously, for poloidal mode number m ≥2 . Δql' is derived by solving the outer equation through the Frobenius method. Δ'ql is composed of four terms proportional to: constant Δ'0 , w, w ln w , and w2. ΔA' is proportional to the asymmetry of island that is roughly proportional to w. The sum of Δql' and ΔA' is consistent with the more accurate expression calculated perturbatively [Arcis et al., Phys. Plasmas 13, 052305 (2006)]. The reduced MHD equations are also solved numerically through a 3D MHD code M3D-C1 [Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)]. The analytical expression of the perturbed helical flux and the saturated island width agree with the simulation results. It is also confirmed by the simulation that the ΔA' has to be considered in calculating island saturation.

  2. Nonlinear identification of MDOF systems using Volterra series approximation

    Science.gov (United States)

    Prawin, J.; Rao, A. Rama Mohan

    2017-02-01

    Most of the practical engineering structures exhibit nonlinearity due to nonlinear dynamic characteristics of structural joints, nonlinear boundary conditions and nonlinear material properties. Meanwhile, the presence of non-linearity in the system can lead to a wide range of structural behavior, for example, jumps, limit cycles, internal resonances, modal coupling, super and sub-harmonic resonances, etc. In this paper, we present a Volterra series approximation approach based on the adaptive filter concept for nonlinear identification of multi-degree of freedom systems, without sacrificing the benefits associated with the traditional Volterra series approach. The effectiveness of the proposed approach is demonstrated using two classical single degrees of freedom systems (breathing crack problem and Duffing Holmes oscillator) and later we extend to multi-degree of freedom systems.

  3. The nonlinear evolution of de Sitter space instabilities

    CERN Document Server

    Niemeyer, J C; Niemeyer, Jens C.; Bousso, Raphael

    2000-01-01

    We investigate the quantum evolution of large black holes that nucleate spontaneously in de Sitter space. By numerical computation in the s-wave and one-loop approximations, we verify claims that such black holes can initially "anti-evaporate" instead of shrink. We show, however, that this is a transitory effect. It is followed by an evaporating phase, which we are able to trace until the black holes are small enough to be treated as Schwarzschild. Under generic perturbations, the nucleated geometry is shown to decay into a ring of de Sitter regions connected by evaporating black holes. This confirms that de Sitter space is globally unstable and fragments into disconnected daughter universes.

  4. Three positive doubly periodic solutions of a nonlinear telegraph system

    Institute of Scientific and Technical Information of China (English)

    Fang-lei WANG; Yu-kun AN

    2009-01-01

    This paper studies existence of at least three positive doubly periodic solutions of a coupled nonlinear telegraph system with doubly periodic boundary conditions. First, by using the Green function and maximum principle, existence of solutions of a nonlinear telegraph system is equivalent to existence of fixed points of an operator. By imposing growth conditions on the nonlinearities, existence of at least three fixed points in cone is obtained by using the Leggett-Williams fixed point theorem to cones in ordered Banach spaces. In other words, there exist at least three positive doubly periodic solutions of nonlinear telegraph system.

  5. The K-Stability of Nonlinear Delay Systems

    Institute of Scientific and Technical Information of China (English)

    章毅; 张毅; 王联

    1994-01-01

    In this paper,we study the K-stability theory of nonlinear delay systems.In the more general case,we establish two nonlinear delay differential inequalities.Therefore,to study the X-stability,a powerful method is provided.By making use of the foregoing inequalities,we analyse and investigate some K-stabiiity conditions of nonlinear delay systems.Finally,some examples are given to illustrate our theory.

  6. Evolutions of matter-wave bright soliton with spatially modulated nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Yongshan Cheng; Fei Liu

    2009-01-01

    The evolution characteristics of a matter-wave bright soliton are investigated by means of the variational approach in the presence of spatially varying nonlinearity.It is found that the atom density envelope of the soliton is changed as a result of the spatial variation of the s-wave scattering length.The stable soliton can exist in appropriate initial conditions.The movement of the soliton depends on the sign and value of the coefficient of spatially modulated nonlinearity.These theoretical predictions are confirmed by the full numerical simulations of the one-dimensional Gross-Pitaevskii equation.

  7. Experimental investigation of the nonlinear evolution of an impurity-driven drift wave

    Energy Technology Data Exchange (ETDEWEB)

    Allen, G.R.; Yamada, M.; Rewoldt, G.; Tang, W.M.

    1982-04-01

    An impurity-driven drift wave is observed to be destabilized by the reversed density gradient of a singly-ionized heavy-impurity-ion population in a Q-machine plasma. The evolution of the instability is investigated as it progresses from the initial linear exponential growth phase, into a nonlinear saturated state, whereupon strong radially outward anomalous diffusion is observed. The relationship between the anomalous diffusion coefficient and the wave amplitude is in agreement with estimates obtained from the nonlinear drift-wave turbulence theory of Dupree.

  8. Nonlinear evolution equations associated with the chiral-field spectral problem

    Energy Technology Data Exchange (ETDEWEB)

    Bruschi, M.; Ragnisco, O. (Istituto Nazionale di Fisica Nucleare, Roma (Italy); Dipt. di Fisica, Univ. Rome (Italy))

    1985-08-11

    In this paper we derive and investigate the class of nonlinear evolution equations (NEEs) associated with the linear problem psisub(x) = lambdaApsi. It turns out that many physically interesting NEEs pertain to this class: for instance, the chiral-field equation, the nonlinear Klein-Gordon equations, the Heisenberg and Papanicolau spin chain models, the modified Boussinesq equation, the Wadati-Konno-Ichikawa equations, etc. We display also the Baecklund transformations for such a class and exploit them to derive in a special case the one-soliton solution.

  9. New Doubly Periodic Solutions of Nonlinear Evolution Equations via Weierstrass Elliptic Function Expansion Algorithm

    Institute of Scientific and Technical Information of China (English)

    YAN Zhen-Ya

    2004-01-01

    A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the correspondingsystem of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2+1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.

  10. From Hamiltonian chaos to complex systems a nonlinear physics approach

    CERN Document Server

    Leonetti, Marc

    2013-01-01

    From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is a demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of  research in various fields of physics and beyond, most notably with the perspective of application in complex systems. This book also: Illustrates the broad research influence of tools coming from dynamical systems, nonlinear physics, and statistical dynamics Adopts a pedagogic approach to facilitate understanding by non-specialists and students Presents applications in complex systems Includes 150 illustrations From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach is an ideal book for graduate students and researchers working in applied...

  11. On the sympatric evolution and evolutionary stability of coexistence by relative nonlinearity of competition.

    Directory of Open Access Journals (Sweden)

    Florian Hartig

    Full Text Available If two species exhibit different nonlinear responses to a single shared resource, and if each species modifies the resource dynamics such that this favors its competitor, they may stably coexist. This coexistence mechanism, known as relative nonlinearity of competition, is well understood theoretically, but less is known about its evolutionary properties and its prevalence in real communities. We address this challenge by using adaptive dynamics theory and individual-based simulations to compare community stabilization and evolutionary stability of species that coexist by relative nonlinearity. In our analysis, evolution operates on the species' density-compensation strategies, and we consider a trade-off between population growth rates at high and low resource availability. We confirm previous findings that, irrespective of the particular model of density dependence, there are many combinations of overcompensating and undercompensating density-compensation strategies that allow stable coexistence by relative nonlinearity. However, our analysis also shows that most of these strategy combinations are not evolutionarily stable and will be outcompeted by an intermediate density-compensation strategy. Only very specific trade-offs lead to evolutionarily stable coexistence by relative nonlinearity. As we find no reason why these particular trade-offs should be common in nature, we conclude that the sympatric evolution and evolutionary stability of relative nonlinearity, while possible in principle, seems rather unlikely. We speculate that this may, at least in part, explain why empirical demonstrations of this coexistence mechanism are rare, noting, however, that the difficulty to detect relative nonlinearity in the field is an equally likely explanation for the current lack of empirical observations, and that our results are limited to communities with non-overlapping generations and constant resource supply. Our study highlights the need for

  12. On the Sympatric Evolution and Evolutionary Stability of Coexistence by Relative Nonlinearity of Competition

    Science.gov (United States)

    Hartig, Florian; Münkemüller, Tamara; Johst, Karin; Dieckmann, Ulf

    2014-01-01

    If two species exhibit different nonlinear responses to a single shared resource, and if each species modifies the resource dynamics such that this favors its competitor, they may stably coexist. This coexistence mechanism, known as relative nonlinearity of competition, is well understood theoretically, but less is known about its evolutionary properties and its prevalence in real communities. We address this challenge by using adaptive dynamics theory and individual-based simulations to compare community stabilization and evolutionary stability of species that coexist by relative nonlinearity. In our analysis, evolution operates on the species' density-compensation strategies, and we consider a trade-off between population growth rates at high and low resource availability. We confirm previous findings that, irrespective of the particular model of density dependence, there are many combinations of overcompensating and undercompensating density-compensation strategies that allow stable coexistence by relative nonlinearity. However, our analysis also shows that most of these strategy combinations are not evolutionarily stable and will be outcompeted by an intermediate density-compensation strategy. Only very specific trade-offs lead to evolutionarily stable coexistence by relative nonlinearity. As we find no reason why these particular trade-offs should be common in nature, we conclude that the sympatric evolution and evolutionary stability of relative nonlinearity, while possible in principle, seems rather unlikely. We speculate that this may, at least in part, explain why empirical demonstrations of this coexistence mechanism are rare, noting, however, that the difficulty to detect relative nonlinearity in the field is an equally likely explanation for the current lack of empirical observations, and that our results are limited to communities with non-overlapping generations and constant resource supply. Our study highlights the need for combining ecological and

  13. Stabilization of a class of switched nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The stabilization of a class of switched nonlinear systems is investigated in the paper. The systems concerned are of (generalized) switched Byrnes-Isidori canonical form, which has all switched models in (generalized) ByrnesIsidori canonical form. First, a stability result of switched systems is obtained. Then it is used to solve the stabilization problem of the switched nonlinear control systems. In addition, necessary and sufficient conditions are obtained for a switched affine nonlinear system to be feedback equivalent to (generalized) switched Byrnes-Isidori canonical systems are presented.Finally, as an application the stability of switched lorenz systems is investigated.

  14. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations

    Energy Technology Data Exchange (ETDEWEB)

    Schüler, D.; Alonso, S.; Bär, M. [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany); Torcini, A. [CNR-Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi - Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); INFN Sez. Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy)

    2014-12-15

    Pattern formation often occurs in spatially extended physical, biological, and chemical systems due to an instability of the homogeneous steady state. The type of the instability usually prescribes the resulting spatio-temporal patterns and their characteristic length scales. However, patterns resulting from the simultaneous occurrence of instabilities cannot be expected to be simple superposition of the patterns associated with the considered instabilities. To address this issue, we design two simple models composed by two asymmetrically coupled equations of non-conserved (Swift-Hohenberg equations) or conserved (Cahn-Hilliard equations) order parameters with different characteristic wave lengths. The patterns arising in these systems range from coexisting static patterns of different wavelengths to traveling waves. A linear stability analysis allows to derive a two parameter phase diagram for the studied models, in particular, revealing for the Swift-Hohenberg equations, a co-dimension two bifurcation point of Turing and wave instability and a region of coexistence of stationary and traveling patterns. The nonlinear dynamics of the coupled evolution equations is investigated by performing accurate numerical simulations. These reveal more complex patterns, ranging from traveling waves with embedded Turing patterns domains to spatio-temporal chaos, and a wide hysteretic region, where waves or Turing patterns coexist. For the coupled Cahn-Hilliard equations the presence of a weak coupling is sufficient to arrest the coarsening process and to lead to the emergence of purely periodic patterns. The final states are characterized by domains with a characteristic length, which diverges logarithmically with the coupling amplitude.

  15. Contribution to stability analysis of nonlinear control systems

    Directory of Open Access Journals (Sweden)

    Švarc Ivan

    2003-12-01

    Full Text Available The Popov criterion for the stability of nonlinear control systems is considered. The Popov criterion gives sufficient conditions for stability of nonlinear systems in the frequency domain. It has a direct graphical interpretation and is convenient for both design and analysis. In the article presented, a table of transfer functions of linear parts of nonlinear systems is constructed. The table includes frequency response functions and offers solutions to the stability of the given systems. The table makes a direct stability analysis of selected nonlinear systems possible. The stability analysis is solved analytically and graphically.Then it is easy to find out if the nonlinear system is or is not stable; the task that usually ranks among the difficult task in engineering practice.

  16. Cosmology emerging as the gauge structure of a nonlinear quantum system

    CERN Document Server

    Kam, Chon-Fai

    2016-01-01

    Berry phases and gauge structures in parameter spaces of quantum systems are the foundation of a broad range of quantum effects such as quantum Hall effects and topological insulators. The gauge structures of interacting many-body systems, which often present exotic features, are particularly interesting. While quantum systems are intrinsically linear due to the superposition principle, nonlinear quantum mechanics can arise as an effective theory for interacting systems (such as condensates of interacting bosons). Here we show that gauge structures similar to curved spacetime can arise in nonlinear quantum systems where the superposition principle breaks down. In the canonical formalism of the nonlinear quantum mechanics, the geometric phases of quantum evolutions can be formulated as the classical geometric phases of a harmonic oscillator that represents the Bogoliubov excitations. We find that the classical geometric phase can be described by a de Sitter universe. The fundamental frequency of the harmonic o...

  17. Applications of Elliptic Equation to Nonlinear Coupled Systems

    Institute of Scientific and Technical Information of China (English)

    FUZun-Tao; LIUShi-Da; LIUShi-Kuo

    2003-01-01

    The elliptic equation is taken as a transformation and applied to solve nonlinear coupled systems. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions, periodic wave solutions and so on, so this method can be taken as a unified method in solving nonlinear coupled systems.

  18. Applications of Elliptic Equation to Nonlinear Coupled Systems

    Institute of Scientific and Technical Information of China (English)

    FU Zun-Tao; LIU Shi-Da; LIU Shi-Kuo

    2003-01-01

    The elliptic equation is taken as a transformation and applied to solve nonlinear coupled systems. Itis shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wavesolutions, periodic wave solutions and so on, so this method can be taken as a unified method in solving nonlinear coupled systems.

  19. Noninteracting control of nonlinear systems based on relaxed control

    NARCIS (Netherlands)

    Jayawardhana, B.

    2010-01-01

    In this paper, we propose methodology to solve noninteracting control problem for general nonlinear systems based on the relaxed control technique proposed by Artstein. For a class of nonlinear systems which cannot be stabilized by smooth feedback, a state-feedback relaxed control can be designed to

  20. Vibrations of Nonlinear Systems. The Method of Integral Equations,

    Science.gov (United States)

    Many diverse applied methods of investigating oscillations of nonlinear systems often in different mathematical formulations and outwardly not...parameter classical methods and the methods of investigating nonlinear systems of automatic control based on the so-called filter hypothesis, and to

  1. Asymptotic stability and stabilizability of nonlinear systems with delay.

    Science.gov (United States)

    Srinivasan, V; Sukavanam, N

    2016-11-01

    This paper is concerned with asymptotic stability and stabilizability of a class of nonlinear dynamical systems with fixed delay in state variable. New sufficient conditions are established in terms of the system parameters such as the eigenvalues of the linear operator, delay parameter, and bounds on the nonlinear parts. Finally, examples are given to testify the effectiveness of the proposed theory.

  2. New developments in state estimation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Nørgård, Peter Magnus; Poulsen, Niels Kjølstad; Ravn, Ole

    2000-01-01

    Based on an interpolation formula, accurate state estimators for nonlinear systems can be derived. The estimators do not require derivative information which makes them simple to implement.; State estimators for nonlinear systems are derived based on polynomial approximations obtained with a multi...

  3. Exact solutions for some nonlinear systems of partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, A.A. [Department of Mathematics, Faculty of Science, Helwan University (Egypt)], E-mail: profdarwish@yahoo.com; Ramady, A. [Department of Mathematics, Faculty of Science, Beni-Suef University (Egypt)], E-mail: aramady@yahoo.com

    2009-04-30

    A direct and unified algebraic method for constructing multiple travelling wave solutions of nonlinear systems of partial differential equations (PDEs) is used and implemented in a computer algebraic system. New solutions for some nonlinear partial differential equations (NLPDEs) are obtained. Graphs of the solutions are displayed.

