Energy flow theory of nonlinear dynamical systems with applications
Xing, Jing Tang
2015-01-01
This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...
Directory of Open Access Journals (Sweden)
T. Sajid
2018-03-01
Full Text Available The present article is about the study of Darcy-Forchheimer flow of Maxwell nanofluid over a linear stretching surface. Effects like variable thermal conductivity, activation energy, nonlinear thermal radiation is also incorporated for the analysis of heat and mass transfer. The governing nonlinear partial differential equations (PDEs with convective boundary conditions are first converted into the nonlinear ordinary differential equations (ODEs with the help of similarity transformation, and then the resulting nonlinear ODEs are solved with the help of shooting method and MATLAB built-in bvp4c solver. The impact of different physical parameters like Brownian motion, thermophoresis parameter, Reynolds number, magnetic parameter, nonlinear radiative heat flux, Prandtl number, Lewis number, reaction rate constant, activation energy and Biot number on Nusselt number, velocity, temperature and concentration profile has been discussed. It is viewed that both thermophoresis parameter and activation energy parameter has ascending effect on the concentration profile.
A nonlinear flow-induced energy harvester by considering effects of fictitious springs
Zhang, Guangcheng; Lin, Yueh-Jaw
2018-01-01
In this paper, a newly proposed energy harvesting approach involving nonlinear coupling effects is demonstrated by utilizing a pair of inducing bluff bodies that are put on both sides of the flag-shaped cantilever beam, and placed in a side-by-side configuration to harvest the energy of the flow. One patch of macro fiber composite is attached to the fixed end of the cantilever beam to facilitate converting the kinetic energy into electric power. It is the first time in recent literature that two fluid dynamic phenomena (i.e. the vortex shedding and the Bernoulli effect) are considered simultaneously in the flow-induced energy harvesting field. The fictitious springs are introduced to explain the nonlinear characteristics of the proposed structure. With the effect of the fictitious springs, the speed range of the flow-induced energy harvester is extended. The proposed structure not only improves the output of the induced-based energy harvester compared to one that has just one cylinder, but can also be utilized in an actual hostile ambient environment. The experimental results for the energy harvester prototype are also investigated. The output power of the energy harvester with two cylinders (D = 25 mm) is measured to be 1.12 μW when the flow speed is 0.325 m s-1 and the center-to-center transverse spacing is 45 mm. This research also delves into the geometric variations of the proposed structure and its optimization.
Control of Vibratory Energy Harvesters in the Presence of Nonlinearities and Power-Flow Constraints
Cassidy, Ian L.
control the harvester is infeasible due to the high levels of parasitic power required to operate the drive. For the case where a single-directional drive is used, a constraint on the directionality of power-flow is imposed on the system, which necessitates the use of nonlinear feedback. As such, a sub-optimal controller for power-flow-constrained vibratory energy harvesters is presented, which is analytically guaranteed to outperform the optimal static admittance controller. Finally, the last section of this dissertation explores a numerical approach to compute optimal discretized control manifolds for systems with power-flow constraints. Unlike the sub-optimal nonlinear controller, the numerical controller satisfies the necessary conditions for optimality by solving the stochastic Hamilton-Jacobi equation.
Detection of Parametric Roll Resonance on Ships from Indication of Nonlinear Energy Flow
DEFF Research Database (Denmark)
Galeazzi, Roberto; Blanke, Mogens; Poulsen, Niels Kjølstad
2009-01-01
The detection of the onset of parametric roll resonance on ships is of a central importance in order to activate specific control strategies able to counteract the large roll motion. One of the main priorities is to have detectors with a small detection time, such that warnings can be issued when...... the roll oscillations are about 5◦. This paper proposes two different detection approaches: the first one based on sinusoidal detection in white gaussian noise; the second one utilizes an energy flow indicator in order to catch the onset of parametric roll based upon the transfer of energy from heave...... and pitch to roll. Both detectors have been validated against experimental data of a scale model of a container vessel excited with both regular and irregular waves. The detector based on the energy flow indicator proved to be very robust to different scenarios (regular/irregular waves) since it does...
Quasistatic nonlinear viscoelasticity and gradient flows
Ball, John M.; Şengül, Yasemin
2014-01-01
We consider the equation of motion for one-dimensional nonlinear viscoelasticity of strain-rate type under the assumption that the stored-energy function is λ-convex, which allows for solid phase transformations. We formulate this problem as a gradient flow, leading to existence and uniqueness of solutions. By approximating general initial data by those in which the deformation gradient takes only finitely many values, we show that under suitable hypotheses on the stored-energy function the d...
Ibragimov, Ranis N.
2018-03-01
The nonlinear Euler equations are used to model two-dimensional atmosphere dynamics in a thin rotating spherical shell. The energy balance is deduced on the basis of two classes of functorially independent invariant solutions associated with the model. It it shown that the energy balance is exactly the conservation law for one class of the solutions whereas the second class of invariant solutions provides and asymptotic convergence of the energy balance to the conservation law.
Nonlinear Krylov acceleration of reacting flow codes
Energy Technology Data Exchange (ETDEWEB)
Kumar, S.; Rawat, R.; Smith, P.; Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States)
1996-12-31
We are working on computational simulations of three-dimensional reactive flows in applications encompassing a broad range of chemical engineering problems. Examples of such processes are coal (pulverized and fluidized bed) and gas combustion, petroleum processing (cracking), and metallurgical operations such as smelting. These simulations involve an interplay of various physical and chemical factors such as fluid dynamics with turbulence, convective and radiative heat transfer, multiphase effects such as fluid-particle and particle-particle interactions, and chemical reaction. The governing equations resulting from modeling these processes are highly nonlinear and strongly coupled, thereby rendering their solution by traditional iterative methods (such as nonlinear line Gauss-Seidel methods) very difficult and sometimes impossible. Hence we are exploring the use of nonlinear Krylov techniques (such as CMRES and Bi-CGSTAB) to accelerate and stabilize the existing solver. This strategy allows us to take advantage of the problem-definition capabilities of the existing solver. The overall approach amounts to using the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) method and its variants as nonlinear preconditioners for the nonlinear Krylov method. We have also adapted a backtracking approach for inexact Newton methods to damp the Newton step in the nonlinear Krylov method. This will be a report on work in progress. Preliminary results with nonlinear GMRES have been very encouraging: in many cases the number of line Gauss-Seidel sweeps has been reduced by about a factor of 5, and increased robustness of the underlying solver has also been observed.
Coronal Jet Collimation by Nonlinear Induced Flows
Energy Technology Data Exchange (ETDEWEB)
Vasheghani Farahani, S.; Hejazi, S. M. [Department of Physics, Tafresh University, Tafresh 39518 79611 (Iran, Islamic Republic of)
2017-08-01
Our objective is to study the collimation of solar jets by nonlinear forces corresponding to torsional Alfvén waves together with external forces. We consider a straight, initially non-rotating, untwisted magnetic cylinder embedded in a plasma with a straight magnetic field, where a shear between the internal and external flows exists. By implementing magnetohydrodynamic theory and taking into account the second-order thin flux tube approximation, the balance between the internal nonlinear forces is visualized. The nonlinear differential equation containing the ponderomotive, magnetic tension, and centrifugal forces in the presence of the shear flow is obtained. The solution presents the scale of influence of the propagating torsional Alfvén wave on compressive perturbations. Explicit expressions for the compressive perturbations caused by the forces connected to the torsional Alfvén wave show that, in the presence of a shear flow, the magnetic tension and centrifugal forces do not cancel each other’s effects as they did in its absence. This shear flow plays in favor of the magnetic tension force, resulting in a more efficient collimation. Regarding the ponderomotive force, the shear flow has no effect. The phase relations highlight the interplay of the shear flow and the plasma- β . As the shear flow and plasma- β increase, compressive perturbation amplitudes emerge. We conclude that the jet collimation due to the torsional Alfvén wave highly depends on the location of the jet. The shear flow tightens the collimation as the jet elevates up to the solar corona.
Nonlinear dynamics of two-phase flow
International Nuclear Information System (INIS)
Rizwan-uddin
1986-01-01
Unstable flow conditions can occur in a wide variety of laboratory and industry equipment that involve two-phase flow. Instabilities in industrial equipment, which include boiling water reactor (BWR) cores, steam generators, heated channels, cryogenic fluid heaters, heat exchangers, etc., are related to their nonlinear dynamics. These instabilities can be of static (Ledinegg instability) or dynamic (density wave oscillations) type. Determination of regions in parameters space where these instabilities can occur and knowledge of system dynamics in or near these regions is essential for the safe operation of such equipment. Many two-phase flow engineering components can be modeled as heated channels. The set of partial differential equations that describes the dynamics of single- and two-phase flow, for the special case of uniform heat flux along the length of the channel, can be reduced to a set of two coupled ordinary differential equations [in inlet velocity v/sub i/(t) and two-phase residence time tau(t)] involving history integrals: a nonlinear ordinary functional differential equation and an integral equation. Hence, to solve these equations, the dependent variables must be specified for -(nu + tau) ≤ t ≤ 0, where nu is the single-phase residence time. This system of nonlinear equations has been solved analytically using asymptotic expansion series for finite but small perturbations and numerically using finite difference techniques
Nonlinear coupling of flow harmonics: Hexagonal flow and beyond
Giacalone, Giuliano; Yan, Li; Ollitrault, Jean-Yves
2018-05-01
Higher Fourier harmonics of anisotropic flow (v4 and beyond) get large contributions induced by elliptic and triangular flow through nonlinear response. We present a general framework of nonlinear hydrodynamic response which encompasses the existing one and allows us to take into account the mutual correlation between the nonlinear couplings affecting Fourier harmonics of any order. Using Large Hadron Collider data on Pb+Pb collisions at s =2.76 TeV, we perform an application of our formalism to hexagonal flow, v6, a coefficient affected by several nonlinear contributions which are of the same order of magnitude. We obtain the first experimental measure of the coefficient χ624, which couples v6 to v2 and v4. This is achieved by putting together the information from several analyses: event-plane correlations, symmetric cumulants, and higher order moments recently analyzed by the ALICE Collaboration. The value of χ624 extracted from data is in fair agreement with hydrodynamic calculations, although with large error bars, which would be dramatically reduced by a dedicated analysis. We argue that within our formalism the nonlinear structure of a given higher order harmonic can be determined more accurately than the harmonic itself, and we emphasize potential applications to future measurements of v7 and v8.
Nonlinear Thermal Instability in Compressible Viscous Flows Without Heat Conductivity
Jiang, Fei
2018-04-01
We investigate the thermal instability of a smooth equilibrium state, in which the density function satisfies Schwarzschild's (instability) condition, to a compressible heat-conducting viscous flow without heat conductivity in the presence of a uniform gravitational field in a three-dimensional bounded domain. We show that the equilibrium state is linearly unstable by a modified variational method. Then, based on the constructed linearly unstable solutions and a local well-posedness result of classical solutions to the original nonlinear problem, we further construct the initial data of linearly unstable solutions to be the one of the original nonlinear problem, and establish an appropriate energy estimate of Gronwall-type. With the help of the established energy estimate, we finally show that the equilibrium state is nonlinearly unstable in the sense of Hadamard by a careful bootstrap instability argument.
Extreme nonlinear energy exchanges in a geometrically nonlinear lattice oscillating in the plane
Zhang, Zhen; Manevitch, Leonid I.; Smirnov, Valeri; Bergman, Lawrence A.; Vakakis, Alexander F.
2018-01-01
We study the in-plane damped oscillations of a finite lattice of particles coupled by linear springs under distributed harmonic excitation. Strong nonlinearity in this system is generated by geometric effects due to the in-plane stretching of the coupling spring elements. The lattice has a finite number of nonlinear transverse standing waves (termed nonlinear normal modes - NNMs), and an equal number of axial linear modes which are nonlinearly coupled to the transverse ones. Nonlinear interactions between the transverse and axial modes under harmonic excitation give rise to unexpected and extreme nonlinear energy exchanges in the lattice. In particular, we directly excite a transverse NNM by harmonic forcing (causing simulataneous indirect excitation of a corresponding axial linear mode due to nonlinear coupling), and identify three energy transfer mechanisms in the lattice. First, we detect the stable response of the directly excited transverse NNM (despite its instability in the absence of forcing), with simultaneous stability of the indirectly excited axial linear mode. Second, by changing the system and forcing parameters we report extreme nonlinear "energy explosions," whereby, after an initial regime of stability, the directly excited transverse NNM loses stability, leading to abrupt excitation of all transverse and axial modes of the lattice, at all possible wave numbers. This strong instability is triggered by the parametric instability of an indirectly excited axial mode which builds energy until the explosion. This is proved through theoretical analysis. Finally, in other parameter ranges we report intermittent, intense energy transfers from the directly excited transverse NNM to a small set of transverse NNMs with smaller wavelengths, and from the indirectly excited axial mode to a small set of axial modes, but with larger wavelengths. These intermittent energy transfers resemble energy cascades occurring in turbulent flows. Our results show that
Nonlinear analysis of river flow time sequences
Porporato, Amilcare; Ridolfi, Luca
1997-06-01
Within the field of chaos theory several methods for the analysis of complex dynamical systems have recently been proposed. In light of these ideas we study the dynamics which control the behavior over time of river flow, investigating the existence of a low-dimension deterministic component. The present article follows the research undertaken in the work of Porporato and Ridolfi [1996a] in which some clues as to the existence of chaos were collected. Particular emphasis is given here to the problem of noise and to nonlinear prediction. With regard to the latter, the benefits obtainable by means of the interpolation of the available time series are reported and the remarkable predictive results attained with this nonlinear method are shown.
Nonlinear drift waves in a dusty plasma with sheared flows
Energy Technology Data Exchange (ETDEWEB)
Vranjes, J. [K.U. Leuven (Belgium). Center for Plasma Astrophysics; Shukla, R.K. [Ruhr-Univ. Bochum (Germany). Inst. fuer Theoretische Physik IV
2002-01-01
Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented.
Nonlinear drift waves in a dusty plasma with sheared flows
International Nuclear Information System (INIS)
Vranjes, J.; Shukla, R.K.
2002-01-01
Nonlinear properties of dust-modified drift waves and dust-drift waves in a dusty magnetoplasma with equilibrium sheared flows are examined. For this purpose, the relevant nonlinear equations for drift waves are analyzed for various profiles of the perpendicular and parallel plasma flows, and a variety of nonlinear solutions (viz. single and double vortex chains accompanied with zonal flows, tripolar and global vortices), which are driven by nommiform shear flows and nommiform dust density, is presented
Nonlinear Binormal Flow of Vortex Filaments
Strong, Scott; Carr, Lincoln
2015-11-01
With the current advances in vortex imaging of Bose-Einstein condensates occurring at the Universities of Arizona, São Paulo and Cambridge, interest in vortex filament dynamics is experiencing a resurgence. Recent simulations, Salman (2013), depict dissipative mechanisms resulting from vortex ring emissions and Kelvin wave generation associated with vortex self-intersections. As the local induction approximation fails to capture reconnection events, it lacks a similar dissipative mechanism. On the other hand, Strong&Carr (2012) showed that the exact representation of the velocity field induced by a curved segment of vortex contains higher-order corrections expressed in powers of curvature. This nonlinear binormal flow can be transformed, Hasimoto (1972), into a fully nonlinear equation of Schrödinger type. Continued transformation, Madelung (1926), reveals that the filament's square curvature obeys a quasilinear scalar conservation law with source term. This implies a broader range of filament dynamics than is possible with the integrable linear binormal flow. In this talk we show the affect higher-order corrections have on filament dynamics and discuss physical scales for which they may be witnessed in future experiments. Partially supported by NSF.
Nonlinear flow model for well production in an underground formation
Directory of Open Access Journals (Sweden)
J. C. Guo
2013-05-01
Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.
International Nuclear Information System (INIS)
Sargsyan, R.A.
2011-01-01
A cost-effective hydropower system called here Flow Energy Converter was developed, patented, manufactured and tested for water pumping, electricity generation and other purposes especially useful for the rural communities. The system consists of water-driven turbine with plane-surface blades, power transmission means and pump and/or generator. Working sample of the Flow Energy Converter was designed and manufactured at the Institute of Radio Physics and Electronics
Drag reduction in channel flow using nonlinear control
Keefe, Laurence R.
1993-01-01
Two nonlinear control schemes have been applied to the problem of drag reduction in channel flow. Both schemes have been tested using numerical simulations at a mass flux Reynolds numbers of 4408, utilizing 2D nonlinear neutral modes for goal dynamics. The OGY-method, which requires feedback, reduces drag to 60-80 percent of the turbulent value at the same Reynolds number, and employs forcing only within a thin region near the wall. The H-method, or model-based control, fails to achieve any drag reduction when starting from a fully turbulent initial condition, but shows potential for suppressing or retarding laminar-to-turbulent transition by imposing instead a transition to a low drag, nonlinear traveling wave solution to the Navier-Stokes equation. The drag in this state corresponds to that achieved by the OGY-method. Model-based control requires no feedback, but in experiments to date has required the forcing be imposed within a thicker layer than the OGY-method. Control energy expenditures in both methods are small, representing less than 0.1 percent of the uncontrolled flow's energy.
Law of nonlinear flow in saturated clays and radial consolidation
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
It was derived that micro-scale amount level of average pore radius of clay changed from 0.01 to 0.1 micron by an equivalent concept of flow in porous media. There is good agreement between the derived results and test ones. Results of experiments show that flow in micro-scale pore of saturated clays follows law of nonlinear flow. Theoretical analyses demonstrate that an interaction of solid-liquid interfaces varies inversely with permeability or porous radius. The interaction is an important reason why nonlinear flow in saturated clays occurs. An exact mathematical model was presented for nonlinear flow in micro-scale pore of saturated clays. Dimension and physical meanings of parameters of it are definite. A new law of nonlinear flow in saturated clays was established. It can describe characteristics of flow curve of the whole process of the nonlinear flow from low hydraulic gradient to high one. Darcy law is a special case of the new law. A mathematical model was presented for consolidation of nonlinear flow in radius direction in saturated clays with constant rate based on the new law of nonlinear flow. Equations of average mass conservation and moving boundary, and formula of excess pore pressure distribution and average degree of consolidation for nonlinear flow in saturated clay were derived by using an idea of viscous boundary layer, a method of steady state in stead of transient state and a method of integral of an equation. Laws of excess pore pressure distribution and changes of average degree of consolidation with time were obtained. Results show that velocity of moving boundary decreases because of the nonlinear flow in saturated clay. The results can provide geology engineering and geotechnical engineering of saturated clay with new scientific bases. Calculations of average degree of consolidation of the Darcy flow are a special case of that of the nonlinear flow.
Znidarsic, F.; Robertson, G. A.
In this paper, the flow of energy in materials is presented as mechanical waves with a distinct velocity or speed of transition. This speed of transition came about through the observations of cold fusion experiments, i.e., Low Energy Nuclear Reactions (LENR) and superconductor gravity experiments, both assumed speculative by mainstream science. In consideration of superconductor junctions, the LENR experiments have a similar speed of transition, which seems to imply that the reactions in the LENR experiment are discrete quantized reactions (energy - burst vs. continuous). Here an attempt is made to quantify this new condition as it applies to electrons; toward the progression of quantized energy flows (discrete energy burst) as a new source of clean energy and force mechanisms (i.e, propulsion).
Nonlinear Flow Generation By Electrostatic Turbulence In Tokamaks
International Nuclear Information System (INIS)
Wang, W.X.; Diamond, P.H.; Hahm, T.S.; Ethier, S.; Rewoldt, G.; Tang, W.M.
2010-01-01
Global gyrokinetic simulations have revealed an important nonlinear flow generation process due to the residual stress produced by electrostatic turbulence of ion temperature gradient (ITG) modes and trapped electron modes (TEM). In collisionless TEM (CTEM) turbulence, nonlinear residual stress generation by both the fluctuation intensity and the intensity gradient in the presence of broken symmetry in the parallel wave number spectrum is identified for the first time. Concerning the origin of the symmetry breaking, turbulence self-generated low frequency zonal flow shear has been identified to be a key, universal mechanism in various turbulence regimes. Simulations reported here also indicate the existence of other mechanisms beyond E - B shear. The ITG turbulence driven 'intrinsic' torque associated with residual stress is shown to increase close to linearly with the ion temperature gradient, in qualitative agreement with experimental observations in various devices. In CTEM dominated regimes, a net toroidal rotation is driven in the cocurrent direction by 'intrinsic' torque, consistent with the experimental trend of observed intrinsic rotation. The finding of a 'flow pinch' in CTEM turbulence may offer an interesting new insight into the underlying dynamics governing the radial penetration of modulated flows in perturbation experiments. Finally, simulations also reveal highly distinct phase space structures between CTEM and ITG turbulence driven momentum, energy and particle fluxes, elucidating the roles of resonant and non-resonant particles.
Coupling nonlinear Stokes and Darcy flow using mortar finite elements
Ervin, Vincent J.; Jenkins, Eleanor W.; Sun, Shuyu
2011-01-01
We study a system composed of a nonlinear Stokes flow in one subdomain coupled with a nonlinear porous medium flow in another subdomain. Special attention is paid to the mathematical consequence of the shear-dependent fluid viscosity for the Stokes
CERN. Geneva
2015-01-01
My talk will be covering my work as a whole over the course of the semester. The focus will be on using energy flow calibration in ECAL to check the precision of the corrections made by the light monitoring system used to account for transparency loss within ECAL crystals due to radiation damage over time.
Industrial energy-flow management
International Nuclear Information System (INIS)
Lampret, Marko; Bukovec, Venceslav; Paternost, Andrej; Krizman, Srecko; Lojk, Vito; Golobic, Iztok
2007-01-01
Deregulation of the energy market has created new opportunities for the development of new energy-management methods based on energy assets, risk management, energy efficiency and sustainable development. Industrial energy-flow management in pharmaceutical systems, with a responsible approach to sustainable development, is a complex task. For this reason, an energy-information centre, with over 14,000 online measured data/nodes, was implemented. This paper presents the energy-flow rate, exergy-flow rate and cost-flow rate diagrams, with emphasis on cost-flow rate per energy unit or exergy unit of complex pharmaceutical systems
Bayesian Nonlinear Assimilation of Eulerian and Lagrangian Coastal Flow Data
2015-09-30
Lagrangian Coastal Flow Data Dr. Pierre F.J. Lermusiaux Department of Mechanical Engineering Center for Ocean Science and Engineering Massachusetts...Develop and apply theory, schemes and computational systems for rigorous Bayesian nonlinear assimilation of Eulerian and Lagrangian coastal flow data...coastal ocean fields, both in Eulerian and Lagrangian forms. - Further develop and implement our GMM-DO schemes for robust Bayesian nonlinear estimation
Shear flows induced by nonlinear evolution of double tearing modes
International Nuclear Information System (INIS)
Wang Zhengxiong; Kishimoto, Y.; Li, J. Q.; Wang Xiaogang; Dong, J. Q.
2008-01-01
Shear flows induced by nonlinear evolution of double tearing modes are investigated in a resistive magnetohydrodynamic model with slab geometry. It is found that intensive and thin poloidal shear flow layers are generated in the magnetic island region driven by coupled reconnection process at both rational surfaces. The structure of the flow layers keeps evolving after the merging of magnetic separatrices and forms a few narrow vortices along the open field lines in the final stage of magnetic reconnection. The effects of the distance between both rational surfaces and the initial magnetic shear on the nonlinear evolution of the plasma flows are also taken into consideration and the relevant mechanism is discussed
Applicability of linear and non-linear potential flow models on a Wavestar float
DEFF Research Database (Denmark)
Bozonnet, Pauline; Dupin, Victor; Tona, Paolino
2017-01-01
as a model based on non-linear potential flow theory and weakscatterer hypothesis are successively considered. Simple tests, such as dip tests, decay tests and captive tests enable to highlight the improvements obtained with the introduction of nonlinearities. Float motion under wave actions and without...... control action, limited to small amplitude motion with a single float, is well predicted by the numerical models, including the linear one. Still, float velocity is better predicted by accounting for non-linear hydrostatic and Froude-Krylov forces.......Numerical models based on potential flow theory, including different types of nonlinearities are compared and validated against experimental data for the Wavestar wave energy converter technology. Exact resolution of the rotational motion, non-linear hydrostatic and Froude-Krylov forces as well...
Ultrahigh energy neutrinos and nonlinear QCD dynamics
International Nuclear Information System (INIS)
Machado, Magno V.T.
2004-01-01
The ultrahigh energy neutrino-nucleon cross sections are computed taking into account different phenomenological implementations of the nonlinear QCD dynamics. Based on the color dipole framework, the results for the saturation model supplemented by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution as well as for the Balitskii-Fadin-Kuraev-Lipatov (BFKL) formalism in the geometric scaling regime are presented. They are contrasted with recent calculations using next-to-leading order DGLAP and unified BFKL-DGLAP formalisms
Nonlinear Pricing in Energy and Environmental Markets
Ito, Koichiro
This dissertation consists of three empirical studies on nonlinear pricing in energy and environmental markets. The first investigates how consumers respond to multi-tier nonlinear price schedules for residential electricity. Chapter 2 asks a similar research question for residential water pricing. Finally, I examine the effect of nonlinear financial rewards for energy conservation by applying a regression discontinuity design to a large-scale electricity rebate program that was implemented in California. Economic theory generally assumes that consumers respond to marginal prices when making economic decisions, but this assumption may not hold for complex price schedules. The chapter "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing" provides empirical evidence that consumers respond to average price rather than marginal price when faced with nonlinear electricity price schedules. Nonlinear price schedules, such as progressive income tax rates and multi-tier electricity prices, complicate economic decisions by creating multiple marginal prices for the same good. Evidence from laboratory experiments suggests that consumers facing such price schedules may respond to average price as a heuristic. I empirically test this prediction using field data by exploiting price variation across a spatial discontinuity in electric utility service areas. The territory border of two electric utilities lies within several city boundaries in southern California. As a result, nearly identical households experience substantially different nonlinear electricity price schedules. Using monthly household-level panel data from 1999 to 2008, I find strong evidence that consumers respond to average price rather than marginal or expected marginal price. I show that even though this sub-optimizing behavior has a minimal impact on individual welfare, it can critically alter the policy implications of nonlinear pricing. The second chapter " How Do
Nonlinear Multiplicative Schwarz Preconditioning in Natural Convection Cavity Flow
Liu, Lulu; Zhang, Wei; Keyes, David E.
2017-01-01
A natural convection cavity flow problem is solved using nonlinear multiplicative Schwarz preconditioners, as a Gauss-Seidel-like variant of additive Schwarz preconditioned inexact Newton (ASPIN). The nonlinear preconditioning extends the domain of convergence of Newton’s method to high Rayleigh numbers. Convergence performance varies widely with respect to different groupings of the fields of this multicomponent problem, and with respect to different orderings of the groupings.
Nonlinear Multiplicative Schwarz Preconditioning in Natural Convection Cavity Flow
Liu, Lulu
2017-03-17
A natural convection cavity flow problem is solved using nonlinear multiplicative Schwarz preconditioners, as a Gauss-Seidel-like variant of additive Schwarz preconditioned inexact Newton (ASPIN). The nonlinear preconditioning extends the domain of convergence of Newton’s method to high Rayleigh numbers. Convergence performance varies widely with respect to different groupings of the fields of this multicomponent problem, and with respect to different orderings of the groupings.
Nonlinear interactions in renal blood flow regulation
DEFF Research Database (Denmark)
Marsh, Donald J.; Sosnovtseva, Olga; Chon, Ki H.
2005-01-01
We have developed a model of tubuloglomerular feedback (TGF) and the myogenic mechanism in afferent arterioles to understand how the two mechanisms are coupled. This paper presents the model. The tubular model predicts pressure, flow, and NaCl concentration as functions of time and tubular length...... hydrostatic pressure, and plasma flow rate. The arteriolar model predicts fraction of open K channels, intracellular Ca concentration (Ca-i), potential difference, rate of actin - myosin cross bridge formation, force of contraction, and length of elastic elements, and was solved for two arteriolar segments...... resistance and glomerular capillary pressure. The model couples TGF input to voltage-gated Ca channels. It predicts autoregulation of GFR and renal blood flow, matches experimental measures of tubular pressure and macula densa NaCl concentration, and predicts TGF-induced oscillations and a faster smaller...
Nonlinear dynamics near the stability margin in rotating pipe flow
Yang, Z.; Leibovich, S.
1991-01-01
The nonlinear evolution of marginally unstable wave packets in rotating pipe flow is studied. These flows depend on two control parameters, which may be taken to be the axial Reynolds number R and a Rossby number, q. Marginal stability is realized on a curve in the (R, q)-plane, and the entire marginal stability boundary is explored. As the flow passes through any point on the marginal stability curve, it undergoes a supercritical Hopf bifurcation and the steady base flow is replaced by a traveling wave. The envelope of the wave system is governed by a complex Ginzburg-Landau equation. The Ginzburg-Landau equation admits Stokes waves, which correspond to standing modulations of the linear traveling wavetrain, as well as traveling wave modulations of the linear wavetrain. Bands of wavenumbers are identified in which the nonlinear modulated waves are subject to a sideband instability.
2007 Estimated International Energy Flows
Energy Technology Data Exchange (ETDEWEB)
Smith, C A; Belles, R D; Simon, A J
2011-03-10
An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.
On MHD nonlinear stretching flow of Powell–Eyring nanomaterial
Directory of Open Access Journals (Sweden)
Tasawar Hayat
Full Text Available This communication addresses the magnetohydrodynamic (MHD flow of Powell–Eyring nanomaterial bounded by a nonlinear stretching sheet. Novel features regarding thermophoresis and Brownian motion are taken into consideration. Powell–Eyring fluid is electrically conducted subject to non-uniform applied magnetic field. Assumptions of small magnetic Reynolds number and boundary layer approximation are employed in the mathematical development. Zero nanoparticles mass flux condition at the sheet is selected. Adequate transformation yield nonlinear ordinary differential systems. The developed nonlinear systems have been computed through the homotopic approach. Effects of different pertinent parameters on velocity, temperature and concentration fields are studied and analyzed. Further numerical data of skin friction and heat transfer rate is also tabulated and interpreted. Keywords: Powell–Eyring fluid, Magnetohydrodynamics, Nanomaterial, Nonlinear stretching surface
The mechanism by which nonlinearity sustains turbulence in plane Couette flow
Nikolaidis, M.-A.; Farrell, B. F.; Ioannou, P. J.
2018-04-01
Turbulence in wall-bounded shear flow results from a synergistic interaction between linear non-normality and nonlinearity in which non-normal growth of a subset of perturbations configured to transfer energy from the externally forced component of the turbulent state to the perturbation component maintains the perturbation energy, while the subset of energy-transferring perturbations is replenished by nonlinearity. Although it is accepted that both linear non-normality mediated energy transfer from the forced component of the mean flow and nonlinear interactions among perturbations are required to maintain the turbulent state, the detailed physical mechanism by which these processes interact in maintaining turbulence has not been determined. In this work a statistical state dynamics based analysis is performed on turbulent Couette flow at R = 600 and a comparison to DNS is used to demonstrate that the perturbation component in Couette flow turbulence is replenished by a non-normality mediated parametric growth process in which the fluctuating streamwise mean flow has been adjusted to marginal Lyapunov stability. It is further shown that the alternative mechanism in which the subspace of non-normally growing perturbations is maintained directly by perturbation-perturbation nonlinearity does not contribute to maintaining the turbulent state. This work identifies parametric interaction between the fluctuating streamwise mean flow and the streamwise varying perturbations to be the mechanism of the nonlinear interaction maintaining the perturbation component of the turbulent state, and identifies the associated Lyapunov vectors with positive energetics as the structures of the perturbation subspace supporting the turbulence.
Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium
Directory of Open Access Journals (Sweden)
Q. Hussain
2018-06-01
Full Text Available The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study. Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters. Keywords: Nonlinear thermal radiation, Variable viscosity, Porous medium, Soret and Dufour effects, Peristalsis
Nonlinear spherical perturbations in quintessence models of dark energy
Pratap Rajvanshi, Manvendra; Bagla, J. S.
2018-06-01
Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter w for dark energy differs from ‑1 in dynamical dark energy (DDE) models. Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by measuring distances. Another significant difference between the cosmological constant and DDE models is that the latter must cluster. Linear perturbation analysis indicates that perturbations in quintessence models of dark energy do not grow to have a significant amplitude at small length scales. In this paper we study the response of quintessence dark energy to non-linear perturbations in dark matter. We use a fully relativistic model for spherically symmetric perturbations. In this study we focus on thawing models. We find that in response to non-linear perturbations in dark matter, dark energy perturbations grow at a faster rate than expected in linear perturbation theory. We find that dark energy perturbation remains localised and does not diffuse out to larger scales. The dominant drivers of the evolution of dark energy perturbations are the local Hubble flow and a supression of gradients of the scalar field. We also find that the equation of state parameter w changes in response to perturbations in dark matter such that it also becomes a function of position. The variation of w in space is correlated with density contrast for matter. Variation of w and perturbations in dark energy are more pronounced in response to large scale perturbations in matter while the dependence on the amplitude of matter perturbations is much weaker.
Coupling nonlinear Stokes and Darcy flow using mortar finite elements
Ervin, Vincent J.
2011-11-01
We study a system composed of a nonlinear Stokes flow in one subdomain coupled with a nonlinear porous medium flow in another subdomain. Special attention is paid to the mathematical consequence of the shear-dependent fluid viscosity for the Stokes flow and the velocity-dependent effective viscosity for the Darcy flow. Motivated by the physical setting, we consider the case where only flow rates are specified on the inflow and outflow boundaries in both subdomains. We recast the coupled Stokes-Darcy system as a reduced matching problem on the interface using a mortar space approach. We prove a number of properties of the nonlinear interface operator associated with the reduced problem, which directly yield the existence, uniqueness and regularity of a variational solution to the system. We further propose and analyze a numerical algorithm based on mortar finite elements for the interface problem and conforming finite elements for the subdomain problems. Optimal a priori error estimates are established for the interface and subdomain problems, and a number of compatibility conditions for the finite element spaces used are discussed. Numerical simulations are presented to illustrate the algorithm and to compare two treatments of the defective boundary conditions. © 2010 Published by Elsevier B.V. on behalf of IMACS.
Development of a nonlinear unsteady transonic flow theory
Stahara, S. S.; Spreiter, J. R.
1973-01-01
A nonlinear, unsteady, small-disturbance theory capable of predicting inviscid transonic flows about aerodynamic configurations undergoing both rigid body and elastic oscillations was developed. The theory is based on the concept of dividing the flow into steady and unsteady components and then solving, by method of local linearization, the coupled differential equation for unsteady surface pressure distribution. The equations, valid at all frequencies, were derived for two-dimensional flows, numerical results, were obtained for two classses of airfoils and two types of oscillatory motions.
Nonlinear damping of drift waves by strong flow curvature
International Nuclear Information System (INIS)
Sidikman, K.L.; Carreras, B.A.; Garcia, L.; Diamond, P.H.
1993-01-01
A single-equation model has been used to study the effect of a fixed poloidal flow (V 0 ) on turbulent drift waves. The electron dynamics come from a laminar kinetic equation in the dissipative trapped-electron regime. In the past, the authors have assumed that the mode frequency is close to the drift-wave frequency. Trapped-electron density fluctuations are then related to potential fluctuations by an open-quotes iδclose quotes term. Flow shear (V 0 ') and curvature (V 0 double-prime) both have a stabilizing effect on linear modes for this open-quotes iδclose quotes model. However, in the nonlinear regime, single-helicity effects inhibit the flow damping. Neither V 0 ' nor V 0 double-prime produces a nonlinear damping effect. The above assumption on the frequency can be relaxed by including the electron time-response in the linear part of the evolution. In this time-dependent model, instability drive due to trapped electrons is reduced when mode frequency is greater than drift-wave frequency. Since V 0 double-prime produces such a frequency shift, its linear effect is enhanced. There is also nonlinear damping, since single-helicity effects do not eliminate the shift. Renormalized theory for this model predicts nonlinear stability for sufficiently large curvature. Single-helicity calculations have already shown nonlinear damping, and this strong V 0 double-prime regime is being explored. In the theory, the Gaussian shape of the nonlinear diffusivity is expanded to obtain a quadratic potential. The implications of this assumption will be tested by solving the full renormalized equation using a shooting method
Viscous Flow over Nonlinearly Stretching Sheet with Effects of Viscous Dissipation
Directory of Open Access Journals (Sweden)
Javad Alinejad
2012-01-01
Full Text Available The flow and heat transfer characteristics of incompressible viscous flow over a nonlinearly stretching sheet with the presence of viscous dissipation is investigated numerically. The similarity transformation reduces the time-independent boundary layer equations for momentum and thermal energy into a set of coupled ordinary differential equations. The obtained equations, including nonlinear equation for the velocity field and differential equation by variable coefficient for the temperature field , are solved numerically by using the fourth order of Runge-Kutta integration scheme accompanied by shooting technique with Newton-Raphson iteration method. The effect of various values of Prandtl number, Eckert number and nonlinear stretching parameter are studied. The results presented graphically show some behaviors such as decrease in dimensionless temperature due to increase in Pr number, and curve relocations are observed when heat dissipation is considered.
Robinett III, Rush D
2011-01-01
Nonlinear Powerflow Control Design presents an innovative control system design process motivated by renewable energy electric grid integration problems. The concepts developed result from the convergence of three research and development goals: • to create a unifying metric to compare the value of different energy sources – coal-burning power plant, wind turbines, solar photovoltaics, etc. – to be integrated into the electric power grid and to replace the typical metric of costs/profit; • to develop a new nonlinear control tool that applies power flow control, thermodynamics, and complex adaptive systems theory to the energy grid in a consistent way; and • to apply collective robotics theories to the creation of high-performance teams of people and key individuals in order to account for human factors in controlling and selling power into a distributed, decentralized electric power grid. All three of these goals have important concepts in common: exergy flow, limit cycles, and balance between compe...
International Nuclear Information System (INIS)
Martin, John Edward
2003-01-01
Russia and LNG are themes for the coming year. Despite many hot spots globally, these two topics have been huge drivers of our business in the past year and we believe will continue to be so for the coming future. We will also briefly touch on the environment, as this is a topic gaining significant attention and investment by all stakeholders in the industry. During 2003, energy bankers have been busy, although perhaps not as busy as several years ago. While there have been some notable deals in the M and A, capital markets, and lending parts of the business, overall business has been slower than a few years ago. However, Energy bankers are busier than their colleagues in other sectors, and the outlook is favourable. Particularly, energy lending activities should remain robust
Nonlinear radiative peristaltic flow of hydromagnetic fluid through porous medium
Hussain, Q.; Latif, T.; Alvi, N.; Asghar, S.
2018-06-01
The radiative heat and mass transfer in wall induced flow of hydromagnetic fluid through porous medium in an asymmetric channel is analyzed. The fluid viscosity is considered temperature dependent. In the theory of peristalsis, the radiation effects are either ignored or taken as linear approximation of radiative heat flux. Such approximation is only possible when there is sufficiently small temperature differences in the flow field; however, nonlinear radiation effects are valid for large temperature differences as well (the new feature added in the present study). Mathematical modeling of the problems include the complicated system of highly nonlinear differential equations. Semi-analytical solutions are established in the wave reference frame. Results are displayed graphically and discussed in detail for the variation of various physical parameters with the special attention to viscosity, radiation, and temperature ratio parameters.
Preface "Nonlinear processes in oceanic and atmospheric flows"
Directory of Open Access Journals (Sweden)
E. García-Ladona
2010-05-01
Full Text Available Nonlinear phenomena are essential ingredients in many oceanic and atmospheric processes, and successful understanding of them benefits from multidisciplinary collaboration between oceanographers, meteorologists, physicists and mathematicians. The present Special Issue on "Nonlinear Processes in Oceanic and Atmospheric Flows" contains selected contributions from attendants to the workshop which, in the above spirit, was held in Castro Urdiales, Spain, in July 2008. Here we summarize the Special Issue contributions, which include papers on the characterization of ocean transport in the Lagrangian and in the Eulerian frameworks, generation and variability of jets and waves, interactions of fluid flow with plankton dynamics or heavy drops, scaling in meteorological fields, and statistical properties of El Niño Southern Oscillation.
Studies in nonlinear problems of energy
Energy Technology Data Exchange (ETDEWEB)
Matkowsky, B.J.
1992-07-01
Emphasis has been on combustion and flame propagation. The research program was on modeling, analysis and computation of combustion phenomena, with emphasis on transition from laminar to turbulent combustion. Nonlinear dynamics and pattern formation were investigated in the transition. Stability of combustion waves, and transitions to complex waves are described. Combustion waves possess large activation energies, so that chemical reactions are significant only in thin layers, or reaction zones. In limit of infinite activation energy, the zones shrink to moving surfaces, (fronts) which must be found during the analysis, so that (moving free boundary problems). The studies are carried out for limiting case with fronts, while the numerical studies are carried out for finite, though large, activation energy. Accurate resolution of the solution in the reaction zones is essential, otherwise false predictions of dynamics are possible. Since the the reaction zones move, adaptive pseudo-spectral methods were developed. The approach is based on a synergism of analytical and computational methods. The numerical computations build on and extend the analytical information. Furthermore, analytical solutions serve as benchmarks for testing the accuracy of the computation. Finally, ideas from analysis (singular perturbation theory) have induced new approaches to computations. The computational results suggest new analysis to be considered. Among the recent interesting results, was spatio-temporal chaos in combustion. One goal is extension of the adaptive pseudo-spectral methods to adaptive domain decomposition methods. Efforts have begun to develop such methods for problems with multiple reaction zones, corresponding to problems with more complex, and more realistic chemistry. Other topics included stochastics, oscillators, Rysteretic Josephson junctions, DC SQUID, Markov jumps, laser with saturable absorber, chemical physics, Brownian movement, combustion synthesis, etc.
Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink
Xiong, Liuyang; Tang, Lihua; Liu, Kefu; Mace, Brian R.
2018-05-01
A piezoelectric vibration energy harvester (PVEH) is capable of converting waste or undesirable ambient vibration energy into useful electric energy. However, conventional PVEHs typically work in a narrow frequency range, leading to low efficiency in practical application. This work proposes a PVEH based on the principle of the nonlinear energy sink (NES) to achieve broadband energy harvesting. An alternating current circuit with a resistive load is first considered in the analysis of the dynamic properties and electric performance of the NES-based PEVH. Then, a standard rectifying direct current (DC) interface circuit is developed to evaluate the DC power from the PVEH. To gain insight into the NES mechanism involved, approximate analysis of the proposed PVEH systems under harmonic excitation is sought using the mixed multi-scale and harmonic balance method and the Newton–Raphson harmonic balance method. In addition, an equivalent circuit model (ECM) of the electromechanical system is derived and circuit simulations are conducted to explore and validate the energy harvesting and vibration absorption performance of the proposed NES-based PVEH. The response is also compared with that obtained by direct numerical integration of the equations of motion. Finally, the optimal resistance to obtain the maximum DC power is determined based on the Newton–Raphson harmonic balance method and validated by the ECM. In general, the NES-based PVEH can absorb the vibration from the primary structure and collect electric energy within a broad frequency range effectively.
A new energy transfer model for turbulent free shear flow
Liou, William W.-W.
1992-01-01
A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.
Energy Technology Data Exchange (ETDEWEB)
Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia); Muhammad, Taseer, E-mail: taseer_qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaedi, A.; Alhuthali, M.S. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia)
2015-07-01
Magnetohydrodynamic (MHD) three-dimensional flow of couple stress nanofluid in the presence of thermophoresis and Brownian motion effects is analyzed. Energy equation subject to nonlinear thermal radiation is taken into account. The flow is generated by a bidirectional stretching surface. Fluid is electrically conducting in the presence of a constant applied magnetic field. The induced magnetic field is neglected for a small magnetic Reynolds number. Mathematical formulation is performed using boundary layer analysis. Newly proposed boundary condition requiring zero nanoparticle mass flux is employed. The governing nonlinear mathematical problems are first converted into dimensionless expressions and then solved for the series solutions of velocities, temperature and nanoparticles concentration. Convergence of the constructed solutions is verified. Effects of emerging parameters on the temperature and nanoparticles concentration are plotted and discussed. Skin friction coefficients and Nusselt number are also computed and analyzed. It is found that the thermal boundary layer thickness is an increasing function of radiative effect. - Highlights: • Three-dimensional boundary layer flow of viscoelastic nanofluid is examined. • Nonlinear thermal radiation is analyzed. • Brownian motion and thermophoresis effects are present. • Recently developed condition requiring zero nanoparticle mass flux is implemented. • Construction of convergent solutions of nonlinear flow is possible.
The Precession Index and a Nonlinear Energy Balance Climate Model
Rubincam, David
2004-01-01
A simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold
Energy Technology Data Exchange (ETDEWEB)
Gorshkov, V.G.
1980-01-01
Mankind consumes more than 90% of the animal production of the world. The locking of a significant part of the biosphere energy flow onto the anthropogenic chain leads to the dislodging of natural forms of organisms of the biosphere, change of its functioning and self-regulation. For the maintenance of stable existence of a small set of cultivated plants and domestic animals not forming the complete set indispensable for reaction to the change of natural conditions, man is compelled to follow the path of auxiliary investments of energy and to compensate for the destruction of closed circulations of food substances by the flow of fertilizers extracted from natural deposits. Energy assessments show the lack of realism of many projects for increasing the global energy flow in the anthropogenic channel by increasing the full flow of energy of the biosphere. To obtain the net production of the contemporary plowed field in hotbed on the basis of hydroponics there is required 2 x 10/sup 14/ watts of additional energy. To provide for the inflow of such an amount of energy (and also vast volumes of fresh water) presents extremely complicated problems. According to the author's calculations, in a provisional conversion of all production of green plants, all gas and petroleum and edible food with an efficiency equal to 1%, it is possible to provide food reserves equal to one annual harvest of the plowed fields of the world of 2 x 10/sup 9/ tons.
Excitation of nonlinear wave patterns in flowing complex plasmas
Jaiswal, S.; Bandyopadhyay, P.; Sen, A.
2018-01-01
We describe experimental observations of nonlinear wave structures excited by a supersonic mass flow of dust particles over an electrostatic potential hill in a dusty plasma medium. The experiments have been carried out in a Π- shaped experimental (DPEx) device in which micron sized Kaolin particles are embedded in a DC glow discharge Argon plasma. An equilibrium dust cloud is formed by maintaining the pumping speed and gas flow rate and the dust flow is induced either by suddenly reducing the height of a potential hill or by suddenly reducing the gas flow rate. For a supersonic flow of the dust fluid precursor solitons are seen to propagate in the upstream direction while wake structures propagate in the downstream direction. For flow speeds with a Mach number greater than 2 the dust particles flowing over the potential hill give rise to dispersive dust acoustic shock waves. The experimental results compare favorably with model theories based on forced K-dV and K-dV Burger's equations.
Nonlinear travelling waves in rotating Hagen–Poiseuille flow
Pier, Benoît; Govindarajan, Rama
2018-03-01
The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.
Impurity in a granular gas under nonlinear Couette flow
International Nuclear Information System (INIS)
Vega Reyes, Francisco; Garzó, Vicente; Santos, Andrés
2008-01-01
We study in this work the transport properties of an impurity immersed in a granular gas under stationary nonlinear Couette flow. The starting point is a kinetic model for low-density granular mixtures recently proposed by the authors (Vega Reyes et al 2007 Phys. Rev. E 75 061306). Two routes have been considered. First, a hydrodynamic or normal solution is found by exploiting a formal mapping between the kinetic equations for the gas particles and for the impurity. We show that the transport properties of the impurity are characterized by the ratio between the temperatures of the impurity and gas particles and by five generalized transport coefficients: three related to the momentum flux (a nonlinear shear viscosity and two normal stress differences) and two related to the heat flux (a nonlinear thermal conductivity and a cross-coefficient measuring a component of the heat flux orthogonal to the thermal gradient). Second, by means of a Monte Carlo simulation method we numerically solve the kinetic equations and show that our hydrodynamic solution is valid in the bulk of the fluid when realistic boundary conditions are used. Furthermore, the hydrodynamic solution applies to arbitrarily (inside the continuum regime) large values of the shear rate, of the inelasticity, and of the rest of the parameters of the system. Preliminary simulation results of the true Boltzmann description show the reliability of the nonlinear hydrodynamic solution of the kinetic model. This shows again the validity of a hydrodynamic description for granular flows, even under extreme conditions, beyond the Navier–Stokes domain
Internal wave energy flux from density perturbations in nonlinear stratifications
Lee, Frank M.; Allshouse, Michael R.; Swinney, Harry L.; Morrison, P. J.
2017-11-01
Tidal flow over the topography at the bottom of the ocean, whose density varies with depth, generates internal gravity waves that have a significant impact on the energy budget of the ocean. Thus, understanding the energy flux (J = p v) is important, but it is difficult to measure simultaneously the pressure and velocity perturbation fields, p and v . In a previous work, a Green's-function-based method was developed to calculate the instantaneous p, v , and thus J , given a density perturbation field for a constant buoyancy frequency N. Here we extend the previous analytic Green's function work to include nonuniform N profiles, namely the tanh-shaped and linear cases, because background density stratifications that occur in the ocean and some experiments are nonlinear. In addition, we present a finite-difference method for the general case where N has an arbitrary profile. Each method is validated against numerical simulations. The methods we present can be applied to measured density perturbation data by using our MATLAB graphical user interface EnergyFlux. PJM was supported by the U.S. Department of Energy Contract DE-FG05-80ET-53088. HLS and MRA were supported by ONR Grant No. N000141110701.
Nonlinear stability, bifurcation and resonance in granular plane Couette flow
Shukla, Priyanka; Alam, Meheboob
2010-11-01
A weakly nonlinear stability theory is developed to understand the effect of nonlinearities on various linear instability modes as well as to unveil the underlying bifurcation scenario in a two-dimensional granular plane Couette flow. The relevant order parameter equation, the Landau-Stuart equation, for the most unstable two-dimensional disturbance has been derived using the amplitude expansion method of our previous work on the shear-banding instability.ootnotetextShukla and Alam, Phys. Rev. Lett. 103, 068001 (2009). Shukla and Alam, J. Fluid Mech. (2010, accepted). Two types of bifurcations, Hopf and pitchfork, that result from travelling and stationary linear instabilities, respectively, are analysed using the first Landau coefficient. It is shown that the subcritical instability can appear in the linearly stable regime. The present bifurcation theory shows that the flow is subcritically unstable to disturbances of long wave-lengths (kx˜0) in the dilute limit, and both the supercritical and subcritical states are possible at moderate densities for the dominant stationary and traveling instabilities for which kx=O(1). We show that the granular plane Couette flow is prone to a plethora of resonances.ootnotetextShukla and Alam, J. Fluid Mech. (submitted, 2010)
Fluid flow nozzle energy harvesters
Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Winn, Tyler; Tosi, Luis Phillipe; Colonius, Tim
2015-04-01
Power generation schemes that could be used downhole in an oil well to produce about 1 Watt average power with long-life (decades) are actively being developed. A variety of proposed energy harvesting schemes could be used to extract energy from this environment but each of these has their own limitations that limit their practical use. Since vibrating piezoelectric structures are solid state and can be driven below their fatigue limit, harvesters based on these structures are capable of operating for very long lifetimes (decades); thereby, possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. An initial survey [1] identified that spline nozzle configurations can be used to excite a vibrating piezoelectric structure in such a way as to convert the abundant flow energy into useful amounts of electrical power. This paper presents current flow energy harvesting designs and experimental results of specific spline nozzle/ bimorph design configurations which have generated suitable power per nozzle at or above well production analogous flow rates. Theoretical models for non-dimensional analysis and constitutive electromechanical model are also presented in this paper to optimize the flow harvesting system.
Energy nonlinearity in radiation detection materials: Causes and consequences
International Nuclear Information System (INIS)
Jaffe, J.E.; Jordan, D.V.; Peurrung, A.J.
2007-01-01
The phenomenology and present theoretical understanding of energy nonlinearity (nonproportionality) in radiation detection materials is reviewed, with emphasis on gamma-ray spectroscopy. Scintillators display varying degrees and patterns of nonlinearity, while semiconductor detectors are extremely linear, and gas detectors show a characteristic form of nonproportionality associated with core levels. The relation between nonlinear response (to both primary particles and secondary electrons) and spectrometer resolution is also discussed. We review the qualitative ideas about the origin of nonlinearity in scintillators that have been proposed to date, with emphasis on transport and recombination of electronic excitations. Recent computational and experimental work on the basic physics of scintillators is leading towards a better understanding of energy nonlinearity and should result in new, more linear scintillator materials in the near future
Performance analysis of flow lines with non-linear flow of material
Helber, Stefan
1999-01-01
Flow line design is one of the major tasks in production management. The decision to install a set of machines and buffers is often highly irreversible. It determines both cost and revenue to a large extent. In order to assess the economic impact of any possible flow line design, production rates and inventory levels have to be estimated. These performance measures depend on the allocation of buffers whenever the flow of material is occasionally disrupted, for example due to machine failures or quality problems. The book describes analytical methods that can be used to evaluate flow lines much faster than with simulation techniques. Based on these fast analytical techniques, it is possible to determine a flow line design that maximizes the net present value of the flow line investment. The flow of material through the line may be non-linear, for example due to assembly operations or quality inspections.
Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field
Moawad, S. M.; Moawad
2013-10-01
The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.
Dual Solutions for Nonlinear Flow Using Lie Group Analysis.
Directory of Open Access Journals (Sweden)
Muhammad Awais
Full Text Available `The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD flow of an upper-convected Maxwell (UCM fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered.
Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow
International Nuclear Information System (INIS)
Knoll, D.A.
1998-01-01
The authors study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. They use Newton's method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. They investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, mesh sequencing, and a pseudotransient continuation technique is used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with incomplete lower-upper (ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a mesh sequencing implementation provides significant CPU savings for fine grid calculations. Performance comparisons of modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented
Irreversible energy flow in forced Vlasov dynamics
Plunk, Gabriel G.
2014-10-01
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.
Irreversible energy flow in forced Vlasov dynamics
Plunk, Gabriel G.; Parker, Joseph T.
2014-01-01
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag. The recent paper of Plunk [G.G. Plunk, Phys. Plasmas 20, 032304 (2013)] considered the forced linear Vlasov equation as a model for the quasi-steady state of a single stable plasma wavenumber interacting with a bath of turbulent fluctuations. This approach gives some insight into possible energy flows without solving for nonlinear dynamics. The central result of the present work is that the forced linear Vlasov equation exhibits asymptotically zero (irreversible) dissipation to all orders under a detuning of the forcing frequency and the characteristic frequency associated with particle streaming. We first prove this by direct calculation, tracking energy flow in terms of certain exact conservation laws of the linear (collisionless) Vlasov equation. Then we analyze the steady-state solutions in detail using a weakly collisional Hermite-moment formulation, and compare with numerical solution. This leads to a detailed description of the Hermite energy spectrum, and a proof of no dissipation at all orders, complementing the collisionless Vlasov result.
Sensorless Estimation and Nonlinear Control of a Rotational Energy Harvester
Nunna, Kameswarie; Toh, Tzern T.; Mitcheson, Paul D.; Astolfi, Alessandro
2013-12-01
It is important to perform sensorless monitoring of parameters in energy harvesting devices in order to determine the operating states of the system. However, physical measurements of these parameters is often a challenging task due to the unavailability of access points. This paper presents, as an example application, the design of a nonlinear observer and a nonlinear feedback controller for a rotational energy harvester. A dynamic model of a rotational energy harvester with its power electronic interface is derived and validated. This model is then used to design a nonlinear observer and a nonlinear feedback controller which yield a sensorless closed-loop system. The observer estimates the mechancial quantities from the measured electrical quantities while the control law sustains power generation across a range of source rotation speeds. The proposed scheme is assessed through simulations and experiments.
International Nuclear Information System (INIS)
Ishizawa, A.; Nakajima, N.
2007-01-01
Micro-turbulence and macro-magnetohydrodynamic (macro-MHD) instabilities can appear in plasma at the same time and interact with each other in a plasma confinement. The multi-scale-nonlinear interaction among micro-turbulence, double tearing instability and zonal flow is investigated by numerically solving a reduced set of two-fluid equations. It is found that the double tearing instability, which is a macro-MHD instability, appears in an equilibrium formed by a balance between micro-turbulence and zonal flow when the double tearing mode is unstable. The roles of the nonlinear and linear terms of the equations in driving the zonal flow and coherent convective cell flow of the double tearing mode are examined. The Reynolds stress drives zonal flow and coherent convective cell flow, while the ion diamagnetic term and Maxwell stress oppose the Reynolds stress drive. When the double tearing mode grows, linear terms in the equations are dominant and they effectively release the free energy of the equilibrium current gradient
Hayat, Tasawar; Qayyum, Sajid; Alsaedi, Ahmed; Ahmad, Bashir
2018-05-01
Main objective of present analysis is to study the magnetohydrodynamic (MHD) nonlinear convective flow of thixotropic nanofluid. Flow is due to nonlinear stretching surface with variable thickness. Nonlinear thermal radiation and heat generation/absorption are utilized in the energy expression. Convective conditions and zero mass flux at sheet are considered. Intention in present analysis is to develop a model for nanomaterial comprising Brownian motion and thermophoresis phenomena. Appropriate transformations are implemented for the conversion of partial differential systems into a sets of ordinary differential equations. The transformed expressions have been scrutinized through homotopic algorithm. Behavior of various sundry variables on velocity, temperature, nanoparticle concentration, skin friction coefficient and local Nusselt number are displayed through graphs. It is concluded that qualitative behaviors of temperature and thermal layer thickness are similar for radiation and temperature ratio variables. Moreover an enhancement in heat generation/absorption show rise to thermal field.
A nonlinear complementarity approach for the national energy modeling system
International Nuclear Information System (INIS)
Gabriel, S.A.; Kydes, A.S.
1995-01-01
The National Energy Modeling System (NEMS) is a large-scale mathematical model that computes equilibrium fuel prices and quantities in the U.S. energy sector. At present, to generate these equilibrium values, NEMS sequentially solves a collection of linear programs and nonlinear equations. The NEMS solution procedure then incorporates the solutions of these linear programs and nonlinear equations in a nonlinear Gauss-Seidel approach. The authors describe how the current version of NEMS can be formulated as a particular nonlinear complementarity problem (NCP), thereby possibly avoiding current convergence problems. In addition, they show that the NCP format is equally valid for a more general form of NEMS. They also describe several promising approaches for solving the NCP form of NEMS based on recent Newton type methods for general NCPs. These approaches share the feature of needing to solve their direction-finding subproblems only approximately. Hence, they can effectively exploit the sparsity inherent in the NEMS NCP
Waleed Ahmed Khan, M.; Ijaz Khan, M.; Hayat, T.; Alsaedi, A.
2018-04-01
Entropy generation minimization (EGM) and heat transport in nonlinear radiative flow of nanomaterials over a thin moving needle has been discussed. Nonlinear thermal radiation and viscous dissipation terms are merged in the energy expression. Water is treated as ordinary fluid while nanomaterials comprise titanium dioxide, copper and aluminum oxide. The nonlinear governing expressions of flow problems are transferred to ordinary ones and then tackled for numerical results by Built-in-shooting technique. In first section of this investigation, the entropy expression is derived as a function of temperature and velocity gradients. Geometrical and physical flow field variables are utilized to make it nondimensionalized. An entropy generation analysis is utilized through second law of thermodynamics. The results of temperature, velocity, concentration, surface drag force and heat transfer rate are explored. Our outcomes reveal that surface drag force and Nusselt number (heat transfer) enhanced linearly for higher nanoparticle volume fraction. Furthermore drag force decays for aluminum oxide and it enhances for copper nanoparticles. In addition, the lowest heat transfer rate is achieved for higher radiative parameter. Temperature field is enhanced with increase in temperature ratio parameter.
APPLICATION OF NONLINEAR PID CONTROLLER IN SUPERCONDUCTING MAGNETIC ENERGY STORAGE
PENG, Xiaotao; CHENG, Shijie
2011-01-01
As a new control strategy, Nonlinear PID(NLPID) controller has been introduced in the power system successfully. The controller is free of planting model foundation in the design procedure and realized simply. In this paper, a nonlinear PID controller used for superconducting magnetic energy storage (SMES) unit connected to a power system is proposed. Purpose of designing such controller is to improve the stability of the power system in a relatively wide operation range. The design procedure...
Finite bandwidth, nonlinear convective flow in a mushy layer
Energy Technology Data Exchange (ETDEWEB)
Riahi, D N, E-mail: daniel.riahi@utrgv.edu [School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, One West University Boulevard, Brownsville, TX 78520 (United States)
2017-04-15
Finite amplitude convection with a continuous finite bandwidth of modes in a horizontal mushy layer during the solidification of binary alloys is investigated. We analyze the nonlinear convection for values of the Rayleigh number close to its critical value by using multiple scales and perturbation techniques. Applying a combined temporal and spatial evolution approach, we determine a set of three coupled differential equations for the amplitude functions of the convective modes. A large number of new subcritical or supercritical stable solutions to these equations in the form of steady rolls and hexagons with different horizontal length scales are detected. We find, in particular, that depending on the parameter values and on the magnitude and direction of the wave number vectors for the amplitude functions, hexagons with down-flow or up-flow at the cells’ centers or rolls can be stable. Rolls or hexagons with longer horizontal wave length can be stable at higher amplitudes, and there are cases where hexagons are unstable for any value of the Rayleigh number, while rolls are stable only for the values of the Rayleigh number beyond some value. We also detected new stable and irregular flow patterns with two different horizontal scales in the form of superposition of either two sets of hexagons or two sets of inclined rolls. (paper)
Mouser, J Grant; Ade, Carl J; Black, Christopher D; Bemben, Debra A; Bemben, Michael G
2018-05-01
Blood flow restriction (BFR), the application of external pressure to occlude venous return and restrict arterial inflow, has been shown to increase muscular size and strength when combined with low-load resistance exercise. BFR in the research setting uses a wide range of pressures, applying a pressure based upon an individual's systolic pressure or a percentage of occlusion pressure; not a directly determined reduction in blood flow. The relationship between relative pressure and blood flow has not been established. To measure blood flow in the arm under relative levels of BFR. Forty-five people (18-40 years old) participated. Arterial occlusion pressure in the right arm was measured using a 5-cm pneumatic cuff. Blood flow in the brachial artery was measured at rest and at pressures between 10% and 90% of occlusion using ultrasound. Blood flow decreased in a nonlinear, stepped fashion. Blood flow decreased at 10% of occlusion and remained constant until decreasing again at 40%, where it remained until 90% of occlusion. The decrease in brachial blood flow is not proportional to the applied relative pressure. The prescription of blood flow restriction should take into account the stimulus provided at each relative level of blood flow. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
A seesaw-type approach for enhancing nonlinear energy harvesting
Deng, Huaxia; Wang, Zhemin; Du, Yu; Zhang, Jin; Ma, Mengchao; Zhong, Xiang
2018-05-01
Harvesting sustainable mechanical energy is the ultimate objective of nonlinear energy harvesters. However, overcoming potential barriers, especially without the use of extra excitations, poses a great challenge for the development of nonlinear generators. In contrast to the existing methods, which typically modify the barrier height or utilize additional excitations, this letter proposes a seesaw-type approach to facilitate escape from potential wells by transfer of internal energy, even under low-intensity excitation. This approach is adopted in the design of a seesaw-type nonlinear piezoelectric energy harvester and the energy transfer process is analyzed by deriving expressions for the energy to reveal the working mechanism. Comparison experiments demonstrate that this approach improves energy harvesting in terms of an increase in the working frequency bandwidth by a factor of 60.14 and an increase in the maximum output voltage by a factor of 5.1. Moreover, the output power is increased by a factor of 51.3, which indicates that this approach significantly improves energy collection efficiency. This seesaw-type approach provides a welcome boost to the development of renewable energy collection methods by improving the efficiency of harvesting of low-intensity ambient mechanical energy.
Vortex-based spatiotemporal characterization of nonlinear flows
Byrne, Gregory A.
Although the ubiquity of vortices in nature has been recognized by artists for over seven centuries, it was the work of artist and scientist Leonardo da Vinci that provided the monumental transition from an aesthetic form to a scientific tool. DaVinci used vortices to describe the motions he observed in air currents, flowing water and blood flow in the human heart. Five centuries later, the Navier-Stokes equations allow us to recreate the swirling motions of fluid observed in nature. Computational fluid dynamic (CFD) simulations have provided a lens through which to study the role of vortices in a wide variety of modern day applications. The research summarized below represents an effort to look through this lens and bring into focus the practical use of vortices in describing nonlinear flows. Vortex-based spatiotemporal characterizations are obtained using two specific mathematical tools: vortex core lines (VCL) and proper orthogonal decomposition (POD). By applying these tools, we find that vortices continue to provide new insights in the realm of biofluids, urban flows and the phase space of dynamical systems. The insights we have gained are described in this thesis. Our primary focus is on biofluids. Specifically, we seek to gain new insights into the connection between vortices and vascular diseases in order to provide more effective methods for clinical diagnosis and treatment. We highlight several applications in which VCL and POD are used to characterize the flow conditions in a heart pump, identify stenosis in carotid arteries and validate numerical models against PIV-based experimental data. Next, we quantify the spatial complexity and temporal stability of hemodynamics generated by a database of 210 patient-specific aneurysm geometries. Visual classifications of the hemodynamics are compared to the automated, quantitative classifications. The quantities characterizing the hemodynamics are then compared to clinical data to determine conditions that are
Alfven wave resonances and flow induced by nonlinear Alfven waves in a stratified atmosphere
International Nuclear Information System (INIS)
Stark, B. A.; Musielak, Z. E.; Suess, S. T.
1996-01-01
A nonlinear, time-dependent, ideal MHD code has been developed and used to compute the flow induced by nonlinear Alfven waves propagating in an isothermal, stratified, plane-parallel atmosphere. The code is based on characteristic equations solved in a Lagrangian frame. Results show that resonance behavior of Alfven waves exists in the presence of a continuous density gradient and that the waves with periods corresponding to resonant peaks exert considerably more force on the medium than off-resonance periods. If only off-peak periods are considered, the relationship between the wave period and induced longitudinal velocity shows that short period WKB waves push more on the background medium than longer period, non-WKB, waves. The results also show the development of the longitudinal waves induced by finite amplitude Alfven waves. Wave energy transferred to the longitudinal mode may provide a source of localized heating
Nonlinear analysis and dynamic structure in the energy market
Aghababa, Hajar
This research assesses the dynamic structure of the energy sector of the aggregate economy in the context of nonlinear mechanisms. Earlier studies have focused mainly on the price of the energy products when detecting nonlinearities in time series data of the energy market, and there is little mention of the production side of the market. Moreover, there is a lack of exploration about the implication of high dimensionality and time aggregation when analyzing the market's fundamentals. This research will address these gaps by including the quantity side of the market in addition to the price and by systematically incorporating various frequencies for sample sizes in three essays. The goal of this research is to provide an inclusive and exhaustive examination of the dynamics in the energy markets. The first essay begins with the application of statistical techniques, and it incorporates the most well-known univariate tests for nonlinearity with distinct power functions over alternatives and tests different null hypotheses. It utilizes the daily spot price observations on five major products in the energy market. The results suggest that the time series daily spot prices of the energy products are highly nonlinear in their nature. They demonstrate apparent evidence of general nonlinear serial dependence in each individual series, as well as nonlinearity in the first, second, and third moments of the series. The second essay examines the underlying mechanism of crude oil production and identifies the nonlinear structure of the production market by utilizing various monthly time series observations of crude oil production: the U.S. field, Organization of the Petroleum Exporting Countries (OPEC), non-OPEC, and the world production of crude oil. The finding implies that the time series data of the U.S. field, OPEC, and the world production of crude oil exhibit deep nonlinearity in their structure and are generated by nonlinear mechanisms. However, the dynamics of the non
Nonlinear sound generation by high energy particles
International Nuclear Information System (INIS)
Westervelt, P.J.
1978-01-01
In connection with Project DUMAND, the proposal to utilize the ocean as a giant acoustic detector of neutrinos, the applicability of a recent theory of thermoacoustic arrays [Peter J. Westervelt and Richard S. Larson, J. Acoust. Soc. Am. 54, 121 (1973)] is studied. In the static case or at very low frequencies, about 10% of the coefficient of thermal expansion for water at 20 0 C can be attributed to Debye-like modes. Debye-like modes generate sound via the nonlinear mechanism responsible for the operation of the parametric acoustic array [Peter J. Westervelt, J. Acoust. Soc. Am. 35, 535 (1963)]. The contribution of the Debye-like modes to the thermal expansion coefficient and thus to the sound pressure is essentially independent of the ambient water temperature. Hence if the Debye-like modes are not fully excited as is postulated to be the case at high frequencies, then the thermal expansion coefficient will be less than the static value by an amount that causes it to vanish at about 6 0 C instead of at 4 0 C, the temperature of maximum water density. This theory is in agreement with recent measurements of the temperature dependence of sound generated by proton deposition in water [L. Sulak, et al., Proceedings of the La Jolla Workshop on Acoustic Detection of Neutrinos, 25--29 July 1977, Scripps Institute of Oceanography, U.C.L.A., San Diego, Hugh Bradner, Ed.
Modelling of a bridge-shaped nonlinear piezoelectric energy harvester
International Nuclear Information System (INIS)
Gafforelli, G; Corigliano, A; Xu, R; Kim, S G
2013-01-01
Piezoelectric MicroElectroMechanical Systems (MEMS) energy harvesting is an attractive technology for harvesting small magnitudes of energy from ambient vibrations. Increasing the operating frequency bandwidth of such devices is one of the major issues for real world applications. A MEMS-scale doubly clamped nonlinear beam resonator is designed and developed to demonstrate very wide bandwidth and high power density. In this paper a first complete theoretical discussion of nonlinear resonating piezoelectric energy harvesting is provided. The sectional behaviour of the beam is studied through the Classical Lamination Theory (CLT) specifically modified to introduce the piezoelectric coupling and nonlinear Green-Lagrange strain tensor. A lumped parameter model is built through Rayleigh-Ritz Method and the resulting nonlinear coupled equations are solved in the frequency domain through the Harmonic Balance Method (HBM). Finally, the influence of external load resistance on the dynamic behaviour is studied. The theoretical model shows that nonlinear resonant harvesters have much wider power bandwidth than that of linear resonators but their maximum power is still bounded by the mechanical damping as is the case for linear resonating harvesters
Directory of Open Access Journals (Sweden)
Rai Sajjad Saif
Full Text Available This paper investigates the stagnation point flow of second grade nanomaterial towards a nonlinear stretching surface subject to variable surface thickness. The process of heat transfer is examined through the melting heat and mixed convection effects. Further novel features regarding Brownian motion and thermophoresis are present. Boundary-layer approximation is employed in the problem formulation. Momentum, energy and concentration equations are converted into the non-linear ordinary differential system through the appropriate transformations. Convergent solutions for resulting problem are computed. Behaviors of various sundry variables on temperature and concentration are studied in detail. The skin friction coefficient and heat and mass transfer rates are also computed and analyzed. Our results indicate that the temperature and concentration distributions are enhanced for larger values of thermophoresis parameter. Further the present work is hoped to be useful in improving the performance of heat transfer of base fluid. Keywords: Stagnation-point flow, Second grade fluid, Nanoparticles, Melting heat process, Nonlinear stretching surface, Variable surface thickness
Design and development of a parametrically excited nonlinear energy harvester
International Nuclear Information System (INIS)
Yildirim, Tanju; Ghayesh, Mergen H.; Li, Weihua; Alici, Gursel
2016-01-01
Highlights: • A parametrically broadband energy harvester was fabricated. • Strong softening-type nonlinear behaviour was observed. • Experiments were conducted showing the large bandwidth of the device. - Abstract: An energy harvester has been designed, fabricated and tested based on the nonlinear dynamical response of a parametrically excited clamped-clamped beam with a central point-mass; magnets have been used as the central point-mass which pass through a coil when parametrically excited. Experiments have been conducted for the energy harvester when the system is excited (i) harmonically near the primary resonance; (ii) harmonically near the principal parametric resonance; (iii) by means of a non-smooth periodic excitation. An electrodynamic shaker was used to parametrically excite the system and the corresponding displacement of the magnet and output voltages of the coil were measured. It has been shown that the system displays linear behaviour at the primary resonance; however, at the principal parametric resonance, the motion characteristic of the magnet substantially changed displaying a strong softening-type nonlinearity. Theoretical simulations have also been conducted in order to verify the experimental results; the comparison between theory and experiment were within very good agreement of each other. The energy harvester developed in this paper is capable of harvesting energy close to the primary resonance as well as the principal parametric resonance; the frequency-band has been broadened significantly mainly due to the nonlinear effects as well as the parametric excitation.
Geometric scaling in ultrahigh energy neutrinos and nonlinear perturbative QCD
International Nuclear Information System (INIS)
Machado, Magno V.T.
2011-01-01
The ultrahigh energy neutrino cross section is a crucial ingredient in the calculation of the event rate in high energy neutrino telescopes. Currently there are several approaches which predict different behaviors for its magnitude for ultrahigh energies. In this contribution is presented a summary of current predictions based on the non-linear QCD evolution equations, the so-called perturbative saturation physics. In particular, predictions are shown based on the parton saturation approaches and the consequences of geometric scaling property at high energies are discussed. The scaling property allows an analytical computation of the neutrino scattering on nucleon/nucleus at high energies, providing a theoretical parameterization. (author)
Energy dependence of the Cronin effect from nonlinear QCD evolution
International Nuclear Information System (INIS)
Albacete, Javier L.; Armesto, Nestor; Salgado, Carlos A.; Wiedemann, Urs Achim; Kovner, Alex
2004-01-01
The nonlinear evolution of dense partonic systems has been suggested as a novel physics mechanism relevant for the dynamics of p-A and A-A collisions at collider energies. Here we study to what extent the description of Cronin enhancement in the framework of this nonlinear evolution is consistent with the recent observation in √(s)=200 GeV d-Au collisions at the Relativistic Heavy Ion Collider. We solve the Balitsky-Kovchegov evolution equation numerically for several initial conditions encoding Cronin enhancement. We find that the properly normalized nuclear gluon distribution is suppressed at all momenta relative to that of a single nucleon. For the resulting spectrum of produced gluons in p-A and A-A collisions, the nonlinear QCD evolution is unable to generate a Cronin-type enhancement, and it quickly erases any such enhancement which may be present at lower energies
Loss of Energy Concentration in Nonlinear Evolution Beam Equations
Garrione, Maurizio; Gazzola, Filippo
2017-12-01
Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation u_{tt} + u_{xxxx} + f(u)= g(x, t) in bounded space-time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.
Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives
Energy Technology Data Exchange (ETDEWEB)
Faybishenko, Boris
2002-11-27
The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.
Nonlinear dynamics in flow through unsaturated fractured porous media: Status and perspectives
International Nuclear Information System (INIS)
Faybishenko, Boris
2002-01-01
The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences
Effect of Integral Non-Linearity on Energy Calibration of ...
African Journals Online (AJOL)
The integral non-linearity (INL) of four spectroscopy systems, two integrated (A1 and A2) and two classical (B1 and B2) systems was determined using pulses from a random pulse generator. The effect of INL on the system's energy calibration was also determined. The effect is minimal in the classical system at high ...
International Nuclear Information System (INIS)
Kosevich, Y A; Manevitch, L I; Savin, A V
2007-01-01
We consider, both analytically and numerically, the dynamics of stationary and slowly-moving breathers (localized short-wavelength excitations) in two weakly coupled nonlinear oscillator chains (nonlinear phononic waveguides). We show that there are two qualitatively different dynamical regimes of the coupled breathers: the oscillatory exchange of the low-amplitude breather between the phononic waveguides (wandering breather), and one-waveguide-localization (nonlinear self-trapping) of the high-amplitude breather. We also show that phase-coherent dynamics of the coupled breathers in two weakly linked nonlinear phononic waveguides has a profound analogy, and is described by a similar pair of equations, to the tunnelling quantum dynamics of two weakly linked Bose-Einstein condensates in a symmetric double-well potential (single bosonic Josephson junction). The exchange of phonon energy and excitations between the coupled phononic waveguides takes on the role which the exchange of atoms via quantum tunnelling plays in the case of the coupled condensates. On the basis of this analogy, we predict a new tunnelling mode of the coupled Bose-Einstein condensates in a single bosonic Josephson junction in which their relative phase oscillates around π/2. The dynamics of relative phase of two weakly linked Bose-Einstein condensates can be studied by means of interference, while the dynamics of the exchange of lattice excitations in coupled nonlinear phononic waveguides can be observed by means of light scattering
Finite Element Analysis of Biot’s Consolidation with a Coupled Nonlinear Flow Model
Directory of Open Access Journals (Sweden)
Yue-bao Deng
2016-01-01
Full Text Available A nonlinear flow relationship, which assumes that the fluid flow in the soil skeleton obeys the Hansbo non-Darcian flow and that the coefficient of permeability changes with void ratio, was incorporated into Biot’s general consolidation theory for a consolidation simulation of normally consolidated soft ground with or without vertical drains. The governing equations with the coupled nonlinear flow model were presented first for the force equilibrium condition and then for the continuity condition. Based on the weighted residual method, the finite element (FE formulations were then derived, and an existing FE program was modified accordingly to take the nonlinear flow model into consideration. Comparative analyses using established theoretical solutions and numerical solutions were completed, and the results were satisfactory. On this basis, we investigated the effect of the coupled nonlinear flow on consolidation development.
Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems
Marston, J. B.; Hastings, M. B.
2005-03-01
The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.
An Energy Decaying Scheme for Nonlinear Dynamics of Shells
Bottasso, Carlo L.; Bauchau, Olivier A.; Choi, Jou-Young; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the system total mechanical energy at each time step, and consequently unconditional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells based on mixed interpolations of strain tensorial components and on a two-parameter representation of director rotations. The robustness of the, scheme is illustrated with the help of numerical examples.
Directory of Open Access Journals (Sweden)
T. Hayat
2018-03-01
Full Text Available Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy’s law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined. Keywords: Porous medium, Heat generation/absorption, SWCNTs and MWCNTs, Nonlinear radiation
Homotopy analysis approach for nonlinear piezoelectric vibration energy harvesting
Directory of Open Access Journals (Sweden)
Shahlaei-Far Shahram
2016-01-01
Full Text Available Piezoelectric energy harvesting from a vertical geometrically nonlinear cantilever beam with a tip mass subject to transverse harmonic base excitations is analyzed. One piezoelectric patch is placed on the slender beam to convert the tension and compression into electrical voltage. Applying the homotopy analysis method to the coupled electromechanical governing equations, we derive analytical solutions for the horizontal displacement of the tip mass and consequently the output voltage from the piezoelectric patch. Analytical approximation for the frequency response and phase of the geometrically forced nonlinear vibration system are also obtained. The research aims at a rigorous analytical perspective on a nonlinear problem which has previously been solely investigated by numerical and experimental methods.
Direct observation of coherent energy transfer in nonlinear micromechanical oscillators.
Chen, Changyao; Zanette, Damián H; Czaplewski, David A; Shaw, Steven; López, Daniel
2017-05-26
Energy dissipation is an unavoidable phenomenon of physical systems that are directly coupled to an external environmental bath. In an oscillatory system, it leads to the decay of the oscillation amplitude. In situations where stable oscillations are required, the energy dissipated by the vibrations is usually compensated by replenishment from external energy sources. Consequently, if the external energy supply is removed, the amplitude of oscillations start to decay immediately, since there is no means to restitute the energy dissipated. Here, we demonstrate a novel dissipation engineering strategy that can support stable oscillations without supplying external energy to compensate losses. The fundamental intrinsic mechanism of resonant mode coupling is used to redistribute and store mechanical energy among vibrational modes and coherently transfer it back to the principal mode when the external excitation is off. To experimentally demonstrate this phenomenon, we exploit the nonlinear dynamic response of microelectromechanical oscillators to couple two different vibrational modes through an internal resonance.
Malaysia commercial energy flow: status and structure
International Nuclear Information System (INIS)
Ridzuan Abdul Mutalib; Maragatham Kumar; Nik Arlina Nik Ali; Abi Muttaqin Jalal Bayar; Aisya Raihan Abdul Kadir; Muhammed Zulfakar Zolkaffly; Azlinda Aziz; Jamal Khaer Ibrahim
2008-08-01
With further growth of Malaysia economy, future development of the energy sector in Malaysia is vital to ensure targeted growth. Commercial Energy continues to play a major role in ensuring a balanced energy mix for power generation due to a potential increase in energy demand from various sectors, especially the industrial sector. This paper presents the status and structure of Malaysia Commercial Energy Flow, which gives an overview of the flow of all types of energy sources from primary energy supply to final energy use, and also the potential for nuclear power in electricity generation in Malaysia. (Author)
Energy sector pricing: On the role of neglected nonlinearity
International Nuclear Information System (INIS)
Kyrtsou, Catherine; Malliaris, Anastasios G.; Serletis, Apostolos
2009-01-01
Modern economies have been subjected to a number of shocks during the past several years such as the burst of the Internet bubble, terrorist attacks, corporate scandals, the war in Iraq, the uncertainty about energy prices, and the recent subprime mortgage crisis. In particular, during the last few years, the energy shock has caused concerns for potential stagflation for both the United States and numerous other countries. We perform numerous univariate tests for non-linearity and chaotic structure using price data from the energy sector to resolve whether the sector's fundamentals or exogenous shocks drive these prices.
Energy sector pricing: On the role of neglected nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Kyrtsou, Catherine [University of Macedonia (Greece); Malliaris, Anastasios G. [Loyola University Chicago (United States); Serletis, Apostolos [University of Calgary (Canada)], E-mail: Serletis@ucalgary.ca
2009-05-15
Modern economies have been subjected to a number of shocks during the past several years such as the burst of the Internet bubble, terrorist attacks, corporate scandals, the war in Iraq, the uncertainty about energy prices, and the recent subprime mortgage crisis. In particular, during the last few years, the energy shock has caused concerns for potential stagflation for both the United States and numerous other countries. We perform numerous univariate tests for non-linearity and chaotic structure using price data from the energy sector to resolve whether the sector's fundamentals or exogenous shocks drive these prices.
Energy sector pricing. On the role of neglected nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Kyrtsou, Catherine [University of Macedonia (Greece); Malliaris, Anastasios G. [Loyola University Chicago (United States); Serletis, Apostolos [University of Calgary (Canada)
2009-05-15
Modern economies have been subjected to a number of shocks during the past several years such as the burst of the Internet bubble, terrorist attacks, corporate scandals, the war in Iraq, the uncertainty about energy prices, and the recent subprime mortgage crisis. In particular, during the last few years, the energy shock has caused concerns for potential stagflation for both the United States and numerous other countries. We perform numerous univariate tests for non-linearity and chaotic structure using price data from the energy sector to resolve whether the sector's fundamentals or exogenous shocks drive these prices. (author)
Nonlinear convective flow of Powell-Erying magneto nanofluid with Newtonian heating
Directory of Open Access Journals (Sweden)
Sajid Qayyum
Full Text Available Objective of present article is to describe magnetohydrodynamic (MHD non-linear convective flow of Powell-Erying nanofluid over a stretching surface. Characteristics of Newtonian heat and mass conditions in this attempt is given attention. Heat and mass transfer analysis is examined in the frame of thermal radiation and chemical reaction. Brownian motion and thermophoresis concept is introduced due to presence of nanoparticles. Nonlinear equations of momentum, energy and concentration are transformed into dimensionless expression by invoking suitable variables. The series solutions are obtained through homotopy analysis method (HAM. Impact of embedded variables on the velocity, temperature and nanoparticles concentration is graphically presented. Numerical values of skin friction coefficient, local Nusselt and Sherwood numbers are computed and analyzed. It is concluded that velocity field enhances for fluid variable while reverse situation is noticed regarding Hartman number. Temperature and heat transfer rate behave quite reverse for Prandtl number. It is also noted that the concentration and local Sherwood number have opposite behavior in the frame of Brownian motion. Keywords: Powell-Erying nanofluid, Magnetohydrodynamic (MHD, Nonlinear convection, Thermal radiation, Chemical reaction, Newtonian heat and mass conditions
Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows
Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant
2016-04-01
We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the
Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows
International Nuclear Information System (INIS)
Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant; Ó Náraigh, Lennon
2016-01-01
We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the
Nonlinear energy loss of highly charged heavy ions
International Nuclear Information System (INIS)
Zwicknagel, G.Guenter.
2000-01-01
For slow, highly charged heavy ions strong coupling effects in the energy transfer from the projectile-ion to an electron target plasma become important. A theoretical description of this nonlinear ion stopping has to go beyond the standard approaches like the dielectric linear response or the binary collision model which are strictly valid only at weak ion-target coupling. Here we outline an improved treatment which is based on a suitable combination of binary collision and linear response contributions. As has been verified for isotropic, nonmagnetized electron plasmas by comparison with simulations, this approach well reproduces the essential features of nonlinear stopping up to moderate coupling strength. Its extension to anisotropic, magnetized electron plasmas basically involves the fully numerical determination of the momentum and energy transfer in binary ion-electron collisions in the presence of a magnetic field. First results of such calculations are presented and discussed
Nonlinearly-enhanced energy transport in many dimensional quantum chaos
Brambila, D. S.; Fratalocchi, Andrea
2013-01-01
By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior. We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory, demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system, which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our results show that solitons can form the building block for the realization of new systems for the enhanced transport of matter.
Nonlinearly-enhanced energy transport in many dimensional quantum chaos
Brambila, D. S.
2013-08-05
By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior. We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory, demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system, which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our results show that solitons can form the building block for the realization of new systems for the enhanced transport of matter.
Nonlinear instabilities relating to negative-energy modes
International Nuclear Information System (INIS)
Pfirsch, D.
1993-03-01
The nonlinear instability of general linearly stable systems allowing linear negative-energy perturbations is investigated with the aid of a multiple time scale formalism. It is shown that the basic equations thus obtained imply resonance conditions and possess inherent symmetries which lead to the existence of similarity solutions of these equations. These solutions can be of an explosive type, oscillatory or static. It is demonstrated that at least some of the oscillatory and static solutions are normally linearly unstable. (orig.). 5 figs
Optically nonlinear energy transfer in light-harvesting dendrimers
Andrews, David; Bradshaw, DS
2004-01-01
Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems,organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Sta...
International Nuclear Information System (INIS)
Jovic, V.; Afgan, N.; Jovic, L.; Spasojevic, D.
1993-01-01
The paper presents results of the experimental and theoretical analyses of linear and nonlinear characteristics of adiabatic two-phase water-air flow in vertical parallel channels. Regime character changes and linear to nonlinear dynamic characteristics transfer conditions were defined. (author)
International Nuclear Information System (INIS)
Villard, L.; Allfrey, S.J.; Bottino, A.
2003-01-01
The aim of this paper is to report on recent advances made on global gyrokinetic simulations of Ion Temperature Gradient modes (ITG) and other microinstabilities. The nonlinear development and saturation of ITG modes and the role of E x B zonal flows are studied with a global nonlinear δ f formulation that retains parallel nonlinearity and thus allows for a check of the energy conservation property as a means to verify the quality of the numerical simulation. Due to an optimised loading technique the conservation property is satisfied with an unprecedented quality well into the nonlinear stage. The zonal component of the perturbation establishes a quasi-steady state with regions of ITG suppression, strongly reduced radial energy flux and steepened effective temperature profile alternating with regions of higher ITG mode amplitudes, larger radial energy flux and flattened effective temperature profile. A semi-Lagrangian approach free of statistical noise is proposed as an alternative to the nonlinear δf formulation. An ASDEX-Upgrade experiment with an Internal Transport Barrier (ITB) is analysed with a global gyrokinetic code that includes trapped electron dynamics. The weakly destabilizing effect of trapped electron dynamics on ITG modes in an axisymmetric bumpy configuration modelling W7-X is shown in global linear simulations that retain the full electron dynamics. Finite β effects on microinstabilities are investigated with a linear global spectral electromagnetic gyrokinetic formulation. The radial global structure of electromagnetic modes shows a resonant behaviour with rational q values. (author)
Wideband quin-stable energy harvesting via combined nonlinearity
Directory of Open Access Journals (Sweden)
Chen Wang
2017-04-01
Full Text Available In this work, we propose a wideband quintuple-well potential piezoelectric-based vibration energy harvester using a combined nonlinearity: the magnetic nonlinearity induced by magnetic force and the piecewise-linearity produced by mechanical impact. With extra stable states compared to other multi-stable harvesters, the quin-stable harvester can distribute its potential energy more uniformly, which provides shallower potential wells and results in lower excitation threshold for interwell motion. The mathematical model of this quin-stable harvester is derived and its equivalent piecewise-nonlinear restoring force is measured in the experiment and identified as piecewise polynomials. Numerical simulations and experimental verifications are performed in different levels of sinusoid excitation ranging from 1 to 25 Hz. The results demonstrate that, with lower potential barriers compared with tri-stable counterpart, the quin-stable arrangement can escape potential wells more easily for doing high-energy interwell motion over a wider band of frequencies. Moreover, by utilizing the mechanical stoppers, this harvester can produce significant output voltage under small tip deflections, which results in a high power density and is especially suitable for a compact MEMS approach.
Nonlinear inertial Alfven waves in plasmas with sheared magnetic field and flow
International Nuclear Information System (INIS)
Chen Yinhua; Wang Ge; Tan Liwei
2004-01-01
Nonlinear equations describing inertial Alfven waves in plasmas with sheared magnetic field and flow are derived. For some specific parameters chosen, authors have found a new type of electromagnetic coherent structures in the tripolar vortex-like form
Application of the DTM to Nonlinear Cases Arising in Fluid Flows with Variable Viscosity
DEFF Research Database (Denmark)
Barari, Amin; Rahimi, M; Hosseini, M.J
2012-01-01
This paper employs the differential transformation method to investigate two nonlinear ordinary differential systems for plane coquette flow having variable viscosity and thermal conductivity. The concept of differential transformation is briefly introduced, and then differential transformation m...
Flow Energy Piezoelectric Bimorph Nozzle Harvester
Sherrit, Stewart (Inventor); Walkemeyer, Phillip E. (Inventor); Hall, Jeffrey L. (Inventor); Lee, Hyeong Jae (Inventor); Colonius, Tim (Inventor); Tosi, Phillipe (Inventor); Kim, Namhyo (Inventor); Sun, Kai (Inventor); Corbett, Thomas Gary (Inventor); Arrazola, Alvaro Jose (Inventor)
2016-01-01
A flow energy harvesting device having a harvester pipe includes a flow inlet that receives flow from a primary pipe, a flow outlet that returns the flow into the primary pipe, and a flow diverter within the harvester pipe having an inlet section coupled to the flow inlet, a flow constriction section coupled to the inlet section and positioned at a midpoint of the harvester pipe and having a spline shape with a substantially reduced flow opening size at a constriction point along the spline shape, and an outlet section coupled to the constriction section. The harvester pipe may further include a piezoelectric structure extending from the inlet section through the constriction section and point such that the fluid flow past the constriction point results in oscillatory pressure amplitude inducing vibrations in the piezoelectric structure sufficient to cause a direct piezoelectric effect and to generate electrical power for harvesting.
Energy Technology Data Exchange (ETDEWEB)
Westermann, Henrik; Neubauer, Marcus; Wallaschek, Joerg [Hannover Univ. (Germany). Inst. fuer Dynamik und Schwingungen
2012-07-15
Using ambient energy by piezoelectric energy harvesting systems received much attention over the last years. Most vibration-based generators produce a sufficient power only if the transducer is excited in its resonance frequency. The use of magnetic forces suggests a promising strategy to increase the efficiency. This paper presents different ways for broadband piezoelectric energy harvesting using nonlinear magnetic forces. (orig.)
Nonlinear analysis of piezoelectric nanocomposite energy harvesting plates
International Nuclear Information System (INIS)
Rafiee, M; He, X Q; Liew, K M
2014-01-01
This paper investigates the nonlinear analysis of energy harvesting from piezoelectric functionally graded carbon nanotube reinforced composite plates under combined thermal and mechanical loadings. The excitation, which derives from harmonically varying mechanical in-plane loading, results in parametric excitation. The governing equations of the piezoelectric functionally graded carbon nanotube reinforced composite plates are derived based on classical plate theory and von Kármán geometric nonlinearity. The material properties of the nanocomposite plate are assumed to be graded in the thickness direction. The single-walled carbon nanotubes (SWCNTs) are assumed to be aligned, straight and have a uniform layout. The linear buckling and vibration behavior of the nanocomposite plates is obtained in the first step. Then, Galerkin’s method is employed to derive the nonlinear governing equations of the problem with cubic nonlinearities associated with mid-plane stretching. Periodic solutions are determined by using the Poincaré–Lindstedt perturbation scheme with movable simply supported boundary conditions. The effects of temperature change, the volume fraction and the distribution pattern of the SWCNTs on the parametric resonance, in particular the amplitude of vibration and the average harvested power of the smart functionally graded carbon nanotube reinforced composite plates, are investigated through a detailed parametric study. (paper)
International Nuclear Information System (INIS)
Zhang, Wenchao; Tan, Sichao; Gao, Puzhen; Wang, Zhanwei; Zhang, Liansheng; Zhang, Hong
2014-01-01
Highlights: • Natural circulation flow instabilities in rolling motion are studied. • The method of non-linear time series analysis is used. • Non-linear evolution characteristic of flow instability is analyzed. • Irregular complex flow oscillations are chaotic oscillations. • The effect of rolling parameter on the threshold of chaotic oscillation is studied. - Abstract: Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions were studied by the method of non-linear time series analysis. Experimental flow time series of different dimensionless power and rolling parameters were analyzed based on phase space reconstruction theory. Attractors which were reconstructed in phase space and the geometric invariants, including correlation dimension, Kolmogorov entropy and largest Lyapunov exponent, were determined. Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions was studied based on the results of the geometric invariant analysis. The results indicated that the values of the geometric invariants first increase and then decrease as dimensionless power increases which indicated the non-linear characteristics of the system first enhance and then weaken. The irregular complex flow oscillation is typical chaotic oscillation because the value of geometric invariants is at maximum. The threshold of chaotic oscillation becomes larger as the rolling frequency or rolling amplitude becomes big. The main influencing factors that influence the non-linear characteristics of the natural circulation system under rolling motion are thermal driving force, flow resistance and the additional forces caused by rolling motion. The non-linear characteristics of the natural circulation system under rolling motion changes caused by the change of the feedback and coupling degree among these influencing factors when the dimensionless power or rolling parameters changes
Non-linear effects in vortex viscous flow in superconductors-role of finite heat removal velocity
International Nuclear Information System (INIS)
Bezuglyj, A.I.; Shklovskij, V.A.
1991-01-01
The role of finite heat removal velocity in experiments on non-linear effects in vortex viscous flow in superconducting films near critical temperature was investigated. It was shown that the account of thermal effects permits to explain the experimentally observed dependence of electron energy relaxation time and current break-down in voltage-current characteristic from magnetic field value. 5 refs.; 1 fig. (author)
Optimization under uncertainty of parallel nonlinear energy sinks
Boroson, Ethan; Missoum, Samy; Mattei, Pierre-Olivier; Vergez, Christophe
2017-04-01
Nonlinear Energy Sinks (NESs) are a promising technique for passively reducing the amplitude of vibrations. Through nonlinear stiffness properties, a NES is able to passively and irreversibly absorb energy. Unlike the traditional Tuned Mass Damper (TMD), NESs do not require a specific tuning and absorb energy over a wider range of frequencies. Nevertheless, they are still only efficient over a limited range of excitations. In order to mitigate this limitation and maximize the efficiency range, this work investigates the optimization of multiple NESs configured in parallel. It is well known that the efficiency of a NES is extremely sensitive to small perturbations in loading conditions or design parameters. In fact, the efficiency of a NES has been shown to be nearly discontinuous in the neighborhood of its activation threshold. For this reason, uncertainties must be taken into account in the design optimization of NESs. In addition, the discontinuities require a specific treatment during the optimization process. In this work, the objective of the optimization is to maximize the expected value of the efficiency of NESs in parallel. The optimization algorithm is able to tackle design variables with uncertainty (e.g., nonlinear stiffness coefficients) as well as aleatory variables such as the initial velocity of the main system. The optimal design of several parallel NES configurations for maximum mean efficiency is investigated. Specifically, NES nonlinear stiffness properties, considered random design variables, are optimized for cases with 1, 2, 3, 4, 5, and 10 NESs in parallel. The distributions of efficiency for the optimal parallel configurations are compared to distributions of efficiencies of non-optimized NESs. It is observed that the optimization enables a sharp increase in the mean value of efficiency while reducing the corresponding variance, thus leading to more robust NES designs.
Nonlinear generalization of special relativity at very high energies
International Nuclear Information System (INIS)
Winterberg, F.
1984-01-01
It is shown, that the introduction of a fundamental length constant into the operator representation of the quantum mechanical commutation relations, as suggested by Bagge, leads to a nonlinear generalization of the Lorentz transformations. The theory requires the introduction of a substratum (ether) and which can be identified as the zero point vacuum energy. At very high energies a non-Lorentz invariant behaviour for the cross sections between elementary particles is predicted. Using the Einstein clock synchronisation definition, the velocity of light is also constant and equal to c in the new theory, but the zero point vacuum energy becomes finite, as are all other quantities which are divergent in Lorentz invariant quantum field theories. In the limiting case where the length constant is set equal to zero, the zero point vacuum energy diverges and special relativity is recovered. (orig.) [de
Experimental Research into Technology of Abrasive Flow Machining Nonlinear Tube Runner
Directory of Open Access Journals (Sweden)
Junye Li
2014-06-01
Full Text Available In the fields of military and civil uses, some special passages exist in many major parts, such as non-linear tubes. The overall performance is usually decided by the surface quality. Abrasive flow machining (AFM technology can effectively improve the surface quality of the parts. In order to discuss the mechanism and technology of abrasive flow machining nonlinear tube, the nozzle is picked up as the researching object, and the self-designed polishing liquid is employed to make research on the key technological parameters of abrasive flow machining linear tube. Technological parameters’ impact on surface quality of the parts through the nozzle surface topography and scanning electron microscopy (SEM map is explored. It is experimentally confirmed that abrasive flow machining can significantly improve surface quality of nonlinear runner, and experimental results can provide technical reference to optimizing study of abrasive flow machining theory.
Farrell, Brian; Ioannou, Petros; Nikolaidis, Marios-Andreas
2017-11-01
While linear non-normality underlies the mechanism of energy transfer from the externally driven flow to the perturbation field, nonlinearity is also known to play an essential role in sustaining turbulence. We report a study based on the statistical state dynamics of Couette flow turbulence with the goal of better understanding the role of nonlinearity in sustaining turbulence. The statistical state dynamics implementations used are ensemble closures at second order in a cumulant expansion of the Navier-Stokes equations in which the averaging operator is the streamwise mean. Two fundamentally non-normal mechanisms potentially contributing to maintaining the second cumulant are identified. These are essentially parametric perturbation growth arising from interaction of the perturbations with the fluctuating mean flow and transient growth of perturbations arising from nonlinear interaction between components of the perturbation field. By the method of selectively including these mechanisms parametric growth is found to maintain the perturbation field in the turbulent state while the more commonly invoked mechanism associated with transient growth of perturbations arising from scattering by nonlinear interaction is found to suppress perturbation variance. Funded by ERC Coturb Madrid Summer Program and NSF AGS-1246929.
Nonlinear analysis and enhancement of wing-based piezoaeroelastic energy harvesters
Abdelkefi, Abdessattar
2014-01-01
We investigate the level of harvested power from aeroelastic vibrations for an elastically mounted wing supported by nonlinear springs. The energy is harvested by attaching a piezoelectric transducer to the plunge degree of freedom. The considered wing has a low-aspect ratio and hence three dimensional aerodynamic effects cannot be neglected. To this end, the three dimensional unsteady vortex lattice method for the prediction of the unsteady aerodynamic loads is developed. A strong coupling scheme that is based on Hamming\\'s fourth-order predictor-corrector method and accounts for the interaction between the aerodynamic loads and the motion of the wing is employed. The effects of the electrical load resistance, nonlinear torsional spring and eccentricity between the elastic axis and the gravity axis on the level of the harvested power, pitch and plunge amplitudes are investigated for a range of operating wind speeds. The results show that there is a specific wind speed beyond which the pitch motion does not pick any further energy from the incident flow. As such, the displacement in the plunge direction grows significantly and causes enhanced energy harvesting. The results also show that the nonlinear torsional spring plays an important role in enhancing the level of the harvested power. Furthermore, the harvested power can be increased by an order of magnitude by properly choosing the eccentricity and the load resistance. This analysis is helpful in designing piezoaeroelastic energy harvesters that can operate optimally at specific wind speeds. © 2013 Elsevier Ltd.
Mahanthesh, B.; Gireesha, B. J.; Shehzad, S. A.; Rauf, A.; Kumar, P. B. Sampath
2018-05-01
This research is made to visualize the nonlinear radiated flow of hydromagnetic nano-fluid induced due to rotation of the disk. The considered nano-fluid is a mixture of water and Ti6Al4V or AA7072 nano-particles. The various shapes of nanoparticles like lamina, column, sphere, tetrahedron and hexahedron are chosen in the analysis. The irregular heat source and nonlinear radiative terms are accounted in the law of energy. We used the heat flux condition instead of constant surface temperature condition. Heat flux condition is more relativistic and according to physical nature of the problem. The problem is made dimensionless with the help of suitable similarity constraints. The Runge-Kutta-Fehlberg scheme is adopted to find the numerical solutions of governing nonlinear ordinary differential systems. The solutions are plotted by considering the various values of emerging physical constraints. The effects of various shapes of nanoparticles are drawn and discussed.
Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions
Miecnikowski, Matthew T.; Sturdevant, Benjamin J.; Chen, Yang; Parker, Scott E.
2018-05-01
Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including zonal flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated zonal flow. This work demonstrates nonlinear capability, resolution of weak gradient drive, and zonal flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.
Mittal, Ankita; Girimaji, Sharath
2017-11-01
We examine the effect of compressible spectral energy transfer in the nonlinear regime of transition to turbulence of hypersonic boundary layers. The nature of spectral energy transfer between perturbation modes is profoundly influenced by two compressibility mechanisms. First and foremost, the emergence of nonlinear pressure-dilatation mechanism leads to kinetic-internal energy exchange within the perturbation field. Such interchange is absent in incompressible flow as pressure merely reorients the perturbation amplitude vector while conserving kinetic energy. Secondly, the nature of triadic interactions also changes due to variability in density. In this work, we demonstrate that the efficiency of nonlinear spectral energy transfer is diminished in compressible boundary layers. Emergence of new perturbation modes or `broad-banding' of the perturbation field is significantly delayed in comparison to incompressible boundary layer undergoing transition. A significant amount of perturbation energy is transformed to internal energy and thus unavailable for `tripping' the flow into turbulent state. These factors profoundly change the nature of the nonlinear stage of transition in compressible boundary layer leading to delayed onset of full-fledged turbulence.
Turbulent kinetic energy spectrum in very anisothermal flows
International Nuclear Information System (INIS)
Serra, Sylvain; Toutant, Adrien; Bataille, Françoise; Zhou, Ye
2012-01-01
In this Letter, we find that the Kolmogorov scaling law is no longer valid when the flow is submitted to strong dilatational effects caused by high temperature gradients. As a result, in addition to the nonlinear time scale, there is a much shorter “temperature gradients” time scale. We propose a model that estimates the time scale of the triple decorrelation incorporating the influences of the temperature gradient. The model agrees with the results from the thermal large-eddy simulations of different Reynolds numbers and temperature gradients. This Letter provides a better understanding of the very anisothermal turbulent flow. -- Highlights: ► Turbulent flows subject to high temperature gradients are considered. ► The new “temperature gradients” time scale is determined. ► A generalized energy spectrum is developed to incorporate the effects of temperature gradient.
Analytical model for nonlinear piezoelectric energy harvesting devices
International Nuclear Information System (INIS)
Neiss, S; Goldschmidtboeing, F; M Kroener; Woias, P
2014-01-01
In this work we propose analytical expressions for the jump-up and jump-down point of a nonlinear piezoelectric energy harvester. In addition, analytical expressions for the maximum power output at optimal resistive load and the 3 dB-bandwidth are derived. So far, only numerical models have been used to describe the physics of a piezoelectric energy harvester. However, this approach is not suitable to quickly evaluate different geometrical designs or piezoelectric materials in the harvester design process. In addition, the analytical expressions could be used to predict the jump-frequencies of a harvester during operation. In combination with a tuning mechanism, this would allow the design of an efficient control algorithm to ensure that the harvester is always working on the oscillator's high energy attractor. (paper)
Nonlinear modeling of magnetorheological energy absorbers under impact conditions
Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M.; Browne, Alan L.; Ulicny, John; Johnson, Nancy
2013-11-01
Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s-1. Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R&D Center for nominal drop speeds of up to 6 m s-1.