  4. ABSOLUTE STABILITY OF GENERAL LURIE DISCRETE NONLINEAR CONTROL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    GAN Zuoxin; HAN Jingqing; ZHAO Suxia; WU Yongxian

    2002-01-01

    In the present paper, the absolute stability of general Lurie discrete nonlinear control systems has been discussed by Lyapunov function approach. A sufficient condition of absolute stability for the general Lurie discrete nonlinear control systems is derived, and some necessary and sufficient conditions are obtained in special cases. Meanwhile, we give a simple example to illustrate the effectiveness of the results.

  5. Shaping Robust System through Evolution

    CERN Document Server

    Kaneko, Kunihiko

    2008-01-01

    Biological functions are generated as a result of developmental dynamics that form phenotypes governed by genotypes. The dynamical system for development is shaped through genetic evolution following natural selection based on the fitness of the phenotype. Here we study how this dynamical system is robust to noise during development and to genetic change by mutation. We adopt a simplified transcription regulation network model to govern gene expression, which gives a fitness function. Through simulations of the network that undergoes mutation and selection, we show that a certain level of noise in gene expression is required for the network to acquire both types of robustness. The results reveal how the noise that cells encounter during development shapes any network's robustness, not only to noise but also to mutations. We also establish a relationship between developmental and mutational robustness through phenotypic variances caused by genetic variation and epigenetic noise. A universal relationship betwee...

  6. Experimental Identification of Concentrated Nonlinearity in Aeroelastic System

    Directory of Open Access Journals (Sweden)

    Nayfeh Ali H

    2012-07-01

    Full Text Available Identification of concentrated nonlinearity in the torsional spring of an aeroelastic system is performed. This system consists of a rigid airfoil that is supported by a linear spring in the plunge motion and a nonlinear spring in the pitch motion. Quadratic and cubic nonlinearities in the pitch moment are introduced to model the concentrated nonlinearity. The representation of the aerodynamic loads by the Duhamel formulation yielded accurate values for the flutter speed and frequency. The results show that the use of the Duhamel formulation to represent the aerodynamic loads yields excellent agreement between the experimental data and the numerical predictions.

  7. Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution.

    Science.gov (United States)

    Yan, Zhiyu; Li, Xiaohui; Tang, Yulong; Shum, Perry Ping; Yu, Xia; Zhang, Ying; Wang, Qi Jie

    2015-02-23

    We propose and demonstrate a tunable and switchable dual-wavelength ultra-fast Tm-doped fiber laser. The tunability is based on nonlinear polarization evolution (NPE) technique in a passively mode-locked laser cavity. The NPE effect induces wavelength-dependent loss in the cavity to effectively alleviate mode competition and enables the multiwavelength mode locking. The laser exhibits tunable dual-wavelength mode locking over a wide range from 1852 to 1886 nm. The system has compact structure and both the wavelength tuning and switching capabilities can be realized by controlling the polarization in the fiber ring cavity.

  8. Optimal Transmission Power in a Nonlinear VLC System

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shuang; CAI Sunzeng; KANG Kai; QIAN Hua

    2016-01-01

    In a visible light communication (VLC) system, the light emitting diode (LED) is nonlinear for large signals, which limits the trans⁃mission power or equivalently the coverage of the VLC system. When the input signal amplitude is large, the nonlinear distortion creates harmonic and intermodulation distortion, which degrades the transmission error vector magnitude (EVM). To evaluate the impact of nonlinearity on system performance, the signal to noise and distortion ratio (SNDR) is applied, defined as the linear sig⁃nal power over the thermal noise plus the front end nonlinear distortion. At a given noise level, the optimal system performance can be achieved by maximizing the SNDR, which results in high transmission rate or long transmission range for the VLC system. In this paper, we provide theoretical analysis on the optimization of SNDR with a nonlinear Hammerstein model of LED. Simula⁃tion results and lab experiments validate the theoretical analysis.

  9. Model reduction of nonlinear systems subject to input disturbances

    KAUST Repository

    Ndoye, Ibrahima

    2017-07-10

    The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order nonlinear system with similar disturbance-output properties to the original plant. The proposed model reduction strategy preserves the nonlinearity and the input disturbance nature of the model. It guarantees a sufficiently small error between the outputs of the original and the reduced-order systems, and also maintains the properties of input-to-state stability. The matrices of the reduced order system are given in terms of a set of linear matrix inequalities (LMIs). The paper concludes with a demonstration of the proposed approach on model reduction of a nonlinear electronic circuit with additive disturbances.

  10. Nonlinear phase noise in coherent optical OFDM transmission systems.

    Science.gov (United States)

    Zhu, Xianming; Kumar, Shiva

    2010-03-29

    We derive an analytical formula to estimate the variance of nonlinear phase noise caused by the interaction of amplified spontaneous emission (ASE) noise with fiber nonlinearity such as self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in coherent orthogonal frequency division multiplexing (OFDM) systems. The analytical results agree very well with numerical simulations, enabling the study of the nonlinear penalties in long-haul coherent OFDM systems without extensive numerical simulation. Our results show that the nonlinear phase noise induced by FWM is significantly larger than that induced by SPM and XPM, which is in contrast to traditional WDM systems where ASE-FWM interaction is negligible in quasi-linear systems. We also found that fiber chromatic dispersion can reduce the nonlinear phase noise. The variance of the total phase noise increases linearly with the bit rate, and does not depend significantly on the number of subcarriers for systems with moderate fiber chromatic dispersion.

  11. Nonlinear evolution of Airy-like beams generated by modulated waveguide arrays.

    Science.gov (United States)

    Cao, Zheng; Tan, Qinggui; Li, Xiaojun; Qi, Xinyuan

    2016-08-20

    We numerically study the formation of modulated waveguide generated Airy-like beams and their subsequent evolution in homogeneous medium. The results show that the Airy-like beams could be generated from narrow Gaussian beams propagating in one-dimensional transverse separation modulated unbent, cosine bent, or logarithm bent waveguide arrays, respectively. The waveguide-generated Airy-like beams maintain their characteristics when propagating without nonlinearity or under the self-defocusing nonlinearity in homogeneous medium, while the beams are distorted under the self-focusing nonlinearity. The deformation depends on the waveguide bending and the outgoing angles of the Airy-like beams. Our results provide a new way to generate and manipulate the Airy-like beam.

  12. Nonlinear evolution of tidally forced inertial waves in rotating fluid bodies

    CERN Document Server

    Favier, B; Baruteau, C; Ogilvie, G I

    2014-01-01

    We perform one of the first studies into the nonlinear evolution of tidally excited inertial waves in a uniformly rotating fluid body, exploring a simplified model of the fluid envelope of a planet (or the convective envelope of a solar-type star) subject to the gravitational tidal perturbations of an orbiting companion. Our model contains a perfectly rigid spherical core, which is surrounded by an envelope of incompressible uniform density fluid. The corresponding linear problem was studied in previous papers which this work extends into the nonlinear regime, at moderate Ekman numbers (the ratio of viscous to Coriolis accelerations). By performing high-resolution numerical simulations, using a combination of pseudo-spectral and spectral element methods, we investigate the effects of nonlinearities, which lead to time-dependence of the flow and the corresponding dissipation rate. Angular momentum is deposited non-uniformly, leading to the generation of significant differential rotation in the initially unifor...

  13. Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals.

    Science.gov (United States)

    Philip, Reji; Chantharasupawong, Panit; Qian, Huifeng; Jin, Rongchao; Thomas, Jayan

    2012-09-12

    Atomic clusters of metals are an emerging class of extremely interesting materials occupying the intermediate size regime between atoms and nanoparticles. Here we report the nonlinear optical (NLO) characteristics of ultrasmall, atomically precise clusters of gold, which are smaller than the critical size for electronic energy quantization (∼2 nm). Our studies reveal remarkable features of the distinct evolution of the optical nonlinearity as the clusters progress in size from the nonplasmonic regime to the plasmonic regime. We ascertain that the smallest atomic clusters do not show saturable absorption at the surface plasmon wavelength of larger gold nanocrystals (>2 nm). Consequently, the third-order optical nonlinearity in these ultrasmall gold clusters exhibits a significantly lower threshold for optical power limiting. This limiting efficiency, which is superior to that of plasmonic nanocrystals, is highly beneficial for optical limiting applications.

  14. Effects of Interaction Between Gravitation and Nonlinear Electrodynamics On Scalar Field Evolution

    Institute of Scientific and Technical Information of China (English)

    CHEN Ju-Hua; WANG Yong-Jiu

    2011-01-01

    In this paper we investigate the scalar field evolution in the dyadosphere spacetime by using the third-order WKB approximation.We find that the coupling term between the gravitation and the nonlinear electrodynamics makes the scalar field decay more quickly and it also makes the scalar field oscillate more slowly.On the other words, this coupling term takes effect on the scalar field evolution as a damping factor.At the same time these effects become more obvious for the scalar field with higher angle quantum number.

  15. Multiple (′/)-expansion method and its applications to nonlinear evolution equations in mathematical physics

    Indian Academy of Sciences (India)

    Junchao Chen; Biao Li

    2012-03-01

    In this paper, an extended multiple (′/)-expansion method is proposed to seek exact solutions of nonlinear evolution equations. The validity and advantages of the proposed method is illustrated by its applications to the Sharma–Tasso–Olver equation, the sixth-order Ramani equation, the generalized shallow water wave equation, the Caudrey–Dodd–Gibbon–Sawada–Kotera equation, the sixth-order Boussinesq equation and the Hirota–Satsuma equations. As a result, various complexiton solutions consisting of hyperbolic functions, trigonometric functions, rational functions and their mixture with parameters are obtained. When some parameters are taken as special values, the known double solitary-like wave solutions are derived from the double hyperbolic function solution. In addition, this method can also be used to deal with some high-dimensional and variable coefficients’ nonlinear evolution equations.

  16. Integrable nonlinear evolution partial differential equations in 4 + 2 and 3 + 1 dimensions.

    Science.gov (United States)

    Fokas, A S

    2006-05-19

    The derivation and solution of integrable nonlinear evolution partial differential equations in three spatial dimensions has been the holy grail in the field of integrability since the late 1970s. The celebrated Korteweg-de Vries and nonlinear Schrödinger equations, as well as the Kadomtsev-Petviashvili (KP) and Davey-Stewartson (DS) equations, are prototypical examples of integrable evolution equations in one and two spatial dimensions, respectively. Do there exist integrable analogs of these equations in three spatial dimensions? In what follows, I present a positive answer to this question. In particular, I first present integrable generalizations of the KP and DS equations, which are formulated in four spatial dimensions and which have the novelty that they involve complex time. I then impose the requirement of real time, which implies a reduction to three spatial dimensions. I also present a method of solution.

  17. On the Bivariate Spectral Homotopy Analysis Method Approach for Solving Nonlinear Evolution Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2014-01-01

    Full Text Available This paper presents a new application of the homotopy analysis method (HAM for solving evolution equations described in terms of nonlinear partial differential equations (PDEs. The new approach, termed bivariate spectral homotopy analysis method (BISHAM, is based on the use of bivariate Lagrange interpolation in the so-called rule of solution expression of the HAM algorithm. The applicability of the new approach has been demonstrated by application on several examples of nonlinear evolution PDEs, namely, Fisher’s, Burgers-Fisher’s, Burger-Huxley’s, and Fitzhugh-Nagumo’s equations. Comparison with known exact results from literature has been used to confirm accuracy and effectiveness of the proposed method.

  18. Nonlinear hydrodynamical evolution of eccentric Keplerian discs in two dimensions: validation of secular theory

    CERN Document Server

    Barker, Adrian J

    2016-01-01

    We perform global two-dimensional hydrodynamical simulations of Keplerian discs with free eccentricity over thousands of orbital periods. Our aim is to determine the validity of secular theory in describing the evolution of eccentric discs, and to explore their nonlinear evolution for moderate eccentricities. Linear secular theory is found to correctly predict the structure and precession rates of discs with small eccentricities. However, discs with larger eccentricities (and eccentricity gradients) are observed to precess faster (retrograde relative to the orbital motion), at a rate that depends on their eccentricities (and eccentricity gradients). We derive analytically a nonlinear secular theory for eccentric gas discs, which explains this result as a modification of the pressure forces whenever eccentric orbits in a disc nearly intersect. This effect could be particularly important for highly eccentric discs produced in tidal disruption events, or for narrow gaseous rings; it might also play a role in cau...

  19. The evolution of triple-star systems

    Science.gov (United States)

    Toonen, Silvia; Hamers, Adrian; Portegies Zwart, Simon

    2017-01-01

    While the principles of stellar and binary evolution theory have been accepted for a long time, our understanding of triple-star evolution is lagging behind. It is important to understand these systems, as triples are common in the field. About 15% of low-mass stellar systems are triples, but for high-mass stars the fraction increases to over 50%. At the same time, triple evolution is often invoked to explain exotic systems which cannot be explained easily by binary evolution. Examples are low-mass X-ray binaries, supernova type Ia progenitors and blue stragglers.Modeling triple evolution, however, is challenging as it is a combination of three-body dynamics and stellar evolution. In the past, most studies of three-body systems have focused on purely dynamical aspects without taking stellar evolution into account. However, in recent years, the first interdisciplinary studies have taken place which demonstrate the richness of the interacting regime. Here, I will show the first results of our new code TRES for simulating the evolution of stellar triples, which combines stellar evolution and interactions with three-body dynamics. In this talk, I will give an overview of the evolution of realistic (stellar) triples and I will discuss how triple evolution differs from binary evolution. What are the common evolutionary pathways that triple systems evolve through? Are there any evolutionary pathways open to triples, which are not open to isolated binaries? These are some of the important questions we want to answer.

  20. Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality

    Science.gov (United States)

    Acikmese, Ahmet Behcet; Corless, Martin

    2004-01-01

    We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.

  1. Bi-Hamiltonian Structure of a Third-Order Nonlinear Evolution Equation on Plane Curve Motions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the present paper, we identify the integrability of the third-order nonlinear evolution equation ut = (1/2)((uxx + u)-2)x in a Hamiltonian viewpoint. We prove that the recursion operator obtained by S. Yu. Sakovich is hereditary, and then deduce a bi-Hamiltonian structure of the equation by using some decomposition of the hereditary operator. A hierarchy associated to the equation is also shown.

  2. Identification of the nonlinear vibration system of power transformers

    Science.gov (United States)

    Jing, Zheng; Hai, Huang; Pan, Jie; Yanni, Zhang

    2017-01-01

    This paper focuses on the identification of the nonlinear vibration system of power transformers. A Hammerstein model is used to identify the system with electrical inputs and the vibration of the transformer tank as the output. The nonlinear property of the system is modelled using a Fourier neural network consisting of a nonlinear element and a linear dynamic block. The order and weights of the network are determined based on the Lipschitz criterion and the back-propagation algorithm. This system identification method is tested on several power transformers. Promising results for predicting the transformer vibration and extracting system parameters are presented and discussed.

  3. Parameter Identification of Weakly Nonlinear Vibration System in Frequency Domain

    Directory of Open Access Journals (Sweden)

    Jiehua Peng

    2004-01-01

    Full Text Available A new method of identifying parameters of nonlinearly vibrating system in frequency domain is presented in this paper. The problems of parameter identification of the nonlinear dynamic system with nonlinear elastic force or nonlinear damping force are discussed. In the method, the mathematic model of parameter identification is frequency response function. Firstly, by means of perturbation method the frequency response function of weakly nonlinear vibration system is derived. Next, a parameter transformation is made and the frequency response function becomes a linear function of the new parameters. Then, based on this function and with the least square method, physical parameters of the system are identified. Finally, the applicability of the proposed technique is confirmed by numerical simulation.

  4. Robust nonlinear variable selective control for networked systems

    Science.gov (United States)

    Rahmani, Behrooz

    2016-10-01

    This paper is concerned with the networked control of a class of uncertain nonlinear systems. In this way, Takagi-Sugeno (T-S) fuzzy modelling is used to extend the previously proposed variable selective control (VSC) methodology to nonlinear systems. This extension is based upon the decomposition of the nonlinear system to a set of fuzzy-blended locally linearised subsystems and further application of the VSC methodology to each subsystem. To increase the applicability of the T-S approach for uncertain nonlinear networked control systems, this study considers the asynchronous premise variables in the plant and the controller, and then introduces a robust stability analysis and control synthesis. The resulting optimal switching-fuzzy controller provides a minimum guaranteed cost on an H2 performance index. Simulation studies on three nonlinear benchmark problems demonstrate the effectiveness of the proposed method.