Nonlinear modeling of magnetorheological energy absorbers under impact conditions
International Nuclear Information System (INIS)
Mao, Min; Hu, Wei; Choi, Young-Tai; Wereley, Norman M; Browne, Alan L; Ulicny, John; Johnson, Nancy
2013-01-01
Magnetorheological energy absorbers (MREAs) provide adaptive vibration and shock mitigation capabilities to accommodate varying payloads, vibration spectra, and shock pulses, as well as other environmental factors. A key performance metric is the dynamic range, which is defined as the ratio of the force at maximum field to the force in the absence of field. The off-state force is typically assumed to increase linearly with speed, but at the higher shaft speeds occurring in impact events, the off-state damping exhibits nonlinear velocity squared damping effects. To improve understanding of MREA behavior under high-speed impact conditions, this study focuses on nonlinear MREA models that can more accurately predict MREA dynamic behavior for nominal impact speeds of up to 6 m s −1 . Three models were examined in this study. First, a nonlinear Bingham-plastic (BP) model incorporating Darcy friction and fluid inertia (Unsteady-BP) was formulated where the force is proportional to the velocity. Second, a Bingham-plastic model incorporating minor loss factors and fluid inertia (Unsteady-BPM) to better account for high-speed behavior was formulated. Third, a hydromechanical (HM) analysis was developed to account for fluid compressibility and inertia as well as minor loss factors. These models were validated using drop test data obtained using the drop tower facility at GM R and D Center for nominal drop speeds of up to 6 m s −1 . (paper)
Benoit, Michel; Yates, Marissa L.; Raoult, Cécile
2017-04-01
Efficient and accurate numerical models simulating wave propagation are required for a variety of engineering projects including the evaluation of coastal risks, the design of protective coastal structures, and the estimation of the potential for marine renewable energy devices. Nonlinear and dispersive effects are particularly significant in the coastal zone where waves interact with the bottom, the shoreline, and coastal structures. The main challenge in developing a numerical models is finding a compromise between computational efficiency and the required accuracy of the simulated wave field. Here, a potential approach is selected and the (fully nonlinear) water wave problem is formulated using the Euler-Zakharov equations (Zakharov, 1968) describing the temporal evolution of the free surface elevation and velocity potential. The proposed model (Yates and Benoit, 2015) uses a spectral approach in the vertical (i.e. the vertical variation of the potential is approximated by a linear combination of the first NT+1 Chebyshev polynomials, following the work of Tian and Sato (2008)). The Zakharov equations are integrated in time using a fourth-order Runge-Kutta scheme with a constant time step. At each sub-timestep, the Laplace Boundary Value Problem (BVP) is solved to estimate the free surface vertical velocity using the spectral approach, with typical values of NT between 5 to 8 for practical applications. The 1DH version of the code is validated with comparisons to the experimental data set of Becq-Girard et al. (1999), which studied the propagation of irregular waves over a beach profile with a submerged bar. The nonlinear and dispersive capacities of the model are verified with the correct representation of wave-wave interactions, in particular the transfer of energy between different harmonic components during wave propagation (analysis of the transformation of the variance spectrum along the channel). Evolution of wave skewness, asymmetry and kurtosis along the
Nonlinear generation of zonal flows by ion-acoustic waves in a uniform magnetoplasma
International Nuclear Information System (INIS)
Shukla, Nitin; Shukla, P.K.
2010-01-01
It is shown that large-scale zonal flows (ZFs) can be excited by Reynolds stress of nonlinearly interacting random phase ion-acoustic waves (EIAWs) in a uniform magnetoplasma. Since ZFs are associated with poloidal sheared flows, they can tear apart short scale EIAW turbulence eddies, and hence contribute to the reduction of the cross-field turbulent transport in a magnetized plasma.
Direct test of a nonlinear constitutive equation for simple turbulent shear flows using DNS data
Schmitt, François G.
2007-10-01
Several nonlinear constitutive equations have been proposed to overcome the limitations of the linear eddy-viscosity models to describe complex turbulent flows. These nonlinear equations have often been compared to experimental data through the outputs of numerical models. Here we perform a priori analysis of nonlinear eddy-viscosity models using direct numerical simulation (DNS) of simple shear flows. In this paper, the constitutive equation is directly checked using a tensor projection which involves several invariants of the flow. This provides a 3 terms development which is exact for 2D flows, and a best approximation for 3D flows. We provide the quadratic nonlinear constitutive equation for the near-wall region of simple shear flows using DNS data, and estimate their coefficients. We show that these coefficients have several common properties for the different simple shear flow databases considered. We also show that in the central region of pipe flows, where the shear rate is very small, the coefficients of the constitutive equation diverge, indicating the failure of this representation for vanishing shears.
Non-linear and signal energy optimal asymptotic filter design
Directory of Open Access Journals (Sweden)
Josef Hrusak
2003-10-01
Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.
Nonlinear analysis for dual-frequency concurrent energy harvesting
Yan, Zhimiao; Lei, Hong; Tan, Ting; Sun, Weipeng; Huang, Wenhu
2018-05-01
The dual-frequency responses of the hybrid energy harvester undergoing the base excitation and galloping were analyzed numerically. In this work, an approximate dual-frequency analytical method is proposed for the nonlinear analysis of such a system. To obtain the approximate analytical solutions of the full coupled distributed-parameter model, the forcing interactions is first neglected. Then, the electromechanical decoupled governing equation is developed using the equivalent structure method. The hybrid mechanical response is finally separated to be the self-excited and forced responses for deriving the analytical solutions, which are confirmed by the numerical simulations of the full coupled model. The forced response has great impacts on the self-excited response. The boundary of Hopf bifurcation is analytically determined by the onset wind speed to galloping, which is linearly increased by the electrical damping. Quenching phenomenon appears when the increasing base excitation suppresses the galloping. The theoretical quenching boundary depends on the forced mode velocity. The quenching region increases with the base acceleration and electrical damping, but decreases with the wind speed. Superior to the base-excitation-alone case, the existence of the aerodynamic force protects the hybrid energy harvester at resonance from damages caused by the excessive large displacement. From the view of the harvested power, the hybrid system surpasses the base-excitation-alone system or the galloping-alone system. This study advances our knowledge on intrinsic nonlinear dynamics of the dual-frequency energy harvesting system by taking advantage of the analytical solutions.
Optically nonlinear energy transfer in light-harvesting dendrimers
Andrews, David L.; Bradshaw, David S.
2004-08-01
Dendrimeric polymers are the subject of intense research activity geared towards their implementation in nanodevice applications such as energy harvesting systems, organic light-emitting diodes, photosensitizers, low-threshold lasers, and quantum logic elements, etc. A recent development in this area has been the construction of dendrimers specifically designed to exhibit novel forms of optical nonlinearity, exploiting the unique properties of these materials at high levels of photon flux. Starting from a thorough treatment of the underlying theory based on the principles of molecular quantum electrodynamics, it is possible to identify and characterize several optically nonlinear mechanisms for directed energy transfer and energy pooling in multichromophore dendrimers. Such mechanisms fall into two classes: first, those where two-photon absorption by individual donors is followed by transfer of the net energy to an acceptor; second, those where the excitation of two electronically distinct but neighboring donor groups is followed by a collective migration of their energy to a suitable acceptor. Each transfer process is subject to minor dissipative losses. In this paper we describe in detail the balance of factors and the constraints that determines the favored mechanism, which include the excitation statistics, structure of the energy levels, laser coherence factors, chromophore selection rules and architecture, possibilities for the formation of delocalized excitons, spectral overlap, and the overall distribution of donors and acceptors. Furthermore, it transpires that quantum interference between different mechanisms can play an important role. Thus, as the relative importance of each mechanism determines the relevant nanophotonic characteristics, the results reported here afford the means for optimizing highly efficient light-harvesting dendrimer devices.
Energy and ancillary service dispatch through dynamic optimal power flow
International Nuclear Information System (INIS)
Costa, A.L.; Costa, A. Simoes
2007-01-01
This paper presents an approach based on dynamic optimal power flow (DOPF) to clear both energy and spinning reserve day-ahead markets. A competitive environment is assumed, where agents can offer active power for both demand supply and ancillary services. The DOPF jointly determines the optimal solutions for both energy dispatch and reserve allocation. A non-linear representation for the electrical network is employed, which is able to take transmission losses and power flow limits into account. An attractive feature of the proposed approach is that the final optimal solution will automatically meet physical constraints such as generating limits and ramp rate restrictions. In addition, the proposed framework allows the definition of multiple zones in the network for each time interval, in order to ensure a more adequate distribution of reserves throughout the power system. (author)
Hayat, T.; Ullah, Siraj; Khan, M. Ijaz; Alsaedi, A.; Zaigham Zia, Q. M.
2018-03-01
Here modeling and computations are presented to introduce the novel concept of Darcy-Forchheimer three-dimensional flow of water-based carbon nanotubes with nonlinear thermal radiation and heat generation/absorption. Bidirectional stretching surface induces the flow. Darcy's law is commonly replace by Forchheimer relation. Xue model is implemented for nonliquid transport mechanism. Nonlinear formulation based upon conservation laws of mass, momentum and energy is first modeled and then solved by optimal homotopy analysis technique. Optimal estimations of auxiliary variables are obtained. Importance of influential variables on the velocity and thermal fields is interpreted graphically. Moreover velocity and temperature gradients are discussed and analyzed. Physical interpretation of influential variables is examined.
Debussche, A.; Dubois, T.; Temam, R.
1993-01-01
Using results of Direct Numerical Simulation (DNS) in the case of two-dimensional homogeneous isotropic flows, the behavior of the small and large scales of Kolmogorov like flows at moderate Reynolds numbers are first analyzed in detail. Several estimates on the time variations of the small eddies and the nonlinear interaction terms were derived; those terms play the role of the Reynolds stress tensor in the case of LES. Since the time step of a numerical scheme is determined as a function of the energy-containing eddies of the flow, the variations of the small scales and of the nonlinear interaction terms over one iteration can become negligible by comparison with the accuracy of the computation. Based on this remark, a multilevel scheme which treats differently the small and the large eddies was proposed. Using mathematical developments, estimates of all the parameters involved in the algorithm, which then becomes a completely self-adaptive procedure were derived. Finally, realistic simulations of (Kolmorov like) flows over several eddy-turnover times were performed. The results are analyzed in detail and a parametric study of the nonlinear Galerkin method is performed.
Nonlinear vortex structures and Rayleigh instability condition in shear flow plasmas
International Nuclear Information System (INIS)
Haque, Q.; Saleem, H.; Mirza, A.M.
2009-01-01
Full text: It is shown that the shear flow produced by externally applied electric field can unstable the drift waves. Due to shear flow, the Rayleigh instability condition is modified, which is obtained for both electron-ion and electron-positron-ion plasmas. These shear flow driven drift waves can be responsible for large amplitude electrostatic fluctuations in tokamak edges. In the nonlinear regime, the stationary structures may appear in electron-positron-ion plasmas similar to electron-ion plasmas. The nonlinear vortex structures like counter rotating dipole vortices and vortex chains can be formed with the aid of special type of shear flows. The positrons can be used as a probe in laboratory plasmas, which make it a multi-component plasma. The presence of positrons in electron-ion plasma system can affect the speed and amplitude of the nonlinear vortex structures. This investigation can have application in both laboratory and astrophysical plasmas. (author)
Directory of Open Access Journals (Sweden)
R. Mantovani
2002-01-01
Full Text Available This paper presents the analysis of symmetric circulations of a rotating baroclinic flow, forced by a steady thermal wind and dissipated by Laplacian friction. The analysis is performed with numerical time-integration. Symmetric flows, vertically bound by horizontal walls and subject to either periodic or vertical wall lateral boundary conditions, are investigated in the region of parameter-space where unstable small amplitude modes evolve into stable stationary nonlinear solutions. The distribution of solutions in parameter-space is analysed up to the threshold of chaotic behaviour and the physical nature of the nonlinear interaction operating on the finite amplitude unstable modes is investigated. In particular, analysis of time-dependent energy-conversions allows understanding of the physical mechanisms operating from the initial phase of linear instability to the finite amplitude stable state. Vertical shear of the basic flow is shown to play a direct role in injecting energy into symmetric flow since the stage of linear growth. Dissipation proves essential not only in limiting the energy of linearly unstable modes, but also in selecting their dominant space-scales in the finite amplitude stage.
Li, Honglian; Lu, Yiyu; Zhou, Lei; Tang, Jiren; Han, Shuaibin; Ao, Xiang
2018-01-01
Interest in shale gas as an energy source is growing worldwide. Because the rock's natural fracture system can contribute to gas production, it is important to understand the flow behavior of natural fractures in shale. Previous studies on the flow characteristics in shale fractures were limited and did not consider the effect of nonlinearity. To understand the basic mechanics of the gas flow behavior in shale fractures, laboratory investigations with consideration of the fluid pressure gradient, the confining stress, the loading history and the fracture geometry were conducted in this paper. Izbash's equation was used to analyze the nonlinearity of the flow. The results show that the behavior of the friction factors is similar to that shown in flow tests in smooth and rough pipes. The increase of the confining stress and the irreversible damage to the shale decreased the hydraulic aperture and increased the relative roughness. Thus, turbulent flow could appear at a low Reynolds number, resulting in a significant pressure loss. The limits of the cubic law and the existing correction factor for transmissivity are discussed. It is found that the previous friction models overestimate the friction factor in the laminar regime and underestimate the friction factor in the turbulent regime. For this reason, a new friction model based on a linear combination of the Reynolds number and the relative roughness was developed.
Directory of Open Access Journals (Sweden)
Ye-Wei Zhang
2017-01-01
Full Text Available This paper presents a novel design by integrating geometrical and material nonlinear energy sink (NES with a piezoelectric-based vibration energy harvester under shock excitation, which can realize vibration control and energy harvesting. The nonlinear spring and hysteresis behavior of the NES could reflect geometrical and material nonlinearity, respectively. Two configurations of the piezoelectric device, including the piezoelectric element embedded between the NES mass and the single-degree-of-freedom system or ground, are utilised to examine the energy dissipated by damper and hysteresis behavior of NES and the energy harvested by the piezoelectric element. Similar numerical research methods of Runge-Kutta algorithm are used to investigate the two configurations. The energy transaction measure (ETM is adopted to examine the instantaneous energy transaction between the primary and the NES-piezoelectricity system. And it demonstrates that the dissipated and harvested energy transaction is transferred from the primary system to the NES-piezoelectricity system and the instantaneous transaction of mechanical energy occupies a major part of the energy of transaction. Both figurations could realize vibration control efficiently.
Non-linear absorption for concentrated solar energy transport
Energy Technology Data Exchange (ETDEWEB)
Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)
2000-07-01
In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es
Nonlinear coupling of the resistive tearing modes under the unperturbed shear flow
International Nuclear Information System (INIS)
Urata, Kazuhiro
1990-01-01
The influence of the unperturbed shear flow on the nonlinear evolution of the tearing mode is studied. In the case of single helicity, the shear flow activates the unstable mode which finally saturates to a rigid rotor state. In the case of multiple helicity, a variety of flow patterns is created depending on parameters, and always forms the current bubble soon after the collapse of the 3/2 magnetic island. (author)
Hollywood log-homotopy: movies of particle flow for nonlinear filters
Daum, Fred; Huang, Jim
2011-06-01
In this paper we show five movies of particle flow to provide insight and intuition about this new algorithm. The particles flow solves the well known and important problem of particle degeneracy. Bayes' rule is implemented by particle flow rather than as a pointwise multiplication. This theory is roughly seven orders of magnitude faster than standard particle filters, and it often beats the extended Kalman filter by two orders of magnitude in accuracy for difficult nonlinear problems.
Nonlinear dynamic analysis of high energy line pipe whip
International Nuclear Information System (INIS)
Hsu, L.C.; Kuo, A.Y.; Tang, H.T.
1983-01-01
To facilitate potential cost savings in pipe whip protection design, TVA conducted a 1'' high pressure line break test to investigate the pipe whip behavior. The test results are available to EPRI as a data base for a generic study on nonlinear dynamic behavior of piping systems and pipe whip phenomena. This paper describes a nonlinear dynamic analysis of the TVA high energy line tests using ABAQUS-EPGEN code. The analysis considers the effects of large deformation and high strain rate on resisting moment and energy absorption capability of the analyzed piping system. The numerical results of impact forces, impact velocities, and reaction forces at pipe supports are compared to the TVA test data. The pipe whip impact time and forces have also been calculated per the current NRC guidelines and compared. The calculated pipe support reaction forces prior to impact have been found to be in good agreement with the TVA test data except for some peak values at the very beginning of the pipe break. These peaks are believed to be due to stress wave propagation which cannot be addressed by the ABAQUS code. Both the effects of elbow crushing and strain rate have been approximately simulated. The results are found to be important on pipe whip impact evaluation. (orig.)
Nonlinear features of the energy beam-driven instability
International Nuclear Information System (INIS)
Lesur, M.; Idomura, Y.; Garbet, X.
2009-01-01
Full text: A concern with ignited fusion plasmas is that, as a result of the instabilities they trigger, the high-energy particles eject themselves before they could give their energy to the core to sustain the reaction. Similarities between this class of instabilities and the so-called Berk-Breizman problem motivate us to study a single-mode instability driven by an energetic particle beam. For this purpose, a one dimensional Vlasov simulation is extended to include a Krook collision operator and external damping processes. The code is benchmarked with previous work. The fully nonlinear behavior is recovered in the whole parameter space characterized by an effective relaxation rate ν a and an external damping rate γ d . Steady state, periodic and chaotic behaviors are observed in nonlinear solutions. In the regime above marginal stability where both ν a and γ d are smaller than the linear drive γ L , we observe a good agreement of steady saturation levels between the simulation and theory. Near marginal stability, the role of the normalized relaxation rate ν a /(γ L -γ d ), which is a key parameter to predict the behavior of the solution, is investigated for an initial distribution with relatively small γ L , which correspond to the situation considered in the theory. In the low relaxation rate regime, frequency sweeping events are observed, and the time-evolution of such event is investigated. (author)
An Energy Saving Green Plug Device for Nonlinear Loads
Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed
2018-03-01
The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..
Nonlinearity and intraday efficiency tests on energy futures markets
International Nuclear Information System (INIS)
Wang, Tao; Yang, Jian
2010-01-01
Using high frequency data, this paper first time comprehensively examines the intraday efficiency of four major energy (crude oil, heating oil, gasoline, natural gas) futures markets. In contrast to earlier studies which focus on in-sample evidence and assume linearity, the paper employs various nonlinear models and several model evaluation criteria to examine market efficiency in an out-of-sample forecasting context. Overall, there is evidence for intraday market inefficiency of two of the four energy future markets (heating oil and natural gas), which exists particularly during the bull market condition but not during the bear market condition. The evidence is also robust against the data-snooping bias and the model overfitting problem, and its economic significance can be very substantial. (author)
Nonlinearity and intraday efficiency tests on energy futures markets
Energy Technology Data Exchange (ETDEWEB)
Wang, Tao [Department of Economics, Queens College and the Graduate Center, The City University of New York, Flushing, NY 11367 (United States); Yang, Jian [The Business School, PO Box 173364, University of Colorado Denver, Denver, CO 80217-3364 (United States)
2010-03-15
Using high frequency data, this paper first time comprehensively examines the intraday efficiency of four major energy (crude oil, heating oil, gasoline, natural gas) futures markets. In contrast to earlier studies which focus on in-sample evidence and assume linearity, the paper employs various nonlinear models and several model evaluation criteria to examine market efficiency in an out-of-sample forecasting context. Overall, there is evidence for intraday market inefficiency of two of the four energy future markets (heating oil and natural gas), which exists particularly during the bull market condition but not during the bear market condition. The evidence is also robust against the data-snooping bias and the model overfitting problem, and its economic significance can be very substantial. (author)
Energy Technology Data Exchange (ETDEWEB)
Cahn, Robert N.; de Putter, Roland; Linder, Eric V.
2008-07-08
Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen at random. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases in the literature.
Nonlinear dynamic behavior of an assembly of tubes under transverse fluid flow
International Nuclear Information System (INIS)
Beaufils, B.; Axisa, F.; Antunes, J.
1989-01-01
The mechanical vibrations induced by a transverse fluid flow passing through an assembly of cylindrical tubes is investigated. Studies on the numerical modeling of such phenomena are presented. The purpose of the work is to allow the evaluation of the risks induced by the vibrations in industrial heat exchangers. The methods for the analysis of nonlinear problems and numerical calculations of the nonlinear dynamic behavior are performed [fr
Analysis of boundary layer flow over a porous nonlinearly stretching sheet with partial slip at
Directory of Open Access Journals (Sweden)
Swati Mukhopadhyay
2013-12-01
Full Text Available The boundary layer flow of a viscous incompressible fluid toward a porous nonlinearly stretching sheet is considered in this analysis. Velocity slip is considered instead of no-slip condition at the boundary. Similarity transformations are used to convert the partial differential equation corresponding to the momentum equation into nonlinear ordinary differential equation. Numerical solution of this equation is obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter.
Localized excitations in a nonlinearly coupled magnetic drift wave-zonal flow system
International Nuclear Information System (INIS)
Shukla, Nitin; Shukla, P.K.
2010-01-01
We consider the amplitude modulation of the magnetic drift wave (MDW) by zonal flows (ZFs) in a nonuniform magnetoplasma. For this purpose, we use the two-fluid model to derive a nonlinear Schroedinger equation for the amplitude modulated MDWs in the presence of the ZF potential, and an evolution equation for the ZF potential which is reinforced by the nonlinear Lorentz force of the MDWs. Our nonlinearly coupled MDW-ZFs system of equations admits stationary solutions in the form of a localized MDW envelope and a shock-like ZF potential profile.
Nonlinear metamaterials for electromagnetic energy harvesting (Conference Presentation)
Oumbe Tekam, Gabin Thibaut; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan
2016-09-01
Surrounded by electromagnetic radiation coming from wireless power transfer to consumer devices such as mobile phones, computers and television, our society is facing the scientific and technological challenge to recover energy that is otherwise lost to the environment. Energy harvesting is an emerging field of research focused on this largely unsolved problem, especially in the microwave regime. Metamaterials provide a very promising platform to meet this purpose. These artificial materials are made from subwavelength building blocks, and can be designed by resonate at particular frequencies, depending on their shape, geometry, size, and orientation. In this work, we show that an efficient electromagnetic energy harvester can be design by inserting a nonlinear element directly within the metamaterial unit cell, leading to the conversion of RF input power to DC charge accumulation. The electromagnetic energy harvester operating at microwave frequencies is built from a cut-wire metasurface, which operates as a quasistatic electric dipole resonator. Using the equivalent electrical circuit, we design the parameters to tune the resonance frequency of the harvester at the desired frequency, and we compare these results with numerical simulations. Finally, we discuss the efficiency of our metamaterial energy harvesters. This work potentially offers a variety of applications, for example in the telecommunications industry to charge phones, in robotics to power microrobots, and also in medicine to advance pacemakers or health monitoring sensors.
Energy, entropy, and the flow of nature
Sherman, Thomas F
2018-01-01
A fresh and unified exploration of the laws that govern natural change, examining the historical roots and meaning of the concepts of energy and entropy. All natural processes--mechanical, thermal, chemical, electrical, and biological--are viewed as a flow across free energy gradients that interact with one another.
Energy density, stopping and flow in ultrarelativistic heavy ion collisions
International Nuclear Information System (INIS)
Sorge, H.; von Keitz, A.; Mattiello, R.; Stoecker, H.; Greiner, W.
1990-01-01
The Lorentz invariant molecular dynamics approach (RQMD) is employed to investigate the space-time evolution of heavy ion collisions at energies (E kin = 10AGeV hor-ellipsis 200AGeV). The calculations for various nucleus nucleus reactions show a high degree of stopping power. The importance of secondary rescattering at these beam energies is demonstrated. The computed nucleon rapidity distributions are compared to available experimental data. It is demonstrated that nonlinear, collective effects like full stopping of target and projectile and matter flow could be expected for heavy projectiles only. For nuclear collisions in the Booster era at BNL and for the lead beam at CERN SPS the authors predict a stimulating future: then a nearly equilibrated, long lived (8 fm/c) macroscopic volume of very high energy density (> 1 GeV/fm 3 ) and baryon density (> 5 times ground state density) is produced
California energy flow in 1993
Energy Technology Data Exchange (ETDEWEB)
Borg, I.Y.; Briggs, C.K.
1995-04-01
Energy consumption in the state of California decreased about 3% in 1993 reflecting continuation of the recession that was manifest in a moribund construction industry and a high state unemployment that ran counter to national recovery trends. Residential/commercial use decreased slightly reflecting a mild winter in the populous southern portion of the state, a decrease that was offset to some extent by an increase in the state population. Industrial consumption of purchased energy declined substantially as did production of self-generated electricity for in-house use. Consumption in the transportation sector decreased slightly. The amount of power transmitted by the utilities was at 1992 levels; however a smaller proportion was produced by the utilities themselves. Generation of electricity by nonutilities, primarily cogenerators and small power producers, was the largest of any state in the US. The growth in the number of private power producers combined with increased amounts of electricity sold to the public utilities set the stage for the sweeping proposals before the California Public Utility Commission to permit direct sales from the nonutilities to retail customers. California production of both oil and natural gas declined; however, to meet demand only the imports of natural gas increased. A break in the decade-long drought during the 1992--1993 season resulted in a substantial increase in the amount of hydroelectricity generated during the year. Geothermal energy`s contribution increased substantially because of the development of new resources by small power producers. Decline in steam production continued at The Geysers, the state`s largest field, principally owned and managed by a public utility. Increases in windpower constituted 1--1/2% of the total electric supply--up slightly from 1992. Several solar photo voltaic demonstration plants were in operation, but their contribution remained small.
International Nuclear Information System (INIS)
Petrila, Iulian; Bodale, Ilie; Rotarescu, Cristian; Stancu, Alexandru
2011-01-01
A comparative analysis between linear and non-linear energy barriers used for modeling statistical thermally-excited ferromagnetic systems is presented. The linear energy barrier is obtained by new symmetry considerations about the anisotropy energy and the link with the non-linear energy barrier is also presented. For a relevant analysis we compare the effects of linear and non-linear energy barriers implemented in two different models: Preisach-Neel and Ising-Metropolis. The differences between energy barriers which are reflected in different coercive field dependence of the temperature are also presented. -- Highlights: → The linear energy barrier is obtained from symmetry considerations. → The linear and non-linear energy barriers are calibrated and implemented in Preisach-Neel and Ising-Metropolis models. → The temperature and time effects of the linear and non-linear energy barriers are analyzed.
A Review of Critical Conditions for the Onset of Nonlinear Fluid Flow in Rock Fractures
Directory of Open Access Journals (Sweden)
Liyuan Yu
2017-01-01
Full Text Available Selecting appropriate governing equations for fluid flow in fractured rock masses is of special importance for estimating the permeability of rock fracture networks. When the flow velocity is small, the flow is in the linear regime and obeys the cubic law, whereas when the flow velocity is large, the flow is in the nonlinear regime and should be simulated by solving the complex Navier-Stokes equations. The critical conditions such as critical Reynolds number and critical hydraulic gradient are commonly defined in the previous works to quantify the onset of nonlinear fluid flow. This study reviews the simplifications of governing equations from the Navier-Stokes equations, Stokes equation, and Reynold equation to the cubic law and reviews the evolutions of critical Reynolds number and critical hydraulic gradient for fluid flow in rock fractures and fracture networks, considering the influences of shear displacement, normal stress and/or confining pressure, fracture surface roughness, aperture, and number of intersections. This review provides a reference for the engineers and hydrogeologists especially the beginners to thoroughly understand the nonlinear flow regimes/mechanisms within complex fractured rock masses.
Modelling non-linear effects of dark energy
Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis
2018-04-01
We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.
Nonlinear analysis and characteristics of inductive galloping energy harvesters
Dai, H. L.; Yang, Y. W.; Abdelkefi, A.; Wang, L.
2018-06-01
This paper presents an investigation on analysis and characteristics of aerodynamic electromagnetic energy harvesters. The source of aeroelastic oscillations results from galloping of a prismatic structure. A nonlinear distributed-parameter model is developed representing the dynamics of the transverse degree of freedom and the electric current induced in the coil. Firstly, we perform a linear analysis to study the impacts of the external electrical resistance, magnet placement, electromagnetic coupling coefficient, and internal resistance in the coil on the cut-in speed of instability of the coupled electroaeroelastic system. It is demonstrated that these parameters have significant impacts on cut-in speed of instability of the harvester system. Subsequently, a nonlinear analysis is implemented to explore the influences of these parameters on the output property of the energy harvester. The results show that there exists an optimal external electrical resistance which maximizes the output power of the harvester, and this optimal value varies with the magnet's placement, wind speed, electromagnetic coupling coefficient and internal resistance of the coil. It is also demonstrated that an increase in the distance between the clamped end and the magnet, an increase in the electromagnetic coupling coefficient, and/or a decrease in the internal resistance of the coil are accompanied by an increase in the level of the harvested power and a decrease in the tip displacement of the bluff body which is associated with a resistive-shunt damping effect in the harvester. The implemented studies give a constructive guidance to design and enhance the output performance of aerodynamic electromagnetic energy harvesters.
Studying the formation of non-linear bursts in fully turbulent channel flows
Encinar, Miguel P.; Jimenez, Javier
2017-11-01
Linear transient growth has been suggested as a possible explanation for the intermittent behaviour, or `bursting', in shear flows with a stable mean velocity profile. Analysing fully non-linear DNS databases yields a similar Orr+lift-up mechanism, but acting on spatially localised wave packets rather than on monochromatic infinite wavetrains. The Orr mechanism requires the presence of backwards-leaning wall-normal velocity perturbations as initial condition, but the linear theory fails to clarify how these perturbations are formed. We investigate the latter in a time-resolved wavelet-filtered turbulent channel database, which allows us to assign an amplitude and an inclination angle to a flow region of selected size. This yields regions that match the dynamics of linear Orr for short times. We find that a short streamwise velocity (u) perturbation (i.e. a streak meander) consistently appears before the burst, but disappears before the burst reaches its maximum amplitude. Lift-up then generates a longer streamwise velocity perturbation. The initial streamwise velocity is also found to be backwards-leaning, contrary to the averaged energy-containing scales, which are known to be tilted forward. Funded by the ERC COTURB project.
California energy flow in 1979
Briggs, C. K.; Borg, I. Y.
1981-03-01
Energy use in California during 1979 differed significantly from 1978. Overall use of natural gas in the state increased substantially (14.3%) due principally to greater use for electrical power production; 4% more gas was used for electrical power generation in 1979 than in 1978 and 21% more than in 1977. Use of fuel oil for electrical generation remained at the 1978 level but below the high 1977 level, which reflected substitution of oil for hydroelectric power during the 1976 to 1977 drought. Together, oil and gas accounted for 80% of the fuels used to generate electricity. Crude-oil imports principally from Indonesia fell substantially; however, use of Alaskan North Slope oil increased so that the net increase in crude oil use was up about 4%. The transportation end-use sector consumed about as much as in 1978 despite shortages in early 1979 associated with the Iranian revolution. While sales fell slightly, sales of high-sulfur residual oils (Bunker C) increased markedly. Transportation represents 38% of total energy consumption in California.
The combinatorics of nonlinear controllability and noncommuting flows
International Nuclear Information System (INIS)
Kawski, M.
2002-01-01
These notes accompany four lectures, giving an introduction to new developments in, and tools for problems in nonlinear control. Roughly speaking, after the successful development, starting in the 1960s, of methods from linear algebra, complex analysis and functional analysis for solving linear control problems, the 1970s and 1980s saw the emergence of differential geometric tools that were to mimic that success for nonlinear systems. In the past 30 years this theory has matured, and now connects with many other branches of mathematics. The focus of these notes is the role of algebraic combinatorics for both illuminating structures and providing computational tools for nonlinear systems. On the control side, we focus on problems connected with controllability, although the combinatorial tools obviously have just as much use for other control problems, including e.g. path-planning, realization theory, and observability. The lectures are meant to be an introduction, sketching the road from the comparatively naive, bare-handed constructions used in the early years, to the elegant and powerful insights from recent years. One of the main targets is to develop an explicit, continuous analogue of the classical Campbell-Baker-Hausdorff formula, and of a related exponential product expansion. The purpose of such formulae is to separate the time-dependent and control-dependent parts of solution curves from the invariant underlying geometrical structure inherent in each control system. The key theme is that effective tools (including effective notation) from algebraic combinatorics are essential, for both theoretical analysis and for practical computation (beyond some miniscule academic examples). On a.practical level we want the reader to take home the message to never write out complicated iterated integrals, as it is both a waste of paper and time, as it obscures the underlying structure. On the theoretical level, the key object is the chronological algebra isomorphism
Energy Technology Data Exchange (ETDEWEB)
Vlaykov, Dimitar G., E-mail: Dimitar.Vlaykov@ds.mpg.de [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Dynamik und Selbstorganisation, Am Faßberg 17, D-37077 Göttingen (Germany); Grete, Philipp [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Schmidt, Wolfram [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Schleicher, Dominik R. G. [Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Casilla 160-C (Chile)
2016-06-15
Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However, the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LESs), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator [W. K. Yeo (CUP, 1993)] and require no assumptions about the nature of the flow or magnetic field. Thus, the scope of their applicability ranges from the sub- to the hyper-sonic and -Alfvénic regimes. The closures support spectral energy cascades both up and down-scale, as well as direct transfer between kinetic and magnetic resolved and unresolved energy budgets. They implicitly take into account the local geometry, and in particular, the anisotropy of the flow. Their properties are a priori validated in Paper II [P. Grete et al., Phys. Plasmas 23, 062317 (2016)] against alternative closures available in the literature with respect to a wide range of simulation data of homogeneous and isotropic turbulence.
Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.
Gao, Zhongke; Jin, Ningde
2009-06-01
The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.
The benefits of noise and nonlinearity: Extracting energy from random vibrations
Energy Technology Data Exchange (ETDEWEB)
Gammaitoni, Luca, E-mail: luca.gammaitoni@pg.infn.it [NiPS Laboratory, Universita di Perugia, I-06100 Perugia (Italy); Neri, Igor; Vocca, Helios [NiPS Laboratory, Universita di Perugia, I-06100 Perugia (Italy)
2010-10-05
Nonlinear behavior is the ordinary feature of the vast majority of dynamical systems and noise is commonly present in any finite temperature physical and chemical system. In this article we briefly review the potentially beneficial outcome of the interplay of noise and nonlinearity by addressing the novel field of vibration energy harvesting. The role of nonlinearity in a piezoelectric harvester oscillator dynamics is modeled with nonlinear stochastic differential equation.
Energy flow in photonic crystal waveguides
DEFF Research Database (Denmark)
Søndergaard, Thomas; Dridi, Kim
2000-01-01
Theoretical and numerical investigations of energy flow in photonic crystal waveguides made of line defects and branching points are presented. It is shown that vortices of energy flow may occur, and the net energy flow along: the line defect is described via the effective propagation velocity....... Single-mode and multimode operations are studied, and dispersion relations are computed for different waveguide widths. Both strong positive, strong negative, and zero dispersion an possible. It is shown that geometric parameters such as the nature of the lattice, the line defect orientation, the defect...... width, and the branching-point geometry have a significant influence on the electrodynamics. These are important issues for the fabrication of photonic crystal structures....
The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings
Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat
2018-06-01
In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.
Bifurcation of cubic nonlinear parallel plate-type structure in axial flow
International Nuclear Information System (INIS)
Lu Li; Yang Yiren
2005-01-01
The Hopf bifurcation of plate-type beams with cubic nonlinear stiffness in axial flow was studied. By assuming that all the plates have the same deflections at any instant, the nonlinear model of plate-type beam in axial flow was established. The partial differential equation was turned into an ordinary differential equation by using Galerkin method. A new algebraic criterion of Hopf bifurcation was utilized to in our analysis. The results show that there's no Hopf bifurcation for simply supported plate-type beams while the cantilevered plate-type beams has. At last, the analytic expression of critical flow velocity of cantilevered plate-type beams in axial flow and the purely imaginary eigenvalues of the corresponding linear system were gotten. (authors)
Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions
Fang, Tiegang
2014-05-01
In this paper, the magnetohydrodynamic (MHD) flow over a nonlinearly (power-law velocity) moving surface is investigated analytically and solutions are presented for a few special conditions. The solutions are obtained in closed forms with hyperbolic functions. The effects of the magnetic, the wall moving, and the mass transpiration parameters are discussed. These solutions are important to show the flow physics as well as to be used as bench mark problems for numerical validation and development of new solution schemes.
Meerson, Baruch; Fouxon, Itzhak; Vilenkin, Arkady
2008-02-01
We employ hydrodynamic equations to investigate nonstationary channel flows of freely cooling dilute gases of hard and smooth spheres with nearly elastic particle collisions. This work focuses on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes and employing Lagrangian coordinates, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation becomes exactly soluble, and the solution develops a finite-time density blowup. The blowup has the same local features at singularity as those exhibited by the recently found family of exact solutions of the full set of ideal hydrodynamic equations [I. Fouxon, Phys. Rev. E 75, 050301(R) (2007); I. Fouxon,Phys. Fluids 19, 093303 (2007)]. The heat diffusion, however, always becomes important near the attempted singularity. It arrests the density blowup and brings about previously unknown inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. The ICSs represent exact solutions of the full set of granular hydrodynamic equations. Both the density profile of an ICS and the characteristic relaxation time toward it are determined by a single dimensionless parameter L that describes the relative role of the inelastic energy loss and heat diffusion. At L>1 the intermediate cooling dynamics proceeds as a competition between "holes": low-density regions of the gas. This competition resembles Ostwald
Control of energy flow in residential buildings; Energieflussregelung in Wohngebaeuden
Energy Technology Data Exchange (ETDEWEB)
Weiss, Martin
2011-07-01
Energy systems in residential buildings are changing from monovalent, combustion based systems to multivalent systems containing technologies such as solar collectors, pellet boilers, heat pumps, CHP and multiple storages. Multivalent heat and electricity generation and additional storages raise the number of possible control signals in the system. This creates additional degrees of freedom regarding the choice of the energy converter and the instant of time for energy conversion. New functionality of controllers such as prioritisation of energy producers, optimization of electric self consumption and control of storages and energy feed-in are required. Within the scope of this thesis, new approaches for demand-driven optimal control of energy flows in multivalent building energy systems are developed and evaluated. The approaches are evaluated by means of system energy costs and operating emissions. For parametrisation of the controllers an easily understandable operating concept is developed. The energy flow controllers are implemented as a multi agent system (MAS) and a nonlinear model predictive controller (MPC). Proper functionality and stability are demonstrated in simulations of two example energy systems. In both example systems the MPC controller achieves less energy costs and operating emissions due to system wide global optimization and the more detailed system model within the controller. The multi agent approach turns out to perform better for systems with a huge number of components, e.g. in home automation and energy management systems. Due to the good performance of the reference control strategies, a significant reduction of energy costs and operating emissions is only possible with limitations. Systems for heat generation show only an especially low potential for optimization because of marginal variation ins heat production costs. The adaptation of the operation mode to user priorities, changing utilization characteristics and dynamic energy
Kinetic theory of nonlinear viscous flow in two and three dimensions
Ernst, M.H.; Cichocki, B.; Dorfman, J.R.; Sharma, J.; Beijeren, H. van
1978-01-01
On the basis of a nonlinear kinetic equation for a moderately dense system of hard spheres and disks it is shown that shear and normal stresses in a steady-state, uniform shear flow contain singular contributions of the form ¦X¦3/2 for hard spheres, or ¦X¦ log ¦X¦ for hard disks. HereX is
Gundlach, J. P.; Larsen, M. F.; Mikkelsen, I. S.
1988-01-01
A simple nonlinear, axisymmetric, shallow-water numerical model has been used to study the asymmetry in the neutral flow between the dusk and dawn sides of the auroral oval. The results indicate that the Coriolis force and the curvature terms are nearly in balance on the evening side and require only a small pressure gradient to effect adjustment. The result is smaller neutral velocities near dawn and larger velocities near dusk than would be the case for a linearized treatment. A consequence is that more gravity wave energy is produced on the morning side than on the evening side.
Energy and Transmissibility in Nonlinear Viscous Base Isolators
Markou, Athanasios A.; Manolis, George D.
2016-09-01
High damping rubber bearings (HDRB) are the most commonly used base isolators in buildings and are often combined with other systems, such as sliding bearings. Their mechanical behaviour is highly nonlinear and dependent on a number of factors. At first, a physical process is suggested here to explain the empirical formula introduced by J.M. Kelly in 1991, where the dissipated energy of a HDRB under cyclic testing, at constant frequency, is proportional to the amplitude of the shear strain, raised to a power of approximately 1.50. This physical process is best described by non-Newtonian fluid behaviour, originally developed by F.H. Norton in 1929 to describe creep in steel at high-temperatures. The constitutive model used includes a viscous term, that depends on the absolute value of the velocity, raised to a non-integer power. The identification of a three parameter Kelvin model, the simplest possible system with nonlinear viscosity, is also suggested here. Furthermore, a more advanced model with variable damping coefficient is implemented to better model in this complex mechanical process. Next, the assumption of strain-rate dependence in their rubber layers under cyclic loading is examined in order to best interpret experimental results on the transmission of motion between the upper and lower surfaces of HDRB. More specifically, the stress-relaxation phenomenon observed with time in HRDB can be reproduced numerically, only if the constitutive model includes a viscous term, that depends on the absolute value of the velocity raised to a non-integer power, i. e., the Norton fluid previously mentioned. Thus, it becomes possible to compute the displacement transmissibility function between the top and bottom surfaces of HDRB base isolator systems and to draw engineering-type conclusions, relevant to their design under time-harmonic loads.
Mamatsashvili, G.; Stefani, F.; Guseva, A.; Avila, M.
2018-01-01
Magnetorotational instability (MRI) is one of the fundamental processes in astrophysics, driving angular momentum transport and mass accretion in a wide variety of cosmic objects. Despite much theoretical/numerical and experimental efforts over the last decades, its saturation mechanism and amplitude, which sets the angular momentum transport rate, remains not well understood, especially in the limit of high resistivity, or small magnetic Prandtl numbers typical to interiors (dead zones) of protoplanetary disks, liquid cores of planets and liquid metals in laboratory. Using direct numerical simulations, in this paper we investigate the nonlinear development and saturation properties of the helical magnetorotational instability (HMRI)—a relative of the standard MRI—in a magnetized Taylor-Couette flow at very low magnetic Prandtl number (correspondingly at low magnetic Reynolds number) relevant to liquid metals. For simplicity, the ratio of azimuthal field to axial field is kept fixed. From the linear theory of HMRI, it is known that the Elsasser number, or interaction parameter determines its growth rate and plays a special role in the dynamics. We show that this parameter is also important in the nonlinear problem. By increasing its value, a sudden transition from weakly nonlinear, where the system is slightly above the linear stability threshold, to strongly nonlinear, or turbulent regime occurs. We calculate the azimuthal and axial energy spectra corresponding to these two regimes and show that they differ qualitatively. Remarkably, the nonlinear state remains in all cases nearly axisymmetric suggesting that this HMRI-driven turbulence is quasi two-dimensional in nature. Although the contribution of non-axisymmetric modes increases moderately with the Elsasser number, their total energy remains much smaller than that of the axisymmetric ones.
A Galloping Energy Harvester with Attached Flow
Denissenko, Petr; Khovanov, Igor; Tucker-Harvey, Sam
2017-11-01
Aeroelastic energy harvesters are a promising technology for the operation of wireless sensors and microelectromechanical systems, as well as providing the possibility of harvesting wind energy in applications were conventional wind turbines are ineffective, such as in highly turbulent flows, or unreliable, such as in harsh environmental conditions. The development of aeroelastic energy harvesters to date has focused on the flutter of airfoils, the galloping of prismatic structures, and the vortex induced vibrations. We present a novel type of galloping energy harvester with the flow becoming attached when the oscillation amplitude is high enough. With the flow attached, the harvester blade acts closer to an aerofoil than a bluff body, which results in a higher efficiency. The dynamics of a prototype device has been characterised experimentally with the use of a motion tracking system. The flow structure in the vicinity of the device has been studied using smoke visualisation and PIV measurements. A lumped parameter mathematical model has been developed and related to the experimental results.
Piezoelectric Energy Harvesting in Internal Fluid Flow
Directory of Open Access Journals (Sweden)
Hyeong Jae Lee
2015-10-01
Full Text Available We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA showed fatigue failure was imminent due to stress concentrations near the bimorph’s clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.
Piezoelectric energy harvesting in internal fluid flow.
Lee, Hyeong Jae; Sherrit, Stewart; Tosi, Luis Phillipe; Walkemeyer, Phillip; Colonius, Tim
2015-10-14
We consider piezoelectric flow energy harvesting in an internal flow environment with the ultimate goal powering systems such as sensors in deep oil well applications. Fluid motion is coupled to structural vibration via a cantilever beam placed in a converging-diverging flow channel. Two designs were considered for the electromechanical coupling: first; the cantilever itself is a piezoelectric bimorph; second; the cantilever is mounted on a pair of flextensional actuators. We experimentally investigated varying the geometry of the flow passage and the flow rate. Experimental results revealed that the power generated from both designs was similar; producing as much as 20 mW at a flow rate of 20 L/min. The bimorph designs were prone to failure at the extremes of flow rates tested. Finite element analysis (FEA) showed fatigue failure was imminent due to stress concentrations near the bimorph's clamped region; and that robustness could be improved with a stepped-joint mounting design. A similar FEA model showed the flextensional-based harvester had a resonant frequency of around 375 Hz and an electromechanical coupling of 0.23 between the cantilever and flextensional actuators in a vacuum. These values; along with the power levels demonstrated; are significant steps toward building a system design that can eventually deliver power in the Watts range to devices down within a well.
Adaptive discontinuous Galerkin methods for non-linear reactive flows
Uzunca, Murat
2016-01-01
The focus of this monograph is the development of space-time adaptive methods to solve the convection/reaction dominated non-stationary semi-linear advection diffusion reaction (ADR) equations with internal/boundary layers in an accurate and efficient way. After introducing the ADR equations and discontinuous Galerkin discretization, robust residual-based a posteriori error estimators in space and time are derived. The elliptic reconstruction technique is then utilized to derive the a posteriori error bounds for the fully discrete system and to obtain optimal orders of convergence. As coupled surface and subsurface flow over large space and time scales is described by (ADR) equation the methods described in this book are of high importance in many areas of Geosciences including oil and gas recovery, groundwater contamination and sustainable use of groundwater resources, storing greenhouse gases or radioactive waste in the subsurface.
Energy flow around a moving dislocation
International Nuclear Information System (INIS)
Koizumi, H; Kirchner, H O K
2009-01-01
A dislocation moving in a lattice emits lattice waves. We study the energy flow accompanying the lattice wave emission in a molecular dynamics situation. About two thirds of the static free energy are emitted as lattice waves from the moving dislocation. Work done by the region around the dislocation helps to initiate the motion from the unstable equilibrium state under a small applied stress, or to compensate the energy emitted as lattice waves when the dislocation makes a long distance motion under a larger stress.
Energy and material flows of megacities.
Kennedy, Christopher A; Stewart, Iain; Facchini, Angelo; Cersosimo, Igor; Mele, Renata; Chen, Bin; Uda, Mariko; Kansal, Arun; Chiu, Anthony; Kim, Kwi-Gon; Dubeux, Carolina; Lebre La Rovere, Emilio; Cunha, Bruno; Pincetl, Stephanie; Keirstead, James; Barles, Sabine; Pusaka, Semerdanta; Gunawan, Juniati; Adegbile, Michael; Nazariha, Mehrdad; Hoque, Shamsul; Marcotullio, Peter J; González Otharán, Florencia; Genena, Tarek; Ibrahim, Nadine; Farooqui, Rizwan; Cervantes, Gemma; Sahin, Ahmet Duran
2015-05-12
Understanding the drivers of energy and material flows of cities is important for addressing global environmental challenges. Accessing, sharing, and managing energy and material resources is particularly critical for megacities, which face enormous social stresses because of their sheer size and complexity. Here we quantify the energy and material flows through the world's 27 megacities with populations greater than 10 million people as of 2010. Collectively the resource flows through megacities are largely consistent with scaling laws established in the emerging science of cities. Correlations are established for electricity consumption, heating and industrial fuel use, ground transportation energy use, water consumption, waste generation, and steel production in terms of heating-degree-days, urban form, economic activity, and population growth. The results help identify megacities exhibiting high and low levels of consumption and those making efficient use of resources. The correlation between per capita electricity use and urbanized area per capita is shown to be a consequence of gross building floor area per capita, which is found to increase for lower-density cities. Many of the megacities are growing rapidly in population but are growing even faster in terms of gross domestic product (GDP) and energy use. In the decade from 2001-2011, electricity use and ground transportation fuel use in megacities grew at approximately half the rate of GDP growth.
Redistribution of Kinetic Energy in Turbulent Flows
Directory of Open Access Journals (Sweden)
Alain Pumir
2014-10-01
Full Text Available In statistically homogeneous turbulent flows, pressure forces provide the main mechanism to redistribute kinetic energy among fluid elements, without net contribution to the overall energy budget. This holds true in both two-dimensional (2D and three-dimensional (3D flows, which show fundamentally different physics. As we demonstrate here, pressure forces act on fluid elements very differently in these two cases. We find in numerical simulations that in 3D pressure forces strongly accelerate the fastest fluid elements, and that in 2D this effect is absent. In 3D turbulence, our findings put forward a mechanism for a possibly singular buildup of energy, and thus may shed new light on the smoothness problem of the solution of the Navier-Stokes equation in 3D.
Hydromagnetic nonlinear thermally radiative nanoliquid flow with Newtonian heat and mass conditions
Directory of Open Access Journals (Sweden)
Muhammad Ijaz Khan
Full Text Available This paper communicates the analysis of MHD three-dimensional flow of Jeffrey nanoliquid over a stretchable surface. Flow due to a bidirectional surface is considered. Heat and mass transfer subject to volume fraction of nanoparticles, heat generation and nonlinear solar radiation are examined. Newtonian heat and mass transportation conditions are employed at surface. Concept of boundary layer is utilized to developed the mathematical problem. The boundary value problem is dictated by ten physical parameters: Deborah number, Hartman number, ratio of stretching rates, thermophoretic parameter, Brownian motion parameter, Prandtl number, temperature ratio parameter, conjugate heat and mass parameters and Lewis number. Convergent solutions are obtained using homotopic procedure. Convergence zone for obtained results is explicitly identified. The obtained solutions are interpreted physically. Keywords: Hydromagnetic flow, Viscoelastic nanofluid, Thermophoretic and Brownian moment, Nonlinear thermal radiation, Heat generation
Kinetic energy budget for electroconvective flows near ion selective membranes
Wang, Karen; Mani, Ali
2017-11-01
Electroconvection occurs when ions are driven from a bulk fluid through an ion-selective surface. When the driving voltage is beyond a threshold, this process undergoes a hydrodynamic instability called electroconvection, which can become chaotic due to nonlinear coupling between ion-transport, fluid flow, and electrostatic forces. Electroconvection significantly enhances ion transport and plays an important role in a wide range of electrochemical applications. We investigate this phenomenon by considering a canonical geometry consisting of a symmetric binary electrolyte between an ion-selective membrane and a reservoir using 2D direct numerical simulation (DNS). Our simulations reveal that for most practical regimes, DNS of electroconvection is expensive. Thus, a plan towards development of reduced-order models is necessary to facilitate the adoption of analysis of this phenomenon in industry. Here we use DNS to analyze the kinetic energy budget to shed light into the mechanisms sustaining flow and mixing in electroconvective flows. Our analysis reveals the relative dominance of kinetic energy sources, dissipation, and transport mechanisms sustaining electroconvection at different distances from the interface and over a wide range of input parameters. Karen Wang was supported by the National Defense Science & Engineering Graduate Fellowship (NDSEG). Ali Mani was supported by the National Science Foundation Award.
Nonlinear dynamics of an elliptic vortex embedded in an oscillatory shear flow.
Ryzhov, Eugene A
2017-11-01
The nonlinear dynamics of an elliptic vortex subjected to a time-periodic linear external shear flow is studied numerically. Making use of the ideas from the theory of nonlinear resonance overlaps, the study focuses on the appearance of chaotic regimes in the ellipse dynamics. When the superimposed flow is stationary, two general types of the steady-state phase portrait are considered: one that features a homoclinic separatrix delineating bounded and unbounded phase trajectories and one without a separatrix (all the phase trajectories are bounded in a periodic domain). When the external flow is time-periodic, the ensuing nonlinear dynamics differs significantly in both cases. For the case with a separatrix and two distinct types of phase trajectories: bounded and unbounded, the effect of the most influential nonlinear resonance with the winding number of 1:1 is analyzed in detail. Namely, the process of occupying the central stability region associated with the steady-state elliptic critical point by the stability region associated with the nonlinear resonance of 1:1 as the perturbation frequency gradually varies is investigated. A stark increase in the persistence of the central regular dynamics region against perturbation when the resonance of 1:1 associated stability region occupies the region associated with the steady-state elliptic critical point is observed. An analogous persistence of the regular motion occurs for higher perturbation frequencies when the corresponding stability islands reach the central stability region associated with the steady-state elliptic point. An analysis for the case with the resonance of 1:2 is presented. For the second case with only bounded phase trajectories and, therefore, no separatrix, the appearance of much bigger stability islands associated with nonlinear resonances compared with the case with a separatrix is reported.
Global-local nonlinear model reduction for flows in heterogeneous porous media
AlOtaibi, Manal; Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan; Ghommem, Mehdi
2015-01-01
In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.
Global-local nonlinear model reduction for flows in heterogeneous porous media
AlOtaibi, Manal
2015-08-01
In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.
Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows
Matsuoka, C.; Nishihara, K.; Sano, T.
2017-04-01
A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.
Nonlinear interaction of a parallel-flow relativistic electron beam with a plasma
International Nuclear Information System (INIS)
Jungwirth, K.; Koerbel, S.; Simon, P.; Vrba, P.
1975-01-01
Nonlinear evolution of single-mode high-frequency instabilities (ω approximately ksub(parallel)vsub(b)) excited by a parallel-flow high-current relativistic electron beam in a magnetized plasma is investigated. Fairly general dimensionless equations are derived. They describe both the temporal and the spatial evolution of amplitude and phase of the fundamental wave. Numerically, the special case of excitation of the linearly most unstable mode is solved in detail assuming that the wave energy dissipation is negligible. Then the strength of interaction and the relativistic properties of the beam are fully respected by a single parameter lambda. The value of lambda ensuring the optimum efficiency of the wave excitation as well as the efficiency of the self-acceleration of some beam electrons at higher values of lambda>1 are determined in the case of a fully compensated relativistic beam. Finally, the effect of the return current dissipation is also included (phenomenologically) into the theoretical model, its role for the beam-plasma interaction being checked numerically. (J.U.)
Time-domain Green's Function Method for three-dimensional nonlinear subsonic flows
Tseng, K.; Morino, L.
1978-01-01
The Green's Function Method for linearized 3D unsteady potential flow (embedded in the computer code SOUSSA P) is extended to include the time-domain analysis as well as the nonlinear term retained in the transonic small disturbance equation. The differential-delay equations in time, as obtained by applying the Green's Function Method (in a generalized sense) and the finite-element technique to the transonic equation, are solved directly in the time domain. Comparisons are made with both linearized frequency-domain calculations and existing nonlinear results.
Grants, Ilmars; Gerbeth, Gunter
2010-07-01
The stability of a thermally stratified liquid metal flow is considered numerically. The flow is driven by a rotating magnetic field in a cylinder heated from above and cooled from below. The stable thermal stratification turns out to destabilize the flow. This is explained by the fact that a stable stratification suppresses the secondary meridional flow, thus indirectly enhancing the primary rotation. The instability in the form of Taylor-Görtler rolls is consequently promoted. These rolls can only be excited by finite disturbances in the isothermal flow. A sufficiently strong thermal stratification transforms this nonlinear bypass instability into a linear one reducing, thus, the critical value of the magnetic driving force. A weaker temperature gradient delays the linear instability but makes the bypass transition more likely. We quantify the non-normal and nonlinear components of this transition by direct numerical simulation of the flow response to noise. It is observed that the flow sensitivity to finite disturbances increases considerably under the action of a stable thermal stratification. The capabilities of the random forcing approach to identify disconnected coherent states in a general case are discussed.
The effect of sheared axial flow on nonlinear Z-pinch dynamics
International Nuclear Information System (INIS)
Kassapakis, N.
2000-01-01
A two dimensional Eulerian fluid code has been used to study three problems related to Z-pinch and laser produced plasmas. a) The nonlinear evolution of a localised m=0 MHD mode neck is studied in order to extract some scaling laws for the size and form of the artificial neck. We examine whether the ubiquitous m=0 instability could be beneficially used to assist in the formation of a transient localised dense plasma. The results obtained were in satisfactory agreement with experiments and other theoretical work where available. b) The development of the m=0 instability on a Z-pinch although beneficial in the previous case, is detrimental from a stability point of view and thus to the utilisation of the device as a fusion reactor by itself. This is because the timescales of the instability development are faster than the confinement time needed for fusion to occur. Sheared axial flow is a proposed mechanism for the non-linear saturation of this particular instability. Indeed the linear growth rate also can be substantially reduced. It is hoped that it can inhibit the growth of the instabilities or at least delay their development sufficiently for fusion to take place. The numerical study of the effect of sheared axial flow on the nonlinear dynamics of the Z-pinch carried out, demonstrates that sheared flow with velocity u z z >4 Alfven speed other modes, of the Kelvin-Helmholtz type, are excited which take over from the fastest growing mode in the static case. c) The expansion of the ablated plasma in laser-solid interactions is an important phenomenon for a plethora of reasons one of which is ICF. The simulations were in direct agreement with previous experimental work regarding the bulk properties of the ablation surface. They also provided justification for some assumptions made during the analysis of the observations and helped to confirm the calibration of the diagnostics timewise. The most striking feature of the experiments, namely the density dip on the
International Nuclear Information System (INIS)
Vlahostergios, Z.; Sideridis, A.; Yakinthos, K.; Goulas, A.
2012-01-01
Highlights: ► We model the wake flow produced by a LPT blade using a non-linear turbulence model. ► We use two interpolation schemes for the convection terms with different accuracy. ► We investigate the effect of each term of the non-linear constitutive expression. ► The results are compared with available experimental measurements. ► The model predicts with a good accuracy the velocity and stress distributions. - Abstract: The wake flow produced by a low-pressure turbine blade is modeled using a non-linear eddy-viscosity turbulence model. The theoretical benefit of using a non-linear eddy-viscosity model is strongly related to the capability of resolving highly anisotropic flows in contrast to the linear turbulence models, which are unable to correctly predict anisotropy. The main aim of the present work is to practically assess the performance of the model, by examining its ability to capture the anisotropic behavior of the wake-flow, mainly focusing on the measured velocity and Reynolds-stress distributions and to provide accurate results for the turbulent kinetic energy balance terms. Additionally, the contribution of each term of its non-linear constitutive expression for the Reynolds stresses is also investigated, in order to examine their direct effect on the modeling of the wake flow. The assessment is based on the experimental measurements that have been carried-out by the same group in Thessaloniki, Sideridis et al. (2011). The computational results show that the non-linear eddy viscosity model is capable to predict, with a good accuracy, all the flow and turbulence parameters while it is easy to program it in a computer code thus meeting the expectations of its originators.
The Weakly Nonlinear Magnetorotational Instability in a Global, Cylindrical Taylor–Couette Flow
Energy Technology Data Exchange (ETDEWEB)
Clark, S. E. [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Oishi, Jeffrey S., E-mail: seclark@astro.columbia.edu [Department of Physics and Astronomy, Bates College, Lewiston, ME 04240 (United States)
2017-05-20
We conduct a global, weakly nonlinear analysis of the magnetorotational instability (MRI) in a Taylor–Couette flow. This is a multiscale, perturbative treatment of the nonideal, axisymmetric MRI near threshold, subject to realistic radial boundary conditions and cylindrical geometry. We analyze both the standard MRI, initialized by a constant vertical background magnetic field, and the helical MRI, with an azimuthal background field component. This is the first weakly nonlinear analysis of the MRI in a global Taylor–Couette geometry, as well as the first weakly nonlinear analysis of the helical MRI. We find that the evolution of the amplitude of the standard MRI is described by a real Ginzburg–Landau equation (GLE), whereas the amplitude of the helical MRI takes the form of a complex GLE. This suggests that the saturated state of the helical MRI may itself be unstable on long spatial and temporal scales.
Energy flow during disruptions in JET
International Nuclear Information System (INIS)
Paley, J.I.; Andrew, P.; Cowley, S.C.; Fundamenski, W.; Huber, A.
2005-01-01
Disruptions place severe limitations on the materials selected for plasma facing components in fusion devices. In a disruption, the plasma stored thermal and magnetic energy is dissipated leading to predicted power loadings in the current quench of up to 10 MW m -2 in JET. In the thermal quench very high power loads of up to 10 G Wm -2 would be expected if all the power flowed to the steady state strike points, however this is not observed. In this paper the energy balance associated with both events is investigated. The magnetic energy is found to balance well with radiated energy. Circumstantial evidence for limiter interaction during the thermal quench of plasmas in divertor configuration is presented and a possible mechanism for limiter interaction in disruptions resulting from the collapse of an internal transport barrier is discussed
International Nuclear Information System (INIS)
Moawad, S. M.; Ibrahim, D. A.
2016-01-01
The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.
Energy flow and mineral cycling mechanisms
International Nuclear Information System (INIS)
Rogers, L.E.
1977-01-01
Analysis of energy flow patterns and mineral cycling mechanisms provides a first step in identifying major transport pathways away from waste management areas. A preliminary food web pattern is described using results from ongoing and completed food habit studies. Biota possessing the greatest potential for introducing radionuclides into food chains leading to man include deer, rabbits, hares, waterfowl, honeybees and upland game birds and are discussed separately
A 2D nonlinear multiring model for blood flow in large elastic arteries
Ghigo, Arthur R.; Fullana, Jose-Maria; Lagrée, Pierre-Yves
2017-12-01
In this paper, we propose a two-dimensional nonlinear ;multiring; model to compute blood flow in axisymmetric elastic arteries. This model is designed to overcome the numerical difficulties of three-dimensional fluid-structure interaction simulations of blood flow without using the over-simplifications necessary to obtain one-dimensional blood flow models. This multiring model is derived by integrating over concentric rings of fluid the simplified long-wave Navier-Stokes equations coupled to an elastic model of the arterial wall. The resulting system of balance laws provides a unified framework in which both the motion of the fluid and the displacement of the wall are dealt with simultaneously. The mathematical structure of the multiring model allows us to use a finite volume method that guarantees the conservation of mass and the positivity of the numerical solution and can deal with nonlinear flows and large deformations of the arterial wall. We show that the finite volume numerical solution of the multiring model provides at a reasonable computational cost an asymptotically valid description of blood flow velocity profiles and other averaged quantities (wall shear stress, flow rate, ...) in large elastic and quasi-rigid arteries. In particular, we validate the multiring model against well-known solutions such as the Womersley or the Poiseuille solutions as well as against steady boundary layer solutions in quasi-rigid constricted and expanded tubes.
Flow energy piezoelectric bimorph nozzle harvester
Sherrit, Stewart; Lee, Hyeong Jae; Walkemeyer, Phillip; Hasenoehrl, Jennifer; Hall, Jeffrey L.; Colonius, Tim; Tosi, Luis Phillipe; Arrazola, Alvaro; Kim, Namhyo; Sun, Kai; Corbett, Gary
2014-04-01
There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.
Brief communication: A nonlinear self-similar solution to barotropic flow over varying topography
Ibanez, Ruy; Kuehl, Joseph; Shrestha, Kalyan; Anderson, William
2018-03-01
Beginning from the shallow water equations (SWEs), a nonlinear self-similar analytic solution is derived for barotropic flow over varying topography. We study conditions relevant to the ocean slope where the flow is dominated by Earth's rotation and topography. The solution is found to extend the topographic β-plume solution of Kuehl (2014) in two ways. (1) The solution is valid for intensifying jets. (2) The influence of nonlinear advection is included. The SWEs are scaled to the case of a topographically controlled jet, and then solved by introducing a similarity variable, η = cxnxyny. The nonlinear solution, valid for topographies h = h0 - αxy3, takes the form of the Lambert W-function for pseudo velocity. The linear solution, valid for topographies h = h0 - αxy-γ, takes the form of the error function for transport. Kuehl's results considered the case -1 ≤ γ < 1 which admits expanding jets, while the new result considers the case γ < -1 which admits intensifying jets and a nonlinear case with γ = -3.
On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet
Energy Technology Data Exchange (ETDEWEB)
Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia); Aziz, Arsalan [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Muhammad, Taseer, E-mail: taseer_qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University, Islamabad 44000 (Pakistan); Ahmad, Bashir [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589 (Saudi Arabia)
2016-06-15
This research article addresses the magnetohydrodynamic (MHD) flow of second grade nanofluid over a nonlinear stretching sheet. Heat and mass transfer aspects are investigated through the thermophoresis and Brownian motion effects. Second grade fluid is assumed electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed subject to small magnetic Reynolds number and boundary layer assumptions. Newly constructed condition having zero mass flux of nanoparticles at the boundary is incorporated. Transformations have been invoked for the reduction of partial differential systems into the set of nonlinear ordinary differential systems. The governing nonlinear systems have been solved for local behavior. Graphical results of different influential parameters are studied and discussed in detail. Computations for skin friction coefficient and local Nusselt number have been carried out. It is observed that the effects of thermophoresis parameter on the temperature and nanoparticles concentration distributions are qualitatively similar. The temperature and nanoparticles concentration distributions are enhanced for the larger magnetic parameter. - Highlights: • Constitutive relation for second grade fluid is employed. • Flow is caused by a nonlinear stretching surface. • Magnetic field applied is in transverse direction. • Nanofluid model consists of Brownian motion and thermophoresis. • Magnetic Reynolds number is assumed small.
On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet
International Nuclear Information System (INIS)
Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Ahmad, Bashir
2016-01-01
This research article addresses the magnetohydrodynamic (MHD) flow of second grade nanofluid over a nonlinear stretching sheet. Heat and mass transfer aspects are investigated through the thermophoresis and Brownian motion effects. Second grade fluid is assumed electrically conducting through a non-uniform applied magnetic field. Mathematical formulation is developed subject to small magnetic Reynolds number and boundary layer assumptions. Newly constructed condition having zero mass flux of nanoparticles at the boundary is incorporated. Transformations have been invoked for the reduction of partial differential systems into the set of nonlinear ordinary differential systems. The governing nonlinear systems have been solved for local behavior. Graphical results of different influential parameters are studied and discussed in detail. Computations for skin friction coefficient and local Nusselt number have been carried out. It is observed that the effects of thermophoresis parameter on the temperature and nanoparticles concentration distributions are qualitatively similar. The temperature and nanoparticles concentration distributions are enhanced for the larger magnetic parameter. - Highlights: • Constitutive relation for second grade fluid is employed. • Flow is caused by a nonlinear stretching surface. • Magnetic field applied is in transverse direction. • Nanofluid model consists of Brownian motion and thermophoresis. • Magnetic Reynolds number is assumed small.
DEFF Research Database (Denmark)
Fossen, T. I.; Blanke, Mogens
2000-01-01
Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using...... a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller...... compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems, The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water...
A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems
Directory of Open Access Journals (Sweden)
S. S. Motsa
2013-01-01
Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.
Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks
Gao, Zhong-Ke; Wang, Wen-Xu
2014-01-01
Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent ...
Nonlinear entropy transfer in ETG-TEM turbulence via TEM driven zonal flows
International Nuclear Information System (INIS)
Asahi, Yuuichi; Tsutsui, Hiroaki; Tsuji-Iio, Shunji; Ishizawa, Akihiro; Sugama, Hideo; Watanabe, Tomohiko
2015-01-01
Nonlinear interplay of the electron temperature gradient (ETG) modes and the trapped electron modes (TEMs) was investigated by means of gyrokinetic simulation. Focusing on the situation where both TEMs and ETG modes are linearly unstable, the effects of TEM-driven zonal flows on ETG turbulence were examined by means of entropy transfer analysis. In a statistically steady turbulence where the TEM driven zonal flows are dominant, it turned out that the zonal flows meditate the entropy transfer of the ETG modes from the low to high radial wavenumber regions. The successive entropy transfer broadens the potential fluctuation spectrum in the radial wavenumber direction. In contrast, in the situation where ETG modes are unstable but TEMs are stable, the pure ETG turbulence does not produce strong zonal flows, leading to a rather narrow spectrum in the radial wavenumber space and a higher transport level. (author)
Study on concentration nonlinearity of interacting acoustic flows in cadmium sulfide and tellurium
International Nuclear Information System (INIS)
Ilisavskij, Yu.V.; Kulakova, L.A.; Yakhkind, Eh.Z.
1976-01-01
The ratio of an one-mode (self-action of an external monochromatic sound wave) and a many-mode (interaction of an external wave with crystal thermal phonons) concentration nonlinearity has been experimentally investigated on sound amplification in cadmium sulphide and tellurium. It has been shown that in a strong piezoelectric the main part in the nonlinear limitation of the sound amplification in a drift field is played by the wave interaction, i.e., the transfer of the sound wave energy into the crystal sound modes starts before the nonlinear self-action of a wave. In Te characterized by a large value of the electromechanical coupling constant value at the sound frequency of about 250 MHz the threshold of many-mode nonlinearity is achieved in fields much below the critical one, and corresponds to the sound intensity as low as 10 -7 W/cm 2 , as compared with 10 -2 W/cm 2 -the threshold of the one-mode nonlinearity
International Nuclear Information System (INIS)
Kantz, H.; Ragwitz, M.
2002-05-01
The investigations were supported by the Center for Nonlinear Dynamics in Austin, Texas, the Department of Energy and Semiconductor Engineering of Oldenburg University, and Boreas Energietechnik GmbH in Dresden, Germany [de
International Nuclear Information System (INIS)
Clement, Simon
2014-01-01
The present study is in the scope of pressurized water reactors (PWR) core response to earthquakes. The goal of this thesis is to measure the coupling between fuel assemblies caused an axial water flow. The design, production and installation a new test facility named ICARE EXPERIMENTAL are presented. ICARE EXPERIMENTAL was built in order to measure simultaneously the vibrations of four fuel assemblies (2 x 2) under an axial flow. Vibrations are produced by imposing the dynamic of one of the fuel assemblies and the displacements of the three others, induced by the fluid, are measured in the horizontal plane at grids level. A new data analysis method combining time-frequency analysis and orthogonal mode decomposition (POD) is described. This method, named Sliding Window POD (SWPOD), allows analysing multicomponent data, of which spatial repartition of energy and frequency content are time dependent. In the case of mechanical systems (linear and nonlinear), the link between the proper orthogonal modes obtained through SWPOD and the normal modes (linear and nonlinear) is studied. The SWPOD is applied to experimental tests of a steam generators U-tube, showing the appearance of internal resonances. The method is also applied to dynamic experimental tests of a fuel assembly under axial flow, the evolution of its normal modes is obtained as a function of the fluid velocity. The measures acquired with the ICARE EXPERIMENTAL installation are analysed using the SWPOD. The first results show characteristic behavior of the free fuel assemblies at their resonances. The coupling between fuel assemblies, induced by the fluid, is reproduced by simulations performed using the COEUR3D code. This code is based on a porous media model in order to simulate a fuel assemblies network under axial flow. (author) [fr
Nonlinear analysis and enhancement of wing-based piezoaeroelastic energy harvesters
Abdelkefi, Abdessattar; Ghommem, Mehdi; Nuhait, Abdullah O.; Hajj, M. R.
2014-01-01
We investigate the level of harvested power from aeroelastic vibrations for an elastically mounted wing supported by nonlinear springs. The energy is harvested by attaching a piezoelectric transducer to the plunge degree of freedom. The considered
International Nuclear Information System (INIS)
An, Fengxian; Chen, Fangqi
2016-01-01
Highlights: • The subharmonic bifurcations and chaotic motions are studied by means of Melnikov method. • The critical conditions for the occurrence of chaotic motions and subharmonic bifurcations are obtained. • The chaotic features on the system parameters are discussed. • The theoretical predictions are confirmed by numerical simulations. - Abstract: The subharmonic bifurcations and chaotic motions of the nonlinear viscoelastic plates subjected to subsonic flow and external loads are studied by means of Melnikov method. The critical conditions for the occurrence of chaotic motions are obtained. The chaotic features on the system parameters are discussed in detail. The conditions for subharmonic bifurcations are also obtained. For the system with no structural damping, chaotic motions can occur through infinite subharmonic bifurcations of odd orders. Furthermore, we confirm our theoretical predictions by numerical simulations. The theoretical results obtained here can help us to eliminate or suppress large nonlinear vibrations and chaotic motions of the nonlinear viscoelastic plates. Based on Melnikov method, complex dynamical behaviors of the nonlinear viscoelastic plates can be controlled by modifying the system parameters.
Non-linear models for the detection of impaired cerebral blood flow autoregulation.
Chacón, Max; Jara, José Luis; Miranda, Rodrigo; Katsogridakis, Emmanuel; Panerai, Ronney B
2018-01-01
The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model's derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired.
Detecting dynamic causal inference in nonlinear two-phase fracture flow
Faybishenko, Boris
2017-08-01
Identifying dynamic causal inference involved in flow and transport processes in complex fractured-porous media is generally a challenging task, because nonlinear and chaotic variables may be positively coupled or correlated for some periods of time, but can then become spontaneously decoupled or non-correlated. In his 2002 paper (Faybishenko, 2002), the author performed a nonlinear dynamical and chaotic analysis of time-series data obtained from the fracture flow experiment conducted by Persoff and Pruess (1995), and, based on the visual examination of time series data, hypothesized that the observed pressure oscillations at both inlet and outlet edges of the fracture result from a superposition of both forward and return waves of pressure propagation through the fracture. In the current paper, the author explores an application of a combination of methods for detecting nonlinear chaotic dynamics behavior along with the multivariate Granger Causality (G-causality) time series test. Based on the G-causality test, the author infers that his hypothesis is correct, and presents a causation loop diagram of the spatial-temporal distribution of gas, liquid, and capillary pressures measured at the inlet and outlet of the fracture. The causal modeling approach can be used for the analysis of other hydrological processes, for example, infiltration and pumping tests in heterogeneous subsurface media, and climatic processes, for example, to find correlations between various meteorological parameters, such as temperature, solar radiation, barometric pressure, etc.
Laboratory investigation of nonlinear flow characteristics in rough fractures during shear process
Rong, Guan; Yang, Jie; Cheng, Long; Zhou, Chuangbing
2016-10-01
To understand the influence of shear behavior on the transporting properties of fluid through a single fracture, splitting fractures were made in the laboratory and shear flow tests were carried out under constant normal load conditions. The applied normal stress is in the range of 0.5-3.0 MPa. Before the physical test, the fracture's morphology is measured for identification of the roughness. At each shear step, we performed 5-8 high precise hydraulic tests with different hydraulic gradient. The relationship between pressure gradient and volume flow rate demonstrates to be nonlinear and fits very well with Forchheimer's and Izbash's laws. The linear and nonlinear coefficients in Forchheimer's law are quite sensitive to shear deformation (closure or dilation), experienced 1-2 and 1-3 orders of magnitude reduction during shear, respectively. An empirical equation is proposed to quantify the relationship between linear coefficient and nonlinear coefficient based on the experimental observations. The two coefficients in Izbash's law are quantified. The m value is in the range between 1.06 and 1.41 and the λ value experiences a reduction of 1-2 orders of magnitude during shear. In addition, the studied critical Reynolds number exhibits a decreasing and increasing variation corresponding to shear contraction and shear dilation of rock fracture. For all the cases in this study, the critical Reynolds number ranges between 1.5 and 13.0.
Simulations of fluid flow through porous media based on cellular automata and non-linear dynamics
Energy Technology Data Exchange (ETDEWEB)
Paulson, K V
1992-05-15
A study is being carried out to apply cellular automata and non-linear dynamics in the construction of efficient and accurate computer simulations of multiphase fluid flow through porous media, with the objective of application to reservoir modelling for hydrocarbon recovery. An algorithm based on Boolean operations has been developed which transforms a PC clone into a highly efficient vector processor capable of cellular automata simulation of single fluid flow through two-dimensional rock matrix models of varying porosities. Macroscopic flow patterns have been established through spatial and temporal averaging with no floating point operations. Permeabilities of the different models have been calculated. Hardware allows the algorithm to function on dual processors on a PC platform using a video recording and editing facility. Very encouraging results have been obtained. 4 figs.
International Nuclear Information System (INIS)
Angelino, P; Bottino, A; Hatzky, R; Jolliet, S; Sauter, O; Tran, T M; Villard, L
2006-01-01
The mutual interactions of ion temperature gradient (ITG) driven modes, zonal flows and geodesic acoustic modes (GAM) in tokamak plasmas are investigated using a global nonlinear gyrokinetic formulation with totally unconstrained evolution of temperature gradient and profile. A series of numerical simulations with the same initial temperature and density profile specifications is performed using a sequence of ideal MHD equilibria differing only in the value of the total plasma current, in particular with identical magnetic shear profiles and shapes of magnetic surfaces. On top of a bursty or quasi-steady state behaviour the zonal flows oscillate at the GAM frequency. The amplitude of these oscillations increases with the value of the safety factor q, resulting in a less effective suppression of ITG turbulence by zonal flows at a lower plasma current. The turbulence-driven volume-averaged radial heat transport is found to scale inversely with the total plasma current
A nonlinear model of flow in meandering submarine and subaerial channels
Imran, Jasim; Parker, Gary; Pirmez, Carlos
1999-12-01
A generalized model of flow in meandering subaqueous and subaerial channels is developed. The conservation equations of mass and momentum are depth/layer integrated, normalized, and represented as deviations from a straight base state. This allows the determination of integrable forms which can be solved at both linear and nonlinear levels. The effects of various flow and geometric parameters on the flow dynamics are studied. Although the model is not limited to any specific planform, this study focuses on sine-generated curves. In analysing the flow patterns, the turbidity current of the subaqueous case is simplified to a conservative density flow with water entrainment from above neglected. The subaqueous model thus formally corresponds to a subcritical or only mildly supercritical mud-rich turbidity current. By extension, however the analysis can be applied to a depositional or erosional current carrying sand that is changing only slowly in the streamwise direction. By bringing the subaqueous and subaerial cases into a common form, flow behaviour in the two environments can be compared under similar geometric and boundary conditions. A major difference between the two cases is the degree of superelevation of channel flow around bends, which is modest in the subaerial case but substantial in the subaqueous case. Another difference concerns Coriolis effects: some of the largest subaqueous meandering systems are so large that Coriolis effects can become important. The model is applied to meander bends on the youngest channel in the mid-fan region of the Amazon Fan and a mildly sinuous bend of the North-West Atlantic Mid-Ocean Channel. In the absence of specific data on the turbid flows that created the channel, the model can be used to make inferences about the flow, and in particular the range of values of flow velocity and sediment concentration that would allow the growth and downfan migration of meander bends.
Dark Energy Domination In The Virgocentric Flow
Byrd, Gene; Chernin, A. D.; Karachentsev, I. D.; Teerikorpi, P.; Valtonen, M.; Dolgachev, V. P.; Domozhilova, L. M.
2011-04-01
Dark energy (DE) was first observationally detected at large Gpc distances. If it is a vacuum energy formulated as Einstein's cosmological constant, Λ, DE should also have dynamical effects at much smaller scales. Previously, we found its effects on much smaller Mpc scales in our Local Group (LG) as well as in other nearby groups. We used new HST observations of member 3D distances from the group centers and Doppler shifts. We find each group's gravity dominates a bound central system of galaxies but DE antigravity results in a radial recession increasing with distance from the group center of the outer members. Here we focus on the much larger (but still cosmologically local) Virgo Cluster and systems around it using new observations of velocities and distances. We propose an analytic model whose key parameter is the zero-gravity radius (ZGR) from the cluster center where gravity and DE antigravity balance. DE brings regularity to the Virgocentric flow. Beyond Virgo's 10 Mpc ZGR, the flow curves to approach a linear global Hubble law at larger distances. The Virgo cluster and its outer flow are similar to the Local Group and its local outflow with a scaling factor of about 10; the ZGR for Virgo is 10 times larger than that of the LG. The similarity of the two systems on the scales of 1 to 30 Mpc suggests that a quasi-stationary bound central component and an expanding outflow applies to a wide range of groups and clusters due to small scale action of DE as well as gravity. Chernin, et al 2009 Astronomy and Astrophysics 507, 1271 http://arxiv.org/abs/1006.0066 http://arxiv.org/abs/1006.0555
Gnaneswara Reddy, Machireddy
2017-12-01
The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.
Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder
Directory of Open Access Journals (Sweden)
Masood Khan
2016-05-01
Full Text Available In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.
Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder
Energy Technology Data Exchange (ETDEWEB)
Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Malik, Rabia, E-mail: rabiamalik.qau@gmail.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Department of Mathematics and Statistics, International Islamic University Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan)
2016-05-15
In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.
Directory of Open Access Journals (Sweden)
MOHAMED KEZZAR
2015-08-01
Full Text Available In this research, an efficient technique of computation considered as a modified decomposition method was proposed and then successfully applied for solving the nonlinear problem of the two dimensional flow of an incompressible viscous fluid between nonparallel plane walls. In fact this method gives the nonlinear term Nu and the solution of the studied problem as a power series. The proposed iterative procedure gives on the one hand a computationally efficient formulation with an acceleration of convergence rate and on the other hand finds the solution without any discretization, linearization or restrictive assumptions. The comparison of our results with those of numerical treatment and other earlier works shows clearly the higher accuracy and efficiency of the used Modified Decomposition Method.
Chaotic behavior of earthquakes induced by a nonlinear magma up flow
International Nuclear Information System (INIS)
Pelap, F.B.; Kagho, L.Y.; Fogang, C.F.
2016-01-01
This paper considers the dynamics of a modified 1D nonlinear spring-block model for earthquake subjected to the strengths induced by the motion of the tectonic plates and the up flow of magma during volcanism. Based on the multiple time scales method, we establish that after the slip, the fault remains active and the frictions increase with the power of the earthquake. We also obtain in the non-resonance case that the appearing probability of an event decreases with these frictions. In the resonance case, the dynamics of harmonic oscillations show that the rocks constituting the block will fracture or resist to the effects induced by the magma motion. Our analytical investigations are complemented by numerical simulations from which it appears that, for given values of the magma thrust strength magnitude, the friction coefficient, the quadratic and cubic nonlinear parameters, the system exhibits chaotic behavior.
Analysis of Nonlinear Dispersion of a Pollutant Ejected by an External Source into a Channel Flow
Directory of Open Access Journals (Sweden)
T. Chinyoka
2010-01-01
Full Text Available This paper focuses on the transient analysis of nonlinear dispersion of a pollutant ejected by an external source into a laminar flow of an incompressible fluid in a channel. The influence of density variation with pollutant concentration is approximated according to the Boussinesq approximation, and the nonlinear governing equations of momentum and pollutant concentration are obtained. The problem is solved numerically using a semi-implicit finite difference method. Solutions are presented in graphical form and given in terms of fluid velocity, pollutant concentration, skin friction, and wall mass transfer rate for various parametric values. The model can be a useful tool for understanding the polluting situations of an improper discharge incident and evaluating the effects of decontaminating measures for the water body.
International Nuclear Information System (INIS)
Parthimos, D; Osterloh, K; Pries, A R; Griffith, T M
2004-01-01
We have performed a nonlinear analysis of fluctuations in red cell velocity and arteriolar calibre in the mesenteric bed of the anaesthetized rat. Measurements were obtained under control conditions and during local superfusion with N G -nitro-L-arginine (L-NNA, 30 μM) and tetrabutylammonium (TBA, 0.1 mM), which suppress NO synthesis and block Ca 2+ activated K + channels (K Ca ), respectively. Time series were analysed by calculating correlation dimensions and largest Lyapunov exponents. Both statistics were higher for red cell velocity than diameter fluctuations, thereby potentially differentiating between global and local mechanisms that regulate microvascular flow. Evidence for underlying nonlinear structure was provided by analysis of surrogate time series generated from the experimental data following randomization of Fourier phase. Complexity indices characterizing time series under control conditions were in general higher than those derived from data obtained during superfusion with L-NNA and TBA
Evaluation of bias associated with capture maps derived from nonlinear groundwater flow models
Nadler, Cara; Allander, Kip K.; Pohll, Greg; Morway, Eric D.; Naranjo, Ramon C.; Huntington, Justin
2018-01-01
The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head-dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over- or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive-use management tools.
International Nuclear Information System (INIS)
Chandra, S.; Grimm, R.A.; Katz, R.; Thomas, J.D.
1996-01-01
The aim of this study was to better understand and characterize left atrial appendage flow in atrial fibrillation. Atrial fibrillation and flutter are the most common cardiac arrhythmias affecting 15% of the older population. The pulsed Doppler velocity profile data was recorded from the left atrial appendage of patients using transesophageal echocardiography. The data was analyzed using Fourier analysis and nonlinear dynamical tools. Fourier analysis showed that appendage mechanical frequency (f f ) for patients in sinus rhythm was always lower (around1 Hz) than that in atrial fibrillation (5-8 Hz). Among patients with atrial fibrillation spectral power below f f was significantly different suggesting variability within this group of patients. Results that suggested the presence of nonlinear dynamics were: a) the existence of two arbitrary peak frequencies f 1 , f 2 , and other peak frequencies as linear combinations thereof (mf 1 ±nf 2 ), and b) the similarity between the spectrum of patient data and that obtained using the Lorenz equation. Nonlinear analysis tools, including Phase plots and differential radial plots, were also generated from the velocity data using a delay of 10. In the phase plots, some patients displayed a torus-like structure, while others had a more random-like pattern. In the differential radial plots, the first set of patients (with torus-like phase plots) showed fewer values crossing an arbitrary threshold of 10 than did the second set (8 vs. 27 in one typical example). The outcome of cardioversion was different for these two set of patients. Fourier analysis helped to: differentiate between sinus rhythm and atrial fibrillation, understand the characteristics of the wide range of atrial fibrillation patients, and provide hints that atrial fibrillation could be a nonlinear process. Nonlinear dynamical tools helped to further characterize and sub-classify atrial fibrillation
Nonlinear Slewing Spacecraft Control Based on Exergy, Power Flow, and Static and Dynamic Stability
Robinett, Rush D.; Wilson, David G.
2009-10-01
This paper presents a new nonlinear control methodology for slewing spacecraft, which provides both necessary and sufficient conditions for stability by identifying the stability boundaries, rigid body modes, and limit cycles. Conservative Hamiltonian system concepts, which are equivalent to static stability of airplanes, are used to find and deal with the static stability boundaries: rigid body modes. The application of exergy and entropy thermodynamic concepts to the work-rate principle provides a natural partitioning through the second law of thermodynamics of power flows into exergy generator, dissipator, and storage for Hamiltonian systems that is employed to find the dynamic stability boundaries: limit cycles. This partitioning process enables the control system designer to directly evaluate and enhance the stability and performance of the system by balancing the power flowing into versus the power dissipated within the system subject to the Hamiltonian surface (power storage). Relationships are developed between exergy, power flow, static and dynamic stability, and Lyapunov analysis. The methodology is demonstrated with two illustrative examples: (1) a nonlinear oscillator with sinusoidal damping and (2) a multi-input-multi-output three-axis slewing spacecraft that employs proportional-integral-derivative tracking control with numerical simulation results.
Stagnation point flow towards nonlinear stretching surface with Cattaneo-Christov heat flux
Hayat, T.; Zubair, M.; Ayub, M.; Waqas, M.; Alsaedi, A.
2016-10-01
Here the influence of the non-Fourier heat flux in a two-dimensional (2D) stagnation point flow of Eyring-Powell liquid towards a nonlinear stretched surface is reported. The stretching surface is of variable thickness. Thermal conductivity of fluid is taken temperature-dependent. Ordinary differential systems are obtained through the implementation of meaningful transformations. The reduced non-dimensional expressions are solved for the convergent series solutions. Convergence interval is obtained for the computed solutions. Graphical results are displayed and analyzed in detail for the velocity, temperature and skin friction coefficient. The obtained results reveal that the temperature gradient enhances when the thermal relaxation parameter is increased.
An Optimal Homotopy Asymptotic Approach Applied to Nonlinear MHD Jeffery-Hamel Flow
Directory of Open Access Journals (Sweden)
Vasile Marinca
2011-01-01
Full Text Available A simple and effective procedure is employed to propose a new analytic approximate solution for nonlinear MHD Jeffery-Hamel flow. This technique called the Optimal Homotopy Asymptotic Method (OHAM does not depend upon any small/large parameters and provides us with a convenient way to control the convergence of the solution. The examples given in this paper lead to the conclusion that the accuracy of the obtained results is growing along with increasing the number of constants in the auxiliary function, which are determined using a computer technique. The results obtained through the proposed method are in very good agreement with the numerical results.
Computational issues in the analysis of nonlinear two-phase flow dynamics
Energy Technology Data Exchange (ETDEWEB)
Rosa, Mauricio A. Pinheiro [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados. Div. de Energia Nuclear], e-mail: pinheiro@ieav.cta.br; Podowski, Michael Z. [Rensselaer Polytechnic Institute, New York, NY (United States)
2001-07-01
This paper is concerned with the issue of computer simulations of flow-induced instabilities in boiling channels and systems. A computational model is presented for the time-domain analysis of nonlinear oscillations in interconnected parallel boiling channels. The results of model testing and validation are shown. One of the main concerns here has been to show the importance in performing numerical testing regarding the selection of a proper numerical integration method and associated nodalization and time step as well as to demonstrate the convergence of the numerical solution prior to any analysis. (author)
Simultaneous integrated optimal energy flow of electricity, gas, and heat
International Nuclear Information System (INIS)
Shabanpour-Haghighi, Amin; Seifi, Ali Reza
2015-01-01
Highlights: • Integration of electrical, natural gas, and district heating networks is studied. • Part-load performances of units are considered in modeling. • A modified teaching–learning based optimization is used to solve the problem. • Results show the advantages of the integrated optimization approach. - Abstract: In this paper, an integrated approach to optimize electrical, natural gas, and district heating networks simultaneously is studied. Several interdependencies between these infrastructures are considered in details including a nonlinear part-load performance for boilers and CHPs besides the valve-point effect for generators. A novel approach based on selecting an appropriate set of state-variables for the problem is proposed that eliminates the addition of any new variable to convert irregular equations into a regular set while the optimization problem is still solvable. As a large optimization problem, the optimal solution cannot be achieved by conventional mathematical techniques. Hence, it is better to use evolutionary algorithms instead. In this paper, the well-known modified teaching–learning based optimization algorithm is utilized to solve the multi-period optimal power flow problem of multi-carrier energy networks. The proposed scheme is implemented and applied to a typical multi-carrier energy network. Results are compared with some other conventional heuristic algorithms and the applicability and superiority of the proposed methodology is verified
Microscopic energy flows in disordered Ising spin systems
International Nuclear Information System (INIS)
Agliari, E; Casartelli, M; Vezzani, A
2010-01-01
An efficient microcanonical dynamics has been recently introduced for Ising spin models embedded in a generic connected graph even in the presence of disorder, i.e. with the spin couplings chosen from a random distribution. Such a dynamics allows a coherent definition of local temperatures also when open boundaries are coupled to thermostats, imposing an energy flow. Within this framework, here we introduce a consistent definition for local energy currents and we study their dependence on the disorder. In the linear response regime, when the global gradient between thermostats is small, we also define local conductivities following a Fourier discretized picture. Then, we work out a linearized 'mean-field approximation', where local conductivities are supposed to depend on local couplings and temperatures only. We compare the approximated currents with the exact results of the nonlinear system, showing the reliability range of the mean-field approach, which proves very good at high temperatures and not so efficient in the critical region. In the numerical studies we focus on the disordered cylinder but our results could be extended to an arbitrary, disordered spin model on generic discrete structures
Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub
International Nuclear Information System (INIS)
Ma, Tengfei; Wu, Junyong; Hao, Liangliang
2017-01-01
Highlights: • Design a novel architecture for energy hub integrating power hub, cooling hub and heating hub. • The micro energy grid based on energy hub is introduced and its advantages are discussed. • Propose a generic modeling method for the energy flow of micro energy grid. • Propose an optimal operation model for micro energy grid with considering demand response. • The roles of renewable energy, energy storage devices and demand response are discussed separately. - Abstract: The energy security and environmental problems impel people to explore a more efficient, environment friendly and economical energy utilization pattern. In this paper, the coordinated operation and optimal dispatch strategies for multiple energy system are studied at the whole Micro Energy Grid level. To augment the operation flexibility of energy hub, the innovation sub-energy hub structure including power hub, heating hub and cooling hub is put forward. Basing on it, a generic energy hub architecture integrating renewable energy, combined cooling heating and power, and energy storage devices is developed. Moreover, a generic modeling method for the energy flow of micro energy grid is proposed. To minimize the daily operation cost, a day-ahead dynamic optimal operation model is formulated as a mixed integer linear programming optimization problem with considering the demand response. Case studies are undertaken on a community Micro Energy Grid in four different scenarios on a typical summer day and the roles of renewable energy, energy storage devices and demand response are discussed separately. Numerical simulation results indicate that the proposed energy flow modeling and optimal operation method are universal and effective over the entire energy dispatching horizon.
Li, Guang
2017-01-01
This paper presents a fast constrained optimization approach, which is tailored for nonlinear model predictive control of wave energy converters (WEC). The advantage of this approach relies on its exploitation of the differential flatness of the WEC model. This can reduce the dimension of the resulting nonlinear programming problem (NLP) derived from the continuous constrained optimal control of WEC using pseudospectral method. The alleviation of computational burden using this approach helps to promote an economic implementation of nonlinear model predictive control strategy for WEC control problems. The method is applicable to nonlinear WEC models, nonconvex objective functions and nonlinear constraints, which are commonly encountered in WEC control problems. Numerical simulations demonstrate the efficacy of this approach.
Energy harvesting by means of flow-induced vibrations on aerospace vehicles
Li, Daochun; Wu, Yining; Da Ronch, Andrea; Xiang, Jinwu
2016-10-01
This paper reviews the design, implementation, and demonstration of energy harvesting devices that exploit flow-induced vibrations as the main source of energy. Starting with a presentation of various concepts of energy harvesters that are designed to benefit from a general class of flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to extend the operational capabilities and to monitor critical parameters of unmanned aerial vehicles. Various phenomena characterized by flow-induced vibrations are discussed, including limit cycle oscillations of plates and wing sections, vortex-induced and galloping oscillations of bluff bodies, vortex-induced vibrations of downstream structures, and atmospheric turbulence and gusts. It was found that linear or linearized modeling approaches are commonly employed to support the design phase of energy harvesters. As a result, highly nonlinear and coupled phenomena that characterize flow-induced vibrations are neglected in the design process. The Authors encourage a shift in the current design paradigm: considering coupled nonlinear phenomena, and adequate modeling tools to support their analysis, from a design limitation to a design opportunity. Special emphasis is placed on identifying designs and implementations applicable to aircraft configurations. Application fields of flow-induced vibrations-based energy harvesters are discussed including power supply for wireless sensor networks and simultaneous energy harvest and control. A large body of work on energy harvesters is included in this review journal. Whereas most of the references claim direct applications to unmanned aerial vehicles, it is apparent that, in most of the cases presented, the working principles and characteristics of the energy harvesters are incompatible with any aerospace applications. Finally, the challenges that hold back the integration of energy harvesting
Deuterons and flow: At intermediate AGS energies
International Nuclear Information System (INIS)
Kahana, D.E.; Pang, Y.; Kahana, S.H.
1996-06-01
A quantitative model, based on hadronic physics and Monte Carlo cascading is applied to heavy ion collisions at BNL-AGS and BEVALAC energies. The model was found to be in excellent agreement with particle spectra where data previously existed, for Si beams, and was able to successfully predict the spectra where data was initially absent, for Au beams. For Si + Au collisions baryon densities of three or four times the normal nuclear matter density (ρ 0 ) are seen in the theory, while for Au + Au collisions, matter at densities up to 10 ρ 0 is anticipated. The possibility that unusual states of matter may be created in the Au beams and potential signatures for its observation, in particular deuterons and collective flow, are considered
Blanchard, Antoine; Bergman, Lawrence A.; Vakakis, Alexander F.
2017-07-01
We computationally investigate the dynamics of a linearly-sprung circular cylinder immersed in an incompressible flow and undergoing transverse vortex-induced vibration (VIV), to which is attached a rotational nonlinear energy sink (NES) consisting of a mass that freely rotates at constant radius about the cylinder axis, and whose motion is restrained by a rotational linear viscous damper. The inertial coupling between the rotational motion of the attached mass and the rectilinear motion of the cylinder is ;essentially nonlinear;, which, in conjunction with dissipation, allows for one-way, nearly irreversible targeted energy transfer (TET) from the oscillating cylinder to the nonlinear dissipative attachment. At the intermediate Reynolds number Re = 100, the NES-equipped sprung cylinder undergoes repetitive cycles of slowly decaying oscillations punctuated by intervals of chaotic instabilities. During the slowly decaying portion of each cycle, the dynamics of the cylinder is regular and, for large enough values of the ratio ε of the NES mass to the total mass (i.e., NES mass plus cylinder mass), can lead to significant vortex street elongation with partial stabilization of the wake. As ε approaches zero, no such vortex elongation is observed and the wake patterns appear similar to that for a sprung cylinder with no NES. We apply proper orthogonal decomposition (POD) to the velocity flow field during a slowly decaying portion of the solution and show that, in situations where vortex elongation occurs, the NES, though not in direct contact with the surrounding fluid, has a drastic effect on the underlying flow structures, imparting significant and continuous passive redistribution of energy among POD modes. We construct a POD-based reduced-order model for the lift coefficient to characterize energy transactions between the fluid and the cylinder throughout the slowly decaying cycle. We introduce a quantitative signed measure of the work done by the fluid on the
Transient and chaotic low-energy transfers in a system with bistable nonlinearity
Energy Technology Data Exchange (ETDEWEB)
Romeo, F., E-mail: francesco.romeo@uniroma1.it [Department of Structural and Geotechnical Engineering, SAPIENZA University of Rome, Rome (Italy); Manevitch, L. I. [Institute of Chemical Physics, RAS, Moscow (Russian Federation); Bergman, L. A.; Vakakis, A. [College of Engineering, University of Illinois at Urbana–Champaign, Champaign, Illinois 61820 (United States)
2015-05-15
The low-energy dynamics of a two-dof system composed of a grounded linear oscillator coupled to a lightweight mass by means of a spring with both cubic nonlinear and negative linear components is investigated. The mechanisms leading to intense energy exchanges between the linear oscillator, excited by a low-energy impulse, and the nonlinear attachment are addressed. For lightly damped systems, it is shown that two main mechanisms arise: Aperiodic alternating in-well and cross-well oscillations of the nonlinear attachment, and secondary nonlinear beats occurring once the dynamics evolves solely in-well. The description of the former dissipative phenomenon is provided in a two-dimensional projection of the phase space, where transitions between in-well and cross-well oscillations are associated with sequences of crossings across a pseudo-separatrix. Whereas the second mechanism is described in terms of secondary limiting phase trajectories of the nonlinear attachment under certain resonance conditions. The analytical treatment of the two aformentioned low-energy transfer mechanisms relies on the reduction of the nonlinear dynamics and consequent analysis of the reduced dynamics by asymptotic techniques. Direct numerical simulations fully validate our analytical predictions.
Directory of Open Access Journals (Sweden)
Jiaqi Shi
2017-04-01
Full Text Available To alleviate environmental pollution and improve the efficient use of energy, energy systems integration (ESI—covering electric power systems, heat systems and natural gas systems—has become an important trend in energy utilization. The traditional power flow calculation method, with the object as the power system, will prove difficult in meeting the requirements of the coupled energy flow analysis. This paper proposes a generalized energy flow (GEF analysis method which is suitable for an ESI containing electricity, heat and gas subsystems. First, the models of electricity, heat, and natural gas networks in the ESI are established. In view of the complexity of the conventional method to solve the gas network including the compressor, an improved practical equivalent method was adopted based on different control modes. On this basis, a hybrid method combining homotopy and the Newton-Raphson algorithm was executed to compute the nonlinear equations of GEF, and the Jacobi matrix reflecting the coupling relationship of multi-energy was derived considering the grid connected mode and island modes of the power system in the ESI. Finally, the validity of the proposed method in multi-energy flow calculation and the analysis of interacting characteristics was verified using practical cases.
Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand
2014-01-01
In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Khan, Mair; Shahid, Amna; Malik, M. Y.; Salahuddin, T.
2018-03-01
Current analysis has been made to scrutinize the consequences of chemical response against magneto-hydrodynamic Carreau-Yasuda nanofluid flow induced by a non-linear stretching surface considering zero normal flux, slip and convective boundary conditions. Joule heating effect is also considered. Appropriate similarity approach is used to convert leading system of PDE's for Carreau-Yasuda nanofluid into nonlinear ODE's. Well known mathematical scheme namely shooting method is utilized to solve the system numerically. Physical parameters, namely Weissenberg number We , thermal slip parameter δ , thermophoresis number NT, non-linear stretching parameter n, magnetic field parameter M, velocity slip parameter k , Lewis number Le, Brownian motion parameter NB, Prandtl number Pr, Eckert number Ec and chemical reaction parameter γ upon temperature, velocity and concentration profiles are visualized through graphs and tables. Numerical influence of mass and heat transfer rates and friction factor are also represented in tabular as well as graphical form respectively. Skin friction coefficient reduces when Weissenberg number We is incremented. Rate of heat transfer enhances for large values of Brownian motion constraint NB. By increasing Lewis quantity Le rate of mass transfer declines.
Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment
International Nuclear Information System (INIS)
Sousa, V C; De M Anicézio, M; De Marqui Jr, C; Erturk, A
2011-01-01
Converting aeroelastic vibrations into electricity for low power generation has received growing attention over the past few years. In addition to potential applications for aerospace structures, the goal is to develop alternative and scalable configurations for wind energy harvesting to use in wireless electronic systems. This paper presents modeling and experiments of aeroelastic energy harvesting using piezoelectric transduction with a focus on exploiting combined nonlinearities. An airfoil with plunge and pitch degrees of freedom (DOF) is investigated. Piezoelectric coupling is introduced to the plunge DOF while nonlinearities are introduced through the pitch DOF. A state-space model is presented and employed for the simulations of the piezoaeroelastic generator. A two-state approximation to Theodorsen aerodynamics is used in order to determine the unsteady aerodynamic loads. Three case studies are presented. First the interaction between piezoelectric power generation and linear aeroelastic behavior of a typical section is investigated for a set of resistive loads. Model predictions are compared to experimental data obtained from the wind tunnel tests at the flutter boundary. In the second case study, free play nonlinearity is added to the pitch DOF and it is shown that nonlinear limit-cycle oscillations can be obtained not only above but also below the linear flutter speed. The experimental results are successfully predicted by the model simulations. Finally, the combination of cubic hardening stiffness and free play nonlinearities is considered in the pitch DOF. The nonlinear piezoaeroelastic response is investigated for different values of the nonlinear-to-linear stiffness ratio. The free play nonlinearity reduces the cut-in speed while the hardening stiffness helps in obtaining persistent oscillations of acceptable amplitude over a wider range of airflow speeds. Such nonlinearities can be introduced to aeroelastic energy harvesters (exploiting
One-dimensional energy flow model for poroelastic material
International Nuclear Information System (INIS)
Kim, Jung Soo; Kang, Yeon June
2009-01-01
This paper presents a one-dimensional energy flow model to investigate the energy behavior for poroelastic media coupled with acoustical media. The proposed energy flow model is expressed by an independent energy governing equation that is classified into each wave component propagating in poroelastic media. The energy governing equation is derived using the General Energetic Method (GEM). To facilitate a comparison with the classical solution based on the conventional displacement-base formulation, approximate solutions of energy density and intensity are obtained. Furthermore, the limitations and usability of the proposed energy flow model for poroelastic media are described.
Yang, Haijian
2016-07-26
Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.
Yang, Haijian; Yang, Chao; Sun, Shuyu
2016-01-01
Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.
Experimental verification of a bridge-shaped, nonlinear vibration energy harvester
Energy Technology Data Exchange (ETDEWEB)
Gafforelli, Giacomo, E-mail: giacomo.gafforelli@polimi.it; Corigliano, Alberto [Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, 20133 (Italy); Xu, Ruize; Kim, Sang-Gook [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2014-11-17
This paper reports a comprehensive modeling and experimental characterization of a bridge shaped nonlinear energy harvester. A doubly clamped beam at large deflection requires stretching strain in addition to the bending strain to be geometrically compatible, which stiffens the beam as the beam deflects and transforms the dynamics to a nonlinear regime. The Duffing mode non-linear resonance widens the frequency bandwidth significantly at higher frequencies than the linear resonant frequency. The modeling includes a nonlinear measure of strain coupled with piezoelectric constitutive equations which end up in nonlinear coupling terms in the equations of motion. The main result supports that the power generation is bounded by the mechanical damping for both linear and nonlinear harvesters. Modeling also shows the power generation is over a wider bandwidth in the nonlinear case. A prototype is manufactured and tested to measure the power generation at different load resistances and acceleration amplitudes. The prototype shows a nonlinear behavior with well-matched experimental data to the modeling.
Energy Technology Data Exchange (ETDEWEB)
Dhote, Sharvari, E-mail: sharvari.dhote@mail.utoronto.ca; Zu, Jean; Zhu, Yang [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario M5S-3G8 (Canada)
2015-04-20
In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.
Directory of Open Access Journals (Sweden)
Zhongsheng Chen
2016-01-01
Full Text Available Nonlinear magnetic forces are always used to enlarge resonant bandwidth of vibration energy harvesting systems with piezoelectric cantilever beams. However, how to determine properly the distance between two magnets is one of the key engineering problems. In this paper, the Melnikov theory is introduced to overcome it. Firstly, the Melnikov state-space model of the nonlinear piezoelectric vibration energy harvesting (PVEH system is built. Based on it, chaotic dynamics mechanisms of achieving broadband PVEH by nonlinearity are exposed by potential function of the unperturbed nonlinear PVEH system. Then the corresponding Melnikov function of the nonlinear PVEH system is defined, based on which two Melnikov necessary conditions of determining the distance are obtained. Finally, numerical simulations are done to testify the theoretic results. The results demonstrate that the distance is closely related to the excitation amplitude and frequency once geometric and material parameters are fixed. Under a single-frequency excitation, the nonlinear PVEH system can generate a periodic vibration around a stable point, a large-amplitude vibration around two stable points, or a chaotic vibration. The proposed method is very valuable for optimally designing and utilizing nonlinear broadband PVEH devices in engineering applications.