  5. Berry phase in a generalized nonlinear two-level system

    Institute of Scientific and Technical Information of China (English)

    Liu Ji-Bing; Li Jia-Hua; Song Pei-Jun; Li Wei-Bin

    2008-01-01

    In this paper,we investigate the behaviour of the geometric phase of a more generalized nonlinear system composed of an effective two-level system interacting with a single-mode quantized cavity field.Both the field nonlinearity and the atom-field coupling nonlinearity are considered.We find that the geometric phase depends on whether the index k is an odd number or an even number in the resonant case.In addition,we also find that the geometric phase may be easily observed when the field nonlinearity is not considered.The fractional statistical phenomenon appears in this system if the strong nonlinear atom-field coupling is considered.We have also investigated the geometric phase of an effective two-level system interacting with a two-mode quantized cavity field.

  6. Deliberative evolution in multi-agent systems

    NARCIS (Netherlands)

    Brazier, F.M.T.; Jonker, C.M.; Treur, J.; Wijngaards, N.J.E.

    2001-01-01

    Evolution of automated systems, in particular evolution of automated agents based on agent deliberation, is the topic of this paper. Evolution is not a merely material process, it requires interaction within and between individuals, their environments and societies of agents. An architecture for an

  7. Tidal Evolution of Planetary Systems

    Science.gov (United States)

    Rodríguez, A.

    2017-07-01

    We review the orbital and rotational evolution of single and two-planet systems under tidal dissipation. In the framework of mutual gravitational perturbation and tidal interaction between the star and the innermost planet, we shall present the main results for the variations of eccentricities in both cases. These results are obtained through the numerical solution of the exact equations of motions. Moreover, we will also give an analysis of the planetary rotation, which can be temporarily trapped in special configurations such as spin-orbit resonances. Results will be shown using a Maxwell viscoelastic deformation law for the inner planet. This rheology is characterized by a viscous relaxation time, τ, that can be seen as the characteristic average time that the planet requires to achieve a new equilibrium shape after being disturbed by an external forcing (tides of the star).

  8. VARIANCE OF NONLINEAR PHASE NOISE IN FIBER-OPTIC SYSTEM

    OpenAIRE

    RANJU KANWAR; SAMEKSHA BHASKAR

    2013-01-01

    In communication system, the noise process must be known, in order to compute the system performance. The nonlinear effects act as strong perturbation in long- haul system. This perturbation effects the signal, when interact with amplitude noise, and results in random motion of the phase of the signal. Based on the perturbation theory, the variance of nonlinear phase noise contaminated by both self- and cross-phase modulation, is derived analytically for phase-shift- keying system. Through th...

  9. Identification of systems containing nonlinear stiffnesses using backbone curves

    Science.gov (United States)

    Londoño, Julián M.; Cooper, Jonathan E.; Neild, Simon A.

    2017-02-01

    This paper presents a method for the dynamic identification of structures containing discrete nonlinear stiffnesses. The approach requires the structure to be excited at a single resonant frequency, enabling measurements to be made in regimes of large displacements where nonlinearities are more likely to be significant. Measured resonant decay data is used to estimate the system backbone curves. Linear natural frequencies and nonlinear parameters are identified using these backbone curves assuming a form for the nonlinear behaviour. Numerical and experimental examples, inspired by an aerospace industry test case study, are considered to illustrate how the method can be applied. Results from these models demonstrate that the method can successfully deliver nonlinear models able to predict the response of the test structure nonlinear dynamics.

  10. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    Science.gov (United States)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  11. A new, challenging benchmark for nonlinear system identification

    Science.gov (United States)

    Tiso, Paolo; Noël, Jean-Philippe

    2017-02-01

    The progress accomplished during the past decade in nonlinear system identification in structural dynamics is considerable. The objective of the present paper is to consolidate this progress by challenging the community through a new benchmark structure exhibiting complex nonlinear dynamics. The proposed structure consists of two offset cantilevered beams connected by a highly flexible element. For increasing forcing amplitudes, the system sequentially features linear behaviour, localised nonlinearity associated with the buckling of the connecting element, and distributed nonlinearity resulting from large elastic deformations across the structure. A finite element-based code with time integration capabilities is made available at https://sem.org/nonlinear-systems-imac-focus-group/. This code permits the numerical simulation of the benchmark dynamics in response to arbitrary excitation signals.

  12. Energy flow theory of nonlinear dynamical systems with applications

    CERN Document Server

    Xing, Jing Tang

    2015-01-01

    This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...

  13. Evolution of optimal Hill coefficients in nonlinear public goods games.

    Science.gov (United States)

    Archetti, Marco; Scheuring, István

    2016-10-07

    In evolutionary game theory, the effect of public goods like diffusible molecules has been modelled using linear, concave, sigmoid and step functions. The observation that biological systems are often sigmoid input-output functions, as described by the Hill equation, suggests that a sigmoid function is more realistic. The Michaelis-Menten model of enzyme kinetics, however, predicts a concave function, and while mechanistic explanations of sigmoid kinetics exist, we lack an adaptive explanation: what is the evolutionary advantage of a sigmoid benefit function? We analyse public goods games in which the shape of the benefit function can evolve, in order to determine the optimal and evolutionarily stable Hill coefficients. We find that, while the dynamics depends on whether output is controlled at the level of the individual or the population, intermediate or high Hill coefficients often evolve, leading to sigmoid input-output functions that for some parameters are so steep to resemble a step function (an on-off switch). Our results suggest that, even when the shape of the benefit function is unknown, biological public goods should be modelled using a sigmoid or step function rather than a linear or concave function.

  14. Evolution of supersaturation of amorphous pharmaceuticals: nonlinear rate of supersaturation generation regulated by matrix diffusion.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2015-04-06

    The importance of rate of supersaturation generation on the kinetic solubility profiles of amorphous systems has recently been shown by us; however, the previous focus was limited to constant rates of supersaturation generation. The objective of the current study is to further examine the effect of nonlinear rate profiles of supersaturation generation in amorphous systems, including (1) instantaneous or infinite rate (i.e., initial degree of supersaturation), (2) first-order rate (e.g., from dissolution of amorphous drug particles), and (3) matrix diffusion regulated rate (e.g., drug release from amorphous solid dispersions (ASDs) based on cross-linked poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels), on the kinetic solubility profiles of a model poorly soluble drug indomethacin (IND) under nonsink dissolution conditions. The previously established mechanistic model taking into consideration both the crystal growth and ripening processes was extended to predict the evolution of supersaturation resulting from nonlinear rates of supersaturation generation. Our results confirm that excessively high initial supersaturation or a rapid supersaturation generation leads to a surge in maximum supersaturation followed by a rapid decrease in drug concentration owing to supersaturation-induced precipitation; however, an exceedingly low degree of supersaturation or a slow rate of supersaturation generation does not sufficiently raise the supersaturation level, which results in a lower but broader maximum kinetic solubility profile. Our experimental data suggest that an optimal area-under-the-curve of the kinetic solubility profiles exists at an intermediate initial supersaturation level for the amorphous systems studied here, which agrees well with the predicted trend. Our model predictions also support our experimental findings that IND ASD in cross-linked PHEMA exhibits a unique kinetic solubility profile because the resulting supersaturation level is governed by a matrix

  15. Structure Model of Urban Traffic System Evolution

    Institute of Scientific and Technical Information of China (English)

    JIANG Ke-jin; ZHANG Dian-ye

    2008-01-01

    A structure model of urban traffic system evolution is built based on the analysis of the factors influencing the system evolution and the hierarchy between the factors. Then the influencing degrees of the factors are quantificationally analyzed by DEMATE (decision making trial and evaluation laboratory). The analysis results indicate that the traffic mode structure which achieves the highest central degree is the dominant influencing factor of the urban traffic system evolution, and that economy development and the traffic poficy axe the second important factors that also affect the traffic mode structures. Furthermore, physical geography is a basic restriction to the urban traffic system evolution.

  16. On absolute stability of nonlinear systems with small delays

    Directory of Open Access Journals (Sweden)

    M. I. Gil

    1998-01-01

    Full Text Available Nonlinear nonautonomous retarded systems with separated autonomous linear parts and continuous nonlinear ones are considered. It is assumed that deviations of the argument are sufficiently small. Absolute stability conditions are derived. They are formulated in terms of eigenvalues of auxiliary matrices.

  17. XXIII International Conference on Nonlinear Dynamics of Electronic Systems

    CERN Document Server

    Stoop, Ruedi; Stramaglia, Sebastiano

    2017-01-01

    This book collects contributions to the XXIII international conference “Nonlinear dynamics of electronic systems”. Topics range from non-linearity in electronic circuits to synchronisation effects in complex networks to biological systems, neural dynamics and the complex organisation of the brain. Resting on a solid mathematical basis, these investigations address highly interdisciplinary problems in physics, engineering, biology and biochemistry.

  18. Reconfigurable Control of Input Affine Nonlinear Systems under Actuator Fault

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Galeazzi, Roberto

    2015-01-01

    This paper proposes a fault tolerant control method for input-affine nonlinear systems using a nonlinear reconfiguration block (RB). The basic idea of the method is to insert the RB between the plant and the nominal controller such that fault tolerance is achieved without re-designing the nominal...

  19. Analysis and Design Methods for Nonlinear Control Systems

    Science.gov (United States)

    1990-03-01

    entitled "Design of Nonlinear PID Controllers ." In this paper it is demonstrated that the extended linearization approach can be applied to standard...Sciences and Systems, Baltimore, Maryland, pp. 675-680, 1987. [3] WJ. Rugh, "Design of Nonlinear PID Controllers ," AIChE Journa Vol. 33, No. 10, pp. 1738

  20. Breather compactons in nonlinear Klein-Gordon systems.

    Science.gov (United States)

    Dinda, P T; Remoissenet, M

    1999-11-01

    We demonstrate the existence of a localized breathing mode with a compact support, i.e., a stationary breather compacton, in a nonlinear Klein-Gordon system. This breather compacton results from a delicate balance between the harmonicity of the substrate potential and the total nonlinearity induced by the substrate potential and the coupling forces between adjacent lattice sites.

  1. Analysis of nonlinear dynamic character in the surrounding rock system for deep buried underground engineering

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yu; PENG Hai-you

    2010-01-01

    Combining the field monitoring results of a deep-buried tunnel in Chongqing,the dynamic characteristics of the surrounding rock system under high in situ stress was analyzed by phase space reconstruction, calculating correlation dimension, Kolmogorov entropy and largest Lyapunov exponents. Both the Kolmogorov entropy and largest Lyapunov exponents show that the surrounding rock system is a chaotic one. Based on this, a local model was applied to predict surrounding rock displacement, and a nonlinear dynamic model was derived to forecast the interaction of the surrounding rock and support structure. The local method was found to have an extremely small total error. Also, the nonlinear dynamic model forecasting curves agree with the monitoring ones very well. It is proved that the nonlinear dynamic characteristic study is very important in analyzing rock stability and predicting the evolution of rock systems.

  2. Bifurcation and nonlinear analysis of a time-delayed thermoacoustic system

    Science.gov (United States)

    Yang, Xiaochuan; Turan, Ali; Lei, Shenghui

    2017-03-01

    In this paper, of primary concern is a time-delayed thermoacoustic system, viz. a horizontal Rijke tube. A continuation approach is employed to capture the nonlinear behaviour inherent to the system. Unlike the conventional approach by the Galerkin method, a dynamic system is naturally built up by discretizing the acoustic momentum and energy equations incorporating appropriate boundary conditions using a finite difference method. In addition, the interaction of Rijke tube velocity with oscillatory heat release is modeled using a modified form of King's law. A comparison of the numerical results with experimental data and the calculations reported reveals that the current approach can yield very good predictions. Moreover, subcritical Hopf bifurcations and fold bifurcations are captured with the evolution of dimensionless heat release coefficient, generic damping coefficient and time delay. Linear stability boundary, nonlinear stability boundary, bistable region and limit cycles are thus determined to gain an understanding of the intrinsic nonlinear behaviours.

  3. Nonlinear closure relations theory for transport processes in nonequilibrium systems.

    Science.gov (United States)

    Sonnino, Giorgio

    2009-05-01

    A decade ago, a macroscopic theory for closure relations has been proposed for systems out of Onsager's region. This theory is referred to as the thermodynamic field theory (TFT). The aim of this work was to determine the nonlinear flux-force relations that respect the thermodynamic theorems for systems far from equilibrium. We propose a formulation of the TFT where one of the basic restrictions, namely, the closed-form solution for the skew-symmetric piece of the transport coefficients, has been removed. In addition, the general covariance principle is replaced by the De Donder-Prigogine thermodynamic covariance principle (TCP). The introduction of TCP requires the application of an appropriate mathematical formalism, which is referred to as the entropy-covariant formalism. By geometrical arguments, we prove the validity of the Glansdorff-Prigogine universal criterion of evolution. A new set of closure equations determining the nonlinear corrections to the linear ("Onsager") transport coefficients is also derived. The geometry of the thermodynamic space is non-Riemannian. However, it tends to be Riemannian for high values of the entropy production. In this limit, we recover the transport equations found by the old theory. Applications of our approach to transport in magnetically confined plasmas, materials submitted to temperature, and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein. Transport processes in tokamak plasmas are of particular interest. In this case, even in the absence of turbulence, the state of the plasma remains close to (but, it is not in) a state of local equilibrium. This prevents the transport relations from being linear.

  4. A nonlinear control scheme based on dynamic evolution path theory for improved dynamic performance of boost PFC converter working on nonlinear features.

    Science.gov (United States)

    Mohanty, Pratap Ranjan; Panda, Anup Kumar

    2016-11-01

    This paper is concerned to performance improvement of boost PFC converter under large random load fluctuation, ensuring unity power factor (UPF) at source end and regulated voltage at load side. To obtain such performance, a nonlinear controller based on dynamic evolution path theory is designed and its robustness is examined under both heavy and light loading condition. In this paper, %THD and zero-cross-over dead-zone of input current is significantly reduced. Also, very less response time of input current and output voltage to that of load and reference variation is remarked. A simulation model of proposed system is designed and it is realized using dSPACE 1104 signal processor for a 390VDC, 500W prototype. The relevant experimental and simulation waveforms are presented.

  5. Characterization of nonlinear dynamic systems using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Urbina, A. [Univ. of Texas, El Paso, TX (United States); Hunter, N.F. [Los Alamos National Lab., NM (United States). Engineering Science and Analysis Div.; Paez, T.L. [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

    1998-12-01

    The efficient characterization of nonlinear systems is an important goal of vibration and model testing. The authors build a nonlinear system model based on the acceleration time series response of a single input, multiple output system. A series of local linear models are used as a template to train artificial neutral networks (ANNs). The trained ANNs map measured time series responses into states of a nonlinear system. Another NN propagates response states in time, and a third ANN inverts the original map, transforming states into acceleration predictions in the measurement domain. The technique is illustrated using a nonlinear oscillator, in which quadratic and cubic stiffness terms play a major part in the system`s response. Reasonable maps are obtained for the states, and accurate, long-term response predictions are made for data outside the training data set.

  6. Transient evolution of a photon gas in the nonlinear QED vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S Q; Hartemann, F V

    2011-10-04

    Thermally induced vacuum polarization stemming from QED radiative corrections to the electromagnetic field equations is studied. The physical behavior of thermal radiation, in the nonlinear QED vacuum first described by Heisenberg and Euler, is a problem of some theoretical importance in view of its relation to the cosmic microwave background (CMB), early universe evolution, and Hawking-Unruh radiation. The questions of evolution toward equilibrium, stability, and invariance of thermal radiation under such conditions are of great interest. Our analysis presents novel aspects associated with photon-photon scattering in a photon gas in the framework of quantum kinetic theory. Within the context of the Euler-Heisenberg theory, we show that a homogeneous, isotropic photon gas with arbitrary spectral distribution function evolves toward an equilibrium state with a Bose-Einstein distribution. The transient evolution toward equilibrium of a gas of photons undergoing photon-photon scattering is studied in detail via the Boltzmann transport equation.

  7. Time dependent couplings in the dark sector: from background evolution to nonlinear structure formation

    CERN Document Server

    Baldi, Marco

    2010-01-01

    We present a complete numerical study of cosmological models with a time dependent coupling between the dark energy component driving the present accelerated expansion of the Universe and the Cold Dark Matter (CDM) fluid. Depending on the functional form of the coupling strength, these models show a range of possible intermediate behaviors between the standard LCDM background evolution and the widely studied case of interacting dark energy models with a constant coupling. These different background evolutions play a crucial role in the growth of cosmic structures, and determine strikingly different effects of the coupling on the internal dynamics of nonlinear objects. By means of a suitable modification of the cosmological N-body code GADGET-2 we have performed a series of high-resolution N-body simulations of structure formation in the context of interacting dark energy models with variable couplings. Depending on the type of background evolution, the halo density profiles are found to be either less or more...