Nonlinear analysis of an extended traffic flow model in ITS environment
Energy Technology Data Exchange (ETDEWEB)
Yu Lei [College of Automation, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)], E-mail: yuleijk@126.com; Shi Zhongke [College of Automation, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)
2008-05-15
An extended traffic flow model is proposed by introducing the relative velocity of arbitrary number of cars that precede and that follow into the Newell-Whitham-type car-following model. The stability condition of this model is obtained by using the linear stability theory. The results show that the stability of traffic flow is improved by taking into account the relative velocity of cars ahead and backward. By applying the nonlinear analysis the modified Korteweg-de Vries (mKdV) equation is derived to describe the traffic behavior near the critical point. The kink-antikink soliton, the solution of the mKdV equation, is obtained to describe the traffic jams. From the numerical simulation, it is shown that the traffic jams are suppressed efficiently by taking into account the relative velocity of cars ahead and backward. The analytical results are consistent with the simulation one.
Nonlinear analysis of an extended traffic flow model in ITS environment
International Nuclear Information System (INIS)
Yu Lei; Shi Zhongke
2008-01-01
An extended traffic flow model is proposed by introducing the relative velocity of arbitrary number of cars that precede and that follow into the Newell-Whitham-type car-following model. The stability condition of this model is obtained by using the linear stability theory. The results show that the stability of traffic flow is improved by taking into account the relative velocity of cars ahead and backward. By applying the nonlinear analysis the modified Korteweg-de Vries (mKdV) equation is derived to describe the traffic behavior near the critical point. The kink-antikink soliton, the solution of the mKdV equation, is obtained to describe the traffic jams. From the numerical simulation, it is shown that the traffic jams are suppressed efficiently by taking into account the relative velocity of cars ahead and backward. The analytical results are consistent with the simulation one
Nonlinear mechanism for the suppression of error field magnetic islands by plasma flow
International Nuclear Information System (INIS)
Parker, R.D.
1992-01-01
Non-axisymmetric magnetic field perturbations generated, for example, by errors in the alignment of the field coils are known to lead to reduced confinement in a tokamak. By inducing the formation of small, stationary, magnetic islands on all rational surfaces they can enhance radial transport and under certain circumstances interact with MHD instabilities to trigger the onset of locked modes leading, in some cases, to disruption of the plasma discharge. Given the stationary nature of the error field islands it is natural to consider whether they can be reduced significantly by the viscous drag of a sheared flow resulting from a bulk rotation of the plasma. In this paper, we examine this interaction by modelling the nonlinear growth and saturation of force-reconnected magnetic islands driven by a corrugated boundary in a slab plasma with an initially uniform flow. A systematic parameter study is made of the time asymptotic steady state. (author) 3 figs., 5 refs
Foldover effect and energy output from a nonlinear pseudo-maglev harvester
Kecik, Krzysztof; Mitura, Andrzej; Warminski, Jerzy; Lenci, Stefano
2018-01-01
Dynamics analysis and energy harvesting of a nonlinear magnetic pseudo-levitation (pseudo-maglev) harvester under harmonic excitation is presented in this paper. The system, for selected parameters, has two stable possible solutions with different corresponding energy outputs. The main goal is to analyse the influence of resistance load on the multi-stability zones and energy recovery which can help to tune the system to improve the energy harvesting efficiency.
Adjustable Nonlinear Springs to Improve Efficiency of Vibration Energy Harvesters
Boisseau, S.; Despesse, G.; Seddik, B. Ahmed
2012-01-01
Vibration Energy Harvesting is an emerging technology aimed at turning mechanical energy from vibrations into electricity to power microsystems of the future. Most of present vibration energy harvesters are based on a mass spring structure introducing a resonance phenomenon that allows to increase the output power compared to non-resonant systems, but limits the working frequency bandwidth. Therefore, they are not able to harvest energy when ambient vibrations' frequencies shift. To follow sh...
Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves
Directory of Open Access Journals (Sweden)
Liguo Wang
2015-06-01
Full Text Available This paper investigates a passive control method of a point absorbing wave energy converter by considering the displacement and velocity constraints under irregular waves in the time domain. A linear generator is used as a power take-off unit, and the equivalent damping force is optimized to improve the power production of the wave energy converter. The results from nonlinear and linear passive control methods are compared, and indicate that the nonlinear passive control method leads to the excitation force in phase with the velocity of the converter that can significantly improve the energy production of the converter.
Evaluation of non-linear blending in dual-energy computed tomography
International Nuclear Information System (INIS)
Holmes, David R.; Fletcher, Joel G.; Apel, Anja; Huprich, James E.; Siddiki, Hassan; Hough, David M.; Schmidt, Bernhard; Flohr, Thomas G.; Robb, Richard; McCollough, Cynthia; Wittmer, Michael; Eusemann, Christian
2008-01-01
Dual-energy CT scanning has significant potential for disease identification and classification. However, it dramatically increases the amount of data collected and therefore impacts the clinical workflow. One way to simplify image review is to fuse CT datasets of different tube energies into a unique blended dataset with desirable properties. A non-linear blending method based on a modified sigmoid function was compared to a standard 0.3 linear blending method. The methods were evaluated in both a liver phantom and patient study. The liver phantom contained six syringes of known CT contrast which were placed in a bovine liver. After scanning at multiple tube currents (45, 55, 65, 75, 85, 95, 105, and 115 mAs for the 140-kV tube), the datasets were blended using both methods. A contrast-to-noise (CNR) measure was calculated for each syringe. In addition, all eight scans were normalized using the effective dose and statistically compared. In the patient study, 45 dual-energy CT scans were retrospectively mixed using the 0.3 linear blending and modified sigmoid blending functions. The scans were compared visually by two radiologists. For the 15, 45, and 64 HU syringes, the non-linear blended images exhibited similar CNR to the linear blended images; however, for the 79, 116, and 145 HU syringes, the non-linear blended images consistently had a higher CNR across dose settings. The radiologists qualitatively preferred the non-linear blended images of the phantom. In the patient study, the radiologists preferred non-linear blending in 31 of 45 cases with a strong preference in bowel and liver cases. Non-linear blending of dual energy data can provide an improvement in CNR over linear blending and is accompanied by a visual preference for non-linear blended images. Further study on selection of blending parameters and lesion conspicuity in non-linear blended images is being pursued
Enhanced nonlinear iterative techniques applied to a non-equilibrium plasma flow
Energy Technology Data Exchange (ETDEWEB)
Knoll, D.A.; McHugh, P.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)
1996-12-31
We study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially-ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales, and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. We use Newton`s method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. We investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, one-way multigrid and a pseudo-transient continuation technique are used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with Incomplete Lower-Upper(ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a one-way multigrid implementation provides significant CPU savings for fine grid calculations. Performance comparisons of the modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented.
Flow Cells for Scalable Energy Conversion and Storage
Energy Technology Data Exchange (ETDEWEB)
Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-26
This project is a response to current flow systems that are V-aqueous and not cost effective. It will hopefully enable high energy/ power density flow cells through rational materials and system design.
Global well-posedness for nonlinear Schrodinger equations with energy-critical damping
Directory of Open Access Journals (Sweden)
Binhua Feng
2015-01-01
Full Text Available We consider the Cauchy problem for the nonlinear Schrodinger equations with energy-critical damping. We prove the existence of global in-time solutions for general initial data in the energy space. Our results extend some results from [1,2].
Bootstrapping the energy flow in the beginning of life
Hengeveld, R.; Fedonkin, M.A.
2007-01-01
This paper suggests that the energy flow on which all living structures depend only started up slowly, the low-energy, initial phase starting up a second, slightly more energetic phase, and so on. In this way, the build up of the energy flow follows a bootstrapping process similar to that found in
Bootstrapping the energy flow in the beginning of life.
Hengeveld, R.; Fedonkin, M.A.
2007-01-01
This paper suggests that the energy flow on which all living structures depend only started up slowly, the low-energy, initial phase starting up a second, slightly more energetic phase, and so on. In this way, the build up of the energy flow follows a bootstrapping process similar to that found in
Finite element modeling of nonlinear piezoelectric energy harvesters with magnetic interaction
International Nuclear Information System (INIS)
Upadrashta, Deepesh; Yang, Yaowen
2015-01-01
Piezoelectric energy harvesting from ambient vibrations is a potential technology for powering wireless sensors and low power electronic devices. The conventional linear harvesters suffer from narrow operational bandwidth. Many attempts have been made especially using the magnetic interaction to broaden the bandwidth of harvesters. The finite element (FE) modeling has been used only for analyzing the linear harvesters in the literature. The main difficulties in extending the FE modeling to analyze the nonlinear harvesters involving magnetic interaction are developing the mesh needed for magnetic interaction in dynamic problems and the high demand on computational resource needed for solving the coupled electrical–mechanical–magnetic problem. In this paper, an innovative method is proposed to model the magnetic interaction without inclusion of the magnetic module. The magnetic force is modeled using the nonlinear spring element available in ANSYS finite element analysis (FEA) package, thus simplifying the simulation of nonlinear piezoelectric energy harvesters as an electromechanically coupled problem. Firstly, an FE model of a monostable nonlinear harvester with cantilever configuration is developed and the results are validated with predictions from the theoretical model. Later, the proposed technique of FE modeling is extended to a complex 2-degree of freedom nonlinear energy harvester for which an accurate analytical model is difficult to derive. The performance predictions from FEA are compared with the experimental results. It is concluded that the proposed modeling technique is able to accurately analyze the behavior of nonlinear harvesters with magnetic interaction. (paper)
Properties of Energy Spectra of Molecular Crystals Investigated by Nonlinear Theory
Pang, Xiao-Feng; Zhang, Huai-Wu
We calculate the quantum energy spectra of molecular crystals, such as acetanilide, by using discrete nonlinear Schrodinger equation, containing various interactions, appropriate to the systems. The energy spectra consist of many energy bands, in each energy band there are a lot of energy levels including some higher excited states. The result of energy spectrum is basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide and can also explain some experimental results obtained by Careri et al. Finally, we further discuss the influences of variously characteristic parameters on the energy spectra of the systems.
Asymmetric energy flow in liquid alkylbenzenes: A computational study
International Nuclear Information System (INIS)
Leitner, David M.; Pandey, Hari Datt
2015-01-01
Ultrafast IR-Raman experiments on substituted benzenes [B. C. Pein et al., J. Phys. Chem. B 117, 10898–10904 (2013)] reveal that energy can flow more efficiently in one direction along a molecule than in others. We carry out a computational study of energy flow in the three alkyl benzenes, toluene, isopropylbenzene, and t-butylbenzene, studied in these experiments, and find an asymmetry in the flow of vibrational energy between the two chemical groups of the molecule due to quantum mechanical vibrational relaxation bottlenecks, which give rise to a preferred direction of energy flow. We compare energy flow computed for all modes of the three alkylbenzenes over the relaxation time into the liquid with energy flow through the subset of modes monitored in the time-resolved Raman experiments and find qualitatively similar results when using the subset compared to all the modes
Non-linear dynamics and alternating 'flip' solutions in ferrofluidic Taylor-Couette flow
Altmeyer, Sebastian
2018-04-01
This study treats with the influence of a symmetry-breaking transversal magnetic field on the nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined between two concentric independently rotating cylinders. We detected alternating 'flip' solutions which are flow states featuring typical characteristics of slow-fast-dynamics in dynamical systems. The flip corresponds to a temporal change in the axial wavenumber and we find them to appear either as pure 2-fold axisymmetric (due to the symmetry-breaking nature of the applied transversal magnetic field) or involving non-axisymmetric, helical modes in its interim solution. The latter ones show features of typical ribbon solutions. In any case the flip solutions have a preferential first axial wavenumber which corresponds to the more stable state (slow dynamics) and second axial wavenumber, corresponding to the short appearing more unstable state (fast dynamics). However, in both cases the flip time grows exponential with increasing the magnetic field strength before the flip solutions, living on 2-tori invariant manifolds, cease to exist, with lifetime going to infinity. Further we show that ferrofluidic flow turbulence differ from the classical, ordinary (usually at high Reynolds number) turbulence. The applied magnetic field hinders the free motion of ferrofluid partials and therefore smoothen typical turbulent quantities and features so that speaking of mildly chaotic dynamics seems to be a more appropriate expression for the observed motion.
Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams
Kluger, Jocelyn M.; Sapsis, Themistoklis P.; Slocum, Alexander H.
2015-04-01
In the present work we examine how mechanical nonlinearity can be appropriately utilized to achieve strong robustness of performance in an energy harvesting setting. More specifically, for energy harvesting applications, a great challenge is the uncertain character of the excitation. The combination of this uncertainty with the narrow range of good performance for linear oscillators creates the need for more robust designs that adapt to a wider range of excitation signals. A typical application of this kind is energy harvesting from walking vibrations. Depending on the particular characteristics of the person that walks as well as on the pace of walking, the excitation signal obtains completely different forms. In the present work we study a nonlinear spring mechanism that is composed of a cantilever wrapping around a curved surface as it deflects. While for the free cantilever, the force acting on the free tip depends linearly on the tip displacement, the utilization of a contact surface with the appropriate distribution of curvature leads to essentially nonlinear dependence between the tip displacement and the acting force. The studied nonlinear mechanism has favorable mechanical properties such as low frictional losses, minimal moving parts, and a rugged design that can withstand excessive loads. Through numerical simulations we illustrate that by utilizing this essentially nonlinear element in a 2 degrees-of-freedom (DOF) system, we obtain strongly nonlinear energy transfers between the modes of the system. We illustrate that this nonlinear behavior is associated with strong robustness over three radically different excitation signals that correspond to different walking paces. To validate the strong robustness properties of the 2DOF nonlinear system, we perform a direct parameter optimization for 1DOF and 2DOF linear systems as well as for a class of 1DOF and 2DOF systems with nonlinear springs similar to that of the cubic spring that are physically realized
Energy Technology Data Exchange (ETDEWEB)
Huang, K.M. [Wuhan Univ. (China). School of Electronic Information; Chinese Academey of Sciences, Hefei (China). Key Lab. of Geospace Environment; Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China); Liu, A.Z.; Li, Z. [Embry Riddle Aeronautical Univ., Daytona Beach, FL (United States). Dept. of Physical Science; Zhang, S.D.; Yi, F. [Wuhan Univ. (China). School of Electronic Information; Ministry of Education, Wuhan (China). Key Lab. of Geospace Environment and Geodesy; State Observatory for Atmospheric Remote Sensing, Wuhan (China)
2012-07-01
Nonlinear interactions of gravity waves are studied with a two-dimensional, fully nonlinear model. The energy exchanges among resonant and near-resonant triads are examined in order to understand the spectral energy transfer through interactions. The results show that in both resonant and near-resonant interactions, the energy exchange between two high frequency waves is strong, but the energy transfer from large to small vertical scale waves is rather weak. This suggests that the energy cascade toward large vertical wavenumbers through nonlinear interaction is inefficient, which is different from the rapid turbulence cascade. Because of considerable energy exchange, nonlinear interactions can effectively spread high frequency spectrum, and play a significant role in limiting wave amplitude growth and transferring energy into higher altitudes. In resonant interaction, the interacting waves obey the resonant matching conditions, and resonant excitation is reversible, while near-resonant excitation is not so. Although near-resonant interaction shows the complexity of match relation, numerical experiments show an interesting result that when sum and difference near-resonant interactions occur between high and low frequency waves, the wave vectors tend to approximately match in horizontal direction, and the frequency of the excited waves is also close to the matching value. (orig.)
International Nuclear Information System (INIS)
Archambeau, C.B.
1994-01-01
A fractured solid under stress loading (or unloading) can be viewed as behaving macroscopically as a medium with internal, hidden, degrees of freedom, wherein changes in fracture geometry (i.e. opening, closing and extension) and flow of fluid and gas within fractures will produce major changes in stresses and strains within the solid. Likewise, the flow process within fractures will be strongly coupled to deformation within the solid through boundary conditions on the fracture surfaces. The effects in the solid can, in part, be phenomenologically represented as inelastic or plastic processes in the macroscopic view. However, there are clearly phenomena associated with fracture growth and open fracture fluid flows that produce effects that can not be described using ordinary inelastic phenomenology. This is evident from the fact that a variety of energy release phenomena can occur, including seismic emissions of previously stored strain energy due to fracture growth, release of disolved gas from fluids in the fractures resulting in enhanced buoyancy and subsequent energetic flows of gas and fluids through the fracture system which can produce raid extension of old fractures and the creation of new ones. Additionally, the flows will be modulated by the opening and closing of fractures due to deformation in the solid, so that the flow process is strongly coupled to dynamical processes in the surrounding solid matrix, some of which are induced by the flow itself
Nonlinear effects of dark energy clustering beyond the acoustic scales
International Nuclear Information System (INIS)
Anselmi, Stefano; Nacir, Diana López; Sefusatti, Emiliano
2014-01-01
We extend the resummation method of Anselmi and Pietroni (2012) to compute the total density power spectrum in models of quintessence characterized by a vanishing speed of sound. For standard ΛCDM cosmologies, this resummation scheme allows predictions with an accuracy at the few percent level beyond the range of scales where acoustic oscillations are present, therefore comparable to other, common numerical tools. In addition, our theoretical approach indicates an approximate but valuable and simple relation between the power spectra for standard quintessence models and models where scalar field perturbations appear at all scales. This, in turn, provides an educated guess for the prediction of nonlinear growth in models with generic speed of sound, particularly valuable since no numerical results are yet available
Nonlinear effects of dark energy clustering beyond the acoustic scales
Energy Technology Data Exchange (ETDEWEB)
Anselmi, Stefano [Department of Physics/CERCA/ISO, Case Western Reserve University, Cleveland, OH 44106-7079 (United States); Nacir, Diana López [The Abdus Salam International Center for Theoretical Physics, Strada costiera 11, I-34151 Trieste (Italy); Sefusatti, Emiliano, E-mail: stefano.anselmi@case.edu, E-mail: dlopez_n@ictp.it, E-mail: emiliano.sefusatti@brera.inaf.it [INAF - Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Saint Lucia) (Italy)
2014-07-01
We extend the resummation method of Anselmi and Pietroni (2012) to compute the total density power spectrum in models of quintessence characterized by a vanishing speed of sound. For standard ΛCDM cosmologies, this resummation scheme allows predictions with an accuracy at the few percent level beyond the range of scales where acoustic oscillations are present, therefore comparable to other, common numerical tools. In addition, our theoretical approach indicates an approximate but valuable and simple relation between the power spectra for standard quintessence models and models where scalar field perturbations appear at all scales. This, in turn, provides an educated guess for the prediction of nonlinear growth in models with generic speed of sound, particularly valuable since no numerical results are yet available.
Burgess, A. B. H.; Erler, A. R.; Shepherd, T. G.
2012-04-01
We present spectra, nonlinear interaction terms, and fluxes computed for horizontal wind fields from high-resolution meteorological analyses made available by ECMWF for the International Polar Year. Total kinetic energy spectra clearly show two spectral regimes: a steep spectrum at large scales and a shallow spectrum in the mesoscale. The spectral shallowing appears at ~200 hPa, and is due to decreasing rotational power with height, which results in the shallower divergent spectrum dominating in the mesoscale. The spectra we find are steeper than those observed in aircraft data and GCM simulations. Though the analyses resolve total spherical harmonic wavenumbers up to n = 721, effects of dissipation on the fluxes and spectra are visible starting at about n = 200. We find a weak forward energy cascade and a downscale enstrophy cascade in the mesoscale. Eddy-eddy nonlinear kinetic energy transfers reach maximum amplitudes at the tropopause, and decrease with height thereafter; zonal mean-eddy transfers dominate in the stratosphere. In addition, zonal anisotropy reaches a minimum at the tropopause. Combined with strong eddy-eddy interactions, this suggests flow in the tropopause region is very active and bears the greatest resemblance to isotropic turbulence. We find constant enstrophy flux over a broad range of wavenumbers around the tropopause and in the upper stratosphere. A relatively constant spectral enstrophy flux at the tropopause suggests a turbulent inertial range, and that the enstrophy flux is resolved. A main result of our work is its implications for explaining the shallow mesoscale spectrum observed in aircraft wind measurements, GCM studies, and now meteorological analyses. The strong divergent component in the shallow mesoscale spectrum indicates unbalanced flow, and nonlinear transfers decreasing quickly with height are characteristic of waves, not turbulence. Together with the downscale flux of energ y through the shallow spectral range, these
Fang, Fei; Xia, Guanghui; Wang, Jianguo
2018-02-01
The nonlinear dynamics of cantilevered piezoelectric beams is investigated under simultaneous parametric and external excitations. The beam is composed of a substrate and two piezoelectric layers and assumed as an Euler-Bernoulli model with inextensible deformation. A nonlinear distributed parameter model of cantilevered piezoelectric energy harvesters is proposed using the generalized Hamilton's principle. The proposed model includes geometric and inertia nonlinearity, but neglects the material nonlinearity. Using the Galerkin decomposition method and harmonic balance method, analytical expressions of the frequency-response curves are presented when the first bending mode of the beam plays a dominant role. Using these expressions, we investigate the effects of the damping, load resistance, electromechanical coupling, and excitation amplitude on the frequency-response curves. We also study the difference between the nonlinear lumped-parameter and distributed-parameter model for predicting the performance of the energy harvesting system. Only in the case of parametric excitation, we demonstrate that the energy harvesting system has an initiation excitation threshold below which no energy can be harvested. We also illustrate that the damping and load resistance affect the initiation excitation threshold.
Snijkers, F.; Kirkwood, K. M.; Vlassopoulos, D.; Leal, L. G.; Nikopoulou, A.; Hadjichristidis, Nikolaos; Coppola, S.
2016-01-01
We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.
Snijkers, F.
2016-03-31
We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.
International Nuclear Information System (INIS)
Alabau-Boussouira, Fatiha
2005-01-01
This work is concerned with the stabilization of hyperbolic systems by a nonlinear feedback which can be localized on a part of the boundary or locally distributed. We show that general weighted integral inequalities together with convexity arguments allow us to produce a general semi-explicit formula which leads to decay rates of the energy in terms of the behavior of the nonlinear feedback close to the origin. This formula allows us to unify for instance the cases where the feedback has a polynomial growth at the origin, with the cases where it goes exponentially fast to zero at the origin. We also give three other significant examples of nonpolynomial growth at the origin. We also prove the optimality of our results for the one-dimensional wave equation with nonlinear boundary dissipation. The key property for obtaining our general energy decay formula is the understanding between convexity properties of an explicit function connected to the feedback and the dissipation of energy
On the Nonlinear Behavior of the Piezoelectric Coupling on Vibration-Based Energy Harvesters
Directory of Open Access Journals (Sweden)
Luciana L. Silva
2015-01-01
Full Text Available Vibration-based energy harvesting with piezoelectric elements has an increasing importance nowadays being related to numerous potential applications. A wide range of nonlinear effects is observed in energy harvesting devices and the analysis of the power generated suggests that they have considerable influence on the results. Linear constitutive models for piezoelectric materials can provide inconsistencies on the prediction of the power output of the energy harvester, mainly close to resonant conditions. This paper investigates the effect of the nonlinear behavior of the piezoelectric coupling. A one-degree of freedom mechanical system is coupled to an electrical circuit by a piezoelectric element and different coupling models are investigated. Experimental tests available in the literature are employed as a reference establishing the best matches of the models. Subsequently, numerical simulations are carried out showing different responses of the system indicating that nonlinear piezoelectric couplings can strongly modify the system dynamics.
Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow
International Nuclear Information System (INIS)
Yu Tsvelodub, O
2016-01-01
The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. Weakly nonlinear steady-state traveling solutions of the equation with wave numbers in a vicinity of neutral wave numbers are constructed analytically. The nature of the wave branching from the undisturbed solution is investigated. Steady-state traveling solutions, whose wave numbers within the instability area are far from neutral wave numbers, are found numerically. (paper)
International Nuclear Information System (INIS)
Zhang, Jianyun; Liu, Pei; Zhou, Zhe; Ma, Linwei; Li, Zheng; Ni, Weidou
2014-01-01
Highlights: • Integration of heat streams with HRSG in a polygeneration system is studied. • A mixed-integer nonlinear programming model is proposed to optimize heat network. • Operating parameters and heat network configuration are optimized simultaneously. • The optimized heat network highly depends on the HRSG type and model specification. - Abstract: A large number of heat flows at various temperature and pressure levels exist in a polygeneration plant which co-produces electricity and chemical products. Integration of these external heat flows in a heat recovery steam generator (HRSG) has great potential to further enhance energy efficiency of such a plant; however, it is a challenging problem arising from the large design space of heat exchanger network. In this paper, a mixed-integer nonlinear programming model is developed for the design optimization of a HRSG with consideration of all alternative matches between the HRSG and external heat flows. This model is applied to four polygeneration cases with different HRSG types, and results indicate that the optimized heat network mainly depends on the HRSG type and the model specification
Directory of Open Access Journals (Sweden)
Luis Gonzaga Baca Ruiz
2016-08-01
Full Text Available This paper addresses the problem of energy consumption prediction using neural networks over a set of public buildings. Since energy consumption in the public sector comprises a substantial share of overall consumption, the prediction of such consumption represents a decisive issue in the achievement of energy savings. In our experiments, we use the data provided by an energy consumption monitoring system in a compound of faculties and research centers at the University of Granada, and provide a methodology to predict future energy consumption using nonlinear autoregressive (NAR and the nonlinear autoregressive neural network with exogenous inputs (NARX, respectively. Results reveal that NAR and NARX neural networks are both suitable for performing energy consumption prediction, but also that exogenous data may help to improve the accuracy of predictions.
Hybrid upwind discretization of nonlinear two-phase flow with gravity
Lee, S. H.; Efendiev, Y.; Tchelepi, H. A.
2015-08-01
Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit
Zhang, X. F.; Hu, S. D.; Tzou, H. S.
2014-12-01
Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.
Directory of Open Access Journals (Sweden)
S. Savin
2006-01-01
Full Text Available Proceeding with the analysis of Amata et al. (2005, we suggest that the general feature for the local transport at a thin magnetopause (MP consists of the penetration of ions from the magnetosheath with gyroradius larger than the MP width, and that, in crossing it, the transverse potential difference at the thin current sheet (TCS is acquired by these ions, providing a field-particle energy exchange without parallel electric fields. It is suggested that a part of the surface charge is self-consistently produced by deflection of ions in the course of inertial drift in the non-uniform electric field at MP. Consideration of the partial moments of ions with different energies demonstrates that the protons having gyroradii of roughly the same size or larger than the MP width carry fluxes normal to MP that are about 20% of the total flow in the plasma jet under MP. This is close to the excess of the ion transverse velocity over the cross-field drift speed in the plasma flow just inside MP (Amata et al., 2005, which conforms to the contribution of the finite-gyroradius inflow across MP. A linkage through the TCS between different plasmas results from the momentum conservation of the higher-energy ions. If the finite-gyroradius penetration occurs along the MP over ~1.5 RE from the observation site, then it can completely account for the formation of the jet under the MP. To provide the downstream acceleration of the flow near the MP via the cross-field drift, the weak magnetic field is suggested to rotate from its nearly parallel direction to the unperturbed flow toward being almost perpendicular to the accelerated flow near the MP. We discuss a deceleration of the higher-energy ions in the MP normal direction due to the interaction with finite-scale electric field bursts in the magnetosheath flow frame, equivalent to collisions, providing a charge separation. These effective collisions, with a nonlinear frequency proxy of the order of the proton
Elsheikh, A. H.
2013-12-01
Calibration of subsurface flow models is an essential step for managing ground water aquifers, designing of contaminant remediation plans, and maximizing recovery from hydrocarbon reservoirs. We investigate an efficient sampling algorithm known as nested sampling (NS), which can simultaneously sample the posterior distribution for uncertainty quantification, and estimate the Bayesian evidence for model selection. Model selection statistics, such as the Bayesian evidence, are needed to choose or assign different weights to different models of different levels of complexities. In this work, we report the first successful application of nested sampling for calibration of several nonlinear subsurface flow problems. The estimated Bayesian evidence by the NS algorithm is used to weight different parameterizations of the subsurface flow models (prior model selection). The results of the numerical evaluation implicitly enforced Occam\\'s razor where simpler models with fewer number of parameters are favored over complex models. The proper level of model complexity was automatically determined based on the information content of the calibration data and the data mismatch of the calibrated model.
DEFF Research Database (Denmark)
Jouffroy, Jerome; Lottin, Jacques
2002-01-01
For original paper see T.I.Fossen and M.Blanke, ibid., vol.25, pp.241-55 (2000). In the work presented by Fossen and Blanke, a nonlinear observer for estimation of propeller axial flow velocity for UUVs was introduced. The proof of the convergence behavior of the observer was carried out with a L......For original paper see T.I.Fossen and M.Blanke, ibid., vol.25, pp.241-55 (2000). In the work presented by Fossen and Blanke, a nonlinear observer for estimation of propeller axial flow velocity for UUVs was introduced. The proof of the convergence behavior of the observer was carried out...
Suppression of chaos via control of energy flow
Guo, Shengli; Ma, Jun; Alsaedi, Ahmed
2018-03-01
Continuous energy supply is critical and important to support oscillating behaviour; otherwise, the oscillator will die. For nonlinear and chaotic circuits, enough energy supply is also important to keep electric devices working. In this paper, Hamilton energy is calculated for dimensionless dynamical system (e.g., the chaotic Lorenz system) using Helmholtz's theorem. The Hamilton energy is considered as a new variable and then the dynamical system is controlled by using the scheme of energy feedback. It is found that chaos can be suppressed even when intermittent feedback scheme is applied. This scheme is effective to control chaos and to stabilise other dynamical systems.
Munir, Asif; Shahzad, Azeem; Khan, Masood
2014-01-01
The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.
Harrou, Fouzi
2017-03-18
Fault detection has a vital role in the process industry to enhance productivity, efficiency, and safety, and to avoid expensive maintenance. This paper proposes an innovative multivariate fault detection method that can be used for monitoring nonlinear processes. The proposed method merges advantages of nonlinear projection to latent structures (NLPLS) modeling and those of Hellinger distance (HD) metric to identify abnormal changes in highly correlated multivariate data. Specifically, the HD is used to quantify the dissimilarity between current NLPLS-based residual and reference probability distributions obtained using fault-free data. Furthermore, to enhance further the robustness of these methods to measurement noise, and reduce the false alarms due to modeling errors, wavelet-based multiscale filtering of residuals is used before the application of the HD-based monitoring scheme. The performances of the developed NLPLS-HD fault detection technique is illustrated using simulated plug flow reactor data. The results show that the proposed method provides favorable performance for detection of faults compared to the conventional NLPLS method.
An artificial nonlinear diffusivity method for supersonic reacting flows with shocks
Fiorina, B.; Lele, S. K.
2007-03-01
A computational approach for modeling interactions between shocks waves, contact discontinuities and reactions zones with a high-order compact scheme is investigated. To prevent the formation of spurious oscillations around shocks, artificial nonlinear viscosity [A.W. Cook, W.H. Cabot, A high-wavenumber viscosity for high resolution numerical method, J. Comput. Phys. 195 (2004) 594-601] based on high-order derivative of the strain rate tensor is used. To capture temperature and species discontinuities a nonlinear diffusivity based on the entropy gradient is added. It is shown that the damping of 'wiggles' is controlled by the model constants and is largely independent of the mesh size and the shock strength. The same holds for the numerical shock thickness and allows a determination of the L2 error. In the shock tube problem, with fluids of different initial entropy separated by the diaphragm, an artificial diffusivity is required to accurately capture the contact surface. Finally, the method is applied to a shock wave propagating into a medium with non-uniform density/entropy and to a CJ detonation wave. Multi-dimensional formulation of the model is presented and is illustrated by a 2D oblique wave reflection from an inviscid wall, by a 2D supersonic blunt body flow and by a Mach reflection problem.
Geometry effect on energy transfer rate in a coupled-quantum-well structure: nonlinear regime
International Nuclear Information System (INIS)
Salavati-fard, T; Vazifehshenas, T
2014-01-01
We study theoretically the effect of geometry on the energy transfer rate at nonlinear regime in a coupled-quantum-well system using the balance equation approach. To investigate comparatively the effect of both symmetric and asymmetric geometry, different structures are considered. The random phase approximation dynamic dielectric function is employed to include the contributions from both quasiparticle and plasmon excitations. Also, the short-range exchange interaction is taken into account through the Hubbard approximation. Our numerical results show that the energy transfer rate increases by increasing the well thicknesses in symmetric structures. Furthermore, by increasing spatial asymmetry, the energy transfer rate decreases for the electron temperature range of interest. From numerical calculations, it is obtained that the nonlinear energy transfer rate is proportional to the square of electron drift velocity in all structures and also, found that the influence of Hubbard local field correction on the energy transfer rate gets weaker by increasing the strength of applied electric field. (paper)
Energy Recovery from a Non-Linear Electromagnetic System
Directory of Open Access Journals (Sweden)
Kęcik Krzysztof
2018-03-01
Full Text Available The paper presents study of a pseudo-magnetic levitation system (pseudo-maglev dedicated for energy harvesting. The idea rely on motion of a pseudo-levitating magnet in a coil’s terminal. The study based on real prototype harvester system, which in the pendulum dynamic vibration absorber is applied. For some parameters, the stability loss caused by the period doubling bifurcation is detected. The coexistence of two stable solutions, one of which is much better for energy harvesting is observed. The influence of the pseudo-maglev parameters on the recovered current and stability of the periodic solutions is presented in detail. The obtained results show, that the best energy recovery occurs for the high pseudo-maglev stiffness and close to the coil resistance. The amplitude’s excitation, the load resistances and the coupling coefficient strongly influence on the system’s response.
Stagnation point flow and heat transfer over a nonlinear shrinking sheet with slip effects
Directory of Open Access Journals (Sweden)
N.F. Fauzi
2015-12-01
Full Text Available In this paper, an investigation is performed to analyze the effects of the slip parameters A and B on the steady stagnation-point flow and heat transfer due to a shrinking sheet in a viscous and incompressible fluid. Using similarity transformations, the governing boundary layer equations are transformed into the nonlinear ordinary (similar differential equations. The transformed equations are solved numerically using the shooting method. The dual solutions for velocity and temperature distribution exist for certain values of the positive constant velocity and temperature slip parameters. Likewise, a stability analysis has been performed to find the nature of the dual solutions. The velocity slip will delay the boundary layer separation whereas the temperature slip does not affect the boundary layer separation.
Global flow of glasma in high energy nuclear collisions
Energy Technology Data Exchange (ETDEWEB)
Chen, Guangyao; Fries, Rainer J., E-mail: rjfries@comp.tamu.edu
2013-06-25
We discuss the energy flow of the classical gluon fields created in collisions of heavy nuclei at collider energies. We show how the Yang–Mills analog of Faraday's Law and Gauss' Law predicts the initial gluon flux tubes to expand or bend. The resulting transverse and longitudinal structure of the Poynting vector field has a rich phenomenology. Besides the well-known radial and elliptic flow in transverse direction, classical quantum chromodynamics predicts a rapidity-odd transverse flow that tilts the fireball for non-central collisions, and it implies a characteristic flow pattern for collisions of non-symmetric systems A+B. The rapidity-odd transverse flow translates into a directed particle flow v{sub 1} which has been observed at RHIC and LHC. The global flow fields in heavy ion collisions could be a powerful check for the validity of classical Yang–Mills dynamics in high energy collisions.
Electromagnetic energy flow lines as possible paths of photons
Energy Technology Data Exchange (ETDEWEB)
Davidovic, M [Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Sanz, A S; Miret-Artes, S [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones CientIficas, Serrano 123, 28006 Madrid (Spain); Arsenovic, D; Bozic, M [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)], E-mail: milena@grf.bg.ac.yu, E-mail: asanz@imaff.cfmac.csic.es, E-mail: arsenovic@phy.bg.ac.yu, E-mail: bozic@phy.bg.ac.yu, E-mail: s.miret@imaff.cfmac.csic.es
2009-07-15
Motivated by recent experiments where interference patterns behind a grating are obtained by accumulating single photon events, we provide here an electromagnetic energy flow-line description to explain the emergence of such patterns. We find and discuss an analogy between the equation describing these energy flow lines and the equation of Bohmian trajectories used to describe the motion of massive particles.
Advanced non-linear flow-induced vibration and fretting-wear analysis capabilities
Energy Technology Data Exchange (ETDEWEB)
Toorani, M.; Pan, L.; Li, R.; Idvorian, N. [Babcock and Wilcox Canada Ltd., Cambridge, Ontario (Canada); Vincent, B.
2009-07-01
Fretting wear is a potentially significant degradation mechanism in nuclear steam generators and other shell and tube heat transfer equipment as well. This paper presents an overview of the recently developed code FIVDYNA which is used for the non-linear flow-induced vibration and fretting wear analysis for operating steam generators (OTSG and RSG) and shell-and-tube heat exchangers. FIVDYNA is a non-linear time-history Flow-Induced Vibration (FIV) analysis computer program that has been developed by Babcock and Wilcox Canada to advance the understanding of tube vibration and tube to tube-support interaction. In addition to the dynamic fluid induced forces the program takes into account other tube static forces due to axial and lateral tube preload and thermal interaction loads. The program is capable of predicting the location where the fretting wear is most likely to occur and its magnitude taking into account the support geometry including gaps. FIVDYNA uses the general purpose finite element computer code ABAQUS as its solver. Using ABAQUS gives the user the flexibility to add additional forces to the tube ranging from tube preloads and the support offsets to thermal loads. The forces currently being modeled in FIVDYNA are the random turbulence, steady drag force, fluid-elastic forces, support offset and pre-strain force (axial loads). This program models the vibration of tubes and calculates the structural dynamic characteristics, and interaction forces between the tube and the tube supports. These interaction forces are then used to calculate the work rate at the support and eventually the predicted depth of wear scar on the tube. A very good agreement is found with experiments and also other computer codes. (author)
Novel simplified hourly energy flow models for photovoltaic power systems
International Nuclear Information System (INIS)
Khatib, Tamer; Elmenreich, Wilfried
2014-01-01
Highlights: • We developed an energy flow model for standalone PV system using MATLAB line code. • We developed an energy flow model for hybrid PV/wind system using MATLAB line code. • We developed an energy flow model for hybrid PV/diesel system using MATLAB line code. - Abstract: This paper presents simplified energy flow models for photovoltaic (PV) power systems using MATLAB. Three types of PV power system are taken into consideration namely standalone PV systems, hybrid PV/wind systems and hybrid PV/diesel systems. The logic of the energy flow for each PV power system is discussed first and then the MATLAB line codes for these models are provided and explained. The results prove the accuracy of the proposed models. Such models help modeling and sizing PV systems
FLUCTUATING ENERGY STORAGE AND NONLINEAR CASCADE IN AN INHOMOGENEOUS CORONAL LOOP
International Nuclear Information System (INIS)
Malara, F.; Nigro, G.; Onofri, M.; Veltri, P.
2010-01-01
The dynamics and the energy balance of large-scale fluctuations in a coronal loop are studied. The loop is represented by a simplified structure where the curvature is neglected and the background magnetic field is uniform. In a previous paper, we studied a similar model where a uniform background density was assumed. The present paper represents a generalization of the previous one and it has the purpose of investigating possible modifications to the large-scale energy balance and dynamics due to a more realistic longitudinally nonuniform density. Large-scale fluctuations are dominated by coherent eigenmodes that nonlinearly couple to produce an energy cascade to smaller scales. Eigenmodes properties are calculated by a simplified linear dissipative model, deriving an expression for the input energy flux that is not substantially modified by the presence of the density inhomogeneity and is independent of dissipation. For typical values of the parameters, the derived input energy flux is comparable with that required to heat the active region corona. Nonlinear couplings are dominated by coherence effects due to the symmetry properties of eigenmodes; the consequences are that the system is in a weakly nonlinear regime that produces fluctuating energy storage in the loop, and that the kinetic and magnetic nonlinear energy fluxes are of the same order, despite the dominance of magnetic energy at large scales. From the energy balance, an expression for the velocity fluctuation is derived, which is valid in the more general case of a nonuniform background density; this estimate is in agreement both with measures of nonthermal velocities in the solar corona and with previous numerical results.
Fitting and forecasting coupled dark energy in the non-linear regime
Energy Technology Data Exchange (ETDEWEB)
Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, Heidelberg, 69120 Germany (Germany); Baldi, Marco, E-mail: casas@thphys.uni-heidelberg.de, E-mail: l.amendola@thphys.uni-heidelberg.de, E-mail: mail@marcobaldi.it, E-mail: v.pettorino@thphys.uni-heidelberg.de, E-mail: vollmer@thphys.uni-heidelberg.de [Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, viale Berti Pichat, 6/2, Bologna, I-40127 Italy (Italy)
2016-01-01
We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.
Using system theory and energy methods to prove existence of non-linear PDE's
Zwart, H.J.
2015-01-01
In this discussion paper we present an idea of combining techniques known from systems theory with energy estimates to show existence for a class of non-linear partial differential equations (PDE's). At the end of the paper a list of research questions with possible approaches is given.
Fitting and forecasting coupled dark energy in the non-linear regime
International Nuclear Information System (INIS)
Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian; Baldi, Marco
2016-01-01
We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β 2 , with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications
A nonlinear programming approach to lower bounds for the ground-state energy of helium
International Nuclear Information System (INIS)
Porras, I.; Feldmann, D.M.; King, F.W.
1999-01-01
Lower-bound estimates for the ground-state energy of the helium atom are determined using nonlinear programming techniques. Optimized lower bounds are determined for single-particle, radially correlated, and general correlated wave functions. The local nature of the method employed makes it a very severe test of the accuracy of the wave function
Optimization of piezoelectric cantilever energy harvesters including non-linear effects
International Nuclear Information System (INIS)
Patel, R; McWilliam, S; Popov, A A
2014-01-01
This paper proposes a versatile non-linear model for predicting piezoelectric energy harvester performance. The presented model includes (i) material non-linearity, for both substrate and piezoelectric layers, and (ii) geometric non-linearity incorporated by assuming inextensibility and accurately representing beam curvature. The addition of a sub-model, which utilizes the transfer matrix method to predict eigenfrequencies and eigenvectors for segmented beams, allows for accurate optimization of piezoelectric layer coverage. A validation of the overall theoretical model is performed through experimental testing on both uniform and non-uniform samples manufactured in-house. For the harvester composition used in this work, the magnitude of material non-linearity exhibited by the piezoelectric layer is 35 times greater than that of the substrate layer. It is also observed that material non-linearity, responsible for reductions in resonant frequency with increases in base acceleration, is dominant over geometric non-linearity for standard piezoelectric harvesting devices. Finally, over the tested range, energy loss due to damping is found to increase in a quasi-linear fashion with base acceleration. During an optimization study on piezoelectric layer coverage, results from the developed model were compared with those from a linear model. Unbiased comparisons between harvesters were realized by using devices with identical natural frequencies—created by adjusting the device substrate thickness. Results from three studies, each with a different assumption on mechanical damping variations, are presented. Findings showed that, depending on damping variation, a non-linear model is essential for such optimization studies with each model predicting vastly differing optimum configurations. (paper)
Understanding the role of nonlinearities in the transduction of vibratory energy harvesters
Masana, Ravindra Shiva Charan
The last two decades have witnessed several advances in micro-fabrication technologies and electronics, leading to the development of small, low-power devices for wireless sensing, data transmission, actuation, and medical implants. Unfortunately, the actual implementation of such devices in their respective environment has been hindered by the lack of scalable energy sources that are necessary to power and maintain them. Batteries, which remain the most commonly used power source, have not kept pace with the demands of these devices, especially in terms of energy density. In light of this challenge, the concept of vibratory energy harvesting has flourished in recent years as a possible alternative to power and maintain low-power electronics. While linear vibratory energy harvesters have received the majority of the literature's attention, a significant body of the current research activity is focused on the concept of purposeful inclusion of nonlinearities for broadband transduction. When compared to their linear resonant counterparts, nonlinear energy harvesters have a wider steady-state frequency bandwidth, leading to the common belief that they can be utilized to improve performance especially in random and non-stationary vibratory environments. This dissertation aims to critically investigate this belief by drawing a clearer picture of the role of nonlinearities in the transduction of energy harvesters and by defining the conditions under which nonlinearities can be used to enhance performance. To achieve this goal, the Thesis is divided into three parts. The first part investigates the performance of mono- and bi-stable energy harvesters under harmonic excitations and carries a detailed analysis of their relative performance. The second part investigates their response to broadband and narrowband random excitations and again analyzes their relative behavior. The third part exploits the super-harmonic resonance bands of bi-stable energy harvesters for the
A method for regulating strong nonlinear vibration energy of the flexible arm
Directory of Open Access Journals (Sweden)
Yushu Bian
2015-07-01
Full Text Available For an oscillating system, large amplitude indicates strong vibration energy. In this article, modal interaction is used as a useful means to regulate strong nonlinear vibration energy of the flexible arm undergoing rigid motion. A method is put forward to migrate and dissipate vibration energy based on modal interaction. By means of multiple-scale perturbation analysis, it is proven that internal resonance can be successfully established between modes of the flexible arm and the vibration absorber. Through examples and analyses, it is verified that this control method is effective in regulating strong vibration energy and can be used to suppress strong nonlinear vibration of the flexible arm undergoing rigid motion.
Energy Technology Data Exchange (ETDEWEB)
Gemert, Martin J C van; Wijngaard, Jeroen P H M van den [Laser Centre and Department of Obstetrics, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Pasman, Suzanne A; Vandenbussche, Frank P H A [Division of Fetal Medicine, Department of Obstetrics, Leiden University Medical Centre, Leiden (Netherlands); Lopriore, Enrico [Division of Neonatology, Department of Pediatrics, Leiden University Medical Centre, Leiden (Netherlands)], E-mail: m.j.vangemert@amc.uva.nl
2008-07-07
Recently, we derived equations relating the flow of adult red blood cells through a placental arterio-venous anastomosis with intra-uterine and post-natal measured adult hemoglobin concentrations. In this letter, we re-derived the equations, now including a more realistic nonlinear decay of adult red blood cells, and re-evaluated the measurement accuracy of the arterio-venous flow and the lifetime of the red blood cells. (letter to the editor)
Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow
Tsvelodub, O. Yu; Bocharov, A. A.
2017-09-01
The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. The paper studies nonlinear waves on a liquid film, flowing under the action of gravity in a known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. The periodic and soliton steady-state traveling solutions of this equation have been numerically found. The analysis of branching of new families of steady-state traveling solutions has been performed. In particular, it is shown that this model equation has solutions in the form of solitons-humps.
2016-06-01
employs the in- variance of the Maxwell equations under coordinate transformations to convert the free- space wave solutions in a coordinate... ENERGY WEAPON DEFENSE by Jacob D. Thompson June 2016 Thesis Co-Advisors: James Luscombe Brett Borden Approved for public release; distribution is...2014 to 06-17-2016 4. TITLE AND SUBTITLE NONLINEAR EFFECTS IN TRANSFORMATION OPTICS-BASED METAMATE- RIAL SHIELDS FOR COUNTER DIRECTED ENERGY WEAPON
Energy decay of a variable-coefficient wave equation with nonlinear time-dependent localized damping
Directory of Open Access Journals (Sweden)
Jieqiong Wu
2015-09-01
Full Text Available We study the energy decay for the Cauchy problem of the wave equation with nonlinear time-dependent and space-dependent damping. The damping is localized in a bounded domain and near infinity, and the principal part of the wave equation has a variable-coefficient. We apply the multiplier method for variable-coefficient equations, and obtain an energy decay that depends on the property of the coefficient of the damping term.
Directory of Open Access Journals (Sweden)
B. Shank
2014-11-01
Full Text Available We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs connected to quasiparticle (qp traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution.
Hu, Kun; Peng, C. K.; Huang, Norden E.; Wu, Zhaohua; Lipsitz, Lewis A.; Cavallerano, Jerry; Novak, Vera
2008-04-01
Cerebral autoregulation is an important mechanism that involves dilatation and constriction in arterioles to maintain relatively stable cerebral blood flow in response to changes of systemic blood pressure. Traditional assessments of autoregulation focus on the changes of cerebral blood flow velocity in response to large blood pressure fluctuations induced by interventions. This approach is not feasible for patients with impaired autoregulation or cardiovascular regulation. Here we propose a newly developed technique-the multimodal pressure-flow (MMPF) analysis, which assesses autoregulation by quantifying nonlinear phase interactions between spontaneous oscillations in blood pressure and flow velocity during resting conditions. We show that cerebral autoregulation in healthy subjects can be characterized by specific phase shifts between spontaneous blood pressure and flow velocity oscillations, and the phase shifts are significantly reduced in diabetic subjects. Smaller phase shifts between oscillations in the two variables indicate more passive dependence of blood flow velocity on blood pressure, thus suggesting impaired cerebral autoregulation. Moreover, the reduction of the phase shifts in diabetes is observed not only in previously-recognized effective region of cerebral autoregulation (type 2 diabetes mellitus alters cerebral blood flow regulation over a wide frequency range and that this alteration can be reliably assessed from spontaneous oscillations in blood pressure and blood flow velocity during resting conditions. We also show that the MMPF method has better performance than traditional approaches based on Fourier transform, and is more suitable for the quantification of nonlinear phase interactions between nonstationary biological signals such as blood pressure and blood flow.
Energy Technology Data Exchange (ETDEWEB)
Klimachkov, D. A., E-mail: klimchakovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)
2016-09-15
Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describes static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the
Far-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flow
Behtash, Alireza; Cruz-Camacho, C. N.; Martinez, M.
2018-02-01
The nonequilibrium attractors of systems undergoing Gubser flow within relativistic kinetic theory are studied. In doing so we employ well-established methods of nonlinear dynamical systems which rely on finding the fixed points, investigating the structure of the flow diagrams of the evolution equations, and characterizing the basin of attraction using a Lyapunov function near the stable fixed points. We obtain the attractors of anisotropic hydrodynamics, Israel-Stewart (IS) and transient fluid (DNMR) theories and show that they are indeed nonplanar and the basin of attraction is essentially three dimensional. The attractors of each hydrodynamical model are compared with the one obtained from the exact Gubser solution of the Boltzmann equation within the relaxation time approximation. We observe that the anisotropic hydrodynamics is able to match up to high numerical accuracy the attractor of the exact solution while the second-order hydrodynamical theories fail to describe it. We show that the IS and DNMR asymptotic series expansions diverge and use resurgence techniques to perform the resummation of these divergences. We also comment on a possible link between the manifold of steepest descent paths in path integrals and the basin of attraction for the attractors via Lyapunov functions that opens a new horizon toward an effective field theory description of hydrodynamics. Our findings indicate that the reorganization of the expansion series carried out by anisotropic hydrodynamics resums the Knudsen and inverse Reynolds numbers to all orders and thus, it can be understood as an effective theory for the far-from-equilibrium fluid dynamics.