  8. Change-Of-Bases Abstractions for Non-Linear Systems

    CERN Document Server

    Sankaranarayanan, Sriram

    2012-01-01

    We present abstraction techniques that transform a given non-linear dynamical system into a linear system or an algebraic system described by polynomials of bounded degree, such that, invariant properties of the resulting abstraction can be used to infer invariants for the original system. The abstraction techniques rely on a change-of-basis transformation that associates each state variable of the abstract system with a function involving the state variables of the original system. We present conditions under which a given change of basis transformation for a non-linear system can define an abstraction. Furthermore, the techniques developed here apply to continuous systems defined by Ordinary Differential Equations (ODEs), discrete systems defined by transition systems and hybrid systems that combine continuous as well as discrete subsystems. The techniques presented here allow us to discover, given a non-linear system, if a change of bases transformation involving degree-bounded polynomials yielding an alge...

  9. Analysis and design of robust decentralized controllers for nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwald, D.A.

    1993-07-01

    Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.

  10. Discrete-time inverse optimal control for nonlinear systems

    CERN Document Server

    Sanchez, Edgar N

    2013-01-01

    Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th

  11. Nonlinear system identification and control based on modular neural networks.

    Science.gov (United States)

    Puscasu, Gheorghe; Codres, Bogdan

    2011-08-01

    A new approach for nonlinear system identification and control based on modular neural networks (MNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This is obtained using a partitioning algorithm. Each local nonlinear model is associated with a nonlinear controller. These are also implemented by neural networks. The switching between the neural controllers is done by a dynamical switcher, also implemented by neural networks, that tracks the different operating points. The proposed multiple modelling and control strategy has been successfully tested on simulated laboratory scale liquid-level system.

  12. Impulsive control of nonlinear systems with time-varying delays

    Institute of Scientific and Technical Information of China (English)

    Yu Yong-Bin; Bao Jing-Fu; Zhang Hong-Bin; Zhong Qi-Shui; Liao Xiao-Feng; Yu Jue-Sang

    2008-01-01

    A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.

  13. Losslessness of Nonlinear Stochastic Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    Xikui Liu

    2015-01-01

    Full Text Available This paper will study stochastic losslessness theory for nonlinear stochastic discrete-time systems, which are expressed by the Itô-type difference equations. A necessary and sufficient condition is developed for a nonlinear stochastic discrete-time system to be lossless. By the stochastic lossless theory, we show that a nonlinear stochastic discrete-time system can be lossless via state feedback if and only if it has relative degree 0,…,0 and lossless zero dynamics. The effectiveness of the proposed results is illustrated by a numerical example.

  14. Control design approaches for nonlinear systems using multiple models

    Institute of Scientific and Technical Information of China (English)

    Junyong ZHAI; Shumin FEI; Feipeng DA

    2007-01-01

    It is difficult to realize control for some complex nonlinear systems operated in different operating regions.Based on developing local models for different operating regions of the process, a novel algorithm using multiple models is proposed. It utilizes dynamic model bank to establish multiple local models, and their membership functions are defined according to respective regions. Then the nonlinear system is approximated to a weighted combination of the local models.The stability of the nonlinear system is proven. Finally, simulations are given to demonstrate the validity of the proposed method.

  15. Study of nonlinear behaviors and modal reductions for friction destabilized systems. Application to an elastic layer

    Science.gov (United States)

    Loyer, A.; Sinou, J.-J.; Chiello, O.; Lorang, X.

    2012-02-01

    As noise reduction tends to be part of environmental directives, predicting squeal noise generated by disc brakes is an important industrial issue. It involves both the transient and stationary nonlinear dynamics of self-excited systems with frictional contact. Time simulation of the phenomenon is an attractive option for reducing experiment costs. However, since such computations using full finite element models of industrial disc brake systems is time-consuming, model reduction has to be performed. In this paper, both the transient and stationary nonlinear behaviors of the friction destabilized system and the effect of dynamical reduction on the nonlinear response of a simple friction destabilized system are carried out. The first part provides a description of the general modeling retained for friction destabilized systems. Then, discretization and solving processes for the stability analysis and the temporal evolution are presented. The third part presents an analysis of a sliding elastic layer for different operating conditions, in order to better understand the nonlinear behavior of such systems. Finally, spatial model reduction is performed with different kinds of reduction bases in order to analyze the different effects of modal reductions. This clearly shows the necessity of including static modes in the reduction basis and that nonlinear interactions between unstable modes are very difficult to represent with reduced bases. Finally, the proposed model and the associated studies are intended to be the benchmark cases for future comparison.

  16. W-Stability of Multistable Nonlinear Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    Zhishuai Ding

    2012-01-01

    Full Text Available Motivated by the importance and application of discrete dynamical systems, this paper presents a new Lyapunov characterization which is an extension of conventional Lyapunov characterization for multistable discrete-time nonlinear systems. Based on a new type stability notion of W-stability introduced by D. Efimov, the estimates of solution and the Lyapunov stability theorem and converse theorem are proposed for multi-stable discrete-time nonlinear systems.

  17. Robust Fault Diagnosis Algorithm for a Class of Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Hai-gang Xu

    2015-01-01

    Full Text Available A kind of robust fault diagnosis algorithm to Lipschitz nonlinear system is proposed. The novel disturbances constraint condition of the nonlinear system is derived by group algebra method, and the novel constraint condition can meet the system stability performance. Besides, the defined robust performance index of fault diagnosis observer guarantees the robust. Finally, the effectiveness of the algorithm proposed is proved in the simulations.

  18. Dynamic Analysis of Vibrating Systems with Nonlinearities

    Science.gov (United States)

    M. Kalami, Yazdi; Ahmadian, H.; Mirzabeigy, A.; Yildirim, A.

    2012-02-01

    The max-min approach is applied to mathematical models of some nonlinear oscillations. The models are regarding to three different forms that are governed by nonlinear ordinary differential equations. In this context, the strongly nonlinear Duffing oscillator with third, fifth, and seventh powers of the amplitude, the pendulum attached to a rotating rigid frame and the cubic Duffing oscillator with discontinuity are taken into consideration. The obtained results via the approach are compared with ones achieved utilizing other techniques. The results indicate that the approach has a good agreement with other well-known methods. He's max-min approach is a promising technique and can be successfully exerted to a lot of practical engineering and physical problems.

  19. Advanced nonlinear engine speed control systems

    DEFF Research Database (Denmark)

    Vesterholm, Thomas; Hendricks, Elbert

    1994-01-01

    : accurately tracking of a desired engine speed in the presence of model uncertainties and severe load disturbances. This is accomplished by using advanced nonlinear control techniques such as input/output-linearization and sliding mode control. These techniques take advantage of a nonlinear model......Several subsidiary control problems have turned out to be important for improving driveability and fuel consumption in modern spark ignition (SI) engine cars. Among these are idle speed control and cruise control. In this paper the idle speed and cruise control problems will be treated as one...

  20. Dimensional reduction of nonlinear time delay systems

    Directory of Open Access Journals (Sweden)

    M. S. Fofana

    2005-01-01

    infinite-dimensional problem without the assumption of small time delay. This dimensional reduction is illustrated in this paper with the delay versions of the Duffing and van der Pol equations. For both nonlinear delay equations, transcendental characteristic equations of linearized stability are examined through Hopf bifurcation. The infinite-dimensional nonlinear solutions of the delay equations are decomposed into stable and centre subspaces, whose respective dimensions are determined by the linearized stability of the transcendental equations. Linear semigroups, infinitesimal generators, and their adjoint forms with bilinear pairings are the additional candidates for the infinite-dimensional reduction.

  1. Adaptive Fuzzy Dynamic Surface Control for Uncertain Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yuan Luo; Zhi-Hao Zhu; Xin-Ping Guan

    2009-01-01

    In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globaily uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.

  2. Sliding mode identifier for parameter uncertain nonlinear dynamic systems with nonlinear input

    Institute of Scientific and Technical Information of China (English)

    张克勤; 庄开宇; 苏宏业; 褚健; 高红

    2002-01-01

    This paper presents a sliding mode (SM) based identifier to deal wit h the parameter identification problem for a class of parameter uncertain nonlin ear dynamic systems with input nonlinearity. A sliding mode controller (SMC) is used to ensure the global reaching condition of the sliding mode for the nonline ar system; an identifier is designed to identify the uncertain parameter of the nonlinear system. A numerical example is studied to show the feasibility of the SM controller and the asymptotical convergence of the identifier.

  3. Stabilization and Control Models of Systems With Hysteresis Nonlinearities

    Directory of Open Access Journals (Sweden)

    Mihail E. Semenov

    2012-05-01

    Full Text Available Mechanical and economic systems with hysteresis nonlinearities are studied in article. Dissipativity condition of inverted pendulum under the hysteresis control is obtained. The solution of the optimal production strategy problem was found where price has hysteresis behaviour.

  4. Bifurcation methods of dynamical systems for handling nonlinear wave equations

    Indian Academy of Sciences (India)

    Dahe Feng; Jibin Li

    2007-05-01

    By using the bifurcation theory and methods of dynamical systems to construct the exact travelling wave solutions for nonlinear wave equations, some new soliton solutions, kink (anti-kink) solutions and periodic solutions with double period are obtained.

  5. Robust receding horizon control for networked and distributed nonlinear systems

    CERN Document Server

    Li, Huiping

    2017-01-01

    This book offers a comprehensive, easy-to-understand overview of receding-horizon control for nonlinear networks. It presents novel general strategies that can simultaneously handle general nonlinear dynamics, system constraints, and disturbances arising in networked and large-scale systems and which can be widely applied. These receding-horizon-control-based strategies can achieve sub-optimal control performance while ensuring closed-loop stability: a feature attractive to engineers. The authors address the problems of networked and distributed control step-by-step, gradually increasing the level of challenge presented. The book first introduces the state-feedback control problems of nonlinear networked systems and then studies output feedback control problems. For large-scale nonlinear systems, disturbance is considered first, then communication delay separately, and lastly the simultaneous combination of delays and disturbances. Each chapter of this easy-to-follow book not only proposes and analyzes novel ...

  6. Optimal beamforming in MIMO systems with HPA nonlinearity

    KAUST Repository

    Qi, Jian

    2010-09-01

    In this paper, multiple-input multiple-output (MIMO) transmit beamforming (TB) systems under the consideration of nonlinear high-power amplifiers (HPAs) are investigated. The optimal beamforming scheme, with the optimal beamforming weight vector and combining vector, is proposed for MIMO systems with HPA nonlinearity. The performance of the proposed MIMO beamforming scheme in the presence of HPA nonlinearity is evaluated in terms of average symbol error probability (SEP), outage probability and system capacity, considering transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, namely, parameters of nonlinear HPA, numbers of transmit and receive antennas, and modulation order of phase-shift keying (PSK), on performance. ©2010 IEEE.

  7. Synchronization of two different chaotic systems via nonlinear ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Keyword: Synchronization, nonlinear control, chaos, attractors, controllers, secure communications ... the drive system and the other one is taken as the .... active network. Phys ... adaptive sliding mode control. J. Sound and. Vibration. 331:501-9.

  8. Advances in Derivative-Free State Estimation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Nørgaard, Magnus; Poulsen, Niels Kjølstad; Ravn, Ole

    In this paper we show that it involves considerable advantages to use polynomial approximations obtained with an interpolation formula for derivation of state estimators for nonlinear systems. The estimators become more accurate than estimators based on Taylor approximations, and yet...

  9. NONLINEAR SINGULARLY PERTURBED PREDATOR-PREY REACTION DIFFUSION SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    MoJiaqi; TangRongrong

    2004-01-01

    A class of nonlinear predator-prey reaction diffusion systems for singularly perturbedproblems are considered. Under suitable conditions, by using theory of differential inequalitiesthe existence and asymptotic behavior of solution for initial boundary value problems arestudied.

  10. Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.

    Science.gov (United States)

    Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua

    2016-11-14

    In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.

  11. HYPERBOLIC-PARABOLIC CHEMOTAXIS SYSTEM WITH NONLINEAR PRODUCT TERMS

    Institute of Scientific and Technical Information of China (English)

    Chen Hua; Wu Shaohua

    2008-01-01

    We prove the local existence and uniqueness of week solution of the hyperbolic-parabolic Chemotaxis system with some nonlinear product terms. For one dimensional case, we prove also the global existence and uniqueness of the solution for the problem.

  12. Optimal second order sliding mode control for nonlinear uncertain systems.

    Science.gov (United States)

    Das, Madhulika; Mahanta, Chitralekha

    2014-07-01

    In this paper, a chattering free optimal second order sliding mode control (OSOSMC) method is proposed to stabilize nonlinear systems affected by uncertainties. The nonlinear optimal control strategy is based on the control Lyapunov function (CLF). For ensuring robustness of the optimal controller in the presence of parametric uncertainty and external disturbances, a sliding mode control scheme is realized by combining an integral and a terminal sliding surface. The resulting second order sliding mode can effectively reduce chattering in the control input. Simulation results confirm the supremacy of the proposed optimal second order sliding mode control over some existing sliding mode controllers in controlling nonlinear systems affected by uncertainty.

  13. A Robust Fault Detection Approach for Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    Min-Ze Chen; Qi Zhao; Dong-Hua Zhou

    2006-01-01

    In this paper, we study the robust fault detection problem of nonlinear systems. Based on the Lyapunov method,a robust fault detection approach for a general class of nonlinear systems is proposed. A nonlinear observer is first provided,and a sufficient condition is given to make the observer locally stable. Then, a practical algorithm is presented to facilitate the realization of the proposed observer for robust fault detection. Finally, a numerical example is provided to show the effectiveness of the proposed approach.

  14. Fuzzy Modeling for Uncertainty Nonlinear Systems with Fuzzy Equations

    Directory of Open Access Journals (Sweden)

    Raheleh Jafari

    2017-01-01

    Full Text Available The uncertain nonlinear systems can be modeled with fuzzy equations by incorporating the fuzzy set theory. In this paper, the fuzzy equations are applied as the models for the uncertain nonlinear systems. The nonlinear modeling process is to find the coefficients of the fuzzy equations. We use the neural networks to approximate the coefficients of the fuzzy equations. The approximation theory for crisp models is extended into the fuzzy equation model. The upper bounds of the modeling errors are estimated. Numerical experiments along with comparisons demonstrate the excellent behavior of the proposed method.

  15. Robust adaptive control of nonlinearly parameterized systems with unmodeled dynamics

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-sheng; CHEN Jiang; LI Xing-yuan

    2006-01-01

    Many physical systems such as biochemical processes and machines with friction are of nonlinearly parameterized systems with uncertainties.How to control such systems effectively is one of the most challenging problems.This paper presents a robust adaptive controller for a significant class of nonlinearly parameterized systems.The controller can be used in cases where there exist parameter and nonlinear uncertainties,unmodeled dynamics and unknown bounded disturbances.The design of the controller is based on the control Lyapunov function method.A dynamic signal is introduced and adaptive nonlinear damping terms are used to restrain the effects of unmodeled dynamics,nonlinear uncertainties and unknown bounded disturbances.The backstepping procedure is employed to overcome the complexity in the design.With the proposed method,the estimation of the unknown parameters of the system is not required and there is only one adaptive parameter no matter how high the order of the system is and how many unknown parameters.there are.It is proved theoretically that the proposed robust adaptive control scheme guarantees the stability of nonlinearly parameterized system.Furthermore,all the states approach the equilibrium in arbitrary precision by choosing some design constants appropriately.Simulation results illustrate the effectiveness of the proposed robust adaptive controller.