International Nuclear Information System (INIS)
Antoniadis, I A; Venetsanos, D T; Papaspyridis, F G
2013-01-01
Dielectric elastomer based generators (DEGs) offer some unique properties over energy generators based on other materials. These properties include high energy density, high efficiency over a broad range of frequencies, low compliance, the ability to produce high strain, large area, low cost films with no toxic materials and wide range environmental tolerance. As further shown in this paper, DEG materials can also exhibit a non-linear dynamic behavior, enhancing broad-band energy transfer. More specifically, dielectric elastomer (DE) energy generating synergetic structures (DIESYS) are considered as dynamic energy absorbers. Two elementary characteristic DIESYS design concepts are examined, leading to a typical antagonistic configuration for in-plane oscillations and a typical synagonistic configuration for out-of-plane oscillations. Originally, all the DE elements of the structure are assumed to be always in tension during all the phases of the harvesting cycle, conforming to the traditional concept of operation of DE structures. As shown in this paper, the traditional always-in-tension concept results in a linear dynamic system response, despite the fact that the implemented (DE) parts are considered to have been made of a non-linear (hyperelastic) material. In contrast, the proposed loose-part concept ensures the appearance of a non-linear broad-band system response, enhancing energy transfer from the environmental source. (paper)
Effect of material flows on energy intensity in process industries
Energy Technology Data Exchange (ETDEWEB)
Liu, Liru; Aye, Lu [International Technologies Center (IDTC), Department of Civil and Environmental Engineering, The University of Melbourne, Victoria 3010 (Australia); Lu, Zhongwu [Institute of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zhang, Peihong [Department of Municipal and Environmental Engineering, Shenyang Architecture University, Shenyang 110168 (China)
2006-09-15
Many energy-intensive process industries have complex material flows, which have a strong effect on the overall energy intensity of the final product (OEIF). This problem, however, has only been recognised qualitatively due to the lack of quantitative analysis methods. This paper presents an in-depth quantitative analysis of the effect of material flows on energy intensity in process industries. Based on the concept of a standard material flow diagram (SMFD), as used in steel manufacturing, the SMFD for a generic process industry was first developed. Then material flow scenarios were addressed in a practical material flow diagram (PMFD) using the characteristics of practical process industries. The effect of each material flow deviating from a SMFD on the OEIF was analysed. The steps involved in analysing the effect of material flows in a PMFD on its energy intensity are also discussed in detail. Finally, using 1999 statistical data from the Chinese Zhenzhou alumina refinery plant, the PMFD and SMFD for this plant were constructed as a case study. The effect of material flows on the overall energy intensity of alumina (OEIA) was thus analysed quantitatively. To decrease OEIA, the process variations which decrease the product ratios could be employed in all except in multi-supplied fraction cases. In these cases, the fractions from the stream with lower energy intensities should be increased. (author)
Nonlinear Gravitational Waves as Dark Energy in Warped Spacetimes
Directory of Open Access Journals (Sweden)
Reinoud Jan Slagter
2017-02-01
Full Text Available We find an azimuthal-angle dependent approximate wave like solution to second order on a warped five-dimensional manifold with a self-gravitating U(1 scalar gauge field (cosmic string on the brane using the multiple-scale method. The spectrum of the several orders of approximation show maxima of the energy distribution dependent on the azimuthal-angle and the winding numbers of the subsequent orders of the scalar field. This breakup of the quantized flux quanta does not lead to instability of the asymptotic wavelike solution due to the suppression of the n-dependency in the energy momentum tensor components by the warp factor. This effect is triggered by the contribution of the five dimensional Weyl tensor on the brane. This contribution can be understood as dark energy and can trigger the self-acceleration of the universe without the need of a cosmological constant. There is a striking relation between the symmetry breaking of the Higgs field described by the winding number and the SO(2 breaking of the axially symmetric configuration into a discrete subgroup of rotations of about 180 ∘ . The discrete sequence of non-axially symmetric deviations, cancelled by the emission of gravitational waves in order to restore the SO(2 symmetry, triggers the pressure T z z for discrete values of the azimuthal-angle. There could be a possible relation between the recently discovered angle-preferences of polarization axes of quasars on large scales and our theoretical predicted angle-dependency and this could be evidence for the existence of cosmic strings. Careful comparison of this spectrum of extremal values of the first and second order φ-dependency and the distribution of the alignment of the quasar polarizations is necessary. This can be accomplished when more observational data become available. It turns out that, for late time, the vacuum 5D spacetime is conformally invariant if the warp factor fulfils the equation of a vibrating
Global format for energy-momentum based time integration in nonlinear dynamics
DEFF Research Database (Denmark)
Krenk, Steen
2014-01-01
A global format is developed for momentum and energy consistent time integration of second‐order dynamic systems with general nonlinear stiffness. The algorithm is formulated by integrating the state‐space equations of motion over the time increment. The internal force is first represented...... of mean value products at the element level or explicit use of a geometric stiffness matrix. An optional monotonic algorithmic damping, increasing with response frequency, is developed in terms of a single damping parameter. In the solution procedure, the velocity is eliminated and the nonlinear...
Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter
DEFF Research Database (Denmark)
Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S.
2014-01-01
the calculation of the non-linear hydrostatic restoring moment by a cubic polynomial function fit to laboratory test results. Moreover, moments due to viscous drag are evaluated on the oscillating hemisphere considering the horizontal and vertical drag force components. The influence on the motions of this non.......e. H/λ≤0.02. For steep waves, H/λ≥0.04 however, the relative velocities between the body and the waves increase thus requiring inclusion of the non-linear hydrostatic restoring moment to effectively predict the dynamics of the wave energy converter. For operation of the device with a passively damping...
Manzoor, Ali; Rafique, Sajid; Usman Iftikhar, Muhammad; Mahmood Ul Hassan, Khalid; Nasir, Ali
2017-08-01
Piezoelectric vibration energy harvester (PVEH) consists of a cantilever bimorph with piezoelectric layers pasted on its top and bottom, which can harvest power from vibrations and feed to low power wireless sensor nodes through some power conditioning circuit. In this paper, a non-linear conditioning circuit, consisting of a full-bridge rectifier followed by a buck-boost converter, is employed to investigate the issues of electrical side of the energy harvesting system. An integrated mathematical model of complete electromechanical system has been developed. Previously, researchers have studied PVEH with sophisticated piezo-beam models but employed simplistic linear circuits, such as resistor, as electrical load. In contrast, other researchers have worked on more complex non-linear circuits but with over-simplified piezo-beam models. Such models neglect different aspects of the system which result from complex interactions of its electrical and mechanical subsystems. In this work, authors have integrated the distributed parameter-based model of piezo-beam presented in literature with a real world non-linear electrical load. Then, the developed integrated model is employed to analyse the stability of complete energy harvesting system. This work provides a more realistic and useful electromechanical model having realistic non-linear electrical load unlike the simplistic linear circuit elements employed by many researchers.
Stability of boundary layer flow based on energy gradient theory
Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong
2018-05-01
The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.
International Nuclear Information System (INIS)
Zhou, Shengxi; Cao, Junyi; Wang, Wei; Liu, Shengsheng; Lin, Jing
2015-01-01
This paper presents a nonlinear doubly magnet-coupled energy harvesting system (DMEHS) which could exhibit co-bistable and monostable dynamic characteristics. Its various characteristic responses induced by the magnetic force can be conveniently obtained using the adjustable horizontal distance between two coupled harvesters in the DMEHS. In the case of appropriate relative positions, the DMEHS appears in a co-bistable structure which is different from the traditional bistable structure. Additionally, both the inclination angle of endmost magnets and the displacement perpendicular to the vibration direction are taken into account to calculate the nonlinear magnetic force in the nonlinear electromechanical equations. The numerical investigations show good agreement with experimental results with respect to the output voltage response. Each harvester without magnetic coupling is tested independently to compare with the DMEHS. Both numerical and experimental results also demonstrate the frequency bandwidth and performance enhancements by changing the horizontal distance between the two coupled harvesters. (paper)
Energy decay of a viscoelastic wave equation with supercritical nonlinearities
Guo, Yanqiu; Rammaha, Mohammad A.; Sakuntasathien, Sawanya
2018-06-01
This paper presents a study of the asymptotic behavior of the solutions for the history value problem of a viscoelastic wave equation which features a fading memory term as well as a supercritical source term and a frictional damping term: u_{tt}- k(0) Δ u - \\int \\limits _0^{&infty } k'(s) Δ u(t-s) ds +|u_t|^{m-1}u_t =|u|^{p-1}u, { in } Ω × (0,T), u(x,t)=u_0(x,t), \\quad { in } Ω × (-∞,0]), where Ω is a bounded domain in R^3 with a Dirichlét boundary condition and u_0 represents the history value. A suitable notion of a potential well is introduced for the system, and global existence of solutions is justified, provided that the history value u_0 is taken from a subset of the potential well. Also, uniform energy decay rate is obtained which depends on the relaxation kernel -k'(s) as well as the growth rate of the damping term. This manuscript complements our previous work (Guo et al. in J Differ Equ 257:3778-3812, 2014, J Differ Equ 262:1956-1979, 2017) where Hadamard well-posedness and the singularity formulation have been studied for the system. It is worth stressing the special features of the model, namely the source term here has a supercritical growth rate and the memory term accounts to the full past history that goes back to -∞.
An effective description of dark matter and dark energy in the mildly non-linear regime
Energy Technology Data Exchange (ETDEWEB)
Lewandowski, Matthew; Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94306 (United States); Maleknejad, Azadeh, E-mail: matthew.lewandowski@cea.fr, E-mail: azade@ipm.ir, E-mail: senatore@stanford.edu [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. Code. 19538-33511, Tehran (Iran, Islamic Republic of)
2017-05-01
In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the information resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. The Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark energy both on the matter fields and on the biased tracers. For the specific case of clustering quintessence, we then perturbatively solve to cubic order the resulting non-linear equations and construct the one-loop power spectrum of the total density contrast.
International Nuclear Information System (INIS)
Wang, Xiao-Lu; Fan, Xiang-Yu; Nie, Ren-Shi; Huang, Quan-Hua; He, Yong-Ming
2013-01-01
Based on material balance and Darcy's law, the governing equation with the quadratic pressure gradient term was deduced. Then the nonlinear model for fluid flow in a multiple-zone composite reservoir including the quadratic gradient term was established and solved using a Laplace transform. A series of standard log–log type curves of 1-zone (homogeneous), 2-zone and 3-zone reservoirs were plotted and nonlinear flow characteristics were analysed. The type curves governed by the coefficient of the quadratic gradient term (β) gradually deviate from those of a linear model with time elapsing. Qualitative and quantitative analyses were implemented to compare the solutions of the linear and nonlinear models. The results showed that differences of pressure transients between the linear and nonlinear models increase with elapsed time and β. At the end, a successful application of the theoretical model data against the field data shows that the nonlinear model will be a good tool to evaluate formation parameters more accurately. (paper)
Adem, Abdullahi Rashid; Moawad, Salah M.
2018-05-01
In this paper, the steady-state equations of ideal magnetohydrodynamic incompressible flows in axisymmetric domains are investigated. These flows are governed by a second-order elliptic partial differential equation as a type of generalized Grad-Shafranov equation. The problem of finding exact equilibria to the full governing equations in the presence of incompressible mass flows is considered. Two different types of constraints on position variables are presented to construct exact solution classes for several nonlinear cases of the governing equations. Some of the obtained results are checked for their applications to magnetic confinement plasma. Besides, they cover many previous configurations and include new considerations about the nonlinearity of magnetic flux stream variables.
Dynamic bounds for power and efficiency of non-ideal energy converters under nonlinear transfer laws
International Nuclear Information System (INIS)
Sieniutycz, Stanislaw
2009-01-01
We present a thermodynamic approach to simulation and modeling of nonlinear energy converters, in particular radiation engines. Novel results are obtained especially for dynamical engines when the temperature of the propelling medium decreases in time due to a continual decrease of the medium's internal energy caused by the power production. Basic thermodynamic principles determine the converter's efficiency and work limits in terms of the entropy production. The real work is a cumulative effect obtained in a system of a resource fluid, a sequence of engines, and an infinite bath. Nonlinear modeling involves dynamic optimization in which the classical expression for efficiency at maximum power is generalized to endoirreversible machines and nonlinear transfer laws. The primary result is a finite-rate generalization of the classical, reversible work potential (exergy). The generalized work function depends on thermal coordinates and a dissipation index, h, i.e. a Hamiltonian of the minimum entropy production problem. This generalized work function implies stronger bounds on work delivered or supplied than the reversible work potential. The role of the nonlinear analyses and dynamic optimization is shown especially for radiation engines. As an example of the kinetic work limit, generalized exergy of radiation fluid is estimated in terms of finite rates, quantified by the Hamiltonian h
Effects of dual-energy CT with non-linear blending on abdominal CT angiography
International Nuclear Information System (INIS)
Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge
2014-01-01
To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.
Effects of dual-energy CT with non-linear blending on abdominal CT angiography
Energy Technology Data Exchange (ETDEWEB)
Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge [Dept. of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)
2014-08-15
To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.
Radial, sideward and elliptic flow at AGS energies
Indian Academy of Sciences (India)
the sideward flow, the elliptic flow and the radial transverse mass distribution of protons data at. AGS energies. In order to ... data on both sideward and elliptic flow, NL3 model is better at 2 A¡GeV, while NL23 model is at 4–8. A¡GeV. ... port approach RBUU which is based on a coupled set of covariant transport equations for.
Liu, Richeng; Li, Bo; Jiang, Yujing; Yu, Liyuan
2018-01-01
Hydro-mechanical properties of rock fractures are core issues for many geoscience and geo-engineering practices. Previous experimental and numerical studies have revealed that shear processes could greatly enhance the permeability of single rock fractures, yet the shear effects on hydraulic properties of fractured rock masses have received little attention. In most previous fracture network models, single fractures are typically presumed to be formed by parallel plates and flow is presumed to obey the cubic law. However, related studies have suggested that the parallel plate model cannot realistically represent the surface characters of natural rock fractures, and the relationship between flow rate and pressure drop will no longer be linear at sufficiently large Reynolds numbers. In the present study, a numerical approach was established to assess the effects of shear on the hydraulic properties of 2-D discrete fracture networks (DFNs) in both linear and nonlinear regimes. DFNs considering fracture surface roughness and variation of aperture in space were generated using an originally developed code DFNGEN. Numerical simulations by solving Navier-Stokes equations were performed to simulate the fluid flow through these DFNs. A fracture that cuts through each model was sheared and by varying the shear and normal displacements, effects of shear on equivalent permeability and nonlinear flow characteristics of DFNs were estimated. The results show that the critical condition of quantifying the transition from a linear flow regime to a nonlinear flow regime is: 10-4 〈 J hydraulic gradient. When the fluid flow is in a linear regime (i.e., J reduce the equivalent permeability significantly in the orientation perpendicular to the sheared fracture as much as 53.86% when J = 1, shear displacement Ds = 7 mm, and normal displacement Dn = 1 mm. By fitting the calculated results, the mathematical expression for δ2 is established to help choose proper governing equations when
Panyam Mohan Ram, Meghashyam
In the last few years, advances in micro-fabrication technologies have lead to the development of low-power electronic devices spanning critical fields related to sensing, data transmission, and medical implants. Unfortunately, effective utilization of these devices is currently hindered by their reliance on batteries. In many of these applications, batteries may not be a viable choice as they have a fixed storage capacity and need to be constantly replaced or recharged. In light of such challenges, several novel concepts for micro-power generation have been recently introduced to harness, otherwise, wasted ambient energy from the environment and maintain these low-power devices. Vibratory energy harvesting is one such concept which has received significant attention in recent years. While linear vibratory energy harvesters have been well studied in the literature and their performance metrics have been established, recent research has focused on deliberate introduction of stiffness nonlinearities into the design of these devices. It has been shown that, nonlinear energy harvesters have a wider steady-state frequency bandwidth as compared to their linear counterparts, leading to the premise that they can used to improve performance, and decrease sensitivity to variations in the design and excitation parameters. This dissertation aims to investigate this premise by developing an analytical framework to study the influence of stiffness nonlinearities on the performance and effective bandwidth of nonlinear vibratory energy harvesters. To achieve this goal, the dissertation is divided into three parts. The first part investigates the performance of bi-stable energy harvesters possessing a symmetric quartic potential energy function under harmonic excitations and carries out a detailed analysis to define their effective frequency bandwidth. The second part investigates the relative performance of mono- and bi-stable energy harvesters under optimal electric loading
Energy flow and thermal comfort in buildings
DEFF Research Database (Denmark)
Le Dreau, Jerome
and experimentally. This thesis addressed mainly the cooling case. From the steady-state numerical analysis and the full-scale experiments, it has been observed that the difference between the two types of terminals is mainly due to changes in the ventilation losses (or gains). At low air-change rates (below 0.5 ACH...... been evaluated both theoretically and numerically, and no discomfort has been observed for normal cooling needs. Besides this comparative study of different terminals, the relation between cooling system and internal convective flow has also been investigated experimentally. The comparison...... with existing models pointed out the specificity of existing correlations and the limitation of their range of application. Because of differences in the air jet trajectory, existing correlations tend to overestimate the convective flow, especially at the ceiling. Two approaches have thus been tested to better...
A mean flow acoustic engine capable of wind energy harvesting
International Nuclear Information System (INIS)
Sun Daming; Xu Ya; Chen Haijun; Wu, Ke; Liu Kaikai; Yu Yan
2012-01-01
Highlights: ► A mean flow acoustic engine for wind energy harvesting is designed and manufactured. ► Stable standing wave acoustic field is established at specific flow velocity. ► Experimental and computational results reveal the acoustic field characteristics. ► Acoustic field has monofrequency characteristic and remarkable energy density. - Abstract: Based on the mean flow induced acoustic oscillation effect, a mean flow acoustic engine (MFAE) converts wind energy and fluid energy in pipeline into acoustic energy which can be used to drive thermoacoustic refrigerators and generators without any mechanical moving parts. With natural wind simulated by a centrifugal air fan, a MFAE with a cross-junction configuration was designed and manufactured for experimental study. Stable standing wave acoustic fields were established in specific ranges of air flow velocity. Experimental and computational results reveal the acoustic field distribution in the engine and show the effect of the mean flow velocity and the Strouhal number on the acoustic field characteristics. With a mean flow velocity of 50.52 m/s and a mean pressure of 106.19 kPa, the maximum pressure amplitude of 6.20 kPa was achieved, which was about 5.8% of the mean pressure. It has laid a good foundation for driving power generation devices and thermoacoustic refrigerators by a MFAE.
Low energy consumption vortex wave flow membrane bioreactor.
Wang, Zhiqiang; Dong, Weilong; Hu, Xiaohong; Sun, Tianyu; Wang, Tao; Sun, Youshan
2017-11-01
In order to reduce the energy consumption and membrane fouling of the conventional membrane bioreactor (MBR), a kind of low energy consumption vortex wave flow MBR was exploited based on the combination of biofilm process and membrane filtration process, as well as the vortex wave flow technique. The experimental results showed that the vortex wave flow state in the membrane module could be formed when the Reynolds number (Re) of liquid was adjusted between 450 and 1,050, and the membrane flux declined more slowly in the vortex wave flow state than those in the laminar flow state and turbulent flow state. The MBR system was used to treat domestic wastewater under the condition of vortex wave flow state for 30 days. The results showed that the removal efficiency for CODcr and NH 3 -N was 82% and 98% respectively, and the permeate quality met the requirement of 'Water quality standard for urban miscellaneous water consumption (GB/T 18920-2002)'. Analysis of the energy consumption of the MBR showed that the average energy consumption was 1.90 ± 0.55 kWh/m 3 (permeate), which was only two thirds of conventional MBR energy consumption.
Energy distribution and transfer in flowing hydrogen microwave plasmas
International Nuclear Information System (INIS)
Chapman, R.A.
1987-01-01
This thesis is an experimental investigation of the physical and chemical properties of a hydrogen discharge in a flowing microwave plasma system. The plasma system is the mechanisms utilized in an electrothermal propulsion concept to convert electromagnetic energy into the kinetic energy of flowing hydrogen gas. The plasmas are generated inside a 20-cm ID resonant cavity at a driving frequency of 2.45 GHz. The flowing gas is contained in a coaxially positioned 22-mm ID quartz discharge tube. The physical and chemical properties are examined for absorbed powers of 20-100 W, pressures of 0.5-10 torr, and flow rates of 0-10,000 μ-moles/sec. A calorimetry system enclosing the plasma system to accurately measure the energy inputs and outputs has been developed. The rate of energy that is transferred to the hydrogen gas as it flows through the plasma system is determined as a function of absorbed power, pressure, and flow rate to +/-1.8 W from an energy balance around the system. The percentage of power that is transferred to the gas is found to increase with increasing flow rate, decrease with increasing pressure, and to be independent of absorbed power
Directory of Open Access Journals (Sweden)
Yahaya Shagaiya Daniel
2018-04-01
Full Text Available The combined effects of thermal stratification, applied electric and magnetic fields, thermal radiation, viscous dissipation and Joules heating are numerically studied on a boundary layer flow of electrical conducting nanofluid over a nonlinearly stretching sheet with variable thickness. The governing equations which are partial differential equations are converted to a couple of ordinary differential equations with suitable similarity transformation techniques and are solved using implicit finite difference scheme. The electrical conducting nanofluid particle fraction on the boundary is passively rather than actively controlled. The effects of the emerging parameters on the electrical conducting nanofluid velocity, temperature, and nanoparticles concentration volume fraction with skin friction, heat transfer characteristics are examined with the aids of graphs and tabular form. It is observed that the variable thickness enhances the fluid velocity, temperature, and nanoparticle concentration volume fraction. The heat and mass transfer rate at the surface increases with thermal stratification resulting to a reduction in the fluid temperature. Electric field enhances the nanofluid velocity which resolved the sticking effects caused by a magnetic field which suppressed the profiles. Radiative heat transfer and viscous dissipation are sensitive to an increase in the fluid temperature and thicker thermal boundary layer thickness. Comparison with published results is examined and presented. Keywords: MHD nanofluid, Variable thickness, Thermal radiation, Similarity solution, Thermal stratification
Boosting iterative stochastic ensemble method for nonlinear calibration of subsurface flow models
Elsheikh, Ahmed H.
2013-06-01
A novel parameter estimation algorithm is proposed. The inverse problem is formulated as a sequential data integration problem in which Gaussian process regression (GPR) is used to integrate the prior knowledge (static data). The search space is further parameterized using Karhunen-Loève expansion to build a set of basis functions that spans the search space. Optimal weights of the reduced basis functions are estimated by an iterative stochastic ensemble method (ISEM). ISEM employs directional derivatives within a Gauss-Newton iteration for efficient gradient estimation. The resulting update equation relies on the inverse of the output covariance matrix which is rank deficient.In the proposed algorithm we use an iterative regularization based on the ℓ2 Boosting algorithm. ℓ2 Boosting iteratively fits the residual and the amount of regularization is controlled by the number of iterations. A termination criteria based on Akaike information criterion (AIC) is utilized. This regularization method is very attractive in terms of performance and simplicity of implementation. The proposed algorithm combining ISEM and ℓ2 Boosting is evaluated on several nonlinear subsurface flow parameter estimation problems. The efficiency of the proposed algorithm is demonstrated by the small size of utilized ensembles and in terms of error convergence rates. © 2013 Elsevier B.V.
Energy Technology Data Exchange (ETDEWEB)
Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)
1996-12-31
The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.
Analysis of changing hidden energy flow in Vietnam
International Nuclear Information System (INIS)
Nguyen Thi Anh Tuyet; Ishihara, Keiichi N.
2006-01-01
The energy consumption in production process is changing especially in developing countries by substituting technology. Input-output analysis for energy flows has been developing and is one of the best solutions for investigating macroscopic exchanges of both economy and energy. Since each element in the Leontief inverse contains both direct and indirect effects of any change in final demand, to separate those direct and indirect effects, the power series expansion is available. In this work, the changes of embodied energy intensity in Vietnam from 1996 to 2000 were analyzed using the structural decomposition and its power series expansion. By illustrating the change of causal relationship between direct energy consumption and embodied energy consumption, the change of hidden energy flow, which indicates how the changing embodied energy builds up the change of direct energy consumption in every sector, can be seen. In the case study, the rice processing sector, which is one of the important food processing sectors in Vietnam, is focused. By drawing a diagrammatic map for the change of hidden energy flow, it is clarified that in the case of raising embodied energy intensity, cultivation sector and trade and repaired service sector are the main contributors, and, on the contrary, in the case of reducing embodied energy intensity, paper pulp sector is the main contributor
Nonlinear vibration analysis of the high-efficiency compressive-mode piezoelectric energy harvester
Yang, Zhengbao; Zu, Jean
2015-04-01
Power source is critical to achieve independent and autonomous operations of electronic mobile devices. The vibration-based energy harvesting is extensively studied recently, and recognized as a promising technology to realize inexhaustible power supply for small-scale electronics. Among various approaches, the piezoelectric energy harvesting has gained the most attention due to its high conversion efficiency and simple configurations. However, most of piezoelectric energy harvesters (PEHs) to date are based on bending-beam structures and can only generate limited power with a narrow working bandwidth. The insufficient electric output has greatly impeded their practical applications. In this paper, we present an innovative lead zirconate titanate (PZT) energy harvester, named high-efficiency compressive-mode piezoelectric energy harvester (HC-PEH), to enhance the performance of energy harvesters. A theoretical model was developed analytically, and solved numerically to study the nonlinear characteristics of the HC-PEH. The results estimated by the developed model agree well with the experimental data from the fabricated prototype. The HC-PEH shows strong nonlinear responses, favorable working bandwidth and superior power output. Under a weak excitation of 0.3 g (g = 9.8 m/s2), a maximum power output 30 mW is generated at 22 Hz, which is about ten times better than current energy harvesters. The HC-PEH demonstrates the capability of generating enough power for most of wireless sensors.
Cao, Shuying; Sun, Shuaishuai; Zheng, Jiaju; Wang, Bowen; Wan, Lili; Pan, Ruzheng; Zhao, Ran; Zhang, Changgeng
2018-05-01
Galfenol traditional cantilever energy harvesters (TCEHs) have bigger electrical output only at resonance and exhibit nonlinear mechanical-magnetic-electric coupled (NMMEC) behaviors. To increase low-frequency broadband performances of a TCEH, an improved CEH (ICEH) with magnetic repulsive force is studied. Based on the magnetic dipole model, the nonlinear model of material, the Faraday law and the dynamic principle, a lumped parameter NMMEC model of the devices is established. Comparisons between the calculated and measured results show that the proposed model can provide reasonable data trends of TCEH under acceleration, bias field and different loads. Simulated results show that ICEH exhibits low-frequency resonant, hard spring and bistable behaviors, thus can harvest more low-frequency broadband vibration energy than TCEH, and can elicit snap-through and generate higher voltage even under weak noise. The proposed structure and model are useful for improving performances of the devices.
A multivariate nonlinear mixed effects method for analyzing energy partitioning in growing pigs
DEFF Research Database (Denmark)
Strathe, Anders Bjerring; Danfær, Allan Christian; Chwalibog, André
2010-01-01
to the multivariate nonlinear regression model because the MNLME method accounted for correlated errors associated with PD and LD measurements and could also include the random effect of animal. It is recommended that multivariate models used to quantify energy metabolism in growing pigs should account for animal......Simultaneous equations have become increasingly popular for describing the effects of nutrition on the utilization of ME for protein (PD) and lipid deposition (LD) in animals. The study developed a multivariate nonlinear mixed effects (MNLME) framework and compared it with an alternative method...... for estimating parameters in simultaneous equations that described energy metabolism in growing pigs, and then proposed new PD and LD equations. The general statistical framework was implemented in the NLMIXED procedure in SAS. Alternative PD and LD equations were also developed, which assumed...
Sleep Management on Multiple Machines for Energy and Flow Time
DEFF Research Database (Denmark)
Chan, Sze-Hang; Lam, Tak-Wah; Lee, Lap Kei
2011-01-01
In large data centers, determining the right number of operating machines is often non-trivial, especially when the workload is unpredictable. Using too many machines would waste energy, while using too few would affect the performance. This paper extends the traditional study of online flow-time...... scheduling on multiple machines to take sleep management and energy into consideration. Specifically, we study online algorithms that can determine dynamically when and which subset of machines should wake up (or sleep), and how jobs are dispatched and scheduled. We consider schedules whose objective...... is to minimize the sum of flow time and energy, and obtain O(1)-competitive algorithms for two settings: one assumes machines running at a fixed speed, and the other allows dynamic speed scaling to further optimize energy usage. Like the previous work on the tradeoff between flow time and energy, the analysis...
Energy Technology Data Exchange (ETDEWEB)
Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hashim, E-mail: hashim_alik@yahoo.com [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Hussain, M. [Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Islamabad 44000 (Pakistan); Azam, M. [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)
2016-08-15
This paper presents a study of the magnetohydrodynamic (MHD) boundary layer flow of a non-Newtonian Carreau fluid over a convectively heated surface. The analysis of heat transfer is further performed in the presence of non-linear thermal radiation. The appropriate transformations are employed to bring the governing equations into dimensionless form. The numerical solutions of the partially coupled non-linear ordinary differential equations are obtained by using the Runge-Kutta Fehlberg integration scheme. The influence of non-dimensional governing parameters on the velocity, temperature, local skin friction coefficient and local Nusselt number is studied and discussed with the help of graphs and tables. Results proved that there is significant decrease in the velocity and the corresponding momentum boundary layer thickness with the growth in the magnetic parameter. However, a quite the opposite is true for the temperature and the corresponding thermal boundary layer thickness. - Highlights: • We investigated the Magnetohydrodynamic flow of Carreau constitutive fluid model. • Impact of non-linear thermal radiation is further taken into account. • Runge-Kutta Fehlberg method is employed to obtain the numerical solutions. • Fluid velocity is higher in case of hydromagnetic flow in comparison with hydrodynamic flow. • The local Nusselt number is a decreasing function of the thermal radiation parameter.
Hayat, T.; Shah, Faisal; Alsaedi, A.; Hussain, Zakir
The present analysis aims to report the consequences of nonlinear radiation, convective condition and heterogeneous-homogeneous reactions in Darcy-Forchheimer flow over a non-linear stretching sheet with variable thickness. Non-uniform magnetic field and nonuniform heat generation/absorption are accounted. The governing boundary layer partial differential equations are converted into a system of nonlinear ordinary differential equations. The computations are organized and the effects of physical variables such as thickness parameter, power index, Hartman number, inertia and porous parameters, radiation parameter, Biot number, Prandtl number, ratio parameter, heat generation parameter and homogeneous-heterogeneous reaction parameter are investigated. The variations of skin friction coefficient and Nusselt number for different interesting variables are plotted and discussed. It is noticed that Biot number and heat generation variable lead to enhance the temperature distribution. The solutal boundary layer thickness decreases for larger homogeneous variable while reverse trend is seen for heterogeneous reaction.
Elsheikh, Ahmed H.
2013-06-01
We introduce a nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of subsurface flow models. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated basis function with the residual from a large pool of basis functions. The discovered basis (aka support) is augmented across the nonlinear iterations. Once a set of basis functions are selected, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on stochastically approximated gradient using an iterative stochastic ensemble method (ISEM). In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm. The proposed algorithm is the first ensemble based algorithm that tackels the sparse nonlinear parameter estimation problem. © 2013 Elsevier Ltd.
Blanchard, Antoine B. E.; Bergman, Lawrence A.; Vakakis, Alexander F.; Pearlstein, Arne J.
2016-11-01
We consider two-dimensional flow past a linearly-sprung cylinder allowed to undergo rectilinear motion normal to the mean flow, with an attached "nonlinear energy sink" consisting of a mass allowed to rotate about the cylinder axis, and whose rotational motion is linearly damped by a viscous damper. For Re fluid density, dimensionless damping coefficient, and ratio of the rotating mass to the total mass, we find that different inlet transients lead to different long-time solutions, including solutions that are steady and symmetric (with a motionless cylinder), time-periodic, quasi-periodic, and chaotic. The results show that over a wide range of the parameters, the steady symmetric motionless-cylinder solution is locally, but not globally, stable. Supported by NSF Grant CMMI-1363231.
A biomass energy flow chart for Kenya
International Nuclear Information System (INIS)
Senelwa, K.A.; Hall, D.O.
1993-01-01
Terrestrial (above ground) biomass production and its utilization in Kenya was analyzed for the 1980s. Total biomass energy production was estimated at 2574 x 10 6 GJ per year, most of which (86.7%) is produced on land classified as agricultural. Of the total production, agriculture and forrestry operations resulted in the harvesting of 1138 x 10 6 GJ (44.2% of total production), half of which (602 x 10 6 GJ) was harvested for use as fuel. Only 80 x 10 6 GJ was harvested for food and 63 x 10 6 GJ for industrial (agricultural and forestry) plus other miscellaneous purposes. About 85% of Kenya's energy is from biomass, with a per capita consumption of 18.6 GJ (0.44 toe, tonne oil equivalent) compared to less than 0.1 toe of commercial energy. Use of the biomass resource was found to be extensive involving bulk harvesting but with low utilization efficiencies; as a result the overall losses were quite high. Only 534 x 10 6 GJ (46.9% of harvested biomass) was useful energy. 480 x 10 6 GJ was left unused, as residues and dung, all which was either burnt or left to decompose in the fields. 124 x 10 6 GJ was lost during charcoal manufacture. Intensified use of the harvested biomass at higher efficiencies in order to minimize wastes would decrease the stress on the biomass resource base. (Author)
International Nuclear Information System (INIS)
Sotiropoulou, P; Koukou, V; Martini, N; Nikiforidis, G; Michail, C; Kandarakis, I; Fountos, G; Kounadi, E
2015-01-01
In this study an analytical approximation of dual-energy inverse functions is presented for the estimation of the calcium-to-phosphorous (Ca/P) mass ratio, which is a crucial parameter in bone health. Bone quality could be examined by the X-ray dual-energy method (XDEM), in terms of bone tissue material properties. Low- and high-energy, log- intensity measurements were combined by using a nonlinear function, to cancel out the soft tissue structures and generate the dual energy bone Ca/P mass ratio. The dual-energy simulated data were obtained using variable Ca and PO 4 thicknesses on a fixed total tissue thickness. The XDEM simulations were based on a bone phantom. Inverse fitting functions with least-squares estimation were used to obtain the fitting coefficients and to calculate the thickness of each material. The examined inverse mapping functions were linear, quadratic, and cubic. For every thickness, the nonlinear quadratic function provided the optimal fitting accuracy while requiring relative few terms. The dual-energy method, simulated in this work could be used to quantify bone Ca/P mass ratio with photon-counting detectors. (paper)
Energy fluxes and spectra for turbulent and laminar flows
Verma, Mahendra K.
2017-05-14
Two well-known turbulence models to describe the inertial and dissipative ranges simultaneously are by Pao~[Phys. Fluids {\\\\bf 8}, 1063 (1965)] and Pope~[{\\\\em Turbulent Flows.} Cambridge University Press, 2000]. In this paper, we compute energy spectrum $E(k)$ and energy flux $\\\\Pi(k)$ using spectral simulations on grids up to $4096^3$, and show consistency between the numerical results and predictions by the aforementioned models. We also construct a model for laminar flows that predicts $E(k)$ and $\\\\Pi(k)$ to be of the form $\\\\exp(-k)$, and verify the model predictions using numerical simulations. The shell-to-shell energy transfers for the turbulent flows are {\\\\em forward and local} for both inertial and dissipative range, but those for the laminar flows are {\\\\em forward and nonlocal}.
Optimal energy growth in a stably stratified shear flow
Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama
2018-02-01
Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.
Towards a Carbon Nanotube Intermodulation Product Sensor for Nonlinear Energy Harvesting
Directory of Open Access Journals (Sweden)
Mitchell B. Lerner
2015-01-01
Full Text Available It is critically important in designing RF receiver front ends to handle high power jammers and other strong interferers. Instead of blocking incoming energy or dissipating it as heat, we investigate the possibility of redirecting that energy for harvesting and storage. The approach is based on channelizing a high power signal into a previously unknown circuit element which serves as a passive intermodulation device. This intermodulation component must produce a hysteretic current-voltage curve to be useful as an energy harvester. Here we demonstrate a method by which carbon nanotube transistors produce the necessary hysteretic I-V curves. Such devices can be tailored to the desired frequency by introducing functional groups to the nanotubes. These effects controllably enhance the desired behavior, namely, hysteretic nonlinearity in the transistors’ I-V characteristic. Combining these components with an RF energy harvester may one day enable the reuse of inbound jamming energy for standard back end radio components.
Directory of Open Access Journals (Sweden)
T. Hayat
Full Text Available The present analysis aims to report the consequences of nonlinear radiation, convective condition and heterogeneous-homogeneous reactions in Darcy-Forchheimer flow over a non-linear stretching sheet with variable thickness. Non-uniform magnetic field and nonuniform heat generation/absorption are accounted. The governing boundary layer partial differential equations are converted into a system of nonlinear ordinary differential equations. The computations are organized and the effects of physical variables such as thickness parameter, power index, Hartman number, inertia and porous parameters, radiation parameter, Biot number, Prandtl number, ratio parameter, heat generation parameter and homogeneous-heterogeneous reaction parameter are investigated. The variations of skin friction coefficient and Nusselt number for different interesting variables are plotted and discussed. It is noticed that Biot number and heat generation variable lead to enhance the temperature distribution. The solutal boundary layer thickness decreases for larger homogeneous variable while reverse trend is seen for heterogeneous reaction. Keywords: Variable sheet thickness, Darcy-Forchheimer flow, Homogeneous-heterogeneous reactions, Power-law surface velocity, Convective condition, Heat generation/absorption, Nonlinear radiation
Direct observation of vibrational energy flow in cytochrome c.
Fujii, Naoki; Mizuno, Misao; Mizutani, Yasuhisa
2011-11-10
Vibrational energy flow in ferric cytochrome c has been examined by picosecond time-resolved anti-Stokes ultraviolet resonance Raman (UVRR) measurements. By taking advantage of the extremely short nonradiative excited state lifetime of heme in the protein (energy of 20000-25000 cm(-1) was optically deposited selectively at the heme site. Subsequent energy relaxation in the protein moiety was investigated by monitoring the anti-Stokes UVRR intensities of the Trp59 residue, which is a single tryptophan residue involved in the protein that is located close to the heme group. It was found from temporal changes of the anti-Stokes UVRR intensities that the energy flow from the heme to Trp59 and the energy release from Trp59 took place with the time constants of 1-3 and ~8 ps, respectively. These data are consistent with the time constants for the vibrational relaxation of the heme and heating of water reported for hemeproteins. The kinetics of the energy flow were not affected by the amount of excess energy deposited at the heme group. These results demonstrate that the present technique is a powerful tool for studying the vibrational energy flow in proteins.
High energy density redox flow device
Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa
2014-05-13
Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.
International Nuclear Information System (INIS)
Piltan, Mehdi; Shiri, Hiva; Ghaderi, S.F.
2012-01-01
Highlights: ► Investigating different fitness functions for evolutionary algorithms in energy forecasting. ► Energy forecasting of Iranian metal industry by value added, energy prices, investment and employees. ► Using real-coded instead of binary-coded genetic algorithm decreases energy forecasting error. - Abstract: Developing energy-forecasting models is known as one of the most important steps in long-term planning. In order to achieve sustainable energy supply toward economic development and social welfare, it is required to apply precise forecasting model. Applying artificial intelligent models for estimation complex economic and social functions is growing up considerably in many researches recently. In this paper, energy consumption in industrial sector as one of the critical sectors in the consumption of energy has been investigated. Two linear and three nonlinear functions have been used in order to forecast and analyze energy in the Iranian metal industry, Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) are applied to attain parameters of the models. The Real-Coded Genetic Algorithm (RCGA) has been developed based on real numbers, which is introduced as a new approach in the field of energy forecasting. In the proposed model, electricity consumption has been considered as a function of different variables such as electricity tariff, manufacturing value added, prevailing fuel prices, the number of employees, the investment in equipment and consumption in the previous years. Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Deviation (MAD) and Mean Absolute Percent Error (MAPE) are the four functions which have been used as the fitness function in the evolutionary algorithms. The results show that the logarithmic nonlinear model using PSO algorithm with 1.91 error percentage has the best answer. Furthermore, the prediction of electricity consumption in industrial sector of Turkey and also Turkish industrial sector
INDRA-GSI: Collective flow from Fermi to relativistic energies
Energy Technology Data Exchange (ETDEWEB)
Lukasik, J.; Trautmann, W.; Begemann-Blaich, M.L.; Bittiger, R.; Gourio, D.; Le Fevre, A.; Lynen, U.; Mueller, W.F.J.; Orth, H.; Sfienti, C.; Schwarz, C.; Turzo, K. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Auger, G.; Bouriquet, B.; Chbihi, A.; Frankland, J.D.; Hudan, S.; Lopez, O. [GANIL, CEA et IN2P3-CNRS, 14 - Caen (France); Borderie, B.; Galichet, E.; Lavaud, F.; Plagnol, E. [Paris-11 Univ., Institut de Physique Nucleaire, IN2P3-CNRS, 91 - Orsay (France); Bellaize, N.; Bocage, F.; Bougault, R.; Durand, D.; Hurst, B.; Steckmeyer, J.C.; Tamain, B.; Vient, E. [Caen Univ., LPC (IN2P3-CNRS/ENSI), 14 - Caen (France); Charvet, J.L.; Dayras, R.; Legrain, R.; Nalpas, L.; Volant, C. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee (DAPNIA/SPhN), 91- Gif sur Yvette (France); Guinet, D.; Lautesse, P. [Institut de Physique Nucleaire, IN2P3-CNRS et Universite, 69 - Villeurbanne (France); Rosato, E.; Vigilante, M. [INFN, Univ. Federico II, Dipartimento di Scienze Fisiche e Sezione, Napoli (Italy); Saija, A. [Universita and INFN I, Dipartimento di Fisica dell' , Catania (Italy); Trzcinski, A.; Zwieglinski, B. [A. Soltan Institute for Nuclear Studies, Warsaw (Poland); Lukasik, J. [H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Galichet, E. [Conservatoire National des Arts et Metiers, 75 - Paris (France)
2003-07-01
Directed flow for the {sup 197}Au + {sup 197}Au reactions at incident energies between 40 and 150 A*MeV has been measured using the 4{pi} multi-detector INDRA at the GSI facility. In particular, the bombarding energy at which the elliptic flow switches from in-plane to out-of-plane enhancement has been determined to be around 100 A*MeV in good agreement with the result obtained by the FOPI Collaboration. The new data allows also to extend the experimental excitation function of v{sub 2} to lower energies. (authors)
INDRA-GSI: Collective flow from Fermi to relativistic energies
International Nuclear Information System (INIS)
Lukasik, J.; Trautmann, W.; Begemann-Blaich, M.L.; Bittiger, R.; Gourio, D.; Le Fevre, A.; Lynen, U.; Mueller, W.F.J.; Orth, H.; Sfienti, C.; Schwarz, C.; Turzo, K.; Auger, G.; Bouriquet, B.; Chbihi, A.; Frankland, J.D.; Hudan, S.; Lopez, O.; Borderie, B.; Galichet, E.; Lavaud, F.; Plagnol, E.; Bellaize, N.; Bocage, F.; Bougault, R.; Durand, D.; Hurst, B.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Charvet, J.L.; Dayras, R.; Legrain, R.; Nalpas, L.; Volant, C.; Guinet, D.; Lautesse, P.; Rosato, E.; Vigilante, M.; Saija, A.; Trzcinski, A.; Zwieglinski, B.; Lukasik, J.; Galichet, E.
2003-01-01
Directed flow for the 197 Au + 197 Au reactions at incident energies between 40 and 150 A*MeV has been measured using the 4π multi-detector INDRA at the GSI facility. In particular, the bombarding energy at which the elliptic flow switches from in-plane to out-of-plane enhancement has been determined to be around 100 A*MeV in good agreement with the result obtained by the FOPI Collaboration. The new data allows also to extend the experimental excitation function of v 2 to lower energies. (authors)
Multi-scale-nonlinear interactions among macro-MHD mode, micro-turbulence, and zonal flow
International Nuclear Information System (INIS)
Ishizawa, Akihiro; Nakajima, Noriyoshi
2007-01-01
This is the first numerical simulation demonstrating that macro-magnetohydrodynamic (macro-MHD) mode is exited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between zonal flow and micro-turbulence via reduced-two-fluid simulation. Only after obtaining the equilibrium which includes zonal flow and the turbulence caused by kinetic ballooning mode is this simulation of macro-MHD mode, double tearing mode, accomplished. In the quasi-steady equilibrium a macro-fluctuation which has the same helicity as that of double tearing mode is a part of the turbulence until it grows as a macro-MHD mode finally. When the macro-MHD grows it effectively utilize free energy of equilibrium current density gradient because of positive feedback loop between suppression of zonal flow and growth of the macro-fluctuation causing magnetic reconnection. Thus once the macro-MHD grows from the quasi-equilibrium, it does not go back. This simulation is more comparable with experimental observation of growing macro-fluctuation than traditional MHD simulation of linear instabilities in a static equilibrium. (author)
The map of energy flow in HVAC systems
International Nuclear Information System (INIS)
Perez-Lombard, Luis; Ortiz, Jose; Maestre, Ismael R.
2011-01-01
Highlights: → Discussion of the four stages in the 'HVAC systems energy chain'. → Examination of HVAC systems as energy conversion devices. → Analysis of HVAC Sankey diagrams. → Discussion of HVAC loads and HVAC energy losses. -- Abstract: Heating, ventilation and air conditioning (HVAC) systems are the most energy consuming building services representing approximately half of the final energy use in the building sector and between one tenth and one fifth of the energy consumption in developed countries. Despite their significant energy use, there is a lack of a consistent and homogeneous framework to efficiently guide research and energy policies, mainly due to the complexity and variety of HVAC systems but also to insufficient rigour in their energy analysis. This paper reviews energy related aspects of HVAC systems with the aim of establishing a common ground for the analysis of their energy efficiency. The paper focuses on the map of energy flow to deliver thermal comfort: the HVAC energy chain. Our approach deals first with thermal comfort as the final service delivered to building occupants. Secondly, conditioned spaces are examined as the systems where useful heat (or coolth) is degraded to provide comfort. This is followed by the analysis of HVAC systems as complex energy conversion devices where energy carriers are transformed into useful heat and coolth, and finally, the impact of HVAC energy consumption on energy resources is discussed.
Dynamo dominated accretion and energy flow: The mechanism of active galactic nuclei
Energy Technology Data Exchange (ETDEWEB)
Colgate, S.A.; Li, H.
1998-12-31
An explanation of the magnetic fields of the universe, the central mass concentration of galaxies, the massive black hole of every galaxy, and the AGN phenomena has been an elusive goal. The authors suggest here the outlines of such a theoretical understanding and point out where the physical understanding is missing. They believe there is an imperative to the sequence of mass flow and hence energy flow in the collapse of a galactic mass starting from the first non-linearity appearing in structure formation following decoupling. This first non-linearity of a two to one density fluctuation, the Lyman-{alpha} clouds, ultimately leads to the emission spectra of the phenomenon of AGN, quasars, blazars, etc. The over-arching physical principle is the various mechanisms for the transport of angular momentum. They believe they have now understood the new physics of two of these mechanisms that have previously been illusive and as a consequence they impose strong constraints on the initial conditions of the mechanisms for the subsequent emission of the gravitational binding energy. The new phenomena described are: (1) the Rossby vortex mechanism of the accretion disk {alpha}-viscosity, and (2) the mechanism of the {alpha}-{Omega} dynamo in the accretion disk. The Rossby vortex mechanism leads to a prediction of the black hole mass and rate of energy release and the {alpha}-{Omega} dynamo leads to the generation of the magnetic flux of the galaxy (and the far greater magnetic flux of clusters) and separately explains the primary flux of energy emission as force-free magnetic energy density. This magnetic flux and magnetic energy density separately are the necessary consequence of the saturation of a dynamo created by the accretion disk with a gain greater than unity.
Energy flow in angularly dispersive optical systems
International Nuclear Information System (INIS)
Ware, M.; Dibble, W. E.; Glasgow, S. A.; Peatross, J.
2001-01-01
Light-pulse propagation in angularly dispersive systems is explored in the context of a center-of-mass definition of energy arrival time. In this context the time of travel is given by a superposition of group delays weighted by the spectral content of the pulse. With this description the time of travel from one point to the next for a pulse is found to be completely determined by the spectral content, independent of the state of chirp. The effect of sensor orientation on arrival time is also considered. [copyright] 2001 Optical Society of America
Dark energy and the quietness of the local Hubble flow
International Nuclear Information System (INIS)
Axenides, M.; Perivolaropoulos, L.
2002-01-01
The linearity and quietness of the local ( X (t 0 ) of dark energy obeying the time independent equation of state p X =wρ X . We find that dark energy can indeed cool the LHF. However the dark energy parameter values required to make the predicted velocity dispersion consistent with the observed value v rms ≅40 km/s have been ruled out by other observational tests constraining the dark energy parameters w and Ω X . Therefore despite the claims of recent qualitative studies, dark energy with time independent equation of state cannot by itself explain the quietness and linearity of the local Hubble flow
Large-N limit of the gradient flow in the 2D O(N) nonlinear sigma model
International Nuclear Information System (INIS)
Makino, Hiroki; Sugino, Fumihiko; Suzuki, Hiroshi
2015-01-01
The gradient flow equation in the 2D O(N) nonlinear sigma model with lattice regularization is solved in the leading order of the 1/N expansion. By using this solution, we analytically compute the thermal expectation value of a lattice energy–momentum tensor defined through the gradient flow. The expectation value reproduces thermodynamic quantities obtained by the standard large-N method. This analysis confirms that the above lattice energy–momentum tensor restores the correct normalization automatically in the continuum limit, in a system with a non-perturbative mass gap
On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.
Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A
2015-01-01
Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the
Complex motion in nonlinear-map model of elevators in energy-saving traffic
International Nuclear Information System (INIS)
Nagatani, Takashi
2011-01-01
We have studied the dynamic behavior and dynamic transitions of elevators in a system for reducing energy consumption. We present a nonlinear-map model for the dynamics of M elevators. The motion of elevators depends on the loading parameter and their number M. The dependence of the fixed points on the loading parameter is derived. The dynamic transitions occur at 2(M-1) stages with increasing the value of loading parameter. At the dynamic transition point, the motion of elevators changes from a stable state to an unstable state and vice versa. The elevators display periodic motions with various periods in the unstable state. In the unstable state, the number of riding passengers fluctuates in a complex manner over various trips. - Highlights: → We propose the nonlinear-map model in energy-saving traffic of elevators. → We study the dynamical behavior and dynamical transitions in the system of elevators. → We derive the fixed point of the nonlinear map analytically. → We clarify the dependence of the motion on the loading parameter and the number.
Complex motion in nonlinear-map model of elevators in energy-saving traffic
Energy Technology Data Exchange (ETDEWEB)
Nagatani, Takashi, E-mail: tmtnaga@ipc.shizuoka.ac.j [Department of Mechanical Engineering, Division of Thermal Science, Shizuoka University, Hamamatsu 432-8561 (Japan)
2011-05-16
We have studied the dynamic behavior and dynamic transitions of elevators in a system for reducing energy consumption. We present a nonlinear-map model for the dynamics of M elevators. The motion of elevators depends on the loading parameter and their number M. The dependence of the fixed points on the loading parameter is derived. The dynamic transitions occur at 2(M-1) stages with increasing the value of loading parameter. At the dynamic transition point, the motion of elevators changes from a stable state to an unstable state and vice versa. The elevators display periodic motions with various periods in the unstable state. In the unstable state, the number of riding passengers fluctuates in a complex manner over various trips. - Highlights: We propose the nonlinear-map model in energy-saving traffic of elevators. We study the dynamical behavior and dynamical transitions in the system of elevators. We derive the fixed point of the nonlinear map analytically. We clarify the dependence of the motion on the loading parameter and the number.
International Nuclear Information System (INIS)
Haug, E.; Rouvray, A.L. de; Nguyen, Q.S.
1977-01-01
This study proposes a general nonlinear algorithm stability criterion; it introduces a nonlinear algorithm, easily implemented in existing incremental/iterative codes, and it applies the new scheme beneficially to problems of linear elastic dynamic snap buckling. Based on the concept of energy conservation, the paper outlines an algorithm which degenerates into the trapezoidal rule, if applied to linear systems. The new algorithm conserves energy in systems having elastic potentials up to the fourth order in the displacements. This is true in the important case of nonlinear total Lagrange formulations where linear elastic material properties are substituted. The scheme is easily implemented in existing incremental-iterative codes with provisions for stiffness reformation and containing the basic Newmark scheme. Numerical analyses of dynamic stability can be dramatically sensitive to amplitude errors, because damping algorithms may mask, and overestimating schemes may numerically trigger, the physical instability. The newly proposed scheme has been applied with larger time steps and less cost to the dynamic snap buckling of simple one and multi degree-of-freedom structures for various initial conditions
International Nuclear Information System (INIS)
Paraschiv, I.; Bauer, B. S.; Lindemuth, I. R.; Makhin, V.
2010-01-01
The effect of sheared axial flow on the Z-pinch sausage instability has been examined with two-dimensional magnetohydrodynamic simulations. Diffuse Bennett equilibria in the presence of axial flows with parabolic and linear radial profiles have been considered, and a detailed study of the linear and nonlinear development of small perturbations from these equilibria has been performed. The consequences of both single-wavelength and random-seed perturbations were calculated. It was found that sheared flows changed the internal m=0 mode development by reducing the linear growth rates, decreasing the saturation amplitude, and modifying the instability spectrum. High spatial frequency modes were stabilized to small amplitudes and only long wavelengths continued to grow. Full stability was obtained for supersonic plasma flows.
Periaux, J.
1979-01-01
The numerical simulation of the transonic flows of idealized fluids and of incompressible viscous fluids, by the nonlinear least squares methods is presented. The nonlinear equations, the boundary conditions, and the various constraints controlling the two types of flow are described. The standard iterative methods for solving a quasi elliptical nonlinear equation with partial derivatives are reviewed with emphasis placed on two examples: the fixed point method applied to the Gelder functional in the case of compressible subsonic flows and the Newton method used in the technique of decomposition of the lifting potential. The new abstract least squares method is discussed. It consists of substituting the nonlinear equation by a problem of minimization in a H to the minus 1 type Sobolev functional space.
Modeling of non-linear CHP efficiency curves in distributed energy systems
DEFF Research Database (Denmark)
Milan, Christian; Stadler, Michael; Cardoso, Gonçalo
2015-01-01
Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...