  16. Global Dynamic Characteristic of Nonlinear Torsional Vibration System under Harmonically Excitation

    Institute of Scientific and Technical Information of China (English)

    SHI Peiming; LIU Bin; HOU Dongxiao

    2009-01-01

    Torsional vibration generally causes serious instability and damage problems in many rotating machinery parts. The global dynamic characteristic of nonlinear torsional vibration system with nonlinear rigidity and nonlinear friction force is investigated. On the basis of the generalized dissipation Lagrange's equation, the dynamics equation of nonlinear torsional vibration system is deduced. The bifurcation and chaotic motion in the system subjected to an external harmonic excitation is studied by theoretical analysis and numerical simulation. The stability of unperturbed system is analyzed by using the stability theory of equilibrium positions of Hamiltonian systems. The criterion of existence of chaos phenomena under a periodic perturbation is given by means of Melnikov's method. It is shown that the existence of homoclinic and heteroclinic orbits in the unperturbed system implies chaos arising from breaking of homoclinic or heteroclinic orbits under perturbation. The validity of the result is checked numerically. Periodic doubling bifurcation route to chaos, quasi-periodic route to chaos, intermittency route to chaos are found to occur due to the amplitude varying in some range. The evolution of system dynamic responses is demonstrated in detail by Poincare maps and bifurcation diagrams when the system undergoes a sequence of periodic doubling or quasi-periodic bifurcations to chaos. The conclusion can provide reference for deeply researching the dynamic behavior of mechanical drive systems.

  17. Effect of the initial spectrum on the spatial evolution of statistics of unidirectional nonlinear random waves

    Science.gov (United States)

    Shemer, Lev; Sergeeva, Anna; Liberzon, Dan

    2010-12-01

    Results of extensive experiments on propagation of unidirectional nonlinear random waves in a large wave tank are presented. The nonlinearity of the wavefield determined by the characteristic wave amplitude and the dominant wave length was retained constant in various series of experimental runs. In each experimental series, initial spectra of different shape and/or width were considered. Every series contained sufficient number of independent realizations to ensure reliable statistics. Evolution of various statistical parameters along the tank was investigated. It is demonstrated that the spectrum width plays an important role in the evolution of the random wavefield and strongly affects the variation of the wave spectrum as well as of parameters that characterize the deviation of the wavefield statistics from that corresponding to the Gaussian distribution. In particular, in a random wavefield that initially contains independent free harmonics within a narrow spectrum, extremely steep waves appear more often in the process of evolutions than predicted by a Rayleigh distribution, while for wider initial wave spectra the probability of those waves decreases sharply and is well below the Rayleigh values.

  18. Modulation and nonlinear evolution of multi-dimensional Langmuir wave envelopes in a relativistic plasma

    Science.gov (United States)

    Shahmansouri, M.; Misra, A. P.

    2016-12-01

    The modulational instability (MI) and the evolution of weakly nonlinear two-dimensional (2D) Langmuir wave (LW) packets are studied in an unmagnetized collisionless plasma with weakly relativistic electron flow. By using a 2D self-consistent relativistic fluid model and employing the standard multiple-scale technique, a coupled set of Davey-Stewartson (DS)-like equations is derived, which governs the slow modulation and the evolution of LW packets in relativistic plasmas. It is found that the relativistic effects favor the instability of LW envelopes in the k - θ plane, where k is the wave number and θ ( 0 ≤ θ ≤ π ) the angle of modulation. It is also found that as the electron thermal velocity or θ increases, the growth rate of MI increases with cutoffs at higher wave numbers of modulation. Furthermore, in the nonlinear evolution of the DS-like equations, it is seen that with an effect of the relativistic flow, a Gaussian wave beam collapses in a finite time, and the collapse can be arrested when the effect of the thermal pressure or the relativistic flow is slightly relaxed. The present results may be useful to the MI and the formation of localized LW envelopes in cosmic plasmas with a relativistic flow of electrons.

  19. Modulation and nonlinear evolution of multi-dimensional Langmuir wave envelopes in a relativistic plasma

    CERN Document Server

    Shahmansouri, M

    2016-01-01

    The modulational instability (MI) and the evolution of weakly nonlinear two-dimensional (2D) Langmuir wave (LW) packets are studied in an unmagnetized collisionless plasma with weakly relativistic electron flow. By using a 2D self-consistent relativistic fluid model and employing the standard multiple-scale technique, a coupled set of Davey-Stewartson (DS)-like equations is derived which governs the slow modulation and the evolution of LW packets in relativistic plasmas. It is found that the relativistic effects favor the instability of LW envelopes in the k{\\theta} plane, where k is the wave number and {\\theta} the angle of modulation. It is also found that as the electron thermal velocity or {\\theta} increases, the growth rate of MI increases with cutoffs at higher wave numbers of modulation. Furthermore, in the nonlinear evolution of the DS-like equations, it is seen that with an effect of the relativistic flow, a Gaussian wave beam collapses in a finite time, and the collapse can be arrested when the effe...

  20. Output Feedback Control for a Class of Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    Keylan Alimhan; Hiroshi Inaba

    2006-01-01

    This paper studies the global stabilization problem by an output controller for a family of uncertain nonlinear systems satisfying some relaxed triangular-type conditions and with dynamics which may not be exactly known. Using a feedback domination design method, we explicitly construct a dynamic output compensator which globally stabilizes such an uncertain nonlinear system. The usefulness of our result is illustrated with an example.

  1. Nonlinear H∞ filtering for interconnected Markovian jump systems

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaomei; Zheng Yufan

    2006-01-01

    The problem of nonlinear H∞ filtering for interconnected Markovian jump systems is discussed. The aim of this note is the design of a nonlinear Markovian jump filter such that the resulting error system is exponentially meansquare stable and ensures a prescribed H∞ performance. A sufficient condition for the solvability of this problem is given in terms of linear matrix inequalities(LMIs). A simulation example is presented to demonstrate the effectiveness of the proposed design approach.

  2. Equivalence of Nonlinear Systems to Input-Output Prime Forms

    OpenAIRE

    Marino, R.; Respondek, W.; van der Schaft, A. J.

    1994-01-01

    The problem of transforming nonlinear control systems into input-output prime forms is dealt with, using state space, static state feedback, and also output space transformations. Necessary and sufficient geometric conditions for the solvability of this problem are obtained. The results obtained generalize well-known results both on feedback linearization as well as input-output decoupling of nonlinear systems. It turns out that, from a computational point of view, the output space transforma...

  3. Nonlinear physical systems spectral analysis, stability and bifurcations

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam

  4. Active Nonlinear Feedback Control for Aerospace Systems. Processor

    Science.gov (United States)

    1990-12-01

    Stabilizability of Uncertain Linear Systems: Existence of a Nonlinear Stabilizing Control Does Not Imply Existence of a Linear Stabilizing Control ," IEEE Trans...799-802, 1985. 13. I. R. Petersen, "Quadratic Stabilizability of Uncertain Linear Systems: Existence of a Nonlinear Stabilizing Control Does Not Imply...Existence of a Linear Stabilizing Control ," IEEE Trans. Autom. Contr., Vol. AC-30, pp. 291-293, 1985. 14. B. R. Barmish and A. R. Galimidi

  5. Adaptive synchronization of uncertain Liu system via nonlinear input

    Institute of Scientific and Technical Information of China (English)

    Hu Jia; Zhang Qun-Jiao

    2008-01-01

    This paper addresses the adaptive synchronization for uncertain Liu system via a nonlinear input.By using a single nonlinear controller,the approach is utilized to implement the synchronization of Liu system with total parameters unknown.This method is simple and can be easily designed.What is more,it improves the existing conclusions in Ref [12].Simulation results prove that the controller is effective and feasible in the end.

  6. Nonlinear State Space Modeling and System Identification for Electrohydraulic Control

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2013-01-01

    Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.

  7. Nonlinear systems techniques for dynamical analysis and control

    CERN Document Server

    Lefeber, Erjen; Arteaga, Ines

    2017-01-01

    This treatment of modern topics related to the control of nonlinear systems is a collection of contributions celebrating the work of Professor Henk Nijmeijer and honoring his 60th birthday. It addresses several topics that have been the core of Professor Nijmeijer’s work, namely: the control of nonlinear systems, geometric control theory, synchronization, coordinated control, convergent systems and the control of underactuated systems. The book presents recent advances in these areas, contributed by leading international researchers in systems and control. In addition to the theoretical questions treated in the text, particular attention is paid to a number of applications including (mobile) robotics, marine vehicles, neural dynamics and mechanical systems generally. This volume provides a broad picture of the analysis and control of nonlinear systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participan...

  8. Stability Analysis and Design for Nonlinear Singular Systems

    CERN Document Server

    Yang, Chunyu; Zhou, Linna

    2013-01-01

    Singular systems which are also referred to as descriptor systems, semi-state systems, differential- algebraic systems or generalized state-space systems have attracted much attention because of their extensive applications in the Leontief dynamic model, electrical and mechanical models, etc. This monograph presented up-to-date research developments and references on stability analysis and design of nonlinear singular systems. It investigated the problems of practical stability, strongly absolute stability, input-state stability and observer design for nonlinear singular systems and the problems of absolute stability and multi-objective control for nonlinear singularly perturbed systems by using Lyapunov stability theory, comparison principle, S-procedure and linear matrix inequality (LMI), etc. Practical stability, being quite different from stability in the sense of Lyapunov, is a significant performance specification from an engineering point of view. The basic concepts and results on practical stability f...

  9. Partially Linearizable Class of Nonlinear System with Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Sung Jun [Samsung Electronics Coporation (Korea, Republic of); Seo, Jin H. [Seoul National University (Korea, Republic of)

    1998-03-01

    In this paper the problem of robust stabilizing control for nonlinear SISO systems in the presence of uncertainties is studied and we give some geometric conditions for this problem. We also show that if and only if the systems satisfy the proposed conditions it can be transformed into a partially linearized system with unknown parameter using the nominal transformation and nominal feedback linearizing controller. In this paper, we call the above considered class of nonlinear system as partially linearizable system. We design the robust controller which stabilizes the partially linearizable system. (author). 14 refs.

  10. Self-characterization of linear and nonlinear adaptive optics systems

    Science.gov (United States)

    Hampton, Peter J.; Conan, Rodolphe; Keskin, Onur; Bradley, Colin; Agathoklis, Pan

    2008-01-01

    We present methods used to determine the linear or nonlinear static response and the linear dynamic response of an adaptive optics (AO) system. This AO system consists of a nonlinear microelectromechanical systems deformable mirror (DM), a linear tip-tilt mirror (TTM), a control computer, and a Shack-Hartmann wavefront sensor. The system is modeled using a single-input-single-output structure to determine the one-dimensional transfer function of the dynamic response of the chain of system hardware. An AO system has been shown to be able to characterize its own response without additional instrumentation. Experimentally determined models are given for a TTM and a DM.

  11. Nonlinear evolution of mirror instability in the Earth's magnetosheath in pic simulations

    Science.gov (United States)

    Ahmadi, Narges

    Mirror modes are large amplitude non-propagating structures frequently observed in the magnetosheath and they are generated in space plasma environments with proton temperature anisotropy of larger than one. The proton temperature anisotropy also drives the proton cyclotron instability which has larger linear growth rate than that of the mirror instability. Linear dispersion theory predicts that electron temperature anisotropy can enhance the mirror instability growth rate while leaving the proton cyclotron instability largely unaffected. Contrary to the hypothesis, electron temperature anisotropy leads to excitement of the electron whistler instability. Our results show that the electron whistler instability grows much faster than the mirror instability and quickly consumes the electron free energy, so that there is not enough electron temperature anisotropy left to significantly impact the evolution of the mirror instability. Observational studies have shown that the shape of mirror structures is related to local plasma parameters and distance to the mirror instability threshold. Mirror structures in the form of magnetic holes are observed when plasma is mirror stable or marginally mirror unstable and magnetic peaks are observed when plasma is mirror unstable. Mirror structures are created downstream of the quasi-perpendicular bow shock and they are convected toward the magnetopause. In the middle magnetosheath, where plasma is mirror unstable, mirror structures are dominated by magnetic peaks. Close to the magnetopause, plasma expansion makes the region mirror stable and magnetic peaks evolve to magnetic holes. We investigate the nonlinear evolution of mirror instability using expanding box Particle-in-Cell simulations. We change the plasma conditions by artificially enlarging the simulation box over time to make the plasma mirror stable and investigate the final nonlinear state of the mirror structures. We show that the direct nonlinear evolution of the mirror

  12. Residual Minimizing Model Reduction for Parameterized Nonlinear Dynamical Systems

    CERN Document Server

    Constantine, Paul G

    2010-01-01

    We present a method for approximating the solution of a parameterized, nonlinear dynamical (or static) system using an affine combination of solutions computed at other points in the input parameter space. The coefficients of the affine combination are computed with a nonlinear least squares procedure that minimizes the residual of the dynamical system. The approximation properties of this residual minimizing scheme are comparable to existing reduced basis and POD-Galerkin model reduction methods, but its implementation requires only independent evaluations of the nonlinear forcing function. We prove some interesting characteristics of the scheme including uniqueness and an interpolatory property, and we present heuristics for mitigating the effects of the ill-conditioning and reducing the overall cost of the method. We apply the method to representative numerical examples from kinetics - a three state system with one parameter controlling the stiffness - and groundwater modeling - a nonlinear parabolic PDE w...

  13. Robust adaptive dynamic programming and feedback stabilization of nonlinear systems.

    Science.gov (United States)

    Jiang, Yu; Jiang, Zhong-Ping

    2014-05-01

    This paper studies the robust optimal control design for a class of uncertain nonlinear systems from a perspective of robust adaptive dynamic programming (RADP). The objective is to fill up a gap in the past literature of adaptive dynamic programming (ADP) where dynamic uncertainties or unmodeled dynamics are not addressed. A key strategy is to integrate tools from modern nonlinear control theory, such as the robust redesign and the backstepping techniques as well as the nonlinear small-gain theorem, with the theory of ADP. The proposed RADP methodology can be viewed as an extension of ADP to uncertain nonlinear systems. Practical learning algorithms are developed in this paper, and have been applied to the controller design problems for a jet engine and a one-machine power system.

  14. Nonlinear electrodynamics as a symmetric hyperbolic system

    CERN Document Server

    Abalos, Fernando; Goulart, Érico; Reula, Oscar

    2015-01-01

    Nonlinear theories generalizing Maxwell's electromagnetism and arising from a Lagrangian formalism have dispersion relations in which propagation planes factor into null planes corresponding to two effective metrics which depend on the point-wise values of the electromagnetic field. These effective Lorentzian metrics share the null (generically two) directions of the electromagnetic field. We show that, the theory is symmetric hyperbolic if and only if the cones these metrics give rise to have a non-empty intersection. Namely that there exist families of symmetrizers in the sense of Geroch which are positive definite for all covectors in the interior of the cones intersection. Thus, for these theories, the initial value problem is well-posed. We illustrate the power of this approach with several nonlinear models of physical interest such as Born-Infeld, Gauss-Bonnet and Euler-Heisenberg.

  15. Online identification of nonlinear spatiotemporal systems using kernel learning approach.

    Science.gov (United States)

    Ning, Hanwen; Jing, Xingjian; Cheng, Li

    2011-09-01

    The identification of nonlinear spatiotemporal systems is of significance to engineering practice, since it can always provide useful insight into the underlying nonlinear mechanism and physical characteristics under study. In this paper, nonlinear spatiotemporal system models are transformed into a class of multi-input-multi-output (MIMO) partially linear systems (PLSs), and an effective online identification algorithm is therefore proposed by using a pruning error minimization principle and least square support vector machines. It is shown that many benchmark physical and engineering systems can be transformed into MIMO-PLSs which keep some important physical spatiotemporal relationships and are very helpful in the identification and analysis of the underlying system. Compared with several existing methods, the advantages of the proposed method are that it can make full use of some prior structural information about system physical models, can realize online estimation of the system dynamics, and achieve accurate characterization of some important nonlinear physical characteristics of the system. This would provide an important basis for state estimation, control, optimal analysis, and design of nonlinear distributed parameter systems. The proposed algorithm can also be applied to identification problems of stochastic spatiotemporal dynamical systems. Numeral examples and comparisons are given to demonstrate our results.

  16. Scattering in the nonlinear Lamb system

    Energy Technology Data Exchange (ETDEWEB)

    Komech, A.I. [Faculty of Mathematics of Vienna University, Vienna (Austria); Institute for the Information Transmission Problems of RAS, Moscow (Russian Federation)], E-mail: alexander.komech@univie.ac.at; Merzon, A.E. [Institute of Physics and Mathematics, University of Michoacan of San Nicolas de Hidalgo, Morelia, Michoacan (Mexico)], E-mail: anatoli@ifm.imich.mx

    2009-03-09

    We obtain long time asymptotics for the solutions to a string coupled to a nonlinear oscillator: each finite energy solution decays to a sum of a stationary state and a dispersive wave. The asymptotics hold in global energy norm. The dispersive waves are expressed via initial data and solution to an ordinary differential equation. The asymptotics give a mathematical model for the Bohr's transitions between quantum stationary states.

  17. Nonlinear Integral Sliding Mode Control for a Second Order Nonlinear System

    Directory of Open Access Journals (Sweden)

    Xie Zheng

    2015-01-01

    Full Text Available A nonlinear integral sliding-mode control (NISMC scheme is proposed for second order nonlinear systems. The new control scheme is characterized by a nonlinear integral sliding manifold which inherits the desired properties of the integral sliding manifold, such as robustness to system external disturbance. In particular, compared with four kinds of sliding mode control (SMC, the proposed control scheme is able to provide better transient performances. Furthermore, the proposed scheme ensures the zero steady-state error in the presence of a constant disturbance or an asymptotically constant disturbance is proved by Lyapunov stability theory and LaSalle invariance principle. Finally, both the theoretical analysis and simulation examples demonstrate the validity of the proposed scheme.

  18. A New Generalization of Extended Tanh-Function Method for Solving Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xue-Dong; CHEN Yong; LI Biao; ZHANG Hong-Qing

    2003-01-01

    Making use of a new generalized ansatze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations.As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extendedtanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain othernew and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profilesolitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions.

  19. Traveling wave solutions of nonlinear evolution equations via the enhanced (G′/G-expansion method

    Directory of Open Access Journals (Sweden)

    Kamruzzaman Khan

    2014-07-01

    Full Text Available In this article, an enhanced (G′/G-expansion method is suggested to find the traveling wave solutions for the modified Korteweg de-Vries (mKDV equation. Abundant traveling wave solutions are derived, which are expressed by the hyperbolic and trigonometric functions involving several parameters. The efficiency of this method for finding these exact solutions has been demonstrated. It is shown that the proposed method is effective and can be used for many other nonlinear evolution equations (NLEEs in mathematical physics.

  20. Infinitely-many conservation laws for two (2+1)-dimensional nonlinear evolution equations in fluids

    Indian Academy of Sciences (India)

    Yan Jiang; Bo Tian; Pan Wang; Kun Su

    2014-07-01

    In this paper, a method that can be used to construct the infinitely-many conservation laws with the Lax pair is generalized from the (1+1)-dimensional nonlinear evolution equations (NLEEs) to the (2+1)-dimensional ones. Besides, we apply that method to the Kadomtsev– Petviashvili (KP) and Davey–Stewartson equations in fluids, and respectively obtain their infinitelymany conservation laws with symbolic computation. Based on that method, we can also construct the infinitely-many conservation laws for other multidimensional NLEEs possessing the Lax pairs, including the cylindrical KP, modified KP and (2+1)-dimensional Gardner equations, in fluids, plasmas, optical fibres and Bose–Einstein condensates.

  1. A THIRD-ORDER BOUSSINESQ MODEL APPLIED TO NONLINEAR EVOLUTION OF SHALLOW-WATER WAVES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The conventional Boussinesq model is extended to the third order in dispersion and nonlinearity. The new equations are shown to possess better linear dispersion characteristics. For the evolution of periodic waves over a constant depth, the computed wave envelops are spatially aperiodic and skew. The model is then applied to the study of wave focusing by a topographical lens and the results are compared with Whalin's (1971) experimental data as well as some previous results from the conventional Boussinesq model. Encouragingly, improved agreement with Whalin's experimental data is found.

  2. TRAVELLING WAVE SOLUTIONS OF NONLINEAR EVOLUTION EQUATIONS BY USING SYMBOLIC COMPUTATION

    Institute of Scientific and Technical Information of China (English)

    FanEngui

    2001-01-01

    Abstract. A Riccati equation involving a parameter and symbolic computation are used to uni-formly construct the different forms of travelling wave solutions for nonlinear evolution equa-tions. It is shown that the sign of the parameter can be applied in judging the existence of vari-ous forms of travelling wave solutions. An efficiency of this method is demonstrated on some e-quations,which include Burgers-Huxley equation,Caudrey-Dodd-Gibbon-Kawada equation,gen-eralized Benjamin-Bona-Mahony equation and generalized Fisher equation.

  3. Approximated Lax pairs for the reduced order integration of nonlinear evolution equations

    Science.gov (United States)

    Gerbeau, Jean-Frédéric; Lombardi, Damiano

    2014-05-01

    A reduced-order model algorithm, called ALP, is proposed to solve nonlinear evolution partial differential equations. It is based on approximations of generalized Lax pairs. Contrary to other reduced-order methods, like Proper Orthogonal Decomposition, the basis on which the solution is searched for evolves in time according to a dynamics specific to the problem. It is therefore well-suited to solving problems with progressive front or wave propagation. Another difference with other reduced-order methods is that it is not based on an off-line/on-line strategy. Numerical examples are shown for the linear advection, KdV and FKPP equations, in one and two dimensions.

  4. Parameter Estimation of Nonlinear Systems by Dynamic Cuckoo Search.

    Science.gov (United States)

    Liao, Qixiang; Zhou, Shudao; Shi, Hanqing; Shi, Weilai

    2017-04-01

    In order to address with the problem of the traditional or improved cuckoo search (CS) algorithm, we propose a dynamic adaptive cuckoo search with crossover operator (DACS-CO) algorithm. Normally, the parameters of the CS algorithm are kept constant or adapted by empirical equation that may result in decreasing the efficiency of the algorithm. In order to solve the problem, a feedback control scheme of algorithm parameters is adopted in cuckoo search; Rechenberg's 1/5 criterion, combined with a learning strategy, is used to evaluate the evolution process. In addition, there are no information exchanges between individuals for cuckoo search algorithm. To promote the search progress and overcome premature convergence, the multiple-point random crossover operator is merged into the CS algorithm to exchange information between individuals and improve the diversification and intensification of the population. The performance of the proposed hybrid algorithm is investigated through different nonlinear systems, with the numerical results demonstrating that the method can estimate parameters accurately and efficiently. Finally, we compare the results with the standard CS algorithm, orthogonal learning cuckoo search algorithm (OLCS), an adaptive and simulated annealing operation with the cuckoo search algorithm (ACS-SA), a genetic algorithm (GA), a particle swarm optimization algorithm (PSO), and a genetic simulated annealing algorithm (GA-SA). Our simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.

  5. Parametric characteristic of the random vibration response of nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Xing-Jian Dong; Zhi-Ke Peng; Wen-Ming Zhang; Guang Meng; Fu-Lei Chu

    2013-01-01

    Volterra series is a powerful mathematical tool for nonlinear system analysis,and there is a wide range of non-linear engineering systems and structures that can be represented by a Volterra series model.In the present study,the random vibration of nonlinear systems is investigated using Volterra series.Analytical expressions were derived for the calculation of the output power spectral density (PSD) and input-output cross-PSD for nonlinear systems subjected to Gaussian excitation.Based on these expressions,it was revealed that both the output PSD and the input-output crossPSD can be expressed as polynomial functions of the nonlinear characteristic parameters or the input intensity.Numerical studies were carried out to verify the theoretical analysis result and to demonstrate the effectiveness of the derived relationship.The results reached in this study are of significance to the analysis and design of the nonlinear engineering systems and structures which can be represented by a Volterra series model.

  6. Nonlinear feedback synchronization of hyperchaos in higher dimensional systems

    Institute of Scientific and Technical Information of China (English)

    FangJin-Qing; AliMK

    1997-01-01

    Nonlinear feedback functional method is presented to realize synchronization of hyperchaos in higher dimensional systems,New nonlinear feedback functions and superpositions of linear and nonlinear feedback functions are also introduced to synchronize hyperchaos.The robustness of the method based on the flexibility of choices of feedback functions is discussed.By coupling well-known chaotic or chaotic-hyperchaotic systems in low-dimensional systems,such as Lorenz system,Van der Pol oscillator,Duffing oscillator and Roessler system,ten dimensional hyperchaotic systems are formed as the model systems.It can be found that there is not any noticeable difference in synchronization based on the numbers of positive Lyapunov exponents and of dimensions.

  7. Optimal nonlinear feedback control of quasi-Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋; 应祖光

    1999-01-01

    An innovative strategy for optimal nonlinear feedback control of linear or nonlinear stochastic dynamic systems is proposed based on the stochastic averaging method for quasi-Hamiltonian systems and stochastic dynamic programming principle. Feedback control forces of a system are divided into conservative parts and dissipative parts. The conservative parts are so selected that the energy distribution in the controlled system is as requested as possible. Then the response of the system with known conservative control forces is reduced to a controlled diffusion process by using the stochastic averaging method. The dissipative parts of control forces are obtained from solving the stochastic dynamic programming equation.

  8. Stability properties of nonlinear dynamical systems and evolutionary stable states

    Energy Technology Data Exchange (ETDEWEB)

    Gleria, Iram, E-mail: iram@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL (Brazil); Brenig, Leon [Faculté des Sciences, Université Libre de Bruxelles, 1050 Brussels (Belgium); Rocha Filho, Tarcísio M.; Figueiredo, Annibal [Instituto de Física and International Center for Condensed Matter Physics, Universidade de Brasília, 70919-970 Brasília-DF (Brazil)

    2017-03-18

    Highlights: • We address the problem of equilibrium stability in a general class of non-linear systems. • We link Evolutionary Stable States (ESS) to stable fixed points of square quasi-polynomial (QP) systems. • We show that an interior ES point may be related to stable interior fixed points of QP systems. - Abstract: In this paper we address the problem of stability in a general class of non-linear systems. We establish a link between the concepts of asymptotic stable interior fixed points of square Quasi-Polynomial systems and evolutionary stable states, a property of some payoff matrices arising from evolutionary games.

  9. Reconstructing the Nonlinear Dynamical Systems by Evolutionary Computation Techniques

    Institute of Scientific and Technical Information of China (English)

    LIU Minzhong; KANG Lishan

    2006-01-01

    We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The convergence of the algorithm is discussed. We make the numerical experiments and test our model using the two famous chaotic systems (mainly the Lorenz and Chen systems ). The results show the relatively accurate reconstruction of these chaotic systems based on observational data can be obtained. Therefore we may conclude that there are broad prospects using our method to model the nonlinear dynamical systems.

  10. Data assimilation as a nonlinear dynamical systems problem: stability and convergence of the prediction-assimilation system.

    Science.gov (United States)

    Carrassi, Alberto; Ghil, Michael; Trevisan, Anna; Uboldi, Francesco

    2008-06-01

    We study prediction-assimilation systems, which have become routine in meteorology and oceanography and are rapidly spreading to other areas of the geosciences and of continuum physics. The long-term, nonlinear stability of such a system leads to the uniqueness of its sequentially estimated solutions and is required for the convergence of these solutions to the system's true, chaotic evolution. The key ideas of our approach are illustrated for a linearized Lorenz system. Stability of two nonlinear prediction-assimilation systems from dynamic meteorology is studied next via the complete spectrum of their Lyapunov exponents; these two systems are governed by a large set of ordinary and of partial differential equations, respectively. The degree of data-induced stabilization is crucial for the performance of such a system. This degree, in turn, depends on two key ingredients: (i) the observational network, either fixed or data-adaptive, and (ii) the assimilation method.

  11. Modelling and Estimation of Hammerstein System with Preload Nonlinearity

    Directory of Open Access Journals (Sweden)

    Khaled ELLEUCH

    2010-12-01

    Full Text Available This paper deals with modelling and parameter identification of nonlinear systems described by Hammerstein model having asymmetric static nonlinearities known as preload nonlinearity characteristic. The simultaneous use of both an easy decomposition technique and the generalized orthonormal bases leads to a particular form of Hammerstein model containing a minimal parameters number. The employ of orthonormal bases for the description of the linear dynamic block conducts to a linear regressor model, so that least squares techniques can be used for the parameter estimation. Singular Values Decomposition (SVD technique has been applied to separate the coupled parameters. To demonstrate the feasibility of the identification method, an illustrative example is included.

  12. Nonlinear Galerkin Optimal Truncated Low—dimensional Dynamical Systems

    Institute of Scientific and Technical Information of China (English)

    ChuijieWU

    1996-01-01

    In this paper,a new theory of constructing nonlinear Galerkin optimal truncated Low-Dimensional Dynamical Systems(LDDSs) directly from partial differential equations has been developed.Applying the new theory to the nonlinear Burgers' equation,it is shown that a nearly perfect LDDS can be gotten,and the initial-boundary conditions are automatically included in the optimal bases.The nonlinear Galerkin method does not have advantages within the optimization process,but it can significantly improve the results,after the Galerkin optimal bases have been gotten.

  13. Robust stabilization for a class of nonlinear networked control systems

    Institute of Scientific and Technical Information of China (English)

    Jinfeng GAO; Hongye SU; Xiaofu JI; Jian CHU

    2008-01-01

    The problem of robust stabilization for a class of uncertain networked control systems(NCSs)with nonlinearities satisfying a given sector condition is investigated in this paper.By introducing a new model of NCSs with parameter uncertainty,network.induced delay,nonlinearity and data packet dropout in the transmission,a strict linear matrix inequality(LMI)criterion is proposed for robust stabilization of the uncenmn nonlinear NCSs based on the Lyapunov stability theory.The maximum allowable transfer interval(MATI)can be derived by solving the feasibility problem of the corresponding LMI.Some numerical examples are provided to demonstrate the applicability of the proposed algorithm.

  14. A new extended H∞ filter for discrete nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    张永安; 周荻; 段广仁

    2004-01-01

    Nonlinear estimation problem is investigated in this paper. By extension of a linear H∞ estimation with corrector-predictor form to nonlinear cases, a new extended H∞ filter is proposed for time-varying discretetime nonlinear systems. The new filter has a simple observer structure based on a local linearization model, and can be viewed as a general case of the extended Kalman filter (EKF). An example demonstrates that the new filter with a suitable-chosen prescribed H∞ bound performs better than the EKF.

  15. Nonlinear time reversal in a wave chaotic system.

    Science.gov (United States)

    Frazier, Matthew; Taddese, Biniyam; Antonsen, Thomas; Anlage, Steven M

    2013-02-01

    Exploiting the time-reversal invariance and reciprocal properties of the lossless wave equation enables elegantly simple solutions to complex wave-scattering problems and is embodied in the time-reversal mirror. Here we demonstrate the implementation of an electromagnetic time-reversal mirror in a wave chaotic system containing a discrete nonlinearity. We demonstrate that the time-reversed nonlinear excitations reconstruct exclusively upon the source of the nonlinearity. As an example of its utility, we demonstrate a new form of secure communication and point out other applications.

  16. Practical compensation for nonlinear dynamic thrust measurement system

    Directory of Open Access Journals (Sweden)

    Chen Lin

    2015-04-01

    Full Text Available The real dynamic thrust measurement system usually tends to be nonlinear due to the complex characteristics of the rig, pipes connection, etc. For a real dynamic measuring system, the nonlinearity must be eliminated by some adequate methods. In this paper, a nonlinear model of dynamic thrust measurement system is established by using radial basis function neural network (RBF-NN, where a novel multi-step force generator is designed to stimulate the nonlinearity of the system, and a practical compensation method for the measurement system using left inverse model is proposed. Left inverse model can be considered as a perfect dynamic compensation of the dynamic thrust measurement system, and in practice, it can be approximated by RBF-NN based on least mean square (LMS algorithms. Different weights are set for producing the multi-step force, which is the ideal input signal of the nonlinear dynamic thrust measurement system. The validity of the compensation method depends on the engine’s performance and the tolerance error 0.5%, which is commonly demanded in engineering. Results from simulations and experiments show that the practical compensation using left inverse model based on RBF-NN in dynamic thrust measuring system can yield high tracking accuracy than the conventional methods.

  17. Fault detection and fault-tolerant control for nonlinear systems

    CERN Document Server

    Li, Linlin

    2016-01-01

    Linlin Li addresses the analysis and design issues of observer-based FD and FTC for nonlinear systems. The author analyses the existence conditions for the nonlinear observer-based FD systems to gain a deeper insight into the construction of FD systems. Aided by the T-S fuzzy technique, she recommends different design schemes, among them the L_inf/L_2 type of FD systems. The derived FD and FTC approaches are verified by two benchmark processes. Contents Overview of FD and FTC Technology Configuration of Nonlinear Observer-Based FD Systems Design of L2 nonlinear Observer-Based FD Systems Design of Weighted Fuzzy Observer-Based FD Systems FTC Configurations for Nonlinear Systems< Application to Benchmark Processes Target Groups Researchers and students in the field of engineering with a focus on fault diagnosis and fault-tolerant control fields The Author Dr. Linlin Li completed her dissertation under the supervision of Prof. Steven X. Ding at the Faculty of Engineering, University of Duisburg-Essen, Germany...