Nonlinear dynamics of a circular piezoelectric plate for vibratory energy harvesting
Yuan, Tian-Chen; Yang, Jian; Chen, Li-Qun
2018-06-01
Nonlinear behaviors are investigated for a vibration-based energy harvester. The harvester consists of a circular composite plate with the clamped boundary, a proof mass and two steel rings. The lumped parameter model of the harvester is established and the parameters are identified from the experiment. The measured nonlinear behaviors can be approximately described by the lumped model. Both the experimental and the numerical results demonstrate that the circular plate harvester has soft characteristics under low excitation and both hard characteristics and soft characteristics under high excitation. The experimental results show that the output voltage can achieve over 35 V (about 50 mW) and more than 14 Hz of bandwidth with 25 kΩ load resistance.
Vibration mitigation of a bridge cable using a nonlinear energy sink: design and experiment
Directory of Open Access Journals (Sweden)
Weiss Mathieu
2015-01-01
Full Text Available This work deals with the design and experiment of a cubic nonlinear energy sink (NES for horizontal vibration mitigation of a bridge cable. Modal analysis of horizontal linear modes of the cable is experimentally performed using accelerometers and displacement sensors. A theoretical simplified 2-dof model of the coupled cable-NES system is used to analytically design the NES by mean of multi-time scale systems behaviours and detection its invariant manifold, equilibrium and singular points which stand for periodic and strongly modulated regimes, respectively. Numerical integration is used to confirm the efficiency of the designed NES for the system under step release excitation. Then, the prototype system is built using geometrical cubic nonlinearity as the potential of the NES. Efficiency of the prototype system for mitigation of horizontal vibrations of the cable under for step release and forced excitations is experimentally demonstrated.
Initial angular momentum and flow in high energy nuclear collisions
Fries, Rainer J.; Chen, Guangyao; Somanathan, Sidharth
2018-03-01
We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the color glass condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ˜1 /Qs , where Qs is the saturation scale) is carried by the "β -type" flow of the initial classical gluon field, introduced by some of us earlier. βi˜μ1∇iμ2-μ2∇iμ1 (i =1 ,2 ) describes the rapidity-odd transverse energy flow and emerges from Gauss's law for gluon fields. Here μ1 and μ2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using anti-de Sitter/conformal field theory (AdS/CFT) techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1 /Qs , is |d L2/d η |≈ RAQs-3ɛ¯0/2 at midrapidity, where RA is the nuclear radius, and ɛ¯0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g., for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.
Radiation energy devaluation in diffusion combusting flows of natural gas
International Nuclear Information System (INIS)
Makhanlall, Deodat; Munda, Josiah L.; Jiang, Peixue
2013-01-01
Abstract: CFD (Computational fluid dynamics) is used to evaluate the thermodynamic second-law effects of thermal radiation in turbulent diffusion natural gas flames. Radiative heat transfer processes in gas and at solid walls are identified as important causes of energy devaluation in the combusting flows. The thermodynamic role of thermal radiation cannot be neglected when compared to that of heat conduction and convection, mass diffusion, chemical reactions, and viscous dissipation. An energy devaluation number is also defined, with which the optimum fuel–air equivalence for combusting flows can be determined. The optimum fuel–air equivalence ratio for a natural gas flame is determined to be 0.7. The CFD model is validated against experimental measurements. - Highlights: • Thermodynamic effects of thermal radiation in combusting flows analyzed. • General equation for second-law analyses of combusting flows extended. • Optimum fuel–air equivalence ratio determined for natural gas flame
Natural Regulation of Energy Flow in a Green Quantum Photocell.
Arp, Trevor B; Barlas, Yafis; Aji, Vivek; Gabor, Nathaniel M
2016-12-14
Manipulating the flow of energy in nanoscale and molecular photonic devices is of both fundamental interest and central importance for applications in light energy harvesting optoelectronics. Under erratic solar irradiance conditions, unregulated power fluctuations in a light-harvesting photocell lead to inefficient energy storage in conventional solar cells and potentially fatal oxidative damage in photosynthesis. Here, we compare the theoretical minimum energy fluctuations in nanoscale quantum heat engine photocells that incorporate one or two photon-absorbing channels and show that fluctuations are naturally suppressed in the two-channel photocell. This intrinsic suppression acts as a passive regulation mechanism that enables the efficient conversion of varying incident solar power into a steady output for absorption over a broad range of the solar spectrum on Earth. Remarkably, absorption in the green portion of the spectrum provides no inherent regulatory benefit, indicating that green light should be rejected in a photocell whose primary role is the regulation of energy flow.
Xiang, Hong-Jun; Zhang, Zhi-Wei; Shi, Zhi-Fei; Li, Hong
2018-04-01
A fully coupled modeling approach is developed for piezoelectric energy harvesters in this work based on the use of available robust finite element packages and efficient reducing order modeling techniques. At first, the harvester is modeled using finite element packages. The dynamic equilibrium equations of harvesters are rebuilt by extracting system matrices from the finite element model using built-in commands without any additional tools. A Krylov subspace-based scheme is then applied to obtain a reduced-order model for improving simulation efficiency but preserving the key features of harvesters. Co-simulation of the reduced-order model with nonlinear energy harvesting circuits is achieved in a system level. Several examples in both cases of harmonic response and transient response analysis are conducted to validate the present approach. The proposed approach allows to improve the simulation efficiency by several orders of magnitude. Moreover, the parameters used in the equivalent circuit model can be conveniently obtained by the proposed eigenvector-based model order reduction technique. More importantly, this work establishes a methodology for modeling of piezoelectric energy harvesters with any complicated mechanical geometries and nonlinear circuits. The input load may be more complex also. The method can be employed by harvester designers to optimal mechanical structures or by circuit designers to develop novel energy harvesting circuits.
Energy transformation and flow topology in an elbow draft tube
Directory of Open Access Journals (Sweden)
Štefan D.
2012-06-01
Full Text Available Paper presents a computational study of energy transformation in two geometrical configurations of Kaplan turbine elbow draft tube. Pressure recovery, hydraulic efficiency and loss coefficient are evaluated for a series of flow rates and swirl numbers corresponding to operating regimes of the turbine. These integral characteristics are then correlated with local flow field properties identified by extraction of topological features. Main focus is to find the reasons for hydraulic efficiency drop of the elbow draft tube.
The electron energy distribution function of noble gases with flow
International Nuclear Information System (INIS)
Karditsas, P.J.
1989-01-01
The treatment of the Boltzmann equation by several investigators, for the determination of the electron energy distribution function (EEDF) in noble gases was restricted to static discharges. It is of great interest to magnetoplasmadynamic power generation to develop the Boltzmann equation to account for the effect of the bulk fluid flow on the EEDF. The two term expansion of the Boltzmann equation, as given, results in additional terms introduced to the equations due to the bulk fluid flow, with velocity u
Smart grids, information flows and emerging domestic energy practices
International Nuclear Information System (INIS)
Naus, Joeri; Spaargaren, Gert; Vliet, Bas J.M. van; Horst, Hilje M. van der
2014-01-01
Smart energy grids and smart meters are commonly expected to promote more sustainable ways of living. This paper presents a conceptual framework for analysing the different ways in which smart grid developments shape – and are shaped by – the everyday lives of residents. Drawing upon theories of social practices and the concept of informational governance, the framework discerns three categories of ‘information flows’: flows between household-members, flows between households and energy service providers, and flows between local and distant households. Based on interviews with Dutch stakeholders and observations at workshops we examine, for all three information flows, the changes in domestic energy practices and the social relations they help to create. The analysis reveals that new information flows may not produce more sustainable practices in linear and predictable ways. Instead, changes are contextual and emergent. Second, new possibilities for information sharing between households open up a terrain for new practices. Third, information flows affect social relationships in ways as illustrated by the debates on consumer privacy in the Netherlands. An exclusive focus on privacy, however, deviates attention from opportunities for information disclosure by energy providers, and from the significance of transparency issues in redefining relationships both within and between households. - Highlights: • Smart grids generate three key new information flows that affect social relations. • Practice theory can reveal the ways in which households handle/govern information. • Householders show ambivalence about the workings of the different information flows. • Policies should account for the ‘bright’ as well as the ‘dark’ sides of information
Beam Flutter and Energy Harvesting in Internal Flow
Tosi, Luis Phillipe; Colonius, Tim; Sherrit, Stewart; Lee, Hyeong Jae
2017-11-01
Aeroelastic flutter, largely studied for causing engineering failures, has more recently been used as a means of extracting energy from the flow. Particularly, flutter of a cantilever or an elastically mounted plate in a converging-diverging flow passage has shown promise as an energy harvesting concept for internal flow applications. The instability onset is observed as a function of throat velocity, internal wall geometry, fluid and structure material properties. To enable these devices, our work explores features of the fluid-structure coupled dynamics as a function of relevant nondimensional parameters. The flutter boundary is examined through stability analysis of a reduced order model, and corroborated with numerical simulations at low Reynolds number. Experiments for an energy harvester design are qualitatively compared to results from analytical and numerical work, suggesting a robust limit cycle ensues due to a subcritical Hopf bifurcation. Bosch Corporation.
Epistemic uncertainty propagation in energy flows between structural vibrating systems
Xu, Menghui; Du, Xiaoping; Qiu, Zhiping; Wang, Chong
2016-03-01
A dimension-wise method for predicting fuzzy energy flows between structural vibrating systems coupled by joints with epistemic uncertainties is established. Based on its Legendre polynomial approximation at α=0, both the minimum and maximum point vectors of the energy flow of interest are calculated dimension by dimension within the space spanned by the interval parameters determined by fuzzy those at α=0 and the resulted interval bounds are used to assemble the concerned fuzzy energy flows. Besides the proposed method, vertex method as well as two current methods is also applied. Comparisons among results by different methods are accomplished by two numerical examples and the accuracy of all methods is simultaneously verified by Monte Carlo simulation.
Linking material and energy flow analyses and social theory
Energy Technology Data Exchange (ETDEWEB)
Schiller, Frank [The Open University, Faculty of Maths, Computing and Technology, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom)
2009-04-15
The paper explores the potential of Habermas' theory of communicative action to alter the social reflexivity of material and energy flow analysis. With his social macro theory Habermas has provided an alternative, critical justification for social theory that can be distinguished from economic libertarianism and from political liberalism. Implicitly, most flow approaches draw from these theoretical traditions rather than from discourse theory. There are several types of material and energy flow analyses. While these concepts basically share a system theoretical view, they lack a specific interdisciplinary perspective that ties the fundamental insight of flows to disciplinary scientific development. Instead of simply expanding micro-models to the social macro-dimension social theory suggests infusing the very notion of flows to the progress of disciplines. With regard to the functional integration of society, material and energy flow analyses can rely on the paradigm of ecological economics and at the same time progress the debate between strong and weak sustainability within the paradigm. However, placing economics at the centre of their functional analyses may still ignore the broader social integration of society, depending on their pre-analytic outline of research and the methods used. (author)
Linking material and energy flow analyses and social theory
International Nuclear Information System (INIS)
Schiller, Frank
2009-01-01
The paper explores the potential of Habermas' theory of communicative action to alter the social reflexivity of material and energy flow analysis. With his social macro theory Habermas has provided an alternative, critical justification for social theory that can be distinguished from economic libertarianism and from political liberalism. Implicitly, most flow approaches draw from these theoretical traditions rather than from discourse theory. There are several types of material and energy flow analyses. While these concepts basically share a system theoretical view, they lack a specific interdisciplinary perspective that ties the fundamental insight of flows to disciplinary scientific development. Instead of simply expanding micro-models to the social macro-dimension social theory suggests infusing the very notion of flows to the progress of disciplines. With regard to the functional integration of society, material and energy flow analyses can rely on the paradigm of ecological economics and at the same time progress the debate between strong and weak sustainability within the paradigm. However, placing economics at the centre of their functional analyses may still ignore the broader social integration of society, depending on their pre-analytic outline of research and the methods used. (author)
Scaling of anisotropy flows in intermediate energy heavy ion collisions
International Nuclear Information System (INIS)
Ma, Y.G.; Yan, T.Z.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.
2007-01-01
Anisotropic flows (v 1 , v 2 and v 4 ) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v 1 ) and elliptic flow (v 2 ) are demonstrated for light nuclear clusters. Moreover, the ratios of v 4 /v 2 2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments
International Nuclear Information System (INIS)
Laajalehto, Tatu; Kuosa, Maunu; Mäkilä, Tapio; Lampinen, Markku; Lahdelma, Risto
2014-01-01
Heating and cooling have a major role in the energy sector, covering 46% of total final energy use worldwide. District heating (DH) is a significant technology for improving the energy efficiency of heating systems in communities, because it enables waste heat sources to be utilised economically and therefore significantly reduces the environmental impacts of power generation. As a result of new and more stringent construction regulations for buildings, the heat demands of individual buildings are decreasing and more energy-efficient heating systems have to be developed. In this study, the energy efficiency of a new DH system which includes both a new control system called mass flow control and a new network design called a ring network is examined. A topology in the Helsinki region is studied by using a commercial DH network modelling tool, Grades Heating. The district heating network is attached to a wood-burning heat station which has a heat recovery system in use. Examination is performed by means of both technical and economic analysis. The new non-linear temperature programme that is required is adopted for supply and return temperatures, which allows greater temperature cooling and smaller flow rates. Lower district heating water temperatures are essential when reducing the heat losses in the network and heat production. Mass flow control allows smaller pressure drops in the network and thus reduces the pumping power. The aim of this study was to determine the most energy-efficient DH water supply temperatures in the case network. If the ring network design is utilised, the district heating system is easier to control. As a result the total heat consumption within the heating season is reduced compared to traditional DH systems. On the basis of the results, the new DH system is significantly more energy-efficient in the case network that was examined than the traditional design. For example, average energy losses within the constraints (which consist of heat
Sex differences of human cortical blood flow and energy metabolism.
Aanerud, Joel; Borghammer, Per; Rodell, Anders; Jónsdottir, Kristjana Y; Gjedde, Albert
2017-07-01
Brain energy metabolism is held to reflect energy demanding processes in neuropil related to the density and activity of synapses. There is recent evidence that men have higher density of synapses in temporal cortex than women. One consequence of these differences would be different rates of cortical energy turnover and blood flow in men and women. To test the hypotheses that rates of oxygen consumption (CMRO 2 ) and cerebral blood flow are higher in men than in women in regions of cerebral cortex, and that the differences persist with aging, we used positron emission tomography to determine cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity.
Energy Based Clutter Filtering for Vector Flow Imaging
DEFF Research Database (Denmark)
Villagómez Hoyos, Carlos Armando; Jensen, Jonas; Ewertsen, Caroline
2017-01-01
for obtaining vector flow measurements, since the spectra overlaps at high beam-to-flow angles. In this work a distinct approach is proposed, where the energy of the velocity spectrum is used to differentiate among the two signals. The energy based method is applied by limiting the amplitude of the velocity...... spectrum function to a predetermined threshold. The effect of the clutter filtering is evaluated on a plane wave (PW) scan sequence in combination with transverse oscillation (TO) and directional beamforming (DB) for velocity estimation. The performance of the filter is assessed by comparison...
The Redox Flow System for solar photovoltaic energy storage
Odonnell, P.; Gahn, R. F.; Pfeiffer, W.
1976-01-01
The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.
Flow dynamics and energy efficiency of flow in the left ventricle during myocardial infarction.
Vasudevan, Vivek; Low, Adriel Jia Jun; Annamalai, Sarayu Parimal; Sampath, Smita; Poh, Kian Keong; Totman, Teresa; Mazlan, Muhammad; Croft, Grace; Richards, A Mark; de Kleijn, Dominique P V; Chin, Chih-Liang; Yap, Choon Hwai
2017-10-01
Cardiovascular disease is a leading cause of death worldwide, where myocardial infarction (MI) is a major category. After infarction, the heart has difficulty providing sufficient energy for circulation, and thus, understanding the heart's energy efficiency is important. We induced MI in a porcine animal model via circumflex ligation and acquired multiple-slice cine magnetic resonance (MR) images in a longitudinal manner-before infarction, and 1 week (acute) and 4 weeks (chronic) after infarction. Computational fluid dynamic simulations were performed based on MR images to obtain detailed fluid dynamics and energy dynamics of the left ventricles. Results showed that energy efficiency flow through the heart decreased at the acute time point. Since the heart was observed to experience changes in heart rate, stroke volume and chamber size over the two post-infarction time points, simulations were performed to test the effect of each of the three parameters. Increasing heart rate and stroke volume were found to significantly decrease flow energy efficiency, but the effect of chamber size was inconsistent. Strong complex interplay was observed between the three parameters, necessitating the use of non-dimensional parameterization to characterize flow energy efficiency. The ratio of Reynolds to Strouhal number, which is a form of Womersley number, was found to be the most effective non-dimensional parameter to represent energy efficiency of flow in the heart. We believe that this non-dimensional number can be computed for clinical cases via ultrasound and hypothesize that it can serve as a biomarker for clinical evaluations.
Analysis of energy flow during playground surface impacts.
Davidson, Peter L; Wilson, Suzanne J; Chalmers, David J; Wilson, Barry D; Eager, David; McIntosh, Andrew S
2013-10-01
The amount of energy dissipated away from or returned to a child falling onto a surface will influence fracture risk but is not considered in current standards for playground impact-attenuating surfaces. A two-mass rheological computer simulation was used to model energy flow within the wrist and surface during hand impact with playground surfaces, and the potential of this approach to provide insights into such impacts and predict injury risk examined. Acceleration data collected on-site from typical playground surfaces and previously obtained data from children performing an exercise involving freefalling with a fully extended arm provided input. The model identified differences in energy flow properties between playground surfaces and two potentially harmful surface characteristics: more energy was absorbed by (work done on) the wrist during both impact and rebound on rubber surfaces than on bark, and rubber surfaces started to rebound (return energy to the wrist) while the upper limb was still moving downward. Energy flow analysis thus provides information on playground surface characteristics and the impact process, and has the potential to identify fracture risks, inform the development of safer impact-attenuating surfaces, and contribute to development of new energy-based arm fracture injury criteria and tests for use in conjunction with current methods.
Constraining Born-Infeld-like nonlinear electrodynamics using hydrogen's ionization energy
Energy Technology Data Exchange (ETDEWEB)
Akmansoy, P.N. [Universidade Federal do Rio Grande do Norte, Departamento de Fisica Teorica e Experimental, Natal (Brazil); Medeiros, L.G. [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil); Universidade Federal do Rio Grande do Norte, Escola de Ciencia e Tecnologia, Natal, RN (Brazil)
2018-02-15
In this work, the hydrogen's ionization energy was used to constrain the free parameter b of three Born-Infeld-like electrodynamics namely Born-Infeld itself, Logarithmic electrodynamics and Exponential electrodynamics. An analytical methodology capable of calculating the hydrogen ground state energy level correction for a generic nonlinear electrodynamics was developed. Using the experimental uncertainty in the ground state energy of the hydrogen atom, the bound b > 5.37 x 10{sup 20}K(V)/(m), where K = 2, 4√(2)/3 and √(π) for the Born-Infeld, Logarithmic and Exponential electrodynamics respectively, was established. In the particular case of Born-Infeld electrodynamics, the constraint found for b was compared with other constraints present in the literature. (orig.)
Lin, Zhiming; Yang, Jin; Zhao, Jiangxin; Zhao, Nian; Liu, Jun; Wen, Yumei; Li, Ping
2016-07-01
In this work, we present a multimodal wideband vibration energy harvester designed to scavenge energy from ambient vibrations over a wide frequency range. The harvester consists of a folded cantilever, three magnetoelectric (ME) transducers, and two magnetic circuits. The folded cantilever enables multi-resonant response formed by bending of each stage, and the nonlinear magnetic forces acting on the folded cantilever beam allow further broadening of the frequency response. We also investigate the effects of the position of the ME transducer on the electrical output in order to achieve optimal performance. The experimental results show that the vibration energy harvester exhibited three resonance peaks in a range of 5 Hz to 30 Hz, a wider working bandwidth of 10.1 Hz, and a maximum average power value of 31.58 μW at an acceleration of 0.6 g (with g = 9.8 m/s2).
Burgess, M. M.
1986-09-01
Six heat flow measurement sites were occupied in June 1980 in a 10 x 10 km 2 flat area of the southern Sohm Abyssal Plain, western North Atlantic Ocean. Non-linear sediment temperature profiles, measured to depths of 5 m, indicate perturbations in the temperature field in sediments overlying 90 Ma ocean floor. Temperature gradients average 59.0 mK m -1 in the lower half of the profile and decrease by 25% to an average of 44.24 mK m -1 in the upper half. Thermal conductivities of sediment cores down to 12 m ranged from 0.74 to 2.12 W m -1 K -1 and averaged 1.06 W m -1K -1. The non-linearity of sediment temperature profiles cannot be accounted for by the variations in thermal conductivity. Vertical fluid convection in the sediments, with a predominantly downward migration on the order of 5 x 10 -8 ms -1 in the upper 3 m, could explain the perturbations. However, in this study area of high abyssal kinetic energy and abyssal storms, bottom-water temperature fluctuations are the likely source of observed sediment temperature perturbations. A bottom-water temperature change of 50 mK occurring 3 months prior to the cruise could produce sediment temperature perturbations similar to those observed. Heat flow determined from the lower gradient (3-5 m sediment depth interval), assuming the non-linearity in the upper sensors to be principally due to bottom-water temperature fluctuations, averages 59.2 mW m -2, a slightly higher value than that predicted for 90 Ma crust.
Directory of Open Access Journals (Sweden)
Claudio Maruccio
2018-01-01
Full Text Available An effective hybrid computational framework is described here in order to assess the nonlinear dynamic response of piezoelectric energy harvesting devices. The proposed strategy basically consists of two steps. First, fully coupled multiphysics finite element (FE analyses are performed to evaluate the nonlinear static response of the device. An enhanced reduced-order model is then derived, where the global dynamic response is formulated in the state-space using lumped coefficients enriched with the information derived from the FE simulations. The electromechanical response of piezoelectric beams under forced vibrations is studied by means of the proposed approach, which is also validated by comparing numerical predictions with some experimental results. Such numerical and experimental investigations have been carried out with the main aim of studying the influence of material and geometrical parameters on the global nonlinear response. The advantage of the presented approach is that the overall computational and experimental efforts are significantly reduced while preserving a satisfactory accuracy in the assessment of the global behavior.
International Nuclear Information System (INIS)
Yamamoto, K; Fujita, T; Kanda, K; Maenaka, K; Badel, A; Formosa, F
2014-01-01
In this study, the improvement of energy harvesting from wideband vibration with random change by using a combination of linear and nonlinear spring system is investigated. The system consists of curved beam spring for non-linear buckling, which supports the linear mass-spring resonator. Applying shock acceleration generates a snap through action to the buckling spring. From the FEM analysis, we showed that the snap through acceleration from the buckling action has no relationship with the applied shock amplitude and duration. We use this uniform acceleration as an impulse shock source for the linear resonator. It is easy to obtain the maximum shock response from the uniform snap through acceleration by using a shock response spectrum (SRS) analysis method. At first we investigated the relationship between the snap-through behaviour and an initial curved deflection. Then a time response result for non-linear springs with snap through and minimum force that makes a buckling behaviour were obtained by FEM analysis. By obtaining the optimum SRS frequency for linear resonator, we decided its resonant frequency with the MATLAB simulator
Energy Cascade Analysis: from Subscale Eddies to Mean Flow
Cheikh, Mohamad Ibrahim; Wonnell, Louis; Chen, James
2017-11-01
Understanding the energy transfer between eddies and mean flow can provide insights into the energy cascade process. Much work has been done to investigate the energy cascade at the level of the smallest eddies using different numerical techniques derived from the Navier-Stokes equations. These methodologies, however, prove to be computationally inefficient when producing energy spectra for a wide range of length scales. In this regard, Morphing Continuum Theory (MCT) resolves the length-scales issues by assuming the fluid continuum to be composed of inner structures that play the role of subscale eddies. The current study show- cases the capabilities of MCT in capturing the dynamics of energy cascade at the level of subscale eddies, through a supersonic turbulent flow of Mach 2.93 over an 8× compression ramp. Analysis of the results using statistical averaging procedure shows the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding rotational kinetic energy of the subscale eddies, indicating a multiscale transfer of energy. The results show that MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.
International Nuclear Information System (INIS)
Hau, Jan-Niklas; Oberlack, Martin; Chagelishvili, George; Khujadze, George; Tevzadze, Alexander
2015-01-01
Aerodynamic sound generation in shear flows is investigated in the light of the breakthrough in hydrodynamics stability theory in the 1990s, where generic phenomena of non-normal shear flow systems were understood. By applying the thereby emerged short-time/non-modal approach, the sole linear mechanism of wave generation by vortices in shear flows was captured [G. D. Chagelishvili, A. Tevzadze, G. Bodo, and S. S. Moiseev, “Linear mechanism of wave emergence from vortices in smooth shear flows,” Phys. Rev. Lett. 79, 3178-3181 (1997); B. F. Farrell and P. J. Ioannou, “Transient and asymptotic growth of two-dimensional perturbations in viscous compressible shear flow,” Phys. Fluids 12, 3021-3028 (2000); N. A. Bakas, “Mechanism underlying transient growth of planar perturbations in unbounded compressible shear flow,” J. Fluid Mech. 639, 479-507 (2009); and G. Favraud and V. Pagneux, “Superadiabatic evolution of acoustic and vorticity perturbations in Couette flow,” Phys. Rev. E 89, 033012 (2014)]. Its source is the non-normality induced linear mode-coupling, which becomes efficient at moderate Mach numbers that is defined for each perturbation harmonic as the ratio of the shear rate to its characteristic frequency. Based on the results by the non-modal approach, we investigate a two-dimensional homentropic constant shear flow and focus on the dynamical characteristics in the wavenumber plane. This allows to separate from each other the participants of the dynamical processes — vortex and wave modes — and to estimate the efficacy of the process of linear wave-generation. This process is analyzed and visualized on the example of a packet of vortex modes, localized in both, spectral and physical, planes. Further, by employing direct numerical simulations, the wave generation by chaotically distributed vortex modes is analyzed and the involved linear and nonlinear processes are identified. The generated acoustic field is anisotropic in the wavenumber
An energy-saving nonlinear position control strategy for electro-hydraulic servo systems.
Baghestan, Keivan; Rezaei, Seyed Mehdi; Talebi, Heidar Ali; Zareinejad, Mohammad
2015-11-01
The electro-hydraulic servo system (EHSS) demonstrates numerous advantages in size and performance compared to other actuation methods. Oftentimes, its utilization in industrial and machinery settings is limited by its inferior efficiency. In this paper, a nonlinear backstepping control algorithm with an energy-saving approach is proposed for position control in the EHSS. To achieve improved efficiency, two control valves including a proportional directional valve (PDV) and a proportional relief valve (PRV) are used to achieve the control objectives. To design the control algorithm, the state space model equations of the system are transformed to their normal form and the control law through the PDV is designed using a backstepping approach for position tracking. Then, another nonlinear set of laws is derived to achieve energy-saving through the PRV input. This control design method, based on the normal form representation, imposes internal dynamics on the closed-loop system. The stability of the internal dynamics is analyzed in special cases of operation. Experimental results verify that both tracking and energy-saving objectives are satisfied for the closed-loop system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage
Energy Technology Data Exchange (ETDEWEB)
None
2010-10-01
GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.
Natural Regulation of Energy Flow in a Green Quantum Photocell
Arp, Trevor B.; Barlas, Yafis; Aji, Vivek; Gabor, Nathaniel M.
2015-01-01
Manipulating the flow of energy in nanoscale and molecular photonic devices is of both fundamental interest and central importance for applications in light harvesting optoelectronics. Under erratic solar irradiance conditions, unregulated power fluctuations in a light harvesting photocell lead to inefficient energy storage in conventional solar cells and potentially fatal oxidative damage in photosynthesis. Here, we show that regulation against these fluctuations arises naturally within a tw...
Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei
2016-07-01
Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.
Energy Distribution of a Regular Black Hole Solution in Einstein-Nonlinear Electrodynamics
Directory of Open Access Journals (Sweden)
I. Radinschi
2015-01-01
Full Text Available A study about the energy momentum of a new four-dimensional spherically symmetric, static and charged, regular black hole solution developed in the context of general relativity coupled to nonlinear electrodynamics is presented. Asymptotically, this new black hole solution behaves as the Reissner-Nordström solution only for the particular value μ=4, where μ is a positive integer parameter appearing in the mass function of the solution. The calculations are performed by use of the Einstein, Landau-Lifshitz, Weinberg, and Møller energy momentum complexes. In all the aforementioned prescriptions, the expressions for the energy of the gravitating system considered depend on the mass M of the black hole, its charge q, a positive integer α, and the radial coordinate r. In all these pseudotensorial prescriptions, the momenta are found to vanish, while the Landau-Lifshitz and Weinberg prescriptions give the same result for the energy distribution. In addition, the limiting behavior of the energy for the cases r→∞, r→0, and q=0 is studied. The special case μ=4 and α=3 is also examined. We conclude that the Einstein and Møller energy momentum complexes can be considered as the most reliable tools for the study of the energy momentum localization of a gravitating system.
Minimum Energy Dissipation under Cocurrent Flow in Packed Beds
Czech Academy of Sciences Publication Activity Database
Akramov, T.A.; Stavárek, Petr; Jiřičný, Vladimír; Staněk, Vladimír
2011-01-01
Roč. 50, č. 18 (2011), s. 10824-10832 ISSN 0888-5885 R&D Projects: GA ČR GA104/09/0880 Institutional research plan: CEZ:AV0Z40720504 Keywords : energy dissipation * current flow * packed bed Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.237, year: 2011
Energy fluxes and spectra for turbulent and laminar flows
Verma, Mahendra K.; Kumar, Abhishek; Kumar, Praveen; Barman, Satyajit; Chatterjee, Anando G.; Samtaney, Ravi
2017-01-01
spectrum $E(k)$ and energy flux $\\Pi(k)$ using spectral simulations on grids up to $4096^3$, and show consistency between the numerical results and predictions by the aforementioned models. We also construct a model for laminar flows that predicts $E(k
Sui, Jize; Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin
2017-02-01
The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized "n-diffusion theory," which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter K 0 introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system.
Energy Demodulation Algorithm for Flow Velocity Measurement of Oil-Gas-Water Three-Phase Flow
Directory of Open Access Journals (Sweden)
Yingwei Li
2014-01-01
Full Text Available Flow velocity measurement was an important research of oil-gas-water three-phase flow parameter measurements. In order to satisfy the increasing demands for flow detection technology, the paper presented a gas-liquid phase flow velocity measurement method which was based on energy demodulation algorithm combing with time delay estimation technology. First, a gas-liquid phase separation method of oil-gas-water three-phase flow based on energy demodulation algorithm and blind signal separation technology was proposed. The separation of oil-gas-water three-phase signals which were sampled by conductance sensor performed well, so the gas-phase signal and the liquid-phase signal were obtained. Second, we used the time delay estimation technology to get the delay time of gas-phase signals and liquid-phase signals, respectively, and the gas-phase velocity and the liquid-phase velocity were derived. At last, the experiment was performed at oil-gas-water three-phase flow loop, and the results indicated that the measurement errors met the need of velocity measurement. So it provided a feasible method for gas-liquid phase velocity measurement of the oil-gas-water three-phase flow.
Vibration Control of Structures using Vibro-Impact Nonlinear Energy Sinks
Directory of Open Access Journals (Sweden)
M. Ahmadi
2016-09-01
Full Text Available Using Vibro-Impact Nonlinear Energy Sinks (VI NESs is one of the novel strategies to control structural vibrations and mitigate their seismic response. In this system, a mass is tuned on the structure floor, so that it has a specific distance from an inelastic constraint connected to the floor mass. In case of structure stimulation, the displaced VI NES mass collides with the inelastic constraint and upon impacts, energy is dissipated. In the present work, VI NES is studied when its parameters, including clearance and stiffness ratio, are simultaneously optimized. Harmony search as a recent meta-heuristic algorithm is efficiently specialized and utilized for the aforementioned continuous optimization problem. The optimized attached VI NES is thus shown to be capable of interacting with the primary structure over a wide range of frequencies. The resulting controlled response is then investigated, in a variety of low and medium rise steel moment frames, via nonlinear dynamic time history analyses. Capability of the VI NES to dissipate siesmic input energy of earthquakes and their capabilitiy in reducing response of srtructures effectively, through vibro-impacts between the energy sink’s mass and the floor mass, is discussed by extracting several performance indices and the corresponding Fourier spectra. Results of the numerical simulations done on some structural model examples reveal that the optimized VI NES has caused successive redistribution of energy from low-frequency high-amplitude vibration modes to high-frequency low-amplitude modes, bringing about the desired attenuation of the structural responses.
Pulsatile blood flow, shear force, energy dissipation and Murray's Law
Directory of Open Access Journals (Sweden)
Bengtsson Hans-Uno
2006-08-01
Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.
Is more always better? The nonlinear relationship between energy consumption and wellbeing
Vaughan Winfrey, Elise Marie
Policymakers today face rapidly expanding world populations, increasing evidence of environmental degradation and climate change, and mounting economic crises. In this context, they are grappling with the challenge of balancing environmental concerns, economic viability, and the wellbeing of their citizens. Because energy consumption has both positive and negative wellbeing implications, it is unclear whether societal goals to raise standards of living through energy-intensive lifestyles conflict with the social, economic, environmental, and health dimensions of broader wellbeing aspirations. Though there has been a significant amount of research on the long-run environmental consequences of increasing aggregate world energy demand, there is a lack of direct evidence on the relationship between energy consumption and wellbeing. This paper attempts to improve our understanding of the net wellbeing consequences of energy consumption. Specifically, it examines whether there is a nonlinear relationship between per capita energy consumption, as measured alternatively by CO2 emissions (metric tons per capita), electricity consumption (kWh per capita), and total energy consumption (kg of oil equivalent per capita), and wellbeing, as measured by individual life satisfaction aggregated at the country level. Panel and cross-sectional regression analyses are conducted using data from the Gallup World Poll (GWP), integrated European and World Values Surveys (WVS-EVS), and the World Bank DataBank (WBDB). Despite the classic economic assumption that more is always better, this analysis indicates that increasing energy consumption is not always associated with wellbeing improvements. The empirical results provide some suggestive evidence that life satisfaction gains associated with energy consumption may eventually be counterbalanced by the related human and environmental costs. This is valuable information for policymakers trying to balance environmental, energy-security, and
The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use
Chinhao Chong; Weidou Ni; Linwei Ma; Pei Liu; Zheng Li
2015-01-01
Malaysia is a rapidly developing country in Southeast Asia that aims to achieve high-income country status by 2020; its economic growth is highly dependent on its abundant energy resources, especially natural gas and crude oil. In this paper, a complete picture of Malaysia’s energy use from primary source to end use is presented by mapping a Sankey diagram of Malaysia’s energy flows, together with ongoing trends analysis of the main factors influencing the energy flows. The results indicate t...
International Nuclear Information System (INIS)
Huang, B.-N.; Hwang, M.J.; Yang, C.W.
2008-01-01
This paper separates data extending from 1971 to 2002 into the energy crisis period (1971-1980) and the post-energy crisis period (1981-2000) for 82 countries. The cross-sectional data (yearly averages) in these two periods are used to investigate the nonlinear relationships between energy consumption growth and economic growth when threshold variables are used. If threshold variables are higher than certain optimal threshold levels, there is either no significant relationship or else a significant negative relationship between energy consumption and economic growth. However, when these threshold variables are lower than certain optimal levels, there is a significant positive relationship between the two. In 48 out of the 82 countries studied, none of the four threshold variables is found to be higher than the optimal levels. It is inferred that these 48 countries should adopt a more aggressive energy policy. As for the other 34 countries, at least one threshold variable is higher than the optimal threshold level and thus these countries should adopt energy policies with varying degrees of conservation based on the number of threshold variables that are higher than the optimal threshold levels
MHD flow of Powell-Eyring nanofluid over a non-linear stretching sheet with variable thickness
Directory of Open Access Journals (Sweden)
T. Hayat
Full Text Available This research explores the magnetohydrodynamic (MHD boundary layer flow of Powell-Eyring nanofluid past a non-linear stretching sheet of variable thickness. An electrically conducting fluid is considered under the characteristics of magnetic field applied transverse to the sheet. The mathematical expressions are accomplished via boundary layer access, Brownian motion and thermophoresis phenomena. The flow analysis is subjected to a recently established conditions requiring zero nanoparticles mass flux. Adequate transformations are implemented for the reduction of partial differential systems to the ordinary differential systems. Series solutions for the governing nonlinear flow of momentum, temperature and nanoparticles concentration have been executed. Physical interpretation of numerous parameters is assigned by graphical illustrations and tabular values. Moreover the numerical data of drag coefficient and local heat transfer rate are executed and discussed. It is investigated that higher wall thickness parameter results in the reduction of velocity distribution. Effects of thermophoresis parameter on temperature and concentration profiles are qualitatively similar. Both the temperature and concentration profiles are enhanced for higher values of thermophoresis parameter. Keywords: MHD, Variable thicked surface, Powell-Eyring nanofluid, Zero mass flux conditions
Detecting nonlinearity in time series driven by non-Gaussian noise: the case of river flows
Directory of Open Access Journals (Sweden)
F. Laio
2004-01-01
Full Text Available Several methods exist for the detection of nonlinearity in univariate time series. In the present work we consider riverflow time series to infer the dynamical characteristics of the rainfall-runoff transformation. It is shown that the non-Gaussian nature of the driving force (rainfall can distort the results of such methods, in particular when surrogate data techniques are used. Deterministic versus stochastic (DVS plots, conditionally applied to the decay phases of the time series, are instead proved to be a suitable tool to detect nonlinearity in processes driven by non-Gaussian (Poissonian noise. An application to daily discharges from three Italian rivers provides important clues to the presence of nonlinearity in the rainfall-runoff transformation.
International Nuclear Information System (INIS)
Kushner, Harold J.
2012-01-01
This is the second part of a work dealing with key issues that have not been addressed in the modeling and numerical optimization of nonlinear stochastic delay systems. We consider new classes of models, such as those with nonlinear functions of several controls (such as products), each with is own delay, controlled random Poisson measure driving terms, admissions control with delayed retrials, and others. Part I was concerned with issues concerning the class of admissible controls and their approximations, since the classical definitions are inadequate for our models. This part is concerned with transportation equation representations and their approximations. Such representations of nonlinear stochastic delay models have been crucial in the development of numerical algorithms with much reduced memory and computational requirements. The representations for the new models are not obvious and are developed. They also provide a template for the adaptation of the Markov chain approximation numerical methods.
Management of Energy Flows in Low-temperature Separation Units
Directory of Open Access Journals (Sweden)
Trishyn F.A.
2018-04-01
Full Text Available . The aim of this work is to study the effect of medium and low power ultrasound on the crystallization and separation processes. A thesis about the importance of using thermal energy converters in separation units has been suggested. The prospects of desalination freezing units and ways of their improvement have been justified. Based on the system analysis, the energy flows in an ice recycling facility have been considered. For the first time, the overall energy efficiency estimation technique based on the hypothesis of direct and reverse energy flows has been proposed. The new results on the effect of ultrasonic fields on the separation and crystallization process have been obtained. It has been proved that the use of ultrasonic field is effective in controlling the energy flows during block freezing. It has been established that the salt content in the ice block is reduced by 2-3 times. The relationship between the ice block separation kinetics and the power and frequency has been determined. The similarity theory methods have been used to summarize the experimental data obtained. The criterion models have been presented to calculate the block porosity and the filtration rate. It has been established that the Euler wavenumber modified by the authors successfully generalizes the databases of the experimental findings. Using the numerical simulation methods, the thermal field in the block which depends on its porosity has been established. The results of the simulation have been presented in the form of a nomogram.
Nonlinear bound on unstable field energy in relativistic electron beams and plasmas
International Nuclear Information System (INIS)
Davidson, R.C.; Yoon, P.H.
1989-01-01
This paper makes use of Fowler's method [J. Math Phys. 4, 559 (1963)] to determine the nonlinear thermodynamic bound on field energy in unstable plasmas or electron beams in which the electrons are relativistic. Treating the electrons as the only active plasma component, the nonlinear Vlasov--Maxwell equations and the associated global conservation constraints are used to calculate the lowest upper bound on the field energy [ΔE-script/sub F/]/sub max/ that can evolve for the general initial electron distribution function f/sub b//sub / 0 equivalentf/sub b/(x,p,0). The results are applied to three choices of the initial distribution function f/sub b//sub / 0 . Two of the distribution functions have an inverted population in momentum p/sub perpendicular/ perpendicular to the magnetic field B 0 e/sub z/, and the third distribution function reduces to a bi-Maxwellian in the nonrelativistic limit. The lowest upper bound on the efficiency of radiation generation, eta/sub max/ = [ΔE-script/sub F/]/sub max//[V -1 ∫ d 3 x∫ d 3 p(γ-1)mc 2 f/sub b//sub / 0 ], is calculated numerically over a wide range of system parameters for varying degrees of initial anisotropy
Jusoh, Rahimah; Nazar, Roslinda
2018-04-01
The magnetohydrodynamic (MHD) stagnation point flow and heat transfer of an electrically conducting nanofluid over a nonlinear stretching/shrinking sheet is studied numerically. Mathematical modelling and analysis are attended in the presence of viscous dissipation. Appropriate similarity transformations are used to reduce the boundary layer equations for momentum, energy and concentration into a set of ordinary differential equations. The reduced equations are solved numerically using the built in bvp4c function in Matlab. The numerical and graphical results on the effects of various parameters on the velocity and temperature profiles as well as the skin friction coefficient and the local Nusselt number are analyzed and discussed in this paper. The study discovers the existence of dual solutions for a certain range of the suction parameter. The conducted stability analysis reveals that the first solution is stable and feasible, while the second solution is unstable.
Directory of Open Access Journals (Sweden)
Wubshet Ibrahim
2015-12-01
Full Text Available Two-dimensional boundary layer flow of nanofluid fluid past a stretching sheet is examined. The paper reveals the effect of non-linear radiative heat transfer on magnetohydrodynamic (MHD stagnation point flow past a stretching sheet with convective heating. Condition of zero normal flux of nanoparticles at the wall for the stretched flow is considered. The nanoparticle fractions on the boundary are considered to be passively controlled. The solution for the velocity, temperature and nanoparticle concentration depends on parameters viz. Prandtl number Pr, velocity ratio parameter A, magnetic parameter M, Lewis number Le, Brownian motion Nb, and the thermophoresis parameter Nt. Moreover, the problem is governed by temperature ratio parameter (Nr=TfT∞ and radiation parameter Rd. Similarity transformation is used to reduce the governing non-linear boundary-value problems into coupled higher order non-linear ordinary differential equation. These equations were numerically solved using the function bvp4c from the matlab software for different values of governing parameters. Numerical results are obtained for velocity, temperature and concentration, as well as the skin friction coefficient and local Nusselt number. The results indicate that the skin friction coefficient Cf increases as the values of magnetic parameter M increase and decreases as the values of velocity ratio parameter A increase. The local Nusselt number −θ′(0 decreases as the values of thermophoresis parameter Nt and radiation parameter Nr increase and it increases as the values of both Biot number Bi and Prandtl number Pr increase. Furthermore, radiation has a positive effect on temperature and concentration profiles.
Optimization of Thermal Object Nonlinear Control Systems by Energy Efficiency Criterion.
Velichkin, Vladimir A.; Zavyalov, Vladimir A.
2018-03-01
This article presents the results of thermal object functioning control analysis (heat exchanger, dryer, heat treatment chamber, etc.). The results were used to determine a mathematical model of the generalized thermal control object. The appropriate optimality criterion was chosen to make the control more energy-efficient. The mathematical programming task was formulated based on the chosen optimality criterion, control object mathematical model and technological constraints. The “maximum energy efficiency” criterion helped avoid solving a system of nonlinear differential equations and solve the formulated problem of mathematical programming in an analytical way. It should be noted that in the case under review the search for optimal control and optimal trajectory reduces to solving an algebraic system of equations. In addition, it is shown that the optimal trajectory does not depend on the dynamic characteristics of the control object.
Latest astronomical constraints on some non-linear parametric dark energy models
Yang, Weiqiang; Pan, Supriya; Paliathanasis, Andronikos
2018-04-01
We consider non-linear redshift-dependent equation of state parameters as dark energy models in a spatially flat Friedmann-Lemaître-Robertson-Walker universe. To depict the expansion history of the universe in such cosmological scenarios, we take into account the large-scale behaviour of such parametric models and fit them using a set of latest observational data with distinct origin that includes cosmic microwave background radiation, Supernove Type Ia, baryon acoustic oscillations, redshift space distortion, weak gravitational lensing, Hubble parameter measurements from cosmic chronometers, and finally the local Hubble constant from Hubble space telescope. The fitting technique avails the publicly available code Cosmological Monte Carlo (COSMOMC), to extract the cosmological information out of these parametric dark energy models. From our analysis, it follows that those models could describe the late time accelerating phase of the universe, while they are distinguished from the Λ-cosmology.
Bardhan, Jaydeep P; Knepley, Matthew G
2014-10-07
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory after replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for: (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley "bracelet" and "rod" test problems [D. L. Mobley, A. E. Barber II, C. J. Fennell, and K. A. Dill, "Charge asymmetries in hydration of polar solutes," J. Phys. Chem. B 112, 2405-2414 (2008)]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry.
International Nuclear Information System (INIS)
Bardhan, Jaydeep P.; Knepley, Matthew G.
2014-01-01
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory after replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for: (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley “bracelet” and “rod” test problems [D. L. Mobley, A. E. Barber II, C. J. Fennell, and K. A. Dill, “Charge asymmetries in hydration of polar solutes,” J. Phys. Chem. B 112, 2405–2414 (2008)]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry
Bardhan, Jaydeep P.; Knepley, Matthew G.
2014-01-01
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory after replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for: (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley “bracelet” and “rod” test problems [D. L. Mobley, A. E. Barber II, C. J. Fennell, and K. A. Dill, “Charge asymmetries in hydration of polar solutes,” J. Phys. Chem. B 112, 2405–2414 (2008)]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry. PMID:25296776
Energy Technology Data Exchange (ETDEWEB)
Bardhan, Jaydeep P. [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); Knepley, Matthew G. [Computation Institute, The University of Chicago, Chicago, Illinois 60637 (United States)
2014-10-07
We show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory after replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for: (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley “bracelet” and “rod” test problems [D. L. Mobley, A. E. Barber II, C. J. Fennell, and K. A. Dill, “Charge asymmetries in hydration of polar solutes,” J. Phys. Chem. B 112, 2405–2414 (2008)]. Remarkably, the model also justifies the use of linear response expressions for charging free energies. Our boundary-element method implementation demonstrates the ease with which other continuum-electrostatic solvers can be extended to include asymmetry.
International Nuclear Information System (INIS)
R Paul Drake
2004-01-01
OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves
Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan
2018-05-01
This study investigated the influence of the non-linearly stretching/shrinking sheet on the boundary layer flow and heat transfer. A proper similarity transformation simplified the system of partial differential equations into a system of ordinary differential equations. This system of similarity equations is then solved numerically by using the bvp4c function in the MATLAB software. The generated numerical results presented graphically and discussed in the relevance of the governing parameters. Dual solutions found as the sheet stretched and shrunk in the horizontal direction. Stability analysis showed that the first solution is physically realizable whereas the second solution is not practicable.
Czech Academy of Sciences Publication Activity Database
Kosík, Adam; Feistauer, M.; Hadrava, Martin; Horáček, Jaromír
2015-01-01
Roč. 267, September (2015), s. 382-396 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : discontinuous Galerkin method * nonlinear elasticity * compressible viscous flow * fluid–structure interaction Subject RIV: BI - Acoustics Impact factor: 1.345, year: 2015 http://www.sciencedirect.com/science/article/pii/S0096300315002453/pdfft?md5=02d46bc730e3a7fb8a5008aaab1da786&pid=1-s2.0-S0096300315002453-main.pdf
DEFF Research Database (Denmark)
Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen
2011-01-01
This paper presents a new method for computation of the nonlinear flux linkage in 3-D finite-element models (FEMs) of electrical machines. Accurate computation of the nonlinear flux linkage in 3-D FEM is not an easy task. Compared to the existing energy-perturbation method, the new technique......-perturbation method. The new method proposed is validated using experimental results on two different permanent magnet machines....
Energy flow of electric dipole radiation in between parallel mirrors
Xu, Zhangjin; Arnoldus, Henk F.
2017-11-01
We have studied the energy flow patterns of the radiation emitted by an electric dipole located in between parallel mirrors. It appears that the field lines of the Poynting vector (the flow lines of energy) can have very intricate structures, including many singularities and vortices. The flow line patterns depend on the distance between the mirrors, the distance of the dipole to one of the mirrors and the angle of oscillation of the dipole moment with respect to the normal of the mirror surfaces. Already for the simplest case of a dipole moment oscillating perpendicular to the mirrors, singularities appear at regular intervals along the direction of propagation (parallel to the mirrors). For a parallel dipole, vortices appear in the neighbourhood of the dipole. For a dipole oscillating under a finite angle with the surface normal, the radiating tends to swirl around the dipole before travelling off parallel to the mirrors. For relatively large mirror separations, vortices appear in the pattern. When the dipole is off-centred with respect to the midway point between the mirrors, the flow line structure becomes even more complicated, with numerous vortices in the pattern, and tiny loops near the dipole. We have also investigated the locations of the vortices and singularities, and these can be found without any specific knowledge about the flow lines. This provides an independent means of studying the propagation of dipole radiation between mirrors.
Nonlinear forecasting of stream flows using a chaotic approach and artificial neural networks
Directory of Open Access Journals (Sweden)
Hakan Tongal
2013-07-01
Full Text Available This paper evaluates the forecasting performance of two nonlinear models, k-nearest neighbor (kNN and feed-forward neural networks (FFNN, using stream flow data of the Kızılırmak River, the longest river in Turkey. For the kNN model, the required parameters are delay time, number of nearest neigh- bors and embedding dimension. The optimal delay time was obtained with the mutual information function; the number of nearest neighbors was obtained with the optimization process that minimi- zes RMSE as a function of the neighbor number and the embedding dimension was obtained with the correlation dimension method. The correlation dimension of the Kızılırmak River was d = 2.702, which was used in forming the input structure of the FFNN. The nearest integer above the correlation dimension (i.e., 3 provided the minimal number of required variables to characterize the system, and the maximum number of required variables was obtained with the nearest integer above the value 2d + 1 (Takens, 1981 (i.e., 7. Two FFNN models were developed that incorporate 3 and 7 lagged discharge values and the predicted performance compared to that of the kNN model. The results showed that the kNN model was superior to the FFNN model in stream flow forecasting. However, as a result from the kNN model structure, the model failed in the prediction of peak values. Additionally, it was found that the correlation dimension (if it existed could successfully be used in time series where the determina- tion of the input structure is difficult because of high inter-dependency, as in stream flow time series. Resumen Este trabajo evalúa el desempeño de pronóstico de dos modelos no lineares, de método de clasificación no paramétrico kNN y de redes neuronales con alimentación avanzada (FNNN, usando datos de flujo del río Kizilirmak, el mayor de Turquía. Para el modelo kNN, los parámetros requeridos son tiempo de retraso, número de vecindarios cercanos y dimensión de
Verniero, J. L.; Howes, G. G.; Klein, K. G.
2018-02-01
In space and astrophysical plasmas, turbulence is responsible for transferring energy from large scales driven by violent events or instabilities, to smaller scales where turbulent energy is ultimately converted into plasma heat by dissipative mechanisms. The nonlinear interaction between counterpropagating Alfvén waves, denoted Alfvén wave collisions, drives this turbulent energy cascade, as recognized by early work with incompressible magnetohydrodynamic (MHD) equations. Recent work employing analytical calculations and nonlinear gyrokinetic simulations of Alfvén wave collisions in an idealized periodic initial state have demonstrated the key properties that strong Alfvén wave collisions mediate effectively the transfer of energy to smaller perpendicular scales and self-consistently generate current sheets. For the more realistic case of the collision between two initially separated Alfvén wavepackets, we use a nonlinear gyrokinetic simulation to show here that these key properties persist: strong Alfvén wavepacket collisions indeed facilitate the perpendicular cascade of energy and give rise to current sheets. Furthermore, the evolution shows that nonlinear interactions occur only while the wavepackets overlap, followed by a clean separation of the wavepackets with straight uniform magnetic fields and the cessation of nonlinear evolution in between collisions, even in the gyrokinetic simulation presented here which resolves dispersive and kinetic effects beyond the reach of the MHD theory.
International Nuclear Information System (INIS)
Beretta, Gian Paolo
2006-01-01
We discuss a nonlinear model for relaxation by energy redistribution within an isolated, closed system composed of noninteracting identical particles with energy levels e i with i=1,2,...,N. The time-dependent occupation probabilities p i (t) are assumed to obey the nonlinear rate equations τ dp i /dt=-p i ln p i -α(t)p i -β(t)e i p i where α(t) and β(t) are functionals of the p i (t)'s that maintain invariant the mean energy E=Σ i=1 N e i p i (t) and the normalization condition 1=Σ i=1 N p i (t). The entropy S(t)=-k B Σ i=1 N p i (t)ln p i (t) is a nondecreasing function of time until the initially nonzero occupation probabilities reach a Boltzmann-like canonical distribution over the occupied energy eigenstates. Initially zero occupation probabilities, instead, remain zero at all times. The solutions p i (t) of the rate equations are unique and well defined for arbitrary initial conditions p i (0) and for all times. The existence and uniqueness both forward and backward in time allows the reconstruction of the ancestral or primordial lowest entropy state. By casting the rate equations in terms not of the p i 's but of their positive square roots √(p i ), they unfold from the assumption that time evolution is at all times along the local direction of steepest entropy ascent or, equivalently, of maximal entropy generation. These rate equations have the same mathematical structure and basic features as the nonlinear dynamical equation proposed in a series of papers ending with G. P. Beretta, Found. Phys. 17, 365 (1987) and recently rediscovered by S. Gheorghiu-Svirschevski [Phys. Rev. A 63, 022105 (2001);63, 054102 (2001)]. Numerical results illustrate the features of the dynamics and the differences from the rate equations recently considered for the same problem by M. Lemanska and Z. Jaeger [Physica D 170, 72 (2002)]. We also interpret the functionals k B α(t) and k B β(t) as nonequilibrium generalizations of the thermodynamic-equilibrium Massieu
Architected squirt-flow materials for energy dissipation
Cohen, Tal; Kurzeja, Patrick; Bertoldi, Katia
2017-12-01
In the present study we explore material architectures that lead to enhanced dissipation properties by taking advantage of squirt-flow - a local flow mechanism triggered by heterogeneities at the pore level. While squirt-flow is a known dominant source of dissipation and seismic attenuation in fluid saturated geological materials, we study its untapped potential to be incorporated in highly deformable elastic materials with embedded fluid-filled cavities for future engineering applications. An analytical investigation, that isolates the squirt-flow mechanism from other potential dissipation mechanisms and considers an idealized setting, predicts high theoretical levels of dissipation achievable by squirt-flow and establishes a set of guidelines for optimal dissipation design. Particular architectures are then investigated via numerical simulations showing that a careful design of the internal voids can lead to an increase of dissipation levels by an order of magnitude, compared with equivalent homogeneous void distributions. Therefore, we suggest squirt-flow as a promising mechanism to be incorporated in future architected materials to effectively and reversibly dissipate energy.
Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients
Energy Technology Data Exchange (ETDEWEB)
Pantazis, Sarantis; Naris, Steryios; Tantos, Christos [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); Valougeorgis, Dimitris, E-mail: diva@mie.uth.gr [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); André, Julien; Millet, Francois; Perin, Jean Paul [Service des Basses Températures, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble, F-38054 (France)
2013-10-15
The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced.
Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients
International Nuclear Information System (INIS)
Pantazis, Sarantis; Naris, Steryios; Tantos, Christos; Valougeorgis, Dimitris; André, Julien; Millet, Francois; Perin, Jean Paul
2013-01-01
The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced
Eight energy and material flow characteristics of urban ecosystems.
Bai, Xuemei
2016-11-01
Recent decades have seen an expanding literature exploring urban energy and material flows, loosely branded as urban metabolism analysis. However, this has occurred largely in parallel to the mainstream studies of cities as ecosystems. This paper aims to conceptually bridge these two distinctive fields of research, by (a) identifying the common aspects between them; (b) identifying key characteristics of urban ecosystems that can be derived from energy and material flow analysis, namely energy and material budget and pathways; flow intensity; energy and material efficiency; rate of resource depletion, accumulation and transformation; self-sufficiency or external dependency; intra-system heterogeneity; intersystem and temporal variation; and regulating mechanism and governing capacity. I argue that significant ecological insight can be, or has the potential to be, drawn from the rich and rapidly growing empirical findings of urban metabolism studies to understand the behaviour of cities as human-dominated, complex systems. A closer intellectual linkage and cross pollination between urban metabolism and urban ecosystem studies will advance our scientific understanding and better inform urban policy and management practices.
Hawes, D. H.; Langley, R. S.
2018-01-01
Random excitation of mechanical systems occurs in a wide variety of structures and, in some applications, calculation of the power dissipated by such a system will be of interest. In this paper, using the Wiener series, a general methodology is developed for calculating the power dissipated by a general nonlinear multi-degree-of freedom oscillatory system excited by random Gaussian base motion of any spectrum. The Wiener series method is most commonly applied to systems with white noise inputs, but can be extended to encompass a general non-white input. From the extended series a simple expression for the power dissipated can be derived in terms of the first term, or kernel, of the series and the spectrum of the input. Calculation of the first kernel can be performed either via numerical simulations or from experimental data and a useful property of the kernel, namely that the integral over its frequency domain representation is proportional to the oscillating mass, is derived. The resulting equations offer a simple conceptual analysis of the power flow in nonlinear randomly excited systems and hence assist the design of any system where power dissipation is a consideration. The results are validated both numerically and experimentally using a base-excited cantilever beam with a nonlinear restoring force produced by magnets.
High energy density Z-pinch plasmas using flow stabilization
Energy Technology Data Exchange (ETDEWEB)
Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu; Bowers, C. A., E-mail: shumlak@uw.edu; Doty, S. A., E-mail: shumlak@uw.edu; Forbes, E. G., E-mail: shumlak@uw.edu; Hughes, M. C., E-mail: shumlak@uw.edu; Kim, B., E-mail: shumlak@uw.edu; Knecht, S. D., E-mail: shumlak@uw.edu; Lambert, K. K., E-mail: shumlak@uw.edu; Lowrie, W., E-mail: shumlak@uw.edu; Ross, M. P., E-mail: shumlak@uw.edu; Weed, J. R., E-mail: shumlak@uw.edu [Aerospace and Energetics Research Program, University of Washington, Seattle, Washington, 98195-2250 (United States)
2014-12-15
The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. A sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and
Sex differences of human cortical blood flow and energy metabolism
DEFF Research Database (Denmark)
Aanerud, Joel; Borghammer, Per; Rodell, Anders
2017-01-01
cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral...... cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy...... turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity....
Heat transfer and flow in solar energy and bioenergy systems
Xu, Ben
The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae
Balaji, Nidish Narayanaa; Krishna, I. R. Praveen; Padmanabhan, C.
2018-05-01
The Harmonic Balance Method (HBM) is a frequency-domain based approximation approach used for obtaining the steady state periodic behavior of forced dynamical systems. Intrinsically these systems are non-autonomous and the method offers many computational advantages over time-domain methods when the fundamental period of oscillation is known (generally fixed as the forcing period itself or a corresponding sub-harmonic if such behavior is expected). In the current study, a modified approach, based on He's Energy Balance Method (EBM), is applied to obtain the periodic solutions of conservative systems. It is shown that by this approach, periodic solutions of conservative systems on iso-energy manifolds in the phase space can be obtained very efficiently. The energy level provides the additional constraint on the HBM formulation, which enables the determination of the period of the solutions. The method is applied to the linear harmonic oscillator, a couple of nonlinear oscillators, the elastic pendulum and the Henon-Heiles system. The approach is used to trace the bifurcations of the periodic solutions of the last two, being 2 degree-of-freedom systems demonstrating very rich dynamical behavior. In the process, the advantages offered by the current formulation of the energy balance is brought out. A harmonic perturbation approach is used to evaluate the stability of the solutions for the bifurcation diagram.
Control of Nonlinear Coupled Electromagnetic Actuators for Active Drag Reduction in Turbulent Flow
Seidler, Florian; Trabert, Julius; Dück, Marcel; van Waasen, Stefan; Schiek, Michael; Abel, Dirk; Castelan, E. B.
2016-01-01
The research group FOR1779 “active drag reduction via wavy surface oscillations” develops robust methods for reduction of turbulent friction drag by flow control. The planned concentration on unsteady flow conditions requires a control of the electromagnetic actuator system for generation of transversal surface waves. The bars are positioned in parallel and coupled with an aluminum surface to generate a travelling wave perpendicular to the flow field. The actuator system can be approximately ...
Lithium-Based High Energy Density Flow Batteries
Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)
2014-01-01
Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.
Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish
2015-10-01
Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.
Catchment organisation, free energy dynamics and network control on critical zone water flows
Zehe, E.; Ehret, U.; Kleidon, A.; Jackisch, C.; Scherer, U.; Blume, T.
2012-04-01
From a functional point of view the catchment system is compiled by patterns of permeable and less permeable textural elements - soils and mother rock. Theses textural elements provide a mechanical stabile matrix for growth of terrestrial biota and soil formation. They furthermore organize subsurface storage of water against gravity, dissolved nutrients and heat. Storage against gravity is only possible because water acts as wetting fluid and is thus attracted by capillary forces in the pores space. Capillarity increases non-linearly with decreasing pore size and is zero at local saturation. The pore size distribution of a soil is thus characteristic of its capability to store water against losses such as drainage, evaporation and root extraction and at the same time a fingerprint of the work that has been performed by physical, chemical and biological processes to weather solid mother rock and form a soil. A strong spatial covariance of soil hydraulic properties within the same soil type is due to a fingerprint of strong spatial organization at small scales. Spatial organization at the hillslope scale implies the existence of a typical soil catena i.e. that hillslopes exhibit the same/ downslope sequence of different soils types. Textural storage elements are separated by strikingly self-similar network like structures, we name them flow structures. These flow structures are created in a self-reinforcing manner by work performed either by biota like earth worms and plant roots or by dissipative processes such as soil cracking and water/fluvial erosion. Regardless of their different origin connected flow structures exhibit a highly similar functioning and similar characteristics: they allow for high mass flows at small driving potential gradients because specific flow resistance along the network is continuously very small. This implies temporal stability even during small extremes, due to the small amount of local momentum dissipation per unit mass flow, as well
Liu, Tianyang; Chan, Hiu Ning; Grimshaw, Roger; Chow, Kwok Wing
2017-11-01
The spatial structure of small disturbances in stratified flows without background shear, usually named the `Taylor-Goldstein equation', is studied by employing the Boussinesq approximation (variation in density ignored except in the buoyancy). Analytical solutions are derived for special wavenumbers when the Brunt-Väisälä frequency is quadratic in hyperbolic secant, by comparison with coupled systems of nonlinear Schrödinger equations intensively studied in the literature. Cases of coupled Schrödinger equations with four, five and six components are utilized as concrete examples. Dispersion curves for arbitrary wavenumbers are obtained numerically. The computations of the group velocity, second harmonic, induced mean flow, and the second derivative of the angular frequency can all be facilitated by these exact linear eigenfunctions of the Taylor-Goldstein equation in terms of hyperbolic function, leading to a cubic Schrödinger equation for the evolution of a wavepacket. The occurrence of internal rogue waves can be predicted if the dispersion and cubic nonlinearity terms of the Schrödinger equations are of the same sign. Partial financial support has been provided by the Research Grants Council contract HKU 17200815.
A non-linear 3D printed electromagnetic vibration energy harvester
International Nuclear Information System (INIS)
Constantinou, P; Roy, S
2015-01-01
This paper describes a novel electromagnetic energy harvester that exploits the low flexural modulus of ABS and comprises of a nonlinear mechanism to enhance the generated power and bandwidth. The device is printed using desktop additive manufacturing techniques (3D printing) that use thermoplastics. It has a ‘V’ spring topology and exhibits a softening spring non-linearity introduced through the magnetic arrangement, which introduces a monostable potential well. A model is presented and measurements correspond favourably. The produced prototype generates a peak power of approximately 2.5mW at a frame acceleration of 1g and has a power bandwidth of approximately 1.2→1.5Hz and 3.5→3.9Hz during up and down sweeps respectively. The device has a power density of 0.4mW/cm 3 at a frame acceleration of 1g and a density of 0.04mW/cm 3 from a generated power of 25μW at 0.1g. (paper)
A Modified Load Flow Algorithm in Power Systems with Alternative Energy Sources
International Nuclear Information System (INIS)
Contreras, D.L.; Cañedo, J.M.
2017-01-01
In this paper an algorithm for calculating the steady state of electrical networks including wind and photovoltaic generation is presented. The wind generators considered are; asynchronous (squirrel cage and doubly fed) and synchronous generators using permanent magnets. The proposed algorithm is based on the formulation of nodal power injections that is solved with the modified Newton Raphson technique in its polar formulation using complex matrices notation. Each power injection of wind and photovoltaic generators is calculated independently in each iteration according to its particular mathematical model, which is generally non-linear. Results are presented with a 30-node test system. The computation time of the proposed algorithm is compared with the conventional methodology to include alternative energy sources in power flows studies. (author)
International Nuclear Information System (INIS)
Maklakov, D.V.
1995-01-01
A numerical-analytic method of calculating a subcritical flow over an obstruction is proposed. This method is based on the identification of the asymptotics of the behavior of a wave train in unknown functions. The method makes it possible to calculate both steep and long waves. The effectiveness of the method is demonstrated for the problem of flow over a vortex. The concept of the limiting flow regime as a regime with the maximum value of the perturbation parameter for which steady flow still persists is introduced. Various types of the limiting regimes obtained in the calculations are analyzed
Piezoelectric energy harvesting from flow-induced vibration
International Nuclear Information System (INIS)
Wang, D-A; Ko, H-H
2010-01-01
A new piezoelectric energy harvester for harnessing energy from flow-induced vibration is developed. It converts flow energy into electrical energy by piezoelectric conversion with oscillation of a piezoelectric film. A finite element model is developed in order to estimate the generated voltage of the piezoelectric laminate subjected to a distributed load. Prototypes of the energy harvester are fabricated and tested. Experimental results show that an open circuit output voltage of 2.2 V pp and an instantaneous output power of 0.2 µW are generated when the excitation pressure oscillates with an amplitude of 1.196 kPa and a frequency of about 26 Hz. The solution of the generated voltage based on the finite element model agrees well with the experiments. Based on the finite element model, the effects of the piezoelectric film dimensions, the fluid pressure applied to the harvester and types of piezoelectric layer on the output voltage of the harvester can be investigated.
Energy Flows in Low-Entropy Complex Systems
Directory of Open Access Journals (Sweden)
Eric J. Chaisson
2015-12-01
Full Text Available Nature’s many complex systems—physical, biological, and cultural—are islands of low-entropy order within increasingly disordered seas of surrounding, high-entropy chaos. Energy is a principal facilitator of the rising complexity of all such systems in the expanding Universe, including galaxies, stars, planets, life, society, and machines. A large amount of empirical evidence—relating neither entropy nor information, rather energy—suggests that an underlying simplicity guides the emergence and growth of complexity among many known, highly varied systems in the 14-billion-year-old Universe, from big bang to humankind. Energy flows are as centrally important to life and society as they are to stars and galaxies. In particular, the quantity energy rate density—the rate of energy flow per unit mass—can be used to explicate in a consistent, uniform, and unifying way a huge collection of diverse complex systems observed throughout Nature. Operationally, those systems able to utilize optimal amounts of energy tend to survive and those that cannot are non-randomly eliminated.
Energy from sea wave thrust and flow of water
International Nuclear Information System (INIS)
Sarkar, S.R.
1996-01-01
The area adjacent to the tidal rivers, irrigational canal, drain and also the seashore may be energized harnessing the energy from the flow/wave thrust by simply converting it into unidirectional rotating force to drive the generator for power generation. The existing plants are big in size and also fixed in place. A plant which will be a small/portable type is described. 7 refs., figs
Directory of Open Access Journals (Sweden)
Mario Gómez
2018-03-01
Full Text Available This paper analyzes the causal link between aggregated and disaggregated levels of energy consumption and economic growth in Mexico between 1965 and 2014, with the presence of structural breaks stemming from the series. To that end, unit root with structural breaks, cointegration, and linear and nonlinear causality tests are employed. The results show that there is a long-run relationship between production, capital, labor, and energy, and linear causal links from total and disaggregated energy consumption to economic growth. A nonlinear causality also exists from energy consumption, the transport sector, capital, and labor to output. These results support the growth hypothesis, which maintains that energy is an important input factor for economic activity and that energy conservation policies impact the economic growth in Mexico.
Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom
Czech Academy of Sciences Publication Activity Database
Feistauer, M.; Horáček, Jaromír; Růžička, M.; Sváček, P.
2011-01-01
Roč. 49, č. 1 (2011), s. 110-127 ISSN 0045-7930 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Keywords : aeroelasticity * Navier-Stokes equation * non-linear oscillations * flutter instability Subject RIV: BI - Acoustics Impact factor: 1.810, year: 2011 http://www.sciencedirect.com/science/article/pii/S0045793011001538
Lan, Chunbo; Tang, Lihua; Harne, Ryan L.
2018-05-01
Nonlinear piezoelectric energy harvester (PEH) has been widely investigated during the past few years. Among the majority of these researches, a pure resistive load is used to evaluate power output. To power conventional electronics in practical application, the alternating current (AC) generated by nonlinear PEH needs to be transformed into a direct current (DC) and rectifying circuits are required to interface the device and electronic load. This paper aims at exploring the critical influences of AC and DC interface circuits on nonlinear PEH. As a representative nonlinear PEH, we fabricate and evaluate a monostable PEH in terms of generated power and useful operating bandwidth when it is connected to AC and DC interface circuits. Firstly, the harmonic balance analysis and equivalent circuit representation method are utilized to tackle the modeling of nonlinear energy harvesters connected to AC and DC interface circuits. The performances of the monostable PEH connected to these interface circuits are then analyzed and compared, focusing on the influences of the varying load, excitation and electromechanical coupling strength on the nonlinear dynamics, bandwidth and harvested power. Subsequently, the behaviors of the monostable PEH with AC and DC interface circuits are verified by experiment. Results indicate that both AC and DC interface circuits have a peculiar influence on the power peak shifting and operational bandwidth of the monostable PEH, which is quite different from that on the linear PEH.
Simanovskii, Ilya B.; Viviani, Antonio; Dubois, Frank
2018-06-01
An influence of a spatial temperature modulation of the interfacial heat release/consumption on nonlinear convective flows in the 47v2 silicone oil - water system, is studied. Rigid heat-insulated lateral walls, corresponding to the case of closed cavities, have been considered. Transitions between the flows with different spatial structures, have been investigated. It is shown that the spatial modulation can change the sequence of bifurcations and lead to the appearance of specific steady and oscillatory flows in the system.
Energy harvester for rotating environments using offset pendulum and nonlinear dynamics
International Nuclear Information System (INIS)
Roundy, Shad; Tola, Jeffry
2014-01-01
We present an energy harvester for environments that rotate through the Earth’s gravitational field. Example applications include shafts connected to motors, axles, propellers, fans, and wheels or tires. Our approach uses the unique dynamics of an offset pendulum along with a nonlinear bistable restoring spring to improve the operational bandwidth of the system. Depending on the speed of the rotating environment, the system can act as a bistable oscillator, monostable stiffening oscillator, or linear oscillator. We apply our approach to a tire pressure monitoring system mounted on a car rim. Simulation and experimental test results show that the prototype generator is capable of directly powering an RF transmission every 60 s or less over a speed range of 10 to 155 kph. (paper)
Complex motion in nonlinear-map model of elevators in energy-saving traffic
Nagatani, Takashi
2011-05-01
We have studied the dynamic behavior and dynamic transitions of elevators in a system for reducing energy consumption. We present a nonlinear-map model for the dynamics of M elevators. The motion of elevators depends on the loading parameter and their number M. The dependence of the fixed points on the loading parameter is derived. The dynamic transitions occur at 2(M-1) stages with increasing the value of loading parameter. At the dynamic transition point, the motion of elevators changes from a stable state to an unstable state and vice versa. The elevators display periodic motions with various periods in the unstable state. In the unstable state, the number of riding passengers fluctuates in a complex manner over various trips.
Finding structure in the dark: Coupled dark energy, weak lensing, and the mildly nonlinear regime
Miranda, Vinicius; González, Mariana Carrillo; Krause, Elisabeth; Trodden, Mark
2018-03-01
We reexamine interactions between the dark sectors of cosmology, with a focus on robust constraints that can be obtained using only mildly nonlinear scales. While it is well known that couplings between dark matter and dark energy can be constrained to the percent level when including the full range of scales probed by future optical surveys, calibrating matter power spectrum emulators to all possible choices of potentials and couplings requires many computationally expensive n-body simulations. Here we show that lensing and clustering of galaxies in combination with the cosmic microwave background (CMB) are capable of probing the dark sector coupling to the few percent level for a given class of models, using only linear and quasilinear Fourier modes. These scales can, in principle, be described by semianalytical techniques such as the effective field theory of large-scale structure.
Energy harvester for rotating environments using offset pendulum and nonlinear dynamics
Roundy, Shad; Tola, Jeffry
2014-10-01
We present an energy harvester for environments that rotate through the Earth’s gravitational field. Example applications include shafts connected to motors, axles, propellers, fans, and wheels or tires. Our approach uses the unique dynamics of an offset pendulum along with a nonlinear bistable restoring spring to improve the operational bandwidth of the system. Depending on the speed of the rotating environment, the system can act as a bistable oscillator, monostable stiffening oscillator, or linear oscillator. We apply our approach to a tire pressure monitoring system mounted on a car rim. Simulation and experimental test results show that the prototype generator is capable of directly powering an RF transmission every 60 s or less over a speed range of 10 to 155 kph.
del Hougne, Philipp; Fink, Mathias; Lerosey, Geoffroy
2017-12-01
Wave-front shaping has emerged over the past decade as a powerful tool to control wave propagation through complex media, initially in optics and more recently also in the microwave domain with important applications in telecommunication, imaging, and energy transfer. The crux of implementing wave-front shaping concepts in real life is often its need for (direct) feedback, requiring access to the target to focus on. Here, we present the shaping of a microwave field based on indirect, unsolicited, and blind feedback which may be the pivotal step towards practical implementations. With the example of a radio-frequency harvester in a metallic cavity, we demonstrate tenfold enhancement of the harvested power by wave-front shaping based on nonlinear signals detected at an arbitrary position away from the harvesting device.
Non-linear sputtering effects induced by MeV energy gold clusters
International Nuclear Information System (INIS)
Boussofiane-Baudin, K.; Brunelle, A.; Chaurand, P.; Della-Negra, S.; Depauw, J.; Le Beyec, Y.; Hakansson, P.
1993-09-01
Gold clusters Au n + with 1 < n ≤ 4, accelerated to MeV energies at the Orsay tandem accelerator, have been used to induce secondary ion emission from the surface of thin organic and inorganic films. A non-linear enhancement of the secondary ion yields is observed when cluster impacts are compared to single atom impacts at the same velocity. It has been shown that the collective effects propagate in the solid over a depth larger than 2000 A. The equilibrium charge state of cluster constituents after their passage through a thin carbon foil (1000 A) has been measured. The mean value for the cluster constituents is the same as for single atoms at the same velocity. (authors). 41 refs., 8 figs., 1 tab
The Non-Linear Effect of Chinese Financial Developments on Energy Supply Structures
Directory of Open Access Journals (Sweden)
Jian Chai
2016-10-01
Full Text Available Currently, oversupply coal and coal-based power in China poses a great challenge to energy structure optimization and emissions reduction. The energy industry, however, is closely linked to the financial sector. In view of this, using a non-linear Panel Smooth Transition Regression (PSTR model, this paper examines the threshold effects of financial developments on energy supply structures for 17 energy supply provinces in China observed over 2000–2014. The main results are: (1 The ratio of coal supply (LCSR specification is seen to be a four-regime PSTR model with added value in the financial industry/GDP (LFIR as the threshold variable. The LFIR and LCSR show a positive correlation, and the elastic coefficients change between 0.02 and ~0.085; the impact of financial institutions’ loan balance/GDP (LLAN on LCSR takes on an inverse U-shaped curve: first positive, then negative, and again positive with the financial crisis in 2008 as the turning point; (2 The ratio of thermal power generation (LTPG specification is seen to be a two-regime PSTR model with investment in the coal industry/GDP (LCIR as the threshold variable. Results show that LFIR has a negative effect on LTPG, and the coefficients in the low regime tend to be 0.344%, then gradually decrease to 0.051% in the high regime. The influence of LLAN on the LTPG is positive before and negative after the financial crisis. The influence of the foreign direct investment GDP proportion (LFDI, the degree of financial openness on the LCSR and LTPG both remain negative. Therefore, in the process of formulating energy conservation policies and adjusting energy-intensive industrial structures, the government should fully consider the effect of financial developments.
Tracing China's energy flow and carbon dioxide flow based on Sankey diagrams
Energy Technology Data Exchange (ETDEWEB)
Wang, Feiyin; Wang, Pengtao; Xu, Xiaomeng; Dong, Lihui; Xue, Honglai; Fu, Shuai [China University of Mining and Technology, Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, Beijing (China); China University of Mining and Technology, Faculty of Resources and Safety Engineering, Beijing (China); Ji, Yingxu [State Grid Jibei Electric Power Company Limited, Langfang Power Supply Company, Langfang (China)
2017-10-15
China has promised to optimize its energy structure and reduce its CO{sub 2} emission in the 13th Five-Year Plan. To track the energy structure, the conversions, efficiencies, end consumptions of total energy and coal and the whole CO{sub 2} emission status, the energy flow, coal flow and CO{sub 2} flow in 2015 were, respectively, drawn at the national level based on Sankey diagrams. Besides, each provincial fossil fuel structure, CO{sub 2} structure and CO{sub 2} intensity were calculated and plotted. It is mainly found that China's energy structure consisted of 69.2% of coal, 19.9% of oil, 6.3% of natural gas and 4.7% of non-fossil energy, where 45.5% of energy was consumed by industry and 23.9% by losses and statistical difference; coal was distributed to industry (55.6%), etc., with a utilization rate of 70.1%; and CO{sub 2} were derived from coal (84.7%), oil (11.1%) and natural gas (4.2%), of which 39.0% was released through the process of thermal power generation and 19.4% by industry. The structures of fossil fuels and their CO{sub 2} emissions together with the evolution of CO{sub 2} intensity at the provincial level and the regional level were also given. Besides, two pieces of policy implications were proposed to provide the government with reference. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Etemadpour, R.; Dorranian, D., E-mail: doran@srbiau.ac.ir [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sepehri Javan, N. [Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil (Iran, Islamic Republic of)
2016-05-15
The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.
International Nuclear Information System (INIS)
Etemadpour, R.; Dorranian, D.; Sepehri Javan, N.
2016-01-01
The nonlinear dynamics of a circularly polarized laser pulse propagating in the magnetized plasmas whose constituents are superthermal ions and mixed nonthermal high-energy tail electrons is studied theoretically. A nonlinear equation which describes the dynamics of the slowly varying amplitude is obtained using a relativistic two-fluid model. Based on this nonlinear equation and taking into account some nonlinear phenomena such as modulational instability, self-focusing and soliton formation are investigated. Effect of the magnetized plasma with superthermal ions and mixed nonthermal high-energy tail electrons on these phenomena is considered. It is shown that the nonthermality and superthermality of particles can substantially change the nonlinearity of medium.
Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems
International Nuclear Information System (INIS)
Li, Yanheng; Ji, Wei
2013-01-01
Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is
Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems
Energy Technology Data Exchange (ETDEWEB)
Li, Yanheng, E-mail: liy19@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States); Ji, Wei, E-mail: jiw2@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States)
2013-05-15
Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is
Energy recovery from air flow in underground railway systems
Energy Technology Data Exchange (ETDEWEB)
Morrone, B.; Mariani, A. [Seconda Univ. degli studi di Napoli, Aversa (Italy). Dept. of Aerospace and Mechanical Engineering; Costanzo, M.L. [Tecnosistem spa, Napoli (Italy)
2010-07-01
The 20-20-20 energy policy of the European Union commits members to reduce carbon dioxide (CO{sub 2}) emissions by 20 per cent by 2020, and stipulates that 20 per cent of final-use energy is to be supplied by renewable energy sources. This paper proposed the concept of recovering energy from underground trains by using the air flow inside tunnels to drive energy conversion systems such as turbines to generate electricity. Underground trains use much of their power to overcome the aerodynamic resistance moving the air in front of the train, creating a piston effect when travelling inside tunnels at relatively low speed. Numerical simulations were used in this study to determine how much electricity could be produced. A one-dimensional numerical analysis of a specific subway train track was used to evaluate the air flow magnitude inside the tunnel. Once the air flow features were detected, the potential electricity production was evaluated by considering the characteristics of a Wells turbine. Two types of 3-dimensional models of the tunnel and train were presented. One considered a long straight tunnel with a train running in it, and a small portion of a bypass tunnel. The other considered a large part of an opposite tunnel connected to the main one through the by-pass tunnel. Both the 3D models revealed a maximum flow rate of 2.5 x 105 m{sup 3}/h, while the 1D model showed an air flow of 1.5 x 105 m{sup 3}/h. The difference was due primarily to the presence of fans in the 1D Model and different modelling assumptions. It was concluded that one single Wells type turbine placed in a by-pass tunnel can produce 32.6 kWh per day, or about 10 MWh per year, resulting in a CO{sub 2} savings of about 5.5 tons per year. 8 refs., 1 tab., 11 figs.
Yang, Peng; Chen, Hui; Liu, Yingwen
2017-06-01
In this paper, a two-dimensional axisymmetric model of a thermoacoustic Stirling engine with a short tube where the cross section narrows has been developed. The transient streamlines and vortex formation through short tubes with different diameters in oscillatory flow have been investigated visually by computational fluid dynamics. Three dimensionless parameters, Reynolds number (Re), Keulegan-Carpenter number (KC), and Womersley number (Wo), are used to describe the flow regime and vortex characteristic throughout the short tube. High Re and Wo numbers indicate that the oscillatory flow develops into the turbulent flow through the short tube. The KC number has a direct effect on the transition of streamlines and the development of the vortex. For a small cross section where KC ≈ 1, streamlines rotate and the vortex forms at both sides of the short tube. The vortex stays in the main flow region, and intensity varies as streamlines are convected downstream. The velocity along the radius presents a Poiseuille profile within the influence of the vortex. For a large cross section where KC < 1, streamlines pass the short tube with little rotation and the vortex disappears in the main flow region and confines near the short tube. The velocity profile tends to be flat. The nonlinear effects including instantaneous pressure drop and power dissipation throughout the short tube are also discussed. It shows that the time averaged pressure drop is generated at the cost of power dissipation. Finally, the "effectiveness" is applied to evaluate the performance of the short tube. The results suggest that increasing the diameter of the short tube is in favor of reducing power dissipation, which is beneficial to improve "effectiveness."
Hu, Kun; Lo, Men-Tzung; Peng, Chung-Kang; Liu, Yanhui; Novak, Vera
2012-01-01
Cerebral autoregulation (CA) is an important vascular control mechanism responsible for relatively stable cerebral blood flow despite changes of systemic blood pressure (BP). Impaired CA may leave brain tissue unprotected against potentially harmful effects of BP fluctuations. It is generally accepted that CA is less effective or even inactive at frequencies >∼0.1 Hz. Without any physiological foundation, this concept is based on studies that quantified the coupling between BP and cerebral blood flow velocity (BFV) using transfer function analysis. This traditional analysis assumes stationary oscillations with constant amplitude and period, and may be unreliable or even invalid for analysis of nonstationary BP and BFV signals. In this study we propose a novel computational tool for CA assessment that is based on nonlinear dynamic theory without the assumption of stationary signals. Using this method, we studied BP and BFV recordings collected from 39 patients with chronic ischemic infarctions and 40 age-matched non-stroke subjects during baseline resting conditions. The active CA function in non-stroke subjects was associated with an advanced phase in BFV oscillations compared to BP oscillations at frequencies from ∼0.02 to 0.38 Hz. The phase shift was reduced in stroke patients even at > = 6 months after stroke, and the reduction was consistent at all tested frequencies and in both stroke and non-stroke hemispheres. These results provide strong evidence that CA may be active in a much wider frequency region than previously believed and that the altered multiscale CA in different vascular territories following stroke may have important clinical implications for post-stroke recovery. Moreover, the stroke effects on multiscale cerebral blood flow regulation could not be detected by transfer function analysis, suggesting that nonlinear approaches without the assumption of stationarity are more sensitive for the assessment of the coupling of nonstationary
Nonlinear transport processes and fluid dynamics: Cylindrical Couette flow of Lennard-Jones fluids
International Nuclear Information System (INIS)
Khayat, R.E.; Eu, B.C.
1988-01-01
In this paper we report on calculations of flow profiles for cylindrical Couette flow of a Lennard-Jones fluid. The flow is subjected to a temperature gradient and thermoviscous effects are taken into consideration. We apply the generalized fluid dynamic equations which are provided by the modified moment method for the Boltzmann equation reported previously. The results of calculations are in good agreement with the Monte Carlo direct simulation method by K. Nanbu [Phys. Fluids 27, 2632 (1984)] for most of Knudsen numbers for which the simulation data are available
Analysis of multiphase flows using dual-energy gamma densitometry and neural networks
International Nuclear Information System (INIS)
Bishop, C.M.; James, G.D.
1993-01-01
Dual-energy gamma densitometry offers a powerful technique for the non-intrusive analysis of multiphase flows. By employing multiple beam lines, information on the phase configuration can be obtained. Once the configuration is known, it then becomes possible in principle to determine the phase fractions. In practice, however, the extraction of the phase fractions from the densitometer data is complicated by the wide variety of phase configurations which can arise, and by the considerable difficulties of modelling multiphase flows. In this paper we show that neural network techniques provide a powerful approach to the analysis of data from dual-energy gamma densitometers, allowing both the phase configuration and the phase fractions to be determined with high accuracy, whilst avoiding the uncertainties associated with modelling. The technique is well suited to the determination of oil, water and gas fractions in multiphase oil pipelines. Results from linear and non-linear network models are compared, and a new technique for validating the network output is described. (orig.)
Energy flow characteristics of vector X-Waves
Salem, Mohamed; Bagci, Hakan
2011-01-01
The vector form of X-Waves is obtained as a superposition of transverse electric and transverse magnetic polarized field components. It is shown that the signs of all components of the Poynting vector can be locally changed using carefully chosen complex amplitudes of the transverse electric and transverse magnetic polarization components. Negative energy flux density in the longitudinal direction can be observed in a bounded region around the centroid; in this region the local behavior of the wave field is similar to that of wave field with negative energy flow. This peculiar energy flux phenomenon is of essential importance for electromagnetic and optical traps and tweezers, where the location and momenta of microand nanoparticles are manipulated by changing the Poynting vector, and in detection of invisibility cloaks. © 2011 Optical Society of America.
Schmid, L. A.
1977-01-01
The first and second variations are calculated for the irreducible form of Hamilton's Principle that involves the minimum number of dependent variables necessary to describe the kinetmatics and thermodynamics of inviscid, compressible, baroclinic flow in a specified gravitational field. The form of the second variation shows that, in the neighborhood of a stationary point that corresponds to physically stable flow, the action integral is a complex saddle surface in parameter space. There exists a form of Hamilton's Principle for which a direct solution of a flow problem is possible. This second form is related to the first by a Friedrichs transformation of the thermodynamic variables. This introduces an extra dependent variable, but the first and second variations are shown to have direct physical significance, namely they are equal to the free energy of fluctuations about the equilibrium flow that satisfies the equations of motion. If this equilibrium flow is physically stable, and if a very weak second order integral constraint on the correlation between the fluctuations of otherwise independent variables is satisfied, then the second variation of the action integral for this free energy form of Hamilton's Principle is positive-definite, so the action integral is a minimum, and can serve as the basis for a direct trail and error solution. The second order integral constraint states that the unavailable energy must be maximum at equilibrium, i.e. the fluctuations must be so correlated as to produce a second order decrease in the total unavailable energy.
Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics
DEFF Research Database (Denmark)
Holstein-Rathlou, N H; Marsh, D J
1994-01-01
in which the kidney is obliged to operate. Were it not for renal blood flow autoregulation, it would be difficult to regulate renal excretory processes so as to maintain whole body variables within narrow bounds. Autoregulation is the noise filter on which other renal processes depend for maintaining...... a relatively noise-free environment in which to work. Because of the time-varying nature of the blood pressure, we have concentrated in this review on the now substantial body of work on the dynamics of renal blood flow regulation and the underlying mechanisms. Renal vascular control mechanisms are not simply....... The significance of deterministic chaos in the context of renal blood flow regulation is that the system regulating blood flow undergoes a physical change to a different dynamical state, and because the change is deterministic, there is every expectation that the critical change will yield itself to experimental...
Elsheikh, A. H.; Wheeler, M. F.; Hoteit, Ibrahim
2013-01-01
Calibration of subsurface flow models is an essential step for managing ground water aquifers, designing of contaminant remediation plans, and maximizing recovery from hydrocarbon reservoirs. We investigate an efficient sampling algorithm known
Nonlinear ionization of many-electron systems over a broad photon-energy range
International Nuclear Information System (INIS)
Karamatskou, Antonia
2015-11-01
Rapid developments in laser technology and, in particular, the advances in the realm of free-electron lasers have initiated tremendous progress in both theoretical and experimental atomic, molecular and optical physics. Owing to high intensities in combination with short pulse durations we can enter the utterly nonlinear regime of light-matter interaction and study the dynamics and features of matter under extreme conditions. The capabilities of X-ray free-electron laser sources have promoted the importance of nonlinear optics also in the X-ray regime. I show in my thesis how we can exploit the nonlinear response regime to reveal hidden information about resonance structures that are not resolved in the weak-field regime. This prospect points to many applications for future investigations of various complex systems with free-electron lasers. In the present thesis the interaction of atomic closed-shell systems with ultrashort and strong laser pulses is investigated. Over a broad photon-energy range the characteristics of the atomic shell are studied with a particular focus on the nonlinear response regime and on electron correlation effects. Several computational extensions of the XCID package for multi-electron dynamics are presented and their applications in various studies are demonstrated; a completely new capability of the numerical method is realized by implementing the calculation of photoelectron spectra and by calculating eigenstates of the many-electron Hamiltonian. The field of study within the present work encompasses (1) the strong-field regime, where the question of the adiabatic character in tunneling ionization is discussed and analyzed, especially for the case of few-cycle pulses; (2) the XUV regime, in which we show for the first time that the collectivity in resonant excitation reveals new information; and (3) the (hard) x-ray regime, which is highly relevant for x-ray free-electron laser experiments, and where we show how important two
Beam energy dependence of elliptic flow in heavy-ion collision
International Nuclear Information System (INIS)
Otuka, Naohiko; Isse, Masatsugu; Ohnishi, Akira; Pradip Kumar Sahu; Nara, Yasushi
2002-01-01
We study radial flow and elliptic flow in relativistic heavy-ion collisions at energies from GSI-SIS to BNL-RHIC energies using hadronic cascade model JAM. The excitation function of radial flow shows the softening of hadronic matter from BNL-AGS to CERN-SPS energies. JAM model reproduces transverse mass spectra at BNL-AGS, CERN-SPS at BNL-RHIC energies as well as elliptic flow upto CERN-SPS. For elliptic flow at BNL-RHIC energy (√s=130 GeV), while JAM gives the enough flow at fragment region, it fails at mid rapidity. (author)
Susanto, Edy; Idrus Alhamid, M.; Nasruddin; Budihardjo
2018-03-01
Room Chamber is the most important in making a good Testing Laboratory. In this study, the 2-D modeling conducted to assess the effect placed the inlet on designing a test chamber room energy consumption of household refrigerators. Where the geometry room chamber is rectangular and approaching the enclosure conditions. Inlet varied over the side parallel to the outlet and compared to the inlet where the bottom is made. The purpose of this study was to determine and define the characteristics of the airflow in the room chamber using CFD simulation. CFD method is used to obtain flow characteristics in detail, in the form of vector flow velocity and temperature distribution inside the chamber room. The result found that the position of the inlet parallel to the outlet causes air flow cannot move freely to the side of the floor, even flow of air moves up toward the outlet. While by making the inlet is below, the air can move freely from the bottom up to the side of the chamber room wall as well as to help uniform flow.
International Nuclear Information System (INIS)
Haines, M.G.; Bond, D.J.; Chuaqui, H.H.
1983-01-01
The paper reports experimental and theoretical contributions to the understanding of non-linear heat flow and the phenomenon of jet-like filamentary structures in inertial-confinement fusion. When lateral heat flow is minimized, through applying more carefully a radially symmetric irradiation at 1.05 and 0.53 μm on a spherical target, it is found that a heat flux in excess of 10% of the free-streaming limit is consistent with simulations and experimental measurements with particle and X-ray diagnostics. A similar result has been found in a scaled experiment in a plasma of electron density 4x10 16 cm - 3 when the condition Tsub(e) approx.=Tsub(i) is satisfied. These results are in marked contrast to earlier assertions, mainly from plane-target measurements, that the flux limiter is 3%, but in agreement with theoretical calculations of steady non-linear heat flow using a discrete-ordinate method. Thus, no anomalous inhibition of heat flow is found, consistent with theoretical predictions that ion-acoustic turbulence is of no importance in dense (n>=10 21 cm - 3 , T approx.= 1 keV) plasmas. However, in the low-density scaled experiment, under conditions where Tsub(e)>>Tsub(i) is found that ion-acoustic turbulence is present, and the flux limiter is 4%. By using shadowgraphic and schlieren techniques with an optical diagnostic probe, fine-scale jet-like structures have been observed on a scale-length of approx. 10 μm on spherical targets. They occur even outside the laser-irradiated region, and are not connected with irregularities in the laser beam; they are more pronounced with higher-Z materials and with shorter-wavelength lasers, and have megagauss magnetic fields associated with them. Electromagnetic instabilities driven by heat flow are the probable cause of the jets, and of the three known modes the thermal instability, enhanced by radiation loss, agrees more closely with the experiments than the Weibel and thermomagnetic modes, since the latter only occur
Large Eddy Simulation of Turbulent Flows in Wind Energy
DEFF Research Database (Denmark)
Chivaee, Hamid Sarlak
This research is devoted to the Large Eddy Simulation (LES), and to lesser extent, wind tunnel measurements of turbulent flows in wind energy. It starts with an introduction to the LES technique associated with the solution of the incompressible Navier-Stokes equations, discretized using a finite......, should the mesh resolution, numerical discretization scheme, time averaging period, and domain size be chosen wisely. A thorough investigation of the wind turbine wake interactions is also conducted and the simulations are validated against available experimental data from external sources. The effect...... Reynolds numbers, and thereafter, the fully-developed infinite wind farm boundary later simulations are performed. Sources of inaccuracy in the simulations are investigated and it is found that high Reynolds number flows are more sensitive to the choice of the SGS model than their low Reynolds number...
Third Conference on nonlinear science and complexity (NSC)
Machado, José; Baleanu, Dumitru; Dynamical Systems and Methods
2012-01-01
Nonlinear Systems and Methods For Mechanical, Electrical and Biosystems presents topics observed at the 3rd Conference on Nonlinear Science and Complexity(NSC), focusing on energy transfer and synchronization in hybrid nonlinear systems. The studies focus on fundamental theories and principles,analytical and symbolic approaches, computational techniques in nonlinear physical science and mathematics. Broken into three parts, the text covers:\\ Parametrical excited pendulum, nonlinear dynamics in hybrid systems, dynamical system synchronization and (N+1) body dynamics as well as new views different from the existing results in nonlinear dynamics. Mathematical methods for dynamical systems including conservation laws, dynamical symmetry in nonlinear differential equations and invex energies. Nonlinear phenomena in physical problems such as solutions, complex flows, chemical kinetics, Toda lattices and parallel manipulator. This book is useful to scholars, researchers and advanced technical members of industrial l...
Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam
2015-04-01
In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.
Directory of Open Access Journals (Sweden)
Pooria Akbarzadeh
2017-07-01
Full Text Available In this paper, the problem of laminar nanofluid flow which results from the nonlinear stretching of a flat sheet is investigated numerically. In this paper, a modified variable physical properties model for analyzing nanofluids flow and heat transfer is introduced. In this model, the effective viscosity, density, and thermal conductivity of the solid-liquid mixture (nanofluids which are commonly utilized in the homogenous single-phase model, are locally combined with the prevalent single-phase model. A numerical similarity solution is considered which depends on the local Prandtl number, local Brownian motion number, local Lewis number, and local thermophoresis number. The results are compared to the prevalent single-phase model. This comparison depicts that the prevalent single-phase model has a considerable deviation for predicting the behavior of nanofluids flow especially in dimensionless temperature and nanoparticle volume fraction. In addition the effect of the governing parameters such as Prandtl number, the Brownian motion number, the thermophoresis parameter, the Lewis number, and etc. on the velocity, temperature, and volume fraction distribution and the dimensionless heat and mass transfer rates are examined.
The Use of Energy in Malaysia: Tracing Energy Flows from Primary Source to End Use
Directory of Open Access Journals (Sweden)
Chinhao Chong
2015-04-01
Full Text Available Malaysia is a rapidly developing country in Southeast Asia that aims to achieve high-income country status by 2020; its economic growth is highly dependent on its abundant energy resources, especially natural gas and crude oil. In this paper, a complete picture of Malaysia’s energy use from primary source to end use is presented by mapping a Sankey diagram of Malaysia’s energy flows, together with ongoing trends analysis of the main factors influencing the energy flows. The results indicate that Malaysia’s energy use depends heavily on fossil fuels, including oil, gas and coal. In the past 30 years, Malaysia has successfully diversified its energy structure by introducing more natural gas and coal into its power generation. To sustainably feed the rapidly growing energy demand in end-use sectors with the challenge of global climate change, Malaysia must pay more attention to the development of renewable energy, green technology and energy conservation in the future.
Yang, Haijian
2016-12-10
Most existing methods for solving two-phase flow problems in porous media do not take the physically feasible saturation fractions between 0 and 1 into account, which often destroys the numerical accuracy and physical interpretability of the simulation. To calculate the solution without the loss of this basic requirement, we introduce a variational inequality formulation of the saturation equilibrium with a box inequality constraint, and use a conservative finite element method for the spatial discretization and a backward differentiation formula with adaptive time stepping for the temporal integration. The resulting variational inequality system at each time step is solved by using a semismooth Newton algorithm. To accelerate the Newton convergence and improve the robustness, we employ a family of adaptive nonlinear elimination methods as a nonlinear preconditioner. Some numerical results are presented to demonstrate the robustness and efficiency of the proposed algorithm. A comparison is also included to show the superiority of the proposed fully implicit approach over the classical IMplicit Pressure-Explicit Saturation (IMPES) method in terms of the time step size and the total execution time measured on a parallel computer.
Decuyper, J.; De Troyer, T.; Runacres, M. C.; Tiels, K.; Schoukens, J.
2018-01-01
The flow-induced vibration of bluff bodies is an important problem of many marine, civil, or mechanical engineers. In the design phase of such structures, it is vital to obtain good predictions of the fluid forces acting on the structure. Current methods rely on computational fluid dynamic simulations (CFD), with a too high computational cost to be effectively used in the design phase or for control applications. Alternative methods use heuristic mathematical models of the fluid forces, but these lack the accuracy (they often assume the system to be linear) or flexibility to be useful over a wide operating range. In this work we show that it is possible to build an accurate, flexible and low-computational-cost mathematical model using nonlinear system identification techniques. This model is data driven: it is trained over a user-defined region of interest using data obtained from experiments or simulations, or both. Here we use a Van der Pol oscillator as well as CFD simulations of an oscillating circular cylinder to generate the training data. Then a discrete-time polynomial nonlinear state-space model is fit to the data. This model relates the oscillation of the cylinder to the force that the fluid exerts on the cylinder. The model is finally validated over a wide range of oscillation frequencies and amplitudes, both inside and outside the so-called lock-in region. We show that forces simulated by the model are in good agreement with the data obtained from CFD.
Yang, Haijian; Sun, Shuyu; Yang, Chao
2016-01-01
Most existing methods for solving two-phase flow problems in porous media do not take the physically feasible saturation fractions between 0 and 1 into account, which often destroys the numerical accuracy and physical interpretability of the simulation. To calculate the solution without the loss of this basic requirement, we introduce a variational inequality formulation of the saturation equilibrium with a box inequality constraint, and use a conservative finite element method for the spatial discretization and a backward differentiation formula with adaptive time stepping for the temporal integration. The resulting variational inequality system at each time step is solved by using a semismooth Newton algorithm. To accelerate the Newton convergence and improve the robustness, we employ a family of adaptive nonlinear elimination methods as a nonlinear preconditioner. Some numerical results are presented to demonstrate the robustness and efficiency of the proposed algorithm. A comparison is also included to show the superiority of the proposed fully implicit approach over the classical IMplicit Pressure-Explicit Saturation (IMPES) method in terms of the time step size and the total execution time measured on a parallel computer.
Directory of Open Access Journals (Sweden)
Junaid Ahmad Khan
2018-03-01
Full Text Available Boundary layer flow around a stretchable rough cylinder is modeled by taking into account boundary slip and transverse magnetic field effects. The main concern is to resolve heat/mass transfer problem considering non-linear radiative heat transfer and temperature/concentration jump aspects. Using conventional similarity approach, the equations of motion and heat transfer are converted into a boundary value problem whose solution is computed by shooting method for broad range of slip coefficients. The proposed numerical scheme appears to improve as the strengths of magnetic field and slip coefficients are enhanced. Axial velocity and temperature are considerably influenced by a parameter M which is inversely proportional to the radius of cylinder. A significant change in temperature profile is depicted for growing wall to ambient temperature ratio. Relevant physical quantities such as wall shear stress, local Nusselt number and local Sherwood number are elucidated in detail. Keywords: Stretchable boundary, Thermal radiation, Chemical reaction, Mathematical modeling, Non-linear differential system, Mass transfer
Morgan, Sarah E.; Cole, Daniel J.; Chin, Alex W.
2016-11-01
Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the entire trimeric FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes through their influence on pigment properties. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.
Directory of Open Access Journals (Sweden)
Daniel Guyomar
2011-06-01
Full Text Available This paper aims at providing an up-to-date review of nonlinear electronic interfaces for energy harvesting from mechanical vibrations using piezoelectric coupling. The basic principles and the direct application to energy harvesting of nonlinear treatment of the output voltage of the transducers for conversion enhancement will be recalled, and extensions of this approach presented. Latest advances in this field will be exposed, such as the use of intermediate energy tanks for decoupling or initial energy injection for conversion magnification. A comparative analysis of each of these techniques will be performed, highlighting the advantages and drawbacks of the methods, in terms of efficiency, performance under several excitation conditions, complexity of implementation and so on. Finally, a special focus of their implementation in the case of low voltage output transducers (as in the case of microsystems will be presented.
Directory of Open Access Journals (Sweden)
Jiuping Xu
2012-01-01
Full Text Available The aim of this study is to deal with a minimum cost network flow problem (MCNFP in a large-scale construction project using a nonlinear multiobjective bilevel model with birandom variables. The main target of the upper level is to minimize both direct and transportation time costs. The target of the lower level is to minimize transportation costs. After an analysis of the birandom variables, an expectation multiobjective bilevel programming model with chance constraints is formulated to incorporate decision makers’ preferences. To solve the identified special conditions, an equivalent crisp model is proposed with an additional multiobjective bilevel particle swarm optimization (MOBLPSO developed to solve the model. The Shuibuya Hydropower Project is used as a real-world example to verify the proposed approach. Results and analysis are presented to highlight the performances of the MOBLPSO, which is very effective and efficient compared to a genetic algorithm and a simulated annealing algorithm.
International Nuclear Information System (INIS)
Mirza, Arshad M.; Hasan, Asma; Azeem, M.; Saleem, H.
2003-01-01
It is found that the low-frequency ion acoustic and electrostatic drift waves can become unstable in uniform electron-ion and electron-positron-ion plasmas due to the ion shear flow. In a collisional plasma a drift-dissipative instability can also take place. In the presence of collisions the temporal behavior of nonlinear drift-dissipative mode can be represented in the form of well-known Lorenz and Stenflo type equations that admit chaotic trajectories. On the other hand, a quasi-stationary solution of the mode coupling equations can be represented in the form of monopolar vortex. The results of the present investigation can be helpful in understanding electrostatic turbulence and wave phenomena in laboratory and astrophysical plasmas
Directory of Open Access Journals (Sweden)
Sameh E. Ahmed
2017-12-01
Full Text Available The present paper deals with the effects of slip boundary conditions and chemical reaction on the heat and mass transfer by mixed convective boundary layer flow of a non-Newtonian fluid over a nonlinear stretching sheet. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. First order chemical reactions are considered. Similar solutions are used to convert the partial differential equations governing the problem to ordinary differential equations. The velocity, temperature and concentration profiles are obtained, numerically, using the MATLAB function bvp4c and those are used to compute the entropy generation number. The effect of increasing values of the Casson parameter is found to suppress the velocity field and temperature distribution. But the concentration is enhanced with the increasing of Casson parameter. The viscous dissipation, temperature and concentration irreversibility are determined and discussed in details.
Directory of Open Access Journals (Sweden)
Mair Khan
2018-03-01
Full Text Available The present analysis is devoted to explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet. Variable viscosity is assumed to vary as a linear function of temperature. The basic mathematical modelled problem i.e. system of PDE’s is converted n