  18. Applications of nonlinear system identification to structural health monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C. R. (Charles R.); Sohn, H. (Hoon); Robertson, A. N. (Amy N.)

    2004-01-01

    The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM). In many cases damage causes a structure that initially behaves in a predominantly linear manner to exhibit nonlinear response when subject to its operating environment. The formation of cracks that subsequently open and close under operating loads is an example of such damage. The damage detection process can be significantly enhanced if one takes advantage of these nonlinear effects when extracting damage-sensitive features from measured data. This paper will provide an overview of nonlinear system identification techniques that are used for the feature extraction process. Specifically, three general approaches that apply nonlinear system identification techniques to the damage detection process are discussed. The first two approaches attempt to quantify the deviation of the system from its initial linear characteristics that is a direct result of damage. The third approach is to extract features from the data that are directly related to the specific nonlinearity associated with the damaged condition. To conclude this discussion, a summary of outstanding issues associated with the application of nonlinear system identification techniques to the SHM problem is presented.

  19. Mathematical Systems Theory : from Behaviors to Nonlinear Control

    CERN Document Server

    Julius, A; Pasumarthy, Ramkrishna; Rapisarda, Paolo; Scherpen, Jacquelien

    2015-01-01

    This treatment of modern topics related to mathematical systems theory forms the proceedings of a workshop, Mathematical Systems Theory: From Behaviors to Nonlinear Control, held at the University of Groningen in July 2015. The workshop celebrated the work of Professors Arjan van der Schaft and Harry Trentelman, honouring their 60th Birthdays. The first volume of this two-volume work covers a variety of topics related to nonlinear and hybrid control systems. After giving a detailed account of the state of the art in the related topic, each chapter presents new results and discusses new directions. As such, this volume provides a broad picture of the theory of nonlinear and hybrid control systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants’ ideas on exciting new approaches to control and system theory and their predictions of future directions for the subject that were discussed at the worksho...

  20. Non-linear system identification in flow-induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Spanos, P.D.; Zeldin, B.A. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corp., Houston, TX (United States)

    1996-12-31

    The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.

  1. Backstepping tracking control for nonlinear time-delay systems

    Institute of Scientific and Technical Information of China (English)

    Chen Weisheng; Li Junmin

    2006-01-01

    Two design approaches of state feedback and output feedback tracking controllers are proposed for a class of strict feedback nonlinear time-delay systems by using backstepping technique. When the states of system cannot be observed, the time-delay state observer is designed to estimate the system states. Domination method is used to deal with nonlinear time-delay function under the assumption that the nonlinear time-delay functions of systems satisfy Lipschitz condition. The global asymptotical tracking of the references signal is achieved and the bound of all signals of the resultant closed-loop system is also guaranteed. By constructing a Lyapunov-Krasoviskii functional, the stability of the closed-loop system is proved. The feasibility of the proposed approach is illustrated by a simulation example.

  2. Manual communication systems: evolution and variation

    NARCIS (Netherlands)

    Pfau, R.; Pfau, R.; Steinbach, M.; Woll, B.

    2012-01-01

    This chapter addresses issues in the evolution and typology of manual communication systems. From a language evolution point of view, sign languages are interesting because it has been suggested that oral language may have evolved from gestural (proto)language. As far as typology is concerned, two i

  3. Damage detection in structures through nonlinear excitation and system identification

    Science.gov (United States)

    Hajj, Muhammad R.; Bordonaro, Giancarlo G.; Nayfeh, Ali H.; Duke, John C., Jr.

    2008-03-01

    Variations in parameters representing natural frequency, damping and effective nonlinearities before and after damage initiation in a beam carrying a lumped mass are assessed. The identification of these parameters is performed by exploiting and modeling nonlinear behavior of the beam-mass system and matching an approximate solution of the representative model with quantities obtained from spectral analysis of measured vibrations. The representative model and identified coefficients are validated through comparison of measured and predicted responses. Percentage variations of the identified parameters before and after damage initiation are determined to establish their sensitivities to the state of damage of the beam. The results show that damping and effective nonlinearity parameters are more sensitive to damage initiation than the system's natural frequency. Moreover, the sensitivity of nonlinear parameters to damage is better established using a physically-derived parameter rather than spectral amplitudes of harmonic components.

  4. A Study of Thermal Contact using Nonlinear System Identification Models

    Directory of Open Access Journals (Sweden)

    M. H. Shojaeefard

    2008-01-01

    Full Text Available One interesting application of system identification method is to identify and control the heat transfer from the exhaust valve to the seat to keep away the valve from being damaged. In this study, two co-axial cylindrical specimens are used as exhaust valve and its seat. Using the measured temperatures at different locations of the specimens and with a semi-analytical method, the temperature distribution of the specimens is calculated and consequently, the thermal contact conductance is calculated. By applying the system identification method and having the temperatures at both sides of the contact surface, the temperature transfer function is calculated. With regard to the fact that the thermal contact has nonlinear behavior, two nonlinear black-box models called nonlinear ARX and NLN Hammerstein-Wiener models are taken for accurate estimation. Results show that the NLN Hammerstein-Wiener models with wavelet network nonlinear estimator is the best.

  5. Nonlinear Mixed-Effects Models for Repairable Systems Reliability

    Institute of Scientific and Technical Information of China (English)

    TAN Fu-rong; JIANG Zhi-bin; KUO Way; Suk Joo BAE

    2007-01-01

    Mixed-effects models, also called random-effects models, are a regression type of analysis which enables the analyst to not only describe the trend over time within each subject, but also to describe the variation among different subjects. Nonlinear mixed-effects models provide a powerful and flexible tool for handling the unbalanced count data. In this paper, nonlinear mixed-effects models are used to analyze the failure data from a repairable system with multiple copies. By using this type of models, statistical inferences about the population and all copies can be made when accounting for copy-to-copy variance. Results of fitting nonlinear mixed-effects models to nine failure-data sets show that the nonlinear mixed-effects models provide a useful tool for analyzing the failure data from multi-copy repairable systems.

  6. Jet Riemann-Lagrange Geometry Applied to Evolution DEs Systems from Economy

    OpenAIRE

    Neagu, Mircea

    2007-01-01

    The aim of this paper is to construct a natural Riemann-Lagrange differential geometry on 1-jet spaces, in the sense of nonlinear connections, generalized Cartan connections, d-torsions, d-curvatures, jet electromagnetic fields and jet Yang-Mills energies, starting from some given non-linear evolution DEs systems modelling economic phenomena, like the Kaldor model of the bussines cycle or the Tobin-Benhabib-Miyao model regarding the role of money on economic growth.

  7. Spectral evolution of weakly nonlinear random waves: kinetic description vs direct numerical simulations

    Science.gov (United States)

    Annenkov, Sergei; Shrira, Victor

    2016-04-01

    We study numerically the long-term evolution of water wave spectra without wind forcing, using three different models, aiming at understanding the role of different sets of assumptions. The first model is the classical Hasselmann kinetic equation (KE). We employ the WRT code kindly provided by G. van Vledder. Two other models are new. As the second model, we use the generalised kinetic equation (gKE), derived without the assumption of quasi-stationarity. Thus, unlike the KE, the gKE is valid in the cases when a wave spectrum is changing rapidly (e.g. at the initial stage of evolution of a narrow spectrum). However, the gKE employs the same statistical closure as the KE. The third model is based on the Zakharov integrodifferential equation for water waves and does not depend on any statistical assumptions. Since the Zakharov equation plays the role of the primitive equation of the theory of wave turbulence, we refer to this model as direct numerical simulation of spectral evolution (DNS-ZE). For initial conditions, we choose two narrow-banded spectra with the same frequency distribution (a JONSWAP spectrum with high peakedness γ = 6) and different degrees of directionality. These spectra are from the set of observations collected in a directional wave tank by Onorato et al (2009). Spectrum A is very narrow in angle (corresponding to N = 840 in the cosN directional model). Spectrum B is initially wider in angle (corresponds to N = 24). Short-term evolution of both spectra (O(102) wave periods) has been studied numerically by Xiao et al (2013) using two other approaches (broad-band modified nonlinear Schrödinger equation and direct numerical simulation based on the high-order spectral method). We use these results to verify the initial stage of our DNS-ZE simulations. However, the advantage of the DNS-ZE method is that it allows to study long-term spectral evolution (up to O(104) periods), which was previously possible only with the KE. In the short-term evolution

  8. Digital set point control of nonlinear stochastic systems

    Science.gov (United States)

    Moose, R. L.; Vanlandingham, H. F.; Zwicke, P. E.

    1978-01-01

    A technique for digital control of nonlinear stochastic plants is presented. The development achieves a practical digital algorithm with which the closed-loop system behaves in a classical Type I manner even with gross nonlinearities in the plant structure and low signal-to-noise power ratios. The design procedure is explained in detail and illustrated by an example whose simulated responses testify to the practicality of the approach.

  9. Hierarchical robust nonlinear switching control design for propulsion systems

    Science.gov (United States)

    Leonessa, Alexander

    1999-09-01

    The desire for developing an integrated control system- design methodology for advanced propulsion systems has led to significant activity in modeling and control of flow compression systems in recent years. In this dissertation we develop a novel hierarchical switching control framework for addressing the compressor aerodynamic instabilities of rotating stall and surge. The proposed control framework accounts for the coupling between higher-order modes while explicitly addressing actuator rate saturation constraints and system modeling uncertainty. To develop a hierarchical nonlinear switching control framework, first we develop generalized Lyapunov and invariant set theorems for nonlinear dynamical systems wherein all regularity assumptions on the Lyapunov function and the system dynamics are removed. In particular, local and global stability theorems are given using lower semicontinuous Lyapunov functions. Furthermore, generalized invariant set theorems are derived wherein system trajectories converge to a union of largest invariant sets contained in intersections over finite intervals of the closure of generalized Lyapunov level surfaces. The proposed results provide transparent generalizations to standard Lyapunov and invariant set theorems. Using the generalized Lyapunov and invariant set theorems, a nonlinear control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving system equilibria is developed. Specifically, using equilibria- dependent Lyapunov functions, a hierarchical nonlinear control strategy is developed that stabilizes a given nonlinear system by stabilizing a collection of nonlinear controlled subsystems. The switching nonlinear controller architecture is designed based on a generalized lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized system equilibria. The proposed framework provides a

  10. 非线性系统的精确解%Constructing Exact Solutions for Two Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    赵雪芹; 智红燕; 张鸿庆

    2008-01-01

    Based on the computerized symbolic,a new generalized tanh functions method is used for constructing exact travelling wave solutions of nonlinear partial differential equations (PDES) in a unified way.The main idea of our method is to take full advantage of an auxiliary ordinary differential equation which has more new solutions.At the same time,we present a more general transformation,which is a generalized method for finding more types of travelling wave solutions of nonlinear evolution equations (NLEEs).More new exact travelling wave solutions to two nonlinear systems are explicitly obtained.

  11. Nonlinear Damping Identification in Nonlinear Dynamic System Based on Stochastic Inverse Approach

    Directory of Open Access Journals (Sweden)

    S. L. Han

    2012-01-01

    Full Text Available The nonlinear model is crucial to prepare, supervise, and analyze mechanical system. In this paper, a new nonparametric and output-only identification procedure for nonlinear damping is studied. By introducing the concept of the stochastic state space, we formulate a stochastic inverse problem for a nonlinear damping. The solution of the stochastic inverse problem is designed as probabilistic expression via the hierarchical Bayesian formulation by considering various uncertainties such as the information insufficiency in parameter of interests or errors in measurement. The probability space is estimated using Markov chain Monte Carlo (MCMC. The applicability of the proposed method is demonstrated through numerical experiment and particular application to a realistic problem related to ship roll motion.

  12. Generalized Kudryashov method for solving some (3+1-dimensional nonlinear evolution equations

    Directory of Open Access Journals (Sweden)

    Md. Shafiqul Islam

    2015-06-01

    Full Text Available In this work, we have applied the generalized Kudryashov methods to obtain the exact travelling wave solutions for the (3+1-dimensional Jimbo-Miwa (JM equation, the (3+1-dimensional Kadomtsev-Petviashvili (KP equation and the (3+1-dimensional Zakharov-Kuznetsov (ZK. The attained solutions show distinct physical configurations. The constraints that will guarantee the existence of specific solutions will be investigated. These solutions may be useful and desirable for enlightening specific nonlinear physical phenomena in genuinely nonlinear dynamical systems.

  13. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    Science.gov (United States)

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  14. Grobner Bases for Nonlinear DAE Systems of Analog Circuits

    Directory of Open Access Journals (Sweden)

    Silke J. Spang

    2008-04-01

    Full Text Available Systems of differential equations play an important role in modelling and analysis of many complex systems e.g. in electronics and mechanics. The following article is concerned with a symbolic analysis approach for reduction of the differential index of nonlinear differential algebraic equation (DAE systems, which occur in the modelling and simulation of analog circuits.

  15. Nonlinear system identification based on internal recurrent neural networks.

    Science.gov (United States)

    Puscasu, Gheorghe; Codres, Bogdan; Stancu, Alexandru; Murariu, Gabriel

    2009-04-01

    A novel approach for nonlinear complex system identification based on internal recurrent neural networks (IRNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This approach employs internal state estimation when no measurements coming from the sensors are available for the system states. A modified backpropagation algorithm is introduced in order to train the IRNN for nonlinear system identification. The performance of the proposed design approach is proven on a car simulator case study.

  16. Chaotic and hyperchaotic attractors of a complex nonlinear system

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Gamal M; Al-Kashif, M A; Farghaly, A A [Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516 (Egypt)

    2008-02-08

    In this paper, we introduce a complex nonlinear hyperchaotic system which is a five-dimensional system of nonlinear autonomous differential equations. This system exhibits both chaotic and hyperchaotic behavior and its dynamics is very rich. Based on the Lyapunov exponents, the parameter values at which this system has chaotic, hyperchaotic attractors, periodic and quasi-periodic solutions and solutions that approach fixed points are calculated. The stability analysis of these fixed points is carried out. The fractional Lyapunov dimension of both chaotic and hyperchaotic attractors is calculated. Some figures are presented to show our results. Hyperchaos synchronization is studied analytically as well as numerically, and excellent agreement is found.

  17. Asymptotic analysis of a coupled nonlinear parabolic system

    Institute of Scientific and Technical Information of China (English)

    Lan QIAO; Sining ZHENG

    2008-01-01

    This paper deals with asymptotic analysis of a parabolic system with inner absorptions and coupled nonlinear boundary fluxes. Three simultaneous blow-up rates are established under different dominations of nonlinearities, and simply represented in a characteristic algebraic system introduced for the problem. In particular, it is observed that two of the multiple blow-up rates are absorption-related. This is substantially different from those for nonlinear parabolic problems with absorptions in all the previous literature, where the blow-up rates were known as absorption-independent. The results of the paper rely on the scaling method with a complete classification for the nonlinear parameters of the model. The first example of absorption-related blow-up rates was recently proposed by the authors for a coupled parabolic system with mixed type nonlinearities. The present paper shows that the newly observed phenomena of absorption-related blow-up rates should be due to the coupling mechanism, rather than the mixed type nonlinearities.

  18. Robust Nonlinear Control with Compensation Operator for a Peltier System

    Directory of Open Access Journals (Sweden)

    Sheng-Jun Wen

    2014-01-01

    Full Text Available Robust nonlinear control with compensation operator is presented for a Peltier actuated system, where the compensation operator is designed by using a predictive model on heat radiation. For the Peltier system, the heat radiation is related to the fourth power of temperature. So, the heat radiation is affected evidently by the temperature when it is high and temperature difference between the system and environment is large. A new nonlinear model with the heat radiation is set up for the system according to some thermal conduction laws. To ensure robust stability of the nonlinear system, operator based robust right coprime factorization design is considered. Also, a compensation operator based on a predictive model is proposed to cancel effect of the heat radiation, where the predictive model is set up by using radial basis kernel function based SVM (support vector machine method. Finally, simulation results are given to show the effectiveness of the proposed scheme.

  19. Nonlinear control for a class of hydraulic servo system

    Institute of Scientific and Technical Information of China (English)

    余宏; 冯正进; 王旭永

    2004-01-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.

  20. Nonlinear control for a class of hydraulic servo system

    Institute of Scientific and Technical Information of China (English)

    余宏; 冯正进; 王旭永

    2004-01-01

    The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening,friction,etc. Aside from the nonlinear nature of hydraulic dynamics,hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues,a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well,and all signals in the closed-loop system remain bounded. Moreover,a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers,this paper's robust controller based on backstepping recursive design method is easier to design,and is more suitable for implementation.

  1. Nonlinear switching and solitons in PT-symmetric photonic systems

    CERN Document Server

    Suchkov, Sergey V; Huang, Jiahao; Dmitriev, Sergey V; Lee, Chaohong; Kivshar, Yuri S

    2015-01-01

    One of the challenges of the modern photonics is to develop all-optical devices enabling increased speed and energy efficiency for transmitting and processing information on an optical chip. It is believed that the recently suggested Parity-Time (PT) symmetric photonic systems with alternating regions of gain and loss can bring novel functionalities. In such systems, losses are as important as gain and, depending on the structural parameters, gain compensates losses. Generally, PT systems demonstrate nontrivial non-conservative wave interactions and phase transitions, which can be employed for signal filtering and switching, opening new prospects for active control of light. In this review, we discuss a broad range of problems involving nonlinear PT-symmetric photonic systems with an intensity-dependent refractive index. Nonlinearity in such PT symmetric systems provides a basis for many effects such as the formation of localized modes, nonlinearly-induced PT-symmetry breaking, and all-optical switching. Nonl...

  2. The non-linear evolution of the tearing mode in electromagnetic turbulence using gyrokinetic simulations

    CERN Document Server

    Hornsby, William A; Buchholz, Rico; Grosshauser, Stefan; Weikl, Arne; Zarzoso, David; Casson, Francis J; Poli, Emanuele; Peeters, Artur G

    2015-01-01

    The non-linear evolution of a magnetic island is studied using the Vlasov gyro-kinetic code GKW. The interaction of electromagnetic turbulence with a self-consistently growing magnetic island, generated by a tearing unstable $\\Delta' > 0$ current profile, is considered. The turbulence is able to seed the magnetic island and bypass the linear growth phase by generating structures that are approximately an ion gyro-radius in width. The non-linear evolution of the island width and its rotation frequency, after this seeding phase, is found to be modified and is dependent on the value of the plasma beta and equilibrium pressure gradients. At low values of beta the island evolves largely independent of the turbulence, while at higher values the interaction has a dramatic effect on island growth, causing the island to grow exponentially at the growth rate of its linear phase, even though the island is larger than linear theory validity. The turbulence forces the island to rotate in the ion-diamagnetic direction as o...

  3. The Magnetohydrodynamic Kelvin-Helmholtz Instability A Three-Dimensional Study of Nonlinear Evolution

    CERN Document Server

    Ryu, D; Frank, A I; Ryu, Dongsu; Frank, Adam

    2000-01-01

    We investigate through high resolution 3D simulations the nonlinear evolution of compressible magnetohydrodynamic flows subject to the Kelvin-Helmholtz instability. We confirm in 3D flows the conclusion from our 2D work that even apparently weak magnetic fields embedded in Kelvin-Helmholtz unstable plasma flows can be fundamentally important to nonlinear evolution of the instability. In fact, that statement is strengthened in 3D by this work, because it shows how field line bundles can be stretched and twisted in 3D as the quasi-2D Cat's Eye vortex forms out of the hydrodynamical motions. In our simulations twisting of the field may increase the maximum field strength by more than a factor of two over the 2D effect. If, by these developments, the Alfv\\'en Mach number of flows around the Cat's Eye drops to unity or less, our simulations suggest magnetic stresses will eventually destroy the Cat's Eye and cause the plasma flow to self-organize into a relatively smooth and apparently stable flow that retains memo...

  4. Application of the green function formalism to nonlinear evolution of the low gain FEL oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, G. [Princeton Plasma Physics Lab., NJ (United States); Wurtele, J.S.; Gardent, D. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others

    1995-12-31

    A matrix formalism for the optical pulse evolution in the frequency domain, is applied to the nonlinear regime of operation. The formalism was previously developed for studies of the linear evolution of the low-gain FEL oscillator with an arbitrary shape of the electron beam. By varying experimentally controllable parameters, such as cavity detunning and cavity losses, different regimes of operation of the FEL oscillator, such as a steady state saturation and limit cycle saturation, are studied numerically. It is demonstrated that the linear supermodes, numerically obtained from the matrix formalism, provide an appropriate framework for analyzing the periodic change in the output power in the limit cycle regime. The frequency of this oscillation is related to the frequencies of the lowest-order linear supermodes. The response of the output radiation to periodic variation of the electron energy is studied. It is found that the response is enhanced when the frequency of the energy variation corresponds to the difference of per-pass phase advances of the lowest linear supermodes. Finally, various nonlinear models are tested to capture the steady state saturation and limit cycle variation of the EM field in the oscillator cavity.

  5. Geometric nonlinear formulation for thermal-rigid-flexible coupling system

    Science.gov (United States)

    Fan, Wei; Liu, Jin-Yang

    2013-10-01

    This paper develops geometric nonlinear hybrid formulation for flexible multibody system with large deformation considering thermal effect. Different from the conventional formulation, the heat flux is the function of the rotational angle and the elastic deformation, therefore, the coupling among the temperature, the large overall motion and the elastic deformation should be taken into account. Firstly, based on nonlinear strain-displacement relationship, variational dynamic equations and heat conduction equations for a flexible beam are derived by using virtual work approach, and then, Lagrange dynamics equations and heat conduction equations of the first kind of the flexible multibody system are obtained by leading into the vectors of Lagrange multiplier associated with kinematic and temperature constraint equations. This formulation is used to simulate the thermal included hub-beam system. Comparison of the response between the coupled system and the uncoupled system has revealed the thermal chattering phenomenon. Then, the key parameters for stability, including the moment of inertia of the central body, the incident angle, the damping ratio and the response time ratio, are analyzed. This formulation is also used to simulate a three-link system applied with heat flux. Comparison of the results obtained by the proposed formulation with those obtained by the approximate nonlinear model and the linear model shows the significance of considering all the nonlinear terms in the strain in case of large deformation. At last, applicability of the approximate nonlinear model and the linear model are clarified in detail.

  6. VARIANCE OF NONLINEAR PHASE NOISE IN FIBER-OPTIC SYSTEM

    Directory of Open Access Journals (Sweden)

    RANJU KANWAR

    2013-04-01

    Full Text Available In communication system, the noise process must be known, in order to compute the system performance. The nonlinear effects act as strong perturbation in long- haul system. This perturbation effects the signal, when interact with amplitude noise, and results in random motion of the phase of the signal. Based on the perturbation theory, the variance of nonlinear phase noise contaminated by both self- and cross-phase modulation, is derived analytically for phase-shift- keying system. Through this work, it is investigated that for longer transmission distance, 40-Gb/s systems are more sensitive to nonlinear phase noise as compared to 50-Gb/s systems. Also, when transmitting the data through the fiber optic link, bit errors are produced due to various effects such as noise from optical amplifiers and nonlinearity occurring in fiber. On the basis of the simulation results , we have compared the bit error rate based on 8-PSK with theoretical results, and result shows that in real time approach, the bit error rate is high for the same signal to noise ratio. MATLAB software is used to validate the analytical expressions for the variance of nonlinear phase noise.

  7. Dichotomy of nonlinear systems: Application to chaos control of nonlinear electronic circuit

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinzhi [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)]. E-mail: jinzhiw@pku.edu.cn; Duan Zhisheng [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China); Huang Lin [State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)

    2006-02-27

    In this Letter a new method of chaos control for Chua's circuit and the modified canonical Chua's electrical circuit is proposed by using the results of dichotomy in nonlinear systems. A linear feedback control based on linear matrix inequality (LMI) is given such that chaos oscillation or hyperchaos phenomenon of circuit systems injected control signal disappear. Numerical simulations are presented to illustrate the efficiency of the proposed method.

  8. Variable universe stable adaptive fuzzy control of nonlinear system

    Institute of Scientific and Technical Information of China (English)

    李洪兴; 苗志宏; 王加银

    2002-01-01

    A kind of stable adaptive fuzzy control of nonlinear system is implemented using variable universe method. First of all, the basic structure of variable universe adaptive fuzzy controllers is briefly introduced. Then the contraction-expansion factor that is a key tool of variable universe method is defined by means of integral regulation idea, and a kind of adaptive fuzzy controllers is designed by using such a contraction-expansion factor. The simulation on first order nonlinear system is done. Secondly, it is proved that the variable universe adaptive fuzzy control is asymptotically stable by use of Lyapunov theory. The simulation on the second order nonlinear system shows that its simulation effect is also quite good. Finally a useful tool, called symbolic factor, is proposed, which may be of universal significance. It can greatly reduce the settling time and enhance the robustness of the system.

  9. Variable structure control of nonlinear systems through simplified uncertain models

    Science.gov (United States)

    Sira-Ramirez, Hebertt

    1986-01-01

    A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.

  10. Interval standard neural network models for nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A neural-network-based robust control design is suggested for control of a class of nonlinear systems. The design approach employs a neural network, whose activation functions satisfy the sector conditions, to approximate the nonlinear system. To improve the approximation performance and to account for the parameter perturbations during operation, a novel neural network model termed standard neural network model (SNNM) is proposed. If the uncertainty is bounded, the SNNM is called an interval SNNM (ISNNM). A state-feedback control law is designed for the nonlinear system modelled by an ISNNM such that the closed-loop system is globally, robustly, and asymptotically stable. The control design equations are shown to be a set of linear matrix inequalities (LMIs) that can be easily solved by available convex optimization algorithms. An example is given to illustrate the control design procedure, and the performance of the proposed approach is compared with that of a related method reported in literature.

  11. Nonlinear dynamical system identification using unscented Kalman filter

    Science.gov (United States)

    Rehman, M. Javvad ur; Dass, Sarat Chandra; Asirvadam, Vijanth Sagayan

    2016-11-01

    Kalman Filter is the most suitable choice for linear state space and Gaussian error distribution from decades. In general practical systems are not linear and Gaussian so these assumptions give inconsistent results. System Identification for nonlinear dynamical systems is a difficult task to perform. Usually, Extended Kalman Filter (EKF) is used to deal with non-linearity in which Jacobian method is used for linearizing the system dynamics, But it has been observed that in highly non-linear environment performance of EKF is poor. Unscented Kalman Filter (UKF) is proposed here as a better option because instead of analytical linearization of state space, UKF performs statistical linearization by using sigma point calculated from deterministic samples. Formation of the posterior distribution is based on the propagation of mean and covariance through sigma points.

  12. Chaotic evolution of the solar system

    Science.gov (United States)

    Sussman, Gerald J.; Wisdom, Jack

    1992-01-01

    The evolution of the entire planetary system has been numerically integrated for a time span of nearly 100 million years. This calculation confirms that the evolution of the solar system as a whole is chaotic, with a time scale of exponential divergence of about 4 million years. Additional numerical experiments indicate that the Jovian planet subsystem is chaotic, although some small variations in the model can yield quasi-periodic motion. The motion of Pluto is independently and robustly chaotic.

  13. Adaptive control of nonlinear underwater robotic systems

    Directory of Open Access Journals (Sweden)

    Thor I. Fossen

    1991-04-01

    Full Text Available The problem of controlling underwater mobile robots in 6 degrees of freedom (DOF is addressed. Uncertainties in the input matrix due to partly known nonlinear thruster characteristics are modeled as multiplicative input uncertainty. This paper proposes two methods to compensate for the model uncertainties: (1 an adaptive passivity-based control scheme and (2 deriving a hybrid (adaptive and sliding controller. The hybrid controller consists of a switching term which compensates for uncertainties in the input matrix and an on-line parameter estimation algorithm. Global stability is ensured by applying Barbalat's Lyapunovlike lemma. The hybrid controller is simulated for the horizontal motion of the Norwegian Experimental Remotely Operated Vehicle (NEROV.

  14. Stochastic Stability Analysis for Markovian Jump Neutral Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2012-10-01

    Full Text Available In this paper, the stability problem is studied for a class of Markovian jump neutral nonlinear systems with time-varying delay. By Lyapunov-Krasovskii function approach, a novel mean-square exponential stability criterion is derived for the situations that the system's transition rates are completely accessible, partially accessible and non-accessible, respectively. Moreover, the developed stability criterion is extended to the systems with different bounded sector nonlinear constraints. Finally, some numerical examples are provided to illustrate the effectiveness of the proposed methods.

  15. General difference schemes with intrinsic parallelism for nonlinear parabolic systems

    Institute of Scientific and Technical Information of China (English)

    周毓麟; 袁光伟

    1997-01-01

    The boundary value problem for nonlinear parabolic system is solved by the finite difference method with intrinsic parallelism. The existence of the discrete vector solution for the general finite difference schemes with intrinsic parallelism is proved by the fixed-point technique in finite-dimensional Euclidean space. The convergence and stability theorems of the discrete vector solutions of the nonlinear difference system with intrinsic parallelism are proved. The limitation vector function is just the unique generalized solution of the original problem for the parabolic system.

  16. Finite-time disturbance attenuation of nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    MO LiPo; JIA YingMin; ZHENG ZhiMing

    2009-01-01

    This paper is devoted to the finite-time disturbance attenuation problem of affine nonlinear systems.Based on the finite time Lyapunov stability theory,some finite-time H_∞ performance criterions are derived.Then the state-feedback control law is designed and the structure of such a controller is investigated.Furthermore,it is shown that the H_∞ controller can also make the closed-loop system satisfy finite-time H_∞ performance for nonlinear homogeneous systems.An example is provided to demonstrate the effectiveness of the presented results.

  17. Stability properties of a general class of nonlinear dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Gleria, I.M. [Filho Instituto de Fisica, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, Brasilia (Brazil). E-mail: iram@ucb.br; Figueiredo, A. [Filho Instituto de Fisica, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, Brasilia (Brazil). E-mail: annibal@helium.fis.unb.br; Rocha, T.M. [Filho Instituto de Fisica, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, Brasilia (Brazil). E-mail: marciano@helium.fis.unb.br

    2001-05-04

    We establish sufficient conditions for the boundedness of the trajectories and the stability of the fixed points in a class of general nonlinear systems, the so-called quasi-polynomial vector fields, with the help of a natural embedding of such systems in a family of generalized Lotka-Volterra (LV) equations. A purely algebraic procedure is developed to determine such conditions. We apply our method to obtain new results for LV systems, by a reparametrization in time variable, and to study general nonlinear vector fields, originally far from the LV format. (author)

  18. Self-similar solutions for some nonlinear evolution equations: KdV, mKdV and Burgers equations

    Directory of Open Access Journals (Sweden)

    S.A. El-Wakil

    2016-02-01

    Full Text Available A method for solving three types of nonlinear evolution equations namely KdV, modified KdV and Burgers equations, with self-similar solutions is presented. The method employs ideas from symmetry reduction to space and time variables and similarity reductions for nonlinear evolution equations are performed. The obtained self-similar solutions of KdV and mKdV equations are related to Bessel and Airy functions whereas those of Burgers equation are related to the error and Hermite functions. These solutions appear as new types of solitary, shock and periodic waves. Also, the method can be applied to other nonlinear evolution equations in mathematical physics.

  19. On diagrammatic technique for nonlinear dynamical systems

    CERN Document Server

    Semenyakin, Mykola

    2014-01-01

    In this paper we investigate phase flows over $\\mathbb{C}^n$ and $\\mathbb{R}^n$ generated by vector fields $V=\\sum P^{i}\\partial_i$ where $P^{i}$ are finite degree polynomials. With the convenient diagrammatic technique we get expressions for evolution operators $ev\\{V|t\\}: x(0)\\mapsto x(t)$ through the series in powers of $x(0)$ and $t$, represented as sum over all trees of particular type. Estimates are made for the radius of convergence in some particular cases. The phase flows behavior in the neighborhood of vector field fixed points are examined. Resonance cases are considered separately.

  20. On diagrammatic technique for nonlinear dynamical systems

    OpenAIRE

    Semenyakin, Mykola

    2014-01-01

    In this paper we investigate phase flows over $\\mathbb{C}^n$ and $\\mathbb{R}^n$ generated by vector fields $V=\\sum P^{i}\\partial_i$ where $P^{i}$ are finite degree polynomials. With the convenient diagrammatic technique we get expressions for evolution operators $ev\\{V|t\\}: x(0)\\mapsto x(t)$ through the series in powers of $x(0)$ and $t$, represented as sum over all trees of particular type. Estimates are made for the radius of convergence in some particular cases. The phase flows behavior in...